
ADVANCED PRACTICAL ARITHMETIC

DURELL-ROBBINS

 12 4
CHARIES E.MERRILI. CO.

THE ADVANCED

PRACTICAL ARITHMETIC

BY
FLETCHER DURELL, Pн.D. Mathematioal. Master in the Lawhencevilee School

EDW ARD R. ROBBLNS, A.B Mathematical. Master in the Whichay Penn Charter Sobool

UNIVERSIDAD AUTÓNQMA DE NUEVO LEÓN

Durell \& Robbins' Mathematical Series

ACERVO GENERAL

PREFACE

The object in preparing this arithmetic has been the same which the authors had in view when writing their school algebra, viz. : "to show more plainly, if possible, than has been done heretofore, the practical or common sense reason for each step or process." It is believed that this treatment is not only "adapted to the practical American spirit, but also gives the study of the subject a larger educational value." It is also believed that the scholarly possibilities and value of the treatment, instead of being diminished, are increased thereby. For instance, it is hoped that the matter presented in the chapters on the Applications of Percentage and Interest, and on Arithmetical History, will have a new value. The main principle which has governed the authors in writing the book has also been the controlling factor in the treatment of many matters of detail which are still in debate among teachers of arithmetic and writers on the subject.
Almost all are agreen that the study of arithmetic should begin with the study of concrete objects; and that the use of geometric diagrams is a great help in presenting certain parts of the subject, as fractions. But the authors believe that it is a mistake to have the concrete objects, or even pictures of them, constantly before the pupil. Nor should diagrams be printed as part of the text. The pure arithmetical processes should be made easy and natural as soon as possible, on account of their brevity and simplicity. Con-

PREFACE.

crete objects or diagrams, if kept before the eye constantly, tend to clog and hamper the mind; bence they should be recalled only so often and at such places as may be necessary in order to make the subject vivid and real.
In the same way algebraic symbols and methods have been introduced only when they give a clear and pronounced advantage, and thus arouse in the pupil the desire to know more of them.
It is believed that rules for processes are useful in many ways when they are arrived at after the proper preliminary work and when they are used with discretion.
In order to cultivate habits of analysis and exact statement, and yet to prevent these from becoming mere mechanical rote processes, different forms of analysis have been used adapted to different kinds of work. These are indicated by the use of different words as "Operation," "Explanation," "Solution," etc.
In like manner, oral exercises are sometimes put before written exercises, sometimes after them.

The subject-matter is not spirally arranged, but is adapted to spiral study. The subject is presented as an organic whole, yet one which can be learned by successive steps (see p. 6).

A large number of examples adapted to the theory of the book has been made and carefully graded. Especial attention is also called to the chapter on the Metric System.
The authors will be glad to receive any corrections or suggestions from teachers using this book.

FLETCHER DURELL EDWARD R, ROBBINS.
Lawrenceville, N. J.,
Phmadelphia, PA.
May 1, 1901.

TO THE TEAOHER.

1. The teacher should make sure at different times that the pupil carries in mind the concrete object for which a symbol stands. Now show the pupil, now have him show the concrete object. Show him diagrams illustrating the properties of fractions. Have him make these diagrams. But do this only occasionally, and always for some good reason.
2. In oral work and explanations insist on careful and accurate statements. For instance, in oral work do not allow a pupil to give the answer merely without a formal statement of the analysis or steps by which the result was obtained.
3. In written problems in which the analysis is difficult (as in Exercise 23) elicit the analysis from the pupil by oral questions, and afterward have the pupil write out the analysis and solution.
4. Insist on the use of cancellation wherever possible. Train the pupil to combine all the operations required in the solution of a problem in a comprehensive plan or scheme; then to factor and cancel wherever possible; never to multiply till it is necessary to do so.
5. Train the pupil also to make a rough estimate or forecast of the answer before beginning the exact numerical work. This not only tends to eliminate large errors, but is also a valuable habit, since, in practical life, fully one-half the applications of arithmetic are made in this way.
6. Impress upon the minds of pupils in various ways the local value of digits and the limitations in the accuracy of all arithmetical work based on measurements (see Arts. 19, 77, 78).

6
7. Study to vary methods to suit the needs of lifferent pupils, both in presenting topics and in meeting difficulties. It is to be remembered that pupils as they come from different homes probably have more varied capacities with respect to the subject of arithmetic than to any other.
8. Do not be satisfied till by long practice and working innumerable examples, if necessary, the pupit has become a rapid and accurate computer. The power of handling figures with facility and accuracy is of the first importance both in practical life and in its influence on the further educational development of the pupil.
9. Review constantly.

Linar.
SGHEDULE RECOMMENDED IN USING DUREIL. AND ROBBINS' ART. ARTHMETIC.

HAPTER I.
Number. Numeration. Notation Number Numeration
Notation
Roman Notation
CHAPTER II
Addition
.....
CHAPTER III.
Subtraction
CHAPTER IV.
Multipliestion CHAPTER V
Drvision
CHAPTER VI.
Abbreviated Procksses
Abbreviated Multiplication Abbreviated Division . Combinations of Operations

CHAPTER VII.
Factors and Analysis LY818 82 Analysis.............. 89 CHAPTER VIII.
G. C. D. AND L. C. M.

Greatest Common Divisor
Least Common Multiplo
-

CONTENTS.

vision of Fraction124.126
VI G. D. and I. C. M. of

Fractions.
CHAPTER X.

Decimal Fractions 138 Operations with Decimals ... 142 Relation of Decimal Fractions
to Common Fractions . . 148
Applications of the Decimal
System 150 CHAPTER XI.
Compound Numbers 158
I. Measures of Weight . . 160
II. Measures of Length . 165
III. Measures of Surface 167
III. Measures of Surface
V. Measures of Volume and
Capacity 169 V. Measures of Value . 173 VI. Measures of Time . . 175 VII. Cireular and Angular
\qquad
VIII. Miscellaneous Units . . 179

Operations with Compound Numbers

181
Application to Longitude and
Time. 188

ARITHMETIC.

CHAPTER I.

NUMBER. NUMERATION. NOTATION.

1. Units.-For many purposes the most convenient way of dealing with quantity (as, for instance, with the length of a given line) is to take a certain definite part of the given quantity as a unit, and determine the number of times the unit must be used in order to make up the given quantity (or line).
Thus, in determining the length of a given linear object, as a rope, we do not depend merely on general impressions of its magnitude (formed by the eye or by moving the hand over it), but by taking a unit, as one inch or one foot, and determining the number of times the unit must be used in order to make up the line.
A boy dealing with a quantity of marbles in his possession does not do so merely by means of the aggregate impression which they make in his pocket, but by taking a single marble as a unit, and counting the number of marbles which he has.

This method of regarding quantity as made up of units gives greater ease and precision in all the ordinary uses made of an aggregate of material.

A unit is a certain quantity taken as a standard of refer- $(\mathbb{R}$ ence when dealing with quantity of the same kind.

2. Kinds of Units.-Units are of different kinds.

Natural units are those which occur in the world about us, as one apple, one man, one year, one day.
Artificial units do not occur naturally, but are devised

ARITHMETIC.

CHAPTER I.

NUMBER. NUMERATION. NOTATION.

1. Units.-For many purposes the most convenient way of dealing with quantity (as, for instance, with the length of a given line) is to take a certain definite part of the given quantity as a unit, and determine the number of times the unit must be used in order to make up the given quantity (or line).
Thus, in determining the length of a given linear object, as a rope, we do not depend merely on general impressions of its magnitude (formed by the eye or by moving the hand over it), but by taking a unit, as one inch or one foot, and determining the number of times the unit must be used in order to make up the line.
A boy dealing with a quantity of marbles in his possession does not do so merely by means of the aggregate impression which they make in his pocket, but by taking a single marble as a unit, and counting the number of marbles which he has.

This method of regarding quantity as made up of units gives greater ease and precision in all the ordinary uses made of an aggregate of material.

A unit is a certain quantity taken as a standard of refer- $(\mathbb{R}$ ence when dealing with quantity of the same kind.

2. Kinds of Units.-Units are of different kinds.

Natural units are those which occur in the world about us, as one apple, one man, one year, one day.
Artificial units do not occur naturally, but are devised
by man so as to extend the advantages arising from the use of units as widely as possible, as one foot, one-third of an apple, etc.

A primary unit is a single unit of a given kind, as one dollar.
A derived unit is an aggregate of single units, as five dollars (a "V") ; or a part of a unit, regarded as a new unit, as one-third of a dollar.

A unit of one kind-may become, in certain relations, a unit of another kind. Thus, an artificial unit may become, in some senses, a natural unit, as one dollar. Also, a derived unit may come to be regarded as a primary unit, as one week, one quarter (of a dollar).

EXERCISE 1.

1. What unit of length is used in measuring the length of a room? The length of a pencil? Of a quantity of cloth?
2. What unit of length is used in measuring the distance between two cities? The diameter of the earth ?
3. With what unit of capacity is milk measured? Grain? Strawberries? Potatoes?
4. Which unit of area is used in stating the size of a farm? Of a county?
5. Which of the following units are natural and which are artificial:
year, second, week, foot, quart, yard, peck, mile, month, degree?
6. Number is a unit, or collection of like units.

When quantity is regarded as made up of like units, it becomes a number. Thus, when an aggregate of apples is regarded as made up of distinet apples, it becomes a number
Of apples.
Thus, also, when a line is regarded as made up of inches, it becomes a number of inches.
4. Arithmetic is the science which treats of number. It investigates the most advantageous ways of expressing quantities as numbers, and of using numbers when formed.
5. Number Words.- When we have determined a quantity as made up of units, and ascertained the number of the units in a given quantity, it is often useful to transfer
the number idea thus formed, to other persons, and thus give them a definite conception of the quantity dealt with, without labor on their part. Hence, words are useful by which to designate different aggregates of units, or numbers.
Number words are useful also to the person using them, in calling up the precise ideas connected with each aggregate of units.

The words used for the different aggregates of units (beginning with a single unit) are-
one, two, three, four, five, six, seven, eight, nine, ten.
For larger aggregates of units a system of grouping units and naming the groups formed is used, which is explained later.
6. Counting is the process ot affixing to any group of units the number word belonging to that group, beginning with unity, and affixing its number word to each group, till the last unit of the entire group dealt with is reached.
7. Number Symbols.-Further economies and additional power in dealing with numbers are obtained by using a distinct symbol for each number apart from its number word. Thus, for the number words
one, two, three, four, five, six, seven, eight, nine, we use $1,2, \quad 3, \quad 4, \quad 5, \quad 6, \quad 7, \quad 8, \quad 9$.

These number symbols, or figures, have advantages as compared with number words, in that they are easier to write, and to recognize when written. They have many other derived advantages, when used in combinations, both in denoting and in operating with, numbers larger than nine.

The number symbols $1,2,3,4,5,6,7,8,9$ are called the nine digits. The absence of number is denoted by a symbol, 0 , called zero, naught, or cipher.

Zero is sometimes regarded as a number.

8. Large Numbers.-In order to denote large numbers by words and symbols, it is necessary to devise a plan of so
grouping units that a few words or symbols systematically used will represent any number, however large. It is plainly impracticable to denote each different number by an entirely new and distinct word or symbol.

NUMERATION.

9. Numeration is the process of grouping an aggregate of units according to a convenient, systematic plan, and of naming the groups so formed; or briefly, numeration is the expression of numbers in words.
10. Decimal System of Numeration.-Let us suppose a heap of like objects, as silver dollars, and let us suppose that we desire to determine the number of these objects, and to express the number of them in words in a convenient, systematic way. We first count ten of the dollars and set them aside as a single group (equiyalent to a ten-dollar bill), then count ten more dollars and set them aside, and continue making like groups until the number of dollars left is less than ten. Suppose eight tens are formed and six dollars are left. By thus forming groups of ten each, and regarding each such group as a new unit of a higher order, we can express the given group of units (or number of dollars) in words without employing any new number word beside those already given (Art. 5), except a word to denote the new unit group of higher order-viz., ten. For the number of dollars in the original heap is expressed in words as eight tens and six units of (or eighty-six) dollars.

Similarly, if there are ten or more groups of the new unit groups of higher order (i.e., of groups of ten dollars each) in

Note,-The number ten is used becanse most of our savage ancestors counted by aid of their ten fingers. Hence the number ten became the primary group in numeration, and has been so used ever since. Any other number (except unity) might be used as the primary group in numeration. Two, six, eight, and twelve are among those which have been suggested, of which, twelve, perhaps, would be the best.
the original heap, we regard ten ten-units taken together as a new unit group of still higher order, and call it one hundred. Similarly ten hundreds are regarded as a new unit group of higher order and called a thousand.
11. Numbers Larger than One Thousand.-Similarly we may form other new unit groups, each ten times as great as the preceding, and called one ten thousand, one hundred thousand, one million, one ten million, etc. But in denoting these groups (greater than one thousand) entirely new number words are used only for those groups which are one thousand times as great as the group denoted by the last preceding new number word, as million (one thousand times as great as one thousand), billion (one thousand times as great as one million), trillion, etc. The intermediate unit groups are denoted by using "ten" and "hundred" as modifiers to other number words.
12. Number Words Actually Used.-Beside the number words already given, it is found convenient to use a few others, though these are not actually necessary. Thus, some number words are formed by using two primary numbers and fusing them into a single word.
Thus, for "ten" and "one" we have "eleven" (formed by fusing the Gothic words for one and ten, ain hij); for "ten" and "two" we have "twelve" (the Gothic words for two and ten, twa lif, fused); for "ten" and "three" we have "thirteen" (for "three" and "ten" fused). Similarly we obtain "fourteen," "fifteen," "sixteen," "seventeen," "eighteen," "nineteen?" Also, for "two tens" we have "iwenty," by fusion of the words teen." Also, for,"two tens. we have "ten." Similarly are obtained "thirty," "forty," etc. 1

Hence the number words in actual use are one, twoo, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty, thirty, forty, fiffy, sixty, seventy, eighty, ninety, hundred, thousand, milliom, billion, trillion, quadrillion, quintillion, sextillion, etc.

By the systematic use of these few words any number may be expressed in words.
13. Orders of Units.-Thus, in the decimal numeration, we use a unit, and a series of derived units, each ten times as great as the preceding-viz., one, ten, hundred, thousand, ten thousand, etc.

These units are of different orders.
One is called the unit of the first order;
ten is called the unit of the second order; a hundred is called the unit of the third order, etc.
In naming any number we begin with the highest order, and state the number of units of each order which the given number contains. We speak, for example, of the number "three thousand, six hundred, seventy-two."

NOTATION.

14. Notation is the process of expressing a number in symbols according to a convenient, systematic plan.
Having grouped an aggregate (or number) of units according to a scale (the decimal scale, for instance), and given names to the number groups so as to express the number in words to other persons, we need also to express these groups in simple symbols so as to facilitate the extended use of the number.
15. Positional System of Notation.-The first nine numbers are denoted by the nine digits (Art. 7). A simple method of expressing larger numbers in symbols is illustrated if we express the number "three thousand, six hundred, seventy-two " as follows: 3672 .
Here the number of units of each order is denoted by the appropriate digit (the thousands by 3 , hundreds by 6 , ete.), and the size of the unit for which each digit stands is indicated by writing in a row the digits employed, the highest order to the left, each successive lower unit group being one place to the right. The simplicity and power of this system
of notation should' be carefully noted by the pupil and frequently recalled.

The simplicity is due to the fact that in denoting a number by figures, as 3672 , each of the digits $6,7,2$ has not only its own value, but is also employed to determine the order of the unit group denoted by 3 -viz, thousands; similarly, 7 and 2 define the order of the unit denoted by 6 viz, hundreds, etc. Hence, when for 3 thonsand, 6 hundred, 7 tens, and 2 units, we write 3672 , the word "thousand" is replaced by 672, "hundred" by 72, "tens" by 2, units by the absence of another digit after 2 . Hence, for instance, the symbol 2 as here used has four uses; it has its own valne, and it helps determine the value of 3,6 , and 7 . It is becanse of this manifold use of each symbol that we are able to substitute the four symbols of 3672 for the thirty-three symbols which compose the expression "three thousand, six hundred, seventy-two."

It is also to be noted that the symbolism 3672 is uniform in arrangement and spacing, while the expression of the number in number words is irregular in form and spacing.

These great advantages in expressing numbers in symbols give ease and power in the extended use of numbers and make a thorough science of numbers possible.
The student is aided to a full appreciation of the advantages of the positional decimal system of notation by comparing it with others that have been used to some extent, as the Roman notation (Art. 23 et seq.).
16. Zero Symbol in the Positional Notation.-When units of one or more orders do not occur in a given number, the absence is indieated by the use of the zero symbolin each place where such a unit is missing.

Thus, 5042 represents a nimber containing 5 thousands, 4 tens, and 2 units, but no lundreds.
17. Number vs. Number Symbols.-The student should carefully discriminate between a number and the symbols or
Thus, a number (which is an aggregate or collection of units, as a heap of apples), may exist long before any words or symbols are used to represent it. It may also be represented by different sets of symbols, as by "twelve," or 12 , or xii. These are not different numbers, but only different symbols
or the same number. However, for the sake of brevity, the expression "number denoted by the figures 3276 " is shortened into " the number 3276 ," but the student is not to be misled into regarding the number and 3276 as identical
18. The place of a figure (in a given number) is the position which the figure occupies with reference to the other figures in the number. Thas, in the number 3672, the figure in the right-hand place, 2 , is said to occupy the first place; 7, the second place; 6, the third place, etc.

Hence, moving a figure one place to the left increases its value tenfold; but moving a figure one place to the right divides its value by ten.
19. Absolute and Local Value.- The value of each figure in a number is determined by two things:
First, the value of the figure without regard to its position, called its absolute (or digit) value;
Second, the value given the figure by the place it occupies in the number, called its local value.
Thus, in 3672, the figure 6, for instance, has an absolute value, in that it represents 6 units, and a local value, in that each of the units represented by it is the hundred unit.
The student should not, as often happens, unconscionsly form the habit of regarding the digits whieh form a given number as of equal importance and significance in a numerical result. This habit often arises perhaps from the fact that the digits as written are of equal size, and local value apparently neglected. He should frequently substitute (mentally) for 2 , in 3672 , a figure oniy one-tenth as large as 2 , leave 7 unchanged, sabstitute for 6 a figure ten times as long as it is, for 3 one a hundred times as long. Or he may picture, back of 7 , seven bundles of ten strokes each, back of 6 , six bundles, each composed of ten ten-bundles, etc.

D numeration and notation.

20. Periods.- In order to write and read large numbers with facility, it is customary to separate the different orders of units used into sets of three each, called periods. Periods
are formed by beginning at the right and marking off three figures in each period by the use of a comma. In reading numbers it is customary to express the aggregate of each period in terms of the lowest unit in that period.
Number of
PrRiod. 6TH.
21. II. To express in words (i.e., to read) a number given in flgures.
By use of commas and beginning at the right, separate the figures given into periods of three figures each. Beginning at the left, read each group, giving it the name of the period to which it belongs.
Omit the name of the units period in reading.
Ex. Read 5062380749 .
We have $5,062,380,749$, which is read, five billion, sixty-two million three hundred eighty thousand, seven hundred forty-nine.

Read:

1. 28.	8. 107.
2. 27.	9.705.
S. 63.	10.450.
4. 92.	11.910.
5. 125.	12.711.
6. 378.	13.818.
7. 554.	14.666.

15. 1352.
1. 13456.
1. 27.
1. 63.
1. 3128 .
2. 4201.
1. 3700 . 19. 4025 14. 666.
2. 7030 .
3. 74901.
1. 28074.
1. 30212.
1. 30077.
1. 60103.
1. 70007.
1. 63360 inches
2. 97056 men

S1. 38020 miles.
32. 25003 days. 3s. 86400 seconds.
85. 129345 .
36. 704508 .
87. 201009.

S8. 300102.
39. 295004.
40. 300071.
4. 300071.
54. 17271005301 .
55. 298012003819.

41. 3564320 42. 13705028 45. 37564005 4. 20024106 45. 10902070 46. 703201001

47. 250341702 48. 402000271. 49. 300070005 50. 777505003. 51. 909090909 52. 65004030.
 56. 435710302456081.
48. 300310070004255.
49. 8000500123005760.

Write in words :

59. 750.	65. 30201.	71. 214008.	77.
60. 342.	66. 65311.	72. 703307.	78. 9003
61. 1500.	67. 82005.	78. 1575014.	79. \$40267
62. 3027.	68. 90102.	74. 20501310.	. $\$ 2100$
63. 2006.	69. 88217.	75. 42001025.	81. 4001
64. 7102	70. 57008.	76. 120320020.	. $\$ 250405005$

83. Write the largest number that can be expressed by three figures; by six figures. Read each of them.
84. Write the smallest number that can be expressed by five figures; by eight figures. Read each of them.

Express in figures:
85. Thirty-seven.
86. Eighty-three.
89. Nine hundred eleven.
90. One thousand six.
87. One hundred forty.
91. Four hundred seventeen.
88. Two hundred ten.
98. Eight hundred twenty-five.
94. Two thousand four hundred sixty-one
95. Five thousand two hundred eight.
96. Seven thousand three hundred twenty.
97. Nine thousand five hundred.
98. Twelve thousand two hundred sixty.
99. Seventeen thousand six hundred one.
100. Twenty-three thousand ninety-seven.
101. Forty thousand three hundred nineteen.
102. Seventy-one thousand three.
103. Eighty thousand eleven.
104. One hundred two thousand four hundred twelve.
105. Three hundred twenty-seven thousand seventeen.
106. Four hundred thousand two hundred five.
107. Seven hundred seven thousand seventy-seven.
108. Seventy-seven thousand seven hundred seven.
109. Six million one hundred seven thousand four hundred sixty-nine.
110. Twelve million two hundred nineteen thousand eightyone.
111. Three hundred eleven million seven hundred sixteen thousand four huadred forty-four.
112. Six hundred million two thousand fifteen.

11s. Eleven million eleven thousand eleven.
114. Seven billion twenty million fourteen thousand sixty.

ROMAN NOTATION.

23. Number Symbols of Roman Notation.-Beside the system of numeration and notation already explained (commonly called the Arabic system, owing to the fact that the peoples of Europe first learned it through the Arabs), there is another system still used to some extent, called the Roman system, beeause of its origin among the Romans.

The Roman system of notation uses seven capital letters of the alphabet as number symbols-viz,
I, V, X, L,
C, D,
To these, in order, the following values are assigned:

$$
1, \quad 5, \quad 10, \quad 50, \quad 100, \quad 500,1000 .
$$

24. Combination of Number Symbols in the Roman Notation. - When the above symbols are used in combination, the value of each symbol in a combination is determined by the following laws:
25. Each repetition of a letter repeats its value.
Thus, XXX denotes $30, \mathrm{CO}$ denotes 200 , et.
26. When a letter is placed after another letter of greater value, its value is to be added to that of the greater letter.

Thus, VI represents $5+1$, or 6 ; XVI denotes 16 ; LXXXI denotes 81 ; $\mathrm{DCC}=700$.
S. When a letter is placed before another letter of greater value, its value is taken from that of the greater letter.
Thus, IV denotes 4; XL denotes 40; XC denotes 90.
A letter between two letters, each of which is of greater value than itself, is regarded as preceding the last letter.

Thus, XIV denotes 14; XIX denotes 19.
4. A bar (or dash) placed over a letter increases its value one thousand fold. Hence we have

Thousands.	Hundreds.	Tens.	Units.	
M	C	X	I	$(=1)$
MM	CC	XX	II $(=2)$	
MMM	CCC	XXX	III $(=3)$	
IV	CD	XL	IV $(=4)$	
V	D	L	V $(=5)$	
VI	DC	LX	VI $(=6)$	
VII	DCC	LXX	VII $(=7)$	
VIII	DCCC	LXXX	VIII $(=8)$	
IX	CM	XC	IX $(=9)$	

25. Uses of the Roman System of Notation,-The Roman system of notation is used at times in connection with other systems to prevent confusion when several different groupings of an aggregate of material are made. Thus, Arabic numerals are used in numbering the articles of this book, and the Roman numerals in numbering the chapters.
Roman numerals are also used on monuments and formal documents to give variety- and distinction.

The Roman system of numeration also has an educational value. It is nseful during the stady of arithmetic to compare processes in the Arabic notation with what they would be in the clumsy Roman notation, in order to appreciaks the simplicity and power of the former.

EXERCISE 3

Express in Arabic notation-

1. XV. ${ }^{\text {IT. XCI. }}$
2. XX. $12 . \mathrm{XCIV}$.
3. XXIV.
4. XXXII.
5. XIX
6. XXIX.
7. XLIV.
s. LVI.
8. LXVHI.
9. LXXIX.
10. CXVI.
11. ©xLIX.
12. CLXXXIV
13. CCXCLX
14. CDLVI.
15. DCIX.
16. MCXLVI
17. MCCXIIX
18. MDXC.
19. MDCXLIII 23. MDCCCXCVIII. 24. MMDCXLIX.
20. TVCDXLIV. 26. XDCCXXVI. 27. XLVCCLXVI.
21. DXCVIII.
22. Mcelexiv. So. MMDCCXVDCXXI

Express in Roman notation-

CHAPTER II

ADDITION.

26. Illustration.-If James has 5 apples and John has 4 spples, how many apples have they together?

If we take the 5 apples belonging to James and count on to them the 4 apples wnich John has, we get $6,7,8,9$ apples; that is, as final result, 9 apples. Or, if we are familiar with the results of counting together small groups, we may simply recall the result of a former counting together and say 5 apples and 4 apples are 9 apples.

In the latter case we substitute the less labor of recollection for the greater labor of counting the groups together. By the use of the memory we utilize the work which we have done at some former time, to obtain the number of units in two groups when taken together.
This process is called addition.
27. Definitions.-Addition is the process of obtaining in the simplest way a single number which shall contain as many units as there are units in two or more given numbers taken together.

The sum is the number obtained as the result of an addi-
The addends are the numbers added.
28. Symbols. - The symbol or sign used to denote addition is the erect cross, + , which reads "plus." It means that the numbers between which it is placed are to be added.
The symbol, =, reads "equals," and is placed between two numbers to indicate that they are equal. Hence, it may be employed to denote the equality between a sum and the numbers added.

Thus, $5+4=9$, reads " 5 plus 4 equals 9 ."

EXERCISE 3

Express in Arabic notation-

1. XV. ${ }^{\text {IT. XCI. }}$
2. XX. $12 . \mathrm{XCIV}$.
3. XXIV.
4. XXXII.
5. XIX
6. XXIX.
7. XLIV.
s. LVI.
8. LXVHI.
9. LXXIX.
10. CXVI.
11. ©xLIX.
12. CLXXXIV
13. CCXCLX
14. CDLVI.
15. DCIX.
16. MCXLVI
17. MCCXIIX
18. MDXC.
19. MDCXLIII 23. MDCCCXCVIII. 24. MMDCXLIX.
20. TVCDXLIV. 26. XDCCXXVI. 27. XLVCCLXVI.
21. DXCVIII.
22. Mcelexiv. So. MMDCCXVDCXXI

Express in Roman notation-

CHAPTER II

ADDITION.

26. Illustration.-If James has 5 apples and John has 4 spples, how many apples have they together?

If we take the 5 apples belonging to James and count on to them the 4 apples wnich John has, we get $6,7,8,9$ apples; that is, as final result, 9 apples. Or, if we are familiar with the results of counting together small groups, we may simply recall the result of a former counting together and say 5 apples and 4 apples are 9 apples.

In the latter case we substitute the less labor of recollection for the greater labor of counting the groups together. By the use of the memory we utilize the work which we have done at some former time, to obtain the number of units in two groups when taken together.
This process is called addition.
27. Definitions.-Addition is the process of obtaining in the simplest way a single number which shall contain as many units as there are units in two or more given numbers taken together.

The sum is the number obtained as the result of an addi-
The addends are the numbers added.
28. Symbols. - The symbol or sign used to denote addition is the erect cross, + , which reads "plus." It means that the numbers between which it is placed are to be added.
The symbol, =, reads "equals," and is placed between two numbers to indicate that they are equal. Hence, it may be employed to denote the equality between a sum and the numbers added.

Thus, $5+4=9$, reads " 5 plus 4 equals 9 ."
29. Addition Table.-So convenient is the system of numeration and notation used for representing numbers, that all numbers, however large, may be resolved into digits, and the sum of any numbers obtained by taking the sums of pairs of digits. Hence, if the sum of each pair of digits be obtained and committed to memory, the addition of all larger numbers may be performed by their use. We have 1 unit +1 like unit $=2$ units (of the same kind), or, briefly, $1+1=2 ;$ also, $1+2=3,1+3=4$, etc. Or, putting the pairs of digits in the position in which the pupil will need to use them, and leaving the sum in each case to be supplied by him, we have- addition table.

$\begin{array}{llllll}7 & 7 & 7 & 7 & 7 & 7 \\ \underline{1} & \underline{2} & \underline{3} & \underline{4} & \underline{5} & \underline{6} \\ 8 & 8 & 8 & 8 & 8 & 8 \\ \underline{1} & \underline{8} & \underline{3} & \underline{4} & \underline{5} & \underline{6} \\ 9 & 9 & 9 & 9 & 9 & 9 \\ \underline{1} & \underline{2} & \underline{3} & \underline{4} & \underline{5} & \underline{6}\end{array}$
30. Addition Independent of Order (Commutative).If a group of units (as a group of 8 boys) be counted, it is evident that the same numerical result (or number) will be obtained, in whatever order the units be counted. Since addition is but a short way of counting different groups together, it follows that two or more given groups may be added together in any order. Hence, $8+7$ gives the same result as $7+8$, and the Addition Table in Art. 29 gives the sum of each pair of digits, in whatever order the digits occur. To be able to add in either way frequently saves labor.
31. Abstract and Concrete Number.-The work of dealing with numbers is further facilitated by the use of the idea of abstract numbers. For if we dealt with concrete units only, as marbles, apples, men, etc., as we find them in the world about us, we should, for instance, need to verify the addition table for each particular kind of concrete quantity before using the table in adding numbers composed of units of that sort.

Or, to put it in another way, in order to be sure that $7+5$ makes 12 under all circumstances, it would be necessary to take 7 apples and 5 apples and count them together and obtain 12 apples; to take 7 oranges and 5 oranges and count them together and obtain 12 oranges; and to proceed in oranges and count them together and obtain and every kind of concrete units Instead of this, we take 7 units of any kind and represent them, say, by 7 strokes, and 5 units of the same kind represented by 5 other strokes, and count them together and obtain 12 units of the same kind, as the sum-a -result true for like units of any particular kind.

Hence, if we learn the addition table for units in general, we may then use it in adding numbers made up of like units of any particular kind.

A concrete number is a number made up of like units of any one particular kind.

An abstract number is a number used without reference to any particular thing or unit; as when we say,

7 units +9 like units $=16$ units of the same kind.

Hence, while the addition table is given for abstract numbers, it applies only to concrete numbers of the same kind.

Thus, it is not possible to add 5 days and 6 apples.
32. Arrangement of Numbers to be Added.-The great value of the positional system of denoting numbers is forcibly illustrated in the process of adding large numbers.
Thus, if a merchant has $\$ 623$ in one bank, $\$ 9024$ in another, and $\$ 151$ in another, and it is required to determine how many dollars he has in all the banks together, we can arrange the three numbers one over the other, put-
ting units of the same order in the ting units of the same order in the same column, and perform the addition by adding each column of units separately. This could not be done if the Roman notation were used in denoting the above numbers
33. I. Addition when the sum of each column is less than 10 may be illustrated by the use of the example stated in the preceding article.

Setting down the numbers with like units in the same column, we have-

Operation.

623 dollars
9024
$151 \quad 4$
9798 dollars, Sum.

Explanation.
Adding the units column first, we have 1 and 4 are 5 , and 5 and 3 are 8 ; we set down the sum 8 under the units column. Adding the tens column, we obtain the sum 9, which we set down in the tens place. The sums of the other columns are obtained and set down similarly.

Abstract numbers are added in the same manner Thus, 5762 units.

2125 like units.
10112 " "
17999 like units, sum The enormons saving of labor obtained by the use of the addition table is realized if we conceive of trying to obtain this result by counting merely -that is, by taking 5762 units and counting on 2125 units, and then counting on 10112 units to the result obtained.
34. II. Addition when the sum of any one column is greater than 9 is illustrated by the following:

Ex. A farmer owns three tracts of land, of which the first contains 598 acres, the second 1236 acres, and the third 8759 acres. How many acres does the farmer own?

Operation.
598 acres.
1236
8759 "
10593 acres, Sum.

Explanation.

Arranging the numbers as before, and adding the units colrmn, we obtain the sum 23 . The 3 is put under the colomn of units, and the 2 tens are carried and added with the other tens. The sum of tens column (together with the 2 tens that are carried) is then obtained, and found to be 19. The 9 is set down and 1 (or 10 tens, i.e., 1 hundred) carried to the hundreds column. Proceeding in like manner with th3 other columns, the entire sum is found to be 10593 acres.
35. Veriflcation.-To prevent error in the work, it is best to perform each process of addition in at least two ways, and observe whether the results are identical. The second process is called a verification of the first. There are several different methods of verifying an addition, but the best for ordinary use is to add the given number by columns in an opposite dircection from that first used;
As, first from the bottom upward, and then from the top downward. If a column be added the second time in an opposite direction from the first, the computer is much more likely to discover any mistake that may have been made, than by simply adding a column twice in the same direction, ince in the repeated. An addition may also be verified by separating into groups the numbers to be added, adding each group separately, and then taking the sum of the partial sums obtained.
36. General Rule for Addition.-Write the numbers to be added so that fyyures of the same order shall stand in the same column; begin at the right and add each column separately, placing the sum underneath if it is less than ten; if the sum of any column excceds nine, set doon the right-hand figure only, and udd the other figure to the next column to the left.

ADDITION.

37. Addition as a Science and as an Art.-The simplifications which arise from treating quantity as made up of units; from the grouping aggregates of units according to a simple systematic plan, so that they can be denoted by a fero number words and a feo number symbols; from the use of the system of positional notation; from the resulting possibility of performing the additions of all numbers, however large, by the use of the addition table - these simplifications together result in making addition all that can be desired as a practical science.

For by it, for instance, the general of an army in his tent can determine (and have before him in a form easy to comprehend and use) a representation of the number of men in each part and the whole of his army. A government can by it readily determine the number of its school-children or population, or state its, wealth in numbers, etc.
But to be mastered as an art, the process of addition requires long practice. Tö add long columns of figures with absolute accuracy and great rapidity is a power which is obtained only after long and varied practice. The next exercise gives examples adapted to develop this power.
With practice the student will form habits (often instinc tive and peculiar to the individual) of adding the figures in a column in certain special ways.
Thus, he may add them in groups of two, three, or four figures; or he may pick out in a column each gronp of figures that make 10 or 20 , aild these by themselves, add the other digits by themselves, and take their sum; or he may add two columns at a time. Practice and attention are the main factors which go to form a skillfol calculator.

EXERCISE 5.

Let the teacher dictate numbers of one figare to the class, to be at mentally during the dictation and the sum reported immediately. Thus:

ADDITION.

EXERCISE 6.

1. In six bins there are 45 bu., 82 bu., 96 bu., 124 bu., 43 bu., and 215 bu . How many bushels are there in all?
2. A man owns a farm of five fields which contain $23,46$. 51,17 , and 30 acres respectively. How many acres in the farm?
3. During the six days of one week a merchant received on sales the following amounts: $\$ 765, \$ 350, \$ 917, \$ 479, \$ 807$, \$987. What was the total for the week?
4. There are ten schools in a city, and they enroll 171, 230 , $165,187,301,287,517,176,215,351$ pupils respectively. How many school-children in that city?
5. In a township there are six farms which contain 175, $400,236,355,278,196$ aeres. How many acres in the township?
6. Find the total expenses of running a bank, if the items for a week are as follows: Salaries and wages 8875 , postage $\$ 11$, rent $\$ 46$, stationery $\$ 23$, printing $\$ 40$, books $\$ 8$, and legal fees $\$ 127$.
7. A man at death left $\$ 4500$ to the widow, $\$ 1635$ to each of three sons, and $\$ 958$ to a daughter. What was the valce of the estate?
8. From A to B is 812 miles, from B to C is 406 miles, from C to D is 615 miles, and from D to A is 786 miles. What is the distance around the whole circuit?
9. Let the teacher give the number of days in each of the months, and the class find the number of days in a year.
10. Let each pupil tell the number of people in his family, and then the whole class find the number of people in all the homes.
11. In the same way let each report the number of examples the has solved, and then the class compute the aggregate.
12. Direct each pupil to count the letters in his full name. Then by telling the number of them, the class can find the
number of letters it will take to write the full names of all the members of the class.
13. From the geographies or elsewhere, find the population of each of the New England States. Then find the total.
14. Find the same for the Middle States and for the South Atlantic States.
15. Find the population of the capital of your own State, and of the capitals of all the States which touch it, and then find the total.
16. Find the number of square miles in the six largest States, and then the aggregate.
17. Add seventy-six, three hundred nine, twelve thousand six hundred ten, and forty thousand sixteen.
18. The English army at Waterloo consisted of 26661 infantry, 8735 cavalry, 6877 artillery, and 33413 allies. What was the total?
19. A man owns bonds worth $\$ 43765$, real estate worth $\$ 37050$, merchandise valued at $\$ 17980$, and other property worth $\$ 50379$. What is the total value of his property?
20. New York contains 49170 sq. mi.; New Jersey, 7815 ; Pennsylvania, 45215; Delaware, 2050; Maryland, 12210; Virginia, 42450; West Virginia, 24780; and Texas contains $82090 \mathrm{sq} . \mathrm{mi}$. more than all of these put together. How many square miles has Texas?
21. Add $753284+95603+887653+47328+867547+37895$ $+90384+7056+19948+38756+938765$.
22. Add $77563+987635+447+88956+327654+887654$ $+963558+79658+9976+885432+796+147785$.

CHAPTER III.

SUBTRACTION.

38. Illustration.-John has 7 marbles and gives James 4 of them. How many marbles has John left?
If we take a group of 7 marbles, and remove 4 marbles one at a time, counting off $6,5,4,3$, we obtain 3 marbles as the number of marbles left.
But if we are familiar with results of former countings-off, and can recall these, we can say that if 4 marbles be taken from 7 marbles, 3 marbles will be left.

This process is called subtraction.
Or we can recall from the addition table the number which, added to 4 , makes 7 , and say: since $4+3$ makes 7 , when 4 is taken from 7 the number 3 mast be lefi. In either of these two latter processes we substitute the less labor of memory for the greater labor of counting off one number from another.
39. Deflnitions.-Subtraction is the process of finding with least labor what number is left when a number of units is taken away from a larger number of units of the same kind. The larger number is called the minuend.
The smaller number, to be taken from the minuend, is called the subtrahend.
The number left is called the difference or remainder.
Thus, in the illustrative example of Art. 38, we have

7 marbles, Minuend.
 4 marbles, Subtrahend. 3 marbles, Diffarence.

40. The sign of subtraction is the horizontal dash, 一, which reads "minus." Placed hetween two numbers the 3
number of letters it will take to write the full names of all the members of the class.
41. From the geographies or elsewhere, find the population of each of the New England States. Then find the total.
42. Find the same for the Middle States and for the South Atlantic States.
43. Find the population of the capital of your own State, and of the capitals of all the States which touch it, and then find the total.
44. Find the number of square miles in the six largest States, and then the aggregate.
45. Add seventy-six, three hundred nine, twelve thousand six hundred ten, and forty thousand sixteen.
46. The English army at Waterloo consisted of 26661 infantry, 8735 cavalry, 6877 artillery, and 33413 allies. What was the total?
47. A man owns bonds worth $\$ 43765$, real estate worth $\$ 37050$, merchandise valued at $\$ 17980$, and other property worth $\$ 50379$. What is the total value of his property?
48. New York contains 49170 sq. mi.; New Jersey, 7815 ; Pennsylvania, 45215; Delaware, 2050; Maryland, 12210; Virginia, 42450; West Virginia, 24780; and Texas contains $82090 \mathrm{sq} . \mathrm{mi}$. more than all of these put together. How many square miles has Texas?
49. Add $753284+95603+887653+47328+867547+37895$ $+90384+7056+19948+38756+938765$.
50. Add $77563+987635+447+88956+327654+887654$ $+963558+79658+9976+885432+796+147785$.

CHAPTER III.

SUBTRACTION.

38. Illustration.-John has 7 marbles and gives James 4 of them. How many marbles has John left?
If we take a group of 7 marbles, and remove 4 marbles one at a time, counting off $6,5,4,3$, we obtain 3 marbles as the number of marbles left.
But if we are familiar with results of former countings-off, and can recall these, we can say that if 4 marbles be taken from 7 marbles, 3 marbles will be left.

This process is called subtraction.
Or we can recall from the addition table the number which, added to 4 , makes 7 , and say: since $4+3$ makes 7 , when 4 is taken from 7 the number 3 mast be lefi. In either of these two latter processes we substitute the less labor of memory for the greater labor of counting off one number from another.
39. Deflnitions.-Subtraction is the process of finding with least labor what number is left when a number of units is taken away from a larger number of units of the same kind. The larger number is called the minuend.
The smaller number, to be taken from the minuend, is called the subtrahend.
The number left is called the difference or remainder.
Thus, in the illustrative example of Art. 38, we have

7 marbles, Minuend.
 4 marbles, Subtrahend. 3 marbles, Diffarence.

40. The sign of subtraction is the horizontal dash, 一, which reads "minus." Placed hetween two numbers the 3
minus sign means that the second number is to be sub tracted from the first.

Thus, $9-5$ reads "nine minus five," and means that 5 is to be subtracted from 9 .
41. Subtraction Table._Just as addition is performed to the best advantage by committing to memory certain primary sums (viz., the sum of each pair of digits), and performing the addition of all larger numbers by their use, so subtraction is performed to the best advantage by committing to memory certain primary differences, and performing the subtraction of all larger numbers by their use.
Thus, from 7 units we count off 4 like units and get 3 as a remainder, and, to save the labor of again connting off, commit the result to memory, $7-4=3$.

Similarly we obtain and commit to memory every difference in which the subtrahend and remainder are both single digits. Arranging these differences in a table, placing the minuend over the subtrahend as they usually occur in actual subtraction, and leaying it to the pupil to supply the remainders, we have the table on the opposite page.
So convenient is the system of numeration adopted that numbers, however large, may readily be resolved into digits and pairs of digits, and all subtractions performed by means of this table.
42. I. Subtracion when each digit of the subtrahend is less than the corresponding digit of the minuend.

The process is illustrated by the following example:
Ex. Subtraet 345 from 597.

Opkration.
597, Minuend.
345, Subtrahend
252, Difference.
252, Difference.

Explanation.
place the subtrahend under the minuend so俍 the same order shall stand in the same column. Beginning at the right, 5 units from 7 units leaves 2 units, and we write 2 in the units place; 4 tens from 9 tens leaves 5 tens, and we write 5 in the tens place; 3 hundreds from 5 hundreds leaves 2 handreds, and we write 2 in the hundreds place. Hence, we obtain the remainder 252.

SUBTRACTION TABLE.

			4	5	6	7	8	9	10
1	2	1	1	1	1	1	1	1	1
2	3	4	5	6	7	8	9	10	11
2	$\underline{\sim}$	$\underline{2}$	$\underline{2}$	$\underline{2}$	$\underline{2}$	$\underline{2}$	$\underline{2}$	2	$\underline{2}$
3	4	5	6	7	8	9	10	11	12
3	3	$\underline{3}$	$\underline{3}$	$\underline{3}$	$\underline{3}$	$\underline{3}$	3	3	3
4	5	6	7	8	9	10	11	12	13
4	4	4	$\underline{4}$	$\underline{4}$	4	4	4	4	4
5	6	7	8	9	10	11	12	13	14
5	5	5	5	5	5	5	5	5	5
6	7	8	9	10	11	12	13	14	15
6	6	$\underline{6}$	$\underline{6}$	6	$\underline{6}$	6	6	6	6
7	8	9	10	11	12	13	14	15	16
7	7	7	7	7	7	7	7	7	7
8	9	10	11	12	13	14	15	16	17
8	8	8	8	8	8	8	8	8	8
9	10	11	12	13	14	15	16	17	18
9	9	9	9	9	9	9	9	9	9

43. II. Subtraction when any figure of the subtrahend is greater than the corresponding figure of the minuend.
In this case, before subtracting, increase the figure in the minuend, which is too small, by/borrowing a unit from the digit of next higher order of the minuend.
Ex. 1. Subtract 129 from 653.
Operamion.
653
$\frac{129}{524}$, Remainder.
Explanation.
Since we cannot subtract 9 units from 3 units, we take or borrow 1 ten from 5 tens and add it to the three units; then 9 units subtracted from 13 units leaves 4 units, which we write in the units place of the remainder. We now subtract the 2 tens from the 4 tens which
remain after taking away 1 ten, and obtain 2 tens, which we write in the tens place; 1 hundred taken from 6 hundreds leaves 5 hundreds. Hence, the entire remainder is 524 .

It may be necessary to borrow several times in succession.
Ex. 2. Subtract 2358 from 5346 .

Instead of borrowing a higher unit from the next figure of the minuend, the subtraction may be performed by adding 1 to the corresponding unit of the subtrahend. The result will be the same, since if two numbers be equally increased (as by the addition of 1 ten to the 4 tens and 2 tens in Ex. 1 above, making them 5 tens and 3 tens), the difference will remain unchanged. The process performed in this latter way is slightly easier, since addition is easier than subtraction.
Thus, in Ex. 1 the method of the subtraction would be
9 from 13 leaves 4 .
In Ex. 2, 8 from 16 leaves 8 .
$\begin{array}{lllll}3 & \text { " } & 5 & \text { " } & 2 . \\ 1 & \text { a } & 6 & \text { a } & 5 .\end{array}$
${ }^{1}$ "~ $\quad 6$ " 5 . $\begin{array}{lllll}6 & \text { " } & 14 & \text { " } & 8 \\ 4 & & 18 & & 8\end{array}$ $\begin{array}{ccccc}4 & \approx & 13 & " & 9 . \\ 3 & " & 5 & " & 2 .\end{array}$

Difference is 2988.
44. Verification.-To test the accuracy of the work, add the difference and the subtrahend. Their sum should equal the minuend.

Thus, in Fx. 2 abave add 2358 and 2988 ; their sum is 5346 . Hence, the difference obtained, 2988, is correct unless mistakes have been made in the two processes, of such a nature that they compensate. This is not likely to occur. There is another similar method of verification which the student should discover for himself.
45. General Rule for Subtraction.- Write the subtrahend under the minuend, placing units of the same order in the same column; begin at the right and subtract each figure of the subtrahend from the corresponding figure of the minuend, and place the result beneath;

If any figure of the subtrahend is less than the corresponding figure of the minuend, increase the latter by 10 , and subtract; to compensate, diminish by 1 the figure of the next higher order in the minuend (or increase by 1 the figure of next higher order in the subtrahend), and continue the process.

EXERCISE 7.

32. From 71532056176032 take 47063127159374.
33. From 6755307165322 take 2946834073163.
34. Subtract 17650321470063280 from 29560732165032761.
35. Subtract 630753241076954724 from 850325076504032080 .
36. Take 1234567890987654321 from 5432101234567890123.
46. Computers' Method of Subtraction.-There is another method of subtraction much used by professional computers, which the pupil should at least understand. It is illustrated by the ordinary process of making change. Thus, if a storekeeper receives a dollar bill in payment of a bill of 78 cents, he makes change by paying out first 2 cents, which, with the 78 cents, makes 80 cents; and then paying out 2 dimes, which, with the 80 cents, makes $\$ 1$. By this method the required subtraction is converted into and performed as addition. In like manner any subtraction may be performed as an addition.

Thus, to subtract 723 from 968 , we have

47. Value of Subtraction.-The student should frequently call to mind the saving of labor effected by subtraction as compared with other processes of determining a remainder.
Thus, if a merchant knows that his original stock of potatoes was 1000 tushels, and his records show that he has sold 627 bushels, by a simple sabtraction, and without the labor of connting off the number of bushels sold from the original number, or the labor of actual measurement of the number left, he can tell the number of bushels remaining, and whether he can supply a customer who wants 400 bushels.
Thus, also, if he has bought a hogsiliead of molasses containing 63 gallons, and has sold 27 gallons, by subtraction he can determine the number of gallons left, without the labor of actually measuring the remainder in gallons and counting them.

EXERCISE 8.

1. The following accounts were each paid with a acllar bill: how much change was due in each case?
$40 \mathrm{cts} .60 \mathrm{cts} . \quad 14 \mathrm{cts} .85 \mathrm{cts} .61 \mathrm{cts} .57 \mathrm{cts}$.
$55 \mathrm{cts} . \quad 70 \mathrm{cts} .27 \mathrm{ets} . \quad 39 \mathrm{cts} .78 \mathrm{cts} .83 \mathrm{cts}$.
2. If a bicycle cost $\$ 87$ and sold for $\$ 98$, how much was gained?
3. A house cost $\$ 3205$ and sold for $\$ 3052$. Find the loss.
4. A merchant having 2712 yards of eloth sold 1907. How many yards remained?
5. A farmer who raised 1600 bushels of corn retained 205 bushels. How many bushels did he sell?
6. I paid $\$ 110$ for a horse and $\$ 78$ for a wagon. I sold both for $\$ 169$. Did I gain or lose, and how many dollars?
7. An official receives $\$ 2315$ salary and $\$ 1692$ in fees. He spends $\$ 2865$. How many dollars does he save?
8. A grain dealer bought in one week 76321 bushels of grain, and in the next 33478 bushels. He then sold 67305 bushels. How many remained?
9. America was discovered in 1492. How many years was that before you were born? How many years was that before the year 2000?
10. A farmer bought a horse for $\$ 231$, and harness for $\$ 87$.

He sold the horse for $\$ 256$, and the harness for $\$ 54$. How many dollars did he lose altogether?
11. Of 3728 men in an army, 276 were wounded, 193 were killed, and 705 deserted. How many remained at duty?
12. An estate of $\$ 23675$ was divided among a widow who received $\$ 8525$, a son who got $\$ 756$ less than the widow, and a daughter who received the remainder. What was the daughter's part?
13. Three men invest $\$ 25600$. The first inyests $\$ 7356$; the second $\$ 1728$ more than the first. How much does the third invest?
14. Thomas Jefferson was born in 1743 and died in 1826.

How o'd was he? How old would he have been if he had lived till i900?
15. From the sum of 6175 and 2857 take their difference.
16. I receive $\$ 27, \$ 42, \$ 69, \$ 121$, and pay out $\$ 73, \$ 29, \$ 11$, \$7, and $\$ 130$. How much remains?
17. There have been subscribed toward a million dollars by Mr. A. $\$ 26310$, by Mr. B. $\$ 42225$, by Mr. C. $\$ 61700$, by Mr. D. $\$ 54655$, by Mr. E. $\$ 112950$, and by Mr. F. $\$ 87605$. How much remains to be raised?
Find the number of dollars remaining in the bank in each of these three cases:

of these three cases 18. Deposits. Withawals. $\$ 137$ $\$ 38$ 341 142 273 67 564 9 156 225 46 7 11	$\begin{array}{r} \text { Deposits. } \\ 875 \\ 132 \\ 41 \\ 67 \\ 328 \\ 576 \\ \hline \end{array}$	19. Withdrawal $\$ 195$ 38 92 140 7 18 4 56 123

20.	
Deposits.	Withdrawals
$\$ 9721$	$\$ 46$
328	375
5263	8
56	417
8	1376
46	4251
575	3765
$\underline{1250}$	48
	4
	976
	$\underline{23}$

Compute the values of-

21. $18+15-26+17-30+16$.

Hint. -Take the sum of those preceded by a + sign and of these pre
ceded by a - sign ; subtract the latter from the former. Thus, $18+15$ $+17+16=66 ; 26+30=56 ; 66-56=10$, Ans.
22. $35+19-26$.
28. $895-397-299$.
23. $75-23+14$.
25. $67+84-125$.
26. $128-104+71$
27. $376-291+167$. 29. $39-65+42+31-28$. 30. $501-373-192+215$. 31. $983+185-467-324$. 32. $5768-4297+3008$. 83. $59-43+97-101+38$

S4. $87-75-9+108-79+40$.
S5. $131-118+46-28+137-95$.
36. $1767+487035-397516+42765$.
s7. $895632-765107+143200-97653-8765$.
88. From nine hundred seven take seven hundred nine.

S9. Subtract six thousand five hundred sixty-three from fourteen thousand one hundred eight.
40. To seven hundred sixteen add three hundred ninety and six thousand seventy-five. From this sum take three thousand two hundred ninety-nine.
41. Subtract the sum of five thousand forty-seven and seven hundred twenty, from the sum of four thousand six hundred and three thousand one hundred eight.
4. From the sum of twenty-six thousand eight hundred forty-two and ninety-three thousand four hundred eighty-two, take the difference between four hundred six thousand fortyfive and two hundred ninety-six thousand three hundred nine.

Compute the values of:
$45,75-(12+37)$. $\quad 48.975-(328+400-275)$.
44. $96-(28+51)$ 49. $788-275-(300-96)$.
45. $(96-28)+51 . \quad 50 . i 887-438+756-432$.
46. $29+(75-19)$.
51. $1887-(438+756-432)$.
47. $300-(175+98)$. $52,976-(85+176)-(276-88)$. 53. $8865-(775+896-483)-(99+387)$.
$54 \cdot(99765+73876-47956)-(88763-47958+38176)$.
Note--Let the pupils parent furrish more examples like the first seventeen of this exercise. Compare altitudes of mountains; pepulation of cities; of States. Pupils can oftea form examples for each other, and then correct the papers or slates of one another.

CHAPTER IV

 MULTIPLICATION.48. Illustration. - A woman buys 7 yards of cloth at $\$ 4$ a yard. How many dollars does she pay for the cloth?
$\$ 4$ The cost of the cloth may be obtained by addition; the sum of
$\$ 4$ a column of seven 4's is 28 .
${ }_{4}^{4}$ If, however, the student is familiar with the results of former additions of columns composed of the same digit, he may remember that seven 4 's added make 28 . It is easier to recall the result of the former addition than to add the column again. We sulstitute the less labor of recollection for the greater labor of addition and for the still greater labor of counting together the ifferent sets of 4 units each.
Similarly the sum of any set of equal num
in te results of for may be found by recall
. This process is called Multiplication.
49. Multiplication is the process of finding the sum of a set of numbers, all equal to each other, by the abbreviated method of recalling the results of former additions.
The multiplicand is one of the equal numbers which are to be added.
\$4, Multiplicand
7, Multiplier
In the example given, $\$ 4$ is the moltiplicand.
The multiplier is the number which indicates how many equal numbers are to be added. A In the above example, 7 is the multiplier.
The product is the result obtained by the multiplication. In the above example, $\$ 28$ is the product.
The multiplicand and multiplier are called the factors of the product.

Multiplication is usually viewed in its abbreviated form, and may then be defined as follows:

Multiplication is the process of finding a number (the product) which shall equal another number (the multiplicand) repeated as many times as there are units in a third number (the multiplier).
50. The sign of multiplication is the inclined cross, \times. Placed between two quantities it means that the one is to be multiplied by the other. Thus 4×7 means " 4 multiplied by 7 ", or " 7 multiplied by 4 " (that is, " 4 times 7 "). When the numbers to be multiplied are placed one over the other, the lower one is regarded as the multiplier.
51. Multiplication Table.-If the product of each pair of digits be obtained and committed to memory, the product of all other numbers, however large, may be obtained by the use of these few primary products.

For, so convenient is the system of numeration and notation which we have adopted, that all numbers, however large, may be resolved into digits, and their products obtained by taking the products of different pairs of digits. and their products
While it is sufficient to know the products of pairs of numbers up to 9 ,
While it is sufficient the table a little further, and to learn the product of each pair of numbers up to 12 .

By the addition of columns of like digits the following results are obtained:
Twice MULIIPLICATION TABLE.

Twice	Three times	Four times	Five times	Six times	Seven times	
1 are 2	1 are 3	1 are 4	1 are 5	1 are 6	1 ar	
2 " 4	2 " 6	2 " 8	$2 * 10$	$2{ }^{2} 12$	2	14
346	$3{ }^{3} \times 9$	3.412	$3 / 415$	$3{ }^{\prime \prime} 18$	3	21
4 " 8	4*12	4 * 16	4 - 20	$4^{\prime \prime} \quad 24$		28
5 - 10	5 " 15	5 " 20	5×25	5 " 30		
5 ${ }^{5} 12$	6 - 18	6 " 24	6 " 30	6 " 36		12
$7{ }^{\prime \prime} 14$	7 " 21	7 " 28	7435	7 \% 42		
8 - 16	$8: 24$	8-32	\% " 40	$8 \cdot 48$		
9 - 18	$\begin{array}{lll}9 & \text { - } & 27\end{array}$	9 - 36	9×45	19" 54		
10^{-7}	10 " 30	10 " 40	10 " 50	10 * 60		
11×22	11 " 33	11.644	$11 * 55$	$11 .{ }^{11} 66$	11	
12 " 24	12 - 36	12**48	$12 * 60$	12×72		

since multiplication occupies the leading place in almost every process in arithmetic, the multiplication table stould be so thoroughly mastered of any pair of dipits. In commitith of any pair of digits. In committing the table to memory he will be aided by various simple expedients, thus:
In the table for 5 , each product ends in 5 or 0.
In the table for 9 , the sum of the digits of each product is 9 (except in 99), the tens digit increasing 1 and the units digit decreasing 1 in each successive product.
In the lable for 11, the two digits in each product are alike up to 99.
The labor of committing the table to memory is also diministhed one-half by remembering that, for instance, the product 9×7 is the same as 7×9.

EXERCISE 9.

ORAL.

1. There are 4 quarts in a gallon. How many quarts in 7 gallons? In
9 gallons? In 12 gallons?
2. There are 7 days in
weeks? In 11 weeks? In 12 weeks? How many days in 5 weeks? In 7
weeks? In 11 weeks? In 12 weeks?
3. How many worbing days are there in 8 weeks? In 10 weeks? In 12
reeks? weeks? 12
4. If I study 9 hours each day, how many hours will I study in 4 days?

Qdays? In 9 days? In 11 days?
cords? For 9 worth $\$ 5$ a cord, what must be paid for 3 sords? For 5 cords? For 9 cords? For 12 cords?
6. A boy spends $\$ 8$ a month. How much will he spend in 4 months? In 6 months? In 9 months?
7. If 1 bucket of water costs 0 cents, what will 5 buckets cost? 7 buckets? 12 buckets?

8 . What is the product of 8×7 ? 9×4 ? 11×6 ? 7×6 ? 5×9 ? 8×5 ? 12×9 ? 5×12 ? 4×7 ? 11×12 ? 8×9 ?
9. Find the value of $7+7+7+7+7+7+7+7+7$ without the table. Then by multiplication. Which is easier?

Compute the values of each of the following:

| 68. $2 \times 5 \times 7-3 \times 4 \times 4$ | $61.75-7 \times 5-6 \times 6+6$ |
| :--- | :--- | 59. $8-2 \times 3-7 \times 0+4 \times 8 . \quad$ 62. $30+7 \times 9-8 \times 7+4 \times 0$. 60. $13+7 \times 2-3 \times 5+6 \times 3$. $\quad 63.100-7 \times 6-5+4 \times 12-20$.

52. Use of Abstract and Concrete Numbers in Multi-
53. Use of Abstract and portance in multiplication.
For if we made no nise of abstract number and dealt with conerete numbers only, as marbles, apples, dollars, feet, etc., it would be necessary, for instance, to verify the multiplication table for each particular kind of concrete number before using the table to multiply that particular kind of

[^0]concrete number. Bat if we form the multiplication table for abstract number (represented, for instance, by strokes or dots), we may then apply the table to any particular kind of concrete number.
In the use of abstract and concrete number, certain limitations, however, are to be observed. Thus, the multiplicand may be either an abstract or concrete number, but the number of times the multiplicand is taken (that is, the multiplier) must be an ahstract number. Thus, 7 apples can be multiplied by 8, but not by 8 marbles. Hence,
1 The multiplicand may be either an abstract or concrete number.
2. The multiplier must be an abstract number.
3. The product is the same kind of number as the multiplicand; i. e., if the multiplicand is abstract, the product is abstract; if the multiplicand is concrete, the product is concrete and of the same kind.

From these laws it follows that there are certain limitations also in interchanging the multiplicand and multiplier. If both are abstract numbers, it is evident that they are interchangeable. For if we have a series of 5 rows, each containing 7 dots, and each dot stand for an abstract unit, then the

total number of dots in the group is denoted either by 7×5 or 5×7; that is, the factors of an abstract number are commutative. Hence, we can perform the multiplication of two abstract numbers in either order, as may be most advantageous.

But if, of two factors, one is concrete and the other abstract, as $\$ 4 \times 7$, they are not commutative, and, taking the second number as the multiplier, we cannot write $\$ 4 \times 7=7 \times \$ 4$, since the latter form requires us to use a concrete number as a multiplier.

In such eases, however, we can obtain the advantage of the commutative principle in the actual process of the multiplication, by setting aside the concrete unit involved, and making the multiplication abstract till it is performed, and then restoring the concrete unit to the product; or we can, for purposes of computation, transfer the concrete unit from one faetor to the other, thus-

$$
84 \times 7=\$ 1 \times 4 \times 7=\$ 1 \times 7 \times 4=\$ 7 \times 4
$$

If each dot in the rectangular array of dots given on opposite page represent one dollar, this is the same as saying that 7 columns, each containing 4 units of 1 dollar each, are the same as 4 rows, each containing 7 units of 1 dollar each; or 7 yds . of cloth, at $\$ 4$ each, cost as many dollars as 4 yds. at $\$ 7$ each, and the one computation may be exchanged for the other, if any advantage is gained thereby.
We now proceed to show that by the use of the multiplication table any two numbers, however large, may be multiplied together.
53. I. When the Multiplier is a Single Digit.-The process is illustrated by the following example:

Ex. Multiply $\$ 264$ by 7 .

Operation. $]$ But
\$264, Multiplicind.
7, Multiplier. \$1848, Product. units by 7 , obtaining 28 units, or 2 tens and 8 units, set down the 8 units in the units place, and reserve the 2 tens to be added to the next partial product. We then multiply the 6 tens by 7 and obtain 42 tens, to which we add the 2 tens reserved, and obtain 44 tens, or 4 humdreds and 4 tens. Setting down the 4 tens in the tens place, and reserving the 4 hundreds, we next multiply 2 hundreds by 7 , and obtain 14 hundreds. To this we add the 4 hindreds reserved, and obtain 18 hundreds, which we set down in the proper place. Hence, the product of $\$ 264$ by 7 is $\$ 1848$.

The student should observe that the multiplication has been performed by taking the product of single pairs of digits separately and combining the partial products obtained. If the student will set down the number 264 seven times in a colomn, and obtain the sum by addition, he will realize the labor saved by the process of multiplication, even in a simple example like this.

TALERE FLAMMAM EXERCISE 10.

1. There are 24 hours in one day. How many are there in 3 days? In 5 days? In 7 days? In 9 days?
2. One bushel of corn weighs 56 pounds. How many pounds will 4 bushels weigh? 9 bushels? 6 bushels?
3. There are 66 feet in one chain. How many feet in 4 chains? In 7 chains? In 8 chains?
4. A barrel of flour weighs 196 pounds. How many pounds do 4 barrels weigh? 5 barrels? 9 barrels?
5. There are 365 days in one year. How many days in 3 years? In 5 years? In 7 years?
6. If 725 men have each $\$ 4$, how many have they all? If each has $\$ 6$? \$8?
Multiply:
7. 256 boys by 7 .
8. 439 girls by 8 .
9. 716 feet by 6 .
10. 1729 men by 5

Multiply 9013 feet
by
$\begin{array}{c}166 \\ 6\end{array}$
8

11. $\$ 2803$ by 6 ,
12. $\$ 6753$ by 8 .
18. $\$ 3926$ by 9 .
14. 42307 yds. by 7 .

-4
21.
$\begin{array}{r}46789 \\ \hline 96\end{array}$
26.
3803

9
29.30. Multiply $701508 \quad 517032 \quad 876531 \quad 90470680327$ by
What must be paid for the following purchases
33. 12 yards silk at $\$ 3$ a yard, and 17 yards cloth at $\$ 2$ a yard?
34. 16 spools thread at 5 cts. a spool, and 7 yards cord at 2 cts . a yard?
35.8 cows at $\$ 28$ each, and 6 oxen at $\$ 46$ each ?
s6. 9 horses at $\$ 127$ each, and 4 carriages at $\$ 108$ each?
Find amounts of these tivo memoranda:
\$7. 3 mo. rent at $\$ 28 . \quad$ S8. 376 hats at $\$ 2$.
6 tons coal at $\$ 6$.
728 coats at $\$ 8$.
7 loads wood at $\$ 5$.
12 barrels oil at $\$ 5$.
714 tickets at $\$ 6$.
125 employees at $\$ 5$.
Suppose here, too, the pupils make examples for each other. Let parents help at home. Teacher can give several examples whose answers can be told at a glance, such as: What is the difference between six times 5324, and 7 times the same number? Multiply 93076 first by 3 , and then by 7 , and add the results, etc., etc.
64. II. When the multiplier is a digit with one or more zeroes annexed.
Ex. Multiply 8843 by 40 .
$\$ 843$
40
$\$ 33720$

In this case we multiply by the digit, 4 , and annex the zeroes to the product. For if 40 groups of 843 dollars each are to be added together, we can, if convenient, separate the 40 groups required into 10 groups of 4 each.
$\$ 843 \times 4$, or $\$ 3372$, will then give the number of units in each of the 10
groups, and the product of $\$ 3372$ by 10 will give the entire number of units in the product of $\$ 843 \times 40$.
Similarly, if the multiplier is composed of any two factors, the multi-
plication, if it is desirable, may be separated into two steps. We first multiply the multiplicand by one factor of the multiplier, and then multi-
ply the product so obtained by the other factor. Thus, to multiply 2608 by 63 , since $63=9 \times 7$, we may first multiply 2608 by 9 and obtain 23472 , and then multiply 23472 by 7 and obtain 164304 as the product of the two original numbers. We may proceed similarly if the multiplier is separable into three or more factors.
55. III. When the multiplier contains two or more digits. LERE FLAMMAM

Ex. 1. Multiply $\$ 384$ by 237.

Explanation--We regard the multiplier as composed of three parts, viz, 7 units, 3 tens or 30 , and 2 hundreds or 200 , multiply by each separately, and then add the partial products obtained. It is customary to omit the zeroes which indicate the order of the second, third, etc., partial products.
It is to be noted that if oneor more of the figures of the multiplier is a zero, the corresponding partial product is a zero and need not bewritten.

Ex. 2. Multiply 56308 by 4007 .

56. Verification.- One method of verifying the work of multiplication-that is, of testing it with a view to detecting any errors that may have been made-is to let the multiplier and multiplicand change places, and perform the multiplication again. We are at liberty to do this, by Art. 52

MÚLTIPLICATION.

Ex. Multiply 437 by 26, and test the accuracy of the result. Oprbation. Verification. As the two products obtained are iden-

437	26 26	tical, and it is not likely that mistakes have been made in such a way in the two different processes that they exactly
$\frac{182}{222}$	78 compensate, we assume that the result	
$\frac{874}{11362}$	$\frac{104}{11362}$	cbtained is correct. If the student is familiar with the

57. A general rule for multiplication may now be formally stated. When the multiplier is a single figure,
Write the multiplier under the units figure of the multiplicand;
Multiply each figure of the multiplicand by the multiplier;
If the product is less than 10 , place it under the figure multiplied; if greater, set down the right-hand figure, adding the other figure to the next partial product.
When the multiplier is greater than 9 ,
Write the multiplier under the multiplicand, with units of the same order in the same column;
Begin with the units figure of the multiplier and multiply the multiplicand by each figure of the multiplier in succession, placing the right-hand figure of each partial product under the term by which it was obtained;
Add the partial products.

58. How would you do the first example in this exercise by addition? How the 24th? How the 35th? Can you now understand how useful multiplication is?
59. There are 24 hours in a day, and 365 days in a year. How many hours in a year? In 6 years? In 75 years? s9. What will 743 horses cost at $\$ 130$ each ?
60. One mile contains 1760 yards. How many yards in 425 miles? In 720 miles?
61. There are 5280 feet in a mile, and 12 inches in a foot. How many inches in a mile? In 25 miles?
62. Methuselah lived 969 years. How many days did he live?
63. A book of 674 pares contains 38 lines on each page. How many lines in the book?
64. If there are 14 words in each line, how many words in the book of Example 43?
65. A bicyclist rides 16 miles an hour for 36 days of 7 bours each. How many miles did he ride altogether?
66. Which is the greater, and how much,
$756 \times 243+965$, or $3328 \times 79-69300$?
67. Multiply $261 \times 325-83476$ by $66750-307 \times 209$.
68. Value of Multiplication.-The value of the process of multiplication as compared with addition should be frequently recalled in comnection with examples like the following:

Ex. If it costs $\$ 23562$ to build a single mile of railroad, how much will it cost to build 273 miles?
If this example were solved by addition, it would require the setting down of 23562 two hundred and seventy-three times, and the addition of five columns of figures, each containing 273 figures. The process of multiplication (by resolving the numbers into pairs of digits and recalling the results of a few simple additions) gives the same result with scarcely one hundredth of the labor.

The saving of labor effected by multiplication is still further realized when some adequate idea of the extent of its application is formed. The largeness of its field of application is due to the fact that wherever possible, groups of units are made uniform in the number of units which each group contains. Thus, each foot in linear measure is composed of 12 inches, al the milk in a can is sold for the same number of cents per quart, each week contains 7 days, etc. Also, where the number of units is not the same in different groups considered, it is frequently made uniform by taking the average of all the groups, so that multiplication may be applied. Thus,
measurements to determine areas, volumes, etc, are usually so taken that the multiplicative principle may be applied. Thus, in measuring the area of a floor which is, say, 7 yards long and 5 yards wide, we do not mark off the floor into actual square yards and count or add the number of them, but we measure the length and breadth of the floor, and thns, in effect, arrange the square yards contained in the lloor into 5

rows each containing 7 square yards,
and then obtain the number of square yards in the area by the multiplication $7 \times 5=35$.

MULTIPLICATION.

EXERCISE 12.

1. Multiply 750 by 430 and the product by 48 .
2. From $87 \times 43 \times 56$ subtract 235×260.
3. Take $370 \times 80 \times 420$ from $567 \times 203 \times 50$.
4. What is the value of $46 \times 70-28 \times 45+160 \times 23$?
5. What will 763 acres of land cost at $\$ 85$ an acre?
6. A man 600 miles from New York walked toward that city 28 days, 17 miles each day. Hov far away was he then? 7. A railroad train travels 45 miles an hour for 38 days of 24 hours each. How many miles must it still run to have gone 45000 miles?
7. Supposing there are 85 apples in a bushel, how many will there be in a crop of the same kind, of 560 bushels?
8. There are 32 quarts in a bushel. How would you determine the number of grains in a bushel of wheat without counting them all? In 75 bushels?
9. There are 43 rows of trees in an orchard and 61 trees in each row. How many trees in the whole orchard? How many in another orchard having twice as many rows and twice as many trees in each row?
10. Thirteen books contain respectively $261,295,304,247$, $283,311,219,276,253,309,267,238,294$ pages. If they each had 293 pages, how many more pages would there be?
11. Mr. Dash sold Mr. Blank 24 rolls of eloth, each containing 45 yards, at $\$ 2$ a yard. Mr. Blank sold Mr. Dash 6 lots of land, each containing 7 acres, at $\$ 52$ an acre. Which gentleman owes the other and how much?
12. In a train-load of flour there are 78 cars, each containing 184 barrels and each barrel weighing 196 pounds. Find total weight.
13. Two bicyclists are 1800 miles apart and ride toward each other. One rides 11 miles an hour for 6 hours of each day, and the other rides 9 miles an hour for 8 hours every day. After riding thus for 13 days, how far apart are they?
14. A speculator bought 585 acres of land at $\$ 74$ an acre.

He sold at one time 87 acres at $\$ 64$ an acre; at another time, 137 acres at $\$ 93$ an acre; and at a third sale, 178 acres at $\$ 77$ an acre. At what price must he sell all the remaining acres to gain $\$ 4280$ on the transaction?
16. What would he have gained by selling the remaining acres at $\$ 75$ an acre?
17. Which is larger, 753×427 or 691×538 ?
18. Find the difference between $97 \times 86-347$ and $97 \times$ 347-86.
19. Bought 370 barrels of apples at $\$ 3$ a barrel, and sold them so as to gain $\$ 2$ on each barrel. What was the cost? What was my profit? What was the selling price?
20. A book-keeper whose salary is $\$ 4000$ a year spends at the rate of $\$ 7$ a day for 365 days every year. How much can he save in 28 years?
21. A man buys 326 sheep at $\$ 4$ each and sells them so as to gain $\$ 125$. What was the selling price?
22. A farm of 381 acres sold for $\$ 76$ an acre, the owner
thereby gaining $\$ 486$. What was its cost to him?
23. When is there gain? When loss?
24. A capitalist bought 376 acres of land at $\$ 83$ an acre.

He sold from it, 96 acres at $\$ 92 ; 139$ acres at $\$ 85 ; 63$ acres at
$\$ 81$; and the remainder at $\$ 107$. What was his total profit?
25. There are 2 pints in a quart, 4 quarts in a gallon, and

63 gallons in a hogshead. Without counting them all, how
could one determine the number of drops of water in a hogs-
head? In 525 hogsheads?
26. Which is the greatest and which the least: $\square 1$

$$
\begin{aligned}
& 17 \times 13+15 \times 11-18 \times 19, \\
& 17+13 \times 15-11 \times 18 \times 19 \text {, or } \\
& (17-13) \times 15 \times 11-18 \times 19 ?
\end{aligned}
$$

27. Explain the several operations and the order of operations in: $3+(4+5) \times 6-(7+8 \times 9)+10 \times 11$. And also in: $3+4+(5 \times 6)-7+(8 \times 9+10) \times 11$. Find the value of each.
28. Exact and Inexact Division. -If we divide $\$ 18$ by 3 , we find that, after subtracting six times, no dollars remain. When there are no units left over from a division, the division is said to be exact.
If we attempt to divide $\$ 18$ by $\$ 5$, we find that, after subtracting $\$ 5$ three times, 83 are left.
When units are left over from a division, the division is said to be inexact. The units left over are called the remainder.
29. Relation of Quantities in Division.-Since the two factors of a number multiplied together equal the number, it follows that-
30. In exact division, dividend $=$ divisor \times quotient.
31. In inexact division, dividend $=$ divisor \times quatient $+r e$ mainder. Or, using symbols, and denoting the dividend by D, divisor by d, quotient by Q, remainder by R,

$$
\begin{aligned}
D & =d \times Q+R . \\
\text { Thus, } & \$ 18
\end{aligned}=\$ 5 \times 3+83 .
$$

63. Symbols for Division.-The ordinary sign of division is - , which reads "divided by." Placed between two numbers, it means that the first number is to be divided by the second. Thus, $36 \div 9$ means that 36 is to be divided by 9 . Division may also be indicated by a horizontal line, with the dividend above and divisor below, as $\frac{36}{9}$; or by a curved line, with the divisor on the left, and the dividend on the right, as 9) 36.
64. Table for Division.-Just as the multiplication of all large numbers is performed by means of a few simple primary products, which are learned once for all at the outset, so the division of all large numbers may be resolved into a few simple primary divisions, to be learned once for all, and used repeatedly afterward. These simple primary divisions

Since the short way of dividing is to recall that multiplier
number, we may say that-
Division is the process by which, one factor and the produet being given, the other factor is determined. The given factor is the divisor, the given product is the dividend, and the required factor is the quotient.

CHAPTER V. DIVISION.

59. Ilustration. HA man having $\$ 18$ is staying at a hotel at a cost of \$3 a day, How many days can he stay?
Since he spends $\$ 3$ a day, the number of days he can stay can be determined by subtracting $\$ 3$ from $\$ 18$, then $\$ 3$ from the remainder, and so on in succession till the $\$ 18$ are exhansted, and then counting the number of times $\$ 3$ has been subtracted. The number of subtractions will be the number of days required.
If, however, the student is familiar with the multiplication table, it is much easier to recall that the number which multiplies 3 and makes 18 is 6. We thus substitute the less labor of memory for the greater labor of repeated subtraction and the still greater labor of counting off dollars in groups of 3 each from 18 , and counting the number of groups counted offi
60. Definitions.-The process of determining how many times one number may be subtracted from another-that is, is contained in another-by a brief method (as by the aid of the multiplication table above), is termed division.
The dividend is the number from which the successive subtractions are made.
The divisor is the number successively subtracted.
The quotient is the number of times the divisor is subtracted. Thus, in the example in Art. 59, $\$ 18$ is the dividend, $\$ 3$ is the divisor, and 6 is the quotient.

Since the short way of dividing is to recall that multiplier
are formed by taking each product in the multiplication table, and determining one of its factors when the other is given.

$$
\begin{aligned}
& \text { Thus, since } 9 \times 6=54 \text {, we may write } \frac{9) 54}{6}, \frac{6) 54}{9} \text {; } \\
& \text { Or, } \\
& 54 \div 9=6 ; 54 \div 6=9 .
\end{aligned}
$$

Let the pupil form a division table in this way and thoroughly master it.||

EXERCISE 13.

ORAL OR DRILL EXERCISE.

1. Tell immediately the quotient in each case:

2. If a man earns $\$ 6$ a day, how many days must he work to earn $\$ 36$? \$48? \$72?
3. How many weeks in 56 days? In 49 days? In 77 days?
4. How many sponges at 8 cents apiece can be bonght with 64 cents? With 72 cents? With 96 cents?
5. There are 4 quarts in a gallon; how many gallons in 20 quarts? In 40 quarts? In 48 quarts?
6. What is the remainder in each case following?

$25 \div 4$.	$38 \div 8$.	$80 \div 9$.	$63 \div 6$.
$29 \div 9$.	$43 \div 5$.	$90 \div 11$.	$100 \div 12$.
$30 \div 7$.	$47 \div 6$	$70 \div 8$.	$105 \div 11$.
$35 \div 4$.	$68 \div 9$.	$75 \div 7$.	$115 \div 12$.

7. What is the price of each orange when 9 oranges cost 45 cents? When they cost 72 cents?
8 . If there are 9 square feet in a square yard, how many square yards in 108 square feet? In 90 square feet?
8. If there are 48 roods in 12 acres, how many roods in 1 acre?
9. When 9 quarts of milk cost 63 cents, what is the price of 1 quart?
10. If I save $\$ 132$ in 12 months, how much must I average each month?
11. In 8 days a digger opened 72 yards of ditch. How many yards conld he open in 1 day?
12. If a wheelman rides 96 miles in 12 hours, how far does he ride in 1 hour? In 7 hours?
13. Abstract and Concrete Numbers in Division.-Abstract number is of the first importance in division, since it enables us to form a division table good for all kinds of particular conerete quantity. But, as in multiplication, so in division, certain limitations must be observed in the use of abstract and concrete numbers. Since we can divide a number of units by a number of like units or by a number of groups (but not by a number of unlike units), it follows that 1. If the dividend is an abstract number, the divisor must be an abstract number also, and hence the quotient too will be abstract.
14. If the dividend is a particular kind of concrete number and the divisor also is concrete, it must be a concrete number of the same kind with the dividend. Thus, we can divide $\$ 18$ by $\$ 3$, or 18 marbles by 3 marbles, but not $\$ 18$ by 3 marbles.
In this case the quotient is abstract number.
15. If the dividend is concrete number, the divisor may be abstract number. Thus, $\$ 18$ may be divided by 6 ; that is, divided into 6 equal parts.
In this case the quotient is a concrete number of the same kind with the dividend.

This kind of division is sometimes called partition, since it consists essentiaily of dividing a given number into a number of equal groups es parts.
In the preceding oral exercise, let the pupil point out which examples are cases of partition.
We now proceed to show how, by the use of the division table, any number, however large, may be divided by a smaller number.
66. I. Short Division.-When the divisor is a single digit, the process is called short division. The dividend may in this case be resolved into small partial dividends mentally, the divisions performed mentally, and the figures of the quotient set down at once.

Ex. 1. Divide $\$ 9452$ into 4 equal parts.

Operation.

4) $\$ 9452$

2363, Quotien We set down the divar Wh, and in the divfdend, and divide it into the different orders of nuits of which the dividend is composed, beginning with the highest and dividing each separately. 4 is contained in 9 (thousands) 2 (thousands) times, with a remainder of 1 (thousand). Setting down the 2 beneath the thousands and combining the 1 (thousand) with 4 (hundreds), we have 14 (hundreds) as the next partial dividend. 4 is contained in 14 hundreds) 3 (hundreds) times, with a remainder of 2 (handreds). Setting down the 3 (in the hundreds place) and combining the 2 (hundreds) remainder with the 5 (tens), we have 25 (tens) as the next partial dividend. 4 is contained in 25 (tens) 6 (tens) fimes, with a remainder of 1 (ten). Setling down the 6 (tens) in the quotient, the last partial dividend is 12 (mnits). Into this, 4 is contained 3 times. Hence, the division is exact, and the entire quotient is $\$ 2363$.


```
Operation.
Divisor 7)\$31559, Dividend,
\(\$ 4508\), Quotient, with a Remainder of \(\$ 3\).
```

Explanation.-Since 7 is not contained in 3 (ten thousands), we treat 3 as a remainder, and divide 7 into 31 (thousands) as the first partial dividend, obtaining the quotient 4 (thousands), with 3 (thousands) as a remsinder, and proceed as in Ex. 1. Similarly when 7 is not contained in 5 tens, we set down 0 in the tens place in the quotient, and take 59 as the next partial dividend. 7 is contained in 59 (units) 8 times, with a remainder of 3 (units). Hence the division is inexact, and the quotient is $\$ 4508$, with a remainder of $\$ 3$. The remainder is sometimes written over the divisor, with a line between, and set down as a (fractional) part of the quotient. The entire quotient in this case would then be $\$ 4508$ s.
67. Other Cases of Short Division.-The method of short division can be employed when the divisor is 11 or 12, or a larger number if the student is familiar with the table of the products of such numbers by the nine digits.
Ex. 1, Divide 42084 by 12.
Operamion.

$12 \lcm{42084}$
3507 , Quotient.

Again, if the divisor consist of a single digit forlowed by two or more zeroes, the division is best performed as a short division.

Ex. 2. Divide $\$ 897563$ by 300 .
Since the divisor is an exact number of hundreds, that part of the dividend which is less than $\$ 100$ (viz, $\$ 63$) may be set aside as a part of the remainder, and the number of hundreds in the dividend divided by the number of hundreds in the divisor; hence, we have
$1 \mathrm{~V}-\frac{100)}{30897563}$

$$
\text { \$2991, Quotient }+\$ 263 \text {, Remainder. }
$$

68. Verification.-To test the accuracy of the work done in division, we may multiply the divisor and quotient together, and add the remainder, if there be any, to the product. If the result equals the dividend and there have been no compensating errors in the two processes, the work is correct (see Art. 62).

DIVISION.

Thus, to test the accuracy of the work in the last example, we have

This resnlt equals the original dividend ; hence, the work in the division is (probably) correct.

EXERCISE 14.

Divide rapidly and orally:

21. 240 by 4 ; by 8 . 22. 360 by 9 ; by 6 , 23. 630 by 7 ; by 10 24. 720 by 12 ; by 9 25. 560 by 8 ; by 4 . 26. 840 by 7 ; by 12 27. 960 by 8 ; by 6 . 28. 880 by 11 ; by 4 29. 420 by 6 ; by 3 . so. 600 by 5 ; by 10

Copy and divide the following :

. 3) 426 inehes.	45. 7)19999	59. 12) 494820
S2. 2) 590 feet.	46. $7 \lcm{456939}$	60.12)688608
$38,3) 714$ days.	47. 8)301376	$61.3) 1213526$
84. 2) 592 men.	48. 8)123456	69. 2) 16181590
S5. 3)477 tons.	49. 8) 579752	6s. 3)1524291
36. 2) 738 men .	$5 0 . 8 \longdiv { 7 0 3 1 4 4 }$	64. 4)3231616
87. 4) 344 days.	51. 9) 5555579	65. 4)8352396
88. 3) 825 pecks.	52. 9 $9 \lcm{745083}$	$6 6 . 5 \longdiv { 9 5 4 1 0 3 5 }$
39.4)628 yards.	53. $9 \longdiv { 4 3 0 0 5 6 }$	67. 5) 47521015
40. $5 \longdiv { 6 4 5 }$ feet.	54. 9) 3888971	$68.5) 3800275$
41. $4 \longdiv { 3 0 2 4 8 }$	55. 9) 8035083	69. 6) 3046824
42.5)16785	56. $9 \longdiv { 5 5 9 4 3 1 }$	70. 7) 5666612
43. 6) 43974	57. 11)345631	71. 7)196833328
44. $7 \longdiv { 6 6 6 6 8 }$	58. 11 $\lcm{499037}$	78. 8) $9 \underline{96111268}$

73. Divide 7488, 56703, 1341117, and 627144 by 3.
74. Divide $5208,617102,9031758$, and 12345678 by 6.
75. Divide $175345,420275,753105$, and 5123045 by 5 .
76. Divide 302208, 4251612, 25801278, and 10002018 by 6.
77. Divide 30028, 1756320, 75690376, and 5004108 by 4.
78. Divide $66965,3201305,3710420$, and 9876540 by 5 .
79. Divide $33334,7080906,1230463$, and 20230721 by 7.
80. Divide 520352 , 2705608,3391576 , and 70001208 by 8 .
81. Divide $23742,1012347,50123458$, and 70123456 by 9 .
82. 567886 by 11. S4. 76488 by 12. \mid 86. 930156 by 12.
83. 587180 by 11. 85.65472 by 12. 87.5750412 by 12.
84. Divide $35816,44781,4075973$, and 10170688 by 11.
85. Divide 28284, 609756, 888384, and 46818072 by 12.
86. A man divided $\$ 7434$ equally among 6 children. How many dollars did each receive?
87. There are 7 days in a week. How many weeks in 2002 days?
88. At $\$ 5$ a barrel, how many barrels of flour can be bought for $\$ 3940$?
89. A boy receives $\$ 9$ a week. How many weeks must he work in order that he may receive $\$ 7020$?
90. There are 12 inches in a foot. How many feet in 63360 inches?
91. If there are 4 pecks in a bushel, how many bushels in 16300 peoks?
92. Change 35091 square feet to square yards, if there are 9 square feet in one square yard.
93. Multiply 504 by 231 , and divide the product by 9 .
94. Divide 75320 by 8 , and multiply the quotient by 76 .
95. Multiply 204 by 917 , and divide the product by 12.

Then divide this quotient by 5 .
100. Find the product of $225 \times 716 \times 135$, and divide it
by 5. Divide the quotient by 12 . Divide this quotient by 9 .
101. If the product is 43744, and the multiplier is 8, find the multiplicand.

Find the divisor if the:
102. Dividend is 3078 and the quotient is 9 . 103. Dividend is 176072 and the quotient is 8 . 104. Dividend is 463815 and the quotient is 11 .

Find the quotient and remainder in each case:

| 105. 8) 31415 .AMM 112.20$) 98750$ | $119.300) 976580$ | |
| :--- | :--- | :--- | :--- |
| $106.9) 21763$.TIS | $113.30) 67670$ | $120.400) 95670$ |
| $107.7) 1416838$ | $114.40) 841370$ | $121.500) 1796300$ |
| $108.6) 360517$ | $11.80) 35670$ | $122.600) 92370$ |
| $109.5) 312059$ | $116.90) 123456$ | $128.700) 516784$ |
| $110.10) 16758$ | $117.100) 26750$ | $124.800) 56793$ |
| $111.11 \lcm{176531}$ | $118.200) 976350$ | $125.900) 387650$ |

Find the dividend if the :

126. Divisor is 7 , quotient is 43 , and remainder is 5 .
127. Divisor is 12 , quotient is 327 , and remainder 10 .
128. Divisor is 23 , quotient is 76 , and remainder 18 .
129. Quotient is 416, divisor 207, and remainder 194.
130. Quotient is 356 , remainder 401, and divisor 510.
131. II. Long Division.-When the divisor is so large (larger than 12) that the products of it by the nine digite cannot be retained mentally and subtracted, it is necessary in the division to set down in succession the partial dividends and the successive subtrahends and remainders. When division is performed in this way, it is called long division.

Ex. Divide 8746 by 37.

Explanation.-We determine the finst partial dividend by beginning at the left and taking the smallest number of digits that will contain the divisor; 37 is not contained in 8 , but is contained in 87 (hundreds), 2 (hundreds) times, with a remainder of 13 (hundreds). Setting down the 2 (hundreds) to the right as part of the quotient, and combining the 13 (hundreds) remainder with the 4 (tens), we have 134 (tens) as the next partial dividend. 37 is contained in 134 (tens), 3 (tens) times, with a remainder of 23 (tens). Setting down the 3 (tens) as part of the quotient, and combining the 23 (tens) remainder with the 6 (units), we liave 236 (units) as the last partial dividend. 37 is contained in 236 (units), 6 (units) times, with a remainder of 14 (units). Hence, the entire quotient is 236 , with a remainder of 14 .

It is now left as an exercise for the pupil to write out a general rule for long division.

In regard to long division, it is to be remarked that

1. If the work is properly done, the remainder is in all cases less than the divisor. If in the course of the work a remainder is obtained equal to or greater than the divisor, it shows that the last figure of the quotient is too small.
2. If at any time the divisor multiplied by the last figure gives a product greater than the partial dividend under which it is placed, it shows that too large a number has been taken for the last figure of the quotient.
3. If at any time the partial dividend is less than the divisor, and hence will not contain it, a zero is to be set down in the quotient, another figure of the dividend brought down, and the work continued as before.

Ex. Divide 216912714 by 71873 .

1. 322 inches by 14
2. 540 feet by 15 .
3. 391 men by 23 .
4. 728 days by 26 .
.. 1457 years by 31
5. 1204 feet by 43.

Find the quotient and remainder in each case:
71. $96731 \div 309$.
72. $59178 \div 421$.
74. $188576 \div 2761$.
75. $9980736 \div 2047$.
78. $96733 \div 1209$.
there in 2136 hours? In 3168 hours?
78. How many beeves at $\$ 35$ each can a dealer buy with $\$ 2380$? With $\$ 6650$?
79. There are 144 square inches in 1 square foot. How many square feet are there in 11952 square inches?
80. How many barrels of flour in a load containing 40180 pounds, a barrel of flour weighing 196 pounds?
81. The distance from the earth to the sun is 93000000 miles. How many days would it take a cyclist to ride that distance, traveling 124 miles a day? How many years, if there are 365 days in a year?
82. How many days would it take a locomotive to run that far, at the rate of 744 miles a day?
83. How long would light require, to come from the sun to earth, at the rate of 186000 miles a second? What is the name of your quotient?
84. At $\$ 117$ a share, how many shares can be purchased with $\$ 843336$?
85. What is the price of 1 acre of land, when 371 acres cost 887185?
86. There are 792 inches in a chain, and 63360 inches in a mile. How many chains in a mile?
87. The product is 350102 , and the multiplier is 386 . Find the multiplicand.
88. The quotient is 567 , and the dividend is 2442069. Find the divisor. \quad P
89. How many yards of cloth at $\$ 3$ a yard must be returned for 7 barrels of flour at $\$ 6$ a barrel?
90. How many tons of hay worth $\$ 18$ a ton must be given in exchange for 24 loads of coal at $\$ 9$ a load?
91. At $\$ 36$ an ox, how many oxen will be required, to pay for a farm of 104 acres, worth $\$ 81$ an acre?
92 . The 425 families of a village agree to bear equally the expense of paving 612 rods of street, costing $\$ 25$ a rod.
How many dollars will each family contribute?
Divide:
23. 5168254 by 1898 . \mid 29. 37318800 by 3405.
94. 26638950 by 4314 100. 17829888 by 3072.
95.69908524 by 7543 . 101. 83555703 by 8701 .
96. 9111878 by 3954.
97. 32393290 by 4978.
98. 68115312 by $7165 \quad$ 103. 32658915 by 5435.
104. 73728456 by 9208.

7545 by 6435
106. 422582680 by 5785 .
107. 60088326832 by 76048 . 108. 3380002995264 by 67008 . 109. 803000835205 by 200705.

Find the value of each of the following:

$$
\begin{aligned}
& \text { 110. } 7 \times 6+63 \div 9 \text {. } 112.80+121 \div 11-90 \text {. } \\
& \text { 111. } 9+40 \times 2-72 \div 3 . \\
& \text { 114. } 8 \times 7-18 \div 3+45 \div 15-105 \div 5 . \\
& \text { 115. } 256 \div 16-7 \times 2+11 \times 14-90 \div 9 . \\
& 116.1728 \div 12-169 \div 13-289 \div 17-361 \div 19 .
\end{aligned}
$$

70. Factorial Division.-If a divisor can be separated into two or more small factors, the work of division can often be diminished by dividing the dividend by the factors of the divisor in succession, instead of dividing by the entire divisor at once.

Ex. 1. Divide 11060 by 35.
The factors of 35 are 7 and 5 .
Hence, to divide 11060 by 35 , we divide first by 7 , and then divide the quotient obtained by 5 , thus:

7)11060
 5) 1580
 316, Quotient.

By dividing by 7 we separate 11060 into 1580 groups of 7 each, and by dividing by 5 we separate the 1580 groups of 7 each into 316 groups of 5×7, or 35 each.
The method of determining the remainder in factorial division is best shown by an example.
Ex. 2. Divide 6083 by 84 by the factorial method.
Operation.
$3 \lcm{6083}$
4) 2027 groups of 3 units, with a remainder of 2 units.
7) 506 groups of 3×4 units, with a remainder of 3 groups of 3 units.

72 groups of $3 \times 4 \times 7$ units, with a remainder of 2 groups of 3×4 units.
Hence, the quotient is 72 , and the entire remainder consists of three parts, viz., 2 units, and 3×3 or 9 units, and $2 \times 3 \times 4$ or 24 units; or $2+9+24$, 35.

Hence, to find the entire remainder in factorial division,
Multiply each remainder by the divisor which produced the given remainder and by all preceding divisors, and add the results.

EXERCISE 16.

By the factorial method, divide:

1. 888 by 24.	7. 13794 by 66.	1s. 38304 by 96.
2. 1736 by 28.	8. 25632 by 72.	14. 41846 by 98.
s. 3570 by 42.	9. 31350 by 75.	15. 49665 by 105.
4. 4230 by 45.	10.41426 by 77.	16. 79596 by 108.
5. 7074 by 54	11. 50787 by 81.	17.91056 by 112.
6. 15744 by 64	12. 68712 by 84.	18.124272 by 144.

6. 15744 by 64 . 12.68712 by $84 . \quad 18.124272$ by 144.

Find the quotient and the remainder in each, ly the factorial method:

19. 355 by 36.	24. 3446 by 135.	29. 6899 by 324.
20. 927 by 48.	25. 4289 by 144.	So. 7163 by 385.
21. 791 by 64.	26. 4873 by 150.	S1. 8563 by 420.
22. 999 by 56.	27. 5327 by 216.	SS. 8873 by 540.
2S. 975 by 121.	28.582 by 243.	S3. 9997 by 756.

23. 975 by 121. (1)] 28. 582 by 243 . 38.9997 by 756.
24. The Value of Division, even in a single problem, is realized on comparing the labor employed in division with what the labor would be if the same problem were solved by repeated subtraction. Take, for example, the following problem:

A railroad contractor has $\$ 400000$, and is paying out $\$ 3276$ a day; he desires to know how many days his money will last. To determine the number of days by successive subtractions of $\$ 3276$ would require the setting down and subtracting of this number more than 120 times. To obtain the required number of days in this way would require at least 50 times as much labor as by the method of long division.

The value of division is still further realized when some adequate notion is formed of the extent of its possible application. Division, like multiplication, has this wide application owing to the extended use of groups uniform in the number of units which they contain. Thus it is an advantage to have the barrels employed for a given purpose, as to measure oil, contain the same number of gallons; to sell all the yards in a given piece of cloth at the same price per yard, ete.

Where uniform groups of units are not explicitly given, they may often be formed by the proper analysis, and the solution of the given problem effected by division.

Ex. 1. In a given election where 10896 votes were cast, the successful candidate had a majority of 324 . How many votes did each candidate receive?

We may regard the number of votes received by the defeated candidate as the primary or unit group of the problem. The successful candidate received this unit group and 324 votes besides. Hence, the total number of votes cast, 10896, equals twice the unit group and 324 votes besides: Hence, subtracting 324 votes from 10896 votes, we have 10572 votes as equal to twice the unit group, and the unit group may be obtained by dividing 10572 by 2 . Hence, $10572 \div 2$, or 5286 , is the number of votes received by defeated candidate; and $5286+324$, or 5610 , is the number of votes received by suecessful candidate.
Ex. 2. A man dying left an estate of $\$ 84000$, of which his wife was to receive a certain part, his daughter half as much as his wife, and his niece half as much as his daughter. How many dollars did each inherit?

If we regard the number of dollars received by his niece as the unit, then his daughter received twiee this unit, and his wife four times it. Hence, the number of dollars bequeathed must equal 7 times the unit taken. If 7 times the unit equals $\$ 84000$, the unit group itself may be obtained by dividing $\$ 84000$ by 7 , giving $\$ 12000$ as a quotient. From this the value of each share is readily determined.

EXERCISE 17.

1. In an election in which 22795 votes were cast for 2 candidates, the successful candidate received a majority of 461 votes. How many votes were cast for each?
2. John hastwice as many marbles as William, and William has three times as many as George; all have 130 marbles. How many has each?
3. A boy has four times as many examples as his sister, and both together have 100 . How many has each?
4. Divide 90 into two parts so that one is twice as large as the other. One is 5 times as large as the other.
5. How could the examples of Exercise 15 have been done other than by division? How else could you do Example 21 there?
6. How could you do Example 60 but by division? Which is more simple? Could you do Example 81 the other way? 7. Without multiplication or division, how could the 92 d example be done?
7. There are 10 times as many boys in a certain school as there are teachers, and 3 times as many girls as boys; altogether there are 492. How many teachers, boys, and girls separately?
8. Separate the number 132 into two parts such that one is 11 times the other. Into two other parts such that one is
21 times the other.
9. A has twice as many acres as B, B has twice as many as C, C has three times as many as D, and all have 1100 acres. How many has each?
10. In a certain election 56329 votes were cast for 2 candidates, the successful candidate receiving a majority of 1071 votes. How many did each receive?
part of 100. This calls for a slight knowledge of fractions, but should be mentioned in this connection.

CHAPTER VI.*

ABBREVIATED PROCESSES.

72. Fundamental Arithmetical Operations and their Abbreviations, -The four operations, addition, subtraction, multiplication, division, are called the fundamental operations of arithmetie, since all subsequent arithmetical work consists of these in various combinations. Hence, it is important that every possible method of abbreviating these fundamental proT) cesses be investigated and mastered. They are themselves, it Is to be remembered, abbreviations of more tedious work, as of the counting and grouping of units; yet, in many cases, the four operations can be still further abbreviated. The
abbreviations used diminish not only the amount of work, but also the likelihood of error.

ABBREVIATED MULTIPLICATION

73. Multiplication by 25 . Since $25=100 \div 4$, to multiply a number by 25 , \qquad
Annex two zeroes to the multiplicand (i. e., multiply by 100) and divide by 4.

Ex. Multiply $\$ 8769$ by 25 .
UNJ (4) $\frac{8876900}{\$ 219225}$, Product. AUU
The multiplication, when performed in this way, calls for less mental effort and the making of fewer figures. It can be readily mastered and made a purely mental process
74. Multiplication by an Aliquot Part of 100.- Of like nature is the multiplication by any other aliquot or exact
*In teaching young or backward pupils, the teacher should omit all of Chapter VI, except Arts. 73, 74, 79, 80, 84.

72

Thus,
$12 \frac{1}{2}=\frac{1}{8}$ of 100 .
$16 \frac{2}{3}=\frac{1}{8}$ of 100 .
$25=\frac{1}{4}$ of 100 .
$33 \frac{1}{3}=\frac{1}{3}$ of 100 .
$37 \frac{1}{2}=\frac{3}{8}$ of 100 .
$50=\frac{1}{2}$ of 100.
$62 \frac{1}{2}=\frac{5}{8}$ of 100 .
$66 \frac{2}{3}=\frac{?}{3}$ of 100.
$75=\frac{3}{4}$ of 100.
$87 \frac{1}{2}=\frac{7}{8}$ of 100 .
Hence, for example, to multiply a number by $33 \frac{1}{3}$, annex two zeroes to the multiplicand and divide by 3 . Let the student state and illustrate a rule for multiplying by each of the other aliquot parts of 100. Examples illustrating this kind of multiplication will be found in Exercise 18.
75. When the Multiplier is a Series of 9's except the last Digit.- In this case the multiplication may be abbreviated into the process of first multiplying by 1 followed by as many zeroes as there are figures in the multiplier (i.e., annexing this many zeroes to the multiplicand), and then deducting the product of the multiplicand by the excess of the multiplier used over the given multiplier.

Ex. Multiply 13721685 by 99998.
Since $99998-100000-2$, we finst multiply 13721685 by 100000 , and then deduct 13721685×2 from the product so obtained. Thus we have
$)_{\text {If }}^{\text {O }}$

If the student will now perform the multipl
mate the labor saved by the abbreviated process
76. Multiplication in which the Partial Products are not set Down, but are Added Mentally.- When multiplying by a number of but two or three digits, it is often of advantage to form in immediate succession all the partial products of the same order and add them mentally, setting down only the last figure of each result in its proper place in the product, and carrying the other figure mentally.

Ex. 1. Multiply 47 by 63.
Operation.
Explanation
63 We have the following partial products: 7 (units) \times 2961 Product 3 (units) $=21$ (units). Set down 1 (unit) and carry 2 (tens) carried -56 (tens). Set down 6 (tens) and carry 5 (hundreds); 6 (tens) $\times 4$ (tens) +5 (hundreds) carried -29 (hundreds), which we set down.
Ex. 2. Multiply 587 by 346
VERITATIS OPERATIOR.

The partial products, with figures carried, may be grouped as follows:
(Units) $7 \times 6=42$ units.
(Tens) $4+8 \times 6+4 \times 7-4+48+28=80$ tens.
(Hundreds) $8+6 \times 5+4 \times 8+3 \times 7=91$ hundreds.
(Thousands) $9+4 \times 5+3 \times 8=53$ thousands.
(Tens of thousands) $5+3 \times 5=20$ tens of thousands.
77. Abbreviations due to Limitations of Accuracy in Measuring Quantities to be Multiplied.-As has been explained in Art. 19, each digit of a number has a value depending on the place which it occupies in the number (as well as the absolute value of the digit). Thus the figure 6, when in the thousands place, has a hundred times the value it has when in the tens place. It is important that the student use every means to keep in mind this difference. For convenience in printing and writing, the digits of a number in the units, tens, etc., places are made of uniform size; but it is useful, in thinking of them, to regard them as of different sizes proportional to the positional values. Thus, while looking at the number 586 , let the pupil think of the 5 as a digit ten times as large as the 8 , and the 6 as a digit only 5 one-tenth as large as the 8 , thus
-
Similarly in the number 7652138 , if 7 be given a size in proportion toits positional value as compared with the number, it would be a figure 8 feet long, while the 8 in comparison with the 2 would vanish into invisibility.

If numbers be thought of in this way, we easily realize that the digits composing a number are of less and less importance as we go to the right, and in certain cases their value vanishes into insignificance, and computations with them'may be limited accordingly.
78. Computations Based on Measurements.-No meascrement is accurate beyond the sixth or seventh figure; this is owing to the limitations of our eyesight and sense of touchperception, and to the ultimate imperfections in all our instruments of measurement.
Thus, a mile (63360 inches) can be measured only to within 1 inch of its true length; an inch can be measured only to within a millionth part of itself, etc. So great a degree of accuracy, however, can be obtained only ly applying every posible refinement of accuracy. Ordinary measuring, such, for instance, as that done by a carpenter, is accurate only to the second or third figure, that is, to within $\frac{1}{105}$ or 1 robo part. Hence,
Computations based on measurements cannot be accurate beyond the fifth or sixth place of figures, and in ordinary work not beyond the thind figure.
All numerical work, therefore, which does not affect the accuracy of the result within the required limits, may be omitted.
Ex. Multiply 3274 by 4125 so that the result shall be accurate to three places.
We carry out the work to five places, so that on adding the partial products the figure in the third place may be accurate, thus, Exprinsatios.
$\begin{aligned} & \text { OpRAtron. } \\ & 32 \pi 4 \\ & \frac{4125}{13096}\end{aligned}$
We first multiply by 4 , the digit of highest de-
nomination in the multiplier. Since this gives a
partial product containing five figures, as required,

4120
13096
327
64
15

 \(\begin{array}{r}327 \\ 64 \\ \hline\end{array}\)
 \(\begin{array}{r}64 \\ \quad 15 \\ \hline\end{array}\)
 18502 , thousands. partial product containing five figures, as required,
 before multiplying by 1, the next digit in the mulbefore multiplying by 1 , the next digit in the multiplier, we strike out the units figure 4 in the multiplicand and then multiply. Similarly we strike out one figure in the multiplicand before multiplying by each successive figure in the multiplier. The number of figures struck out fixes the denomination of the product.

13500000 is the product correct to the third place.

EXERCISE 18 .
Perform the following multiplications by the shortest method

Find approximately the following products :

79. Division by 25 . -The result obtained by dividing a group of units by 25 is the same as that obtained by dividing four times as large a group by 100 . The latter process usually involves less labor. Hence, to divide a number by 25 ,

Ex, Divide 6237 by 25 .

Hence, the quotient is 249 , with a remainder 12.
80. Division by an Aliquot Part of 100 may be abbre
viated in a manner similar to that used in abbreviating the multiplieation by such numbers.
Ex. Divide 89676 by 333_{3}.

$$
\text { 100) } \frac{\begin{array}{r}
89676 \\
269028
\end{array}}{2690_{1026}^{286}} \text { or } 2690 \frac{9!}{33 \frac{1}{3}} ;
$$

that is, the quotient is 2690 , while the remainder is 91 . Let the student formulate rules for dividing a number by aliquot parts of 100 .

For examples, see Exercise 19.
81. When the divisor is a series of 9's except the last digit.
Ex. Divide 7865923 by 98 .
The abbreviated process consists essentially in dividing by 100 , and then forming remainders which are divided in succession.

Operation.
Quotients. Remainders.
7865923
157318
31
46
14
142
49
2

Explatation.
Dividing 7865923 by 100 , we obtain 78659 as a quotient and 23 as a remainder. 98 is contained the same number of times as 100 , with a further remainder of 2 for every time 100 is contained; that is, a further remainder of 157318 . Dividing 157318 by 100 , and continuing the process as above, we obtain a series of quo-
Lients, 78659, 1573, 31 (which are to be added together), and a series of remainders, $23,18,46,62$. Adding the remainders, we obtain 149 ; dividing this by 100 , and then by 98 , we obtain a further quotient, 1 , and a final remainder, 51 . Adding the quotients, the final quotient for the divisor 98 is 80264 , with remainder, 51 .
82. Abbreviation by Setting Down only the Successive Partial Dividends.-Students with especial aptitude for numerical work may learn to abbreviate long division by performing mentally the subtractions required, and setting down only the partial dividends.

Ex. Divide 460686 by 71 .

Explanation.

1) 460686 (In ordinary long division we would multi) $460686(6488$, quation $) 71$ by 6 (the first figure of the guotiont)
 ply 71 by 6 (the first figure of the quotient),
and set down the product, 426 , under 460 , and subtract.- In the abbreviated process we multiply each figure of 71 by 6 , and subtract
38, Remuinder. figore by figure, setting down only the remain 42 from 45 leaves 3 , which from 10 leaves 4 ; set down 4.6×7 is 42 , and 42 from 40 leaves 3 , whe have 346 as the next partial dividend. We we set down. Annexing 6, we have 346 as the next P
83. Division of Numbers Determined by Measurements. -If one or both of the numbers employed in a division be determined by measurement, the result of the division cannot be accurate beyond the fifth or sixth figure. Hence, all numerical work which does not affect the accuracy of the result beyond the fifth or sixth place may be omitted. This is done by beginning at a certain stage of the work to strike off the final digit of the divisor, instead of bringing down a new figure from the dividend and annexing it to the partial dividend.

Ex. Divide 872372500 by 15273 , so that the quotient shall be accurate to 4 figures.
To be accurate to 4 places, we must also determine the fifth figure. If we obtain two figures of the quotient in the ordinary way, and then begin to trike off the final digits of the divisor, it will insure that two digits of the divisor will remsin at the close of the process.

Operation.
$15273) 872372500(57118$ $\frac{76365}{108722}$ 106911

$\frac{1527}{284}$ 284 $\frac{153}{131}$ 131
122

Hence, the required quotient is 57120 . It is to be observed that striking out the last figure on the right of the divisor, the las figure struck out is in each case mnitiplied and the product carried, if it is more than 5 : thus, in forming the last subtrahend, $8 \times 15=$ 120 , but since 2 has just been struck out, and $8 \times 2=16$, the last subtrahend is $120+2$, or 122.

EXERCISE 19.

Divide most briefly :

1. 76125 by 25 . 14. 57650 by 875 .
2. 89375 by 25 . 15.48765 by 125 .
3. 88900 by $33 \frac{1}{\mathrm{~s}}$. $\quad 16.94670$ by 875 .
4. 63850 by $33 \frac{1}{3}$. 17. 1598 by 47.
5. 64350 by 75 .
6. 47250 by $37 \frac{1}{2}$.
7. 679500 by $62 \frac{1}{2}$.
8. 460600 by $87 \frac{1}{2}$.
9. 385500 by $37 \frac{1}{2}$.
10. 832300 by $87 \frac{1}{2}$.
11. 56780 by 125 .
12. 35716 by 375 .

1s. 87632 by 625 .
27. 76327 by 92 . 28. 56345 by 95 . 29. 87632 by 132 . 30. 179630 by 241 . 31. 31086 by 99 . 32. 42751 by 98 . S3. 87630 by 98 . 84. 88561 by 97 . 35. 92176 by 97 . 36. 98753 by 98 . S7. 147632 by 998 . 88. 187632 by 999. 39. 256319 by 998 .

Perform the following divisions accurately to 4 figures: 40. 1112223334 by 3567 . 48.5634217689 by 16328 . 41. 3216789567 by 7238 . 48. 87632765176 by 29045 .

COMBINATIONS OF OPERATIONS.

84. Order of Operations.-When several operations are combined in a single process, it is often possible to perform these operations in different orders; by performing them in one order rather than another, much labor is often saved.
Ex. 1. Find the difference between the products V 3217×85 and 3217×83.

First Computation.
3217
85
16085
$\frac{25736}{273445}$
$\frac{267011}{6434}$

Second Computation.

$85-83=2$
3217
2
$\frac{2}{6491}$

6434, Difference.

The pupil will notice that the second computation requires less than one fourth the labor of the first computation, and that in the second computation as compared with the first the likelihood of error is diminished even more.

Fibst Compufations.
156
892
312
1404
1248

In general, it is evident that if a, b, c, n be symbols denoting any numbers,

The symbol, (), is called the parenthesis. When two or more numbers are inclosed in a parenthesis, it means that they are to he treated as a whole and subjected to the same operation.
Let the student state the above principles in general language. For instance, 7 may be expressed thus,
If the divisor and dividend be divided by the same number, the quotient is not changed. CXERCISE 20. UR

EXERCISE 20.

1. I bought 460 acres at $\$ 26$ an acre, and sold them at $\$ 37$ an acre. Required my total gain.
2. During June a butcher took in $\$ 37$ on each of 25 days.

During July he took in $\$ 43$ on each of 25 days. What were his total receipts? What was the July excess?
3. Monday, 3126 people attended the theatre; and Tuesday, 4719 people attended. If the tickets were $\$ 2$ each, what were the total receipts? The Tuesday excess?
4. A train leaves New York for Chicago, 900 miles away, at the rate of 30 miles an hour, and at the same time another leaves Chicago at 45 miles an hour. How long before they meet? How far from Chicago do they meet? How long between the arrivals of the trains at destinations?
5. The excursion fare between two places is $\$ 17$. What does the R. R. Co. receive from the passengers in a train of S cars, each carrying 63 passengers ?
6. From the sum of $1436,2785,43697,5638$, take the produet of 341 and 75 .
7. Divide the difference between 3467519 and 5321963 by the quotient of 38836 divided by 73 .
8. Multiply the sum of $2076,35941,763,9876$, and 21638 , by the difference between the greatest two of them.
9. When the divisor is 409 , the quotient 1703 , and the remainder 245 , what is the dividend?
10. When the minuend is 57632051 , and the remainder 14678932, what is the subtrahend?
11. When the dividend is 100 , the quotient 8 , and the remainder 4, what is the divisor?
12. When the dividend is 2606526 , the quotient 1478 , and the remainder 812 , what is the divisor?
13. An officer in distributing an appropriation of $\$ 697000$ among the counties of a State, gave each county $\$ 33190$, and had $\$ 10$ remaining. How many counties were there?
85. Logarithms.-By the use of a series of auxiliary num bers called logarithms, numerical work may be further abbreviated. By the use of logarithms, multiplication is converted into addition, division into subtraction, etc. The consideration of these methods, however, comes later.

6

CHAPTER VII.

FACTORS AND ANALYSIS.
86. The factors of a number (see Art. 49) have already been defined as the numbers which, multiplied together, produce the given number.
Thus, the factors of 187 are 11 and 17; of 60 are 3, 4, and 5 .
87. Illustration of the Value of a Knowledge of the Factors of Numbers. - If it is required to determine the value of

a knowledge of the factors of the given numbers enables us greatly to abbreviate the work. For, since dividing the dividend and divisor by the same number leaves the value of the quotient unchanged, we may divide 252 and 54 by the number 9 , which is a factor of both, and proceed in like manner till all the factors common to both divisor and dividend are removed. Thus,

Similarly, an indicated quofient of two large numbers may often be reduced to a simple form by means of a knowledge of the factors of the numbers.

Thus, if we have $\frac{3}{3} 75$, and know that $235=47 \times 5$, and $376=47 \times 8$, we have

$$
\frac{235}{376}=\frac{47 \times 5}{47 \times 8}=\frac{5}{8} .
$$

82

These illustrations show the importance of as thorough a knowledge as possible of the factors of numbers and of the processes of determining them.
88. Prime and Composite Numbers.-A prime number, or prime, is a number which is not divisible by any number except itself and unity.
Thus, $2,3,17,47$, etc., are prime numbers.
A composite number is a number which can be divided by one or more numbers besides itself and unity.
Thus, 4, 6, 18, etc., are composite numbers.
89. Even and Odd Numbers.-As a rule, the most important possible factor of a number is 2.
An even number is a number exactly divisible by 2 ; as 2 , 4, 6, etc.
An odd number is one not cxactly divisible by 2 ; as 1,3 , 5 , etc.
90. Powers and Exponents.-A power is the product of two or more identical factors. Thus, since

125 is said to be the third power of 5 .
A second power is called a square, thus 25 is the square of 5 ; a third power is called a cube, thus 125 is the cube of 5 .
An exponent is a small figure written above and to the
right of a number to indicate how many times the number is taken as a factor (and to save the labor of writing out all the identical factors).

Thus, since $729=3 \times 3 \times 3 \times 3 \times 3 \times 3$, we may write $729=3^{6}$, the 6 being the exponent of 3 .
Similarly, since $400=2 \times 2 \times 2 \times 2 \times 5 \times 5$, we may
write $400=2 \times 5^{2}$.
91. Short Methods of Determining Whether 2, 3, 4, 5, 8, 9, are Factors of a Given Number.-To determine whether a given number contains another number as a factor, the
direct method is to divide the given number by the supposed factor. This work, however, may be greatly abbreviated in the case of $2,3,4,5,5,9$, and some other numbers. Thus, in order to determine whether 2 is a factor of a number, it is not necessary to divide the entire number by 2 , but only the last or right-hand digit Hence, we substitute the less labor of dividing the last figure of a number for the greater labor of dividing the entire number.

The following abbreviated methods of determining the factors are of especial importance:

A number is divisible,

1. By 2, if its last or right-hand figure is divisible by 2 .

Thus, 765918 is divisible by 2 since 8 is divisible by 2 .
9. By 4, if the number expressed by its last two digits is aivisible by 4.
Thus, 742368 is divisible by 4 since 68
8. By 8 , if the number expressed by the last three digits is divisible by 8 .

Thus, 659256 is divisible by 8 since 256 is.
4. By 3, if the sum of the digits composing the number is divisi-

le by 3 .

Thus, 8721561 is divisible by 3 since the sum of the digits of the number [\int is 30 , which is a number divisible by 3 .

5. By 9,

Thus, 87219 is divisible by 9 since the sum of the digits is 27 , which is a number divisible by 9 . \quad ?
6. By 5 , when the last-digit in the number is cither 5 or 0 .
7. By 6 , when the number is divisisle by both 2 and 3 .

The reasons for the first three of the above tests of divisibility are similar. For, in the first case, any number may be regarded as made up of a number of tens and an additional group of units. Since 10 is divisible
by 2 , any number of tens is also divisible by 2 ; hence, if the last figure is also divisible by 2 , the entire number is divisible by 2 .

Similarly, in the second case, any number may be regarded as made up of a number of hundreds and an additional number composed of two digits. Since 100 is divisible by 4 , any number of hundreds is divisible by 4 ; hence, if the additional number expresed by the last two digits is divisible by 4 , the entire number is divisible by 4.
Similarly, the test for divisibility by 8 depends on the fact that 8 is an exact divisor of 1000 . Let the stadent make a formal statement of the reasoning involved.

The reason for the test of the divisibility of a number by 3 is as follows: Any number larger than 10 may be separated into two parts, riz, a part which is a multiple of 9 (and hence divisible by 3); and a second part which is equal to the sum of the digits of the number. Hence, if the latter part is divisible by 3 , the entire number is. Thus, to test 852 as to its

Since the multiples of 9 are divisible by 3 , the divisibility of the entire number by 3 depends on whether the sum of the digits $8+5+2$ is divisible by 3 .

Let the student state in like manner the reason for the abbreviated method of determining whether a number is divisible by 9 .
let the student alsostate the reason for the test of the divisibility of a number by 5 .
The student should observe that the positional system of notation adonted in representing numbers makes possible these abbreviated tests of divisibility. Let the pupil determine which of them could be applied to numbers expressed in the Roman notation.
92. Prime Factors of a Number.-To determine the prime factors of a number, it is sufficient to divide the given number by a prime factor (it is generally best to divide first by the smallest prime factor), then divide the quotient obtained by another prime factor, and so on till a quotient is obtained which is itself prime.

Ex. Separate 2040 into its prime factors.
Operation.

Find the prime facters of:

1. $15,18,20,25,27,28,32,36,40,42,48$.
2. $50,56,60,64,72,80,84,88,92,98,105$.
3. $108,112,124,128,136,148,150,165$.
4. $224,396,480,600,842,873,919,960$.
5. $1315,1599,3003,2145,3696,4081,12121$.

Tell by inspection whether or not each of the following numbers is divisible by $2,3,4,5,6,8,9,10$, or 20 .
6. $120,130,140,156,171,217,240,498$.
7. $3428,7653,9345,76532,97605,123456$
8. $98010,152460,216216,445038,876543210$.

Determine whether the following numbers are prime or
J composite: $\left.\begin{array}{c}\text { co. } 81,83,87,93,111,201,271,343,427 . ~\end{array}\right) \square$
10. $319,507,533,851,917,1189,1927$.
11. Which are the more numerous, odd numbers or even numbers? Prime numbers or odd numbers? A re all prime numbers odd? 12. Obtain tests for the divisibility of a la
12. By 15. By 18. By 36. By 40. By 32.
13. Ascertain what the sieve of Eratosthenes is, and by its use form a list of prime numbers from 1 to 500 .
14. By the aid of this table determine whether 839 is a
prime number. Is it necessary to divide by all of the prime numbers less than 1333 to determine whether it is prime? Which may be omitted?
93. Cancellation.-It has been shown that dividing both divisor and dividend by the same number does not change the quotient. So much labor is saved by this means that the process is frequently used, and it is convenient to give it a special name.

Cancellation is the operation of striking out a factor common to both divisor and dividend.

y cancellation.
Explanation.

50 and 75 have the common factor, 25 which may be canceled, giving 2 in the place of 50 , and 3 in the place of 75.12 will divide 12 and 84 , giving 1 and 7 . will divide 12 and 84 , giving 1 and 7 .
3 will divide 3 and 18 , giving 1 and 6 . again will divide 3 and 6 , giving 1 and 2 . Hence, the quotient is $2 \times 2 \times 7$, or 28 .
The quotient is not changed in its denomination by cancellation, but this is not the case with the remainder, if there be one. To obtain the true remainder, it is necessary to multiply the remainder after the cancellation, remainder, it is necessary to multiply the remainder after the cancellation,
by all the factors cancelled out.

Ex. By cancellation $\frac{\frac{48}{36} \times \frac{14}{12} \times \frac{2}{6}}{\frac{3}{3} \times \frac{15}{5}}=\frac{28}{5}=5$,
with apparent remainder of 3 . But the true remainder is obtained by multiplying 3 by $12 \times 9 \times 3$ (the factors cancelled out), giving 972 , the remainder which should have been obtained if the division had been performed without any cancellation.

It is left as an exercise for the pupil to discover the reason of this process.

20. Divide $16 \times 18 \times 24 \times 30$ by $45 \times 32 \times 72$.
21. Divide $60 \times 70 \times 85 \times 96$ by $42 \times 125 \times 64$.
(J $\begin{aligned} & 22 . \text { Divide } 128 \times 132 \times 150 \text { by } 275 \times 48 \times 84 \\ & 23 \text {. Divide } 345 \times 396 \times 425 \text { by } 187 \times 276 \times 375 .\end{aligned}$
Ascertain the value and the true remainder in each:

$$
\begin{array}{l|l}
24 . \frac{15 \times 28 \times 96}{77 \times 40} & 28 . \frac{58 \times 57 \times 56}{21 \times 24 \times 87} \\
25 . \frac{18 \times 25 \times 126}{45 \times 28 \times 35} & 28 . \frac{63 \times 64 \times 198}{42 \times 99 \times 72} \\
26 . \frac{48 \times 50 \times 51}{60 \times 34 \times 16} & 29 . \frac{95 \times 96 \times 98}{343 \times 38 \times 36}
\end{array}
$$

ANALYSIS.

94. Units Used for Computation Purposes.-Besides units in general use, such as $\$ 1,1$ yard, etc., certain special units are often employed in solving particular examples, simply as an aid in computation.
95. Analysis is the solution of problems by the aid of special units devised to aid in the computation.
Ordinarily we have given in the problem the value of the unit when taken a given number of times. The process of analysis consists (1) in determining the value of the unit taken once, and (2) the value of the unit when taken a required number of times. These two steps are called reasoning to the unit and from the umit.

Ex. 1. If 6 horses cost $\$ 420$, what will 15 horses cost?
Analysis.-The unit considered in this prablem is the cost of 1 horse. Thus
($\begin{aligned} & \$ 420=\text { cost of } 6 \text { horses }(6 \text { units). } \\ & \frac{\$ 420}{6}=\text { cost of } 1 \text { horse }(1 \text { unit }) . \\ & \$ \frac{\$ 20 \times 15}{6}=\text { cost of } 15 \text { horses }(15 \text { units }) . \\ & 70 \\ & \$ 429 \times 15=\$ 1050, \text { cost of } 15 \text { horses. }\end{aligned}$
It should be noticed that ordinarily it is of advantage merely to indicate the division which gives the value of the single unit, and not to obtain the quotient itself by actual division (thus we write $\frac{\$ 420}{6}$ and not $\$ 70$ as the cost
of 1 horse), in order to take advantage of poesible cancellations in the final computation.
Though the above statement of the analysis is all that the student need write down as the solution of the problem, he should be able to give clearly and exactly the reasoning used. Thus, in the above example, if $\$ 420$ is the cost of 6 horses, 1 horse will cost as many dollars as 6 is contained times in $\$ 420$, or $\frac{\$ 420}{6}$; and if 1 horse costs $\frac{\$ 420}{6}, 15$ horses will cost 15 times $\frac{\$ 420}{6}$ or $\$ 1050$.

Fx. 2. If 9 books cost $\$ 20$, what will 54 books cost?
The unit is the cast of 1 book.

Two or more steps are often necessary in obtaining the value of the computation unit (i.e, in reasoning to the unit) and also at times in reasoning from the unit. Thus:

Ex. 3. A workman received $\$ 21$ for 15 days' work of 7 Q hours each. How many dollars will he receive for 17 days' [J] work of 10 hours each?

The unit which controls the computation is the number of dollars received for 1 hour's work.
Hence,
$7=$ No. hours in 1 day's work.
$\begin{aligned} 10 \times 7 & =\text { No. hours in } 15 \text { days work. } \\ \$ 21 & =\text { wages for } 15 \times 7 \text { hours' work. }\end{aligned}$
Ex. 4. How many pounds of sugar at 6 cents a pound ean be obtained in exchange for 10 dozen eggs at 21 cents a dozen?
The cost of 1 pound of sugar is the unit which controls the eomputation.

$$
21 \text { cents = value } 1 \text { dozen eggs. }
$$

21 cents $\times 10=$ value 10 dozen eggs.
6 cents $=$ value 1 pound sugar.
$\frac{21 \text { cents } \times 10}{6 \text { cents }}=$ No. pounds sugar at 6 cents a pound which ean be 6 cents

$$
\begin{aligned}
& \text { obtained for } 21 \times 10 \text { cents. } \\
& \frac{7}{5} \\
& \frac{21 \times 19}{6}=35, \text { No. of pounds. } \\
& \frac{2}{2}
\end{aligned}
$$

Ex. 5. A milkman has 20 cows, each of which gives 8 quarts of milk daily. He sells the milk for 6 cents a quart. How many pieces of cloth, each containing 40 yaris and costing 15 cents a yard, ean he obtain for the milk of 10 days?

6 cents $\times 8 \times 20 \times 10=$ value of milk for 10 days.
15 cents $\times 40=$ cost of 1 piece of cloth.
$\frac{6 \text { cents } \times 8 \times 20 \times 10}{15}=$ No. of pieces of cloth received for
15 cents $\times 40 \quad=\begin{gathered}\text { No. of pieces of cioth recei } \\ 6 \text { cents } \times 8 \times 20 \times 10 .\end{gathered}$
$\frac{2}{6 \times 8 \times 20 \times 10}=16$, No. of pieces.
13
3
Ex. 6. 12 men working 8 hours a day do a piece of work
in 15 days. How many days will it take 8 men working 10 hours a day?

The computation unit is the work done by one man in 1 hour; then
$12 \times 8 \times 15=$ No. units work done by 12 men in 15 days of 8 hours each. $8 \times 10=$ No. units work done by 8 men in 1 day of 10 hours.
$\frac{12 \times 8 \times 15}{8 \times 10}=$ No. days it will take 8 men working 10 hours a day to do
8×10

$$
\begin{aligned}
& 12 \times 8 \times 15 \text { hours' work for } 1 \text { man. } \\
& \frac{3}{6} \frac{12}{12 \times \$ \times 15} \\
& 8 \times 10 \\
& 2
\end{aligned}=18, \text { No. of days. }
$$

The unit of computation in a problem is often given explicitly, it being required to determine the number of times the unit is used.

EXERCISE 23.

1. If 6 stamps cost 30 cents, what will 14 stamps cost? 45 stamps? $\bigcirc 1 \bigcirc 1$
2. If 9 pads cost 72 cents, what will 7 pads cost?
3. If 12 pounds of candy cost 216 cents, how much will 21 pounds cost? LERE FLAMMAM
4. When $\$ 415$ will buy 5 acres of land, how many dollars are 17 aeres worth?
5. What will 25 cattle cost when 7 cattle are worth $\$ 161$? 6. If a bar of iron 12 feet long weighs 192 pounds, how much will a similar bar 19 feet long weigh?7. If a stoek of 45 chairs is worth $\$ 279$, what is another Thsock of 55 similar chairs worth?
6. If a class of 74 men weigh together 11766 pounds, about what will a similar elass of 111 men weigh?
7. A family of 7 drink 17 quarts of water each day. How many quarts will a town of 14000 people drink?
8. If 16 people use $\$ 20$ worth of meat each week, how mueh will 50 people use in a year of 52 weeks?
9. Λ workman receives $\$ 6$ for working 5 days of 9 hours each. How many dollars should he receive for the labor of 15 days of 10 hours each?
10. If a laborer receives $\$ 25$ for the work of 15 days of 7 hours, how many dollars will be paid him after 28 days?
work of 9 hours each?
13 . If $\$ 264$ are paid 11 men for the labor of 16 days, each 10 hours, how much should be paid 40 men for 25 days? 'labor, each day of 6 hours?
11. It cost $\$ 290$ to print and bind 75 books, of 812 pages each. What will be the cost of printing and binding 81 books, of 560 pages each, at the same rate?
12. If a force of 63 men ean do a certain task in 7 days, of 8 hours each, how many men, working 6 hours a day, will be needed to do a similar task in 12 days?
13. For the construction of a certain wall, 8 rods long, 36
men were required, working 10 hours each, of 24 days. How many days, of 8 hours each, will it take 55 men to construct a like wall, 22 rods long?
14. On the erection of a wall, 75 feet long, 6 feet wide, and 8 feet high, 30 men worked 17 days, of 8 hours each. How long a wall, 4 feet wide and 7 feet high, can a force of 34 men build in 40 days, of 7 hours each?
15. How many pounds of rice, at 8 cents a pound, can be bought for 12 pounds of butter, at 20 cents a pound?
16. A merchant exchanges 45 yards of eloth, worth $\$ 2$ a yard, for silk, worth $\$ 5$ a yard. How many yards of silk does he receive?
17. 12 casks of vinegar, each containing 16 gallons, and worth 10 cents a gallon, are given in exchange for potatoes, worth 60 cents a bushel. How many bushels of potatoes are received?
18. How many firkins of butter, each containing 50 pounds, worth 23 cents a pound, will be returned for 115 bales of hay, at 90 cents a bale?
19. A farmer sells the wool from 60 sheep, at 13 cents a pound, each fleece weighing 4 pounds. How many rolls of matting, at 52 cents a yard, can he buy with the money, if each roll contains 15 yards?
20. Wach line of a book, of 150 pages, contains 12 words, and there are 30 lines on a page. If the printing costs 3 cents a word, how many bales of paper, each containing 10 bundles. of 20 quires each, and worth 18 cents a quire, can be bought with the proceeds of printing the book?

Thus, since 5 is a factor of 30,75 , and 90 , it must be a factor of their G. C. D.

This principle enables us to separate the process of finding the G. C. D. of two or more numbers into several often comparatively simple steps of finding the prime factors common to all of the numbers, and a last step of taking the product of these common prime factors.
Second, if a number be a factor of two numbers, it must be a factor of the sum or difference of any multiples of these numbers.
This principle is illustrated if, for instance, we tie toothpicks into bundles, of 12 each, and have 8 bundles in one heap and 5 bundles in another heap. 12 toothpicks will evidently be a divisor of each entire heap, or of the sum of the two heaps, or of their differences, or of the sum or difference of any multiples of such heaps (since such a sum or difference will be composed entirely of bundles containing 12 each).
Thus, again, if 9 is a factor of both 333 and 855 , it is a factor of their sum or difference, or of $855-2 \times 333$; that is, of the number 189, smaller than either of the original numbers.
This principle enables us to simplify the work of finding the G. C.D. of two large numbers, by using smaller and smaller numbers, obtained by successive subtractions of multiples of a smaller number from a larger. See Art. 101.
99. I. Short Division Method of Finding the G. C. D. -If the numbers whose G. C. D. is sought, be small, the most convenient method of proceeding is to arrange the given numbers in a row, and divide by any number that will divide all the given numbers; similarly divide the quotients obtained till there is no number which will divide all the quotients; the product of all the divisors will be the G. C. D.

Ex. Find the G. C. D. of $84,126,210$.
Operation. 2) $84,126,210$
3) $42,63,105$
$7 \lcm{14,21,35}$
Hence, $2 \times 8 \times 7=42=$ G. C. D
If the pupil be already thoroughly acquainted with 2, 3, 5 sought, it is sometimes confenient to separate each of the given numbers into its prime factors, and maltiply First, if a number be a factor of each of two or more numbers, it must be a factor of their G. C. D.

Ex. Find the G. C. D. of $24,72,120$.

Find the G. C. D. of the following groups of numbers :

1. 18, 42 . \quad. 112,256 . $30,42,72$.
2. 24,60 . 6. 168,273 .
3. $60,105 \times 7,75$
4. 90,198 8. 630,924 .
1
5. $32,56,88$
6. $36,84,180$. 12. $180,144,198$

7. II. Long Division Method of Finding G. C. D.When the numbers whose G. C. D. is sought are large, it is best to proceed by the method indicated in a general way in Art. 98. For, by the aid of this principle, it can be shown that the G. C. D. of any two numbers, taken as divisor and dividend, is the same as the G. C. D. of the divisor and remainder.

For since, denoting the quotient by m,
we have, Divisor) Dividend (m
We have, $\quad \begin{aligned} & \text { Divisor) Dividend (} m \\ & \text { and hence Divisor, } \\ & \text { Remainder, }\end{aligned}$
and hence Remainder $=$ Dividend $-m \times$ Divisor,
and also,

$$
\begin{gathered}
\text { Remainder }=\text { Dividenal }-m \times \text { Denars, } \\
\text { Dividend }=m \times \text { Divisor }+ \text { Remainder } .
\end{gathered}
$$

Now, every number that will divide both divisor and dividend exactly must also divide the remainder exactly (by ArL. 98, Second Principle, since the
remainder is the difference between the dividend and a multiple of the divisor). Hence, all the common factors of both divisor and dividend are also common factors of the divisor and remainder.

Conversely, whatever number will divide the divisor and remainder exactly is also a factor of the dividend (by Art. 98, since the dividend is the sum of the remainder and a multiple of the divisor). Hence, all the common factors of the divisor and remainder are also common factors of the divisor and dividend

Hence, every common factor of the one pair of numbers is a common factor of the other pair also; hence, the two pairs have the same G. C. D. Hence, we may substitute the smaller pair, the divisor and remainder, for the larger pair, the divisor and dividend, and by successive uses of this principle, finally determine the G. C. D.

Ex. Find the G. C. D. of $841,1740$.
 EXPLANATION. Dividing 841 into 1740, we obtain 2 for a quotient and 58 for a remainder. Bat by the principle proved above, the G. C. D. of 841 and 58 is the same as the G. C. D. of 841, 1740. Proceeding in like manner, the G. C. D. of 29 and 58 is the same as the G. C. D. of the original pair of numbers, 841 and 1740.

By the nse of symbols, the proof given above that the G. C. D. of the tivisor and remainder is the same as the G. C. D. of the divisor and disidend, may be put in an abbreviated form thus:
Denote the smaller of two numbers (the divisor) hy A, the larger (the dividend) by B , the quotient by m , the remainder by R . We have

$$
\begin{array}{cll}
\begin{array}{ll}
A) B(m & \text { or }
\end{array} & R=B=m \times A \\
\frac{m A}{R} & \text { also } & B=R+m \times A
\end{array}
$$ 98 , since $\mathrm{R}=\mathrm{B}=\mathrm{m} \times \mathrm{A}$) ; and, hence is a factor of the pair of numbers

A and R.
Conversely, every factor of the pair of numbers A and R is also a factor of B (Art. 98 , since $B=B+m \times A)$, and, hence, is a factor of the pair of anmbers A and B .
Hence, every factor of the one pair of numbers is a factor of the other Hir \therefore the $G . C . D$. of A and $B=G . C . D$. of A and R.

Hence, to find the G. C. D. of two numbers, divide the less number into the greater, the remainder into the divisor, and thus continue untit there is no remainder; the last divisor will be the G. A.D. of the two origival numbers.

To find the (1. C. D. of three or more large numbers, first find the G. C. D. of two of the numbers by the above method, then obtain the G. G. D. of this result and a third number, and so on till all the numbers have been used. The last G. C. D. obtained is the G. C. D. of all the original numbers,

CT) Find the G. C. D. of:

EXERCISE 25.

LEAST COMMON MULTIPLE.

101. A common multiple of two or more numbers is a number which is exactly divisible by all of them.
Thus, $\$ 600$ is a common multiple of $\$ 15, \$ 20$, and $\$ 30$.
The least common multiple (or L. C. M.) of two or more numbers is the least number which is divisible by them all.
Thus, $\$ 60$ is the L. C. M. of $\$ 15, \$ 20, \$ 30$.
The most useful application of the L. C. M. is in determining the least The most userul application denominators of a set of fractions. This enables common multiple of the denit which will measure each of a set of fracus to determine the largest init which will measure each of a set of fractional quantities, just as the G. C. D. enables us to
mit which will measure a set of integral quantities.
102. I. Short Division Method of Determining the L. C. M. of Several Numbers.-If the numbers whose L. C. M. is desired, are small, the most convenient method of proceeding in order to determine their L. C. M. is to arrange the given numbers in a rono; divide by any prime factor that will divide at least two of them, bringing down each undivided number along with the quotients; continue the process till the quotients are all prime to each other; the L. C. M. will be the product of all the divisors and final quotients.

If any one of the numbers is contained exactly in (\therefore is a factor of) any other of the given numbers, it may be struck out. For, in finding the L. C. M. of the larger number, we find that of the smaller number also.

Ex. 1. Find the L. C. M. of $12,21,30,36,63,70$.

Operation.
2) $12,22,30,36,63,70$
3) $15,18,63,85$
3) $3,6,21,35$
x $35=1260$, L. C. M.
Explanation.-12 is contained in 36, and 21 in 63 ; hence, they are struck out, and the L. C. M. of the remaining numbers is found. (Similarly 5 and 7 are struck out in the course of the process.) By dividing by the prime factors $2,3,3$, and multiplying them and the final quotients together, each prime factor will occur in the final product the highest numtogether, each prime factor will occur in the final product the highest num-
ber of times it oecurs in any one number; hence, the product thus obtained will be the L. C. M.

If the prime factors of the given numbers are well known, it is sometimes more convenient to separate each of the given numbers into its prime factors, and take the product of all the different factors, using each factor the greatest number of times it occurs in any single number.

Ex. 2. Find the I. C. M. of $48,72,120$.

$$
\begin{aligned}
& 48=2^{4} \times 3 . \\
& 72=2^{2} \times 3^{\mathrm{z}} . \\
& 120=2^{3} \times 3 \times 5 . \\
& \text { L. C. M. }-2^{4} \times 3^{2} \times 5=720 .
\end{aligned}
$$

EXERCISE 26.

Find the L. C. M. of:

103. II. Long Division Method of Determining the L. C. M. of two or more Numbers.-When it is required to find the I. C. M. of two large numbers, which cannot be readily factored, it is best to proceed by first finding their G. C. D. by the long division method.

Ex. Find the L. C. M. of 841 and 1740.
We first find the G. C. D. of the numbers, thus:
$\square \sqrt{\left.\frac{841) 1740(2}{\frac{1682}{58)} 841(14}\right] \square \Delta \Delta \square \square \square \square}$

Dividing each of the given numbers by their G. C. D. we hare
29) $1740(60$
29) 841 (29
$\frac{58}{261}$

261
261

$\therefore 841=29 \times 29$
$\therefore 1740=29 \times 60$

Hence, to tind the L. C. M., we may proceed as in Art. 102 :

$$
\begin{aligned}
& \frac{29) 29 \times 29,29 \times 60}{29,} \\
& \text { L. C. M. }=29 \times 29 \times 60 \\
&=29 \times 1740 \\
&=50460 .
\end{aligned}
$$

Hence, in general, to find the L. C. M. of two large numbers, find first the G. C. D. of the given numbers; divide one of the given numbers by the G. C. D. and multiply the quotient by the other number; the product will be the L. C.M. of the two numbers.

To find the L. C. M. of three or more large numbers, first find the L. C. M. of two of the given numbers, then the L. C. M. of this result and another of the given numbers, and so on till all of the given numbers have been used. The last L. C. M. obtained is the I. C. M. of all the given numbers.

1. $264,319$.	5. $450,648$.
2. $320,408$.	6. 832. 650.
3. $506,308$.	7. $252,329,357$.
4. $390,525$.	8. $288,405,477$.

[^1]
EXERCISE 28.

1. Find the G. C. D. of $72,96,132$.
2. Find the L. C. M. of $60,75,90$.
3. Find the G C D of 672 and 596
4. Find the I. C. M. of $12,15,25,28,35$.
5. Find the G. C. D. of $782,867,969$.
6. Find the L. C. M. of 1066 and 962 .

Find the G. C. D. and the L. C. M. of:
7. $18,42,54,96$.
8. $24,40,120,160$.
9. $84,210,378$.
10. 1008,1365 .
11. $195,510,468$.
12. $406,945,980$.
18. What is the greatest width of carpet that will exactly fit three rooms of widths 15 feet, 24 feet, and 33 feet respectively?
14. A merchant having 54 yards of one kind of cloth, 84 yards of another, and 132 yards of a third, wishes to cut them into patterns of equal length. What is the greatest possible length of each pattern?
15. With a 4-quart, a b-quart, and a 6-quart vessel, what is the size of the smallest can which may be filled exactly by each?
16. Find the length of the shortest line that can be measTured exactly by rods of lengths 6 feet, 8 feet, 10 feet, and 12 (I) fee feet.
17. What is the length of the longest rod which will exactly measure 209 feet, 242 feet, and 341 feet? (1)
18. A farm produces 442 bushels of gats, 728 bushels of corn, and 585 bushels of wheat. The grain is removed in equal cases and all are full. What is the greatest capacity of each case, provided there is no mixing of the grains?
19. How can the I. C. M. of two numbers, which are prime to each other, be found? Of two prime numbers?
20. How many common multiples may 2 or more numbers have?

1. Find the difference between the G, C, D. of 480 and U520, and the I. C. M. of $5,6,15,20$.

DIRECCIÓN GENER

CHAPTER IX.

COMMON FRACTIONS.

104. Derived Units.-A certain unit, as one pound, having been chosen for the purpose of weighing objects in general, if is often convenient to obtain from this primary unit (one pound) other derived units to be used for weighing special classes of objects. Thus, one ton (or 2000 pounds) is used in weighing objects of small value in proportion to their bulk, such as hay, coal, etc., and one ounce is used in weighing objects of great value in proportion to their bulk, as spices, gold, drugs, etc. Similarly, from any primary unit, derived anits may be obtained adapted to special uses.

When the derived unit is an exact part of the primary unit, it is termed a fractional unit or fraction.
105. Fractional Units.-Thus, for measuring long distances, the mile is the convenient unit; but for many purposes, as, for instance, in running races in athletic games, it is convenient to divide the unit into 4 equal parts, and call one of them one-fourth of a mile; similarly we form other fractional units from the miles, as one-eighth, one-half, one-sixteenth of a mile, etc. These are all fractional units or fractions, and are expressed by writing the number of parts into which the given unit is divided under the figure 1. Thus, $\frac{1}{8}$ of a mile means one-eighth of a mile.

If a given fractional unit be taken any number of times, the result is still a fraction, and is denoted by writing the number of times the unit is taken above the line instead of 1 . Thus, " $\frac{5}{8}$ mile" is an abbreviation for " 5 units" of the value $\frac{1}{9}$ mile.
Sometimes a fractional unit receives a special name, as when one-twelfth of a foot is called an "inch"; or it may be made into a physical object, as
18. What is the greatest width of carpet that will exactly fit three rooms of widths 15 feet, 24 feet, and 33 feet respectively?
14. A merchant having 54 yards of one kind of cloth, 84 yards of another, and 132 yards of a third, wishes to cut them into patterns of equal length. What is the greatest possible length of each pattern?
15. With a 4-quart, a b-quart, and a 6-quart vessel, what is the size of the smallest can which may be filled exactly by each?
16. Find the length of the shortest line that can be measTured exactly by rods of lengths 6 feet, 8 feet, 10 feet, and 12 (I) fee feet.
17. What is the length of the longest rod which will exactly measure 209 feet, 242 feet, and 341 feet? (1)
18. A farm produces 442 bushels of gats, 728 bushels of corn, and 585 bushels of wheat. The grain is removed in equal cases and all are full. What is the greatest capacity of each case, provided there is no mixing of the grains?
19. How can the I. C. M. of two numbers, which are prime to each other, be found? Of two prime numbers?
20. How many common multiples may 2 or more numbers have?

1. Find the difference between the G, C, D. of 480 and U520, and the I. C. M. of $5,6,15,20$.

DIRECCIÓN GENER

CHAPTER IX.

COMMON FRACTIONS.

104. Derived Units.-A certain unit, as one pound, having been chosen for the purpose of weighing objects in general, if is often convenient to obtain from this primary unit (one pound) other derived units to be used for weighing special classes of objects. Thus, one ton (or 2000 pounds) is used in weighing objects of small value in proportion to their bulk, such as hay, coal, etc., and one ounce is used in weighing objects of great value in proportion to their bulk, as spices, gold, drugs, etc. Similarly, from any primary unit, derived anits may be obtained adapted to special uses.

When the derived unit is an exact part of the primary unit, it is termed a fractional unit or fraction.
105. Fractional Units.-Thus, for measuring long distances, the mile is the convenient unit; but for many purposes, as, for instance, in running races in athletic games, it is convenient to divide the unit into 4 equal parts, and call one of them one-fourth of a mile; similarly we form other fractional units from the miles, as one-eighth, one-half, one-sixteenth of a mile, etc. These are all fractional units or fractions, and are expressed by writing the number of parts into which the given unit is divided under the figure 1. Thus, $\frac{1}{8}$ of a mile means one-eighth of a mile.

If a given fractional unit be taken any number of times, the result is still a fraction, and is denoted by writing the number of times the unit is taken above the line instead of 1 . Thus, " $\frac{5}{8}$ mile" is an abbreviation for " 5 units" of the value $\frac{1}{9}$ mile.
Sometimes a fractional unit receives a special name, as when one-twelfth of a foot is called an "inch"; or it may be made into a physical object, as
when a quarter of a dollar is coined and is known as a "quarter." But the great majority of fractions have no name beyond their numerical one, and many of them are used merely as aids in computations, or in mental estimates and comparisons, and have ño plysical existence.
Hence, the advantages in the use of fractional units lie in the ease with which such units can be devised for any purpose, temporaryc or permanent; the unlimited number of such units that can be formed; and the fact that when concentions of their value as compared with the primary unit have been once formed, these conceptions can be used in connection with a set of similar fractions constructed from any other unit. Thus having formed ideas of $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{10}, \frac{1}{16}$, etc., of 1 inch, and of properties of these fractional units, this knowledge can be used at once in connection with similar fractions of any other primary unit, as 1 apple. This could not be done readily if each derived unit were denoted by a special name rather than in the above numerical, fractional way.
106. Fractions as Indicated Divisions.-Fractions may also be regarded as indicated divisions. It was found in Art. 84 that when a process consists of a number of multiplications and divisions, it is usually best not to perform any of the
operations till all of them can be considered together and all possible cancellations made.
T When the quotient of one number divided by another is indieated by writing the dividend above a line, and the divisor below, the indicated quotient is termed a fraction or ratio.

Hence, a fraction may be defined as
(1) One or more of the exact parts of a unit, or
(2) the indicatad quotient of one number divided by anntior

These two ways of regarding fractions are aspects of the same idea, the one or the other aspect to be used as advantage may dictate.

In investigating the properties of fractions, we will adopt one or the other point of viev, as is most advantageons. When a property of fractions is obtained from one point of view, it will be lef as an exercise to the stadent to show that the same property is true for fractions from the other point of view.
Let the student draw a line 3 inches long and divide it into 8 equal parts. Each part will be $\frac{3 \text { inches }}{8}$ long. iet him also divide each of the three inches into eighths and take one-eighth from each inch. He will have 3 times $\frac{1}{8}$ inch, or $\frac{3}{8}$ inch. It will then be easy for him to see that $\frac{3 \text { inches }}{8}=\frac{3}{8}$ inch.
107. Denominator and Numerator.-In a fraction, the denominator is the number below the line, the numerator is the number above the line.
The denominator denotes the number of equal parts into which a unit is divided; the numerator denotes the number of equal parts which are taken. Thus, $\frac{5}{8}$ inch denotes that an inch is divided into 8 equal parts, and that 5 of these parts are taken.

Hence, the denominator determines the size of the fracfional units; the numerator determines the number of them. The denominator and numerator taken together are called the terms of a fraction.
108. Proper and Improper Fractions.-A proper fraction is one whose numerator is less than its denominator, as $\frac{1}{8}$ or $\frac{12}{12}$.
An improper fraction is one whose numerator is equal to or greater than its denominator, as $\frac{8}{8}$ or $\frac{3}{2} \frac{2}{5}$.
109. Integers and Mixed Numbers.-An integer is a number of entire units, as 5 dollars, 18.

An integer may be expressed in the form of a fraction by writing 1 under the integer as a denominator.
A mixed number is a number which is partly integral, partly fractional, as $\$ 4 \frac{3}{4}$.
Thus, a mixed number consists of two different kinds of units, one integral or entire, the other fractional.
110. Simple, Compound, and Complex Fractions.-A simple fraction is a fraction, both of whose terms are integers, as $\frac{7}{11}$.

A compound fraction is a fraction of a fraction, as $\frac{2}{3}$ of $\$_{4}^{2}$.
A complex fraction is one having a fraction in its numer-
ator or in its denominator or in both. Ex. $\frac{2 \frac{1}{3}}{\frac{5}{6}}, \frac{7}{3}$
When fractions are classified as proper or improper, they are classified as to their value (as greater or less than unity). When they are classified as simple, compormd, or complex, they are clasified as to their form (that is, as to the combination of operations in them
111. Notation and Numeration of Fractions.- The preceding statements explain sufficiently the method of reading a given fraction expressed in figures, and also the method of expressing in figures, a fraction given in words. Let the student write out a formal rule for each of these processes.
112. Fundamental Properties of Fractions.-In order to use fractions with facility for various purposes, it is often desirable to transform them in different ways. Thus, for instance, it may be desirable to change the size of the fractional unit, without changing the value of the fraction.

Hence, we have the following first properties of fractions.
A. If the numerator and denominator of a fraction be both multiplied, or both divided, by the same number, the value of the fractions is not changed.
Thus, $\frac{6}{8}$ inch $=\frac{3}{3}$ inch $=\frac{12}{6}$ inch.

This is a mere restatement of the principle used in canceling out a factor common to both divisor and dividend.

It will aid the pupil in the present application of this principle to drair a line 6 inches in length, and to mark it off in fourths, eighths, and sixteenths of an inch, and then observe that sis eighths, three fourths, and twelve sixteenths are exactly equivalent in length.
B. Multiplying the denominator of a fraction by a given num ber divides the value of the fraction by that number.

Thus, if we have $8 \frac{5}{4}$ and multiply the denominator by 3 , we have $\$_{12}^{5}$, the value of which is one-third the value of the original fraction.

For, multiplying the denominator of a fraction by a number increases the number of parts into which the original unit is divided, and hence diminishes the size of each fractional unit correspondingly
Let the pupil show by drawing a line and subdividing it, that $\frac{s}{2}$ inch is four times as long as $\frac{5}{8}$ inch.
C. Dividing the denominator of a fraction by a given number multiplies the value of the fraction by the same number.

Thus, if we have the fraction $\$ \frac{5}{4}$ and divide the denominator by 2 , the fraction becomes δ_{2}^{5}, the value of which is twice as large as the value of the original fraction.
For, dividing the denominator of a fraction by a number diminishes the number of parts into which the unit is divided, and hence increases the size of each fractional unit correspondingly.
Let the pupil show by drawing a line, and subdividing it, that $\frac{\gamma}{16}$ of an inch is one-fourth of $\frac{7}{4}$ of an inch.

The following questions suggest two other first properties of a fraction which the student may state and prove.
If the numerator of a fraction be multiplied by a given number, what change is made in the value of the fraction?
If the numerator of a fraction be divided by a given number, what change is made in the value of the frae tion?

These first properties of a fraction may all be combined as a single general principle, thus:

Multiplying or dividing the numerator of a fraction by a number makes the same change in the value of the fraction that it makes in the value of the numerator: but multiplying or dividing the denominator of a fraction makes an opposite ckange in the value of the fraction from that which it makes in the value of the denominator.

EXERCISE 29.

Name the kind of fraction in each case and read the following fractions:

Write ${ }^{35} p^{2}{ }^{11} A^{2}$
4. Three-fifths; six tenths; ten-thirds.
4. Three-filhs, ox-tenths, ten-thirds.
6. Eight and one-third six and a half
7. Ten and five-sixths; seventeen-hundredths.
8. Ten and five-sixths; seventeen-inths.
9. Two-thirds of four and three elevenths.
10. Thirty-one and one-pinth over fourteen-fiftieths:
11. What fractions of an inch are commonly used by a carpenter?
12. What fractions of a yard are commonly used by a storekeeper?
15. What fractions of a pound are used by a grocer?

EXERCISE 30.
ORAT.

1. How many thirds in a yard? In 4 yards?
2. How many fifths in 2 yards? In 10 yaris?
s. How many eighths in 6 miles? In half a mile?
. How many twelfths in 7 years? In half a year?
3. How many sixteenths in 5 inches? In a quarter-inch?
4. Express $\frac{3}{3}$ of a dollar as eighths of a dollar.

T $\begin{aligned} & \text { 2. Express } \frac{8}{8} \text { of a yard as eighteenths of a yard. } \\ & \text { 8. Express \% of a year as twelfths of a year. } \\ & \text { 8. Multiply } \$ 1 \text { by } 3.53 \text { by } 5 ; 1 \text { yard by } 7 .\end{aligned}$
9. Multiply $\$ \frac{1}{3}$ by $3 ; \$ 2$ by $5 ; \frac{1}{3}$ yard
10. Divide $\$ \frac{13}{5}$ by $3 ; \$ \$$ by $4 ; \frac{6}{15}$ by 3 .
11. Multiply $\frac{6}{8}$ by 4 in two ways; also $\frac{13}{1}$ by 5 .
12. Divide $\frac{3}{}$ by 2 ; $\frac{5}{8}$ by $3 ; \frac{4}{5}$ by

TRANSFORMATIONS OF FRACTIONS

113. I. To Reduce a Mixed Number to an Improper Fraction.-A mixed number is a number expressed by
means of two units, one integral, the other fractional. Thus, $\$ 7 \frac{3}{4}$ expresses 7 units of $\$ 1$ each, and 3 units of $\$ \frac{1}{4}$ each.
It is often convenient to express such a number in terms of the fractional unit alone. In the above example, this would be done by expressing $\$ 7$ as fourths of a dollar, or $\$ \frac{28}{4}$, and adding the 3 fourthis to the 28 fourths, giving $\$ \frac{3 \pi}{4}$ as equivalent to $\$ 7 \frac{3}{4}$.

In general, to reduce a mixed number to an improper fraction, multiply the whole number by the denominator of the fraction, nidd the numerator to the product, and place the sum over the denominator.

Ex. Reduce $23 \frac{5}{7}$ to an improper fraction.
Solumion.
Reduce the following mixed numbers to equivalent improper fractions:

1. $4 \frac{1}{4} \mathrm{in}$.	9. $24 \frac{4}{9}$.	17. $\$ 58$ 学.	85. $101 \frac{3}{26}$.
3. $7 \frac{2}{3} \mathrm{ft}$.	10. $25 \frac{3}{13}$ -	18. $\$ 65 \frac{7}{8}$.	26. $400{ }_{4}^{5}$.
๑. $5 \frac{4}{7} \mathrm{mi}$.	11. $45 \frac{1}{8}$.	19. $\$ 731$	27. $307 \frac{1}{17}$
4. $7 \frac{5}{9} \mathrm{rds}$	12. 1714.	20. $270 \frac{3}{5}$.	28. $11 \frac{1}{3} \frac{175}{7}$
5. $8 \frac{3}{10} \mathrm{yds}$.	13. $121 \frac{1}{2}$.	21. 35011.	29. $18 \frac{49}{5}$
C. $10 \frac{7}{11} \mathrm{gal}$.	14. 2351.	22. 7001 ?	SO. $19{ }_{1}{ }^{\text {a }}$
7. $\frac{911}{1 / 2}$ qts.	5. 310_{5}^{4}		1.
8. 164 yr .	16. 1085	. 11	2. $43 \frac{1}{2}$

3s. What are the two units of measurement in each example? What is the unit of the result?
114. II. To Reduce an Improper Fraction to a Mixed Number. - It is often desirable to reverse the process of the preceding article and convert a number expressed in terms of a fractional unit into a number expressed as far as possible in terms of the primary integral unit. Thus, to express $\$ \frac{39}{4}$ in terms of the unit $\$ 1$ as far as possible, since in 81 there
are $\$ \frac{4}{4}$, in $\$_{3}^{3 ?}$ there are as many unit dollars as 4 is contained times in 39 , or $\$ 9$ with $\$ \frac{3}{4}$ remaining,

$$
\bigcirc 1 \bigcirc \cdot 8 \frac{39}{4}=\$ 9 \frac{3}{4}
$$

Hence, in general, to reduce an improper fraction to a mixed number, divide the namerator by the denominator, and to the quotient annex the remainder placed over the denominator.

Ex. Reduce $\frac{221}{12}$ to a mixed number.
Since 12 is contained in 221,18 times with a remainder 5,

$$
\left(2(x) \frac{221}{12}=18 \frac{B}{12},\right. \text { Result. }
$$

EXERCISE 32.

Reduce the following improper fractions to equivalent mixed numbers:

1. $\frac{48}{2} \mathrm{qt}$.

e. $\frac{50}{8} \mathrm{mi}$.
3. $\frac{75}{4} \mathrm{in}$.
4. 124 day
5. $\frac{163}{7} \mathrm{wk}$
6. $\frac{176}{9} \mathrm{gal}$.
7. $\frac{249}{1 / 2} \mathrm{ft}$.
115. III.

1\%. III To Reduce a Fraction to its Lowest Terms
A fraction is reduced to an equivalent fraction in its lowest terms when its numerator and denominator have no common
factor, that is, are prime to each other.
Reduction of a fraction to its lowest terms often saves labor in the further use of the fraction.

When a fraction is in its lowest terms, it is also easier to form a definite mental picture or conception of its value. Thus, $\frac{411}{548}$ cannot be realized definitely; but if the fraction be reduced to its lowest terms, $\frac{3}{4}$, an exact idea of its magnitude can be formed at once.

A fraction is reduced to its lowest terms by the use of Property A (Art. 112) of fractions. In general, divide the numerator and denominator of the fraction by their G. C. D.

Ex. 1. Reduce $\frac{8}{12}$ to its lowest terms.
Dividing 8 and 12 by their G. C. D., 4 , we obtain

$$
\overline{1}_{12}^{5}=\frac{2}{3}, \text { Resull. }
$$

Ex. 2. Reduce $\frac{411}{5} 4$ to its lowest terms.
In this case the G. C. D. of the numerator and denominator is not evident on inspection, and must be obtained by the long division method (Art. 100.) Thus,

> 411) $548(1$
> $\frac{411}{137)} 411(3$ $\underline{411}$$\quad \therefore$ G. C. D. $=137$.
-
116. Ratios, or Expressing one Number as a Part or Fraction of Another.-To express one number as the part of another number it is necessary to take the number which is the part as the numerator and the other number as the denominator of a fraction (that is, divide the number expressing a part by the number expressing the whole).
Ex. What part of a mile is 440 yards?
Since a mile contains 1760 yards,

Reduce each fraction to the equivalent fraction in its lowest

 lerms:

29. $\frac{968}{1320 .}$
29. $\frac{960}{1024}$.
24. $\frac{11}{2} 875$.
25. $\frac{1728}{2428^{\circ}}$
26. $\frac{1}{2} \frac{84}{35} 5$.
27. $\frac{255}{28} \frac{20}{5}$.
28. $\frac{2914}{3213}$.
29. A man invested $\$ 360$ and gained $\$ 144$. What part of the cost did he gain?
30. What part of 336 is 144? Is 168?
81. What part of 245 is 196 ? Is 210?
32. What part of a year is 146 days?
83. What part of a ton is 1275 pounds ?
84. What part of a mile is 1320 yards?
85. $\$ 230$ is what part of $\$ 322$?
36. $\$ 781$ is what part of $\$ 923$?
87. Property valued at $\$ 187200$ was taxed for $\$ 7020$. Find the ratio of the assessment to the valuation.
38. Receiving $\$ 8568$ annually, I spent $\$ 1904$. What part
of my income did I spend? What part did I save
What part of:
39.540 is 378 ?
$\begin{array}{ll}\text { 4. } 864 \text { is } 630 ? & \text { 4. } 1775 \text { is } 1491 ? \\ \text { 4. } 3154 \text { is } 2158 ?\end{array}$
117. IV. To reduce two or more fractions to equivalent fractions having a common denominator.
Similar fractions are fractions which have the same denominator. Hence, similar fractions express numbers in terms of the same fractional unit. Thus, $\$_{10}^{\frac{8}{0}}, \$_{10}^{5}, \$_{1} \frac{7}{10}$, are similar fractions.

If a series of fractions have different denominators, it is Often useful to reduce them to fractions having the same denominator, that is, to express them in terms of the same unit. By combining their numerators, they may then, in many cases, be converted into a single fraction, and much labor saved by treating them in this form.
Also, in case it is required to compare the values of two or more dissimilar fractions, a direct comparison is often difficult or impossible. If, however, the fractions be reduced to a common denominator, their values can be compared at once by comparing the numerators obtained.

In reducing fractions to a common denominator, it is
important to reduce them to their least common denominator, in order to save as much labor as possible. The least common denominator of a set of fractions is the L. C. M. of their denominators.

In general, to reduce fractions to equivalent fractions having the L. C. D., find the L. C. M. of the denominators of the given fractions; divide this I. C. M. by the denominator of each fraction; multiply each numerator by the corresponding quotient; the results will be the new numerators; write the L. C.D. under each new numerator.

On which of the principles, A, B, C, of Art. 112, is this process based?

Ex. 1. Reduce $\frac{3}{4}, \frac{5}{8}, \frac{7}{12}$, to their L. C. D.
The L. C. M. of 4,8 , and 12 , is 24 .
Dividing 24 by each of the numbers $4,8,12$, we obtain quotients $6,3,2$
Multiply the numerators $3,5,7$, by the corresponding quotients and setting each result over 24 , we obtain

Ex. 2. Which is greater, $\$_{\frac{7}{2}}^{2}$ or $\$_{1 \frac{1}{8}}$?
Reducing the fractions to their L. C. D,

Since $\frac{3}{3}$ is greater than $\frac{23}{3}, \$ \frac{11}{6}$ is greater than $\$ \frac{7}{12}$.
118. When the denominators of two or more fractions are prime to each other, the L. C. D. is the product of all the denominators, and the shortest way of reducing the fractions to their L. C. D. is to multiply each numerator by all the denominators except its oion, and set the result over the common denominator.

Ex. Reduce $\frac{2}{3}, \frac{4}{5}, \frac{6}{7}$ to their L. C. D. $\triangle A$
The L. C. D. $=3 \times 5 \times 7$.
Hence, we have $\frac{2 \times 5 \times 7}{105}, \frac{4 \times 3 \times 7}{105}, \frac{6 \times 3 \times 5}{105}$,

EXERCISE 34.

Reduce to equivalent fractions having a common denomi nator:

34. Which is the largest and which is the least,
$\frac{13}{27}, \frac{17}{36}$, or $\frac{11}{24}$? Also $\frac{13}{2} \frac{13}{8}, \frac{16}{35}$, or $\frac{19}{40}$?
35. At a certain convention a measure which required a favorable ballot of 5 to 3 , to pass, received 96 votes for and 57 votes against it. Did it pass?
86. A certain bill required two-thirds majority to become
a law, and received 390 out of a total of 584 votes. Did it pass?
37. A boy has read 144 pages of a book, containing 300 pages. What part of the book remains to be read?
38. The 1st day of September is the 244 th day of an ordi-
nary year. Is the part gone as much as $\frac{2}{3}$ of the year? Is the year as much as $\frac{7}{9}$ gone? Does $\frac{10}{31}$ of the year remain?

OPERATIONS WITH FRAOTIONS.

I. Addition of Fractions.

119. General Case.-We have found (see Art. 31) that any numbers which refer to the same unit may be added. Thus,

17 apples +28 apples $=45$ apples.
Numbers which refer to the same fractional unit may be added in the same way. Thus, five eighths (of a unit) + two eighths (of same unit) $=$ seven eighths (of this unit),

$$
\text { or } \frac{5}{8}+\frac{2}{8}=\frac{7}{8} \text {. }
$$

If fractions are dissimilar, in order to add them it is necessary first to make them similar, by reducing them to a common denominator. Hence, to add fractions, reduce the given fractions to equivalent fractions having the least common denominator; add the numerators, and write the sum over the L. C. D. . in all cases simplify the result, and, if it is an improper fraction, reduce it to a mixed number
Ex. Add $\frac{2}{3}, \frac{5}{6}, \frac{3}{8}$
The L. C. D. is 24

Add:

1. ${ }^{3}$ and $\frac{1}{7}$.
2. . $\frac{1}{5}$ and $\frac{5}{5}$.
S. $\frac{7}{12}$ and $\frac{8}{15}$.
3. $\frac{3}{8}, \frac{4}{15}, \frac{1}{8}$.
4. $\frac{5}{18}+\frac{7}{6}+11+\frac{5}{8}+\frac{41}{6}+\frac{7}{12}$
5. $\frac{38}{36}+\frac{17}{87}+\frac{13}{38}+\frac{41}{86}+\frac{58}{5}+\frac{98}{108}$
6. $\frac{35}{45}+\frac{17}{8}+\frac{13}{38}+\frac{41}{5}+\frac{58}{5}+$
7. $\frac{75}{144}+\frac{29}{72}+\frac{31}{48}+\frac{23}{38}+\frac{107}{108}$.
8. $\frac{47}{88}+\frac{97}{112}+\frac{52}{68}+\frac{9}{86}+\frac{85}{82}+\frac{107}{127}$
9. $\frac{8}{8}+\frac{7}{12}+\frac{10}{3} \frac{10}{3}+\frac{19}{14}+\frac{75}{68}+\frac{125}{165}+\frac{99}{10}$
10. Cases of Abbreviated Addition of Fractions. -
11. The addition of two fractions each of whose numerators is unity, and whose denominators are prime to each other, may be abbreviated.

Thus, $\frac{1}{3}+\frac{1}{5}=\frac{5}{15}+\frac{3}{25}=\frac{8}{15}$.

Or, in general, the sum of the two denominators gives the numerator of the sum of the fractions; and the product of the two denominators gives the denominator of the sum of the fractions.
2. The addition of a series of small fractions may often be facilitated by first adding the fractions in groups of two or three, and then taking the sum of the results.

121. Addition of Mixed Numbers.-To add mixed num bers, first add the whole numbers, then add the fractions, then take the sum of the two results obtained.
Ex. Add $11 \frac{5}{8}$ and $10 \frac{\frac{2}{12}}{11 \frac{5}{2}}=11 \frac{15}{4}-\Delta \Delta \Delta$ $\begin{aligned} 11 \frac{5}{3} & =11 \frac{15}{2} \\ 107^{7} & =1024\end{aligned}$
$\frac{1024}{222_{2}^{\frac{5}{2}}}$, Sum.

11. $2 \frac{3}{4}+4 \frac{1}{3}+6 \frac{2}{5}+\frac{5}{6}+1 \frac{8}{5} \frac{1}{5}$.
12. $5 \frac{4}{5}+3 \frac{1}{6}+2 \frac{3}{4}+4 \frac{7}{10}+3 \frac{14}{16}+\frac{11}{12}$.
13. $3 \frac{1}{5}+4 \frac{1}{3}+5 \frac{3}{25}+7 \frac{4}{9}+5 \frac{7}{15}+\frac{3}{10}+\frac{1}{2}$.
14. $\frac{3}{8}+\frac{7}{6}+1 \frac{1}{4}+2 \frac{1}{9}+\frac{35}{36}+4 \frac{7}{12}+8 \frac{1}{3}$.

15, $9 \frac{1}{2}+7 \frac{2}{3}+\frac{4}{5}+1 \frac{5}{6}+7 \frac{7}{8}+4 \frac{1}{9}+\frac{9}{10}$
16. $3 \frac{3}{8}+\frac{5}{6}+\frac{4}{9}+2 \frac{7}{12}+3 \frac{11}{18}+\frac{7}{16}+14 \frac{9}{3}$.

EXERCISE 37 .
Add: ${ }_{1.3} \cdot 3 \frac{2}{3}+2 \frac{1}{2}$. EXERCISE 37 . $6.51 \frac{1}{2}+61 \frac{1}{8}$. \quad DR

1. $3 \frac{2}{3}+2 \frac{1}{2}$.
2. $4 \frac{5}{6}+2 \frac{3}{7}$.
3. $8 \frac{5}{24}+1 \frac{7}{\frac{7}{6}}$.
4. $5 \frac{1}{5}+7 \frac{3}{10}$
5. $6 \frac{3}{8}+2 \frac{5}{12}$
6. $1 \frac{1}{7}+3_{14}^{\frac{5}{4}}+7 \frac{1}{2}$.
7. $3 \frac{4}{5}+4 \frac{5}{6}+6 \frac{3}{10}$.
8. $4_{8}^{5}+4 \frac{2}{15}$.
9. $8_{12}^{\frac{7}{2}}+5_{15}^{4}+10_{20}^{\frac{9}{20}}$.

ORAL EXERCISE.

122. General Case.-As in addition of fractions, if the fractions are dissimilar, it is necessary to make them similar before subtracting. Hence, in general, to subtract one fraction from another, reduce the fractions to their L. C. D.; subtract the numerator of the subtrahend from the numerator of the minuend and place the difference over the L. C. D.; simplify the result.

$$
\mathrm{I}^{7} 12-\frac{3}{8}=14-\frac{2}{24}=\frac{3}{3} \text {, Difference. }
$$

EXERCISE 38.

2. $\frac{5}{9}$ from $\frac{7}{12}$. \quad 6. $\frac{7}{25}$ from $\frac{29}{50} \quad$ 10. $\frac{6}{25}$ from $\frac{14}{15}$.
3. $\frac{8}{15}$ from $\frac{2}{5}$. \quad 7. $\frac{8}{35}$ from $\frac{19}{4 \frac{1}{2}}$.
4. $\frac{11}{18}$ from $\frac{17}{2}$. S. $\frac{9}{10}$ from
11. $\frac{8}{9}$ from $\frac{23}{23}$.
12. $\frac{75}{64}$ from $\frac{205}{28}$.

Find the value of

25. $\frac{35}{76}-\frac{31}{78}$. 26. $\frac{125}{84}-\frac{29}{119}$.
27. $\frac{87}{88}-14{ }^{9}$.
28. $\frac{39}{32}-\frac{17}{76}$.
29. $\frac{97}{105}-\frac{57}{98}$.
30. 119 - 192.

EXERCISE 39.

Subtraet:

1. $1 \frac{4}{7}$ from $3 \frac{2}{3}$.
2. $2 \frac{3}{10}$ from $2 \frac{3}{5}$.
3. $4 \frac{1}{8}$ from $5 \frac{1}{2}$.
4. 33 from $5 \frac{5}{6}$.
5. $6 \frac{1}{4}$ from $9 \frac{2}{3}$.
6. $1 \frac{1}{4}-\frac{1}{8}$.
7. $1 \frac{1}{3}-\frac{1}{4}$.
8. $2 \frac{1}{5}-\frac{1}{11}$
9. $3 \frac{1}{5}-2 \frac{1}{8}$
10. $4 \frac{1}{10}-3 \frac{1}{15}$.
11. Special Case. -The subtraction of certain fractions may be simplified in a manner similar to that given for the addition of fractions in Art. 120.
[T] Ex. $\frac{1}{3}-\frac{1}{5}=\frac{5-3}{15}=\frac{2}{15}$
Let the student make a formal statement of this case.
12. Subtraction of Mixed Numbers.- If the fraction in the subtrahend is less than the fraction in the minuend, subtract the fractions and whole numbers separately, and combine the results.

Ex. 1. Subtract $\$ 3 \%$ from $\$ 5 \frac{1}{2}$.

$\$ 53=\$ 511$

$\$ 31=\$ 83_{12}$

$$
\frac{\$ r_{1}^{2}}{\mathrm{r}_{12},} \text { Difference. }
$$

But if the fraction in the subtrahend is larger than the fraction of the minuend, it is necessary to increase the fraction in the minuend by borrowing 1 from the integral part of the minuend.

Ex. 2. Obtain the difference, $17 \frac{1}{4}-12 \frac{2}{3}$. \square - $\square R$

$$
\begin{aligned}
& 17 \frac{1}{2}=17 \frac{3}{n}=1615 \\
& 12 \frac{2}{3}=12 \frac{1}{12}=\frac{12 \frac{s}{12}}{41_{3}^{2},} \text { Difference. }
\end{aligned}
$$

Similarly, Ex. 3. $\left.3-1 \frac{1}{3} \leq 23-1 \frac{3}{3}-1\right\}$, Differnce.
16. $3 \frac{1}{5}-2 \frac{1}{2}$. 18. $8 \frac{1}{4}-5 \frac{1}{4}$. 19. $7 \frac{3}{11}-6 \frac{2}{3}$. 20. $2 \frac{5}{12}-1 \frac{11}{18}$. 21. $4 \frac{2}{3}-3$ 22. $5 \frac{3}{4}-4$. 23. $6 \frac{1}{12}-21$
24. $2-\frac{1}{2}$.
25. $3-1 \frac{1}{3}$.
26. $14-5 \frac{5}{9}$.
27. $8-3_{1}^{2}$
28. $13 \frac{5}{7}-93$.
29. $25 \frac{11}{4}-81 \frac{3}{5}$. so. $191 \frac{13}{8}-16 \frac{2}{8}$. 31. $12 \frac{14}{2}-7 \frac{31}{5}$.

EXERCISE
2. $\frac{1}{2}-\frac{1}{5}=$?
3. $\frac{2}{3}$

18. $2-12=$? 14. $5-3 \frac{4}{5}=$? 15. $53-21=$?
17. How much larger is $\frac{5}{6}$ than ? ?
18. How much larger is $1 \frac{1}{3}$ than $\frac{1}{}$? 23 than 18 ?
19. How much less is $2 \frac{3}{8}$ than 3 ? $2 \frac{1}{\frac{1}{2}}$ than 3 ?

Pxtace wo LEON

Find the value of:

1. $\frac{4}{4}+\frac{1}{2}-\frac{1}{5}$	6. 21			
21		$\frac{1}{2}+2 \frac{1}{2}$. $2 \cdot \frac{1}{5}+\frac{3}{1}-\frac{3}{10} \quad$	6.	$\frac{5}{3}+7 \frac{1}{4}-5 \frac{3}{6}$.
:---	:---			

 s. $\frac{7}{3}-\frac{1}{6}+\frac{4}{4} . \quad$ 8. $2 \frac{1}{1}+3 \frac{2}{5}-3 \frac{3}{8} . \quad$ 1s. $34 \frac{1}{5}-1 \frac{7}{4}+38$.
$4.1 \frac{3}{2}-\frac{3}{4}+\frac{5}{8} \quad$ 9. $7 \frac{1}{3}-2 \frac{1}{2}-4 \frac{1}{2}$.
E. $3 \frac{3}{4}-1 \frac{1}{3}-\frac{1}{4} . \left\lvert\, 10.8 \frac{2}{2}-3 \frac{1}{3}+2 \frac{2}{2}\right.$.
15. $3 \frac{1}{2}+2-4 \frac{1}{8}+7 \frac{1}{3}-4$. | 16. $7 \frac{1}{6}-4 \frac{1}{6}+2 \frac{1}{2}-4+8_{1 \frac{5}{2}}^{2}-7 \frac{2}{3}$.
17. $3 \frac{7}{3}-1-1 \frac{1}{5}+9$ a $-3 \frac{1}{3}+3-2 \mu 1$.
18. If from a piece of cloth containing 50 yards there have been sold at 18. If from a piece on another $12 \frac{5}{6}$, and at another 7_{1}^{7}, how many yards remain?
19. If during the month I spend $\frac{1}{3}, \frac{1}{3}, \frac{3}{2}$, and $\frac{1}{15}$ of my salary for the month previous, what part have 1 left?
month A carpenter finds some boards of following lengths, $17 \frac{1}{3}, 12 \frac{1}{2}, 15 \mathrm{\xi}$,
20. A carpenter finds some boards of following lengtis, 17 ,
$165,11 \frac{2}{2}$, and $18 \frac{1}{3}$ feet respectively. What was the total length a different
81. From an account amounting to $\$ 175^{2}$, L have drawn at different times, $\$ 191, \$ 247, \$ 4 \frac{1}{5}$, $\$ 11 \frac{3}{3}, \$ 413$, and $\$ 35{ }_{1}^{2}$. How many dollars remain?

III. Mulitiphication of Fractions.

125. To Multiply a Fraction by a Whole Number.Fractional units are multiplied by a whole number in the same manner that other units are, viz.: by obtaining the product of the number of units and the multiplier. Thus,

$$
7 \text { dollars } \times 5=35 \text { dollars. }
$$

Similarly, 7 twelfths (of any unit) $\times 5=35$ twelfths (of this umit).

$$
\text { Or, } \frac{7}{12} \times 5=\frac{35}{12}, \text { Product. }
$$

Hence, to find the product of a whole number and a fracion, take the product of the numerator by the whole number; sed the result over the denominator; simplify by cancellation.

Ex. $\frac{7}{24} \times 15=\frac{7 \times 15}{24}=\frac{35}{8}=4 \frac{3}{8}$, Product.
126. To Multiply a Fraction by a Fraction.-If it be required to multiply $\$ \frac{7}{4}$ by $\frac{3}{5}$, we know that the product of $8 \frac{7}{4}$ by 1 equals $\$ 7$; hence, since, if we make the multiplier $\frac{1}{4}$ as large, the product will be $\frac{1}{5}$ as great, $\$ 7$ multiplied by $\frac{1}{5}$ equals $\frac{1}{5}$ of $\$ \frac{7}{3}$, or $\$ \frac{7}{20}$ (see Art. 112, B).
Hence, $\$ \frac{7}{4}$ multiplied by $\frac{3}{5}$ equals 3 times $\$ \frac{7}{34}$ or $\$ \frac{2}{26}$ (see Art. 112, B), or $\$ 1 \frac{1}{20}$

$$
\text { or, in brief, } \frac{7}{4} \times \frac{3}{5}=\frac{7 \times 3}{4 \times 5}=\frac{21}{20}=1 \frac{1}{26}, \text { Product. }
$$

Hence, in multiplying one fraction by another, we do two
things, (1) we diminish the size of the fractional unit (from one-fourth to one-twentieth of a dollar in the above example) (2) we increase the number of the units.
It may help the student to realize the above process to take 7 quarter dillars, multiply by $\frac{1}{\frac{1}{4} \text { by substituting nickels for quarters, then multiply by }}$ 3 by increasing the number of nickels threefold.

From the above, we obtain the following convenient mechanical method for multiplying two fractions:
Multiply the numerators together for the numerator of the product, and the denominators for the denominator of the product, abbreviating the work as far as possible by cancellation.
127. Continued Multiplication of Fractions.-To multiply three or more fractions together, multiply all the numerators together for a new numerator, and all the denominators for a new denominator, canceling when possible. For the (indicated) product of two fractions may be multiplied by another fraction, and so on for any number of fractions.

A Compound Fraction is a fraction of a fraction. Hence, a compound fraction is the product of two fractions, looked at from another point of view.

Ex. 2. Find value of $\frac{2}{8}$ of $\frac{4}{4}$.

$$
\frac{3}{8} \text { of } \frac{4}{7}=\frac{3}{8} \times \frac{4}{7}=\frac{3}{14}, \text { Result. }
$$

13. $2 \frac{25}{27} \times \frac{3}{35}$	22. $\frac{2}{3}$ of 17.	31. ${ }^{\text {in }}$ of $\frac{22}{27}$ of 13.
14. $\frac{48}{48} \times \frac{68}{64}$.	28. $\frac{3}{4}$ of 14.	32. $\frac{2}{3}$ of $\frac{3}{4}+$
15. $\frac{3}{5} \times \frac{4}{9} \times$	27. $\frac{7}{8}$ of 20.	33. $\frac{5}{6}$ of $\frac{9}{10}-\frac{5}{8}$
16. $14 \times \frac{20}{21}$	5. $\frac{9}{10}$ of 56	$34.5+\frac{2}{8}$ of 25.
17. $\frac{20}{49} \times \frac{68}{26} \times \frac{7}{18}$.	96. $\frac{7}{12}$ of	85. 81.74 of $\frac{85}{65}$.
18. $122 \times \frac{55}{12} \times \frac{71}{90}$	27. 11 of $\frac{2}{3}$	86. $\frac{8}{81}$ of $\frac{27}{28}-\frac{1}{4}$.
19. $\frac{1}{46} \times \frac{69}{76} \times \frac{28}{27}$	88. 4_{5}^{4} of 110.	87. $\frac{1}{2}+\frac{2}{11}$ of $63+\frac{3}{5}$.
20. $\frac{48}{185} \times \frac{147}{64} \times \frac{40}{27}$.	29. $\frac{11}{12}$ of $\frac{29}{38}$.	38. $\frac{2}{3}$ of $75-14 \%$.
	80. $\frac{5}{7}$ of $\frac{4}{15}$ of $\frac{28}{29}$	39. $\frac{9}{16}$ of $\frac{56}{38}$ of $\frac{44}{63}$.

128. To multiply a mixed number by another mixed number, it is best to reduce both mixed numbers to improper fractions.

Ex. 1. What will $3 \frac{3}{8}$ yards of cloth cost at $\$ 1 \frac{1}{3}$ a yard? \qquad
If, however, an integer (especially if it be a large one) is to be multiplied by a mixed number, the labor of multiplication is often diminished by proceeding as follows:
Ex. 2. What will 47 yards of cloth cost at $\$ 28$ a yard?

EXERCISE 43.
Multiply :

19. 䟣 of $\frac{5}{6}$ of $23 \frac{1}{10}$. $22 . \frac{19}{27} \times 2 \frac{4}{7}$ of $15 \frac{1}{\frac{1}{5}}$.
20. $\frac{7}{8}$ of $\frac{15}{26}$ of $33 \frac{4}{7}$.
23. $8 \frac{2}{5} \times 5 \frac{1}{7} \times 3 \frac{1}{18}$.
21. $\frac{18}{15}$ of $7 \frac{9}{7} \times 7 \frac{7}{11}$.
24. $\frac{1}{24}$ of $93 \times 11_{11}^{5}$

Find the areas of the following floors (or ceilings) in square feet:
85. 16 feet long, $12 \frac{2}{8}$ feet wide.
27. 21 feet by $8 \frac{1}{3}$ feet.
26. 15 feet long, $13 \frac{1}{2}$ feet wide.
29. 30 feet by 2011 feet. | 30.28 feet by $18 \frac{5}{8}$ feet.

Find the areas of the walls of the following rooms:
S1. Distance around (perimeter) is 80 feet, and height is 104 feet.
39. 36 feet in perimeter, and $7 \frac{2}{3}$ feet high.
ss. 41 feet in perimeter, and $8 \frac{5}{12}$ feet high.
S4. $46 \frac{1}{2}$ feet in perimeter, and $7 \frac{3}{4}$ feet high.
EXERCISE 44.

2. $\frac{4}{5}$ of 55 .

$421 \times \frac{9}{10}$.
6. 15×13
7. $\frac{5}{5}$ of 27 .
9. \% of 19 .
10. $1 \frac{14}{17} 23$. 11. 34×24.
19. What will $7 \frac{3}{4}$ pounds of sugar cost at 6 cents a pound?
14. If $3_{1 / 5}$ yards of cloth are necessary for a coat, how many yards will be required for 10 coats?
15. A man paid to each of nine laborers $2 \frac{3}{7}$ dollars. How much did he : pay to all?
16. If tea is worth $\$ \frac{3}{4}$ a pound, what will $\frac{s}{b}$ of a pound cost?
i7. If ribbon is worth $\$ \frac{4}{3}$ a yard, what will $3 \frac{3}{3}$ yards cost? What will $\frac{1}{4}$
a yard cost?
Required the cost of:

1. 27 books @ $\$ 1 \frac{1}{4}$ apiece.
2. 42 pairs of shoes @ $\$ 2$ each
3. 125 dozen pencils $@ \frac{1}{8}$ a dozen.
4. $7 \frac{7}{8}$ tons of hay © $\$ 11 \frac{1}{9}$ a ton
5. 64 lamps © $85 \frac{5}{8}$ each.
6. 27 lbs sugar @ $\frac{5 \frac{3}{4} \text { cents per pound. }}{\text { che }}$.
7. 145 tons of coal@ 85 a 2 a ton.
8. $5 \frac{5}{6}$ cords of wood @ $\$ 54$ a cord.
9. 144 months of board (3) $\$ 18^{3}$ a month
10. $76 \frac{3}{7}$ acres of land @ $\$ 21 \frac{7}{10}$ an acre.
11. $103 \frac{1}{2}$ acres of land @ $\$ 61 \frac{1}{6}$ an acre.
12. How many square feet in the ceiling of a room 1958 long and 82 feet wide?
13. How many square feet in the walls of a room whose perimeter is $141 \frac{1}{3}$ feet and height $17 \frac{3}{3}$ feet?
14. It I withdraw from a bank $\frac{3}{8}$ of my deposit, and then $\frac{2}{5}$ of the remainder, what part do I draw the second time?
What part of the whole deposit is left?
15. I owned $\frac{3}{4}$ of $\frac{3}{3}$ of a business and sold $\frac{1}{6}$ of my share.

What part of the entire enterprise do I still own?
16. If a wagon-wheel 164 feet in circumference revolves 431 times in going a certain distance, how many feet in that distance?
17. Of a pole $\frac{1}{6}$ is red, $\frac{2}{9}$ is white, and the rest is black. What part is black?
18. Of another pole $\frac{1}{6}$ is red, $\frac{2}{3}$ of the remainder is white, and the rest is black. What part is black?
19. From a roll of cloth containing $35 \frac{3}{4}$ yards, 165 yards were sold at one time and, at another, $\frac{4}{5}$ of the remainder. How many yards still remain?

IV. Division of Fractions

129. To Divide a Fraction by a Whole Number.-We may divide a number of fractional units just as we divide-a number of any other units. Thus, just as

$$
12 \text { dollars } \div 3=4 \text { dollars, }
$$

so, 12 fifteenths (of any unit) $\div 3=4$ fifteenths (of this unit)

$$
\text { or, } \frac{12}{15} \div 3=\frac{4}{15} \text { Quotient. }
$$

OPERATIONS WITH FRACTIONS

Instead of dividing the numerator of the fraction by the divisor, it may be necessary to perform the division by multiplying the denominator by the divisor (see B, Art. 112).

Ex. If 4 yards of calico cost $\frac{7}{8}$ of a dollar, what will 1 yard cost?

$$
\$ \frac{7}{8} \div 4=\$ \frac{7}{8 \times 4}=\$ \frac{7}{32}
$$

In this division we diminish the size of the fractional units (from eighths to thirty-seconds), but leave the number of units unchanged
130. To Divide a Fraction by a Fraction.-If it be required to determine how many times $\$_{\frac{7}{0}}$ is contained in \$ ${ }_{4}$, we may proceed as follows
$\$ 1 \%$ is contained in $\$ 1$ ten times, hence, $\$ \frac{7}{10}$ is contained in $\$ 1,7$ of 10 times, or $\frac{10}{0}$ times ; it $\$ \frac{2}{0}$ is contained in 1 dollar $\frac{3,9}{}$ times, it is contained in $\frac{3}{\frac{3}{4}}$ of a dollar, $\frac{1}{6} \times \frac{19}{9}$ times, or $\frac{15}{6}$ times, or in brief,

$$
\$ \frac{\$ 1}{2}+\frac{10}{10}=\frac{30}{7}=10=18, \text { Quotient. }
$$

Similarly, any number of fractional units may be divided by another number of fractional units of the same kind of quantity, or by an abstract number of fractional units. Hence, to divide one fractional number by another, we have the following convenient mechanical rule: invert the divisor and proceed as in multiplication.

Ex. Divide $\frac{18}{5}$ by $\frac{6}{15}$

\square
131. To Divide one Mixed Number by Another.-First reduce the mixed numbers to improper fractions.

Ex. 1. If one yard of cloth costs $\$ 2 \frac{1}{4}$, how many yards may be bought for $\$ 4012$?

$$
401 \div 21=\frac{x_{1}}{2} \div \frac{9}{3}=\frac{s_{1}}{2} \times \frac{1}{4}=18 \text {, No. of yards. }
$$

However, in dividing a large mixed number by an integer, labor may often be caved by first dividing the integral part of the mixed number by the divisor.

Ex．2．If one ton of coal costs $\$ 6$ ，how many tons may be bought for $\$ 142 \frac{1}{2}$ ？ な6）\＄1421
Dividing $\$ 6$ into $\$ 1423$ ，we obtain 23 for a quotient，with a remainder of
43 divided by 6 gives 实．Hence，the entire quotient is 23 ，

27． 2031 by 3 ． 28． $496 \frac{2}{3}$ by 12 ． 29． 35 by $8 \frac{1}{6}$ ． 30． 63 by 5 ． 81． 48 by $10 z$ ． 32． 63 by $7 \frac{7}{11}$ ． 83． 96 by $14 \frac{2}{9}$ ． 34.17 by $23 \frac{4}{5}$ ． 35． 38 by $52 \frac{1}{4}$ ．
36． 55 by $66 \frac{11}{2}$ ．
S7． $26 \frac{8}{11}$ by $2 \frac{54}{55}$
38． $13 \frac{1}{11}$ by $4 \frac{7}{12}$
39． 364 by $9 \frac{5}{5}$
Fractions．
Ion of Comp
V．Simplification of Comp
132．A complex fraction is a fraction containing a fraction

in its numerator or in its denominator，or in both

Exs．$\frac{5}{\frac{2}{4}}, \quad \frac{3 \frac{33}{5}}{5 \frac{2}{7}}, \frac{\frac{2}{3}-\frac{1}{2}}{3 \frac{1}{5}}$.
Hence，the quotient of one fraction by another may be in－ dicated as a complex fraction．

Thus，$\frac{3}{4} \div \frac{5}{6}$ may be written $\frac{\frac{3}{4}}{6}$ ．
133．The reciprocal of a number is the quotient obtained by dividing 1 by that number．

Thus，the reciprocal of 3 is $\frac{1}{3}$ ；of $\frac{2}{5}$ is $\frac{1}{\frac{3}{3}}$ or $\frac{5}{2}$ ；of $2 \frac{3}{4}$ is $\frac{1}{2 \frac{3}{4}}$ or $\frac{4}{11}$

134．Simplification of Complex Fractions．－To simplify a complex fraction，simplify the numerator and denominator； divide the numerator by the denomanator．

Ex．1．Simplify $\frac{3 \frac{2}{4}}{\frac{5}{6}}$

$$
\frac{\frac{32}{2}}{4 \frac{5}{6}}=\frac{12}{\frac{1}{8}}=\frac{11}{3} \times \frac{6}{29}=\frac{22}{2}, \text { Result. }
$$

$$
\frac{\frac{13}{5}}{\frac{5}{5}}=\frac{13}{6} \times \frac{9}{5}=\frac{39}{10}=3 \text { 谷, Result. }
$$

$$
\begin{aligned}
& \begin{array}{lll}
\text { 8. } \frac{24}{4 \frac{9}{10}} & \text { 8. } \frac{101 \frac{7}{13}}{13 \frac{5}{1}} & \text { 18. } \frac{11 \frac{2}{3}}{4 \frac{1}{6}-33}
\end{array} \\
& \text { 4. } \frac{7 \frac{2}{85}}{\frac{4.9}{10}} \text { 9. } \frac{17}{10 \frac{1}{5}} \text { (135} \quad \frac{6 \frac{1}{2}+8 \frac{1}{5}}{10 \frac{8}{8}-4 \frac{8}{5}} \\
& \text { 5. } \frac{10 \frac{g}{5}}{3 \frac{9}{10}} \\
& \text { 10. } \frac{25^{\frac{5}{6}}}{93} . \\
& \text { 15. } \frac{\frac{81}{5}}{7 \div 4!}
\end{aligned}
$$

19. Divide the sum of $7 \frac{3}{5}$ and $9 \frac{5}{7}$ by their difference.
20. Divide the sum of $4 \frac{1}{6}, 3 \frac{3}{5}, 6 \frac{1}{10}$ by their product.
21. Multiply the sum of $\frac{7}{8}, \frac{5}{6}, \frac{23}{2}, \frac{8}{9}, \frac{17}{18}$ by the least, and divide the product by the greatest of the five fractions.
What part of:
22. $6 \frac{1}{4}$ is $2 \frac{1}{2} ?$ 25. $12 \frac{5}{5}$ is $1 \frac{3}{4}$?
23. $7 \frac{1}{3}$ is $5 \frac{1}{2}$?
26. $14 \frac{7}{10}$ is $4 \frac{1}{5}$?
24. $4 \frac{4}{9}$ is 31 ?
(I) 28. $3 \frac{1}{11}$ is what part of $5 \frac{9}{22}$?

Find the value of:
30. $\frac{1 \frac{1}{2}}{9}+\frac{3 \frac{1}{4}}{26}+\frac{25}{4 \frac{2}{7}}$
31. $\frac{3}{7}$ of $9 \frac{4}{5}-3 \frac{4}{10}$
32. $7 \frac{4}{5}-\frac{4}{9}$ of 84.
99. 6 is what part of $12 \frac{3}{f}$?

Simplify

$42.6-\frac{8}{1+\frac{1}{2+\frac{1}{1+\frac{2}{8}}}}$

$$
43.5+\frac{7}{4+\frac{3}{2+\frac{8}{3+\frac{1}{6}}}}
$$

VI. G. C. D. and L. C. M. of Fractions.
135. G. C. D. of Fractions.-In order to find the G. C. D. of two or more fractions, the simplest method is to reduce the fractions to their lowest terms (mixed numbers to improper fractions); reduce the fractions thus obtained to their least common denominator; find the G. C.D. of the numerators, and set the result over the common denominator.
This is equivalent to expressing the fractional quantities in terms of the same fractional unit, and finding their G. C. D. in this form.
Ex. Find the G. C. D. of 11 and $1 \frac{1}{3}$.
$1 \frac{1}{3}$ and $1 \frac{18}{3}$ reduce to $\frac{1}{8}$ and $\frac{8}{5}$, and when reduced to their common denominator are ${ }^{25}$ and ${ }^{25} 5$.
The G. C. D. of 20 and 24 is 4 .
Hence, the G. C. D. of $1 \frac{1}{3}$ and $1 \frac{13}{3}$ is 1_{15}^{4}, Result.
136. L. C. M. of Fractions.-To find the L. C. M. of two or more fractions, we proceed similarly, thus, reduce the given fractions to their L. C. D.; find the L. C. M, of the numerators of the fractions thus obtained, and set the result over the common denominator:
Ex. Find the L. C. M. of $1 \frac{1}{3}$ and $1 \frac{3}{5}$. These fractions reduce to $\frac{19}{4} 5$ and $\frac{18}{5}$; the L. C. M of 20 and 24 is 120 ; hence, the L. C. M. of $1 \frac{1}{3}$ and $1 \frac{15}{5}$ is 189 or 8 .

EXERCISE 48.

Find the G. C.D. of \quad Find the L. C.M. of

4. $4 \frac{1}{6}$ and $1 \frac{1}{8}$. 9. $2 \frac{23}{3}, 3 \frac{2}{1}, 43$.

VII. Analysis Involving Fractions.

132. I. Given the value of a number of integral units, to find the value of another number of units.-We may proceed in the same way as in Art. 95, where only integers are involved. In all cases it is important to save labor by the use of cancellation wherever possible.
Ex. 1. If 7 chickens cost $\$ 4 \frac{3}{8}$, what will 16 chickens cost?
Cost of 7 chickens $=\$ 4 \frac{2}{8}$ or $\$ \frac{8}{8}$.
Cost of 1 chicken $=\frac{1}{3}$ of $\$ \frac{38}{8}=\$ \$$.
Hence, cost of 16 chickens -16 times $\$ \xi$ or $\$ 10$.
\uparrow
It may be that the value of a number of fractional units is required.

Ex. 2. If 10 acres of land cost $\$ 1124$, what will $5 \frac{3}{4}$ acres cosi?
Cost of 10 aeres $=\$ 1124$.
Cost of 10 aeres $=\$ 1124$.
Cost of 1 aere $=\$ 1 \% t$.
Cost of 53 acres $=\$ 148^{2} 4 \times \frac{7 \pi}{4}=\$ 646_{15}^{3}$, Renult.

EXERCISE 49.

1. If 3 pounds of candy cost $8 \frac{1}{4}$ cents, what will 8 pounds cost at the same rate? $3 \frac{2}{5}$ pounds?
2. If 7 pairs of boots cost $\$ 23 \frac{5}{8}$, what will be the cost of

12 pairs? D Of
3. How many yards of cloth will be
if 11 coats can be cut from 34 y yards?
4. How many tons of hay will a horse require in 365 days, if he eats $1 \frac{9}{10}$ tons in 133 days?

5 . When $\$ 355$ will buy 15 acres of land, what are $8 \frac{1}{2}$ aeres worth?
6. A bar of metal 5 feet long weighs $35 \frac{5}{8}$ pounds. What will a similar bar $3 \frac{3}{7}$ feet long weigh?
\%. If a load of 40 bushels of lime weigh 3210 pounds, what will be the weight of a like load containing 722 bushels?
8. If there are $404 \frac{1}{4}$ cubic inches in 7 quarts of milk, how many cubic inches in $42 \frac{2}{9}$ quarts?
2. In 15 links there are $118 \frac{4}{5}$ inches. How many inches in $41 \frac{1}{9}$ links?
10. If $\$ 57$ buy 9 rolls of eloth, how many rolls will $\$ 53 \frac{1}{5}$ buy?
11. If 7 loads of lumber cost $\$ 95 \frac{1}{3}$, how many loads can be bought with $\$ 162 \frac{1}{2}$?
138. II. Given the value of a number of fractional units, to find the value of a another number of other units.
In this case the process consists in brief in finding the value of a single fractional unit, then finding the value of a single integral unit, then finding the value of any number of other units.

Ex. 1. The value of $\frac{2}{5}$ of a steamboat is $\$ 12000$. What is the value of the entire steamboat?

Value of $\%$ of the vessel $=\$ 12000$.
Value of $\frac{1}{5}$ of the vessel $=\$ 6000$.
Value of $\frac{5}{3}$, or the whole of the vessel $=\$ 30000$, Result.
Ex. 2. If $\frac{3}{4}$ of an acre of land is worth $\$ 72$, what is the value of $\frac{5}{12}$ of an acre?

Value of $\frac{3}{4}$ acre $=\$ 72$.
Value of $\frac{3}{4}$ acre $=\$ 72$.
Value of acre $=\$ 24$.
Yalue of $\frac{1}{2}$ of an acre, or of 1 acre $=\$ 96$.
\therefore Value of $\frac{1}{12}$ acre $=\$ 90 \times \frac{1}{12}=\$ 40$, Resuit.
Ex. 3. A farmer sold $\frac{1}{3}$ of his flock of chickens, then $\frac{3}{4}$ of the remainder, and found that he had 20 chickens left. How many chickens did he have originally?
$1-\frac{1}{3}=\frac{?}{3}$, the part of the flock left after the first sale.
$1-\frac{1}{3}=\frac{1}{3}$, the part of the
$\frac{5}{3} \times \frac{1}{3}$, the part disposed of in the second sale.
$\frac{3}{3} \times \frac{1}{3}=\frac{1}{3}$, the part disposed of in the sect
$\frac{1}{3}-\frac{1}{4}=\frac{1}{2}$, the part of flock left unsold.
If $\frac{1}{\frac{1}{8} \text { of the flock }=20 \text { chickens, }}$
f, or the whole of the flock $=120$ chickens, Result.

EXERCISE 50

1. If $\frac{3}{3}$ of a book contains 234 pages, how many pages in the entire book?
2. If $\frac{4}{3}$ of a gentleman's salary is $\$ 3800$, what is the whole salary? What is $\frac{3}{4}$ of it?
3. When a man owning of of a vessel sells his portion for 867318, what is the value of the rest?
4. Nine-tenths of a certain journey is 4770 miles; how long is the entire journey?
sam If $2 \frac{2}{3}$ yards of cloth cost $\$ 11 \frac{1}{5}$, what will 7
same cloth cost?
5. If $5 \frac{1}{3}$ boxes of soap cost $\$ 52$, what will be the cost of $4 \frac{1}{15}$ boxes?
6. When $\frac{3}{4}$ of a mile of fence can be built for $\$ 17 \frac{1}{3}$, what will $4 \frac{1}{8}$ miles cost?
7. If $\frac{4}{15}$ of a gallon contains 84 cubic inches, what will $\frac{13}{14}$ of a gallon contain?
8. If $\$ 25 \frac{1}{5}$ purchase $3 \frac{1}{5}$ cords of wood, how many cords will \$184 $\frac{1}{2}$ secure?
9. If 75 hairs of a certain length weigh $3 \frac{1}{2}$ drams, how many hairs of the same size will be required to weigh 213 drams?
10. When $\$ 57 \frac{3}{4}$ will buy $5 \frac{1}{4}$ acres of land, what are $7 \frac{3}{7}$ acres worth?
11. A bar of from $4 \frac{2}{3}$ feet long weighs $26 \frac{1}{4}$ pounds. What will a similar bar of iron $11 \frac{1}{9}$ feet long weigh?
12. If for $7 \frac{1}{3}$ days of labor a man receive $86 \frac{7}{8}$, what will be due him for $\frac{4}{5}$ of 1 day?
13. If $\$ 454 \frac{3}{10}$ will buy $11 \frac{4}{5}$ acres of land, how many dollars will be required to buy $4 \frac{4}{7}$ acres? 15. A boy loses $\frac{1}{4}$ of his marbles and gives $\frac{1}{3}$ away. It still has 20 . How many had he at first?
14. After selling $\frac{2}{3}$ of my farm and giving $\frac{1}{6}$ to my son, I have 220 acres left. How many acres did I sell?
15. One day I read $\frac{1}{6}$ of the pages of a book; the next day
$\frac{1}{3}$, and the next day $\frac{3}{10}$. There still remained 60 pages. How many pages in the book?
16. A pole is $\frac{1}{4}$ white, $\frac{2}{7}$ red, $\frac{\pi}{14}$ blue, and the rest, which is 12 feet, is in the ground. How long is the pole and how many feet are above ground?
17. A lad loses $\frac{2}{5}$ of his marbles and then gives $\frac{1}{3}$ of the remainder away. He finds that 12 remain. How many had he at first? How many did he give away?
18. After selling $\frac{2}{7}$ of my farm, I gave $\frac{3}{5}$ of the remainder to my son and have 142 acres left. How many acres had I at first? How many did I give to my son?
19. One day I read $\frac{1}{6}$ of a book; the next, $\frac{1}{2}$ of the remainder and had 155 pages left. How many pages in that book?
20. A gentleman left $\frac{1}{3}$ of his property to his wife; $\frac{-1}{4}$ of the remainder to his son; $\frac{1}{4}$ of what still remained to his daughter, who received $\$ 1575$. What was the value of the estate?
21. Synopsis of Principles Relating to Fractions.-It will be a useful exercise for the pupil to collect and tabulate the essential principles relating to fractions. Thus, in outline,

FIRST PRINCIPLES OF FRACTIONS

A. If the numerator and denominator of a fraction be bolh multiplied, or both divided, by the same number, the value of the fruction is not changed.
B. Multipitying the denominator of a fraction by a given number divides the value of the fraction by that mumber.
C. Dividing the denominator of a fraction by a given number multiplies the natue of the fruction by the sume number.

TRANSFORMATIONS OF FRACTIONS.
I. To reduce a mixed number to an improper fraction, multiply the whole number by the denominator of the fraction, add the numerator to the product, and place the som ore the denominuatar:-
II. To reduce un improper fraction to a mixed number, dixide the numerator by the denominator, and to the quotient annex the remaindar placed over the denominator.
III. and IV., Etc., Etc.

PROCESSES WITH FRACTIONS
Etc., Etc.

PROCESSES WITH FRACTIONS．

EXERCISE 51.

REVIEW

Which is the greater and how much？
1．$\frac{2}{3}$ of $5 \frac{1}{4}$ or $\frac{1}{6}$ of $4 \frac{18}{18}$ ？
Find the sum of
3．$\frac{5}{15}+11+\frac{39}{39}+\frac{31}{52}$

$$
\text { 2. } \frac{1}{5} \text { of } 11 \frac{1}{5} \text { or } \frac{7 \frac{1}{6}-3 \frac{3}{4}}{1 \frac{1}{7} \times 2 \frac{3}{5}} \text { ? }
$$

4． $21 \frac{7}{3}+4 \frac{1}{3}+2 \frac{1}{6}+10_{4}^{\frac{1}{3}}$ ．
5． $6 \frac{1}{3}+7 \frac{9}{7}+5 \frac{1}{2}+4 \frac{3}{14}$ ．
6． $11 \frac{4}{11}+33+43+14+42 \frac{1}{3}$ ．

> 7. $78+4 \frac{1}{1 / 2}+1 \frac{23}{2}+\frac{7}{16}+7 \frac{2}{3}+4 \frac{5}{8}$.
> 8. $5 \frac{5}{5}+4 \frac{3}{8}+2 \frac{1}{8}+17 \frac{15}{15}+23 \frac{13}{10}+\frac{19}{24}$
> 9. $1 \frac{11}{11}+\frac{13}{49}+3 \frac{19}{3}+7 \frac{19}{3}+\frac{4}{7}+51 \frac{1}{2}+\frac{19}{45}$.

Find the value of each ：
10． $7 \frac{3}{11}-45$ ．
11． $5-31 \frac{1}{2}$.
18． $61-514$.
18． $10-8 \frac{12}{101}$.
14． 18 10 $^{2}-9 \frac{11}{25}$ ．
15． 19 － 13.
16． $3 \frac{72}{52}-1 \frac{1}{1} 12$
17． $1_{1} \frac{1}{38}-7 \frac{20}{59}$ ．

18． $71 \frac{13}{2}-5125$ ．
19． $8, \frac{1}{4}-1$ 亲5
20．$\frac{2 \pi}{23} 5-175$
21． 5 272 $-1 \frac{13}{27} 7$
28． $1_{3}^{2}-\frac{5}{8}+7 \frac{1}{8}-3{ }_{1}^{7}$ ．
25． $9 \frac{9}{5}+11_{1^{\prime}}^{5}-8 \frac{15}{15}-31$
24． $151-6 \frac{2}{2}-1 \frac{1}{14}-4 \frac{1}{2}$
25． $19-4 \frac{2}{5}-6 \frac{13}{10}-2 \frac{12}{15}-51+11$

26． $15 \frac{1}{2}+14 \frac{3}{11}-4 \frac{1}{3}+1 \frac{7}{10}-3 \frac{14}{3}+\frac{7}{32} .1 \quad 27.4 \frac{1}{6}-1 \frac{2}{3}+\left(1 \frac{1}{3}-\frac{1}{2}\right)$

$$
\text { 29. } 11+\left(4 \frac{9}{3}+1 \frac{2}{3}\right)-122_{18}^{7} .
$$

S6． $93 \times 553 \times 6 \frac{1}{3}$ ．

 S6． $15_{4}^{3} \times 13 \frac{1}{3} \times 1_{1}{ }^{\frac{3}{15}}$ ．| Se． $74 \times 1 \frac{2}{2}$. | S4． 94×111. |
| :--- | :--- |
| SS． $51 \times 4 \frac{13}{2}$. | S5． $17 \times 43 \times 13$. |

Divide：

What part of：

$$
\begin{aligned}
& \text { 44. } 2 \frac{3}{3} \text { is } \frac{1}{2} \text { ? } \\
& \text { 45. } 7 \frac{1}{5} \text { is } 1 \frac{1}{3} \text { ? } \\
& \text { 46. } 10 \frac{1}{4} \text { is } \frac{1}{8}
\end{aligned}
$$

Simplify：

70．If one man earn $\$ 2 /$ in one day，what will 70 men earn in 103 days？
71．If the dividend is $41 \frac{1}{4}$ and the quotient $21 \frac{6}{15}$ ，what is the divisor？
72 ．If the product is 895 and the multiplicand is 98 ，find the multiplier．
73．If the dividend is $5 \frac{1}{103}$ ，the quotient $11 \frac{5}{5}$ ，and the remainder 24 ，find the divisor
74．When the divisor is $8 \frac{1}{6}$ ，the quotient 94 ，and the remainder 41 ，what is the dividend？
75．What must $\mathbf{7}$ of 617 be multipled by to produce $\frac{25}{85}$ of $8 \frac{3}{4}$ of 6 Trs
76．Three men，A，B，C，agree to do a piece of work for $\$ 100$ ，sharing 2．Pond that A has done 2 of i ，and B 14 of it．What part did C do，and how much money ought he have？
77 ．If $\frac{3}{15}$ a piece of work is done in 221 days，how much of it will be done in $26 \frac{3}{5}$ days

78．The sum of $\frac{3}{3}$ and $\frac{1}{4}$ of a certain number is 170_{10}^{3} ．What is the number？
79. The difference between $\frac{3}{7}$ and $\frac{7}{2}$ of a number is 2624 . Find the number.
80. A school of 150 pupils has only $\frac{?}{}$ as many boys as girls. How many boys are there in the school?
81. There are 126 green and white balls in a box, but the number of green balls is 5 the number of white ones. How many are there of each?
88. A farmer put his 1000 sheep into two pastures, and in one pasture he put $\frac{3}{3}$ as many as in the other. How many sheep are there in each ?
put After a man has walked $4 \frac{1}{3}$ hours on a journey of $31 \frac{1}{2}$ miles, he finds that he has traveled $\frac{f}{5}$ of the number of miles remaining. How fast is he walking?
84. How many tons of ore must be taken from the mine, so that after a loss of $\frac{2}{5}$ in roasting, and $\frac{5}{5}$ of the remainder in smelting, there may be 210 tons of pure metal left:
85. A farmer sowed $\frac{5}{5}$ of a field in oats, $\frac{5}{8}$ of the remainder in buckwheat, and planted $\frac{3}{3}$ of what was left in potatoes; there still remained 8 acres for grass. How many acres in the whole field?
86. There are 5 farms marked A, B, C, D, and E, respectively. Farm A 86. Thereare δ; farm B contains half as much as A; farm C is half as large as B, and so on to E. How many in E, and how many in them all together?
87. Divide $\frac{8}{8}$ of $\frac{8}{8}$ of $\frac{12}{15}$ of $\frac{3}{4}$ of $6 \frac{3}{3}$ be $\frac{1}{4}$ of $\frac{3}{18}$ of $\frac{7}{12}$ of $7 \frac{1}{2}$.
88. From 27 . 10 acres I sell to one man 55 acres at $\$ 70 \%$ an acre; to another man 71 acres at $\$ 855$ an acre; and to a third man the remainder at $\$ 92_{3}^{2}$ an acre. Find proceeds of entire tract.
89. In exchange for $7 \frac{1}{4}$ dozen eggs at $23 \frac{1}{3}$ cents a dozen, and $15 \frac{1}{4}$ pounds
of butter at 27 cents a pound, a man takes oats at 55 cents a quart. How many quarts will he receive?
90. A merchant bought 3 pieces of silk for $\$ 6551$. The first contained 90. A merchant bought pieces the third 478 yards He wishes to sell
30% yards, the second 42% yards, and the third what yards must he sell it per
the silkeso as to gain of the cost. At what price must yard? Find selling price of each piece.
91. A man has $\frac{1}{3}$ of his property invested in real estate, $\frac{3}{7}$ of the remainder in stocks, $\frac{1}{3}$ of what is still remaining in machinery, and the residue, which is $\$ 3500$, in the bank. What is the value of his entire property?
92. Simplify $\frac{1}{2}$ of $\frac{45}{12}$ of $3 \frac{4}{1}-3 \frac{3}{4}$. .
92. Simplify $\frac{1}{7}$ of $\frac{48}{12 \frac{1}{3}}$ of $\frac{3 \frac{4}{5}}{11 \frac{5}{7}}$
98. Divide $1 \frac{1}{5} \times \frac{32}{\frac{5}{6} \times 1 \frac{2}{5}}$ by $\frac{73-4 \frac{1}{2}}{\frac{1}{15} \div \frac{27}{23}} \times \frac{7 \frac{2}{3}}{31 \frac{5}{5}}$
94. The sum of $\frac{3 \frac{3}{5} \times \frac{3}{5}}{4 \frac{5}{5} \div 9 \frac{3}{2}}$ and $\frac{\frac{4}{2} \text { of } \frac{\frac{7}{2}}{\frac{1}{2}} \text { of } 2 \frac{1}{4}}{\text { is how many times their difference } \hat{f}}$
95. The product of 3 numbers is $453 \frac{1}{5}$; $\mathbf{t w o}$ of them are $5 \frac{5}{5}$ and 11$\}$; find the third.
96. If $\frac{5}{6}$ of a ton of coal cost $\frac{3}{3}$ of $\$ 9$, what will io of a ton cost? What will 91 tons cost?
97. If 6 be added to both terms of the fraction $\frac{?}{16}$, is the fraction increased or diminished, and how much?
98. Same question, if 6 be subtracted from both terms of same fraction.
39. There are 3 numbers, the least of which is $7 \frac{s}{1}$. The second is $3 \frac{2}{3}$ times as large as the first, and the third $3{ }^{2}$ times as large as the second. Find their sam.
100. A man sold $\frac{3}{8}$ of his farm to one neighbor and $\frac{5}{11}$ of it to another. There remained 90 acres. How many acres in the farm at the beginning? 101. If $3 \frac{3}{4}$ yards of silk cost $\$ 10 \frac{1}{2}$, what will $\frac{2}{3}$ of $8 \frac{7}{3}$ yards cost at the same rate?
102. If a man saw $\frac{3}{4}$ of $4 \frac{2}{3}$ cords of wood in a day, how many cords will he saw in 5 导 days?
103. If a man walk 284 miles in one day, how many days will he require to walk $177 \frac{3}{3}$ miles?
104. Find the cost of $8 \frac{3}{3}$ yards of carpet when $3 \frac{1}{3}$ yards cost $\$ 10{ }_{5}$.
105. If $\frac{5}{6}$ of a ton of coal cost $\$ 6$, how many tons can be bought for $\$ 67 \frac{1}{2}$?
106. If 4 be subtracted from both terms of the fraction $\frac{15}{2}$, is its valne increased or diminished, and how much?
107. A horse and cow were bought for $\$ 160$, and the cow cost $\%$ as much as the horse. Find the cost of each.
as the horse. The sum of $\frac{3}{3}$ and $\frac{1}{5}$ of a certain number is $388 \frac{2}{3}$. Find the number. Find the difference between $\frac{2}{2}$ and $\frac{4}{5}$ of it.
109. If a man can do a piece of work in 12 days and a boy can do it in 18 days, what part can the man do in one day? In 5 days? What part can the boy do in one day? In 8 days? What part can they both do in one day? In 4 days? How many days will they require to do it all, working together?
110. If a man can mow a field in 15 days and days, answer the same seven questions about them.
111. Mr . A. can dig a certain ditch in 6 days, Mr . B. in 10 days, and Mr , C . in 15 days. Find the number of days required by each pair of men working together. Also the number required by all three together.
112. One pipe, X, can empty a cistern in 8 hours; Y , in 9 hours; Z , in 12 hours. The cistern is foll and all pipes are open, how long will be required for them to empty the cistern?

It should be observed that the source of this advantage lies in the fact that each figure is put to several uses. Thus, 3 not only expresses the number of tenths but it also helps to determine the decimal denomination or local value of 7,4 , and 5 , and hence serves four purposes at once.

This economy in representing fractions leads to other advantages in operating with the fractions after they are expressed in the decimal notation.
142. Illustrations of Decimal Fractions.-The most familiar illustration of decimal fractions is found in the money used in the United States. The primary unit, one dollar, is divided into ten equal parts called dimes, each dime is divided into ten equal parts called cents, and each cent into ten equal parts called mills. Thus, 12 dollars, 8 dimes, 6 cents, and 5 mills can be briefly expressed by the aid of the decimal notation as $\$ 12.865$.

The ease and rapidity with which calculations can be made when money is expressed on a decimal seale will be appreciated by the student when he comes to reckon with money expressed in some other way, as, for instance, by pounds, shillings, and pence, as in English money.
So great are the advantages of subdividing a unit by the decimal method that this method is being applied more and more widely wherever possible. Thus, engineers divide the unit of length, the foot, not into inches, but into tenths and hundredths. Astronomers frequently divide the year decimally, indicating, for instance, April 1, 1879, by 1879.25 . They also sometimes divide a degree of longitude decimally, instead of into degrees and minates, nsing, for instance, $324,5^{\circ}$ for $324^{\circ} 30^{\circ}$. The United States Treasury Department uses tenths of a foot, pound, etc, instead of the ordinary fractions
143. Metric System. An entire system of weights and measures, based on decimal divisions of the fundamental units, has been devised and is in use in all civilized countries except Great Britain and the United States.
A unit of length is taken, called the meler, which is divided into tenths called decimeters; each decimeter is subdivided into ten equal parts called centimeters, etc. Similarly the unit of weight, the gram, is divided by the decimal system, as also are the units of area and volume, the are and the stere. This system of decimal units will doubtless come, in time, to be used by the entire civilized world. See page 326 .

0600 yds , we write 29.3745 yds .
Thus the labor of writing the denominators of the varions, fractions is saved, since the denominator of each decimal figure is determined by the decimal point and the number of figures between the decimal point and the figure considered.

Thus, in the above illustration, the unit represented by the figure 4 , or in the is determined by the decimal point and the two figures 3 and 7 intervening between the decimal point and the 4.
144. Notation and Numeration of Decimals. - The posifional system of expressing fractions by the aid of the decimal point has been explained in Art, 15. The following table will enable the pupil to give readily the decimal unit which each figure in a decimal represents.

145. Reading Decimals. -The most convenient way of reading decimals is to express each deemal number in terms of the smallest decimal unit and read the number of such units.

Thus, to read 0.37 , instead of reading three tenths and seven hundredths, we express the tenths as thirty hundredths, and read the entire decimal fraction as 37 hundredths. Similarly, the decimal fraction expressed in the above table (Art 144), vizi: $0.465,783,105$, is read 465 millions 783 thousands 105 billionths. Hence, in general, read the decimal as if it were a whole sands 105 billionths. Hence, in general, read the de
number, and gize it the name of the last decimal place.

In reading whole numbers never use "and," but in reading a mixed decimal put "and" in place of the decimal point.

Thus, 462 reads "four hundred sixty-two."
4.062 reads "four and sixty-two thonsandths."
146. Writing Decimals -Similarly, to express in figures a decimal which is given in general language, express the numerator in figures, and then fix the decimal point so that the
name of the last figure shall express the denomination of the given decimal.
Ex. 1. Express in figures "four hundred sixty-two thousandths."
We write 462 and place the decimal point immediately to the left of the 4, since 2 must come in the third or thousandths place, and obtain A62, Result.
Obeerve that four hundred and sixty-two thousandths would be written 400.062 .

EXERCISE 52.

Express correctly as decimal fractions.

1. Forty-six hundredths.
2. Ten and sixteen hundredths.
S. Seven and fifty-one thousandths.
3. Thirty-six millionths.
4. Two hundred twelve hundred-thousandths
5. Five and five millionths.
6. Seventy-five and forty-two ten-thousandths,
7. Seven hundred six thousandths.
8. Seven hundred and six thousandths.
9. One thousand five hundred and one tenth.
10. Four hundred and four hundred one thousandths
11. Two hundred forty-one and four hundred twelve millionths.
12. Eighty-nine and ninety-eight hundred-millionths.
13. One thousand and one thousandth.
14. Three thousand and three millionths.
15. Sixteen ten-millionths.

Read the following decimal fractions:
16. $0.78 ; 1.071 ; 20.05 ; 275.572 ; 0.4758$.
$20.0 .705 ; 0.0102 ; 100.0301 ; 51.0007 ; 0.003001$
17. $300.001 ; 301 ; 6175.0214 ; 5001.005001$.
18. Primary Processes with Decimals.-The simplicity of the decimal system of fractions is such that certain elementary methods of operating with them arise immediately from the notation.

EXERCISE 53

Add:
1.
827.05
123.74 6.735
2.045
38.7

$$
2 .
$$

5.571 inches.
93.428 inches.
.96 inch.
.407 inch.
8.14 inches.
s.
1.0071 square yards . 0382 square yard. 5.917 square yards. 41.0328 square yards 17.51 square yards.
4. $\$ 57.13+\$ 7.15+80.61+\$ 70.09$.
$5 . \$ 125.74+\$ 307.06+\$ 51.075+\$ 6.305$.
6. $8.08+1.001+101.0101+3040.1304+0.1345$.
7. $270.01+31.0031+0.0073+25+43.0106+4.008$
8. $27.35 \mathrm{mi}+4.701 \mathrm{mi}+34.375 \mathrm{mi}+8.0704 \mathrm{mi}$.
$9.7 .9324+79.324+.079324+7932.4+0.79324$
149. II. The subtraction of decimals is similar in method to the addition of decimals; that is, writo the subtrahend under the minuend, so that the decimal points shall be in the same column; begin at the right hand to subtract.
Ex. At six o'clock the mercury in a certain barometer stood at 39.3 inches; at 10 o'clock the mercury in the same barometer stood at 39.215 inches. How many inches had it fallen?

Operation.

Explanation:

Arranging the numbers that the decimal point $5 \frac{37.015}{\text { are in the same colnmn, we begin at the right hand, of }}$ $\$ 142.962$, Sum. thousandths, column the adths make 12 theusandths, or 1 hundredth and 2 thousandths. Setting down the 2 thousandths, we carry 1 to the hundredth column, and continue the work, "carrying" wherever necessary, just as in the case of the addition of integers in the decimal system.

Hence, in general, to add decimals, write the numbers so that The decimal points shall be in the same column; begin with the righthand column and add; place a decimal point between the units and tenths of the resull.

Hence, in the addition of decimal fractions we are saved the labor of redueing fractions to fractions having a common denominator, which is necessary in the addition of common fractions.
9. $0.54-0.37$.
10. $1.28-1.1$.
11. $9.53-7.99$. 14. $0.042-0.0318$ 15. $70.07-6.408$.
17. 1. -0.1 . 18. $0.01-0.003$.
19. $10-.001$.
12. 3.01-2.714.
16. $301.5-30.105$. 20. $2-0.010203$.

Or, in general, multiply as in whole numbers; point off as many decimal places from the right in the product as there are decimal places in both multiplier and multiplicand taken together, prefixing veroes to the product if necessary.
21. Find the difference between $\$ 75.08$ and $\$ 87.85$.
22. What is the difference between 3.141592 and 3.142857 ?

2s. From an account of $\$ 175.43$, a man drew $\$ 46.95$. How much remained?
24. Upon three days a gentleman deposited in a bank $\$ 27.54, \$ 35.97$, and $\$ 71.16$, and on the fourth day withdrew \$49.73. How much remained?
25. Find the difference between six hundred twenty-eight thousandths, and four hundred and sixty-nine thousandths.
150. III. Multiplication of Decimals,-To obtain a method of multiplying one decimal number by another, we shall take an example and work it first by the method of common fractions.

Ex. Multiply 3.372 by 2.28 .
Expressing the decimal fractions as common fractions, we have,

$$
\begin{array}{r}
3.272 \times 2.28=\frac{3372}{1000} \times \frac{228}{100}=\frac{3372 \times 228}{100000}=\frac{768816}{100000} \\
=7.68816 . \text { Product. }
\end{array}
$$

T. Hence, the number of decimal places in the product is equal to the number of zeroes in the two denominators, that is, to the number of decimal places in the multiplier and multiplicand taken together.

Hence, the above multiplication might have been performed as follows:

DIRE

Ex. Multiply 3.0125 by .00104 .

It is to be observed that as compared with the multiplication of common fractions, in the multiplication of decimals the multiplication of the tyo denominators is abbreviated into a mere placing of the decimal point in the product.

EXERCISE 55.

2.	3.	4.
3.5	7.6	10.4
1.2	.05	0.15

Multiply each of the following by 4 .

$$
\begin{equation*}
1.5 ; 2.4 ; 12 ; 63.5 ; 23.14 ; 75.007 . \tag{array}
\end{equation*}
$$

Multiply each of the following by 3.6 :

$$
2.5 ; 13 ; .07 ; 1.05 ; 4.005 ; 1.0008
$$

Multiply each of the following by 2.05 :

$$
\begin{aligned}
& 0.32 ; 0.036 ; 10.08 ; 200.04 ; 35.1 ; 71.09 . \\
& \left.\sqrt{\frac{9.2}{10.20 \times 0.2 .}}\right\rfloor\left[\begin{array}{l}
11.1 \times .01 .001 . \\
18.100 \times .001
\end{array} \begin{array}{l}
18.100 .1 \times 1.001 . \\
14.3 .003 \times .03003
\end{array}\right. \\
& \begin{array}{ll}
10.20 \times .02 . & 18.100 \times .001 . \\
15.5 \times .4 \times 30 \times 1.8 & 18.5 .3 \times 2.01 \times 0.46
\end{array} \\
& 11 \times 4 \times 5.5 \times 02 \quad 19.97 .5 \times 16 \times 014 \\
& \text { 16. } 1.1 \times 4 \times 5.5 \times .02 \text {. } \\
& 90.5 .8 \times 025 \\
& \text { 17. } 0.24 \times 25 \times .004 \times 10 \text {. } 20.5 .8 \times .025 \times 1.003 .
\end{aligned}
$$

21. Find the value of 76.235 heres of land at $\$ 51.24$ an acre.
22. Find the cost of 128.4 yards of cloth at $\$ 2.125$ a yard.
23. Find the weight of 26.735 cubic yards of earth if one cubic yard weighs 0.76 of a ton.
24. 61.038 tons of hay are worth how muck at $\$ 20.25$ a ton? 25. What is the simplest method of multiplying by 10 ? By 100 ? By 1000?
25. What is the simplest way of multiplying by 0.1? By 01? By 001?
26. IV. Division of Decimals may be performed directly, but it is of advantage first to multiply the divisor and dividend by such a number $(10,100,1000$, ete.) as will remove the decimal point from the divisor. This will leave the value of the quotient unchanged (See A, Art. 112). The multiplieations required are performed by shifting decimal points [T (See Art. 147).

Ex. 1. Divide . 0221 by .013 .
If we multiply both divisor and dividend by 1000 , that is, shift the deciIf we mult places to the right in each of them the value of the quotient mal point three places to right in each or will be unchanged and the divisor will be an integer. Hence, we have

Since $22.1=222$, wo really divide 221 tenths by 13 ; hence, the quotient is 17 tenths, or 1.7 . Hence, it is necessary in each case to mark off as many decimal mere are decimal places in the dividend, or, in general nove the decimal point in both divisor and dividend as many places
To the right as there are decimal places in the divison, divide a
with integers; mark off as many decimal places from the right in the pootient as there are decimal places in the dividend.

Ex. 2. Divide 004551 by 1.5
Operation.
Explanation:

15). $045510(.003034$, Quolient. As the divisor, 1.5, contains one deci$.045510(.005034$, Quotient. | 45 |
| ---: |
| 31 |
| 45 | $\frac{45}{60}$ $\begin{array}{r}60 \\ \hline\end{array}$

mal place, we move the decimal point one place to the right in both divisor one place to the right in both diviso and dividend. This will leave the valne of the quotient unchanged. Hence, the quotient of .045510 by 15 , or .008034 , is the required quotient.
152. Abbreviated Cases.- The student may state for himself the abbreviated ways of dividing a number by 10,100 , 1000 , etc.; also by $.1, .01$, etc.
If the divisor be a whole number ending in one or more zeroes, as, for instance, in dividing 16.45 by 7000 , it is more convenient to divide first by 1000 by shifting the decimal point in the dividend three places to the left, and then dividing by 7 , that being the remaining factor of the divisor. Thus,
7). 01645
.00235, Quotient.
Divide:
EXERCISE 56.

1. 7.5 by 3.
2. . 075 by 5 .
3. 3.24 by 18
4. 25.6 by 32 .
5. . 0121 by 11 .
6. 0513 by 27.
7. 4.185 by 15 .
8. 2.4 by .3 .
9. 007 by 005
10. 16.8 by .021 . 26. . 945 by 1.35 . 27. 46.5 by .015 . 28. 70.8 by .004 .
11. 24 by 8 17. 4 by 4 . 9. 24 by 8 . 18. 5 by 5 . 11. 3.6 by 1.2 . 19. . 06 by 6 . 12. . 42 by .14. 18. . 063 by .07 .
12. .084 by .12 .
13. 10 by .01 . 22. .01 by 100 . 28. 25 by .05 . 24. 02 by .005 . 5. 1.2915 by .041 . 36. 30.622 by 12.2 . 37. . 203412 by 2.01 .
$\left[\begin{array}{|c|}\hline 29.10 .11 \text { by } .01011 .\end{array}\right] \quad\left[\begin{array}{l}39.14 .17 \text { by } .325 \\ 40.87 .098 \\ \text { by } 4.07\end{array}\right.$
14. 700 by 6.25 . 41. 20.202 by .025 . 35. 7 by 6.25 S3. 1.405 by 2810 . 4. 30030.3 by .0375 .
15. 4.64 by 145 . 7 4\% 4%. 0456 by .0076

Divide correctly to four decimal places:

$$
\begin{array}{l|l}
45.7 .101 \text { by } 19 . & \text { 47. } 101.5 \text { by } 30.7 . \\
46.31 .76 \text { by } 23 . & 48 . .0077 \text { by } .058 .
\end{array}
$$

The pupil should be required to solve an indefinite number of this kind of examples.

RELATION OF DECIMAL FRACTIONS TO COMMON FRACTIONS.
153. I. To reduce a decimal fraction to an equivalent common fraction, it is evidently suffieient to write the decimal fraction as a common fraction and reduce it to its lowest terms.

Reduce each decimal to its equivalent common fraction in its lowest terms :

154. II. To reduce a common fraction to a decimal we may regard the numerator of the common fraction as an integer, may regard the numerator of the common fraction as an integer,
and divide it by the denominaton.

Ex. 1. Reduce $\frac{7}{8}$ to the form of a decimal fraction.
Operation.

> Explanation.

8 $\lcm{7.000}$
.875, Result.
7 units $=7000$ thousandths of a unit; hence, $\frac{1}{1}$ of 7000 thousandths is 875 thousandths, or 875 .

Ex. 2. Express $\frac{3}{3}$ as a decimal fraction.
Operation. Explanation.
3) 2.0000 In this case, no matter how far we continue the $.6666 \ldots$
or, $.6667-$, Result. division the quotient will not terminate. As it is convenient to terminate the quotient at some place, as the fourth, and as the next figure is 6 , or more than half of a unit in the fourth place, we write 7-as the last figure in the quotient, giving . 6667 as the quotient.

In general, a decimal which continues to repeat the same figure, or set of figures, is called an infinit, or repeating, decimal. If, after reducing a fraction to its lowest terms, the denominator contains any factor beside 2 or 5 (which are the only exact divisors of 10 , beside 10 and 1), the division of the numerator by the denominator of a common fraction will produce an infinite decimal. Since it has been shown, however (Art. 78), that all figures beyond the sixth and seventh places vanish into insignificance for all practical purposes, it is sufficient ordinarily to let the division terminate at the sixth or seventh place. If the remainder is less than a half, we reject it and annex a plus sign; if equal to or greater than a half, we increase the last figure of the quotient by 1 and annex a minus sign.
155. III. Comparative value of decimal and common fractions.
On comparing decimal and common fractions, it will be observed that it is sometimes more advantageons to nse one, sometimes the other. In general, decimal fractions have a simpler notation, since their demintinators are indicated by a decimal point merely. This leads to special adrantages in adding, subtracting, multiplying, and dividing fractions, which have already been pointed out. On the other hand, in particular instances a common fraction is simpler than a decimal fraction, thus $\frac{1}{1}$ is simpler than 0.125 , and 4 , than 0.142857142 .

In general, we may say that as a system for standard nse the deeimal system of fractions is superior, but that it is advantageous to supplement it by the use of common fractions in certain special cases. Hence, the tendency in practical life is to use systems of decimals (as the metric system) wherever

possible, using common fractions in a supplementary way. EXERCISE 58 .

Reduce each common fraction to an equivalent decimal :

1. $\frac{1}{2}, \frac{7}{4}, \frac{3}{3}, \frac{4}{8}, \frac{1}{8}, \frac{5}{8}, \frac{7}{8}, \frac{12}{16}, \frac{5}{25}, \frac{2}{25}, \frac{19}{3}, \frac{3}{82}$.

Find correctly to five decimal places the value of:
8. $\frac{1}{6}, \frac{2}{7}, \frac{5}{9}, \frac{7}{11},{ }^{8} \frac{8}{8}, \frac{15}{7}, \frac{4}{19}, 1 \frac{1}{15}, 3 \frac{4}{15}, 5 \frac{10}{21}$.

What decimal fraction is,

Perform the eperations indicated:

1. $2.5+18+4,07+3235$.
2. $5.06-4.001+\frac{2}{16}-.09+3.023^{2}+$
3. $5.4+.05 \frac{5}{5}-.005 t-5.00 \frac{1}{g}+7.125$
4. From six hundred and seven thousandths take six hundred seven thionsandths.
5. Subtract nine hundred forty and seventy-six millionths from ten hum dred twenty and eight tenths
6. Multiply 7.0032 by 5! 5 . \quad Maltiply 2,10007 by 1072 ,
7. Multiply .00075 by 1.03 .

Divide

21. If the divisor is 4.153 , the remainder .02375 , and the quotient 4.25 , what is the dividend?
22. If 3 of a bushel of corn be worth $\}$ of a bushel of wheat, and wheal be worth $\$ 1.40$ a bushel, how many bishels of corn can be bought for $\$ 27$? 23. It of 37 of 56 times what number equals 50.4 ?

APPLICATIONS OF THE DECIMAL SYSTEM.

156. Decimal Systems of Money.-Owing to the advantages which arise from the decimal method of representing
units and parts of a unit, decimal systems of money have come to be used in all civilized countries except Great Britain Thus, in France, the franc is divided into 100 equal parts ealled centimes; in Germany, the mark is divided into 100 equal parts, called pfennige, etc.

This general adoption of decimal systems of money is due to the fact, that money and its units are used more often and reckoned with more extensively than any other system of units, as, for instance, those of length, weight, etc. Hence, the aggregate of economies which result from the use of a decimal scale for units of money is greater than it would be in the case of any other class of units as those of length, weight, etc.
157. United States Money.-The primary unit in the system of money in use in the United States is the dollar. The other units used in connection with the dollar, and their relation to each other, are shown in the following table:
10 mills $=1$ cent.
10 cents $=1$ dime
10 dimes $=1$ dollar or $\$ 1$.
10 dollars = 1 eagle .
By means of the decimal system, all the other units of United States money may be expressed as dollars or fractions of a doilar. Thus, 7 eagles, 8 dollars, 4 dimes, 5 cents, and 3 mills are most conveniently written as $\$ 78.453$. Such sums are, however, most conveniently read in terms of two units, dollars, and cents. Mills are used only for purposes of computation ; if in any result the number of mills is less than 5 , it is rejected; if it is 5 or more than 5 , it is reckoned as 1 cent.

Thus, 878.453 is read as 78 dollars, 45 cents, 3 mills; or rejecting the mills, 78 dollars, 45 cents.
158. Aliquot Parts of a Dollar.-Operations with United States money are often much facilitated by remembering the number of units which form aliquot parts of a dollar (See Art. 74).

$$
\begin{array}{r}
6 \frac{1}{4} \text { cents }=\frac{1}{16} \text { of } \$ 1 . \\
8 \frac{1}{5} \text { cents }=\frac{1}{12} \text { of } \$ 1 . \\
12 \frac{1}{2} \text { cents }=\frac{1}{8} \text { of } \$ 1 . \\
162 \text { cents }=\frac{1}{6} \text { of } \$ 1 .
\end{array}
$$

The student may supply the remaining aliquot parts of $\$ 1$. Ex. What is the cost of 18 pounds of sugar at $6 \frac{1}{4}$ cents a pound?

2. Thirteen dollars and thirty-two cents, seyen dollars and nineteen cents, forty dollars and ninety-six cents.
s. Twelve dollars and eighty cents, seventy-five cents,
eight dollars and three cents, fifty dollars and ten cents.
4. Eleven dollars and seven cents, six cents, nineteen dol-
lars, sixty dollars and nine cents.
5. From $\$ 100$ take $\$ 30.25$.
6. Take $\$ 25.08$ from $\$ 30.41$.
7. A man gave 850 in payment of three items of $\$ 10.76$,
$\$ 16.13$ and $\$ 21.05$. How much was due him in return? 8. A farmer bought $65 \frac{3}{4}$ acres of land at $\$ 51.50$ an acre. What was the amount paid?
9. What will $5_{\frac{2}{3}}^{2}$ yards of carpet cost at $\$ 1.75$ per yard? At $\$ 2.05$ per yard?
10. At $12 \frac{1}{2}$ cents a line, what will it cost to insert in a news-
paper an advertisement of 17 lines? Of 45 lines?
11. How many chairs at $\$ 2.25$ each can be bought with \$29.25? With \$83.25?
12. How many acres of land worth $\$ 71.30$ an acre can be bought with $\$ 2032.05$?
18. With pads worth 12 cents each, a boy gets all he can for 84.92. How many did he buy?
14. A certain kind of stock is worth $\$ 27 \frac{1}{2}$ a share. How many shares can be bought for $\$ 1347.50$?
15. A man paid $\$ 26.25$ for 5 tons of coal. What would $17 \frac{2}{5}$ tons cost at the same rate?
16. There are $272 \frac{1}{4}$ square feet in a square rod. What will be the cost of $20 \frac{2}{3}$ square rods of land at $4 \frac{1}{2}$ cents a square foot?
17. A dealer bought 3 barrels each containing 31.5 gallons of oil at the rate of $45 \frac{1}{2}$ cents a gallon. He sold it at $51 \frac{1}{4}$ cents a gallon. How much was his gain? (Solve this problem by two methods.)
18. A miller filled 125 barrels of flour at a cost of $\$ 7.75$ each. He then sold 90 of them for $\$ 8.30$ each, and the remainder at $\$ 6.35$ each. What was his total gain?
19. A farmer spent on a crop of grain $\$ 55.40$ for seed, $\$ 1.75$ each, for 20 days of labor, and $\$ 62.35$ for rent. How much would he gain if the crop yielded 625.30 bushels which sold for 84 cents apiece?
Solve by the method of aliquot parts of $\$ 1$.

159. Business Forms in the Use of U. S. Money, Accounts, Bills, Etc.-By the aid of certain abbreviations, and by systematic methods of arranging items, the advantages

EXERCISE 61.

which arise from the use of a decimal system of money are further increased.
Ex. James Smith bought of Mitchell, Fletcher \& Co., 17 pounds of coffee at 38 cents a pound; 75 pounds of sugar at $4 \frac{1}{2}$ cents a pound; 20 poumds of oatmeal at 4 cents a pound; and 4 pounds of tea at 80 cents a pound. What is the entire post of his purchases? \qquad
If the purchases be arranged as a bill, it is much easier to inspect them at a glance, to verify each item, to make corrections where necessary, and to determine of whom the purchase was made, by whom, whether it is receipted, etc. Thus,

$$
\text { Philadelptia, May 8, } 1901
$$

Bought of Mitcheli, Fletcher \& Co.

17	lbs. eoffee	@	38 g
75	in sugar	a	41
20	un		
4	oatmeal (a)	$4 g$	
kea	a	80 c	

86	46
3	38
3	80
3	20
$\$ 13$	84

160. Business Terms and Abbreviations.-Price is the value of 1 unit of quantity; cost is the value of the entire number of units used or bought. Thus, the price of 1 pound of coffee is 38 cents; the cost of 17 pounds is $\$ 6.46$.

A bill is a written statement showing the price, quantity, and cost of each item, and the aggregate cost of all the items
How is a bill receipted? What is a debtor? A creditor?
Let the student determine the meaning of the following abbreviations used in connection with bills and accounts :

Find the amount of each of the following bills:

37 yds. Brussels carpet (a)	81.65	
14 ". Axminster "I	(a)	2.85
$41 \frac{1}{2}$ ". Ingrain filling	(a)	.75
9 small rugs	(a)	2.75
45 step pads	@a	$.27 \frac{1}{2}$

Mrs. Fletcher Edwards,
Bought of Findey Acker \& Co.

The number of thousands is determined by moving the decimal point of 3760 three places to the left, giving 3.76 thousands in the above example.

If one thousand shingles cost $\$ 7$, the cost of 3.76 thousands will be 3.76 times $\$ 7$, or $\$ 26.32$, Cost.

Similarly, the number of tons in a given number of pounds may be obtained by moving the decimal point three places to the left and dividing by 2 .

Ex. 2. Find the cost of 13567 pounds of coal at 86 a ton.
13567 pounds $=\frac{13.567}{2}$ tons.
If 1 tan $\cos t \$ 6$, the cost of $\frac{13.567}{2}$ tons $=\frac{13.567}{2} \times \frac{3}{6}-\$ 40.701$, \cosh
EXERCISE 62.

1. Find the cost of 55260 cubic feet of gas at $\$ 1.40$ per M.
2. Find the cost of 75490 bricks at $\$ 8.25$ a thousand.
S. A coal dealer supplies a tinsmith with 7565 pounds of coal at $\$ 5.75$ a ton, and the tinsmith roofs the coal-dealer's house with 156 pounds of tin at $\$ 14.15$ a C. Which owes the other, and how much?
3. What will it cost to set the type of a book containing 560 pages of 1115 ems each, at 60 cents per thousand ems?
4. Required the cost of 83410 pounds of coal at 85.38 a ton, and 47380 shingles at 85.55 a thousand.
5. I borrowed $\$ 7500$ for a year, at the rate of $\$ 4.50$ per hundred. What must I pay for the loan?
6. I lent $\$ 31500$ for a year at the rate of $\$ 5.25$ per hundred.
7. Articles Bought and Sold by the Hundred or Thousand. - Some of the advantages which come from the use of the decimal scale are obtained by selling articles by the hundred (or C), or thousand (or M)
Ex. 1. What will be the cost of 3760 shingles at 87 a thousand (or $\$ 7$ per M).

What do I receive for the loan?
162. Further Use of Base 100 in Percentage, Interest, Ete.-So great are the advantages of the decimal base in business and other computations and comparisons that the use of this base is developed into special subjects called Percentage, Interest, etc.

ONON
 CHAPTER XI.

COMPOUND NUMBERS.

163. Use of Different Units for the same kind of Quan-tity.-In measuring a great variety of distances, it is an ndvantage to have different units of distance, some large, some small. Thus, we measure the dimensions of a window - pane in inches, the length of a man's jump in feet, the dis[T) tance between two cities, as between New York and Philadelphia, in miles. Similarly, in weighing objects, it is convenient to have different units of weight. It would be inconvenient, if not impossible, to weigh gold by the ton, and coal by the ounce.
164. Measurement may be defined as the process of finding how many times a given quantity contains another given object or quantity of the same kind, taken as a unit.

Thus, to measure a thass of sugar, is to find how many times a certain mass of sugar, called a pound, must be repeated in order to make up the given mass.

Hence, it is evident that, in measuring large objects, it is convenient to have large units; in measuring small objects, it is convenient to have small units.
165. Compound Numbers.- In measuring a quantity it is often useful to use two or more units of different sizes, but of the same general class. Thus, in measuring the distance which an athlete jumps, we first measure the number of feet in the jump, then the number of inches, if any, in the remainder of the jump, obtaining 19 feet 7 inches say, as the entire jump.

Similarly, the length of a man's life is expressed in terms 158
of several units of time, as 59 years 8 months and 12 days, for instance
A compound number is a number expressed in terms of several units of the same class. Exs. 19 feet 7 inches; 59 years 8 months 12 days.

A simple number is a number expressed in terms of a single unit, as 138 inches.
166. Relative Value of Compound Numbers and Simple Numbers. Reductions.-When a given magnitude is expressed as a compound number it is often easier to form a definite conception of it than when it is expressed as a simple number. Thus, it is much easier to form a definite conception of 19 feet 7 inches, than of 235 inches; similarly, of 59 years 8 months 12 days, than of 21787 days.
On the other hand, if a magnitude be expresed as a simple number, it is much easier to operate with it, that is, to multiply, divide, etc. Thus, if it be required to find the area of a room that is 14 feet 8 inches long and 12 feet 3 inches wide, it is best to reduce the length and breadth of the room either to feet or to inches, before multiplying them.
Reduction descending is the process of reducing a number expressed in several units to an equivalent number expressed in a single small unit, as reducing 19 feet 7 inches to 235 inches.

Reduction ascending is the process of reducing a simple number to an equivalent number expressed in terms of higher units, as reducing 21787 days to 59 years 8 months 12 days. These processes will be illustrated in connection with each table of units given in this chapter.
167. The different classes of units in common use are those of:

EXERCISE 63

ORAL.

1. What unit would naturally be used in weighing hay? Tea? Flour? trock? Ginger? Coffee?
2. What unit of length would be used in measuring the distance between mores floor and ceiling of a room? Betwo houses or samest? tween the wat unit of leagth is used in measuring the length of a railroad?
3. What ar firm?
Or a flag-pole? What of area is employed in measuring land? Plastering?
4. What unit of eapacity is used in the measurement of milk? Molasses? Potatoes? Strawberries? Beans? Apples?
Potatoes What mit in measuring illuminating gas?
5. What mit in measuring iluminaing ga for a horse? A newspaper?
farm? A pencil?
6. What units of time are used in expressing your age? The age of the world? Of a baby? In stating time of an eclipse?
world? What unit is first used in measuring the length of a board? In completing the measurement?
7. What combination of units is nsed in expressing the time required to run a mile? To run a hondred yards? What units, in hiring a laborer? 12. In paying a bill of $\$ 28.75$, what combination of units is used (bills and coins)?

WEIGHP.
168. I. Avoirdupois weight is used in weighing all ordi-
nary objects, the exceptions being the precious metals, jewels, and drugs when retailed.

The primary unit in avoirdupois weight is pound avoirdupois, which is determined by the weight of a certain piece of metal kept in the government archives (see Art. 171).

$$
\Rightarrow \text { AVOIRDUPOIS WEIGHT. }
$$

16 drams (dr.) = 1 ounce (oz.).
$16 \mathrm{oz} . \mathrm{F} 1$ peund (lb.).
$100 \mathrm{lbs} \quad 4(1$ hundred-weight (cwt.).

$$
20 \text { cwt. } \quad=1 \text { ton (T.). }
$$

The pound avoirdupois is also regarded as made up of 7000 grains. The long ton, or 2240 pounds, is used in weighing objects in the U
States Custom Houses, and m wholesale transactions in coal and iron-

Ex. 1. How many oz. in 7 T. 8 ewt. $63 \mathrm{lb} .14 \mathrm{oz} . ?$

This is an example of reduction descending, or of reducing a compound umber to an equivalent simple number in terms of the lowest unit in the given compound number.

In general, to reduce a compound number by reduction descending, in the given compound number take the number of highest denomination; muttiply it by the number of units of the next lower Kind which equal one of the higher units, and add to the product the given number of units of the second kind; proceed similarly till all the units have been reduced to the lovest wnit.

Ex. 2. How many tons, hundred-weight, and pounds in 9382 pounds of coal?

Solution.

$$
9382 \mathrm{lb} .=\frac{9382}{100} \mathrm{cwt} .=93 \mathrm{cwt}+82 \mathrm{lb}
$$

$$
\begin{aligned}
& 93 \mathrm{cwt} .=\frac{93}{20} \mathrm{~T} .=4 \mathrm{~T} .+13 \mathrm{cwt} . \\
& 4 \mathrm{~T}+18 \mathrm{cwt}+821 \mathrm{co} ., \text { Resutt. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Solition. } \\
& 7 \mathrm{~T} .=20 \mathrm{ewt} . \times 7=140 \mathrm{cwt} . \\
& 140 \mathrm{cwt} .+8 \mathrm{cwt}=148 \mathrm{cwt} . \\
& 148 \mathrm{cwt}-100 \mathrm{lb} \times 148=14800 \mathrm{lb} \\
& 14800 \mathrm{lb} .+63 \mathrm{lb} .=14868 \mathrm{lb} . \\
& 14863 \mathrm{lb} .=16 \mathrm{oz} \times 14863=237808 \mathrm{cz} . \\
& 237808 \mathrm{oz} .+14 \mathrm{oz}_{\mathrm{o}}=237822 \mathrm{oz}, \text {, Result. } .
\end{aligned}
$$

This is an example of reatuction ascesting, or of converting a simple R namber into a compound number containing higher denominations.

In general, in reduction ascending, divide the given number by the number of units of the same kind which equals a unit of the next Tighest kind, and set aside the remainder; divide the quotient in a like manner and so proceed till no further division is possible

Reduce
EXERCISE 64.

1. $3 \mathrm{t} .13 \mathrm{cwt}, 70 \mathrm{lbs}, 10 \mathrm{oz}$. to ounces.
2. $5 \mathrm{t}, 80 \mathrm{lbs}$ ta pounds.
3. $6 \mathrm{t}, 1 \mathrm{cwt}$. 15 oz , to ounces.
4. 15 ewt. 75 liss. 11 oz , to ounces.
5. 45 t 17 civt 90 liss to pounds.
6. 120650 oz to higher denominations.
7. 236949 oz. to higher denominations.
8. 13280 lbs to higher denominations.
9. 332805 oz to higher denominations.
10. 289135 yz to higher denominations.

Change
11. 70 t .48 cwt. 60 lbs .6 oz . to ounces.
12. 30854 oz , to higher denominations.
18. Hovr many firkins of butter each weighing 31 lbs .4 oz will be required to weigh a ton?
14. If there are 9 oz , of iron in a man's blood, how many men would supply iron enough to make a $27-\mathrm{lb}$. ball?
15. A cook uses 7 pounds 8 ounces of flour at every baking. How many bakings can she get ont of 3 ewt. 30 lbs . of flour?
16. The average weight of each book in a library is 2 lbs .

5 oz . What would be the entire weight of the 8560 volumes?
a pound Troy, or 5760 grains.

TROY WEIGHT.

24 grains (gr.) $=1$ pennyweight (pwt. or dwt.).
20 pwt.
$=1$ ounce (oz.).
12 oz .
$=1$ pound (lb.).
Diamonds aldother jewels are also weighed in terms of another unit, the carat. The carat $=3 k$ grains. (The term carat is also nsed in another sense, viz.: to express the parts of gold contained by a given metal alloy. In this sense one carat means one twenty-fourth part Gold 18 carats fine contains 18 parts of pure gold and 6 parts of some other metal.)

EXERCISE 66.
to grains:

1. 3 oz .4 pwt .20 gr .
2. 7 oz .15 pwt. 18 gr .
3. $5 \mathrm{lb} .8 \mathrm{oz}, 10 \mathrm{pwt} .9 \mathrm{gr}$.

> 4. 8 lb .9 oz .12 gr
> 5. 8 lb .5 pwt .22 gr.
> 6. 12 lb. 6 oz .18 pwt

Reduce to higher denominations:
7. 15136 gr . ${ }^{2} .954 \mathrm{pwt}$.

\&. 5117 gr.	10. 31701 gr .

11. 46474 gr . 1.. 27009 gr .
12. If a silver medal weigh $6 \mathrm{oz}, 18 \mathrm{pwt}$, what will be the weight of 5 such medals? How many will it take to weigh 6 lbs .3 oz .18 pwt.?
13. III. Apothecaries' Weight is used in mixing and selling drugs and medicines at retail (these being purchased by druggists at wholesale by avoirdupois weight).

The primary unit is the same as in Troy weight (5760 grains), but it is divided somewhat differently.

D B BR apothecarises welght.

20 grains (gr.)	$=1$ scruple (() .
3 scruples	$=1$ dram (5).
8 drams	$=1$ ounce ((\tilde{J}).
12 ounces	$=1$ pound (lb.).

EXERCISE 67.
Reduce to grains

4. 6 亏 $1 \ni 16 \mathrm{gr}$. 5. 5 lb. 10 亏5 52 Я 6. 10 lb .3 z 12 gr .	

8. 3 lb 856310 gr .
9. 2 lb .531 A 15 gr . \quad 6. 10 lb .3312 gr .

Change to higher denominations: 7. 5148 gr VERITA. 8665 gr
S. 1691 gr 10. 875 Э. $\begin{aligned} & \text { 11. } 23897 \mathrm{gr} \\ & \text { 12. } 40370 \mathrm{gr} .\end{aligned}$
121. Relation of the Different Systems of Units of Weight.-In the United States the fundamental unit of dreight is the weight of a certain piece of brass in the custody of the United States Mint.

This is the Troy (and apothecaries') pound, and is regarded as made up of 5760 grains. From this the avoirdupois pound is derived by taking the weight of 7000 grains. Hence, the only unit in common to avoirdupois weight and Troy weight is the grain. In Troy weight and apothecaries' weight the pound, ounce, and grain are the same, but the other units are different.
In Great Britain the standard of weight is the weight of a certain piece of platinum kept in the Exchequer Office. This weight is called the Imperial Pound. The Troy pound is derived from it.

EXERCISE 68

1. How many grains in an ounce avoirdupois? Ounce Troy? Ounce apothecaries'? Ha R1
2. How many grains in a dram apothecaries'? Dram avoirdupois?
3. Which is heavier, and how much, a pound avoirdupois or a pound Troy? Ancounce avoirdupois or an ounce Troy?
4. What is the gain in buying drugs by avoirdupois and selling them at the same rate apothecaries' weight? Buying gold by avoirdupois and selling by Troy weight?
5. How many avoirdupois pounds in 175 Troy pounds?

MEASURES OF LENGTH.

172. I. Long Measure.-The primary unit of length in the United States and Great Britain is the yard. This is the distance between two marks on a bar of metal kept in the Exchequer Office of Great Britain.

From the yard are derived the following units of length:

> LONG MEASURE.

12 inches (in.) = 1 foot (ft .).
5 n .
$=1$ yard (yd .).
$5 \frac{1}{2} \mathrm{yd}$. \}
or $16 \frac{1}{2} \mathrm{ft}$.

320 rds. $=1$ mile (mi.).
Rods are also called poles or perches:
Rods are 40 rods; hence, 8 furlongs $=1$ mile.
Civil engineers often divide the foot into tenths instead of inches. Ex. 1. Reduce 5 mi. 208 rd .2 yd .1 ft .

$5 \mathrm{mi} .=320 \mathrm{rd} . \times 5=1600 \mathrm{rd}$. $1600 \mathrm{rd} .+208 \mathrm{rd} .=1808 \mathrm{rd}$.
$1808 \mathrm{rd} .=51 \mathrm{yd} . \times 1808=9044 \mathrm{yd}$. $9944 \mathrm{yd} .+2 \mathrm{yd} .=0946 \mathrm{yd}$.
$9946 \mathrm{yd} .=3 \mathrm{ft} . \times 9946=29898 \mathrm{ft}$.
$29838 \mathrm{ft} .+1 \mathrm{ft} .=29839 \mathrm{ft}$. , Result.
1 Nax. 2. Reduce 29839 feet to higher denominations. $\sqrt{ }$

Solumion.

$A \pi \square$ $\square 29899 \mathrm{ft}=\frac{29899}{3} \mathrm{yd} .=9946 \mathrm{yd} .+1 \mathrm{ft}$.
$9946 \mathrm{yd} .=\frac{9946 \times 2}{11} \mathrm{rd}=1808 \mathrm{rd} .+4 \mathrm{half} \mathrm{yd} .($ or 2 yd.$)$. $1808 \mathrm{rd} .=\frac{1808}{320} \mathrm{mi} .=5 \mathrm{mi} .+208 \mathrm{rd}$.
$5 \mathrm{mi} .208 \mathrm{rd}$.2 yd .1 ft ., Result.

Dividing 9946 yards by $5 \frac{1}{2}$ is the same as dividing it by $\frac{12}{2}$. This, in effect, consists in reducing 9946 yards to 19892 half yards, and dividing by 11. This gives 1808 rods with 4 half yards, or 2 yards, as a remainder.
173. II. Surveyors' linear measure is used by surveyors in measuring the dimensions of tracts of land. In it the units are chosen with a view to determining the area of the tract measured, in an advantageous way. See Art. 177.

80 ch.
Hence, $1 \mathrm{ch} .=4 \mathrm{rds} .=66 \mathrm{ft}=792 \mathrm{in}$.
SURVEYORS LINEAR MEASURE.
7.92 inches $=1 \mathrm{link}$ (li.).
$100 \mathrm{li} . \quad=1$ chain (ch.).
80 ch.
$=1$ mile.

Reduce to feet:

1. 44 rds. 3 yds. 2 ff . S. 3 mi .250 rds .4 yds. 1 ft .
2. 2 mi. 125 rds. 5 yds. 4.4 mi .3 yds. 2 ft .

Reduce to inches:
5. 36 rds .4 yds. 2 ft. $10 \mathrm{in} . \quad$ 7. 2 mi .170 rds .5 yds .6 in. 6. 3 rds. 3 yds. $1 \mathrm{ft} .7 \mathrm{in} . \quad$ 8. 3 mi .240 rds. 1 ft .8 in.

Reduce to higher denominations:

$\int \quad \begin{array}{r}9.214 \mathrm{in} . \\ 10.1710 \mathrm{in} .\end{array}\left|\begin{array}{l}\text { 11. } 14198 \mathrm{ft} . \\ 12.380341 \mathrm{in} .\end{array}\right| \begin{aligned} & \text { 13. } 278222 \mathrm{in} . \\ & 14.504009 \mathrm{in} .\end{aligned}$

Reduce to links:

$$
\text { 15. } 45 \text { rds. | 16. } 3 \text { miles. | 17. } 1 \text { yd. } 3.6 \text { in. }
$$

18. How many rails 30 feet long will be required to build 7 miles of railroad (single track)?
19. What is the cost of building 30 miles 250 rods of road at $\$ 2.25$ a yard?
20. How many panels of fence, each 2 yds .1 ft .6 in ., will be required along the sides of a lane 1 mi .202 rds .4 yds . long?
21. A long the side of a room mark off $1 \mathrm{ft} ., 3 \mathrm{ft}$., $8 \mathrm{ft} ., 1 \mathrm{yd}$., 3 yds., 1 rd., 3 yds. 2 ft., 2 yds. 1 ft. 8 in.

EXERCISE 70.

ORAL.

1. How many inches in 6 ft .? In $7 \frac{1}{2} \mathrm{ft}$? In 1 yd .?
2. How many feet in 5 yds.? In 2 rds? In a mile? In 60 in ?
s. How many feet in 125 in.? In $3 \frac{1}{2}$ yds.? In 1 rd. 2 yds?
3. What part of a foot is 3 in.? 4 in.? 6 in.? 8 in.? 9 in.? 10 in.?
4. What part of a yard is $9 \mathrm{in} . ? 12 \mathrm{in}$? 18 in ? ? 24 in ? 27 in .?
5. What part of a mile is 40 rds ? 80 rds ? 200 rds ? 280 rds ?
6. How many chains are there in 400 rds ? In 110 rds ?
7. How many inches are there in 50 links? In 80 li.? In 6 li.?

MEASURES OF SURFACE.

174. A surface has two dimensions, length and breadth In measuring surfaces, or square measure, the primary unit is a flat square, each of whose sides is 1 yard. It is sometimes more convenient to use other units of surface, as a square, each of whose sides is 1 inch, or 1 foot. These units may be regarded as derived from the primary unit, the square yard.

A surface is measured by determining the number of times the unit of surface must be used to make up the given surface.
175. The area of a surface is the number of times the unit of surface is contained in the given surface.
Thus, if a rectangle be 7 inches long and 5 inches wide, it contains 35 square inches, and its area is said to be 35 square inches.
It is evident that in a rectangle, whose sides contain an exact number of linear units, the number of units in the area will equal the number of linear units in one dimension multiplied by the number of linear units in the other dimension (see Figure, p. 53). For in such a rectangle the entire number of small unit squares is equal to the number of them in each row
multiplied by the number of rows, which equals the number of limear units in the length multiplied by the number in the breadth.

Hence, to find the area of a rectangle, multiply the length by the breadth.
176. I. Surface or square measure

1 FTHLERE FLATMARMZ2. 15
144 square inches ($\mathrm{sq} . \mathrm{in}.)=1$ square foot (sq. ft.).
$9 \mathrm{sq} . \mathrm{ft}$.
1 square yard (sq. yd.).
$30 \frac{1}{4}$ sq. $\mathrm{yds} . \quad=1$ square rod (sq. rd.).
160 sq. rds.
640 A.
1 Acre (A.).
1 square mile.
177. II. In Surveyors' square measure the primary unit of surface is the square chain, that is, a square piece of land, each side of which is 1 chain, or 66 feet.

$$
10 \mathrm{sq} . \mathrm{ch} .=160 \mathrm{sq} . \text { rds }
$$

Hence, 1 acre $=10 \mathrm{sq}$. ch. $=160 \mathrm{sq}$. rds
The advantage in nsing survegor's measure in measuring land lies in the fact that, after the number of square chains in a piece of land bave been determined, the number of acres an be determined by simply dividing the namber of square chains by 10; that is, by moving the decimal point one place to the left.

EXERCISE 71 .

Reduce:

1. 6 sq. rds. 4 sq. yds. 5 sq. ft. to sq. ft.
2. 2 A .56 sq . rds. 10 sq . yds. to sq. ft.
3. 3 A. 24 sq. yds. 7 sq. ft. to sq. ft.
4. 8 sq. yds. $3 \mathrm{sq} . \mathrm{ft} .100 \mathrm{sq}$. in. to sq. in.
5. 3 sq. rds. 16 sq. yd . 25 sq . in. to sq. in.
6. 4 A. 3 sq. yds, 4 sq. ft. to sq. in.

$$
\begin{aligned}
& \begin{array}{l}
A=4.3 .50 \\
\text { SURVEYORS' SQUARE MEASURE. }
\end{array} \\
& 16 \mathrm{sq} . \mathrm{rds} .1 \mathrm{sq} . \mathrm{ch} \text {. } \\
& \begin{array}{l}
16 \mathrm{sq} . \mathrm{rds} .=1 \mathrm{sq} . \mathrm{ch} . \\
10 \mathrm{sq} . \mathrm{ch} .
\end{array}
\end{aligned}
$$

Reduce to higher denominations:
Oanis
7. 17188 sq. yd. $\quad 9.944720 \mathrm{sq}$. in
11. 117804 sq. ft.
8. 16567 sq. ft. 10.39725 sq. in.
12. 3657930 sq . in
18. How znany sq. ch. in one sq. mi,? In 800 sq , rds.?
14. Ohange 15000 sq. ch. to ligher denominations.
15. Draw upon the blackboard a sq. ft . and subdivide it into sq. in. How many are there?
16. Draw a sq. yd, and subdivide it into sq. ft. How many?

EXERCISE 72

ORAL.

1. How many square feet in 3 sq . yds ? In 5 s $\mathrm{sq}, \mathrm{yds}$? In 2 sq . rds.? 2. How many square inches in 4 sq . ft.? In 21 sq. ft.? In 1 sq. yard? s. How many acres in 2 sq. miles? In 800 sq. rds.?
2. What is the difference between a square foot and a square yard?
3. What is meant by 6 in . square? 10 ft . square? 3 yards square?
4. What is the difference between 3 sq. fs and 3 feet square? Between 6 sq. yds. and 6 yards square?
5. How many square inches in the lid of a box 1 ft .3 in , square? In another, 1 ft .4 in . square? In another $\frac{3}{\frac{3}{5}} \mathrm{ft}$, square?

MEASURES OF VOLUME AND CAPAOITY.

178. A solid has three dimensions: length, breadth, and thickness. 1 A T by six equal squares

The primary unit of volume is a cube, each of whose edges is 1 yard, and is called a cubic yard.
It is sometimes more convenient to use other derived units of volume, as 1 cubic inch, or 1 cubic foot.

A solid is measured by determining how many times the unit of volume must be taken to make up the given solid.
The cubic contents, or volume, of a solid is the number of times the unit of volume is contained in the given solid.

It is evident that in a box-shaped, or rectangular, solid, each of whose edges contains an exact number of linear units, the number of units of volume may be readily obtained from the number of linear units in the edges. Thus, if we have such a solid whose edges are 3,4 , and 5 inches, and the solid be divided into small unit cubes, each edge of which is 1 inch, each layer will contain 4×5 which is 1 inch, each layer will contain 4×5
cubic inches; and as there are 3 layers the entire solid will contain $3 \times 4 \times 5$ (or 60) cubic inches.

Hence, in order to determine the volume of a rectanguler solid, instead of cutting the solid up into little cubes, and counting them, we substitute the less labor of making linear measurements of the three edges, and taking
the product of the lougth by the

179. I. Cubic Measure in general.

$$
\begin{aligned}
& \text { CUBIC MEASURE. } \\
& 1728 \text { eubic inches (cu. in.) }=1 \text { cubic foot (cu. ft.). } \\
& 27 \mathrm{cu} . \mathrm{ft} \text {. }
\end{aligned}
$$

180. II. Wood Measure.-In measuring wood the cord is the primary unit
used. A cord is a pile of wood 8 feet long, 4 feet wide, and 4 feet high. A cord foot is that part of a cord which is 1 foot
 long.

16 cubic feet $=1$ cord foot. 8 cord feet $=1$ cord.
Or 128 cubic feet $=1$ cord.

Reduce

1. $2 \mathrm{cu} . y \mathrm{ds} .5 \mathrm{cu} . \mathrm{ft} .200 \mathrm{cu}$. in. to $\mathrm{cu} . \mathrm{in}$.
2. $5 \mathrm{cu} . \mathrm{yds}, 20 \mathrm{cu} . \mathrm{ft}$ to cu, ft
3. $7 \mathrm{ed}, 4 \mathrm{~cd} . \mathrm{ft}$. to $\mathrm{cu} . \mathrm{ft}$
$4 \mathrm{~cd} .5 \mathrm{~cd} . \mathrm{ft} .10 \mathrm{cu} . \mathrm{ft}$. to $\mathrm{cu} . \mathrm{ft}$.
Reduce to higher denominations:
4. 166413 cu. in. | 6. $2046 \mathrm{cu} . \mathrm{ft} . \mid \quad 7.3455 \mathrm{cu} . \mathrm{ft}$.
5. How many cubic yards in a cord? How many cords in $432 \mathrm{cu} . \mathrm{yds}$?
6. Measure the edges of a crayon box and compute its volume.
7. How many cords in a pile of wood whose dimensions are 6,10 and 32 feet?

EXERCISE 74
ORAL.

1. How many cu. in. in half a cubic foot? In $\frac{3}{4} \mathrm{cn} . \mathrm{ft}$.? In $2 \mathrm{cu} . \mathrm{ft}$. ? 2. How many $\mathrm{cu} . \mathrm{ft}$. in $\frac{t}{\mathrm{c}} \mathrm{cu} . \mathrm{yd} . \%$ In 3 cu . yds. ? In $2 \mathrm{c}^{2} \mathrm{cu} . \mathrm{yds}$?
S. How many cu. ft. in $\frac{1}{2}$ cord? In $\frac{1}{4}$ cord? In $\frac{3}{8}$ cord?
2. What is the volume of a box whose dimensions are 3,5 and 6 inches? Or another 4, 6 and 7 feet?
3. What is the volume of a 3 -in. cube? Of a $4-\mathrm{ft}$. cube?
4. What is the difference between a 5 -in. cube and 5 cm in? Between $2-\mathrm{ft}$. cube and $2 \mathrm{ca} . \mathrm{ft}$.?
5. Measure of Capacity.-For fluids and loose objects, as grain, fruit, etc., it is found convenient to use other units of volume or capacity, as the pint, gallon, bushel, etc., each of which, however, can be expressed as a certain number of cubic inches.
In dealing with such materials it is usually not convenient to make linear measurements, and a given material is measured directly by counting the number of times it will fill a unit vessel. Wherever possible, however, the method of linear measurements and of computations from these is to be preferred.
6. I. In Dry Measure the fundamental unit is the bushel, which contains 2150.42 cu . in.

$$
\begin{aligned}
& \text { DRY MEASURE. } \\
& 2 \text { pints (pt.) }=1 \text { quart (qt.). } \\
& 8 \text { qts. }=1 \text { peck (pk.). } \\
& 4 \text { pks. FLAM|\& } \& 1 \text { bushel (bu.). }
\end{aligned}
$$

183. II. In Liquid Measure the fundamental unit is the gallon, costaining 231 cu . in.
IIQUID MEASURE.

$$
4 \text { gills }(\mathrm{gi})=1 \text { pint (pt.). }
$$

13. How many eu. in. in a standard barrel? In 5 bushels? 14. How many cu. ft . in 12 bushels?
15. How many cu. in. in a dry qt.? In a liquid qt.?
16. How many gallons have the same capacity as one bushel?
17. What will be the cost of 5 gal .3 qt .1 pt , of vinegar at 4 cents a pt. ?
18. What will 10 bu. 3 pk. 6 qt. of grain cost at 3 cents a qt.?
19. How much milk at a cent a gill must be given in exchange for 2 bu .1 pk .5 qt . of grass seed at 10 cents a pt.?

EXERCISE 76.

$$
\begin{array}{ll}
4 \text { gills (gi) } & =1 \text { purt (pi.). } \\
2 \text { pts. } & 1 \text { quart (qt). } \\
4 \text { qts. } & =1 \text { gallon (gal). } \\
31 \frac{1}{2} \text { gals. } & =1 \text { barrel (bbl). } \\
62 \text { als } & =1 \text { hogshead (hid). }
\end{array}
$$

oral.
How many:

1. Pints in a gallon? In a peck? In a busliel?

Puarts in ansh?
2. Quarts in a bushel? In a barrel? In 4 gal. 3

4. Bushels in 12 pk.? In 64 qL ? ? In 64 pk ?
5. What part of a gallon is a qL.? A pt? A gill?
6. What part of a bashel is a pk.? A qt? 4 qts.? 24 qts ? γ. Which is greater, a dry pint or a liquid pint?
measures of value.
185. Units of money are unit quantities of the precious metals, as gold and silver, which are used to measure the values of things.
Coin is the actual metal itself as weighed, shaped, and stamped by the government to form single units or combinations of units of value.

Paper money consists of engraved and printed promises
to pay a certain number of units of coin to the bearer.
Currency is a general name for both coin and paper money.
986. I. In United States money the primary unit is the gold dollar.

10 mills $=1 \mathrm{cent}($ ct. or $¢)$.
10 cents $=1$ dime (d.).
10 dimes $=1$ dollar ($\$$).
10 dollars $=1$ eagle.

The coins in use in the United States are as follows:
Bronze: the cent.
Nickel: the five-cent piece \qquad
Siker: the dime, quarter dollar, half dollar, and dollar.
Gold: the dollar, quarter eagle, half eagle, eagle, and double eagle
187. II. In English money the fundamental unit is 1 pound, whose value in United States money is $\$ 4.8665$.

4 farthings (far.)	$=1$ penny (d.).
12 pence	$=1$ shilling (s.).
20 shillings	$=1$ pound $(£)$.

21 shillings $=1$ guinea (G .)
The coins used in Great Britain are as follows:
TH Copper: penny, half-penny, farthing.
Sither: three pence, six pence, shilling, florin (2 a .), double florin (4 8.), half-crown ($2 \frac{1}{2} \mathrm{~s}$), crown (5 s).

Gold: half-sovereign (10 s) , sovereign (20 s)
EXERCISE 77 .
Reduce to farthings:

1. 6 s .9 d. 2 far.

$$
\begin{aligned}
& \text { 1. } 6 \mathrm{~s}, 9 \mathrm{~d} .2 \text { far. } \\
& \text { ®. } £ 107 \mathrm{~s}, 3 \mathrm{~d} .1 \text { far. }
\end{aligned}
$$

Reduce to higher denominations :

5. 728 cents.	8. 608 d.	11. 8493 far.
6. 3452 cents.	9. 755 far.	12. 9614 far.
7. 605 far.	10. 3573 far.	18. 15987 far.

7. 605 far.

$$
\text { 10. } 3573 \text { far. }
$$

15.15 s .

$$
\text { 17. } £ 6518 \mathrm{s.} .6 \mathrm{~d}
$$

19. £3.45.

Find the value in English money of:
20. $\$ 486.65 . \mid$ 21. $\$ 116.796 . \mid$ 22. 8583.98 . | 23. $\$ 47.6917$.

EXERCISE 78.

ORAL.

1. How many cents in \$1? In $\$ 1$? In $\$ 3$? In $\$ \frac{5}{3} ?$ In $\$ \frac{4}{5}$? In $\$ 6$?
2. What part a dor is 10 cts? 20 cts.? 331 cts ? $37 \frac{1}{4} \mathrm{cts}$? 50
3. What part of a dollar is 10 cts ? 20 cts ? $33 \frac{1}{3} \mathrm{cts}$? $37 \frac{1}{2} \mathrm{cts}$? 50
cts.? $66{ }_{3}$ cts.? 60 cts ?
s. How many shillings in 36 d .? In £5? In 8 guineas?
4. How many farthings in 8 d .? In 1 shilling? In 21 ? In 3 cpowns?
5. What part of a pound is a crown? Of $\$ 5$ is 50 cents?
6. How many pence in $3 \mathrm{~s}, 3 \mathrm{~d}$.? In a pound?
7. III. In French money the unit is the franc, the value of which in U. S. money is $\$ 0.198$.

$$
100 \text { centimes }(\mathrm{c} .)=1 \text { frane }(\mathrm{f}) \text {. }
$$

In Belgium and Switzerland the unit of money is also the frane. In Italy it is the lira, in Spain the peseta, each of which has the same value as the franc.
189. IV. In German money the unit is the mark, the value of which in U.S. money is $\$ 0.238$.

$$
100 \text { pfennige }(\mathrm{pf} .)=1 \text { mark }(\mathrm{m} .) \text {. }
$$

In Austria the unit of money is the crown, the value of which is $\$ 0.203$.

Reduce to dollars : 1. 200 francs.
2. 155 marks.

EXERCISE 79.

Change to French money and to German money

| $5 . \$ 75$. | 6. $\$ 123.45$. | 7. $\$ 976.80$ |
| :--- | :--- | :--- | :--- |

S. A pair of gloves cost 12 franes in Paris. How much was that in U. S. money?
9. A book sold for 32 marks in Berlin. What was its equivalent in American money?

MEASURES OF TIME.

190. The primary unit of time is the mean solar day. This is the average or mean interval between two successive passages of the sun across the same meridian. It is customary to make the day at any place begin at midnight.

Another natural unit of time is the solcer year, or the time it takes the earth to make a single revolution about the sum.

TABLE OF TIME.
60 seconds $(\mathrm{sec})=$.1 minute (min .).
in order to keep an exact correspondence between the average calendar year and the solar year. This is done by regarding only those century years which are divisible by four hundred as leap years.

Thus the years $1700,1800,1900$ are not leap years, but 2000 is a lenp year.

EXERCISE 80

Reduce to minutes:

1. 4 da. 17 hr .50 min .
2. 2 yr. 175 da. 18 hr .40 min .
\$. 1 yr. 250 da. 6 hr. 30 min . 4. 5 yr. 60 da, 9 hr .51 min .
Reduce to seconds :
3. 220 da. 25 min .45 sec | 6. 315 da .21 br .38 sec .

Reduce to higher denominations:
7. 57330 sec .
9. 64240 hr 11. 1052348 min .
8. $93324 \mathrm{~min} . \mid 10.128140$ sec. $\mid \quad 12.86215 \mathrm{hrs}$.
15. How many seconds in 4 wk. 5 da. 17 hr .30 sec. ?
14. How many hours in 41 wk. 6 da. 21 hr ?

How many days from:
15. May 1 to July 18 ?
16. June 2 to Dec. 15 ?
17. July 19 to Dec. 25 ?
18. Nov. 21 to Feb. 14?
19. Aug. 16 to Feb. 20?
20. Mar. 7 to Jan. 17 ?
21. Apr. 14 to Oct. 18? 29. Apr. 23 to Feb. 25?
23. Which has the least number of days, the spring months,

April, June, and November.
April, June, and November:
All the rest have thirty-one,
Except the second month alone,
To which we twenty-eight assign,
Till leap year gives it twenty-nine.
The explanation of the fact that February sometimes has 28 days and ometimes 29 days is as follows: The exact length of the solar year is 365 . dys. 5 hrs .48 min . and 48 sec , which is a little less than 365 days. It is convenient to have each calendar year contain an exact number of days. This end is obtained by having three years in stecession each containing 365 days (called common years), followed by a fourth year containing 366 days (called a leap year). Since, however, the true or solar year is a little less than 3651 days, it is necessary to omit 3 leap years in every 400 years,
tre summer months, or the fall months?

EXERCISE 81.
ORAL.

2. How many days in 6 weeks? In 96 hours? In 3 years?
\%. How many hours in 3 days? In 480 minutes? In 2 weeks?
3. Which has the greater mimber of days, summer or winter of 1904?
4. Which of the following years are leap years, and why?

1775, 1805, 1826, 1836, 1866, 1884, 1898, 3000.
1600, 2001, 1640, 1920, 1970, 1954, 1900, 3456.
5. What improvements could you suggest in the distribution of days in the salendar?

Longitude is measured east or west from a fixed point or meridian (usually the meridian of Greenwich).
6. Why is the extra day in leap year added to February and not to some other month ?
7. How long is the day when the sun rises at $7 \mathrm{a} . \mathrm{m}$. and sets at $4 \mathrm{p} . \mathrm{m}$. ? How long, when it rises at $4 \mathrm{a} . \mathrm{m}$, and sets at $7 \mathrm{p} . \mathrm{m}$.?
8. What instant is the exact middle of the week? Of July? Of November?
CIRCULAR AND ANGULAR MEASURE. LONGITUDE.
192. A circle is a plane figure bounded by a curved line, every point of which is equidistant from a point within called the center.

The circumference is the line which bounds the circle. A quadrant is one of the four equal parts into which a circumference is divided. Thus, if $B C$ is one-fourth of the circumference $A C B D$, it is called a quadrant. The angle $B O C$ is then a right angle. Each quadrant is subdivided into 90 equal parts called degrees.

An angle is the amount of opening between two lines which meet, as $C O P$, or $P O B$.

TABLE OF CIRCULAR MEASURE
60 seconds (") $=1$ minute (').

The angle at the center of a circle is regarded as containing the same number of degrees as the part of the circumference (are) corresponding to it. Thus, if the are $P B$ contains 13°, the angle $P O B$ is also spoken of as an angle of 18°. Hence, a right angle, which corresponds to a quadrant, contains 90°.
193. Longitude. - Each great circle on the surface of the earth, as, for instance, the equator, is divided into 360 degrees. A degree of the earth's equator is called a degree of longitude. ${ }_{6} \alpha$ of a degree of longitude is called a geographical unit or knot.

Reduce to seconds:

1. $35^{\circ} 17^{\prime} 25^{\prime \prime}$.
2. $150^{\circ} 50^{\prime \prime}$.

$$
\text { S. } 205^{\circ} 10^{\prime} 40^{\prime \prime} \text {. }
$$

$$
\text { 4. } 330^{\circ} 3^{\prime} 6^{\prime \prime}
$$

EXERCISE 82.

Reduce to higher denominations :
5. $21026^{\prime \prime}$.
6. $270040^{\prime \prime}$.
7. $398234^{\prime \prime}$.
8. What part of the circumference is 30° ? 45° ? 60° ? 90° ? 120° ? 150° ? 225° ? 300° ? 330° ?
9. What part of a semi-circumference is 30° ? 60° ? 45° ? 90° ? 120° ? 135° ? 150° ?
10. Between two cities the longitude is $3^{\circ} 47^{\prime} 15^{\prime \prime}$. How many seconds are they apart?
11. If the earth's equator contains 24902.302 miles, how many miles in a degree? In $1^{\prime \prime}$?
18. How many miles in one geographical mile (1^{\prime} on equator)?

ORAL.

1. How many minutes in 5° ? In 80° ? In 360° ?
is the difference many degrees in 3 right angles? In $\frac{3}{2} \mathrm{rt}$. angles? In $\frac{3}{3} \mathrm{rt}$, angle? In $\frac{1}{2} \mathrm{rt}$. angle? In $\ddagger \mathrm{rt}$, angle? In $\frac{1}{8} \mathrm{rt}$ angles?
2. I. Longths.

4 inches $=1$ hand.
9 inches $=1$ span. $\langle 3$ feet $=1$ pace.
195. II. Numbers in General.

12 units $=1$ dozen (doz.).
12 dozen $=1$ gross
12 gross $=1$ great gross
20 units $=1$ score.

- 1 fathom.

6 feet $=1$ fathom. (120 fathoms $=1$ cable length.
-
III. Sheets of Paper.

24 sheets $=1$ quire
20 quires $=1$ ream.
2 reams $=1$ bundle.
5 bundles=1 bale. ing are representative:
196. Capacity determined by Weight.-It is often more con106. Cate determine the number of bushels, or barrels, in a large quantity of material by weight than by direct measurement.

Some of the different equivalents yary in different states, but the follow-
J_{1} bush of
I bush. of wheat
1 bush. of potatoe
1 bush of beans
1 bush of beans
1 bush. of clover-seed 60 ths. 1 bush. of coarse salt
$-60 \mathrm{ibs} \quad-1 \mathrm{bbl}$ of hour $=196 \mathrm{lbs}$ 1 bush. of rye $\quad 2-56 \mathrm{lbs} .1$ cental of grain $=100 \mathrm{lbs}$. C2 \bigcirc

EXERCISE B3
$[7]$

1. How many fathoms in a mile? How many paces?
2. How many feet in 16 hands? In 5 spans? In 6 fathoms?
3. For what, and by whom, are the following units used : hand, span, fathom, dozen, score, quire, league?
4. How many pounds does a peck of wheat weigh? A peek of oats? Of corn? A quart of oats? 4 quarts of wheat?
5. How many units in 1 great gross? How many dozens in 9 seores?
6. Boughteggs at 45 cents a score and sold them at 30 cents a dozen. What is the gain on a great gross?
7. A box of peneils contains $\frac{1}{2}$ gross. How many pencils in a score of boxes? In 5 dozen boxes?
8. How many sheets of paper in 1 ream? In one bundle?
9. Reduce 17904 sheets to higher denominations.
10. A dealer bought a bale of paper @ 30 cents a quire and sold it by the sheet so as to make $\$ 52$. Find the rate of sale per sheet.
11. How many bushels of whent worth $1 \frac{1}{2}$ cents per po
would equal in value 27 bbl . flour (a) $2 \frac{1}{2}$ cents a pound? 12. What part of the weight of a bushel of corn is the weight of a bushel of oats?
12. Which is heaviest, 7 bu. barley, $5 \frac{1}{2}$ bu. wheat, 10 bu . oats, or $5 \frac{5}{7}$ bu. rye? What is the combined value of the lot at a cent and a half a pound ?

OPERATIONS WITH COMPOUND NUMBERS.

197. I. Reduction Ascending and Descending.-These processes have been considered in connection with the individual tables, but they may be conveniently renewed in connection with the following exereise of miscellaneous examples.

EXERCISE 84. REVIEW.
Reduce:

1. 5 ewt, $46 \mathrm{lb}, 12 \mathrm{oz}$ to ounces. 8. 7 yr .261 da .19 hr .51 min . to minutes. $8.2 \mathrm{mi} .100 \mathrm{rds} .4 \mathrm{yds}, 2 \mathrm{ft} .8 \mathrm{in}$. to inches.
$48^{\circ} 44^{\prime} 19^{\prime \prime}$ to seconds.
2. 3 A .75 sq . rds. 14 sq . yds. 7 sq. f. to square feet.
3. 2 ba. 3 bun. 1 r. 17 qu. 15 sh. to sheets.
4. 7 t .19 cvt .56 lb , to pounds.
5. 43 da .15 hr .14 min . 55 sec , to seconds.
6. $25 \mathrm{bu} .3 \mathrm{pk} .6 \mathrm{qt}$.1 pt to pints.
7. 7 bbl. 14 gal .3 qt .1 pt to pints,
8. 3 cu. yd. $18 \mathrm{cu} . \mathrm{ft} .560 \mathrm{cu}$. in. to cubic inches.

1\%. 5 A. 104 sq. rd. 26 sq. yd. to square yards.
15, 135 rd .3 yd .1 ft .11 in . to inches.
14. 7 lb .9 cz .15 pwt .10 gr . to grains.

Change to higher denominations:

$$
17.17058 \mathrm{n} .
$$

18. 16501 \& sq. yd .

19. How many times will a wagon-wheel 12 ft .10 in . in circumference, revolve in going 4 mi .50 rds ?
\$1. How long, working 8 hrs. a day, will it require to count $\$ 1000000$ at the rate of $\$ 50$ a minute?
S9. How many half-gill ink wells can be filled from 7 gallons of ink?
20. If the income from a store averages 5 cents a minute, what will it amount to doring the three simmer months?
21. Sound travels about 1100 feet per second. How far away was a flash of lightning when the sound of the thunder reached me $6 \frac{3}{3} \mathrm{sec}$. later than I saw the flash?
22. A farm 230 rds long and 180 rds , wide is worth a cent per. sq. yd. What is its total value?
s6. From 3 T. 18 ewt of grain a dealer sells sacks containing 16 lbs .
Q 4 Hz many such sact will there be?
37 . If the grain in the last example were oats, and the sacks contained 1 bushel 2 pecks 4 quarts each, how many would there be?
23. IL. In the addition of compound numbers it is necessary to set similar units in the same column; add each column, beginning at the right; simplify the sum of each column by reduction ascending.
Ex. 1. Add: mos. das.

hrs.

15
15
17

EXERCISE 85

Add:

1. 5 cwt. $81 \mathrm{lbs} .14 \mathrm{oz} . \mid 2.7$ yr. 123 da. 9 hr .17 min .40 sec . 9 cwt. 70 lbs. 8 oz. 4 ewt. 97 lbs. 12 oz . 3 yr .96 da. 13 hr .44 min .53 sec 5 yr. 215 da. 21 hr .52 min .28 sec

S.				
lb.	oz.	pwt. gr.		
15	10	18	14	
9	4	13	21	
23	9	7	6	
1	11	15	22	

6

	4.				5.			
lb.	3	3	B	gr.	bu.	pk.		
3	7	5	2	15	7	3	5	1
4	10	6	1	17	4	2	6	0
11	9	4	2	8	10	3	7	1
7	0	3	0	19	15	0	4	0

Explus ATtiox - The sum of the minutes is 95 , which reduces to 1 howi min and add 1 hr with the bre The We set down the 49 which rednces to 2 das the has We set down the 1 hr . and carry the 2 das. to the column of das. Proceeding in like manner, the entire sum is 1 yr .3 mos .13 das. 1 hr .35 min .

> Ex. 2. Add:

This process is the same as in Ex. 1 except that the $\frac{1}{2} \mathrm{yd}$. obtained as part of the sum of the yds column is reduced to 1 ft .6 in . and added with the ft . and in.

ewt. 48 lb .9 oz ; 8 T. 14 cwt. 56 lb .10 oz
12. $8 \mathrm{mi} .156 \mathrm{rd} .4 \mathrm{yd} .2 \mathrm{ft}$.6 in ; $7 \mathrm{mi} .97 \mathrm{rd}$.3 yd .10 in .; 5 mi .2 yd. 1 ft .9 in ; 296 rd .4 yd. 2 ft ; 3 mi .4 yd. 2 ft .8 in . 13. 5 yr .153 da .9 min. 59 sec .; 24 yr .260 da .8 hr .45 sec .; 270 da. 15 hr .58 min . ; 13 yr .21 hr .43 min .28 sec.; 60 da. 55 min .
14. $23^{\circ} 14^{\prime} 15^{\prime \prime} ; 68^{\circ} 23^{\prime} 44^{\prime \prime} ; 13^{\circ} 46^{\prime} 35^{\prime \prime} ; 9^{\circ} 1^{\prime} 7^{\prime \prime}$.
(15. 1 A. 30 sq. yd. 5 sq. ft. 112 sq. in. ; 9 A. 80 sq. rd. $7 \mathrm{sq} . \mathrm{ft}$.

38 sq. in. ; 31 A. 136 sq. rd. 8 sq. ft. 100 sq. in. ; 75 sq. rd. 47 sq. in.
16. 7 lb .9 ₹ 752 - $16 \mathrm{gr} ; 3 \mathrm{lb} .539 \mathrm{gr} ; 83331$ Э; 30
lb. 1131311 gr .
OPERATLONS WITH COMPOUND NUMBERS:
cu. yd , cu. ft. cu. in

55	14	328
41	23	1518

5.

(1) 6 .

\qquad $39^{\circ} 41^{\prime} 32^{\prime \prime}$
199. VII. Subtraction of compound numbers.

Ex. From $5 \mathrm{mi} .32 \mathrm{rds}, 4 \mathrm{yds}, 2 \mathrm{ft}$. Subtract 3 mi .125 rds .5 yds .1 ft . operation.

EARANAON.

i. rds. yds. fi. We write similar units in the same column, Q $\begin{array}{llll}5 & 32 & 4 & 2 \\ 0 & & \text { and begin with the right-hand column. } 1 \mathrm{ft} .\end{array}$ 2- | 3 | 125 | 5 | 1 | from 2 ft . leaves 1 ft ; 5 yds is more than 4 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 206 | 4 | 1 | | $1220 \quad{ }^{4 \pi}=\int_{1} 6 \mathrm{in}$. yds.; hence, it is necessary to borrow 1 ra . (or $11226 \quad 4 \quad 26 \mathrm{in}$. 52 yds.) from 32 rds. Adding 51 ys 10 yds, Teaves $4 \frac{1}{2}$ yds. Similarly, we borrow 1 mile, or 320 rds, from 5 miles, and add it to 31 rds , and then sabtract 125 rds. from 351 rds , giving 226 rds as a remainder. Hence, we obtain, $1 \mathrm{mi} .226 \mathrm{rds} .4 \frac{\mathrm{yds},}{1 \mathrm{ft} \text { as the differ- }}$ ence; it is necessary, however, to reduce $\frac{1}{2} \mathrm{yd}$. to 1 ft .6 in . to get the result in the most convenient shane, which gives as a final result

$$
1 \mathrm{mi} .226 \text { rds. } 4 \text { yds. } 2 \mathrm{ft} .6 \mathrm{in} .
$$

200. Difference between Two Dates.- In finding the interval of time between two dates, 30 days are usually reckoned as 1 month, and 12 months as 1 year. If hours are included, the reckoning is made to begin at 12 o'clock midnight.

mi. rd. yd. ft. *in. A. sq. rd. sq. yd. sq. ft. sq. in. | 38 | 111 | 3 | 2 | 5 | 75 | 108 | 21 | 5 | 46 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llll}26 & 244 & 4 & 2 \\ & & \end{array}$

9.	10.
180°	0

\qquad 125 a \quad mi. rd. yd. ft. in | | 0^{\prime} | $5^{\prime \prime}$ | 180° | 0^{\prime} | $0^{\prime \prime}$ | 120 | 251 | 0 | 2 | 0 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 76° | 34^{\prime} | $48^{\prime \prime}$ | 125° | 39^{\prime} | $46^{\prime \prime}$ | 89 | 300 | 4 | 2 | 9 | 19. From 7 bbl. $9 \mathrm{gal} .1 \mathrm{qt}$. take 3 bbl. $25 \mathrm{gal} .1 \mathrm{pt}$.

18. From 99 mi .4 yd. 6 in . take 30 mi .166 rd .5 yd .2 ft .10 in 1. From 83 A. 115 sq. rd. take 76 A. 139 sq. rd. 25 sq. yd. 118 sq . in.
19. From 17 T. take 3 T. 16 cwt 49 lb .15 oz .
20. From 360° take $315^{\circ} 46^{\prime} 50^{\prime \prime}$.
21. From the sum of 9 mi .4 yd .2 ft .8 in , and 18 mi .130 rd 1 ft .10 in . take 25 mi .275 rd .5 yd .2 ft .11 in. 18. From the difference between 5 A . and $85 \mathrm{sq} . \mathrm{ml} .19$ Eq. yd. 108 sq , in. take the sum of 1 A .99 seq rd. 130 sq . in. and 2 A .83 sq. rd. 19 sq. yd. 8 sq . ft. 116 sq . in.
Find the differenee in years, months, and days between the following pairs of dates.
bbl. gal. qt. pt. T. ewt. lb. oz. lb. $\overline{3} \quad 3$ Я gr.

9	24	2	1	8	11	47	10	5	8	5	2	7

1	19	3	0	4	15	50	8	2	10	6	0
15											

19. Feb. 18 -Nov. 30. | 20. Mch. 25-Dee. 5.
20. June 8, 1875-Oct. 15, 1879.
21. Feb. 22, 1732-Dee. 14, 1799 . 28. Dec. 14, 1834 -Jan. $13,1858$. e7. Dec. 5,1870 -June 23,1897 25. Oct. 12, 1887-Aug. 9, 1892. 26. Apr. 30, 1817-Feb. 2, 1903. Aug. 25, 1900,7 yrs. 4 mo .15 da
22. When was a man born who died Oct. 18, 1875, aged 92 yrs. 11 mo .26 da.?
23. A man was born Jan. 23,1810 , and lived 71 yrs. 3 mo . 24 da. What was the date of his death?
24. Mr. Smith was born Nov. 8,1850 , and his son, Jan. 17, 1877. On what day is the son half as old as his father? How old was each Jan, 1, 1901?
25. III. Multiplication of compound numbers.

Ex. If one lot is $5 \mathrm{rds} .2 \mathrm{yds}, 2 \mathrm{ft}$. wide, how wide are 7 lots? Operation. Explanation.

\bigcirc	On	
Tds	yds.	
-5	2	2
	$\begin{aligned} & 1 \frac{1}{2} \\ & (2) \\ & \hline \end{aligned}$	$\stackrel{2}{1}$

We write the multiplier under the lowest unit of the multiplicand. 7 times 2 ft , are 14 ft , or 4 yds . and 2 ft . We set down the 2 ft . and reserve the 4 yds. to be added to the next product.

7 times 2 yds, gives 14 yds ; $14 \mathrm{yds}+4 \mathrm{yds} .718 \mathrm{yds}$, or 3 rds and 18 yds. We set down $1 \frac{1}{2} \mathrm{yds}$, and add 3 rds, to the product of 5 rds , by 7 , obtaining $35 \mathrm{rds} .+3 \mathrm{rds}$, or 38 rds . Hence, the product in its first form is 38 rds. 12 yds. 2 ft . Reducing $\frac{1}{2}$ yd. to 1 ft .6 in ., this result simplifies into 38 rds. 2 yds. 0 ft .6 in .

2
12. If a dealer cart 27 T. 5 ewt. 85 lb . of coal one day, how much will he cart in 3 weeks ?
13. If a farmer plow 3 A .107 sq . rd. $3 \mathrm{sq} . \mathrm{yd} .5 \mathrm{sq}$. ft. in one day, how much will he plow in 8 days?
14. A certain coil of wire contains $280 \mathrm{rds} .4 \mathrm{yd} .1 \mathrm{ft}, 3 \mathrm{in}$, how much will 25 such coils contain?
202. IV. The division of compound numbers may be of two kinds :
(1) The division of a compound number by an abstract number, that is, into a number of equal parts;
(2) The division of one compound number by another compound number.
Ex. 1. Divide 52 gal. 3 qt. 1 pt. by 9.
So. Divide 52 gal. 3 qu. 11 t. 9. .
Solution.
We write the divisor to the left and divide the highest denomination first. 9 is contained in 52 gals. 5 times, with a remainder of 7 gal . We set down the 5 and convert the 7 gals. into quarts, giving 28 qte. 28 qts +3 qts $=31$ qts. 9 is contained in 31 qts. 3 times, with a remainder of 4 pts. We set down the 3 and convert 4 qts into 8 pts. 8 pts. +1 $\mathrm{pt} .=9 \mathrm{pts} \quad 9$ is contained in 9 pts , once. Hence, the quotient is 5 gals . 8 qts .1 pt.
Ex. 2. Divide $56 \mathrm{lbs}, 9 \mathrm{oz} .12 \mathrm{pwt}$. by 9 lbs .5 oz . 12 pwt .
Reducing each compound number to the same lowest denomination.
$56 \mathrm{lb} .9 \mathrm{oz} 12 \mathrm{pwt}=13632 \mathrm{pwt}$.
Multiply:

1. £8 15 s. 9 d .3 far. by 6 .
2.11 T. 13 ewt. 95 lb .12 ez. by 5.
EXERCISE 87.
2. 11 T. 13 ewt. 95 lb .12 ez. by 5 .
3. 15 yr .247 da .19 hr .25 min .40 sec. by 8.
4. $27 \mathrm{lb}, 8 \approx 53179 \mathrm{gr}$, by 13 .
5. $12 \mathrm{mi}, 45 \mathrm{rd}$.3 yd. 2 ft .8 in. by 10
6. 9 mi .156 rd .2 ft .10 in . by 15.
7. 8 A. 125 sq. rd. 26 sq. yd. 7 sq. ft. 131 sq. in. by 9 .
8. 12 A. 130 sq. rd. 18 sq. yd. 5 sq. ft. 88 sq. in, by 7.
9. $7^{\circ} 17^{\prime} 45^{\prime \prime}$ by $15 . \mid \quad 11.82 \mathrm{bu} .3 \mathrm{pk} .7 \mathrm{qt} .1 \mathrm{pt}$. by 13.

Divide:

9 lb .5 oz 12 pwt. $=2272$ pwt.
2272)13632(6, Quotient.

EXERCISE 88.
$69 \mathrm{bu} .3 \mathrm{pk} .5 \mathrm{qt}$.1 pt. by 5.4 sec by 4
8. 59 T. 4 ewt. 93 lb .10 oz by 6 . \mid 4. 228 gal. 1 qt. 1 gi. by 15.
5. $43 \mathrm{mi} .11 \mathrm{rd}$..3 yd. 2 ft .2 in . by 8.
6. 90 mi .186 rd .4 yd .1 ft .9 in . by 11.
7. 33 A. 116 sq. rd. 13 sq. yd. 6 sq. ft. 107 sq. in. by 7.
8. 53 A .115 sq . rd. 8 sq. yd. 8 sq . ft. 108 sq. in. by 9 .
9. $84 \mathrm{lb} 1 \approx 632$ Э 11 gr by 13 .
10. From a bill of grain containing 325 bu .3 pk .7 qt ., how many sacks may be filled, each holding 1 bu. 3 pk .5 qt .?
11. From a lot of wine amounting to 16 bbl .2 gal .1 qt ,, botlles containing $3 \mathrm{qt}$..1 pt .2 gi . are filled. How many are there?
12. If a lumberman get out $3 \mathrm{~cd} .7 \mathrm{cu} . \mathrm{ff} .712 \mathrm{cu} . \mathrm{in}$. of wood a day, how many days will he require to prepare 55 cd . $5 \mathrm{cu} . \mathrm{ft} .720 \mathrm{cu}$. in. ?
13. A farm containing 92 A .50 sq . rd. $7 \frac{1}{2} \mathrm{sq}$. yd. is divided into house lots, each having an area of 20 sq. rd. 15 sq. yd. 5 sq. ft . How many will there be?
14. A lad walks 2 mi .275 rd .4 yd. an hour, how long will it take him to walk $22 \mathrm{mi} .285 \mathrm{rd} .4 \mathrm{yd} .1 \frac{1}{2} \mathrm{ft}$?
15. How many prescriptions, each weighing 132 月 10 gr ., can a druggist make from $7 \mathrm{lb} \cdot 357 \leq 27.8 \mathrm{gr}$. of quinine?
16. If a nugget weighs $1 \mathrm{lb}, 1 \mathrm{oz} .1$ pwt. 1 gr ., how many similar nuggets will be required to weigh 522 lbs .1 oz .?

APPLICATION TO LONGITUDE AND TIME.

203. Relation of Longitude and Time.-The earth revolves on its axis from West to. East once in every 24 hours. As a result the sun appears to go round the earth from East to West in the same time. Hence, if we take a station on the earth at a given place, at all places east of that place any particular time, as noon, is earlier, since the sun arrives there earlier; at all places to the west time is later, since the sun arrives there later.
Since the sun passes over 360° or 15° of longitude. In 1 1 hour it passes over $\frac{1}{24}$ of 360°, or 15° of longitude. In 1 minute of time it passes over $\frac{1}{60}$ of 15°, or 15^{\prime} of longitude; in 1 second of time it passes over $\frac{1}{60}$ of 15^{\prime}, or $15^{\prime \prime}$ of longitude.

Stating these relations as a table:
15° of longitude $=1$ hour of time.
15^{\prime} of longitude $=1$ minute of time.
$15^{\prime \prime}$ of longitude $=1$ second of time.
By means of this table, if we know the difference of longifude between two places, we may determine this difference in time; and, vice versa, if we know their difference in time, we may determine their difference in longitude.

In an old, well-settled country, of which maps have been made, the former relation is likely to be of use to the traveler, since he can obtain the difference in longitude between two places from a map or table, and then compute the difference in time. On the other hand, in exploring a new country the difference in time between places is known by the sid of chronometers, and it is necessary to determine the difference in longitude in order to make a map of the country, to determine distances in miles between order to maces, etc.

EXERCISE 89

oral.
On what and from what is latitude reckoned?
2. On what and from what is longitude reckoned?
S. What is the greatest latitude a place may have? Where is that place?
4. What is the greatest longitude a place may have?
5. What is the least latitude a place may have? Where are such places? 6. What is the least longitude a place may hare? Where are such 6.
places? What point on the earth has neither latitude nor longitude?
7 . Wher
What class of men use latitude and longitude the most? For what do they use it?
9. What difference in longitude corresponds to a difference in time of arse in longitude corresponds to a diference in time of 3 hours? Of 5 hours? Of 2 hrs .3 min . Of 40 min .? Of 50 km ? Of 1 hr 10 min ? Of 30 sec ? of 10 min .40 sec ?
10. What difference in time corresponds to a difference in longitude of 30° ? Of 60° ? Of 45^{\prime} ? of $1^{\circ} 30^{\prime}$? of $2^{\circ} 30^{\prime}$? of $4^{\circ} 30^{\prime}$? of 75° ? of 135° ?
11. In which direction is the earth revolving on its axis? Which direc11. In which arear to be moving?
ion does the sum appear to be moving?
12. When it is noon at Chicago, is it morning or afternoon at Boston?

At Denver? At New York? At Omaha? At San Francisco? At London? At Paris? At Washington, D. C.? At Galveston? At St. Louis? At Montreal? At Havana? At your home?
13. Arrange the places of Dxample 12 in a column, putting the city at which the sun rises first at the top and the city at which the sun rises last at the bottom, and the rest in order betreen.
204. I. Given the difference in time of two places to determine their difference in longitude.

Ex. The difference of time between Boston and Washington is 23 min .47 sec . What is the difference of longitude?
Solution.
23 min . difference in time corresponds to $15^{\prime} \times 23$,
or $5^{\circ} 45^{\prime}$ difference in longitude.
47 sec. difference in time corresponds to $15^{\prime \prime}$
or $11^{\prime \prime} 45^{\prime \prime}$ difference in longitude. $\times 47$,

Adding, $5^{\circ} 45^{\prime}$
$\frac{11^{\prime}}{5^{\circ}} 56^{\prime} 45^{\prime \prime}$

205. II. Given the difference in longitude of two places, to determine the difference of time.
Ex. The difference in longitude between New York and San Francisco is $48^{\circ} 23^{\prime} 45^{\prime \prime}$. Find the difference in time.
Solution.
48° difference in longitude corresponds to $\frac{48}{15} \mathrm{hr}$.,
T J $\sqrt{\text { or } 3} \mathbf{~ h r}$. 12 min , difference in time.
difference in longitude corresponds to $\frac{23}{15} \mathrm{~min}$.,
or 1 min .32 sec , difference in time.
$45^{\prime \prime}$ difference in longitude corresponds to $\frac{45}{15} \mathrm{sec}$.,
or 3 sec. difference in time.
Adding 3 hr . 12 min ., 1 min . 32 sec ., and 3 sec , we obtain 3 hr .13 min .35 sec ., Difference in time.
If two places are both in east longitude, or both in west longitude, subtract in order to get their difference of longitude; if one is in east, the other in west longitude, add their longitudes in order to get the difference in longitude.

EXERCISE 90.

Determine the difference of longitude, having given the difference of time, as follows:

1. 1 hr .25 min .10 sec .
2. 5 hr .0 min .42 see.
3. 7 hr .55 min .49 sec
4. 9 hr .31 min .59 sec .

Find the difference of time between two places when the difference of longitude is as follows:
5. $43^{\circ} 10^{\prime}$.
7. $12^{\circ} 7^{\prime} 45^{\prime \prime}$.
6. $77^{\circ} 40^{\prime} 15^{\prime \prime}$.
8. $69^{\circ} 33^{\prime} 30^{\prime \prime}$
C. The difference of time between New York and Paris is 5 hr .5 min .20 sec . What is the difference of longitude? At which city is it noon first?
10. The difference of time between Canton, China, and Gincinnati is 10 hr .49 min .52 sec . What is the difference of longitude?
11. The difference of longitude between two cities is 42° $8^{\prime} 30^{\prime \prime}$, what is the difference in time? When it is noon at the Western city, what is the time at the Eastern? When it is 10 A. M. at the Eastern city, what time is it at the Western? 12. When it is noon at the western of two points, whose difference of longitude is $75^{\circ} 4^{\prime} 45^{\prime \prime}$, what is the time at the other? When it is 6.30 P. M. at the Eastern city, what is the time at the other?
(13) When it is 12 oclock at San Franciseo it is 2 hr 58 min .23 s sec . P. m. at Rochiester. What is the difference of 10usitude?
(45) A ship's chronometer set at Greenwich points to 8 hr: 14 min .56 see. P. M. when the sun is on the meridian. What is the longitude of the ship?
15. Longitude of Galveston is $94^{\circ} 46^{\prime} 34^{\prime \prime} \mathrm{W}$. and of Mobile is $88^{\circ} 1^{\prime} 19^{\prime \prime} \mathrm{W}$. When it is 10 A . m. at Mobile, what time is it at Galveston?
16. When it is noon at San Francisco (long. $122^{\circ} 26^{\prime} 45^{\prime \prime}$ W.)
it is 3 hr .9 min .7 sec. p. M. at Philadelphia. What is the longitude of Philadelphia?
[Note- First find difference of longitude.]
17. Chicago is in long. $87^{\circ} 34^{\prime \prime} 30^{\prime} \mathrm{W}$. and Calcutta is 88° $23^{\prime} 15^{\prime \prime} \mathrm{E}$. At 7 P.M. in. Chicago what is the time in Calcutta? At 6 A. M. in Calcutta, what is the time in Chicago?
(18) When it is $8 \mathrm{hr}, 12 \mathrm{~min} .48 \mathrm{sec} . \mathrm{A}$. m. at Jerusalem (long. $35^{\circ} 32$ E.) it is 6 A. M. at Paris. Find long. of Paris.
19. When it is noon at Rome (long. $12^{\circ} 27^{\prime} 15^{\prime \prime}$ E.) it is 7 hr .20 min .59 sec. f. M. in Manila Bay. What is the longitude of Manila Bay?
(20) The longitude of St. Joseph is $109^{\circ} 41^{\prime} 44^{\prime \prime} \mathrm{W}$. and of Canton is $113^{\circ} 14^{\prime} 1^{\prime \prime}$ E. What is their difference of longitude? Of time?
(21.) The difference of time between St. Paul (long. $93^{\circ} 5^{\prime} \mathrm{W}$. and Havana is 42 min .45 sec . What is Havana's longitude? 22. The diffierence of time between Boston (long. $71^{\circ} 3^{\prime} 30^{\prime \prime} \mathrm{W}$.) and Stockholm is 5 hr .56 min .28 see. Find long. of Stockholm.
206. Standard Time- Since 15° of longitude correspond to 1 hour of time, it has been found convenient to divide the territory of a country into belts 15° wide, the time in each belt being determined by a meridian approximately central
in the belt. Time determined in this way is called Standard or Railway time. The standard meridians in the United
T. States and Canada are the 75th, 90 th, 105 th, and 120 th (west
from Greenwich), and the corresponding belts are said to have Eastern, Central, Mountain, and Pacific time. Standard time in the eastern part of a belt may thus be as much as a half hour abead of true local time; and in the western part of a belt may be a half hour behind. Travelers in passing from one belt to another must change their time by one hour: The boundaries of belts have been made somewhat irregular, owing to the configuration of the country, local conveniences, ete. On the opposite page is a map showing the standard time belts in the United States.

COMMON FRACTIONS AND DENOMINATE NUMBERS
207. I. To reduce a fraction of a denominate unit to lower units.

Ex. 1. Reduce $\frac{3}{3}$ mile to lower units.
 $\frac{1}{3}$ of $\mathrm{a} \mathrm{rd}=.\frac{1}{3} \times \frac{11}{2} \mathrm{yds}=1 \frac{5}{5} \mathrm{yds}$. $\frac{5}{5}$ of $a y d .=\frac{8}{8} \times 3 \mathrm{ft} . \quad-21 \mathrm{ft}$ $\frac{1}{2}$ of $a \mathrm{ft} .=6 \mathrm{in}$.
Hence, we haye $213 \mathrm{rds} 1 \mathrm{yd} .2 \mathrm{ft}$.6 in ., Result.
Or the work may be expresed as an example in division.

208. II. To express a denominate number as a fraction of a higher unit.

Ex. 1. Express 2 ft .8 in. as the fraction of a yard.
Solution.

$$
2 \mathrm{ft} .8 \mathrm{in} .=32 \mathrm{in} .=\frac{3}{3} \mathrm{yd} .=\frac{3}{3} \text { yd., Result }
$$

209. It is sometimes required to express the fraction of one unit as the fraction of a lower or higher unit.
Ex. 1. Reduce ${ }_{720}^{1}$ ya. to a fraction of an ineh.

$$
y^{\frac{1}{20}} \text { of } 1 \text { yd. }=y^{\frac{1}{20}} \times 3 \times 12 \text { of } 1 \mathrm{in} .=\frac{3}{20} \mathrm{in} \text {, Reault. }
$$

Ex. 2. Reduce $\frac{8}{9}$ of a pint to a fraction of a gallon.

$$
\frac{\mathrm{g} .}{\mathrm{pt}}=\frac{8}{3} \times \frac{1}{4} \times \frac{1}{4} \text { of } 3 \mathrm{gal}=\frac{1}{9} \mathrm{gal}_{\mathrm{g}} \text {, Resull. }
$$

EXERCISE 91.

Reduce to lower denominations:

1. $\frac{7}{8} \mathrm{mi}$	5. $\frac{8}{27} \mathrm{yr}$	9. $\frac{11}{15} \mathrm{lb} . ~ A p$.

2. $\frac{3}{3} \mathrm{t}$.
3. $\frac{25}{22}$ degree.
S. $\frac{8}{9} \mathrm{lb}$. T
4. $\frac{7}{36} \mathrm{sq}$. rd.
5. $\frac{71}{7} \mathrm{cu} . \mathrm{yd}$.
6. £19.
7. $\frac{49}{64} \mathrm{bu}$.
8. $\frac{25}{29}$ acre.
9. $15 \frac{19}{19} \mathrm{mi}$. to in
10. $\frac{1}{587 \%} \mathrm{yr}$, to hr .
11. $\frac{31}{1260} \mathrm{bbl}$. to pt .
12. 3000 day to min
13. $\frac{9}{1600}$ bu. to pts.
14. 17820 sq. rd. to sq. in

Beduce:
79. 4 hr .30 min to the fraction of a day.
20. 3 pk .4 qt .1 pt . to the fraction of a bushel.
21. 8 oz. 13 pwt .8 gr . to lb .
22.) $248 \mathrm{rd}$.4 yd. 2 ft .8 in . to mi.
28. 47 sq. rd. 12 sq. yd. 2 sq. ft. 132 sq. in. to A.
24. $2 \mathrm{qt}$.1 pt .2 gi. to gallons.
25. 6 da. 17 hr .16 min .48 sec . to weeks.
26. $6 \mathrm{ewt} .43 \mathrm{lb}, 9 \frac{3}{5} \mathrm{oz}$. to ton.

Add:
27. $\frac{1}{3} \mathrm{mi} . \frac{1}{2} \mathrm{rd} . \frac{3}{4} \mathrm{ft} . \quad$ 29. $\frac{2}{6} \mathrm{lb}, \frac{1}{8} \mathrm{oz} \cdot \frac{1}{4} \mathrm{pwt}$. 28. $\frac{5}{2}$ yr. $\frac{3}{5}$ da. $\frac{7}{8} \mathrm{hr}$.

Find the difference between:
S1. $\frac{10}{27}$ A. and $\frac{7}{8}$ sq. rd. | S2. $\frac{1}{9}$ mi. and $\frac{19}{19} \mathrm{rd}$.
DEOIMAL FRACTIONS AND DENOMINATE NUMBERS.
210. I. To reduce the decimal of a denominate unit to
lower units.
The method of this reduction is best shown by an example.
\square Ex. Express 0.425 gal. as quarts and pints.
Solution.
$0.425 \mathrm{gal} .=4 \mathrm{qt} . \times 0.425=1.7 \mathrm{qt}$
$0.7 \mathrm{qt}=2 \mathrm{pt} . \times 0.7=1.4 \mathrm{pt}$.
1 qt. 1.4 pt ., Result.
211. II. To express a denominate number as the decimal of a higher unit.

Ex. Express 5 mo .12 da . as the decimal of a year.
Joluron.

Reduce to integral values in lower denominations :

$\begin{array}{ll}\text { 2. } .925 \mathrm{lb}, \mathrm{T} . & \text { 6. }-423 \mathrm{~A} . \\ \text { s. } .8324 \mathrm{~T}, & 10 . .046 \mathrm{mi} .\end{array}$
4. .575 bu .
7. $.576 \mathrm{lb} \cdot \mathrm{Ap}$.
8. .0813 yr.
11. . 45 bbl .
18. Find the value of 2.1365 months.
14. What is the sum of .14 mi . and .26 rd . ?
15. What is the difference between .35 yr . and .48 mo ?

Reduce to the decimal of the next higher unit

$$
\begin{aligned}
& \text { 16. } 7 / 50^{\prime} \text {. } \\
& \text { 17. } 204 \mathrm{rd} .4 \mathrm{yd} .2 \mathrm{ft}
\end{aligned}
$$

19. 3 oz .8 pwt. 12 gr
20. 16 ewt. $55 \mathrm{lb} .5 \mathrm{oz}, \quad$ 21. 2 pk .4 qt .13 pt.

EXERCISE 93.

GENERAL. ORAL.

1. What will a rod of wire cost at a cent an inch ?
2. Bought a peek of nuts at $10 \mathrm{ct}$. a pt. Find the cost.
3. A grocer paid 18 ct a doz. for some eggs and sold them at 35 ct . a
score. What was his gain on each egg? What was his gain on a dozen?
On a score? On a hundred?
4. How many pint bottles can be filled from 25 half-gal. jars of wine?

From 20 gallons?

5. I bought calico at half a cent an inch, and sold it at 6 yards for a dollar. Did I gain or lose? How much on a yard?
6. A grocer buys tomatoes at 25 ct a bushel and retails them at the rate of 2 qts. for 5 cents. How mueh does he gain on a bushel?

7 . How many dozen in 7 score and 10 ?
8. How many square inches on a surface 3 inches square? On one 8 in . square? 2 ft square?
9. How many cubic inches in a 4 in. cube? In a 6-in. cube? In a 1-ft. cube? In half a cubic foot:
10. A dealer buys a half dozen saws at $\$ 30$ a score, and sells them so as to gain 50 cents apiece. What is the selling price of each?
11. How many feet in 17 fathoms? 28 fathoms?
12. How many hands are equal to 6 ft ? To $7 \frac{1}{2} \mathrm{ft}$?
13. Which are the next 3 leap years? How do you tell the leap years? Will 1926 be a leap year?
14. What was the first day in the 18 th century? The last day? Which century were you born in? In which centary is Dec., 1900? How many leap years in the 20 th century?
15. What is the greatest difference of longitude two places can have? What is the longitude of your nearest city? Its latitude?
16. Which is heavier, a pound of gold or a pound of meat? An ounce of which of these is the heavier?
17. How would you find the number of ca . in. in a barrel containing $31 \frac{1}{2}$ pallons? In 10 bushels?
18. How would you find the number of gallons that a bin, containing 100 bushels, will hold? $\quad \Rightarrow$
19. Which is the greater quantity, 6 dozen dozen or half a dozen dozen?

EXERCISE 94.

GENERAL REVIEWV.

1. From \& A. take 75 sq . rd. 27 sq. yd. 5 sq. ft . 75 sq. in. \square
2. Reduce $25 \mathrm{da}, 16 \mathrm{hr}$. 50 min . to the decimal of a week.
3. Add .07 year, $\frac{17}{25}$ day, and $\frac{7}{8} \mathrm{hr}$.
4. What would 8 gal. 2 qt. 1 pt. of wine cost at $\$ 6$ a gallon?
5. If a cubic foot of water weigh 62.5 lbs , how many $\mathrm{cn} . \mathrm{yds}$ in a ton of water? How many ounces does a cu. in. of water weigh?
(6) How many steps, of 28 in. each, must a man take in walking 7 mi . 120 rds.?
(7.) If a man walk 64 mi .256 rds in 20 kr .15 min , how long will he require to walk 31 mi .64 rds ?
6. How far will the same gentleman walk in 6 hrs, 45 min , at the same rate?
7. A baker pays $\$ 4.90$ for a barrel of flour. He bakes it into 2-lb. loaves of bread, which he sells at 7 cents each. What is his gain?
8. When it is 15 min , after 10 A . M. at a certain city, what is the time at a vestern city if the longitude is $48^{\circ} 7^{\prime} 30^{\prime \prime}$ greater?
9. At an observatory the sum is seen to have passed through $12^{\circ} 51^{\prime} 45^{\prime \prime}$ since noon. What time is it?
10. A dozen spoons, each weighing 1 oz. 8 pwt. 20 gr ., were sold at $\$ 1.50$ an oz. What was the total price?
11. If I buy a 5 -gal, can of oil for 45 cents and spill 2 pints, what do I really pay for each gallon that I use?
12. A wholesale grocer bought 2 T. 12 ewt. 60 lbs cheese for $\$ 313.50$, and retailed it at ct an oz. Find his gain.
(10. From a farm containing 80 A .60 sq . rd. was sold a portion containing $38 \mathrm{~A} .156 \mathrm{sq} . \mathrm{rd}$, at $\$ 62.80$ an acre, and the balance at $\$ 74.40$. What was the total selling price?
was the total seling price?
13. What part of 4 gal .3 qt . is 2 qt .1 pt .2 gi ?
14. What part of 4 gaL .3 qt . is 2 qt .1 pt .2 gi .
(17) What decimal of a rod is 1 ft .75 in ?

48, Find $\frac{7}{8}$ of $5 \mathrm{bu} .2 \mathrm{pk} .6 \mathrm{qt}$.1 pt .
18 How long is it between half-past nine P. M. of Jan. 17, 1834, and quarter before four A. M. of the following 4th of March? (Answer in days, hours, and minutes.)
20. If an express train travel 45 mi an hour, how many feet does it move over each second?
21. If the diameter of a circle is 1 mile, the circumference is 3.141592 mi. Express this decimal in integers of lower units.
29. Which is the middle day of the year 1901?
25. If a family use 6 gas burners every evening of the winter months for 4 hours of each evening, and each burner consumes 18 ft . an hour, what will their gas bill be at $\$ 1.30$ per thousand?
24. How many parcels, each weighing 3 lbs. 7 oz , can be made up from .924 T.?
25. If 6 horses eat 19 bu .24 pk . of oats in 11 days, how long will 25 bu. 2 pk. 3 qt. supply 13 horses?
26. Take from 180° the sum of $71^{\circ} 4^{\prime} 46^{\prime \prime}$ and $23^{\circ} 55^{\prime} 39^{\prime \prime}$.

27 . Find the value of $12 \frac{1}{4}$ civt $+391 \mathrm{lb} .+78 \mathrm{oz}$.
27. Find the value of $12 \frac{4}{2} \mathrm{cwt}+391 \mathrm{lb},+78 \mathrm{oz}$
88. If 3 lbs , of wheat make 2 lbs . of flour, how many barrels of floor em 28. If 3 lhs of wheat make 2 lbs. of flour, how many barrels of flour eam be made from 343 bd . of wheat?
29. Reduce $£ 1.0735$ and .3764 mi . to integral values.
30. Change $11 \mathrm{oz}, 18 \mathrm{pwt} .15 \mathrm{gr}$. to the decimal of a pound.
51. How many square feet in the surface of a box a yard long, 8 inches wide, and 18 inches deep?
33. A stream 25 yards wide and 25 feet deep flows 3 miles an hour. Find the number of cubic feet of water which passes a certain point in a minute. 3s. How many revolutions will a wheel 9 feet 4 inches in circumference make in passing a field 54 rods 4 yards 2 feet 4 inches long?
34. Change 51830.7125 hours to years, days, hours, minutes, and second, reckoning 365 days to a year.
85. If a laborer dig a certain trench in 39 days, 4 hours, 10 minutes, how long will it require 8 laborers to dig a similar trench three times as long?

S6. A box 7 feet long, 4 feet 4 inches wide contains $3 \frac{1}{2}$ cubic yards. How deep must it be?
57. A bir 12 feet 4 inches long and 6 feet 6 inches deep is to contain 100 bushels of grain. How wide must it be made?
ss. If a mile of a certain wire weigh a ton, what is the weight in ounces of one foot of it?
39. Reduce $75 \mathrm{~A} .95 \mathrm{sq} . \mathrm{rd}, 25 \mathrm{sq}$. yd. to the decimal of a square mile 40. Change 2.12345 years to units of lower denominations.
47. From the sum of $17^{\circ} 31^{\prime} 28^{\prime \prime}$ and $41^{\circ} 19^{\prime} 22^{\prime \prime}$ take the difference between $81^{\circ} 18^{\prime} 43^{\prime \prime}$ and $63^{\circ} 31^{\prime} 52^{\prime \prime}$
49. A cellar 20 yards long and 30 feet wide is to be dug. What depth will make 520 cubic yards?
43. When a locomotive is traveling 55 miles an hour, how many feet is it rumning each second?
44. If a train is running 40 feet 4 inches each second, how long will it require to run 90 miles?
45. Change 185 rods 3 yards, 1 foot, 10 inches to the decimat of a mile. 45. Some numbers occur several times in the different tables of com pound numbers. Collect all the times the number 12 oceurs. Same for 8 . Same for 60 . Same for 3 . Same for 24 . Same for 16.
47. Change 3297.147 yds. to mi. rd. yd. ft . and in.
48 . How many cubic feet in a box 4 ft . 3 in. wide, 4 ft .6 in . long, ands
8 in. deen? 8 in. deep?
49. From 180° take one-half the sum of $46^{\circ} 18^{\prime} 39^{\prime \prime}$ and $57^{\circ} 12^{\prime} 17^{\prime \prime}$.
Hso take one-half their difference from 180°. Also take one-half their difference from 180°.
50 . The distance from the earth to the sun is $93,000,000$ miles. How
long would it take a boy who can run 11 ft . a second to traverse that dissance? How long would it take a locomotive running a mile in 50 seconds?
ments it is not necescary to carry the work beyond the fourth or fifth figure, since all ordinary measurements are not accurate beyond these figures.

APPLICATIONS RELAATING TO AREAS.

CHAPTER XII.

PRACTICAL MEASUREMENTS.

212. Ilustrations. HT The practical application of denominate numbers to a special kind of work is facilitated in many cases by the use of a special unit which is peculiar to that particular kind of work. For example, if it be required to determine how many shingles are necessary to cover a roof 40 feet long and 30 feet wide, the computation is greatly simplified by the knowledge of the fact that, on the average, a roof space of 100 square feet contains 1000 shingles. Thus, since the above roof contains 12 times 100 square feet, 12000 shingles will be required to cover it,
Similarly, if it be required to determine how many bricks will be needed to build a wall 50 feet long, 30 feet high, and 3 bricks thick, the reckoning is areatly facilitated by the knowledge that a piece of wall 1 foot square and is gence, to build the above wall will require $50 \times 30 \times 21$ or 31500 bricks.
213. General Methods.-It will be observed that computations of this kind consist in
1st, the determination of the number of units of area or olume in a given object, from/linear measurements (see Arts. $175,179)$.
$2 d$, the use of a special anit in each kind of work applicable to a unit of area or volume of the given material. In the numerical applications of these methods frequent opportunities oceur to diminish the work by cancellation. All the operations to be performed should be grouped together, and all possible cancellations made, before the final reduction is made.

It should also be remembered that in computations based on measure200

Each township is subdivided into 36 sections, each containing 1 square mile, or 640 acres. The sections in a township are numbered according to a regular plan from 1 to 36 .

6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	14	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

1 SECTION = 640 ACRES.

A section is subdivided into quarter-sectious, each containing 160 acres.
Quarter-sections are subdivided into half-quarter-sections and quarter-quarter-sections or lots. A lot therefore contains 40 acres.

EXERCISE 95.
How many acres in a field:

1. 3600 ft . long and 121 ft . wide. S. 495 yd . by 220 ft .
2. 1815 yd. long and 256 ft , wide. $4.81 \mathrm{ft} . \times 55 \mathrm{yd} . *$

Find the areas of the following rectangular surfaces:
5.17 ft . long and 12 ft . wide in square yards.
6. 8 yd . long and $5 \frac{1}{2} \mathrm{yd}$. wide in square rods.
7. 140 rd by 72 rd in acres.
8. 7 yd .2 ft . by 3 yd .1 ft . in square yards.
9. $45 \mathrm{rd} .3 \mathrm{yd} .2 \mathrm{ft} . \times 30 \mathrm{rd} .3 \mathrm{yd}$. in square rods.
10. $30 \mathrm{rd} .3 \mathrm{yd} .2 \mathrm{in} . \times 8 \mathrm{rd} .4 \mathrm{yd}$. in integral units.
11. A road 13 mi . leng and 3 rds , wide in acres,
12. A ceiling $4 \mathrm{yd} .2 \mathrm{ft} . \times 3$ yd. 1 ft , in square feet.
13. How many acres in three sections? In 5 sections? In
$\frac{1}{2}$ section? In $\frac{5}{8}$ section? In $\frac{27}{48}$ section?
14. How many rods of fence are necessary to enclose a section? A half-section? A quarter-section?

- The statement of the dimensions of an object is often much abbreviated by the use of "by" or by the sign \times, which is then read "by."

15. How many square feet in the floor of a room 16 ft .8 in by 12 ft .6 in ? How many sq. yds. in ceiling of same room? 16. How many sq. ft . on side of a barn $60 \mathrm{ft}, 6 \mathrm{in}$. long by 22 ft .4 in . high?
16. Circular Areas.- It is proved by geometrical methods that the area of a circle is determined with sufficient accuracy for all practical purposes by the formula (see Arts. 323, 325),

Area of a circle $=3.1416 \times$ (square of radius of the circle).
Ex. What part of an acre is grazed over by a cow tied by a tether 100 feet long?

$$
\text { Area }=3.1416 \times 100 \times 100 \mathrm{sq} . \mathrm{ft} .=31416 \mathrm{sq} . \mathrm{ft}
$$

$$
=\frac{31416}{43568} \mathrm{~A}=0.721+\text { acre, Area. }
$$

EXERCISE 96.
Find the areas of the following circles:

$$
\begin{array}{l|l}
\text { Radius }=10 \mathrm{ft} . & \begin{array}{l}
\text { S. Radius }=8 \mathrm{yd} .2 \mathrm{ft} \\
\text { Diameter }=30 \mathrm{ft} .
\end{array} \\
\text { 4. Diameter }=78 \mathrm{rd} .3 \frac{3}{3} \mathrm{yd} .
\end{array}
$$

How many acres in each of the following circles:

5. Radius $=180 \mathrm{rd}$.	7. Diameter $=63 \frac{1}{2} \mathrm{rd}$.
6. Diameter $=125 \mathrm{rd}$.	8. Radius $=200 \mathrm{rd} .2 \frac{\mathrm{yd}}{}$.

9. A pond in the shape of a circle has a radius of 25 rd .5 yd. How many acres in its surface?
10. How many square inches on the face of a coin whose radius is 0.5 in ? Another, whose radius is 1.5 in .?
11. In paving, the unit of computation is the square yard.

In rooffing, flooring, etc, the unit is the square, which equals 100 sq. ft.
In roofing with shingles, the average shingle is taken to be 18 in . long, 4 in . wide, with 5 in . exposed to the weather. 1000 slingles, or a bundle, are allowed for shingling 1 square.

EXERCISE 97

What will be the cost of:

1. Shingling a roof $48 \mathrm{ft} . \times 23 \mathrm{ft} .8 \mathrm{in}$. @ $\$ 8.45$ per square?
2. Paving a walk 640 ft . long and 8 ft . 3 in . wide @ $\$ 2.10$ per square yard?
3. Lining a surface $80 \mathrm{ft} .3 \mathrm{in} . \times 61 \mathrm{ft}$.9 in . © $\$ 1.35 \mathrm{per}$ sq. yd.? RLURITATIS VAM
4. Tinning a roof 23 yd. 2 ft .3 in . $x 19 \mathrm{yd} .1 \mathrm{ft} .6 \mathrm{in}$. (1) $\$ 1.10$ a sq. yd. ?
5. The shingles for a roof on a building 80 feet long, if the rafters are 36 ft , and shingles cost $\$ 7.25$ per M. ?
6. Paving a city street 3 miles long and 40 feet wide, at 80 cents per sq. yd.?
7. In plastering, painting, etc., the unit of computation is the square yard.

Custom varies as to the allowance to be made for openings in a wall, made by doors, windows, etc. One rule is that no deduction be made for openings in a room, aggregating less than 7 sq. yds, and that for openings aggreعating more than 7 si. yds one-half their sum be deducted.

Ex. What will it cost to plaster the walls and celling of a room 22 ft . long, 14 ft . wide, and 10 ft . high, at $\$.33$ a square yard, deducting half the area of 2 doors, each $7 \times 3 \mathrm{ft}$., and 5 windows, each $6 \times 3 \mathrm{ft}$.?

The walls and ceiling may be conveniently indicated as follows:
UNIV ERSIDAD AUTON

The walls (that is, the ends and sides combined) make a rectangle $2 \times$ $22+2 \times 14$ feet, or 72 feet long.

Hence, area of walls $=72 \times 10 \mathrm{sq} . \mathrm{ft} .=720 \mathrm{sq} . \mathrm{ft}$
area of ceiling $=22 \times 14 \mathrm{sq} . \mathrm{ft} .=308 \mathrm{sq} . \mathrm{ft}$.
Total area $=\overline{1028} \mathrm{sq} . \mathrm{ft}$.
Area of doors $=2 \times 7 \times 3$ sq. $\mathrm{ft} .=42 \mathrm{sq} . \mathrm{ft}$.
Area of windows $=5 \times 6 \times 3 \mathrm{sq} . \mathrm{ft} .=\frac{90 \mathrm{sq} . \mathrm{ft}}{132 \mathrm{sq} . \mathrm{ft}}$

$$
\begin{aligned}
\begin{aligned}
& \text { Area deducted }=\frac{1}{2} \times 152 \text { sq. } \mathrm{ft} .=\frac{66 \mathrm{sq} . \mathrm{ft}}{} \begin{aligned}
&=262 \mathrm{sq} . \mathrm{ft} . \\
& \text { Net area }
\end{aligned} \\
& \text { sq. yds. } \\
& \text { Cost of plastering }=\frac{\$ 0.33 \times 962}{9}=\$ 35.27, \text { Cost. }
\end{aligned}
\end{aligned}
$$

EXERCISE 98.

What will it cost to:

1. Paint the walls and ceiling of a room 30 ft . by 16 ft . by 9 ft . high at 8 ct a sq. yd. ?
2. Plaster a room $24 \mathrm{ft} . \times 20 \mathrm{ft} . \times 16 \mathrm{ft}$. at 42 ct . a sq. yd., allowing half of 3 doors each $7 \mathrm{ft} . \times 3 \frac{1}{2} \mathrm{ft}$., and 5 windows each $5 \mathrm{ft} . \times 3 \frac{1}{2} \mathrm{ft}$.?
3. Paint a room $40 \mathrm{ft} . \times 31 \mathrm{ft}, 6$ in. $\times 9 \mathrm{ft} .6$ in. at 5 ct a sq . $y \mathrm{~d}$. for the floor and 7 ct . for the rest, allowing a deduction of $10 \mathrm{sq} . \mathrm{yd}$. for windows and doors?
4. Plaster the five rectangular faces of a church, whose inside dimensions are 60 yds. $2 \mathrm{ft} . \times 40$ yds. $1 \mathrm{ft} .6 \mathrm{in} . \times 30 \mathrm{ft}$. at 9 ct . per sq. yd., if $\frac{x}{10}$ of the entire wall surface is deducted for openings ?
5. Carpeting.-To determine the number of yards of earpet needed to carpet a room, it is necessary to determine the number of strips which the room will require; and to multiply the number of strips by the length of each strip.
The number of strips is determined by dividing the width of the room (if the carpet runs lengthwise), or the length of the room (if the carpet runs crosswise), by the width of a single strip (usually 1 yd . or $\frac{3}{} \frac{\mathrm{yd}}{}$.). A part of a strip is regarded as a whole strip, the part not needed being folded under. When the carpet is figured, in order to match the figures, strips of carpet must usually be taken a little longer than the length of the room (and the unused ends folded under).

Ex. How many yards of carpet, $\frac{7}{3 d}$ wide, will be required to cover a floor 26 feet long and 17 feet wide, if the carpet runs lengthwise and $\frac{1}{6}$ of a yard is wasted in matching patterns?
/T@
No. of strips $=\frac{x_{2}}{3}+\frac{3}{4}=7 \frac{5}{5}$, or 8 .
Length of a strip $=\frac{85}{8} \mathrm{yd} .+1 \mathrm{yd} .=\frac{53}{63} \mathrm{yd} .=8 \frac{5}{6} \mathrm{yd}$.
TALERE FLNo. yds $=8 \times 8 \frac{80}{6}=702$, Result.

EXERCISE 99.

1. A room $8 \frac{1}{2} \times 7 \frac{1}{8}$ yards is to be carpeted by unfigured carpet a yard wide, and strips are to run lengthwise. How many yards will be required?
2. If carpet is $\frac{3}{4} \mathrm{yd}$. wide, strips run lengthwise, and there is $\frac{1}{6} \mathrm{yd}$. wasted in matching patterns, how many yards must be bought for a room 9 yd . long and 5 yd . wide?
3. How many yards of carpet, $\frac{7}{8} \mathrm{yd}$. wide, will be required for a room $17 \mathrm{yd} . \times 17 \mathrm{ft}$., if strips run lengthwise? If strips run crosswise?
4. Find the cost of carpeting a room 19 ft . long and 14 ft . wide, with carpet $\frac{3}{4}$ yd. vide and costing $\$ 1.50$ a yard, when the strips run crosswise and there is a waste of $\frac{1}{4} \mathrm{yd}$. in matching.

A room $13 \mathrm{ft} . \times 10 \frac{1}{2} \mathrm{ft}$. is to be carpeted with carpet $\frac{3}{4}$ yd. wide and worth $\$ 2.25$ a yard. There will be waste of $\frac{3}{16} \mathrm{yd}$. in matching. Will it be cheaper to run the strips lengthwise or across the room? How much cheaper?
220. Papering.-The unit used for wall paper is the roll, a roll being 8 yards long, 18 inches, or $\frac{7}{2}$ yard, wide. (The double roll, 16 yards long and 18 inches wide, is also used at times.)
To determine the number of rolls of wall paper needed to To determine the number of
cover the walls of a given room,
1st. Find the number of strips of paper by multiplying the number of yards in the distance around the room by 2;

2d. Find the number of rolls by dividing the number of strips required by the number of strips which can be out from a single roll.
A part of a strip of wall to be covered counts as a whole strip, and a part of a roll needed as a whole roll. (But in cutting paper, parts left over are rejected.)
Owing to waste in matching patterns, turning corners, etc, and gain due to windows, doors, etc., the estimate of the number of rolls required can only be approximate.

Borders used at the top of the wall are sold by the linear yard.
Ex. How many rolls of paper are required to cover the walls of a room 24 ft . long, 18 ft .6 in . wide, and 10 ft . high ? Solution.
The distance around the room may be conveniently represented as follows =

EXERCISE 100.

1. How many rolls of paper are required to paper the walls

 of a room 15 ft . long, 11 ft . wide, and 9 ft . high?2. What will be the cost of the paper for the walls of a reom 40 ft . long, 32 ft . wide, and 11 ft high, at 45 cents a roll?
s. What will it cost for paper in a room $21 \frac{1}{2} \mathrm{ft}$. long, $16 \frac{1}{2} \mathrm{ft}$. wide, and 15 ft . high, at 60 cents a roll, if the ceiling paper tuns crosswise?
4 . The walls of a room 28 ff . Tong, 25 ft . wide, and 15 ft . high are to be papered with paper selling at 75 cents a roll; there is a border of $2 \frac{1}{3} \mathrm{ft}$. width at 4 cents a yd., and a baseboard of 6 in . What is total cost?
[Nore-Strips need be only 12 feet long.]

APPLICATIONS TO VOLUMES.

221. Board Measure. - In measuring boards and lumber, the unit is the board foot, which is a rectangular piece of wrod 1 foot square and 1 inch thick.
Large quantities of lumber are sold in terms of the hundred or thousand, by which is meant 100 board feet or 1000 board feet.

Boards less than 1 inch in thickness are estimated as if they were 1 inch thick.
A cubic foot of lumber contains 12 board feet. Hence, the number of board feet in a piece of lumber is 12 times the number of culvic feet, and the number of cubic feet is $\frac{1}{12}$ the number of lumber feet.

All square lumber, as planks, joists, beams, ete., is estimated in board feet.
Round timber, as masts, etc., is estimated in cubic feet. To find the number of board feet in a given board or piece of lumber, multiply two of the dimensions in feet by the other dimension in inches.

Ex. 1. How many board feet in a plank 16 feet long, 10 inches wide, and 3 inches thick ?
The width $=10$ inches $=\frac{10}{12}$ feet.
U. No. board feet $=\frac{48}{16} \times \frac{10}{42} \times 3=40$, AResult.
Ex. 2. How many feet in a board 14 feet long, 10 inches wide, and $\frac{f}{}$ inch thick

Since ? inch is taken as 1 inch,
No. board feet $=\frac{\frac{74}{14 \times 19} \frac{5}{19} \times 1}{12}=11$, , Result .

EXERCISE 101.

How many board feet in:

1. A plank 12 ft . long, 8 in . wide, and 2 in . thick? $\frac{3}{4} \mathrm{in}$. thick?
2. 5 beams 9 ft . long, 10 in . wide, and 4 in . thick? $4 \frac{\mathrm{in}}{} \mathrm{in}$. thick?
3. 20 rafters 24 ft . long, 6 in . wide, and 4 in . thick?
4. 45 joists $18 \mathrm{ft} . \times 8$ in. $\times 6$ in.? If $5 \frac{1}{2} \mathrm{in}$. thick?
in. thick?
What is the cost of:
5. 75 boards $16 \mathrm{ft} . \times 9 \mathrm{in}$. $\times 1 \mathrm{in}$. © $\$ 18$ per M.?
6. 12 posts 8 ft . $\times 5 \mathrm{in}$. $\times 6 \mathrm{in}$. @ $\$ 2.20$ a hundred?
7. 85 joists $12 \mathrm{ft} . \times 11 \mathrm{in}$. $\times 4 \mathrm{in}$. © 823 per M.?
8. Capacity of Bins. - Instead of determining the number of bushels which a bin will contain by actually filling the bin and counting the number of bushels, it is much more convenient to compute the capacity of the bin in bushels from the linear dimensions of the bin.
Since a bushel contains 2150.42 cubic inches, to find the
eapacity of a bin in bushels, divide the number of cutric inches in the volume of the bin by 2150.49 .
Ex. 1. How many bushels will a bin 20 feet long, 8 feet wide, and 4 feet deep contain?

$$
\text { No. bushels }=\frac{20 \times 8 \times 4 \times 1728}{2150.42}=514.28
$$ ing it by

ber of cubic jet in the bin.
Ex. 2. Approximately how many bashels will a bin $15 \times$
8×6 feet hold?

$$
\text { Approx. no. bush. }=\frac{\frac{3}{13} \times 8 \times 6 \times 4}{\beta}=576 \text {. }
$$

Grain, seeds, and small fruits are sold by stricken measure. Coarser materials, as potatoes, com in the ear, ete., are sold by heaped measure.

The number of bushels by heaped measure $=\frac{A}{5}$ the number by stricken measure.
Ex. 3. How many bushels of corn in the ear will a bin $15 \times 8 \times 6$ feet hold? M

1. How many cabic inches in a box 16 in . long, 10 in . wide, and 3 in . deep? What part of a cu. ft . is that?
2. Required the number of cu . yds , in a wall 2 yd .2 ft .8 in . long, 1 yd .1 ft .6 in . wide, and 2 yd .9 in . high.
3. How many bushels of oats can be put in a bin $15 \times 7 \times$ 6 ft .? (Accurate.)
4. How many bushels of wheat can be put into a bin $24 \times$
$16 \times 10 \mathrm{ft}$.? (Approximate.)
5. A bin $22 \times 20 \times 8 \mathrm{ft}$. is full of potatoes. About how many bushels in it?
6. A crib of corn is $60 \times 15 \times 6 \mathrm{ft}$. About how many bushels of corn in the crib?
7. A bin $6 \times 7 \times 8 \mathrm{ft}$. is? full of wheat. It is bought by approximate measurement at 70 ct a bushel, and sold under aecurate meessurement at 90 ct. a p lushiel. What was the grin?
8. Capacity of Cisterns.-It is convenient to be able to determine the capacity of a cistern or tank, in gallons, from the linear dimensions of the tank. I

Since a gallon contains 231 el . in, to find the capacity of a cistern in gallons, divide the number of cubric inches which the cistern contains by 231.

The capacity of a large cistern is also obtained sometimes
in terms of larger units, as the barrel ($31 \frac{1}{3}$ gals.), or the hogshead (63 gals.).

Ex. How many gallons will a tank $22 \times 10 \times 6 \mathrm{ft}$. contain?

$$
\text { No. gals. }=\frac{22}{22 \times 10 \times 6 \times 1728} \frac{231}{\frac{21}{7}}=98747 \text {. }
$$

EXERCISE 103.

How many gallons in a cistern:
$\begin{array}{ll}\text { 1. Containing } 125 \mathrm{cu} . \mathrm{ft} . ? & \text { 4. } 22 \times 21 \times 20 \mathrm{ft} \text { ? } \\ \text { 2. Containing } 132 \mathrm{cu} . \mathrm{yds} \text { ? } & \text { 5. } 8 \times 7 \times 6 \mathrm{yds} \text { ? }\end{array}$
$\begin{array}{ll}\text { 2. Containing } 132 \mathrm{cu} . \mathrm{yds} ? & \text { 5. } 8 \times 7 \times 6 \mathrm{yds} \text { ? }\end{array}$
924. Excavations and Embankments.-In moving earth
the unit is a cubic yard, or 27 eubic feet, called a load.
Ex. What is the cost of excavating a cellar $18 \times 24 \times 6 \mathrm{ft}$., at 10 cents a load?
225. Stone Work and Masonry.-In stone work and masonry the usual unit is the perch, or $24 \frac{3}{4}$ eubic feet.
A perch of stone is a rectangular pile $16 \frac{1}{2}$ feet long, $1 \frac{1}{2}$ feet wide, and 1 foot deep, and containing, therefore, 243 cubic feet.
As used in a wall, the perch is regarded as consisting of 22
cubic feet of stone, with $2 \frac{3}{4}$ cubic feet allowed for mortar and filling.

Sometimes, however, masonry is estimated by the cubic

D foot.BJBL CxErcise 104.S

Find the number. of perches of masonry in these walls:

1. $75 \times 3 \times 2 \mathrm{ft}$.
2. $12 \times 11 \times 4 \frac{1}{2} \mathrm{ft}$.
3. $55 \mathrm{yd} . \times 16 \mathrm{ft} . \times 4 \mathrm{ft}$.
4. $60 \mathrm{ydl} \times 15 \mathrm{ft} \times 5 \mathrm{ft}$.

How many cubic yards of earth in the following excavations:
5. Cellav $30 \times 20 \times 7 \mathrm{ft}$?
6. Tunnel $90 \mathrm{rd} .4 \mathrm{yd} . \times 12 \mathrm{yd} . \times 20 \mathrm{ft}$?
7. Find the cost of opening a railroad cut 90 yards long, averaging 40 ft . wide and 32 ft . deep, at $\$ 1.25 \mathrm{a}$ cu. yd.
8. A wall 374 ft . long and 6 ft . 8 quare at the end is to be built at $\$ 3.75$ a perch of 22 cu . ft. Find cost.
9. A foundation 70 ft . long, 9 ft . deep, and 8 ft . wide is to be laid. For necessary excavations the charge is 60 cts a load, and for building the wall $\$ 4.50$ a perch ($24 \frac{3}{4} \mathrm{cu} . \mathrm{ft}$.). What is the entire cost?
226. Brickwork.-In brickwork the unit is usually one thousand bricks, but sometimes the cubic foot is used.

The average size of bricks is $8 \times 4 \times 2$ inches.
The following practical units are also used:

1. A square foot of wall, 1 lirick or 4 inches thick, contains 7 common brieks.
2. A square foot of wall, 2 bricks or 9 inches thick, contains 14 bricks.
S. A square foot of wall, 3 bricks or 13 inches thick, contains 21 bricks.
Hence, to find the number of common bricks required for a wall,
Multiply the number of square feet in the wall by 7 , if the wall is 1 brick thick; by 14, if it is 2 bricks thick; by 21 , if it is 3 bricks thick: In a building, the corners, doors, and window-spaces are deducted in esti-
mating the number of brick, but not in estimating labor.

Ex. How many common bricks will be required to build a house 40 ft . long, 24 ft . wide, 18 ft . high, the walls being 13 in . thick, allowing 280 sq. ft. for doors and windows?

Solution.

Entire distance around the building $=2(40+24) \mathrm{ft} .=128 \mathrm{ft}$. Entire area of wall $=128 \times 18 \mathrm{sq} . \mathrm{ft}=2304 \mathrm{sq}$. ft
Deduction for 4 corners $=1 \frac{18}{} \times 18 \times 4 \mathrm{sq} . \mathrm{ft} .=78 \mathrm{sq}$. ft.
Deduction for windows, etc. $=\quad 280 \mathrm{sq} . \mathrm{ft}$
Entire deduction $=\quad \frac{258 \mathrm{sq} . \mathrm{ft}}{3}$.
Net area of walls $=2304 \mathrm{sq}$. $\mathrm{ft} .-358$ sq. ft. $=1946$ sq. ft,
No. bricks $=1946 \times 21=40,866$, Result.
Bricks are often of special shapes and sizes. Thus, Philadelphia and Baltimore bricks are $8 \frac{1}{4} \times 4 \frac{1}{8} \times 2 \frac{1}{8}$ in.; Maine bricks are $7 \frac{1}{2} \times 3 \frac{8}{8} \times 21 \mathrm{in}$. Milwaukee bricks are $8 \frac{1}{2} \times 4 \frac{1}{8} \times 2 \frac{1}{8}$ in.; North River bricks are $8 \times 3 \frac{1}{2} \times 2 \ddagger$ in., etc. To determine the number of bricks of a special kind required to make a wall, increase each of the three dimensions of the brick by \ddagger in. to allow for marter, and divide the contents of the wall by the contents of 1 brick.
In computing the number of bricks in a pavement, no change is made in the dimensions of a brick, since no allowance is made for mortar.

EXERCISE 105.

1. How many common bricks are required to build a house $36 \times 32 \mathrm{ft}$., and 26 ft . high, the wall to be 3 bricks thick, if an allowance of $150 \mathrm{sq} . \mathrm{ft}$. is made for openings?
2. What will they cost at $\$ 16$ a thousand?
3. How much will the bricks for a house $40 \times 36 \mathrm{ft}, 32 \mathrm{ft}$. high, and walls 13 in . thick, cost at $\$ 18$ per M.? What is the cost of laying them at $\$ 2.25$ a sq. yd . ?
(No allowance for corners or openings.)
4. What will be the cost of the brieks and the laying of them, for a house $45 \mathrm{ft} . \mathrm{sq}$., 28 ft . high, walls 3 bricks thick. after a deduction of 425 sq . ft. of surface for openings and corners, if bricks are worth $\$ 14$ a thousand and laying them costs $\$ 2.75$ per M. ? \qquad g. 104
5. A pavement, 90 ft . long, $10 \frac{1}{2} \mathrm{ft}$. wide, is laid with Milwankee bricks on the edge, 60 to a square yard. What is the cost, at the rate of $\$ 10$ per M. for the bricks and 2 cts . a sq. ft . for the labor?
6. Other Units of Weight or Volume.-It is sometimes
useful to determine the number of tons in a heap or bin of coal, from the linear dimensions of the heap or bin.

From 36 to 40 cu.ft of ordinary anthracite coal make 1 ton.
From 36 to $45 \mathrm{cu} . \mathrm{ft}$. of bituminous coal make 1 ton.
A bout 34. cu. ft. of Jehigh white-ash coal (egg size) make 1 ton.
About 35 ct of of Sehuylkill white ash coal (egg size) make 1 ton.
About 36 cu . ft. of Schuylkill gray or red-ash coal make 1 ton.
Similarly, to determine the number of tons of a quantity of hay from its linear dimensions:

About 500 cn . ft. of hay loose or in loads $=1$ tom.
About 400 ca , ft. of hay in a mow $\quad=1$ ton.
About 270 cu . ft. of hay in a settled stack $=1 \mathrm{ton}$.
Coal is at times sold in small quantities by the bushel. A bushel weighs 72 lbs and is about $\frac{1}{25}$ ton.

EXERCISE 106

1. A box $6 \times 5 \times 4 \mathrm{ft}$, is full of ordinary coal. Counting a ton to $38 \mathrm{cu} . \mathrm{ft}$., how many tons are there in the box? How many tons if it were full of Lehigh white-ash coal?
2. A mow of hay is $40 \times 28 \times 20 \mathrm{ft}$. How many tons of hay will it contain?
3. How many tons of bituminous coal in a train of 42 cars averaging $36 \times 7 \times 5 \mathrm{ft}$.?
4. A form hay, and they averaged

4 A farm f What was its value at 818 a ton?
TJ $\quad 18 \times 9 \times 10 \mathrm{ft}$. What was its value at $\$ 18$ a ton $\quad 5$. What advantage is there in determining the number of tons of hay or of coal by measurements of the dimensions of the mows or bins? In what other ways might these weights be determined?

Another, whose 1. Find the area of a circle whose radius is 3 inches. Aadius is 15 inch Radius is ? yard.
2. Find in acres the area of a farm 1 mile 250 rods $\times 85$ rods.
3. Which is the larger volume, 111 gallons or 12 bushels?
4. How many square inches in the entire exterior surface of a box 10 9×8 inches? What part of a cubic yard will it contain?
5. About a square lawn 40 rods on a side is laid a drive 3 yards wide. How many square rods in the drive?
6. A box is made of 2 -inch material, and the outer dimensions are $12 \times 10 \times 9$ inches. How many cabic mehes in the material of the box including the lid? How many eubic inches will the box contain?
7. How many board feet in a load of 40 rafters, each 18 feet long and 8×6 inches at the end?
8. A railroad passes through a farm, taking a strip $1 \frac{1}{2}$ miles long and 66 reet wide. What is the value of this land at $\$ 80$ an acre?
9. To dig a sewer 3 miles long, 8 feet deep, and 4 feet wide, the contract called for 80 cents per cubic yard. What did it cost?
10. How many hushels of grass seed will a bin $14 \times 10 \times 9$ feet contain? How many bushels of potatoes?
11. What will it cost to lay a wall 200 rods long and 5×8 feet on the end, at $\$ 2.60$ a perch (22 cubic feet)?
18. What will be the cost of carpeting a room 7×11 feet with carpet $\frac{8}{6}$ yard wide, worth $\$ 1.50$ a yard, and put down crosswise?
13. The walls of a room 16 feet $\times 13$ feet, and 9 feet high, are papered with paper worth 60 cents a roll, and the ceiling is painted at 30 cents a square yard. What will it cost?

A large parlor is 50×38 feet, and 14 feet high.
14. What will carpet cost, $\frac{7}{8}$ yard wide and worth $\$ 2.50$ a yard, if put down lengthwise and every strip wastes \& yard in matching?
15. What will papering its walls cost at 90 cents a roll, allowing for one end for windows and doors?
16. What will painting the ceiling cost tat 18 cents a square yard?
17. What is the area of the largest circle that can be drawn in tho ceiling?
18. What will it cost to roof a barn whose rafters are 18 feet 6 inches \mathbb{R} long, and the ridge-pole 35 feet, at $\$ 8.40$ per square?
19. What will it cost to floor a 3 -story house, 60×42 feet, with 2 -inch boards, at $\$ 34.60$ per M. ?
80. What will it cost to cement the floor and side walls of a cellar 25×24 feet, and 8 feet high, at 48 cents a square yard?
91. What is the cost of the carpet, running crosswise, + yard wide, and worth $\$ 1.60$ a yard, on a room 23×22 feet, if there must be a waste of $\frac{1}{3}$ yard for matching?
23. A bin occupying of a cellar which is $20 \times 18 \times 11$ feet is $\frac{7}{4}$ full of coal (ordinary anthracite). Find its approximate value at $\$ 5.25$ a ton
33. How many callons will a cistern 7 feet cube contain ?

3f. Water weighs 621 pounds to the cubic foot. What will the water in解 1000 gallons weigh ?
a tank containing 100 garson built 17 miles of macadamized road 12 feet 25. A county im one season buit 17 mines of macadas the total cost?
wide, at the rate of paper a mile long will just cover $193 \frac{3}{3}$ square yards, how wide is the paper? Its width is what decimal of its length ?
27. What will be the cost of the palings necessary to incloce a lawn 36×41 yards, if they are 2 inches wide, placed 2 inches apart, and sell for $\$ 2.75$ a hundred?
28. How many bushels will a bin hold whose dimensions are 15×11 \} 8. feet? How many gallons?
29. A bin $15 \times 8 \frac{8}{3} \times 6$ feet was full of apples, from which enough cider was pressed to fill a tank $9 \frac{1}{3} \times 4 \frac{4}{2} \times 3$ feet, $\frac{3}{4}$ foll. The apples were bought at 36 cents a bushel (approximately) and the cider was sold at 33 cents a gallon. Required the gain.
so. How many square yards in a circular flower-bed 56 feet across?
s1. A certain tank contains 1000 gallons. How many bushels would it hold?
39. There are to be laid two cement walks, one on each side of a certain 32. 40 cts a street 2 miles long. The walks are to he 60 in . wide and to cost 40 cts sq. yd. What is the tytal cost?

3S. A circular pond 28 yd. across, is surrounded by a path 4 fl . wide What is the area of the path.

S4. My farm is 220 rd . long and 144 rd . wide. It is entirely surrounded with a four-wire fence. The wire cost me half a cent a foot and the posts, which are 11 ft . apart, cost 9 cents each. What did the material cost? which are 11 ft . apart, cost 9 cents each. What did the
35. What will be the cost of plastering the walls and cerlig allowin 16 tt .6 in . long $\times 11 \mathrm{ft}$.

S6. If a cubic foot of water weighs 621 lbs., what will a barrel of water weigh?
37. How many gallons of water required to weigh a ton? S8. If the diameter of a pail is 6 in., how many square inches in the bottom and lid together?
39. There is an iron cistern made of 3 -in. metal plates, and without any P. If the inner dimensions are 8 ft . long, 5 ft , wide, and 10 ft . deep, how many cubic feet of iron in the material?
40. Find the weight of that iron if iron is 7 times as heavy as water.

CHAPTER XIII

PERCENTAGE

228. Illustration.-A man has two investments, one of $\$ 800$ in real estate, which brings a return of $\$ 48$ a year; and another of $\$ 500$ in railroad bonds, which brings in $\$ 35$ a year. Which is the better investment?
The comparison of the two investments is much facilitated by determining the proceeds of a single hundred dollars in each case, and comparing them.

Thus, if $\$ 800$ in real estate brings in $\$ 48$ a year.
If $\$ 100$ " $\$ 00$ in bonds brings in $\$ 35$ a year, 86 a year.
$\$ 100$ " $\$ 7$ a year.

Since $\$ 7$ per $\$ 100$ invested is a better return than $\$ 6$ per $\$ 100$, the investment in bonds is relatively more profitable.
229. Value of 100 as a Basis of Comparison.-This use of a standard base, as 100 , in making estimates, has two advantages: (1) it facilitates comparisons, as in the above example; (2) it leads in time to an instinctive grasp of the various rates used with reference to one hundred.
Thus, 6 per cent. (6 out of every hundred), 7 per cent., etc., come to have a sharp and definite meaning in the mind, which meaning rises instantly when such words are used.
230. Definitions and Symbols. -Percentage is the process of computing with reference to 100 as a base.

Per cent. (from per, by, and centum, one hundred) means by or on the hundred. Thus, when a merchant gains 15 per cent., he means that he gains $\$ 15$ for every $\$ 100$ invested
23. A bin occupying of a cellar which is $20 \times 18 \times 11$ feet is $\frac{7}{4}$ full of coal (ordinary anthracite). Find its approximate value at $\$ 5.25$ a ton
33. How many callons will a cistern 7 feet cube contain ?

3f. Water weighs 621 pounds to the cubic foot. What will the water in解 1000 gallons weigh ?
a tank containing 100 garson built 17 miles of macadamized road 12 feet 25. A county im one season buit 17 mines of macadas the total cost?
wide, at the rate of paper a mile long will just cover $193 \frac{3}{3}$ square yards, how wide is the paper? Its width is what decimal of its length ?
27. What will be the cost of the palings necessary to incloce a lawn 36×41 yards, if they are 2 inches wide, placed 2 inches apart, and sell for $\$ 2.75$ a hundred?
28. How many bushels will a bin hold whose dimensions are 15×11 \} 8. feet? How many gallons?
29. A bin $15 \times 8 \frac{8}{3} \times 6$ feet was full of apples, from which enough cider was pressed to fill a tank $9 \frac{1}{3} \times 4 \frac{4}{2} \times 3$ feet, $\frac{3}{4}$ foll. The apples were bought at 36 cents a bushel (approximately) and the cider was sold at 33 cents a gallon. Required the gain.
so. How many square yards in a circular flower-bed 56 feet across?
s1. A certain tank contains 1000 gallons. How many bushels would it hold?
39. There are to be laid two cement walks, one on each side of a certain 32. 40 cts a street 2 miles long. The walks are to he 60 in . wide and to cost 40 cts sq. yd. What is the tytal cost?

3S. A circular pond 28 yd. across, is surrounded by a path 4 fl . wide What is the area of the path.

S4. My farm is 220 rd . long and 144 rd . wide. It is entirely surrounded with a four-wire fence. The wire cost me half a cent a foot and the posts, which are 11 ft . apart, cost 9 cents each. What did the material cost? which are 11 ft . apart, cost 9 cents each. What did the
35. What will be the cost of plastering the walls and cerlig allowin 16 tt .6 in . long $\times 11 \mathrm{ft}$.

S6. If a cubic foot of water weighs 621 lbs., what will a barrel of water weigh?
37. How many gallons of water required to weigh a ton? S8. If the diameter of a pail is 6 in., how many square inches in the bottom and lid together?
39. There is an iron cistern made of 3 -in. metal plates, and without any P. If the inner dimensions are 8 ft . long, 5 ft , wide, and 10 ft . deep, how many cubic feet of iron in the material?
40. Find the weight of that iron if iron is 7 times as heavy as water.

CHAPTER XIII

PERCENTAGE

228. Illustration.-A man has two investments, one of $\$ 800$ in real estate, which brings a return of $\$ 48$ a year; and another of $\$ 500$ in railroad bonds, which brings in $\$ 35$ a year. Which is the better investment?
The comparison of the two investments is much facilitated by determining the proceeds of a single hundred dollars in each case, and comparing them.

Thus, if $\$ 800$ in real estate brings in $\$ 48$ a year.
If $\$ 100$ " $\$ 00$ in bonds brings in $\$ 35$ a year, 86 a year.
$\$ 100$ " $\$ 7$ a year.

Since $\$ 7$ per $\$ 100$ invested is a better return than $\$ 6$ per $\$ 100$, the investment in bonds is relatively more profitable.
229. Value of 100 as a Basis of Comparison.-This use of a standard base, as 100 , in making estimates, has two advantages: (1) it facilitates comparisons, as in the above example; (2) it leads in time to an instinctive grasp of the various rates used with reference to one hundred.
Thus, 6 per cent. (6 out of every hundred), 7 per cent., etc., come to have a sharp and definite meaning in the mind, which meaning rises instantly when such words are used.
230. Definitions and Symbols. -Percentage is the process of computing with reference to 100 as a base.

Per cent. (from per, by, and centum, one hundred) means by or on the hundred. Thus, when a merchant gains 15 per cent., he means that he gains $\$ 15$ for every $\$ 100$ invested
in goods. If a poultry-raiser lose 8 per cent. of his fowls, he means that he loses 8 fowls out of every hundred that he has.

Hence, so many per cent. means so many hundredths.
The symbol, $\%$, is used for the words "per cent." Since per cent. means hundredths, per cent, may also be indicated by a common or decimal fraction, with 100 as a denominator. Thus,

$$
6 \% \text { FE } 160.06 ; 30 \%=\frac{30}{100}-30=.3 .
$$

The quantities considered in computations in percentage are the base, rate, percentage, and the amount or difference.
The base is the number of which a certain number of hundredths is takem. It is denoted by the symbol, b.
The rate is the number of hundredths which is taken (or the number of units taken with reference to every hundred units in the base). When expressed decimally it is denoted by r. ELS
The percentage is the number obtained by taking a certain per cent. of the base (or the number of units taken with reference to all the hundreds in the base). It is denoted by the symbol, p.

For example, if a farmer has 800 peach-trees and loses 5 per cent. of them, he loses 5 out of every hundred, or 8×5 (or 40) out of 8 hundred.

UNIVERSMED AUTÓN

Pupils are likely to confuse the terms rate per cont. and percentage, because of their similarity in sound. In order to distinguish them, it may be helpful to remember that
rate per cent. means the number by (on, or of) every single hundred; percentage " ". "ut of all the hundreds in the base.

The amount is the sum oí the base and percentage.
The difference is the difference of the base and percentage. Proceeds is' a general term for either amount or difference.
231. I. Given the base and rate, to find the percentage (or proceeds).

Ex. 1. A school of 250 pupils is 60% boys. How many boys are there in the school?
Solution.

The number of boys in each 100 pupils $=60$.
The number of hundireds of pupils $=\frac{35}{188}$.
Hence, the entire number of boys in the school
$=($ No. of hundreds of pupils $) \times($ No. boys in every hundred $)$
$-750 \times 60=250 \times \frac{50}{100}=250 \times .60=150$.
Abbreviated form of computation.
250, Base.
.60, Rate per cent.

- 150.00, Percentage

Hence, in general, to find the percentage,
Multiply the base by the rate expressed decimally (or in symbols, $p=b \times r$).
Also, to obtain the proceeds, multiply the base by 1 plus the rate, or 1 minus the rate, expressed decimally.

Ex. 2. The population of a town, which contained 18000 people, deereased 5% in a year; what was the population at the end of the year?

Operation. \qquad Explanation.
18000, Base. If a number be diminished by
.95, Final rate per cent, 5% of itself, it becomes 95%, or 90000
$\frac{162000}{17100.00}$, Finat population.

EXERCISE 108

Find:

1. 3% of 800 boys.
2. 25% of 40 days
3. 10% of 70 lbs .
4. 18% of $\$ 420$.
5. 50% of 90 bu .
(T) 6. 12% of 530 tons.
6. 12% of 530
7. 6% of 8325 .
8. 80% of $\$ 4500$.
9. $4 \frac{1}{2} \%$ of 600 pupils.
10. 71% of 80 days.
11. Thirty per cent. of a drove of 240 horses were sold in one day. How many were sold?
12. I invested $\$ 675$ for a year at 6%. What amount was due me at the end of the year?
13. Which is the greater, 91% of $\$ 750$, or $27 \frac{1}{3} \%$ of $\$ 240$?
14. Smith had 230 lambs and bought 20% more. How
many had he then?
15. Mr. Cox lose How many remained?
16. A city of 78000 inhabitants gained 12% in three years.

What was its population after this gain?
17. A gentleman's salary of $\$ 3500$ was increased 16%. What is his present salary?
18. A house formerly valued at $\$ 8500$ decreases 8%. What is the valuation now?
Find the percentage and the proceeds:
19. $\$ 7000$ gaining 11%.
20.950 pupils losing 16%.
20. 950 pupils losing 16%.
21.875 men gaining 24%. 23. 10 b ing 20%. 24. 240 trees increasing $7 \frac{1}{2} \%$.

EXERCISE 109.

4. 75 examples, a boy öid 40%. How many did he solve?
13. Of 75 examples, a boy aid 40%. How old is the son? 14. A man 60 years old has a son 35% of his age. How old is the son? be? 6. My year were $\$ 1400$, and this year will he 5% more What will they be this year?
17. The length of a field is 30% more than its width, which is 230 rds What is its length?
What is its length? 18. The price of a carriage of the carriage?
$\$ 150$. What was the price of
19. Lnst 5% of an investment of $\$ 8000$ and then gained 30% of the remainder in speculation. What had I then ?
20. What is 25% of 10 ? Of 22 ? Of 54? Of 100?
939. Special Cases.- When the rate per cent. is an aliquot part of 100 (see Art. 74), the process of computing the percentage may often be abbreviated.

Thus, $33 \frac{1}{3} \%=\frac{1}{3}$, and if it be required to find $33 \frac{1}{3} \%$ of a given number, we may substitute the simpler process of taking $\frac{1}{3}$ of the number. Similarly,

$6 \frac{1}{4} \%=\frac{1}{16}$.	$20 \%=\frac{1}{3}$.	50%
81% = $\frac{1}{12}$.	$25 \%=1$.	621%
$12 \frac{1}{2}=1$.	$335 \%=\frac{1}{8}$.	66%
16% 年	$371 \%=\frac{3}{8}$.	871%

Ex. 1. A man owns $12 \frac{1}{2} \%$ of a vessel valued at $\$ 24000$. What is the value of his share?

$$
12 \frac{1}{2} \% \text { of } \$ 24000=\$ 24000 \times \frac{1}{\frac{1}{3}}=\$ 3000, \text { Resule. }
$$

Care should also be exercised in dealing with cases where the rate $\%$ is very small or very large, as $\frac{1}{8} \%$ or 225%.
Thus, $\frac{1}{8} \%$ is $\frac{1}{8}$ of $1 \%=.00 \frac{1}{8}=.00125 ; 225 \%=2.25$ when expressed decimally.
Ex. 2. A broker bought $\$ 1200$ worth of stocks and charged 1% commission. What was his commission?
$\$ 1200$, Base.
$.00 \frac{1}{3}$, Rate.
$\$ 1.50$, Percentage or commission.
EXERCISE 110.

Find
EXERCISE 110.

1. 25% of 44 books.
2. 100% of 325 years.
3. $16 \frac{2}{3} \%$ of 96 lambs. \quad. 120% of 290 tons.
s. 331% of 750 bays
4. $37 \frac{1}{2} \%$ of 640 pounds.
5. 20% of 36 miles.
6. $66 \frac{2}{2} \%$ of 450 days.
7. 50% of 225 acres. 10.215% of 480 cities.
8. $\frac{1}{2} \%$ of $\$ 800$.
9. $\frac{3}{4} \%$ of $\$ 68$.
10. $\frac{2}{3} \%$ of $\$ 720$.
11. 7% of $\$ 3500$.
12. What is the commission on a sale of $\$ 42000$ at $\frac{1}{8} \%$? 16. A city had a population of 8750 some years ago, but has now 240 per cent. of its numbers at that time. What is its present population?
13. A man weighs 270 per cent. of what he did when as a boy he weighed 60 pounds. What is his weight?
14. A gentleman spent $2 \frac{1}{8} \%$ of an income of $\$ 2800$ in books. How many dollars was that?
15. Mr. Jones owned $\frac{2}{3}$ of a farm worth $\$ 8000$, but sold $37 \frac{1}{2} \%$
value?
16. Which is greater, $88 \frac{1}{2} \%$ of $\$ 250$ or $\frac{5}{8} \%$ of $\$ 35000$?
17. Which is greater, $87 \frac{1}{2} \%$ of $\$ 250$ or $\frac{5}{8} \%$ of $\$ 35000$?

Find:

1. 50% of 90.
2. 331% of 66.
S. 75% of 52.
3. $87 \frac{1}{2} \%$ of 96

EXERCISE 111.

233. II. To find what per cent. one number is of another
given the percentage and the base, to find the rate).
Ex. 1. A house which cost $\$ 6000$ rents for $\$ 540$. What per
ent. of the cost is the rent?

$$
\begin{aligned}
& 60 \text { hundreds of doilars, bring in } \$ 040 \text {, } \\
& 1 \text { hundred dollars } \$ \frac{540}{60} \text { or } \$ 9 \text {. }
\end{aligned}
$$

Hence, $\$ 540$ is 9% of $\$ 6000$, or the income from the investment is 9%. The same rate expressed decimally may be obtained by regarding $\$ 540$ as a fractional part of $\$ 6000$ and reducing till the denominator of the fraction is 100 .

Thus, $\frac{540}{5000}=\frac{90}{100}=.09$.
Hence, $\$ 540$ is 9% of $\$ 6000$.
Hence, in general, to obtain the rate per cent., divide the per-
Sometimes the proceeds and base are given instead of the percentage. In this case the percentage may be obtained by subtracting the base from the proceeds.

Ex. 2. A dealer bought a horse for $\$ 60$ and sold it for $\$ 75$. What was his gain per cent.?

Operation.
$\$ 75$, Proceeds.
$\$ 75$, Proceed
$\$ 60$, Base.
\$15, Percentage.
60) 15.00 (.25, Rat

120
$\frac{120}{300}$
$\begin{array}{r}300 \\ 300 \\ \hline\end{array}$
centage by the base-in symbols, $r=\frac{p}{b}$
9. Cost is $\$ 236$ and gain is $\$ 29.50$.
10. Gain is $\$ 0.98$ and cost is $\$ 1.40$.
11. Gain and cost are each $\$ 75$
12. Gain is $\frac{1}{3}$ cost; $\frac{3}{3}$ eost; $\frac{5}{8}$ cost.
13. Cost is $\$ 2550$ and gain is $\$ 173.90$.
14. Cost is $\$ 85$ and loss is $\$ 6.80$.
44. Of a regiment numbering 980 men, 147 were sick and the rest able-bodied. What per cent. of the regiment entered battle? 45. If 271 men were killed in battle and all of the siek recovered, what per cent. of the whole regiment (1000 men) would be able to enter another fight?
46. A house which cost $\$ 3500$ was sold for $\$ 4060$. What was the gain per cent.?
47. A pencil which cost 5 ct . sold for 6 ct . What was
15. Cost is $\$ 125$ and loss is $\$ 22.50$. the gain per cent.?
48. Which investment returns the greater per cent., $\$ 40$ in a bicycle which sold for $\$ 50$, or 3 ct . in a newspaper which sold for 4 ct.?
49. A man has $\$ 4500$ with which to speculate. Will he do better buying cattle at $\$ 10$ and selling at $\$ 18$ a head, or buying railroad stock at $\$ 75$ and selling it at $\$ 132$? What will be his gain per cent in the better investment?
234. IIL. To find a number from a given per cent, of it (given the rate and percentage, to find the base).
25. Selling price is $\$ 1462.50$ and loss is $\$ 10$
26. Base is $\$ 900$, percentage is $\$ 4.50$.
(given the rate and percentage,
Ex. 1. $\$ 30$ is 12% of what number of dollars?
27 . Amount is $\$ 7110$, pereentage is $\$ 47.40$.
28. Selling price is $\$ 136$, cost is $\$ 134.98$
29. Cost is $\$ 30$, gain is 25 cts .
30. Loss is 36 cents, selling price is $\$ 62.64$.
31. Cost is $\$ 180$, loss is $\$ 1$.

What per cent. of

41. In a school of 320 pupils, 176 are boys. What per cent. of the school is boys? What per cent. is girls?
42. From a farm containing 146 acres, the owner sold 124.1
aces. What per cent. of the farm did he sell?
43. For threshing a erop of grain amounting to 872 bu. 2 pk ., the thresher took $209 \mathrm{bu} .1 \frac{3}{5} \mathrm{pk}$. as his pay. What per cent. of the crop did he take?

Hence, in general, to find the base, either proceed by analysis, that is, obtain 1 per cent. of the base by dividing the percentage by the per cent, and multiply the result by 100 , in order to obtain 100 per cent. of the base; or, dioide the percentage by the rate, expressed decimally (in symbols $b=p$).
The amount or difference being given to find the base, divide the amount by 1 plus the rate; or, divide the difference by 1 minus the rate, i, e. base $=\left\{\begin{array}{l}\text { amount }-(1+\text { rate }) \\ \text { difference }-(1+\text { rate })\end{array}\right\}$

EXERCISE 114.

Find the base if it is given that:

1. Percentage is $\$ 120$ and rate is 6%.
2. Percentage is 760 bu . and rate is 5%.
3. Percentage is 115 gal. and rate is 21%.
4. Rate is 4% and percentage is 550 da .
5. Rate is 312% and percentage is $\$ 553$.
6. Rate is 23% and percentage is $\$ 27.83$.
7. Proceeds are $\$ 1086.40$ and gain is 12%.

8 . Proceeds are 23 tons and loss is 20%.
9. Rate of loss is 13% and proceeds are $\$ 453.27$.
10. Gain is 18% and proceeds are $\$ 372.88$.
11. 140 is 8% of what number?
13. 169 is 31% of what number?
$\int \begin{aligned} & \text { Of what number is } 15.725,25 \% \text { ? } \\ & 15,30,5 \% \text { ? }\end{aligned}$
14. $120,6 \%$? 16. $486,30 \%$?

Find the quantity of which:

What quantity increased by:
s1. 9% of itself is $\$ 54.50$? 34.15% of itself is $\$ 11.04$?
32.27% of itself is $\$ 439.42$? 35.331% of itself is $\$ 114.48$? 35.60% of itself is 12 ? $36.8 \frac{2}{5} \%$ of itself is 1.163403 ?

What quantity diminished by :

37.	25% of itself is 96 ?
$40.16 \frac{2}{3} \%$ of itself is $76 \frac{1}{2}$?	

38.30% of itself is 175 da ? 41.19% of itself is $6 \frac{3}{3} \mathrm{mi}$.?
$39.28 \frac{1}{2} \%$ of itself is $\$ 167.31$?

Find cost if:
43. Selling price is $\$ 50$ and gain is 25%.
44. Selling price is $\$ 308.14$ and gain $8 \frac{1}{2} \%$.
45. Selling price is $\$ 7.14$ and loss is 331%.
46. Selling price is $\$ 286.02$ and loss is $9 \frac{1}{5} \%$
47. A city whose population is now 74250 , has gained 10%
in a year. What was its population a year ago?
48. If during a year I spend 45% of my earnings, and have $\$ 1100$ saved, what was my income?
49. A boy weighing 90 lbs . gained 20% during the last year. What was his weight a year ago? What will be his weight a year hence at the same rate per cent. of growth?
50. A pencil which sold for 8 cents brought 60% gain. What did it cost?
51. A grocer sold a score of eggs for 55 cents, thereby gaining 10%. What did a dozen eggs cost him?
52. A farmer lost 12% of his lambs by death, and 23% by theft, and there were 585 lambs remaining. How many had he at first?
53. A housekeeper wishes to use $124 \frac{4}{5}$ yards of muslin and knows it will shrink $2 \frac{1}{2} \%$. How many yards should she buy?
54. I sold 2 horses for $\$ 60$ each; on the one I gained 20%, and on the other I lost 20%. Did I gain or lose on them both together? How much?

The above formula may also be made to cover cases where the proceeds
55. The distance between two stops was $42 \frac{\pi}{5}$ miles, or $7 \frac{1}{2} \%$ of the entire journey. What was the length of the journey?
56. The gain was 839,60 , or 20% of the cost. What was the cost?

$$
b=\text { base }
$$

57 . The loss was 876.40 , or 80% of the cost. What was the cost?

- In a transaction a man gained 8%, but actually gained 81256. How mueh did he invest?

EXERCISE 115.

 ORAL. occur instead of the percentage.$$
\text { In such cases let } p=\text { proceeds, }
$$

$$
r=\text { final rate, i. e., } 1+\text { rate, or } 1-\text { rate, }
$$

Ex. 2. A property is sold for $\$ 3360$ at a gain of 12%. What was its cost?
Here, proceeds (or p) $=\$ 3360$

$$
\text { final rate }(r)=1.12 \text {. }
$$

Substituting for p and r in $p=b r, \$ 3360=1.12 r$

$$
r=\frac{\$ 3360}{1.12}=\$ 3000, \text { Base. }
$$

EXERCISE 116

GENERAL REVIEW

1. If percentage is $\$ 75$ and rate is 3%, what is the base?
2. What is the base when rate is 8%, and percentage is 24 bu.
S. $\$ 24$ is 20% more than what number of dollars?
3. 27 is 10% less than what number?
4. 27 is 10% less than what number?
5. Gain is $\$ 40$, or 5%. What was the cost?
6. Loss was $\$ 30$, or 15%. What was the cost?
7. Selling price was $\$ 84$, and loss was 30%. What was cost?
8. Gained 20% when I sold for $\$ 60$. What was cost?
9. A knife selling at 70 cents yielded 40% gain. Find cost.
10. If percentage is 63 bm , and rate is 70%, find base.
11. If proceeds are 525 tons and rate is 5% gain, find base.
12. What was the base if rate was 16% and percentage $\$ 16$?
13. Algebraic Treatment of Percentage.-If the student

I is familiar with the first principles of algebra, the treatment
of percentage may be simplified by their use. All three of its cases may be reduced to a single formula.

Thus, since $p=b r$, if any two of the three quantities, p, b, r, are known, the third may be found by substituting for the two known quantities and solving the resulting equation.

Ex. 1. What per cent. is 16 of 64 ?
Here, $p=16 . b=64$
Substituting for p and b in $p=b r$
we obtain $16=64 r$
$r=\frac{10}{6}=.25$, Rate
19. A field was 48×35 rods, and the owner increased each dimension 40% of itself. By how many acres and what per cent. did he increase the field?
20. A carpenter buitt a house at an expense of $\$ 5200$, and sold it for $\$ 7098$. What was the gain \% ?
21. A wholesale grocer buys coffee at 30 cents and sells it at 36 cents a pound. The tocal grocer huys at -36 and sells at 45 cents. What per cent. pound. What per cent, would be the wholesale grocer's gain if he sold directly to the consimer for 45 cents?

23 . Owning 30% of an office building, a man sold 25% of his share and then valued the balance at $\$ 9000$. What was the entire building worth at this valuation?
23. What per cent of 8 tuishels, 3 pecks, 4 quarts is 4 bushels, 6.9 quarts?
24. Find the yalue of 80% of 60 acres, 125 square rods, 20 square yards at $\$ 60 \mathrm{an}$ acre.
25. Find 1 \% of 90 . of 200 . of 8756 . Of 4 .

26 . Find $\frac{\%}{8}$ of 900 . Of 4930 . Of 9 Of 1.6 .
27. Write decimally, and as a common friction; ten per cent.; fourfifths per cent.; one-half of one per cent.; one hundred twelve per cent.; ight per cent. ; three-tenths per cent.; and eleven hindredths per cent.

29. On an examination a boy got 460 credits out of a possible 500 . What should his grade be, expressed in per cent.?
30. A watch was, sold for $\$ 190$ at a loss of 24%. What should it have
een sold for to obtain a gain of 5% ?
37. A speculator bought 500 shares of railroad stock at $\$ 68$ a share and sold it at $\$ 85$ a share. What was his gain \% ?
3 . If a teacher's salary is $\$ 2400$ and he pays in a year, 15% of it for hoard, 4% for-room, 3% for clothes, 8% for incidentals, and gives his
mother a quarter of his salary, how much is left for saving?
33 . A man owned $\frac{4}{5}$ of a hotel and sold 121% of his share for $\$ 7540$. At the same rate, what is the value of the hotel?
34. 707.84 is 12% more than what number?
35. If the cost was ? of the selting price, what is the gain \%? Prove your answer in the case where the cost is $\$ 420$.
S6. What per cent of the year 1904 are the Sundays? Of the year 1903?

CHAPTER XIV

APPLICATIONS OF PERCENTAGE.

236. Applications of Percentage.-The method of reckoning with reference to 100 as a standard or base has so many advantages that it is widely used in many different departments of practical life.

The computations in these different applications are alike in that, first, they all use 100 as a base, and, second, they are all concerned with the three quantities, base, rate, and percentage.

The various applications of percentage, however, differ from the general subject and from each other in that (1) different special names are assigned to one or more of the quantities used (thus the percentage is sometimes called commission, or tax, or profit, etc.) ; or (2), the base may be determined in some peculiar way ; or (3) certain special standard rates are used.

In all cases, however, it will be found that the three quantities, base, rate, and percentage, appear in some form, and that two of them are given to find the remaining one.

PROFIT AND LOSS

237. The subject of Profit and Loss differs very slightly from the general subject of percentage.

Profit or loss is the name given the percentage, profit being the excess of money received over that expended, and loss being the excess of money expended over that received.

The student should carefully note that the base is the money paid out or invested (not the money received).

Ex. A man sold his horse for $\$ 60$, which was a loss of 20%. What did the horse cost him?
19. A field was 48×35 rods, and the owner increased each dimension 40% of itself. By how many acres and what per cent. did he increase the field?
20. A carpenter buitt a house at an expense of $\$ 5200$, and sold it for $\$ 7098$. What was the gain \% ?
21. A wholesale grocer buys coffee at 30 cents and sells it at 36 cents a pound. The tocal grocer huys at -36 and sells at 45 cents. What per cent. pound. What per cent, would be the wholesale grocer's gain if he sold directly to the consimer for 45 cents?

23 . Owning 30% of an office building, a man sold 25% of his share and then valued the balance at $\$ 9000$. What was the entire building worth at this valuation?
23. What per cent of 8 tuishels, 3 pecks, 4 quarts is 4 bushels, 6.9 quarts?
24. Find the yalue of 80% of 60 acres, 125 square rods, 20 square yards at $\$ 60 \mathrm{an}$ acre.
25. Find 1 \% of 90 . of 200 . of 8756 . Of 4 .

26 . Find $\frac{\%}{8}$ of 900 . Of 4930 . Of 9 Of 1.6 .
27. Write decimally, and as a common friction; ten per cent.; fourfifths per cent.; one-half of one per cent.; one hundred twelve per cent.; ight per cent. ; three-tenths per cent.; and eleven hindredths per cent.

29. On an examination a boy got 460 credits out of a possible 500 . What should his grade be, expressed in per cent.?
30. A watch was, sold for $\$ 190$ at a loss of 24%. What should it have
een sold for to obtain a gain of 5% ?
37. A speculator bought 500 shares of railroad stock at $\$ 68$ a share and sold it at $\$ 85$ a share. What was his gain \% ?
3 . If a teacher's salary is $\$ 2400$ and he pays in a year, 15% of it for hoard, 4% for-room, 3% for clothes, 8% for incidentals, and gives his
mother a quarter of his salary, how much is left for saving?
33 . A man owned $\frac{4}{5}$ of a hotel and sold 121% of his share for $\$ 7540$. At the same rate, what is the value of the hotel?
34. 707.84 is 12% more than what number?
35. If the cost was ? of the selting price, what is the gain \%? Prove your answer in the case where the cost is $\$ 420$.
S6. What per cent of the year 1904 are the Sundays? Of the year 1903?

CHAPTER XIV

APPLICATIONS OF PERCENTAGE.

236. Applications of Percentage.-The method of reckoning with reference to 100 as a standard or base has so many advantages that it is widely used in many different departments of practical life.

The computations in these different applications are alike in that, first, they all use 100 as a base, and, second, they are all concerned with the three quantities, base, rate, and percentage.

The various applications of percentage, however, differ from the general subject and from each other in that (1) different special names are assigned to one or more of the quantities used (thus the percentage is sometimes called commission, or tax, or profit, etc.) ; or (2), the base may be determined in some peculiar way ; or (3) certain special standard rates are used.

In all cases, however, it will be found that the three quantities, base, rate, and percentage, appear in some form, and that two of them are given to find the remaining one.

PROFIT AND LOSS

237. The subject of Profit and Loss differs very slightly from the general subject of percentage.

Profit or loss is the name given the percentage, profit being the excess of money received over that expended, and loss being the excess of money expended over that received.

The student should carefully note that the base is the money paid out or invested (not the money received).

Ex. A man sold his horse for $\$ 60$, which was a loss of 20%. What did the horse cost him?

Solvion.

Making the cost of the horse the base,
80% of the cost of the horse $=\$ 60$, the selling price. - cost of horse $=\frac{860}{800}=875$, Result.

EXERCISE 117.

1. Bought for $\$ 80$ and sold for $\$ 100$. Find the gain $\%$.
2. Sold for $\$ 40$ and lost 20%. Find cost.
3. Gained 863 or 7%. Find cost and selling price.
4. Lost $32 \frac{1}{2} \%$ on an investment of $\$ 6200$. Find the aetual $10 s s$.

Did I gain or lose by buying eggs at 18 ct a doz, and selling at 32 ct a score? What per cent.?
6. Who gained more money and who gained a greater per cent-John, who bought for $\$ 60$ and sold for $\$ 65$, or James, who sold for $\$ 240$ at a gain of 20% ?
7. I sold a horse for $\$ 404.40$ and gained $12 \frac{1}{3} \%$. What would have been my per cent. of loss if I had sold him for \$252?
8. Bought tivo farms for $\$ 4500$ each, and sold the one for $\$ 6800$ and the other at a loss of 37%. Did I gain or lose on the transaction and how much?
9. Bought two books for $\$ 4$ each, and sold one at a gain of 30% and the other at a loss of 90 cents. Did I gain or lose
on the transaction? How much? What per cent.?
10. By selling cloth for $\$ 1.20$ per yd., a salesman lost 20%. How should he have sold it to gain 20% ?
11. I sold two watches for $\$ 84$ each. On one I gained 40% and on the other I lost 40%. Did I gain or lose on the whole? How much? What \%?
12. Carpet is bought at $75 \mathrm{et}$. a yd. Expenses amount to 12. Carpet is bought at 75 et a yd. Expenses amount to
20 cents additional on each yard. What must be the selling price that the dealer may realize an advance of 20% ? How must he mark the carpet so that he can allow a 5% reduction and still gain 20% ?
13. The farmer charges 10% profit on his wheat; the miller, 25% profit on his flour; the grocer, 20% gain. The consumer pays $\$ 5.28$ per bbl. What is the first cost to the farmer of the wheat in a barrel of flour?
14. The actual cost of a certain piano is $\$ 200$; the maker charges an advance of 60%; the agent realizes a profit of 25%, and the deliverer gains 5% for hauling. What is the cost to final owner?

EXERCISE 118.

orAL.

1. Can a man gain 125% ? Can he lose 125% ?

How many per cent. is it possible to gain? To lose?
s. What is always the divisor in determining the gain or loss per cent.?

4 If I gain 200% on a purchase of $\$ 5$, what is the selling price?
5. What is the gain per centam if I buy at 40 ct and sell at 60 ct ?
6. What is the loss per centum if I buy at 60 ct and sell at 40 ct .?
7. If I lose a new 5 -ct. pencil, what was my loss \% ?
8. If I find a dime, can yon tell the gain per cent.?' (We cannot, be-
canse to have gain \% there must be cost, and here there was no cost.)
9. If the gain is $\frac{1}{3}$ the cost, what is the gain $\%$?
10. If the selling price is $\frac{3}{4}$ the cost, what is the loss $\not \approx$?

11 . If the cost is है the selling price, what is the gain \% ?
12. If the selling price is twice the gain, what is the gain per cent-?
15. If the selling price is three times the cost, what is the gain per cent.?
14. If the coet is double the selling price, what is the loss \% ? ?
15. Sold for $\frac{3}{3}$ what cost $\frac{1}{2}$. What was the gain \% ? 16. Does a merchant gain or lose by buying coal by the long ton and selting it by the short ton, at the same price per ton? How would you find the per cent?
17. A farmer planted a peck of corn and raised 250 bushels. How would

you find the gain \% ?
 you find the gain \% TRADE DISCOUNTS.

238. The subject of trade discounts bas the peculiarities that the percentage is termed discount, and that frequently several discounts are applied in succession.
239. Commercial Discounts.-It is the custom of manu-
facturers and various dealers in merchandise to have a fixed or catalogue price for goods, and to make deductions from this, called discounts. Thus, a manufacturer may allow a discount of 25%, owing to the fact that goods are produced more cheaply than when the catalogue was issued, and a further discount of 5% for payment of the bill within a certain time.
The catalogues of goods and priees issued by business houses, are frequently expensive, and when the prices of goods change, owing to cheapencd preceses of production, it is more economical to print off a brief list of discoions than to isue a new catalogue.

The catalogue price is called the list price; the price after the discount has been deducted is called the net price.
240. Successive Discounts.-In making several successive discounts deduct the first discount from the list price, then compute The nest discount on the remainder and deluct it from the remainder, and so proceed till all the discounts have been made.
Ex. A bill of $\$ 250$ for steam heating apparatus was subject to a discount of 60% and 20%, with 2% off for eash. What sum is needed to pay the bill?

Solution.

Since after 60% is deducted 40% is lef
and " 20% " 80% of the remainder is left,
$\square]^{\text {and " } 2 \%}$ the sum required $=\$ 250 \times .40 \times .80 \times .98=\$ 78.40$. $\quad 98 \%$ of the second remainder is lef,

EXERCISE 119.

1. A librarian purchases a list of books amounting to 8123.80 , but is allowed 30% deduetion and a 4% discount for cash. Find actual amount due. UNAL
2. From an assessment upon $\$ 8500$ of value the owner obtained three successive reductions of $8 \%, 15 \%$, and 10%. How large was the final valuation?
S. For damages on a large purchase of dry goods, amount-
ing to $\$ 1800$, a merchant discounted 5%, then on special sale 7%, and on cash payment 2%. What was final bill?
3. Which is the greater discount on a bill of $\$ 15600$, and how much-a discount of 40% and then 8%, or one of 48% ?
4. What single discount on a bill of $\$ 5000$ is equivalent to the two discounts of 15% and 20% ?
6 . Find net cash amount of a bill of $\$ 675$, subject to the three discounts, $20 \%, 16 \%$, and 5%. Change the order of discounts in this example and ascertain whether or not there is change in the final amount of the same bill.
5. Prove that it is immaterial in what order several successive discounts on the same bill are made.

COMMISSION AND BROKERAGE.

241. Agents and Commissions.-Goods are frequently bought or sold through an agent, the advantages being that an agent may be in a more favorable place in which to buy or sell goods, and also that an agent by making a specialty of a certain line of goods may be able to buy or sell to greater advantage.
Thus, a farmer may receive a higher price for potatoes by selling them through an agent in a city, than by selling them himself in his own neighborhood.

An agent who buys or sells general merchandise is called a commission merchant. Goods sent to him to be sold are called a consignment, the person sending them being called a consignor, and the person receiving them being called a consignee.
An agent at a distance is sometimes called a correspondent; the person employing a correspondent is called a principal.
242. Commission is the percentage paid a person who buys or sells goods or collects money for another person.
The base of a commission is the amount of money paid out or received for goods by the agent.

Ex. 1. An agent sold $\$ 3500$ worth of goods for a commission of 5%. What was his commission?

$$
\$ 3500 \times .05=\$ 175, \text { Commission. }
$$

Ex. 2. A gentleman sent an agent 8257.50 to expend in buying hay at $\$ 20$ a ton. The agent charged 3% commission. How miny tons of lay did he buy?

Operation.|ERITATIS Explanation
1.03) $\$ 257.50(\$ 250$. Since $\$ 257.50$ includes both the cost of the hay 200 and 3% commission, $\$ 257.50$ is 103% of the cost of $515 \quad$ the hay. Hence, the cost of the hay $=\$ 257.50$ $1.03=\$ 250$.

If 1 ton of bay costs $\$ 20$, the number of tons $250=12 \frac{1}{2}$, No. of tans. which can be bought for $\$ 250$ is $\$ 250 \div 20$, or 121 tons.
243. Brokerage.- A broker is an agent who buys or sells stoeks, bonds, bills of exchange, real estate, etc.

A commission merchant receives and sells goods in his own name, sending the net proceeds to the consignor. A broker does not handle the goods, and they are sent direetly from the owner to the bayer. Since he is thus saved the labor of handling the goods, he is paid a less percentage for his work.
Brokerage is the commission charged by a broker. In the sale of stocks and bonds, brokerage is reckoned not on the selling price, but on the face or par value of the stocks. It is usually $\frac{1}{8} \%$; or $12 \frac{1}{2}$ cents on a share of $\$ 100$.
Ex. A broker sold 36 shares of N. Y. Central stock. What was his brokerage? Solumion.

Since the par value of 1 share $=\$ 100$,

1. A commission merchant sold a car of lime for $\$ 80$ and received 3% commission. What was his commission? How much did he remit to his employer ?
2. I sold a lot of real estate for Mr. Jones for $\$ 12500$ on $3 \frac{1}{1} \%$ commission. What amount should be sent him?
3. An agent sold 560 baskets of peaches at 90 cents a basket and charged $\$ 25.20$ for doing it. What was his rate of commission?
4. After selling a property worth $\$ 8528$, the agent sent to the former owner $\$ 8229.52$. What rate of commission did he charge?
5. A merchant charged 4% for selling a consignment of beef and received $\$ 93.40$ commission. What was the selling price of the beef?
6. After selling a load of grain, for doing which the agent retained $2 \frac{1}{2} \%$, he remitted $\$ 2691$ to his employer. Required the selling price of the grain.
7. A real estate agent sold a house on 3% commission and sent the owner $\$ 7229.41$. What commission did he retain?
8. If $\$ 2388.33$ includes commission at 2% and the amount invested in wool, how much was invested?
9. I sent my agent $\$ 216.84$ to invest in peaches, after deducting 4% commission. How many baskets at 75 cts . each will he purchase for me?
10. What is the brokerage on a sale of 75 shares of railroad stock (par value $\$ 100$) at $\frac{1}{8} \%$? At $\frac{1}{4} \%$?
11. Par value of P. R. R. stock is $\$ 50$. What will be the total cost of 48 shares at $\$ 72$, including $\frac{1}{8} \%$? 12. Suppose in Ex. 11, shares were selling at $\$ 63$, what would be the total cost?
12. What is the total cost of 28 shares of D. L. \& W. stock at $\$ 124$, counting brokerage at $\frac{1}{8} \%$?
13. A speculator sold through his broker 90 shares of C. R. R.
of N. J. at $\$ 112 \frac{1}{2}$. What were the proceeds, brokerage $\frac{1}{4} \%$?
14. I sent draft on Drexel \& Co. for $\$ 4631.25$ to pay for stock at $92 \frac{1}{2}$ (par $\$ 100$) and their commission at $\frac{1}{8} \%$. How many shares could they buy?

The same general method is followed in assessing city, borough, and county taxes
The different rates of taxes of each government are sent to an official, who calculates the amount of each kind of tax to be paid by each person, corporation, or piece of property, and tabulates the results in a book. The book is given to a collector, who collects each tax and returns it to the proper (county, city, or state) treasurer

It is the custom in many localities to assess property for not more than $\frac{1}{2}$ or $\frac{f}{3}$ of its real value. After property has been assessed, the owner may appear before the proper official and make claim for such reductions or corrections as he thinks he is entitled to

If taxes are not paid when due, a certain per cent. is usually added to hem as a fine.

Taxes are often stated as so many mills on a dollar.
Ex. What will be the county tax of Samuel Smith, the rate being $2 \frac{1}{2}$ mills on a dollar, and his property being valued at
$\$ 3500$. $\$ 3500$.

```
The tax on $1 =.0025.
```

$$
\text { Hence, tax on } \$ 8500-\$ 3500 \times .0025=\$ 8.75, \text { Tar. }
$$

247. Computation of Taxes by Use of a Table.-The computation of the taxes of a community is greatly facilitated by the preparation and use of a table like the following, which gives the tax on various sums at the rate of 3 mills on a dollar.

Frop.	Tax.	Prop-	Tax	Prop.	Tax.	Prop.	Tax.	Prop.	Tax
1	. 03	10	. 30	100	\$3.00	1000	$\$ 30$	10,000	\$300
2	. 06	20	. 60	200	6.00	2000	60	20,000	600
3	. 09	30	. 90	300	9.00	3000	90	30,000	900
4	. 12	40	1.20	400	12.00	4000	120	40,000	1200
5	. 15	50	1.50	500	15.00	5000	150	50,000	1500
6	18	60	1.80	600	18.00	6000	180	60,000	1800
7	. 21	70	210	700	21.00	7000	210	70,000	2100
8	.24	80	2.40	800	24.00	8000	240	80,000	2400
9	. 27	90	2.70	900	27.00	9000	270	90,000	2700

[^2]Ex. Compute by use of the table the tax on a property assessed at $\$ 5680$.

Solution.

EXERCISE 121.

What will be R's tax on a farm valued at $\$ 4500$ if the rate is $.007 ?$ If it is .0102? If it is .012?
2. Mr. Smith owns a house assessed at $\$ 12000$ and the tax rate is .021. What will his total tax be, including a poll at §1.50?
3. By the table find tax on the following amounts: $\$ 4175$; $\$ 8925$; $\$ 10328 ; \$ 27030$; $\$ 50409$; $\$ 66666$ at rate .003 .
4. If my tax is $\$ 132.30$ and my property is assessed at $\$ 7350$, what is the rate?
5. I pay a poll tax of $\$ 1.25$ and a total tax of $\$ 395.25$; my property is assessed at $\$ 15760$. What is the rate?
6. One year a gentleman paid $\$ 372.60$ when the rate of taxation was $1 \frac{12}{3} \%$. What was the value of his property?
7. A tax of $\$ 30500$ is to be assessed on a town; the real estate is valued at $\$ 3500000$, and there are 500 polls taxed at a $\$ 1.50$ each. What will be the rate?

8 . The real estate in a certain town is valued at $\$ 857400$ and a tax of $\$ 13718,40$ is to be assessed. What will A have to pay, his property being worth $\$ 14700$?
9. Do you detect any similarity between the subject of taxes and of percentage? Any difference?
10. Find by use of the table the tax on amounts of Ex. 3 if the rate were 2 mills on the dollar instend of 3 .

CUSTOMS OR DUTIES.

248. Revenues of the General Government. - The general government of the United States obtains its revenue from two
principal sources: (1) Duties (sometimes called tariff, or customs) which are a tax imposed on goods imported into the country from foreign countries;
(2) Internal revenue, that is, taxes charged on certain articles manufactured within the country, as spirituous liquors, articles made from tobacco, etc. Of all these, certain duties only are collected by the use of percentage.
249. Duties are of two kinds, ad valorem and specific.

An ad valorem duty is a certain percentage assessed on the value which imported goods have in the country from which they come. Thus, imported silk ribbons pay a duty of 40%; brushes, 40%; manufactured glass, 45%.
A specific duty is duty assessed on goods according to their weight or bulk without respect to their value. Thus, imported pig iron pays a duty of $\$ 4$ a ton; iron ore 40 cents a ton.
Sometimes goods are subject to both an ad valorem and a specific duty. For example, preserved fruits, when imported, pay a duty of 1 cent a pound, and also 35% ad valorem.
Goods are said to be on the free list when no duty is charged on them. \qquad
Ad vallrem duties are more just if honestly paid, but they present greater chance for fraud by undervaluation.
Hence, at present, most U. S. duties are specific
Nuties are collected at certain cities, called Ports of Entry, which are determined by law. Fach port or entry has a building called a Custom House, where duties are collected under the oversight of a goverument official called the Collector of the Port.

A duty is computed on the cost of the goods at the port from which they are shipped. This cost includes both the cost price and all charges up to the final shipment. An invoice specifying the goods purchased, their cost, etc., is sent to the person or firm importing the goods, and is to be presented by them at the custom house where the goods are received.

Merchandise of certain kinds, imported but not intended for immediate consumption, may be placed in bonded warehouses provided by the United States, and remain there not longer than three years, the owner being at liberty to withdraw it at any time upon payment of the duties and charges.
Ex. What is the duty on 375 yards of cloth at $\$ 2.75$ a yard, the duty being 20% ad valorem?

EXERCISE 122.

1. What is the duty on 40 pairs lace curtains bought for $\$ 6.50$ a pair, duty being 28% ?
2. A jeweler receives from Switzerland a quantity of watch supplies, costing $\$ 2450$, and charges amounting to $\$ 35$. What will be the duty at 8% ad valorem?
3. Find the duty at 15% on 80 boxes of candles, each weighing 100 lbs . and costing 83 ets . per pound.
4. A liquor dealer imports 150 dozen bottles of wine at $\$ 2.50$ a dozen, duty at 22%. What do the bottles cost him, provided charges before landing are \$16 and those after landing are $\$ 9.50$?
5. The duty on an invoice of lace goods at 24% was $\$ 211.50$.

What was the cost of the goods? What was the total cost? What must be the selling price to gain 20% ?
6. A merchant imported dry goods valued at $\$ 7200$, on which there was a duty of $\$ 1296$. What was the custom rate? 7. In the above example, provided the goods cost $\$ 3$ a yard, what must he ask per yard for them, to gain 10% above all given costs?
8. Compare and contrast this subject with the subject of percentage.

INSURANCE

200. Insurance is a system of business whereby a certain sum is payable in case of loss of property in a specified way, or in case of injury or death of a person.

There are three principal kinds of insurances
(1) Fire Insurance.
(2) Life Insurance.
(3) Accident Insurance.

Beside these, there are many special kinds of insurance, as marine, to nado, plate glass, employment insurance, etc.
251. The insurer or underwriter is the person or company taking a risk.

The insured or assured is the person protected.
The policy is the written contract between the insurer and the insured.
The premium is the amount paid for the insurance for certain period of time, as one, three, or five years,

The rate of the insurance is either a certain per cent. to be charged on the face of the policy, or, what amounts to the same thing, a certain charge on every $\$ 100$ or $\$ 1000$ of the face of the policy. Thus, the rate of insurance on a building may be stated either as $1 \frac{1}{2} \%$, or as $\$ 1.50$ on every $\$ 100$ insured.
Business buildings are usually insured for a single year, the policy being renewed annually; dwellings and personal property for three years.

In case of loss the underwriter has the choice of replacing the insured property, or paying its value. Only the actual amount of the loss can be recovered.

Ex. A house is insured against fire for $\$ 4500$ for 3 years. Find the premium, the rate of insurance being $3 \frac{1}{2} \%$
Operation.
$\$ 4500$
035
Explanation.
$\$ 4500$
$\frac{035}{22500}$$\quad$ Explanation.
$\frac{22500}{} 13500$ mium will be $\$ 4500 \times .035$, or $\$ 157.50$.

$\$ 157.500$, Premivm EXERCISE 123.

1. What must be paid for insurance on a property worth 87530 , at $1 \frac{1}{4} \%$? At $1 \frac{2}{3} \%$?
2. On a vessel worth $\$ 12000$ the owner had paid insurance

3 years, at the rate of $1 \frac{1}{2} \%$ annually; then the vessel was wrecked. What was the total loss? How much of it was not recovered by the insurance?
S. A merchant whose stock of goods is worth $\$ 26000$ gets them insured for $\frac{3}{5}$ of their value, at $\frac{3}{3} \%$. What premium does he pay?
(4) A house cost me $\$ 6000$. I wish to insure it, so that in case of fire I lose nothing. For what must it be insured at 5. I pay $\$ 11.90$ premium on insurance of $\$ 680$. What is the rate?
-6. If it $\cos t \$ 82.05$ to insure $\frac{2}{3}$ of a store at $1 \frac{1}{4} \%$, what is the whole value of the store?
(7. I insure my house in one company for 83500 , at $\frac{3}{4} \%$, and my barn in another, for $\$ 2500$, at $\frac{1}{2} \%$. What rate do I pay on my entire insurance?
8. A bank building insured for $\$ 75000$, at $1 \frac{4}{5} \%$, was destroyed by fire after the payment of 4 annual premiums. What was the loss to the company? To the bankers?

STOCKS AND BONDS.

252. Stock Companies and Stocks.-When a business enterprise, as the building and management of a railroad, is too large for the capital of a single person, it is customary for
T severa persons to combine their resources and organize a stock company, for the purpose of carrying on the enterprise. The money thus invested is called the stock.

The stock is divided into a number of equal shares, each share being usually $\$ 100$, but sometimes $\$ 50$ or $\$ 25$.

The stock company, or corporation, has a charter secenred by an act of a state legislature, or issued by a state officer in accordance with a general law. The charter specifies the name and purpose of the company, the amount of stock, the method in which the business is to be conducted, etc. A company is usually organized by electing a board of directors, each share of stock being allowed one vote. The board of directors elect officers, ns
presilient, secretary, treasurer, etc. Sometimes, however, the officers are elected directly by the stockholders.

Stock certificates are documents issued by a company, stating the number of shares of stock owned by each stockholder respectively.
253. Dividends, Assessments.-When the receipts of a company exceed its expenditures, it usually pays part or all of the net gains to the stockholders as a dividend. A dividend is paid out as a certain per cent. of the face or par value of the stock.

When a company is losing money, it often makes an assessment on its stockholders to cover a deficit or extraordinary expense. An assessment is also made as a certain per cent. of the par value of stock.
$2 \breve{4}$ 4. Par, Premium, and Discount.-According as a company is paying large or small dividends, and the public has or has not confidence in it, the stock of the company may sell for more or less than its face value.
The market value of stock is that for which it will sell. When stock sells for more than its face or par value, it is said to be above par, or at a premium; when for less, it is said to be below par, or at a discount.
25. Stocks, Bonds, etc.-Some companies issue stock of two kinds: (1) preferred, (2) common stock. In dividing the gains of a company, the preferred stock receives a dividend first, up to a certain amount, as 5%, after whieh the remainder of the net income of the company, if there be any, is R apportioned to the common stock. About one-fifth of the railroad stock of the United States is preferred stock.
A bond is a note issued by a company to the person from whom the company or corporation borrows money, and specifying the amount, time to run, and rate of interest.

Bonds issued by a company are secured by a mortgage on the property of the company; those issned by a city, county, state, or national government are simply promises to pay, without any such security.

Bonds are either coupon or registered bonds.
Coupon bonds have small certificates of interest attached, which are ut off, as interest becomes due, and cashed at the proper place, as at a bank. Registered bonds have the name and address of the owner; and interest, when due, is sent to the owner. Registered bonds must be indorsed in order to be sold.
Bonds receive special names indicating the year when they are due, or number of years which they thave to run, the rate of interest, etc. Thus, 4's of 1907 are bonds which mature in the year 1907 and pay 4% interest.

Ex. 1. If I buy 12 shares of New York Central R. R. stock at 120 and receive a semi-annual dividend of $3 \frac{1}{2} \%$, what is my annual income from the investment and what per cent does the investment pay?

The par value of 12 shares at $\$ 100$ a share is $\$ 1200$. Since the dividend is paid on the par value, the semi-annual dividend on 12 shares will be 32% of $\$ 1200$ or $\$ 42$. Hence, the annual income is $\$ 42 \times 2$, or $\$ 84$. The cost of 12 shares at $\$ 120$ per share is $\$ 1440$.

In order to determine the per cent. paid by the
$\$ 1440) \$ 84.00(.05 \$$ investment, it is necessary to determine what per cent $\$ 84$ is of $\$ 1440$. This is $5 \% \%$.
1200
1440

EXERCISE 124

bought 25 shares of P.R. R. at 860 (par is 850) and received semi-annual dividends of $2 \frac{1}{2} \%$. What is my annual income? What per cent, do I receive on the investment?
2. Which is the better investment, 9 shares of stock selling at 120 and yielding 7% on par value of 100 , or 10 shares in stock selling at 108 and yielding 6% ? (Find the rate per cent. of each investment.)
8. Which brings the greater income, $\$ 6488$ invested in 6% bonds selling at $\$ 111$ (par $\$ 100$), or in 7% bonds selling at $\$ 58$ (par 850)? What is the per cent. in each?
4. What sum must be invested in 5% bonds at 105 to yield an anmual income of $\$ 1200$?
5. What sum must be invested in 7% bonds at $121 \frac{1}{2}$ to yield an annual income of $\$ 3500$?

EXERCISE 125.

GENERAL REVIEEW.

1. A merchant sells an overcoat for $\$ 50$ and gains 25% over total cost. If he had previonsly paid $\$ 9$ duty on the goods, what was their first cost? 2. If a single fare to the city is 60 cents, what per cent. do I save by buying 100 tickets for $\$ 50$?
2. What amount must be invested in Illinois 6's at 112 to realize an annual income of $\$ 2100$?
3. At 14% I insured my house by payment of $\$ 94.32$ premium. What is the value of the house?
4. A school-honse is to be built at a cost of $\$ 17484.25$. Collector's com mission is 3%; assessable property is valued at $\$ 721000$. Find the rate of taxation.
5. A jockey sold two horses for $\$ 75$ each. On one he gained 20% and on the other he lost 20%. Did he gain or lose on the whole transaction? How much? What per cent.?
6. On one occasion the price of kerosene fell from 12 cents per gallon to 8 cents. What per cent. is the decline? Again it ruse from 8 cents to 12 cents. What per cent. was the advance? Again it rose from 8 cents to
7. An importer sold a line of goods for $\$ 15048$, therehy gaining 20%. Previous to this, he had paid a duty of 10% on their cost. What was the cost?
8. A man buys a house for $\$ 12000$; pays $\$ 230$ tax and 11% insurance each of 5 years. He then sold it at a gain of 10% above all cost and ex-
pense. What was the selling price? pense. What was the selling price?
9. Mr. B. bought stock at $\$ 12$ premium ($\$ 50$ par) and sold it at a loss of 20%. At what rate was it sold ?
10. The first cost of an importer's stock of goods was $\$ 13200$: duty was levied at 12%; insurance was computed upon this total value at 21%. What woild the gbods have to sell for, to return the owner 15 per cent, above all cost?
11. By selling 3% bonds at $102 \frac{7}{4}$ and investing in stock at 137 , a man doubles his income. What is the annual dividend $(\%)$ of the stock?
12. If $\$ 7884.80$ includes the price paid for a farm and the agent's commission at 2%, find his commission.
13. A coal dealer ordered through his agent 6000 tons coal at $\$ 3.30$ a ton, paid $3 \frac{1}{2} \%$ commission, $\$ 56.25$ cartage, and $\$ 210.75$ freight. He sells it at $\$ 3.98$ a ton. What is his gain \% ?
14. Tbought 60 shares Lehigh Valley at 32 and sold it at 60 . My gain I invested in N. Y. Central at 120. What was the income from this, under their 5 \% \% dividends?
15. Bougbt a lot of goods at 20% below market price and sold them at 20% above market price. Find my gain per cent.
20% above market price. Find my gain per cen, having paid $\$ 2.50$ a ream 17. A stationer sold paper at 16 cents a quire, hav
for it. Find his gain \%\%. for it. Find his gain \%o.
1S. I sold two houses for $\$ 5400$ each, having gained 20% on one and lost 20% on the other. Did I gain or lose in the double transaction, and what \% ?
16. A drover bought 75 cows at $\$ 30$ a head. Ten of them were killed by accident. He sells the rest so as to gain 10% on the transaction. At what price did he sell each cow? price did he sell each cow?
20 . A teacher spends 25% of her salary for board, 10% for clothes, 15% for books, 121% for traveling expenses, and saves the balance, which is $\$ 450$. for books, 12% for traveling expenses, and saves the
What is her salary?
What is her salary?
17. 1 lost 18%, or $\$ 600$, in the sale of a property. For what did 1 sell the property?
18. I sold a watch for $\$ 90$, losing 25%. What is my per cent. gain on a recond wateh which I sell for $\$ 90$, so as to profit as much on the one as I lose on the other?
19. What number increased by $33 \frac{\%}{\%}$ of itself is 900 ?
20. Mr. X. raised 496 bushels of wheat, which is 331% more than 3 of

Mr. Y.'s crop. How many bushels did Mr. Y. raise?
25. A clerk spent 65% of his salary and saved $\$ 385$. How much did
he spend ?
26. If a man spends $\$ 45.75$, which is 60% of his money, how much remains?
27. Which gives the larger percentage return, a $\$ 2400$ investment yielding $\$ 112$, or an $\$ 8400$ investment yielding $\$ 378$?
28. Who makes the greater per cent, the lad who buys chestnuts at $\$ 1.28$ a bushel and sells them at 5 cents a quart, or the broker who buys bonds at $\$ 144$ and sells them at $\$ 168$? 29. What per cent. is gained by buying coal by the lon and selling it at the ordinary ton, $\$ 5$ a ton in each case?
so. What is the difference between the single discount of 35% on a bill of $\$ 640$ and three snccessive discounts of $20 \%, 10 \%$, and 5% ?
81. If I pay $\$ 37.50$ for insurance on my house at $1 \frac{1}{4}$ per cent., what is the amount of insurance?
32. A grocer mixes two kinds of tea which cost him 36 cents and 60 cents per pound. He sells the mixture at 56 cents a pound. What is his per cent. profit?

SS. Bought $\$ 128$ worth of apples at 80 cents a bushel. Part were damaged, and I sold the rest at an advance of 30%, receiving $\$ 137.28$. How many bushels were worthless? What was my per cent. profit withal?
34. I sold a horse for $\$ 150$ and with the money bought another. On the first of these horses I gained 20%, and when the second was sold I lost 20%. On the whole transaction, did I gain or lose? How much? What per cent.?
35. In a cubic foot of water there are 889 ounces of oxygen and 111 ounces of hydrogen. What per cent, of water is oxygen (by weight)? What per cent. is hydrogen? What per cent. of the oxygen is the hydrogen?
36. A merchant by selling a pound of butter gains the cost of an ounce. Find his gain \%.
32. The volume of a gallon is what \%o of a cubic foot?
38. The population of a certain city is 84000 , and that of the state in which the city is, 189000 . What per cent. of the entire population of the state is that of the city?
39. A merchant bought goods for $\$ 1200$ and then sold $\frac{1}{3}$ of them at a loss of 25%. For what must he sell the remainder to gain 20% on the whole? 40. An agent received $\$ 40.625$ for selling a house worth $\$ 1625$. What can you find? Do so.
41. An agent sold 1470 bashels of oats at 60 cents a bushel and charged $\$ 26.46$ for doing it. What may be found? Find it.
42. For what sum is a house insured if the preminm is $\$ 17.50$ and the rate $\frac{7}{8} \%$?
43. Ont of a possible 72 points in an examination, A got 27 points and B got 581 . Find their percentages of grade.
44. A merchant wishes to mark some goods which cost $\$ 1.20$ a yard, so that he may rednce them 20% from marked price, and still gain 10%. At what price must they be marked?
45. What single discount is equivalent to the successive discounts of 20% and 10% ?
46. What is $16 \% \%$ of 1163 ?

DE47.2121 is what per cent. of 9163 ? $~$. त
48. A desk was sold for $\$ 60$, at a gain of 20%. What would have been the loss $\%$ had it been sold for $\$ 10$?
49. My horise, worth $\$ 6400$, was insured for $\frac{z}{4}$ of its value at $\$ \%$. It was destroyed after the second premium had been paid. What was my actual loss? The company's?

51. Write as a common fraction and as a decimal: $\frac{3}{4} \% ; 12 \% ; 7 \frac{1}{2} \%$; 340%; 40%; 4%; 143%; 625%
58. A horse worth $\$ 150$ was bought for $\$ 25$ less and sold for $\$ 25$ more than his real value. What \% was ganed?
55. At $\$ 5$ a ton, how many tons of coal can be bought with $\$ 8526$, after paying commission of 16% ?
54. Which is a greater per cent, change, when sugar drops from 6 to 5 cents a pound, or when it advances from 5 to 6 cents? Why?
55. If the cast is $\frac{z}{5}$ of the selling price, find the gain $\%$.
56. If the selling price is $\frac{3}{5}$ of the cost, find the loss $\%$.

57 . Bought 320 shares of a certain stock (par $\$ 10$) when $3 \frac{1}{2} \%$ below par, and sold them when 13% above par. Find my gain in dollars and in per cent.
58. Bought 500 stares of railroad stock at $28 \frac{2}{2}$ and sold it at 453. Allowing $\frac{1}{2} \%$ commission on both purchase and sale, what was my gain? 59. Sold 400 shares of United States Steel preferred, at 981 . With the proceeds I bought 1000 shares of Southern Railway at 318. Allowing 8% commission in each transaction, how much money remained unemployed? $60 . \mathrm{Mr}$. A. sold 800 Reading bonds (4%) at $96 \frac{1}{6}$ and bonght Erie at 51 . How many shares did he buy, allowing commission on bonds at $\frac{1}{4} \%$ and on stock at \& \% ?
61. I sent my broker $\$ 10000$, asking him to buy some Southern Pacific R. R. stock under 45 and sell it over 60 . He bought all he could with my remittance at 427 and sold it at 601 . Compute the number of shares purchased; his total commission at 1%; and ny profit.

62 . In a certain school there are 288 boys and 162 girls. What per cent. of the school is boys? Girls?
63. Into 80 gallons of alcohol are mixed 40 gallons of water. What per

T cent. of the mixture is water?
67. To hake a certain kind of bread 2 measures of rye meal are mixed with 13 measures of corn meal. What per cent of the bread is rye? 65. After a reduction of 8% a man's wages were $\$ 22.54$. What were they before the reduction?
66. What amount of insurance may I procure on my house by paying $\$ 35$ if the rate is 新? ?
67. Twents per cent. of the selling price of my horse was $\$ 36$. What was my profit if I gained 20% ?
68. In a certain city there are 73000 white, and 25000 black citizens, What per cent. of the entire population is colored?
69. Sold two horses for $\$ 210$ each. On one I gained 20% and on the other I gained \$20. Find my total gain. Also gain per centum.

CHAPTER XV

INTEREST.

256. Interest.-If a business man does not have money enough of his own to carry on a certain enterprise, he may be enabled to proceed, by borrowing money from another person. In such cases it is customary to pay a certain sum (per annum) in return for the use of the borrowed money.
As money paid for the use of a house is called rent, and money paid for the use of a horse is called hire, so money paid for the use of money is called interest.
Interest is usually reckoned as a certain annual per cent. of the money borrowed.
25\%. Interest and Time.- The length of time for which borrowed money is used varies greatly according to the needs of the borrower. The time may be only a few days, or it may be a number of years, or of years, months, and days.
Hence, interest differs from percentage in general, in that the element of time is to be carefully considered in connection the element of time is
with every problem.
257. The quantities considered in interest are the principal, rate, interest, time, amount.

The principal is the sum of money on which interest is paid.

The rate is the per cent. of the principal paid for the use of the primcipal for one year.

The interest is the sum of money paid for the use of the principal for the entire time.

The amount is the sum obtained by adding the interest to the principal.
259. Legal interest is interest determined according to a
51. Write as a common fraction and as a decimal: $\frac{3}{4} \% ; 12 \% ; 7 \frac{1}{2} \%$; 340%; 40%; 4%; 143%; 625%
58. A horse worth $\$ 150$ was bought for $\$ 25$ less and sold for $\$ 25$ more than his real value. What \% was ganed?
55. At $\$ 5$ a ton, how many tons of coal can be bought with $\$ 8526$, after paying commission of 16% ?
54. Which is a greater per cent, change, when sugar drops from 6 to 5 cents a pound, or when it advances from 5 to 6 cents? Why?
55. If the cast is $\frac{z}{5}$ of the selling price, find the gain $\%$.
56. If the selling price is $\frac{3}{5}$ of the cost, find the loss $\%$.

57 . Bought 320 shares of a certain stock (par $\$ 10$) when $3 \frac{1}{2} \%$ below par, and sold them when 13% above par. Find my gain in dollars and in per cent.
58. Bought 500 stares of railroad stock at $28 \frac{2}{2}$ and sold it at 453. Allowing $\frac{1}{2} \%$ commission on both purchase and sale, what was my gain? 59. Sold 400 shares of United States Steel preferred, at 981 . With the proceeds I bought 1000 shares of Southern Railway at 318. Allowing 8% commission in each transaction, how much money remained unemployed? $60 . \mathrm{Mr}$. A. sold 800 Reading bonds (4%) at $96 \frac{1}{6}$ and bonght Erie at 51 . How many shares did he buy, allowing commission on bonds at $\frac{1}{4} \%$ and on stock at \& \% ?
61. I sent my broker $\$ 10000$, asking him to buy some Southern Pacific R. R. stock under 45 and sell it over 60 . He bought all he could with my remittance at 427 and sold it at 601 . Compute the number of shares purchased; his total commission at 1%; and ny profit.

62 . In a certain school there are 288 boys and 162 girls. What per cent. of the school is boys? Girls?
63. Into 80 gallons of alcohol are mixed 40 gallons of water. What per

T cent. of the mixture is water?
67. To hake a certain kind of bread 2 measures of rye meal are mixed with 13 measures of corn meal. What per cent of the bread is rye? 65. After a reduction of 8% a man's wages were $\$ 22.54$. What were they before the reduction?
66. What amount of insurance may I procure on my house by paying $\$ 35$ if the rate is 新? ?
67. Twents per cent. of the selling price of my horse was $\$ 36$. What was my profit if I gained 20% ?
68. In a certain city there are 73000 white, and 25000 black citizens, What per cent. of the entire population is colored?
69. Sold two horses for $\$ 210$ each. On one I gained 20% and on the other I gained \$20. Find my total gain. Also gain per centum.

CHAPTER XV

INTEREST.

256. Interest.-If a business man does not have money enough of his own to carry on a certain enterprise, he may be enabled to proceed, by borrowing money from another person. In such cases it is customary to pay a certain sum (per annum) in return for the use of the borrowed money.
As money paid for the use of a house is called rent, and money paid for the use of a horse is called hire, so money paid for the use of money is called interest.
Interest is usually reckoned as a certain annual per cent. of the money borrowed.
25\%. Interest and Time.- The length of time for which borrowed money is used varies greatly according to the needs of the borrower. The time may be only a few days, or it may be a number of years, or of years, months, and days.
Hence, interest differs from percentage in general, in that the element of time is to be carefully considered in connection the element of time is
with every problem.
257. The quantities considered in interest are the principal, rate, interest, time, amount.

The principal is the sum of money on which interest is paid.

The rate is the per cent. of the principal paid for the use of the primcipal for one year.

The interest is the sum of money paid for the use of the principal for the entire time.

The amount is the sum obtained by adding the interest to the principal.
259. Legal interest is interest determined according to a
rate fixed by law. In business transactions, when no rate is specified, the legal rate is understood.

Usury is interest at a rate higher than that fixed by law. The exaction of usury is punishable by law.
Different states and nations have different legal rates of interest, according to their financial needs.
In 1900 the legal rate was 6% in all the states, with the following exceptions: 5% in La, and III,; 7% in Ariz, Cal, Gaa, Idaho, Minn., Neb., Nev., N. Dak., Okla., S. C., S. Dak., and Washy; 8% in Ala, Colo., Fla. Ore, Utah, Wyo.; 10% in Mont.
In many of the states the law allows a higher rate than the legal one to be used by mutual agreement.
260. Methods of Computing Interest.-Persons who have many problems in interest to compute (as, for instance, bankers) do so by the use of tables. Other methods, however, are needed for persons to whom tables are not accessible, and to give mastery of other problems related to interest. Of the many methods by which interest can be computed, three principal ones (beside the use of tables) will be considered here, another being presented later in connection with the subject of discount.
I. When the Time is an Exact Number of Years or Months.
261. Method.-When the period of time for which interest is to be computed is an exact number of years, or years and months, find the interest for one year and maltiply this by the number of years.

Ex. What is the interest on $\$ 350$ for 2 years 3 months, at 5% ? Operation.

EXERCISE 126.
Find the interest of

1. $\$ 340$ for 4 yr. 6 mo . at 5%.
2. $\$ 275$ for 3 yr .8 mo . at 6%.
S. $\$ 515$ for 5 yr. 4 mo , at $4 \frac{1}{2} \%$.
3. $\$ 108.50$ for 6 yr , at 3%.
4. $\$ 214.61$ for 8 yr. 6 mo . at 5%.
5. 82075 for 10 yr .2 mo . at 6%.
6. $\$ 489.30$ for 2 yr. 5 mo . at 7%.
7. $\$ 307.15$ for 9 mo . at $2 \frac{1}{2} \%$.
8. $\$ 2560.60$ for 7 yr .11 mo . at $3 \frac{1}{2} \%$.
9. $\$ 1971.40$ for 10 mo . at $5 \frac{1}{2} \%$.
10. $\$ 7327.50$ for 3 yr .8 mo . at 6%.
11. $\$ 956.70$ for 5 yr. 6 mo . at $4 \frac{1}{2} \%$.

What is the interest of

1. $\$ 3$ for 4 yr, at 6% ? At 2% ? At 5%
2. $\$ 8$ for 1 yr. 6 mo at 5% ? At 3% ?
s. $\$ 9$ for 2 yr. 4 mo at 3% ? At 4% ?
3. $\$ 10$ for 3 yr 3 mo at 4% ? At 6%
4. $\$ 15$ for 5 yr .8 mo , at 2% ? At 5% ?

II. Six Per Cent. Method.

262. The six per cent. method of finding interest consists essentially in finding
(1) the interest on $\$ 1$ for the given time at 6%,
(2) the interest on the entire principal for the given time at 6%,
(3) the interest on the entire principal at any other desired rate.

The interest on $\$ 1$ for the required time at 6% is readily obtained by the use of the following:

Interest on 81 for 1 year $=\$ 0.06$.

$\$ 1$	$1 \mathrm{mo}=$
$\$ 1$	6
6 da	$=005$.

$81 \quad 6 \quad 6$ da. . 001 . $.000 \frac{1}{6}$.
Hence, in computing interest according to this method, each month is considered as containing 30 days, and 1 year as containing 360 days.
Ex. 1. Find the interest on $\$ 312$ for 2 yp. 7 mo .15 da, at 6%.

Ex. 2. Find interest on $\$ 312$ for 2 yr. 7 mo .15 da. at 5%.

Solution.

T By Ex. 1, the interest on $\$ 312$ for the given time at $6 \%=\$ 49.14$.

Ex. 3. Find the interest on $\$ 317.25$ from Apr. 1, 1892, to Nov. 19,1896 , at $4 \frac{1}{2} \%$. \qquad Solumos.
From Apr. 1, '92, to Nov. 19, '96, is 4 yr. 7 mo .18 da.
Interest on $\$ 1$ for 4 yr .7 mo .18 da- at $6 \%=\$ 0.278$.
Interest on $\$ 3 \mathrm{Y} 7.25$ for 4 yr .7 mo .18 da . at $6 \%=\$ 0.278 \times 317.25=\$ 88.20$.
" " $\$ 817.25$ " 4 " " " $11 \%=\$ 22.05$.
" " $\$ 317.25$ ". "

Hence, in general, obtain the interest on $\$ 1$ for the given time, by multiplying the number of years by .06, the number of months by .005 , and the number of days by $.000 \frac{1}{6}$, and taking the sum of the results; multiply the number of dollars in the principal by the interest on $\$ 1$; this will give the interest at 6%; to obtain the interest at any other rate, add or subtract such a fractional part of this interest, as the rate exceeds or falls below 6%, or find the interest at 1% and multiply it by the required rate.
The first part of this method, sometimes stated in other ways, as reduce the years to months, take the number of months as cents, one-third the number of days as mills, and multiply their sum by half the prineipal; or multiply dollars
3y days and divide by 6000 . by days and divide by 6000 .

Find the interest, by the 6% method, of:

1. $\$ 260$ for 2 yr .8 mo .24 da . at 6%.
2. $\$ 450$ for 4 yr. 6 mo. 15 da at 4%.

ङ. $\$ 846$ for 7 yr. 10 mo .12 da , at 5%.
4. $\$ 2350$ for 5 yr .9 mo .6 da . at 3%.
5. $\$ 246.70$ for 6 yr .1 mo .20 da , at $4 \frac{1}{2} \%$
6. 893.45 for 3 yr .11 mo .3 da. at 7%
\% .
7. $\$ 928.50$ for 8 yr. 3 mo .25 da , at 8%.
8. $\$ 1250.40$ for 10 yr .10 da , at $3 \frac{1}{2} \%$
9. 8760 from July 4, 1875, to Feb. 22, 1890, at 4%.
10. $\$ 45.50$ from Oct. 19, 1890 , to Mar. 11,1899 , at 5%
11. 8325.60 from Nov. 8,1888 , to June 23, 1897, at 3\% 3%.

12: 850.60 from Dec. 25,1789 , to May 1,1801 , at 6%.
13. $\$ 2500$ from Aug. 17, 1903, to Nov. 8, 1930 , at 5%.
14. $\$ 3280$ from July 4, 1776 , to Jan. 3,1850 , at $4 \frac{4}{2} \%$.
15. 87650 from Sept. 10,1888 , to Oct. 1. 1900 , at 7%.
16. $\$ 372$ from Oct. 12, 1492, to to-day at 5%.
17. 89800 for 8 yr .3 mo .26 da . at $3 \frac{1}{2} \%$.
18. 87384.80 for 9 yr. 2 mo. 10 da. at $5 \frac{1}{2} \%$.
19. $\$ 12.75$ for 7 yr. 18 da, at $6 \frac{1}{2} \%$.
20. 85,64 for 3 yr. 8 mo .20 da , at $3 \frac{1}{2} \%$.

III. Exact Interest

263. Exact interest is interest obtained by taking one year as equal to 365 days.
The U. S. Government computes interest by the exact method, as do also an inereasing number of business men.
Ex. Find the exact interest on $\$ 652$ from Apr. 1, 1895, to Sept. 13, 1897, at 7%.

From A Solumion.
From Apr. 1, ${ }^{7} 95$, to Apr. 1, '97, is 2 year
From Apr. 1, 97, to Sep. 13, 97 , is 165 days.
165 days - 185 yr . $=$ it of a year.
Interest on $\$ 652$ at 7% for 1 year $=\$ 45.64$.
Interest on $\$ 652$ at 7% for $2 \frac{3}{3}$ years $=\$ 45.64 \times 2 \frac{23}{5}=\$ 111.91$, Interesh
EXERCISE 129.
Find the exact interest of:

1. $\$ 400$ for 146 days at 7%.
2. $\$ 325$ for 3 yr. 219 da. at 4%.
S. $\$ 75.50$ for 2 yr. 100 da. at 5%.
3. $\$ 136.40$ for 4 yr. 150 da. at 41%.
4. $\$ 350$ from Jan. 10, 1890, to Dec. 1, 1894, at 5%.
5. $\$ 425$ from May 16,1887 , to Jan. 4,1895 , at 6%
6. $\$ 170$ from Feb. 20, 1900, to Oct. 16, 1906, at 6%
7. 890.50 from July 7, 1891, to Mar. 3, 1899, at 4%
8. Find the difference between the exact interest and the interest determined by the 6% method, on $\$ 7000$ from Mar.
11 to Sept. 10, at 6\%.
9. Find the difference between the exact interest and the
interest found by the 6% method, on $\$ 4500$ from Nov. 16 , 1889, to June 23,1897 , at 5%. I UEA
10. Find the difference between the twe interests of
$\$ 5678000$ from Jan. 10 to July 10 of same yr., at 7%.
11. When the time is less than a year and in days, what will always be the ratio between these two interests?

IV. Interest Tables

264. If interest tables are available, the most convenient way of computing interest is by their use. In some cases the tables are formed regarding a year as 360 days; other tables give exact interest. In either case the exact number of days is reckoned between two dates in computing any problem in interest.
A part of a page from an interest table is inserted below. It gives the exact interest on various sums from $\$ 10$ to $\$ 150$ at $1,5,6,7 \%$ for 60 and 61 days.

Dolls.	60 days				61 days			
	7	6	5	1.	7	6	5	1
10	. 1151	. 0986	. 0822	. 0164	. 1170	. 1003	. 0836	
20 30	. 2301	1973 .2959	. 1644	. 0329	. 2340	. 2005	. 1671	. 0334
40	. 4603	. 2959	. 24686	. 0493	. 3510	. 3008	. 2507	. 0501
50	. 5753	. 4931	. 4110	. 0822	.4679 .5849	. 4011	$\begin{aligned} & .3349 \\ & .4178 \end{aligned}$	$\begin{gathered} .0668 \\ 0836 \end{gathered}$
60	. 6904	. 5918	. 4931	. 0986	. 7019			
70	. 8055	. 69804	. 5753	. 1151	. 8189			.1003 1170
80	. 9205	. 7890	. 6575	. 1315	. 9359	. 8022	. 66885	. 1173
$\begin{array}{r}90 \\ 100 \\ \hline\end{array}$	1.0356 1.1507	.8877	. 7397	1479	1.0529	. 9025	. 7520	. 1504
	1.1507	. 9863	. 8219	. 1644	1.1699	1.0027	. 8356	. 1671
110	1.2657	1.0849	. 9041	. 1808	1.2868	1.1030	. 9192	. 1838
120	1.3808	1.1836	. 9863	.1973	1.4038	1.2033	1.0027	. 2005
140	1.4959	1.2822	1.0685	. 2137	1.5208	1.3035	1.0863	. 2173
150	1.7260	1.4794	1.1507 1.2329	$\stackrel{2301}{ }$	1.6378	1.4038	1.1699	. 2340
Ete.					1.7548	1.5041	1.2534	. 2507

Ex. Find exact interest on $\$ 146.50$ at 5% for 60 days by the use of tables.

Interest on $\$ 140$ for 60 days at 5%

. $6\left(=\frac{1}{10}\right.$ of $\left.\$ 60\right)$ for 60 days at $5 \%=.0493$
.0041
$\$ 1.2041$ or $\$ 1.20$, Interest

ALER PROBLEMS IN INTEREST.

Any three of the five quantities considered in interest, the principal, rate, interest, time, amount, being given, the other two may be found. The case when the principal, rate, and time are given, to find the interest (and amount) has already been considered.
265. I. Given the principal, interest (or amount), and time, to find the rate per cent. The method is best shown by an example.
Ex, 1. At what rate per cent, will $\$ 360$ produce $\$ 66$ interest in 3 yr .8 mo ?

$$
\begin{aligned}
& \text { Interest on } \$ 360 \text { for } 1 \text { yr. at } 1 \% \quad=\$ 3.60 \text {. } \\
& \text { /4 " } \$ 360 \text { " } 3 \text { yr. } 8 \mathrm{mo} . \text { at } 1 \%=\$ 3.60 \times 3 z=\$ 13.20 \text {. }
\end{aligned}
$$

If the given principal produces $\$ 13.20$ interest in the given time at 1%, it will take as many per cent. to produce $\$ 66$ as $\$ 13.20$ is contained times in $\$ 66$.

Rate required $=\frac{\$ 00}{\$ 13.20}$

T Ex. 2. At what rate per cent. will $\$ 120$ amount to $\$ 144$ in 5 years?
The interest $=$ amount - principal $=\$ 144-\$ 120=\$ 24$. Proceeding as in Ex. 1 .

Hence, in general, divide the given interest by the interest on the principal for the given time at one per cent.

It is useful also to state this rule briefly, thus:

$$
\begin{aligned}
& \text { rate }=\text { interest }=(\text { principal } \times .01 \times \text { time }), \\
& \text { or using symbols, } r=\frac{i}{p \times i},
\end{aligned}
$$

where r denotes the rate per cent. expressed decimally

EXERCISE 130

Find the rate if

1. Interest on $\$ 420$ for 3 yr .6 mo . is $\$ 73.50$.
2. Interest on $\$ 56$ for 4 yr. 3 mo . is $\$ 9.52$.
s. Interest on $\$ 760$ for 2 yr .8 mo . is $\$ 121.60$.
3. Interest on $\$ 840$ for 5 yr. 3 mo .15 da is $\$ 311.15$
4. Interest on $\$ 900$ for 2 yr .4 mo . 20 da . is $\$ 96.75$.
5. Interest on $\$ 45$ for 3 yr .9 mo .24 da . is $\$ 10.305$.
6. Interest on $\$ 370$ for 6 yr .6 mo .6 da . is $\$ 72.335$.
7. Interest on $\$ 49.50$ for 1 yr. 4 mo .10 da . is $\$ 2.695$.
8. Interest on $\$ 1780$ for 6 mo .25 da . is $\$ 55.748$.
9. Interest on $\$ 100$ for 16 yr. 8 mo . is $\$ 100$.
10. Amount of $\$ 360$ in 3 yr . 10 mo . is $\$ 415.20$.
11. Amount of $\$ 3700$ in 2 yr .7 mo . is $\$ 4225.71$.
12. Amount of $\$ 75$ in 6 yr .11 mo .10 da . is $\$ 93.23$.
13. II. Given the principal, interest (or amount), and rate, to find the time.
Ex. In what time will the interest on $\$ 424$ be $\$ 37.10$ at $2 \frac{1}{2} \%$?

Interest on $\$ 424$ at 21% for 1 year $=\$ 10.60$
Hence, it will take as many years to produce $\$ 37.10$ interest as $\$ 10.60$ is contained times in $\$ 37.10$.

Number of years $=\frac{\$ 37.10}{\$ 10.60}=3 \frac{1}{2} . \quad \therefore$ Time $=3 \mathrm{yr} .6 \mathrm{mo}$.
Hence, in general, divide the given interest by the interest of the principal at the given rate for one year;
or time $=$ interest $\div($ principal \times rate expressed decimally $)$,
or using symbols, $t=\frac{i}{p \times r}$

Find the time if:
EXERCISE 131.

1. Interest on $\$ 75$ at 6% is $\$ 15.75$.
2. Interest on $\$ 240$ at 5% is $\$ 63$.
S. Interest on $\$ 475$ at 4% is $\$ 33.25$
3. Interest on $\$ 76.80$ at $4 \frac{1}{2} \%$ is $\$ 9.792$.
4. Interest on $\$ 570$ at 7% is $\$ 332,50$.
5. Interest on $\$ 65$ at 6% is $\$ 12.511$.
6. Interest on $\$ 820$ at 3% is $\$ 140.77$.
7. Interest on $\$ 980$ at $3 \frac{1}{2} \%$ is $\$ 259.54$.
8. Amount of $\$ 420.75$ at 4% is $\$ 475.915$
9. Amount of $\$ 31250$ at 5% is $\$ 35625$.
10. Amount of $\$ 8.25$ at 6% is $\$ 13.134$
11. Amount of $\$ 2460$ at $5 \frac{1}{2} \%$ is $\$ 3224.82$.
12. III. Given the interest (or amount), time, and rate to find the principal.

Ex. 1. What principal will produce $\$ 33.75$ interest in 2 yr .3 mo . at 6% ?

Soldmon.

Interest on $\$ 1$ for $2 \ddagger \mathrm{yr}$. at $6 \%=\$ 0.135$.
If one dollar produces $\$ 0.135$ interest in the given time, it will take as many dollars to produce $\$ 33.75$ interest as $\$ 0.135$ is contained times in \$33.75, or

teres, general, divide the given interest (or amount) by the interest on (or amount of) $\$ 1$ for the given time and rate,
or prineipal $=$ interest $\div($ time \times rate expressed decimally $)$, or $p=\frac{i}{x}$.
It is to be noted that if the amount be given instead of the interest, it is necessary to divide the given amount by the amount of $\$ 1$ for the given time and rate.

Ex. 2. What principal will amount to $\$ 263.50$ in 4 years at 6% ?

Solution.

Amount of $\$ 1$ at 6% in 4 years $=\$ 1.24$.
It will take as many dollars to amount to $\$ 263.50$ as $\$ 1.24$ is contained times in $\$ 263.50$, or
$\frac{\$ 263.50}{\$ 1.24}=212.50 . \quad \therefore$ Principal $=\$ 212.50$.

EXERCISE 132.

What principal will:

1. Produce $\$ 156.40$ interest in 5 yr. 8 mo . at 6% ?
2. Produce $\$ 30.38$ interest in 7 yr .9 mo , at 5% ?
3. Produce $\$ 7.15$ interest in 3 yr .3 mo . at 4% ?
4. Produce $\$ 36.72$ interest in 2 yr. 10 mo . at $4 \frac{1}{2} \%$?
5. Produce 883.72 interest in 6 yr. 8 mo .15 da. at 3% ?
6. Produce $85.49 \frac{1}{2}$ interest in 4 yr. 4 mo. 10 da. at 5% ?
7. Amount to $\$ 99.22$ in 3 yr. 6 mo . at 6% ?
8. Amount to $\$ 195.09$ in 5 yr. 9 mo .20 da , at 5% ?
9. Amount to $\$ 121.98$ in 4 yr. 8 mo .24 da. at 6% ? 10. Amount to $\$ 327.384$ in 7 yr .4 mo .12 da. at 7% ?
10. The present worth of a sum payable at a future time (without interest) is such a sum, as being put at interest, will amount to the given sum in the given time.

The true discount is the difference between the sum payable at a future time and its present worth.
Hence, in determining the present worth of a sum due at a certain future date, we have given the amount, time, and rate, to find the principal (see Art. 267)

EXERCISE 133.

Find the present value and true discount upon:

1. A debt of $\$ 378.75$ due in $3 / \mathrm{moc}$ without interest, but money being worth 4%. CLS
2. A debt of $\$ 4377.80$ due in 6 mo .15 da . without interest, but the usual rate being 6%.
S. A debt of $\$ 8255$ due in 1 yr. 8 mo. without interest, when the regular interest is at $3 \frac{1}{2} \%$.
3. I owe you $\$ 1492$ payable in 8 mo. 20 da., not bearing interest. What sum ought you accept now if interest is reckoned at 5% ? \bigcirc
4. General Algebraic Method.-For students who are familiar with the elements of algebra, all the problems in interest may be combined as the treatment of a single simple equation.

Thus, let $p=$ principal, $r=$ rate per cent. expressed decimally.
Then by the definition of interest, Art 256 inderes in years.
Then by the definition of interest, Art. 256 and by Art. 261,
Any three of the four quantities, i, p, r, t, being given, the remaining quantity is found by solving equation I.

Also letting $a=$ amount,

$$
\begin{array}{r}
a=p+p r t=p(1+r t) \\
\therefore p=-a
\end{array}
$$

$$
+r i
$$

EXERCISE 134.

GENERAL REVIEW

I. At what rate will $\$ 100.60$ yield $\$ 170.52$ interest in $4 \mathrm{yr} .10 \mathrm{ma}$.
2. What pricipal will prodice 814.30 interest in 3 yr. 8 mo, at 4% ?
S. In what time will $\$ 72.50$ amount to $\$ 113.64 \frac{3}{8}$ at 6% ?
4. If the rate is $4 \frac{1}{2} \%$, the time 4 yr .3 mo., and the amount $\$ 123.89$, find the principal.

5 . If the principal is $\$ 318$, the rate 5%, and the amount $\$ 422.675$, find the time.
6. If the interest of $\$ 441$ is $\$ 95.67 \ddagger$ in 5 yr .11 mo ., find the rate.
7. What is the present worth of $\$ 800$, payable in 9 mo ., money being worth 6% ? 7% ? 5% ?
S. In 4 yr. 8 mo. a note I hold will be worth $\$ 385.60$. What ought I accept now, if money is worth 5% ?
9. In what time will a sum of money double itself at simple interest, the ste being 4% ? 5% ? 6% ? 7% ? 8% ?
10. In what time will $\$ 126.50$ yield $\$ 6.66$ interest at 4% ?
11. At what rate will $\$ 562$ yield $\$ 160.86$ in 3 yr .6 mo . 28 da.?
18. What principal will give $\$ 207.71$ interest in 1 yr .6 mo .17 da . at 5% ?

1s. What is the interest on $\$ 963.45$ from April 10, 1883, to July 4, 1895,

at $2 \frac{1}{2} \%$?

14. At what rate will $\$ 250$ gain $\$ 35$ in 2 yr .9 mo .18 da.?
15. Find the amount of $\$ 392.10$ for 6 yr .9 mo .15 da at $3 \frac{3}{4} \%$.
16. On an investment of $\$ 5620$ I receive $\$ 1803$ in 2 yr .3 mo .15 da What is the rate?
17. In what time will $\$ 2275$ amount to $\$ 2673.121$ at 5% ?
18. What principal will in 5 yr .8 mo .15 da , at 5%, give $\$ 287.70$?
19. At 6%, what sum of money will amount to $\$ 666$ in 6 yr. 6 mo .6 da.? 20. In what time will $\$ 500$ produce $\$ 50$ interest at 31% ?
20. Definitions.- The maker of a note is the person who signs the note, as William Heywood in the note of Art. 270.

The payee is the person to whom the note is made payable, as James Scudder in the above note.
The face (or principal) is the sum promised to be paid.
The face of the note is written in the body of the note in words, not figures, to avoid fraud or error. The number of cents, however, is usually expressed in figures, as the hundredths of a dollar.
272. Maturity of Notes.-In some states, as New York, New Jersey, Pennsylvania, and Illinois, a note matures, that is, is legally due, at the end of the time specified in the note. Thus, the above note (Art. 270) is due 30 days after Oct. 12, 1900, that is, on Nov. 11, 1900.

In other states, as California, Tennessee, etc., a note is due three days after the time specified in the note. These three days are called days of grace. Thus, if the above note had been given in Knoxville instead of Philadelphia, it would have been due Nov. 14, instesd of Nov. 11.
Days of grace were formerly allowed in all states, but their use is gradually being abolished by law.
When the time of a note is specified in months, calendar months are used. Thus, if a three-months note is given on June 5, it falls due on Sept. 5 (or Sept. 8, if days of grace are allowed). If, however, a note for 90 days is given on June 5, it falls due on Sept. 3 (or Sept. 6).
If a note falls due on a Sunday or a legal holiday, it matures on the nearest business day preceding, except in Pennsylvania, where it falls due on the first business day following.

It is becoming customary to specify in the note the day on which the note becomes due, instead of stating the number of days or months which the note is to rum.

If no time for which the note is to run is specified in the note, the note is payable at any time on which the holder of the note may choose to call for its payment, that is, it is due on demand.
273. Interest on Notes.-If a note contain the words "with interest," interest is computed on the note from the date at which the note is given. Thus, interest on the above note (Art. 270) is computed beginning with Oct. 12.

If, however, the words "with interest" are omitted, interest is computed from the day on which the note becomes due; thus, if, in the above note, the words "with interest at 6% " were omitted, interest would be computed beginning with Nov, 11.

Interest on notes is usually computed for the exact number of days (even when the note runs for a certain number of months), allowing either 360 or 365 days to the year.

Since notes are usually given for 30,60 , or 90 days, it is generally convenient to find the interest at 6% for 60 days (which interest equals 1% of the principal), and for such parts of 60 days as are needed, to take their sum and then obtain the interest at any other rate if such rate is used. This, in effect, constitutes still another method of computing interest than those given in Chapter XV., and is called the Two Months Method.

Ex. Find the amount due on the following note at maturity.
\$860.42. Trenton, N. J., May 12, 1898. Hundred Sixty 42 Dollars, value received, with interest at 5 Eig
 The note is due 3 mo . after May 12, that is, on Aug. 12.
From May 12 to Aug. 12, the number of days is as follows:
May, 19 days. Int. on $\$ 860.42$ for 60 da . at $6 \%=\$ 8.604$

Aug., 12 "
Total, 92 "
$\left[\begin{array}{cc}\begin{array}{c}30 \\ 2\end{array} & \text { a } \\ 4 & 92\end{array}\right.$

$5 \%=10.99$
860.49

EXERCISE 135.

Find the date of maturity and the amount due then, on each of the following notes:

1. $\$ 360 . \quad$ Albany, N. Y., April 7, 1901.

Four months after date, I promise to pay Bradley Goold, Three Hundred Sixty Dollars, with interest, at 5%, for value received.

Jonathan Scudder.
2. $8935 . \quad$ Princeton, N. J., Dec.,5, 1892.

On demand, we, or either of us, promise to pay, with interest at 41%, to Charles R. Watson, Nine Hundred Thirty-five Dollars, without defalcation.

Horace Day,
(Paid, 8 mo. from date.)
Earnest F. Keigwin.
Philladelphia, Oct. 8, 1897.
Ninety days after date, I promise to pay William Black, Seven Hundred Dollars, with interest at $3 \frac{1}{2} \%$, for value received.

Eliery Franklin.
4. $\$ 520.60$.

Chicago, Ill., Dec. 14, 1899.
Six months after date, I promise to pay Sherman Thatcher, Five Hundred Twenty Dollars and $\frac{60}{100}$, with interest, at 6%, for value received.

Benjamin Carroll.
5. $\$ 1400$.

Trenton, N. J., March 8, 1873. On July 1,1893, I promise to pay Robert Dolliver, or order, Fourteen Hundred Dollars, with interest at six per centum, for value received.

Roger Somerville. (B)
 On the $218 t$ of January, 1899, I promêse to pay Dwight Ogden, Two Hundred Fifty Dollars, with interest at five per centum.
F. I. Shell.
7. A 90 -day note for $\$ 2800$, with interest at $5 \frac{1}{2} \%$, was paid at maturity. What amount was due?
8. A 3 -month note for $\$ 6750$ at $4 \frac{3}{4} \%$ was paid when due What amount was due?
9. Write a 60-day note with your teacher as payee and yourself as maker, for $\$ 100$, interest at 5%. Then compute its value when due.
10. Write a 6 -month promissory note for $\$ 1670$, bearing interest at $4 \frac{1}{2} \%$, with Horace Mansfield as maker and John Douglass payee. Then compute its value at maturity.
11. Write a demand note for $\$ 3250$, at $5 \frac{1}{2} \%$, with yourself as payee and Richard Smith as maker. Compute its value 6 yr. $7 \mathrm{mo}-8$ da. from date.
12. What is due on a promissory note for $\$ 6840.90$ at 4%, 23 yr. 11 mo .23 da. after date? Write such a note, giving its date and its date when due.

Some other facts relating to the nse of promissory notes are of value, though they do not directly affect arithmetical computations. Among them are the following:
274. Transfer of Notes.-If a note be written in a certain form, it may be sold or transferred by the payee or holder to another person. Such a note is said to be negotiable.
In order to be negotiable, a note must be made payable to the "order of" the payee, or to the "bearer." (Details in the form of notes, and in methods of computing interest on notes, vary in different states and localities. The pupil should question a local banker and discover the forms and methods necessary in his state, or customary in his locality.)
In order to transfer a note, the payee or holder must write his name across the back of the note. If only the signature be written, the indorsement is said to be "general indorsement" or "indorsement in blank"; if the words "please pay to the order of" a specified person, are written with the signature underneath, the indorsement is said to be "special."

If a note is made payable to "bearer" merely, it may be transferted without indorsement.
975. Failure to Pay a Note.- If the maker of a note fails to pay the note when it becomis due (or, if the note be payable on demand, when it is presented for payment), every indorser of the note becomes liable for the payment of the entire note. (If an indorser has written the words "with-
out recourse" above his name, he is not liable. Several indorsers may have an agreement to share the amount of the note between them.)
In case of the failure of the maker of a note to pay the note, the usual method of the holder is to collect the amount ci the note from the last indorser, who collects it in like manner from the preceding indorser, etc., up to the first lisble indorser. The holder, however, may, if he chooses, collect the amount of the note from any liable indorser, such collection, however, releasing all indorsers subsequent to the one from whom collection is made, though prior indorsers are still liable
A protest is a written notice sent by a notary public at the request of the holder of a note to the indorsers of the note, that the note has not been paid when doe.

If a protest is not sent to an indorser on the day on which the note matures, the indorser is released by law, unless the words "waiving demand and notice" have been written above the indorser's signature If the notice has been properly made out and mailed by the notary, the law assumes that a protest has been made.
276. Kinds of Notes.-In what has been said, reference has been made to different kinds of notes, which may be termed time note, demand note, negotiable note, and non-negotiable note. The pupil may give formal definitions of these. Bexide these are other kinds of notes, as follows:
A joint note is a note signed by two or more persons, each of whom is liable for his share of the amount of the note.
A joint and several note is a note signed by several persons, each of whom is liable, not only for his share of the note, but also for the entire note if the other signers fail to pay. Instead of "I promise," the note reads "we, or either of us, promise" to pay, etc.
Bank bills or notes are promissory notes issued by banks and payable on demand.

PARTIAL PAYMENTS.

27\%. Partial Payments.-It is frequently convenient for the maker of a note, instead of paying the note all at one time, to make partial payments on it, as money comes into his possession, till the entire note is paid.
278. Indorsements.-The partial payments made are written on the back of the note and called indorsements. Each
indorsement specifies the amount paid and the date of payment, with the signature of the holder of the note, and is thus, in effect, a receipt for each amount paid on the note.
Several kinds of indorsements occur in business, but all have reference Lo a writing of some sort on the back of a business paper, the word indorsement being obtained from the Latin word "dorsum," meaning "back."
279. United states Rule for the settlement of a note on which partial payments have been made. The Supreme Court of the United States, reasoning that interest shall not be reckoned on interest nor on any payment, has fixed the following rule for allowing for partial payments which have been made in the settlement of a note. The same rule has been adopted by most of the State Governments, the chief exceptions being New Hampshire, Vermont, and Connecticut.
Find the amount of the principal until the time of the first paymont; if the payment exceeds the interest due, subtract the payment from the amount and use the remainder as a new principal; if, however, the payment is less than the accrued interest, find the amount of the principal to the date of that payment at which the sum of the payments exceeds the interest to date; subtract the sum of the payments from the amount and use the remainder as a new. principal; proceed in like manner till the amount due on the day f settlement is determined.

It is seldom that a payment less than the accrued interest is made; when such a payment occurs, it is usually easy to determine that it is less than the accrued interest by a simple mental trial.

The time between dates in partial payments is usually found by subtracting months and days, and not by determining the exact number of days between dates

Ex. Find the amount due on the following note on Jan. 1, 1898. $]$ U U U U U

New York, Jan. 1, '96
Two years from date, I promise to pay James White, or order, Eight Hundred Dollars, for value received, with interest.

Samuel Hillaan.

Indorsed with the following payments, Apr. 1, 96, $\$ 10$; Jan. 1, '97, \$100; Apr. 10, '97, \$200.

Solution.
As the interest on $\$ 800$ for 3 months is $\$ 12$, the first payment is less than the interest to date. Hence, we have

Interest on $\$ 800$ from Jan. 1, '96, to Jan. 1, '97, $=\$ 48$
Principal,
$=\frac{800}{848}$
Amount,
$\begin{array}{r}1848 \\ =\quad 110 \\ \hline\end{array}$
Sum of payments to Jan. 1, '97,
-110
Remainder for new principal,
$=738$
Interest on $\$ 738$ from Jan. 1, ${ }^{9} 97$, to Apr. 10, '97, $=12.17$
Amount,
$=750.17$
Payment Apr. 10, '97,
$=200$
New principal,
$=550.17$
Interest from April 10, '97, to Jan. 1, '98, $\quad=\quad 23.93$
Amount due on Jan. 1, ${ }^{1} 98$, $=\$ 574.10$, Result.
EXERCISE
$\$ 600$.
Harrisburg, Pa., November 1, 1888
Three years after date, I promise to pay George Morris, Six Hundred Dollars, with interest at 5%

Theodore Johnson.
The following endorsements were made: Jan. 1, 1889, \$60; July $1,1890, \$ 100$; Dee. $10,1890, \$ 220$.

What remained due at maturity? \qquad
2. What is due July 1,1899 , on a note for $\$ 2100$, dated Jan. 1, 1897, with interest at 4%, on which are the following payments endorsed: \square,

Sept. 1, 1897, $\$ 450$; Aug. 1, 1898, \$620; Feb. 1, 1899, 8500?
8. A note for $\$ 2400$ dated July 15,1880 , drawing interest at
5%, bears following endorsements :
Dec 20, 1880, \$740; Mar. 30, 1881, \$250; June 18, 1882, $\$ 600$. What is due Dec. 1,1882 ?
4. How much is due Jan. 1, 1900, on a 6% note for $\$ 1500$, dated Oct. 20, 1897, and endorsed as follows:

Dec. $30,1897, \$ 450$; July $9,1898, \$ 25$; Nov. $7,1899, \$ 600$?
5. How much remains due Oct. 15,1888 , on a 5% note for $\$ 3600$, dated June 28,1885 , and endorsed as follows:

Oct. 9, 1885, \$100; Jan. 7, 1886, \$200; Aug. 20, 1887, \$300; Jan. 31, 1888, \$1500?
280. Merchants' Pule.- When a note is settled within a year of the date at which it is given, merchants frequently use the following rule to determine the amount due when partial payments have been made. (1)

Find the amount of the principal to the date of settlement; find the amount of each payment from the time it was made to the date of settlement; take the sum of the amounts of the payments, and subtract it from the amount of the principal; the remainder will be the balance due.

Since the periods of time are short in these notes, interest is usually calculated for the exact number of days. The method of exact interest is used in the following problems:

Ex. Find the amount due on Dee. 31, 1897, on a note for $\$ 800$, interest at 7%, dated Feb. 15, 1897, on which the following payments have been made: Mar. 25, $\$ 75$; June 1 , $\$ 37.50$; Oct. $10, \$ 50$.

Solution.

Amount of $\$ 300$ from Feb. 15 to Dec. 31 (319 da.) $=\quad \$ 318.35$

EXERCISE 137.

1. A note for $\$ 790$ at 6%, dated Jan. 15, 1891, bears two indorsements: July $1, \$ 400$; Nov. 19,860 . What is due Dec. 31, 1891 ?
2. Find the amount due Dec. 15,1898 , on a 5% note for $\$ 2500$, dated Mar. 12, 1898 , and indorsed as follows; May 17, $\$ 800$; Aug. $10, \$ 350$; Nov. $1, \$ 90$.
3. Find the amount due Nov. 30, 1894, on a 4% note of $\$ 1500$, dated Feb. 6, 1894, and indorsed as follows: Apr. 25, $\$ 350$; June 6, $\$ 240$; Aug. 7, \$120; and Nov. 1, $\$ 400$.

BANK DISCOUNT.

281. Bank Discount.-The holder of a promissory note may need money immediately. If either the maker of the note or an indorser of it be of good financial standing, he can usually obtain money on the note by taking it to a bank and selling it ("putting it in bank"). He indorses the note by writing his name on the back, deposits the note in the bank, and in return the bank pays him the sum due at the maturity of the note, less the interest on this sum from the date at which the note is deposited at the bank to the date of maturity.
The sum paid out by the bank is called the proceeds or avaits.
The sum deducted from the amount due at maturity is called the bank discount, Hence, the bank discount on a note is the simple interest from the date at which the note is discounted to the date of maturity computed on the amount of the note at the date of maturity.
282. Kinds of Notes Discounted.-(1) A merchant who sells goods on time frequently receives a note promising to - pay for the goods at the end of one, two, or three months, or

- of a certain number of days. Such a note may or may not bear interest. He obtains money by indorsing it and depositing it in a bank. In this case the money is paid to the indorser.
Such notes are frequently discounted on a date later than the date on which the note was given, called the date of discount.
(2) A person desiring money may make out a note payable to a friend, sign it himself, and get his friend to indorse. He takes it to the bank himself and secures the money on it. In this case the money is paid to the maker of the note; the note
does not bear interest, and the note is discounted on the date on which it is made.
(3) A person desiring money may make out a note payable to a bank, sign it himself, take it to the bank, and obtain the money, depositing property of value, as stocks, bonds, ete., called "collateral," to secure the payment of the note. Such a note needs no indorsement.

Banks reckon time by months or days, according as one or the other is specified in the note, and compute discount by the use of tables, which usually count 360 days in a year, 30 days in a month.

In Pennsylvania, Delaware, Maryland, Missisaippi, and the District of Columbia, discount is reckoned on the day of discount, as well as the day of payment. Thus, a 60 days note in Pennsylvania is discounted for 61 days; in Mississippi (where days of grace are allowed) for 64 days,

Ex. 1. What are the proceeds on a note for $\$ 500$ for 60 days (with grace) discounted at a bank at 6% ?

The note has 63 days to rum. Sonumion.
Interest on $\$ 1$ for $63 \mathrm{da}=\frac{63}{6 \times 1000}=\$.0105$
Interest on $\$ 500$ for $63 \mathrm{da}=\$ 500 \times .0105=\$ 5.25$
$\$ 500-\$ 5.25=\$ 194.75$, Proceeds.
Ex. 2. Find the proceeds of the following note:
\$650.
Philladeliphia, Pa., Jan. 6, '98.
Ninety days after date, I promise to pay to the order of Anthony T Fisher, Six Hundirel and Fifty Dollars, value received, with interest. Discounted at 5%, Jan. 26, '98. Robert Allen. Solution.
The note is an interest-bearing note, hence it is necessary first to find its amount at maturity. It is to be observed that the note is given in Pennsylvania, and that therefore there are no days of grace, and that discount ir computed on the day of discount as well as the day of maturity

Interest on $\$ 650$ for 90 da. at 5%,
$-\quad \$ 8.13$
Amount of note when due (Apr. 6),
From Jan. 26 to Apr. 6 (inclusive), $=71$ da
Discoun, on $\$ 658.13$ at 5% for 71 da ,
$=658.13$
$\$ 658.13-\$ 6.49=\$ 651.64$, Procceds.

In the following examples it is important that the pupil, before working яn example, observe carefully:

1. Whether the time to rum is days or months;
2. Whether the note bears interest or not;
3. The date when the note is discounted;
4. The State in which the note is given, and therefore whether days of grace are allowed, and whether the date of discount is included in the time.

EXERCISE 138.

1. Find the proceeds of a note for $\$ 1200$ on 90 days, discounted at 7%. At 8%.
2. Find the bank discount on a note for $\$ 870$, due in 90 days, at 6%. Find same with 3 days of grace.
S. A note for $\$ 800$, due in 60 days, was discounted at the bank at 7%. Find proceeds.
3. A 6-mo. note for $\$ 650$, dated June 1, was discounted July 15 , at 6%. Find discount and proceeds.
4. A 3 -mo. note for $\$ 1400$, dated July 15, was discounted Aug. 10, at $5 \frac{1}{2} \%$. Find the proceeds.
5. A 90 -day note for $\$ 5000$, with interest at 6%, dated May 4, was discounted June 8 at 8%. Find the proceeds.
In each of the following, determine the day of maturity, time to run, discount, and proceeds:
6. \$1600. Trenten, N. J., June 1, 1895.

Three months after date, I promise to pay George Williams, Sixteen Hundred Dollarg, for value received. Discounted at 6\%, July 15. Washington Norris.
8. \$2000. Baltimore, Md., Feb. 20, 1897. .

Ninety days after date, I promise to pay Jacob Warren, Two Thousand Dollars, with interest at 6%. Disconnted at 7%, April 1. C Andeew Fleming. 9. $\$ 870 . \quad$ Philladelphia, July 10, 1896. On the 10th of January next, I promise to pay John Wanamaker, Eight Hundred Seventy Dollar8, with interest at 5%.
Discounted Oct. 1, at $6 \frac{1}{2} \%$.
Frederic Townsend.
10. A note for $\$ 1200$, bearing interest at $4 \frac{1}{2} \%$, dated Oct. 25,1896 , due Feb. 28, 1897, and discounted Dec. 1, at 7%.
11. A 90 -day note given Dec. 16,1895 , for $\$ 1800$, bearing interest at 3%, was discounted Dec. 30 at 6% (with 3 days of grace).
12. What is the difference between the true discount and the bank discount on 8500 for 3 yr .6 mo . at 5% ?
13. Find the proceeds of a note dated Oct. 15, 1896, for $\$ 460.30$, payable in 9 months, bearing interest at 6%, and discounted February 25, 1897, at 7\%.
14. A note for $\$ 2300$, dated July 30,1899 , and payable in 90 days, with interest at 5%, was discounted September 23, at 7%. Find proceeds.
283. Proceeds to be a Certain Sum. -If a person wishes to obtain a certain sum, as $\$ 209$ on a 3 mos. note at 6%, from a bank, it will be necessary to dotermine the face of the note that will yield that sum.
Thus, on a note for $\$ 1$ the bank would pay in the above case $\$ 1-015$, or $\$ 0.985$. Hance, to obtain $\$ 200$, the face of the note must be as many dollars as $\$ 0.985$ is contained times in $\$ 200$, or $\$ 203.05$.
The student may verify this result by obtaining the proceeds of $\$ 203.05$ for 3 mo . at 6%.

Hence, in general,

Divide the given proceeds by the proceeds of $\$ 1$ for the given time and rate.

EXERCISE 139.

Find the face of the note which,

1. Is to run 60 days, and when discounted at 6% to realize \$891. LRU C U U U
2. Is to run 6 months, and when discounted at 7% realizes \$3493.30.
3. When discounted at the bank for 4 mo .9 da. at 8% will give $\$ 72850$.
4. I owe a man $\$ 800$ and wish to pay him by a 6 -mo. note. What sum must the note demand so that when discounted at the bank at 8%, the debt is exactly paid?
5. Let the student verify all of these results by employing the principles of the few preceding exercises.

COMPOUND INTEREST.

284. Compound Interest.-If interest is not paid when it becomes due, under some circumstances interest on the unpaid interest, as well as on the principal, is computed for the next period of time, and so on. Such interest is called compound interest.

Ex. Compute the compound interest on $\$ 400$ for 3 years at 5%.

If the above example had called for the compound interest on $\$ 400$ for 3 yr .2 mo .15 da ., instead of 3 years merely, we would find the compound amount for 3 years as above, or $\$ 463.05$, then find the simple interest on this sam for 2 mo. and 15 da , or $\$ 4.82$, and add this to the compound interest, giving $\$ 67.87$ as the compound interest for 3 yr .2 mo .15 da .
Savings banks usually compute interest on deposits in this way, adding the interest to the principal at the end of a stated period, as six months. Compound interest is not, however, allowed by law on ordinary debts.

When the annual rate of interest is 5%, for instance, and the interest is compounded semi-annually, the compound interest is obtained by computing the interest for twice as many periods of time as there are years, at half the annual rate, 21%.

Thus, to find the compound interest on $\$ 500$ for 4 years at 7%, find the compound interest on $\$ 500$ at 31 g for 8 periods of time.
In computing compound interest, it is often useful to use tables giving the amount of $\$ 1$ for various rates for different periods of time.

EXERCISE 140.

Find the compound interest of :

1. $\$ 250$ for 4 yr. at 5%.
2. $\$ 1800$ for 6 yr. at 4%.

Also find amount.
3. $\$ 900$ for 3 yr. at 6% compounded semi-annually
4. $\$ 680$ for 4 yr. at 5% compounded semi-annually.
5. $\$ 1600$ for 5 yr. at $4 \frac{1}{2} \%$.
6. 8600 for 3 yr .4 mo , at 5%. Also find amount.
7. $\$ 3000$ for 4 yr. 6 mo. at 4%.
8. $\$ 2500$ for 5 yr. 3 mo . at 6%. Find amount too.
9. What is the difference between simple and compound interest on $\$ 1500$ for 6 yr at 5% ?
10. What sum at 4% compound interest will amount to $\$ 1000$ in 4 yr ? In 5 yr .? In 3 yr .9 mo .?

ANNUAL INTEREST.

$\because]$
285. Annual interest is simple interest on the principal, together with simple interest on each unpaid installment of interest.

In some States, if a note or bond contains the words " with interest payable annually," simple interest ean be colleeted on each unpaid year's interest from the date at which it becomes due to the date of settlement, i.e., annual interest can be collected.

Ex. Find the annual interest on a note for $\$ 500$ for 4 years at 6%.

Solution.

$\begin{array}{cc}\text { Interest on } \$ 500 \text { for } 1 \text { year at } 6 \% & =\$ 30 \\ \% & \$ 500<r\end{array}$
" $\$ 500$ " 4 " $6 \% \quad-\$ 120$
" $\$ 30$ " $3+2+1($ or 6$)$ years $=\$ 10.80$ $\$ 120+\$ 10.80=\$ 130.80$, Annual Interest.

EXERCISE 141.

Find the annual interest and amount of:

1. $\$ 700$ at 5% for 3 yr .
2. $\$ 1200$ at 4% for 5 yr .
3. 890 at $3 \frac{1}{2} \%$ for 4 yr .
4. $\$ 125$ at 6% for 3 yr .6 mo .
5. $\$ 750$ at 4% for 4 yr .4 mo
6. Find the difference between annual interest and compound interest of $\$ 360$ at 5% for 5 yr .
7 . Find the simple, the exact, the compound, and the annual interest on $\$ 4800$ at 5% for 6 yr. 6 mo .

EXCHANGE.

286. Exchange is a system of business whereby payments are made at a distance by means of drafts or bills of exchange, which largely cancel each other, and hence call for little actual transmission of money.
Ilustration-James Smith, of Chattanooga, owes Daniel Compton, of New York City, 8250 . To send the money in the mail would involve risk of loss; to send it by express would be expensive. A direct check on a Chattanooga bank might be expensive for Compton to collect. Hence, Smith goes to a bank in Chattanooga (the Farmers'), which has money on deposit in a New York bank (the Chemical) and buys a draft, or order, in which the Farmers' Bank directs the Chemical Bank to pay the required sum to Daniel Compton, thus:

At sight, pay to the order of Daniel Compton, two hundred and fifty dollars, value received.

To the Chemical National Bank,
Thomas Forsyth,
Cashier.
NEW YORK, N. Y.

28\%. A draft is a written order in which one party directs another to pay a specified sum to a third party.
The maker or drawer is the person who signs the draft. The drawee is the person directed to pay the sum.
The payee is the person to whom the money is to be paid.
In the above draft, the maker is Thomas Forsyth; the drawee is the Chemical National Bank; and the payee is Daniel Compton.
288. Par, Premium, Discount.-If, in buying a draft, a person has to pay the exact face of the draft, exchange is said to be at par; if more than the face, exchange is said to be at a premium; if less than the face, exchange is said to be at a discount.

Premium and discount of exchange (apart from paying for the labor involved in the exchange) arise from the fact that the banks of one large money-center, as San Francisco, may owe the banks of another large center, as Chicago, a considerable sum, as $\$ 1,000,000$. Hence, the San Francisco banks must either be at a considerable expense in sending this money to Chicago, or mist pay interest on it. In this case, a person in San Francisco, buying a draft on Clicago, would have to pay a considerable premium, since his draft would increase the balance at Chicago against San Francisco. On the other hand, a person at Chicago, buying a draft on San Francisco for a large amount, might get the draft at a discount, since it would diminish the balance against San Francisco and the cost of transmitting the same.
289. Sight and Time Drafts.- A sight draft is one which is to be paid immediately on presentation.

A time draft is one payable after a specified time.

A time draft is to be presented immediately to the drawee, and, if he agrees to pay it, he writes the word "accepted" across the face, with the date and his sigoature. This is called an acceptance, is equivalent to a promise to pay, and, in effect, makes the draft a promissory note.

It is evident that, since a time draft is not payable until its maturity, its value, apart from the cost of exchange, is the face value, less the bank discount on it up to the time of maturity.

Ex. 1. Find the cost of a draft on New York for $\$ 500$ at $\frac{1}{2} \%$ premium.

Solution.

Premium $=\frac{1}{2} \%$ of $\$ 500=\$ 500 \times .005$	$=\$ 2.50$
Face of draft	$=\$ 500$
Cost of draft	$=\$ 502.50$, Result

Ex. 2. What must be paid in Boston for a draft on St. Louis, at 30 days, for $\$ 1200$, exchange being at $\frac{1}{4} \%$ premium?

$$
\begin{aligned}
& \text { Discount on } \$ 1200 \text { for } 33 \text { days }= \\
& \text { Proceeds of } \$ 1200=\$ 1200-\$ 6.60=1193.40 \\
& \text { Premium on } \$ 1200 \mathrm{at}+\% \\
& \text { Cost of draft }=\$ 1193.40+3.00=\$ 3.00 \\
& \\
& \text { EXERCISE 142. }
\end{aligned}
$$

Find the cost of a draft for:

| 1. 8900 at $\frac{1}{4} \%$ premium. | 3. $\$ 7600$ at $\frac{1}{4} \%$ premium. |
| :--- | :--- | A $\quad \$ 2500$ at $\frac{1}{8} \%$ discount. 4. $\$ 100000$ at $\frac{1}{8} \%$ discount. $5 * \$ 570$, payable in 30 days, exchange being at $\frac{1}{4} \%$ premium, and interest at 6%.

6. $\$ 3000$, payable in 60 days, exchange being at $\frac{1}{8} \%$ discount, and interest at 5%.
7. $\$ 2400$, given by a Beston merchant to a Chicago manufacturer, payable in 60° days, exchange at $\frac{3}{4} \%$ premium.
8. What is the difference between a check and a draft? Between a negotiable note and a draft?

* Allow no days of grace in solution of these examples.

9. How large a sight draft can be bought for $\$ 2500$, exchange being at $\frac{3}{8} \%$ premium?
10. What will be the cost of a draft for $\$ 1680$, payable in 60 days after sight, exchange being $\frac{1}{2} \%$ premium, and interest being at 6% ?
11. Find face of a draft on New York, at 90 days' sight, bought for $\$ 450$, exchange being $1 \frac{1}{2} \%$ premium, and interest at 5%.
12. Foreign exchange is exchange between different countries.

Exchange between two places in the same country is called domestic exchange.

In foreign exchange, a draft is usually called a bill of exchange. Usually three bills, forming a set of exchange, are drawn. To prevent loss or delay, each is sent by a different route. Each specifies that when it is paid the other two of the set become void.
Foreign exchange is based on the par of exchange, or the legal value of the currency of one country in terms of that of another. For instance, the par value of a pound sterling is $\$ 4.8665$.
Ex. What is the cost in Philadelphia of a bill of exchange on London for $£ 250$, when exchange is at $\$ 4.875$ for the pound sterling?
UNT C $\stackrel{243750}{9750}$ 9750 \$1218.75, Cost.

1. What is the cost of a bill of exchange on London for £2250 at $\$ 4.87$ a pound sterling?
2. What is the cost in New York of a bill of exchange on London for $£ 6300$ at $\$ 4.865$ to a pound sterling?
3. What is the face of a bill of exchange on London that was purchased for $\$ 13406.25$, exchange being quoted at $\$ 4.875$ to a pound sterling?
4. When exchange is quoted at $5.18 \frac{3}{8}$ franes to $\$ 1$, what will be the face of a bill of exchange on Paris that is bought for $\$ 2300$?
5. When exchange on London is quoted at 4.85, what will be the face of a draft that can be bought for 87779.40 ?
6. What will a bill of exchange on Liverpool for $£ 135$ 15 s .6 d . cost, exchange being at 4.86 ?
7. Find the cost of a bill of exchange on Antwerp for 14176.75 francs, exchange at $5.17 \frac{1}{4}$.
8. Find cost of bill of exchange on Berlin for 7648 marks, exchange at 23 c .
9. How much must be paid in Boston for a bill of exchange on Hamburg for 1330 marks, exchange at $23 \frac{3}{4} \epsilon$?
10. How large a bill of exchange can be bought on Paris for $\$ 8000$, exchange being at 5.21 ?
11. How large a bill of exchange can be bought on Berlin for $\$ 8000$, exchange at $24 \frac{1}{8} \varnothing$?

12. Example.-William Smith owes Stephen Day the following sums: $\quad \$ 500$ payable in 4 mo .

It will be a useful exercise for the pupil to determine the date when in equity the entire debt of $\$ 1200$ can be paid as a
single payment. EXERCISE 144 .

1. E man owes three accounts to the same person, $\$ 750$ due in 8 mos., $\$ 560$ due in 5 mos., and $\$ 600$ due in 6 mos . When can the entire amount be paid in one sum?
2. On Jan. 1st, X. gives Y. four notes as follows: 1st for $\$ 700$ due in 9 mos., 2 d for $\$ 850$ due in 6 mos., 3 d for $\$ 400$ due in 4 mos., and 4 th for $\$ 600$ due in 7 mos . On what date will a single payment equitably cancel all notes?
3. What is the average date for paying three notes, due, 1st, Mareh $20, \$ 500 ; 2 d$, April 25, $\$ 600$; 3d, June 3, $\$ 400$?
4. Four notes for $\$ 750$ each are due respectively Aug. 1, Oct. 8, Nov. 20, and Dec. 5. What is the average date of maturity?
5. Find the equated time of paying $\$ 430$ due in 8 mos ; $\$ 350$ due in 9 mos.; 81000 due in 6 mos:
6. Find the equated time of paying following bills: $\$ 60$ due in 30 days; $\$ 100$ due in 60 days; $\$ 360$ due in 90 days; and $\$ 250$ due in 30 days. They all bear date Oct. 17 .
7. Of a debt, $\frac{1}{8}$ is due in 7 mos., $\frac{1}{\frac{1}{3}}$ in 6 mos., and the rest in a year. Find the equated time that one payment ought to pay it all.
8. Three bills are due as follows: Aug. $5, \$ 365$, Oct. 10, $\$ 470$, Dec. 14, $\$ 930$. Find the average time of payment.
9. Three notes are due as follows: 1st for $\$ 320$, June 1st; 2 d for $\$ 480$, Aug. 20; 3d for $\$ 520$, Oct. 30 . I wish to substitute one note for $\$ 1320$. What should be its day of maturity?
10. A man bought a house for $\$ 6400$ on 8 months' credit. He paid $\$ 2000$ at time of purchase; when should the balance be due?
11. A man owes $\$ 500$ due in 8 mos., $\$ 900$ due in 6 mos., and $\$ 1200$ due in a year. After 5 months he pays $\$ 1000$. When in equity should the remainder be due?
12. A man owes $\$ 12000$ due in 9 months. If he pays $\$ 6800$ in 5 months and $\$ 2700$ in 2 months more, when ought the balance be paid?
13. A certain debt is to be paid $\frac{1}{5}$ down, $\frac{1}{8}$ in 8 months, and $\frac{1}{4}$ in 9 months, and the balance in a year. If the payments are all made in one, when is it equitably due ?

RATIO AND PROPORTION. PARTNERSHIP.

RATIO.

292. Ratio.- If the quotient of one number divided by another occurs in a problem, it is often of advantage not to perform the division immediately, but to indicate the division for the time being. Thus, in Ex. 2 of Art. 95, the quotient of 200 divided by 9 being indicated for the time being, it was not found necessary to perform the division at all, since 9 ultimately was canceled by a factor of the multiplier, 54 .

A ratio is the indicated quotient of one number divided by another number of the same kind.
293. The terms of a ratio are the quantities whose quotient is indicated. The first of these (the indicated dividend) is called the antecedent; the second (the indicated divisor) is called the consequent.
Thus, in the ratio 12 to 8,12 is the antecedent, 8 the consequent.
294. Symbols.-A ratio is nsually indicated by the sign, :, between the numbers compared. This sign is probably an abbreviation of \div, the sign of division.

Thus, the ratio of 12 to 8 is denoted by $12: 8$; it may also be indicated in the fraetional form, $\frac{12}{8}$. C
295. A compound ratio is the product of two simple ratios.

Thus, $\frac{2}{3} \times \frac{5}{7}$, or $\frac{2 \times 5}{3 \times 7}$, is a compound ratio.
It may also be expressed thus $\left\{\begin{array}{l}2: 3 . \\ 5: 7 .\end{array}\right.$
9. On Jan. 1st, X. gives Y. four notes as follows: 1st for $\$ 700$ due in 9 mos., 2 d for $\$ 850$ due in 6 mos., 3 d for $\$ 400$ due in 4 mos., and 4 th for $\$ 600$ due in 7 mos . On what date will a single payment equitably cancel all notes?
3. What is the average date for paying three notes, due, 1st, Mareh $20, \$ 500 ; 2 d$, April 25, $\$ 600$; 3d, June 3, $\$ 400$?
4. Four notes for $\$ 750$ each are due respectively Aug. 1, Oct. 8, Nov. 20, and Dec. 5. What is the average date of maturity?
5. Find the equated time of paying $\$ 430$ due in 8 mos ; $\$ 350$ due in 9 mos.; 81000 due in 6 mos:
6. Find the equated time of paying following bills: $\$ 60$ due in 30 days; $\$ 100$ due in 60 days; $\$ 360$ due in 90 days; and $\$ 250$ due in 30 days. They all bear date Oct. 17 .
2. Of a debt, $\frac{1}{8}$ is due in 7 mos., $\frac{1}{\frac{1}{3}}$ in 6 mos., and the rest in a year. Find the equated time that one payment ought to pay it all.
8. Three bills are due as follows: Aug. $5, \$ 365$, Oct. 10, $\$ 470$, Dec. 14, $\$ 930$. Find the average time of payment.
9. Three notes are due as follows: 1st for $\$ 320$, June 1st; 2 d for $\$ 480$, Aug. 20; 3d for $\$ 520$, Oct. 30 . I wish to substitute one note for $\$ 1320$. What should be its day of maturity?
10. A man bought a house for $\$ 6400$ on 8 months' credit. He paid $\$ 2000$ at time of purchase; when should the balance be due?
11. A man owes $\$ 500$ due in 8 mos., $\$ 900$ due in 6 mos., and $\$ 1200$ due in a year. After 5 months he pays $\$ 1000$. When in equity should the remainder be due?
12. A man owes $\$ 12000$ due in 9 months. If he pays $\$ 6800$ in 5 months and $\$ 2700$ in 2 months more, when ought the balance be paid?
13. A certain debt is to be paid $\frac{1}{5}$ down, $\frac{1}{8}$ in 8 months, and $\frac{1}{4}$ in 9 months, and the balance in a year. If the payments are all made in one, when is it equitably due ?

RATIO AND PROPORTION. PARTNERSHIP.

RATIO.

292. Ratio.- If the quotient of one number divided by another occurs in a problem, it is often of advantage not to perform the division immediately, but to indicate the division for the time being. Thus, in Ex. 2 of Art. 95, the quotient of 200 divided by 9 being indicated for the time being, it was not found necessary to perform the division at all, since 9 ultimately was canceled by a factor of the multiplier, 54 .

A ratio is the indicated quotient of one number divided by another number of the same kind.
293. The terms of a ratio are the quantities whose quotient is indicated. The first of these (the indicated dividend) is called the antecedent; the second (the indicated divisor) is called the consequent.
Thus, in the ratio 12 to 8,12 is the antecedent, 8 the consequent.
294. Symbols.-A ratio is nsually indicated by the sign, :, between the numbers compared. This sign is probably an abbreviation of \div, the sign of division.

Thus, the ratio of 12 to 8 is denoted by $12: 8$; it may also be indicated in the fraetional form, $\frac{12}{8}$. C
295. A compound ratio is the product of two simple ratios.

Thus, $\frac{2}{3} \times \frac{5}{7}$, or $\frac{2 \times 5}{3 \times 7}$, is a compound ratio.
It may also be expressed thus $\left\{\begin{array}{l}2: 3 . \\ 5: 7 .\end{array}\right.$
296. Properties of Ratios.-From the nature of quotients and fractions it is evident that-
(1) if both antecedent and consequent of a ratio be multiplied or divided by the same number, the ratio is not changed in value;
(2) the antecedent equals the product of the ratio by the consequent; ALERE FLAMMAM I
(3) the consequent equals the antecedent divided by the ratio.

EXERCISE 145 .
What is the ratio of:

1. 12 to 42 ?
2. $81: 135$?
S. 93 to 145 ?
3. $11 \frac{2}{3}$ to $12 \frac{3}{6}$?
4. $3 \frac{1}{6}: 81 \frac{13}{6}$? 6. $5 \frac{1}{2}: 6 \frac{10}{2} ?$?

Find the value of the parenthesis in each:

10. $12: 30=(?)$.	18. 28 to $(?)=\frac{1}{1}$.
11. $18:(?)=\frac{2}{5}$.	14. (?) to $81-\frac{4}{?}$
$10 .(?): 18=1$	$15.42:(?)=$?

7. 5.2 to '7.28? 8. $19.75: 16.15$? 9. $3.422: 3.76$? 16. $7 \frac{3}{5}:(?)=\frac{4}{8}$ 17. (?) $: 10_{1} \frac{12}{}-\frac{19}{19}$ 18. $4.45:(?)=$ I?

If the two means are alike, each is called a mean proportionsi, and the last term is called a third proportional
Thus, in $2: 4=4: 8,4$ is a mean proportional, and 8 is a third proportional.
299. Properties of a Proportion.-The fundamental property of a proportion is that "the product of the means is equal to the product of the extremes."

Thns, in the proportion in Art. $297,3 \times 8=2 \times 12$.
This property is seen to be true for any proportion, since, if $\frac{a}{b}$ and $\frac{c}{d}$ are two equal ratios, and each be multiplied by $b d$, we have $a \times d$ and $b \times c$ equal.
It follows at once from the above property that either extreme equals the product of the means divided by the other extreme.
What does either mean equal?
To obtain a method for solving problems by proportion, let us consider the following problem.
Ex. 1. If 12 books cost $\$ 20$, what will 15 books cost? Solving by analysis, we have

Cost of 1 book $=\$$ \$2 2 .

$$
\begin{aligned}
& \text { Cost of } 1 \text { book }=\$ \text { \$ } \\
& \text { Cost of } 15 \text { books }=\$ 2 ? .915 .
\end{aligned}
$$

To show how this relation may be converted into a proportion we divide each of these equals by $\$ 20$, and obtain
By the ase of proportion a problem is often solved more readily than by analysis (see Arts. 94, 95), but sometimes the reason for the steps used is not so evident.

A proportion is indicated by placing the symbol, $=$, or, $:$, between the two equal ratios.

Thus, $2: 3=8: 12$, is a proportion.
It may be read in several ways, as " 2 is to 3 as 8 is to $12 ;$ or, " 2 over 3 equals 8 over 12 ," or, " the ratio of 2 to 3 equals the ratio of 8 to 12 ," etc.
298. Terms.-Hence, a proportion contains four terms. The first and last terms are called the extremes; the second and third terms are called the means.

$$
\frac{\text { cost of } 15 \text { books }}{\$ 20(\text { or cost of } 12 \text { books })}=\frac{15}{15}
$$

$$
20 \text { (or cost of 12 books) }=\frac{15}{15}
$$

Taking the last ratio first, and writing the denominator first
12 books : 15 books $=\$ 20$ (cost of 12 books) : cost of 15 books

$$
\text { or, } 12: 15=\$ 20:()
$$

Hence, in general, write the required quantity as the last term of the propertion; , use the quantity with which it is conpared as the third term; write the ratio which is equal to the ratio of the Sd and th terms as the first two terms; solve by using the properties of a proportion.
Ex. 2. If 20 acres of land produce 320 bushels of wheat, how many acres are needed to produce 400 bushels?

20 acres is compared with the unknown number of acres. Hence, we have $320: 400=20:()$.

Supply the missing term in each proportion :

> 1. $3: 8: 6:(?) \quad$ 6. $3 \frac{1}{2}: 4 \frac{2}{3}:: 9 \frac{3}{7}:(?)$.
> 2. $12: 5:(?): 40$. \quad 7. $41 \frac{1}{3}:(?):: 196 \frac{1}{3}: 232 \frac{1}{2}$.
> 8. $8:(?): 5: 30 . \quad$ 8. $12 \frac{4}{11}: 10 \frac{1}{5}::(?): 9 \frac{5}{8}$.
> 4. $16: 24::(2)=15$. $2 .(?): 9.75:: 13.25: 10.4$.
> 5. (?): $11:: 14: 33$. $10.2 .76: 3.45:: 2.28:(?)$.
11. If 75 acres of land cost $\$ 5090.40$, what will 175 acres cost? 411 acres?
12. If $\$ 5890.50$ buys 85 acres, how many acres will $\$ 34650$ buy? $\$ 25410$?
13. If 7 horses require a pasture of 18 acres, how large a pasture will 300 horses require?
14. If a pole 12 feet high casts a shadow $5 \frac{1}{4}$ feet long, how long will be the shador from a steeple 144 feet high at the same time?
15. If the shadow from a chimney $46 \frac{1}{2}$ feet high is 38 ft .9 in., what is the height of the tree whose shadow is 111 ft .
J $\begin{gathered}\begin{array}{c}3 \mathrm{in} \text { ? ? } \\ 16 .\end{array} \text { If } 3 \frac{2}{s} \text { bu. of grain are used to sow } 13 \frac{3}{4} \text { acres, how many }\end{gathered}$ bushels will be required to sow 100 acres?
17. If $\$ 75$ yields $\$ 35$ interest, how much must be invested to yield $\$ 63$ interest?
18. If I pay $\$ 75.65$ for the use of $\$ 425$, what should be paid for the use of $\$ 545$ for same time?
19. If 12 men accomplish a certain task in 30 days, how many days will 45 men require?
Note.-The pupil should observe that 45 men will not require as Iong as 12 men do. Hence, we invert the unknown ratio in the proportion. For
this reason such proportions are called inverse proportions. The solution is arranged thus: 12 men : 45 men : : (? days) : 30 days.
20. If 18 men dig a ditch in 35 days, how long would it take 21 men to do the same? 14 men?
21. If 10 men lay a wall in 48 days, how many men will be needed to lay a similar wall in 30 days?
29. A man borrows $\$ 72$ for 5 years, and lends $\$ 240$ in return How long ought he lend the latter sum to pay for the former loan?
23. If $\$ 4500$ is borrowed for a certain time at 5%, what sum must be loaned at $4 \frac{1}{2} \%$ the same time, to compensate?
24. If a man can do in 8 days as much work as his son does in 15 days, and the son's wages are $\$ 1.60$ a day, what pay should the father receive per day?
25. Find a fourth proportional to 7,17 , and 21
26. Find the number which has to $6 \frac{3}{5}$ the same ratio which 112 has to $3 \frac{1}{4}$.
27. Find a third proportional to $3 \frac{1}{2}$ and $4 \frac{2}{3}$
28. Find the fourth proportional to $3.81, .056$, and 1.67
29. By a certain pipe a certain cistern can be emptied in $5 \frac{3}{3}$ hours. In what time can another cistern $3 \frac{1}{4}$ times as large be emptied by a pipe carrying only $\frac{3}{4}$ as much water?

COMPOUND PROPORTION.

300. A compound proportion is an equality between a simple ratio and a compound ratio, or between two compound ratios.

$$
\text { Exs. }\left\{\begin{array}{c}
3: 6 \\
10: 30
\end{array}\right\}=2: 12 \text {, or }\left\{\begin{array}{c}
2: 6 \\
14: 28
\end{array}\right\}=\left\{\begin{array}{l}
1: 2 \\
2: 6
\end{array}\right\} .
$$

Ex. 1. If 12 men can earn $\$ 180$ in 5 days, how much can 16 men earn in 9 days ?

Solution.

$\$ 180$ is compared with the required number of dollars. The ratio which is equal to the ratio, $\$ 180$: required No. $\$$, is 12×5 days work : 16×9 davs' work. Hence,

19
$\left\{\begin{array}{c}12: 16 \\ 5: 9\end{array}\right\}=\$ 180:()$

$$
\text { or } \bigcirc=\frac{180 \times 16 \times 9}{12 \times 5}=\$ 432, \text { Result. }
$$

Sometimes the terms of ratio vary inversely, and must be used accordingly (for instance, the number of days required to do a given piece of work varies inversely as the number of workmen, that is, the greater the number of workmen the fewer the days).
Ex. 2. If 15 men can dig a ditch 180 rods long in 8 days, how many days will it take 20 men to dig a ditch 300 rods long?

The final ratio is, 8 days: required No. days.
The longer the ditch, the greater the number of days required, hence, $180: 300$ is a part of the first ratio equal to the above ratio; but the greater the number of men the fewer the number of days, $\therefore 20: 15$ is the other part of the first ratio. Hences

If the first set of men had worked 8 hours a day, and the second set 12 hours a day, how would this have affected the solution?

1. If 15 men can earn $\$ 360$ in 8 days, how much can 7 men earn in 40 days?
2. Five clerks use 50 quires of paper in 16 days. At the same rate, how much paper will 9 clerks use in 15 days?
3. If 8 persons spend $\$ 470$ in 5 days, how much will 15 persons spend in 16 days at same rate?
4. If a block of stone $2 \mathrm{ft} . \times 3 \mathrm{ft} . \times 4 \mathrm{ft}$. weigh 1740 lbs , what will a block of like stone $3 \times 5 \times 7 \mathrm{ft}$. weigh ?
5. If 7 men working 8 hours a day can accomplish a task
in 15 days, how many days of 6 hours will 10 men require for the same task ?
6. If a cistern $17 \frac{1}{2} \mathrm{ft}$. long, $10 \frac{1}{2} \mathrm{ft}$. wide, and 13 ft . deep, hold 546 bbl., how many barrels will a cistern hold that is 16 ft . long, 7 ft . wide, and 15 ft . deep?
7. If 22 men can cut 294 cords of wood in 7 days when they work 14 hours a day, how many days will it take 5 men to cut 375 cords, working 10 hours a day ?
8. If 25 men dig a ditch 396 feet long in 36 days of 7 hours each, in how many days will 30 men dig a similar ditch 990 feet long, if they work 9 hours a day?
9. If 90 men build a wall 2304 ft . long, 8 ft . wide, and $2 \frac{1}{2}$ ft . high in 45 days of $7 \frac{1}{2}$ hrs. each, how long a wall 7 ft . wide and 4 ft . high can 125 men build in 35 days of 9 hrs , each ?
10. If a slab of marble 9 ft . long, 3 ft . wide, and 4 in . thick weighs 1200 lbs., how much will another similar slab weigh which is 6 ft . long, 2 ft . wide, and 3 in . thick ?
11. A certain bin $7 \mathrm{ft} . \times 2 \frac{1}{2} \mathrm{ft}$. and 2 ft . deep contains 28 bushels of grain; what is the depth of a second bin $18 \mathrm{ft} . \times$ $1 \mathrm{ft} .10 \frac{1}{2} \mathrm{in}$. which contains 120 bu.?
12. If 496 men, in 5 da. of 12 hr .6 min . each, dig a trench of 5 degrees of hardness, 465 ft . long, 3 ft .8 in , wide, and 4 ft . 8 in . deep, how many men will be required to dig a trench of 8 degrees of hardness, $168 \frac{3}{4} \mathrm{ft}$. long, 7 ft .6 in . wide, and 24 ft . deep, in 22 da , of 9 hr . each ?

PROPORTIONAL PARTS

301. Proportional Parts.- It may be required to divide a given number into parts which shall be proportional to a series of given numbers. We may do this either by the use of proportion, or by the use of fractions and fractional units.

Ex. Three men working a mine agree to divide the profits in the proportion of 2,3 , and 4 . They make $\$ 2700$. What is the share of each?

Solution

Since $2+3+4=9$, we may regard the profits as forming 9 shares, of which the miners get 2, 3, and 4 shares respectively.

$$
\begin{aligned}
& 9: 2=\$ 2700: \text { share of } 1 \text { st, } \$ 600 . \\
& 9: 3=\$ 2700: \text { ar } 2 \mathrm{~d}, \$ 900 . \\
& 9: 4=\$ 2700: \quad \text { in } \\
& 3 \mathrm{~d}, \$ 1200 .
\end{aligned}
$$

Or, since $\$ 2700$ is to be divided into 9 shares

1. Divide 20000 into four parts proportional to $5,7,8,12$.
2. Divide 6300 into four parts proportional to $3,5,11,17$.
3. Divide 31800 into parts in the relation of $1: 2: 3$.
4. Divide 3864 into parts in the relation of $2: 3: 4: 5$.
. The weights of three casks aggregate a ton, but their individual weights are as $11: 13: 16$. Find the weight of each.
5. A father divided his property of $\$ 46500$ among three sons, in parts proportional to their ages, 17 yr ., 20 yr ., and 25 yr. How much did each receive?
6. Divide 210 into three parts, which shall be proportional to $\frac{1}{2}, \frac{2}{3}$, and $\frac{3}{4}$.

In compound partnership the partners invest their capital for different lengths of time.
Ex. 1. Three men, A, B, and C, are in business together, and gain $\$ 3600$. A's capital is $\$ 2000$; B's is $\$ 4000$; and C's is $\$ 6000$. What is each one's share of the profits?

Solution.

Entire capital $=\$ 2000+\$ 4000+\$ 6000=\$ 12000$.

$$
\begin{aligned}
& \text { Ns share of the capital }={ }_{1}^{29000}=!\text {. } \\
& \text { B's " " " }=\frac{1000}{10000}=\frac{1}{2}
\end{aligned}
$$

Hence, A's share of the gain $=\frac{1}{6}$ of $\$ 3600=\$ 600$ | B's | C's | \quad |
| :--- | :--- | :--- |

Ex. 2. A, B, and C form a partnership. A puts in $\$ 500$ for 8 months, B $\$ 600$ for 9 months, and C $\$ 800$ for 12 months. They gain $\$ 3040$. What share of this belongs to each partner?

PARTNERSHIP

302. Partnership. - When two or more persons can carry on a business to better advantage together than singly, they often unite and form a partnership.

Partnership is the combination of two or more persons as a single firm to carry on business.

The capital is the money invested by the different partners in the business.
303. In simple partnership all the partners invest their capital for the same length of time.
$\$ 9000$, and to a daughter $\$ 4000$. But upon investigation the estate produced only $\$ 20000$. How should it be divided equitably?
5. A firm lost in a year $\$ 3300$. A's stock was $\$ 3200$, B's was $\$ 7100$, and C's was $\$ 6200$. How is the loss to be distributed?
6. A, B, and C go into business with a capital of $\$ 12000$. From the gain of one year A's share is $\$ 1250, \mathrm{~B}$'s is $\$ 1000$, and C's is $\$ 750$. What was each man's capital?
7. Three persons enter partnership. A puts into it $\$ 1600$ for 3 months; B $\$ 800$ for 5 months; and C $\$ 900$ for 3 months. How should they justly share the profits of $\$ 575$? The losses of $\$ 1035$?
8. A pasture is rented by 3 persons for $\$ 760$. A puts in 7 cows for 5 mos; B 8 cows for 3 mos.; and C 9 cows for 4 mos. What rent should each pay?
9. Three laborers contracted to dig a trench for $\$ 49.50$. The
first worked 8 days of 7 hours each; the second 10 days of 8 hours each; and the third 14 days of 6 hours each. What should each receive?
10. A entered business with $\$ 5000$, and in 3 mos. took in B with $\$ 4000$. After 2 mos. more C entered the firm with $\$ 12000$. At the end of the year they had gained $\$ 8100$. How should it be divided equitably?
UNIVERSIDAD AUTÓNO IIAD
DIRECCIÓN GENERAI

Squares of $1,2,3,4 \ldots$ to 25 .
Cubes of $1,2,3,4 \ldots$ to 12.
Fourth powers of $1,2,3,4$,
Fifth powers of $1,2,3,4,5$.
Sixth powers of $1,2,3,4,5$
Seventh powers of $1,2,3$.
CHAPTER XVIII.

INVOLUTION AND EVOLUTION.

INVOLUTION.

304. Definitions.-The second power, or square, of a number is the number obtained by multiplying a given number by itself.

$$
\text { Thus, } 23^{2}=23 \times 23=529 \text {. }
$$

The third power, or cube, of a number is the number obtained by using the given number as a factor three times.

$$
\text { Thus, } 8^{3}=8 \times 8 \times 8=512 \text {. }
$$

Let the pupil define fourth power, fifth power, etc., of a number and give examples.
Involution is the process of computing any required power of a given number.
305. Memorizing Powers of Small Numbers.-It is important that the pupil calculate and commit to memory the following powers:

Fighth, ninth, and tenth powers of $1,2$.
306. Methods of Involution.-The powers of numbers may be obtained either by (1) actual multiplication, or (2) by the use of tables, or (3) by use of logarithms (see Art. 86).
$\$ 9000$, and to a daughter $\$ 4000$. But upon investigation the estate produced only $\$ 20000$. How should it be divided equitably?
5. A firm lost in a year $\$ 3300$. A's stock was $\$ 3200$, B's was $\$ 7100$, and C's was $\$ 6200$. How is the loss to be distributed?
6. A, B, and C go into business with a capital of $\$ 12000$. From the gain of one year A's share is $\$ 1250, \mathrm{~B}$'s is $\$ 1000$, and C's is $\$ 750$. What was each man's capital?
7. Three persons enter partnership. A puts into it $\$ 1600$ for 3 months; B $\$ 800$ for 5 months; and C $\$ 900$ for 3 months. How should they justly share the profits of $\$ 575$? The losses of $\$ 1035$?
8. A pasture is rented by 3 persons for $\$ 760$. A puts in 7 cows for 5 mos; B 8 cows for 3 mos.; and C 9 cows for 4 mos. What rent should each pay?
9. Three laborers contracted to dig a trench for $\$ 49.50$. The
first worked 8 days of 7 hours each; the second 10 days of 8 hours each; and the third 14 days of 6 hours each. What should each receive?
10. A entered business with $\$ 5000$, and in 3 mos. took in B with $\$ 4000$. After 2 mos. more C entered the firm with $\$ 12000$. At the end of the year they had gained $\$ 8100$. How should it be divided equitably?
UNIVERSIDAD AUTÓNO IIAD
DIRECCIÓN GENERAI

Squares of $1,2,3,4 \ldots$ to 25 .
Cubes of $1,2,3,4 \ldots$ to 12.
Fourth powers of $1,2,3,4$,
Fifth powers of $1,2,3,4,5$.
Sixth powers of $1,2,3,4,5$
Seventh powers of $1,2,3$.
CHAPTER XVIII.

INVOLUTION AND EVOLUTION.

INVOLUTION.

304. Definitions.-The second power, or square, of a number is the number obtained by multiplying a given number by itself.

$$
\text { Thus, } 23^{2}=23 \times 23=529 \text {. }
$$

The third power, or cube, of a number is the number obtained by using the given number as a factor three times.

$$
\text { Thus, } 8^{3}=8 \times 8 \times 8=512 \text {. }
$$

Let the pupil define fourth power, fifth power, etc., of a number and give examples.
Involution is the process of computing any required power of a given number.
305. Memorizing Powers of Small Numbers.-It is important that the pupil calculate and commit to memory the following powers:

Fighth, ninth, and tenth powers of $1,2$.
306. Methods of Involution.-The powers of numbers may be obtained either by (1) actual multiplication, or (2) by the use of tables, or (3) by use of logarithms (see Art. 86).

It is also useful to be able to separate a number into parts (as tens + units), and form the product by multiplication of these parts. By this means properties of a power are discovered, which can be used in the inverse process of finding the root of a number. See Arts. 309 and 314.

EXERCISE 150.
oral. -

1. State rapidly the squares of all the numbers up to 20.
2. What is the square of 18? 14? 17? 21? 19? 15? etc.

3. What is the square of .2 ? .3 ? .5 ? $.87 .13 ? \quad .18$? 1.6 ?
4. What is the square of 1.8 ? 21? 2.5? 30? 50? 70? 600?
5. What is the cabe of 9 ? 8? 3? 7? 62 5? 11?

o. Tell the value of $8^{3}, 12^{5}, 2^{2}, 3^{3}, 6,3,3^{3}, 2^{7}, 5^{6}, 4^{3}, 4^{4}, 5^{4}, 2^{6}, 3^{6}, 6^{4}, 5^{5}$ $(13)^{3},(53)^{2},(2.2)^{2},(.07)^{3},(.012)^{5}$.

EXERCISE 151
Find the value of:

1. 26^{3}. 6. 1.75^{2}. 11. (11)
2. 28 . 7. 23.1^{1}
S. 113
110°
31.4^{2}
3. 205^{3}. $10 . .66^{3}$.
4. $(31)^{2}$
5. $\left(5 \frac{2}{3}\right)^{3}$.
6. $\left(4 \frac{1}{4}\right)^{3}$
7. 15^{4}.
8. 23 .
9. $\left(12 \frac{1}{2}\right)^{4}$
10. $\left(1.02 \frac{1}{2}\right)^{3}$.

UNI

21. $3^{3} \times 4^{2}$.	$2 / 22^{3} \times 3^{4}=6^{2}$.	$27.15^{3} \times 45^{2}$.
22. $4^{3} \times 2^{4}$.	$25.6^{3} \times 5^{2}-14^{3}$.	$28.45^{3} .15^{5}$.
23. $\left(\frac{1}{2}\right)^{2} \times 5^{3}$.	$26 .(2.5)^{2} \times(3.5)^{2}$.	$29.7 .2^{2} \times 7.5^{3}$.

307. Deflitions.- The square root of a number is that number which, multiplied by itself, will produce the given number. Thus, 13 is the square root of 169 , since 13×13 $=169$.

The cube root of a number is that number which, used as
a factor three times, will produce the given number. Thus, 8 is the cube root of 512 , since $8 \times 8 \times 8=512$.
Let the pupil define fourth root, cube root, etc.
The student should commit to memory the roots corresponding to the powers mentioned in Art. 305.
Evolution is the process of determining any required root of a given number.
308. The methods of determining the roots of numbers are (1) the use of tables, when a number has an exact root, or (2) the use of logarithms, or (3) the direct methods given in the remainder of this chapter, which are independent of tables and logarithms.
As stated in Art. 306, these methods are based on observing how the power of a number is formed when the number is dissected into parts (units and tens) and the product formed by the use of these parts.

SQUARE ROOT.

309. Squaring a Number by Parts.-Since, for example, $47=40+7$, the square of 47 may be formed thus,
$40+7$ $40+7$

$$
\begin{aligned}
& 40^{2}+40 \times 7 \\
&+40 \times 7+7^{2} \\
& \hline
\end{aligned}
$$

$$
\frac{+40 \times 7+7^{2}}{40^{2}+2 \times 40 \times 7+7^{2}}=1600+560+49=2209
$$

Hence, if any number be separated into a number of tens + a number of units, its square will equal (the square of the tens) + (tarice the tens x the units) + (square of the units), or, denoting the tens by t, and the units by u, $(t+u)^{2}=t^{2}+2 t u+u^{2}$.
Notk--This method of squaring may also be applied to numbers containing three or more figures, and the observed properties employed in extracting the roots of correspondingly large powers
Thus, $\quad 346=300+46$

$$
\begin{aligned}
& 346=300+46 \\
& 346^{2}=300^{2}+2 \times 300 \times 46+46^{2}
\end{aligned}
$$

Having found the first and second figures (3 and 4) of a square root by
the use of the square in this form, we may then proceed to find the third figure of the root by the use of the square, as if it were in the form,

$$
\begin{aligned}
346^{2} & =(340+6)^{2} \\
& =340^{2}+2 \times
\end{aligned}
$$

$$
\times 340 \times 6+6^{2}
$$

310. Periods.-Since in any given number, as 2209 , whose square root is to be extracted, the square of the tens (1600) is not given explicitly, it must be determined indirectly, and its root then extracted. Shis is done by marking off the figures of the number whose root is to be extracted, into periods of two figures each, beginning at the decimal point, and then determining the largest/square number represented in the first period of figures to the left.

For the square of a number contains tivice as many figures as the number itself, or twice as many less one.

1^{z}	$=1$
10^{z}	$=100$
100^{z}	$=10000$
1000^{z}	$=1000000$

it follows that if a number contains one figure, its square is either 1, or lies between 1 and 100, and hence contains one or two figures; if a number contains two digits, its square is either 100 , or lies between 100 and 10000 , and hence contains three or four digits; similarly, if a number contains three digits, its square contains five or six digits, etc.

Hence, if any number be separated into periods of two figures each, beginning at the decimal point, the number of periods thus formed will be the same as the number of figures in the square root, and the square root of the largest square number represented in the left-hand period gives the first figure of the root.
311. Extraction of Square Root.-Ex. 1. Extract the square root of 2209.

Tens squared $\left(t^{2}\right)=40^{2}=$	$\text { 2209. } 140+7$		$\begin{aligned} & 2209 \\ & 16 \\ & 16 \end{aligned}$
$2 \times \text { tens }=2 \times 40=80$	609 609	87	$\begin{aligned} & 609 \\ & 609 \end{aligned}$

Expranation.

Since 2209 contains two periods of two figures each, the root must contain two figures, a tens figure and a units figure. Since the largest square in 2200 is 1600 , and the square root of 1600 is 40 , the number of tens is 4 . Subtracting the square of the tens, 1600 , from 2209 , the remainder, 609 , mnst be $2 \times$ tens \times units $+\left(\right.$ units 2. Since $(\text { units })^{2}$ is much less than $2 \times$ tens \times units, much the largest part of 609 must be $2 \times$ tens \times units, and if 609 be divided by $8 \times$ tens, or 80 , it will give the units figure or a slightly larger Were obtain 7 as the approsimate quotient, and, by trial, determine that it is the exact number of units, since $87 \times 7=609$.

Ex. 2. Extract the square root of 119716.
We have ${ }_{9} 119716$. 346, Root.

By use of the Note to Art. 309, we determine that 3 is the number of hundreds in the root, and that the number of units is 40 t . Having foume the finst and second figures by this means, we may then find the third figure by separating the given number, as in the latter part of the note, into tens by separating the given n
plus units, thus $340+$ units.
Let the student write out a detailed explanation of the entire process of extracting the square root of 119716 .
312. Square Root of Decimal Numbers.- If it be required to extract the square root of a decimal number, we may proceed thus, for example:

$$
V .0225=\sqrt{\frac{10250}{1000}}=\frac{15}{100}=.15, \text { Root. }
$$

It is better, however, to put the work in a different form, by marking off the given number into periods of two figures each, beginning at the decimal point. Thus, we have,
$25 \frac{1}{\frac{125}{125}}$

If necessary, annex a zero to complete the last period of figures to the right. In such cases, however, the root cannot be extracted exactly.
Ex. Extract the square root of 0.369 to 4 decimal places.

313. Square Root of Common Fractions.-If the denominator of the fraction, whose square root is to be extracted, is a perfect square, extract the root of the numerator and of the denominator separately, and divide the one result by the other.

If the denominator is not a perfect square, reduce the fraction to a decimal and extract the root of the decimal.

Ex. $\sqrt{\frac{2}{3}}=\sqrt{0.66666666+}$

Square this figure, subtract the result from the left-hand period, and to the remainder bring down the next period;
Double the root already found for a trial divisor, divide it into the remainder (omitting last figure of the remainder), and annex the quotient obtained, to the root and to the trial divisor.

Multiply the complete divisor by the figure of the root last found, and subtract the result from the remainder;
Proceed in like manner till all the periods of figures have been used.

EXERCISE 152.

Find the square root of:

1. 676.	4. 1764.	7. 6889.	10.710649.
2. 841.	5. 3364.	8.18496.	11.879844.
3. 961.	6. 4489.	9. 173889.	12.54804409.

18. 64272289.	15. 96177249.	17. 2181637264.
14.82646281.	16. 1228292209.	18. 5416076836.

14. 82646281 .
15. 61.7796 .
16. 6955.56.
17. 0.822649.
18. 1.752976.
19. 1419.7824.
20. 0.50665924.
21. 11.67657241.
22. 175351.5625.
23. 25.81554481.
decimal places :

Hence, in general, to extract the square root of a number,
Separate the number into periods of two figures each, beginning at the decimal point;
Find the greatest square in the left-hand period, and set down its root as the first figure of the required root;

State the square root of each of the following :

1. 256 .	6. 121.	11. $\frac{64}{285}$.	16. 09.
2. 361 .	7. 324.	12. 10.	17. 1.21.
s. 400 .	8. 169 .	15. 11.	18. 0036.
4. 144.	9. 529.	14. 17.	19. 2500.
5. 289 .	10. 196.	15. 64.	20. .062].

CUBE ROOT.

314. Cubing a Number by Parts.-In order to discover a method of extracting the cube root of a number, we separate a number, as 54 , into its tens and units, $50+4$, and form its

Herrce, if any number be separated into tens + units, its cube will be equal to
(cube of the tens) + (three times the square of the tens times the units) + (three times the tens times the square of the units) + (cube of the units), or in symbols

$$
(t+u)^{3}-t^{3}+3 t^{2} u+3 t u^{2}+u^{3}
$$

Note-This method may also be applied in cubing a number which contains three or more figures, and the observed properties employed in extracting the cube root of a correspondingly large number. See Art, 309,
315. Periods.-Since in any given number, as 157464 , whose cube root is sought, the cube of the tens is not given explicitly, it mast be determined indirectly, and its root then extracted. It is determined by marking off the figures of the number whose root is sought into periods of three figures each, beginning at the decimal point, and then determining the largest cube number represented in the first period of figures to the left.

For the cube of a number contains three times as many digits (less one or thoo)
as the number itself.
For since,

$$
\begin{aligned}
1^{3} & =1 \\
10^{3} & =1000 \\
100^{3} & =1000000 \\
1000^{3} & =1000000
\end{aligned}
$$

it follows that if a number contains one figure, its cube is either 1 , or lies between 1 and 1000, and hence contains one, two, or three digits; if a number contains two digits, its cube is either 1000, or lies between 1000 and 1000000 , and hence contains four, five, or six digits; similarly, if a number contains three digits, its cube contains seven, eight, or nine digits, etc.
Hence, if we begin at the decimal point and mark off the digits of any number in periods of 3 figures each, the number of periods thus formed will be the same as the number of figures in the root.
316. Extraction of cube root.

Ex. 1. Extract the cube root of 157464.
Operation.

A Since 157464 contains two periods of three figures each, the cube root must contain two figures, a tens figure and a units figure. Since the largest cube in 157,000 is 125,000 , and the cube root of 125,000 is 50 , the number of tens is 5 .
Sabtracting the cube of the tens 125,000 from 157464, the remainder, 32464, must be $3 \times$ tens $^{2} \times$ unit $+s \times$ tens \times units $^{2}+$ units, and since $3 \times$ tens $^{2} \times$ units is much the largest part of the remainder, if the remainder be divided by $3 \times$ tens 2, or 7500 , it will give the units figure or a slightly larger number as the quotient. Dividing we obtain 4 as the approximate quotient, and on trial find that it is the exact number of units, since,

$$
\left(3 \times 50^{2}+3 \times 50 \times 4+4^{2}\right) \times 4=32464
$$

By use of the Note of Art. 314, the same method may be used in extracting the cube root of a number of more than two periods.

Ex. 2. Extract the cabe root of $8,627,738.651$.

Hence, in general, to extract the cube root of a number,
Separate the number into periods of three figures each, beginning at the decimal point;

Find the greatest cube in the left-hand period, and set down its cube root as the first figure of the required root;

Gube this figure, and subtract the result from the left-hand period, and annex the next period of figures to the remainder;

Take three times the square of the root already found as a trial divisor; divide the remainder by it, and set down the quotient as the next fiyure of the root;

Complete the trial divisor by adding to it three times the product of the first figure of the root with zero arnexed, multiplied by the last figure, and the square of the last figure; I The root last found 1 Multiply this complete divisor by the figure of the root last found, and subtract the result from the remainder;

Proceed in like manner till all the periods have been used.
Find the cuberoot of

1. 19683.
1. 5
2. 592704.
1. 97336 .
2. 195112 .
3. 250047.
1. 1906624.
1. 31855013.
1. 155720872 .
2. 119823157
3. 317214568
4. 371694959 .
5. 794022776 .
6. 114.084125 .
7. 270840023.
1. 487443.403.
2. 529.475129.
3. 773620632.
1. 5900304.943.
2. 14.154926059 . 20. 28877.930432.
3. 185.485563927.
4. . 494538357312.

Find the cube root to three decimal places:

23. 6.	27. 100.	S1. $64 \frac{3}{3}$.
24. 12.	28. $19 \frac{1}{3}$.	39. 512.9.
25. 29.	29. $80 \frac{8}{5}$.	33. 51.29.
26. 4.5.	30. 28.	34. $10 \frac{4}{11}$.

EXERCISE 155.

orAL.
State the cube root of:

1. $125 ; 64 ; 216 ; 729 ; 1000 ; 512 ; 1728$.

S. . 001 ; . $064 ; .001728 ; 1.728 ; 8000 ; 27000$.

Perhaps no single mental aid to further mathematical study-excepting only the multiplication table-is of more constant benefit than a thorough familiarity with the perfect squares, cubes, and fourth powers of small numbers and the corresponding roots of these powers. Therefore the pupil should pause here until they are most carefully fastened in memory.

OTHER METHODS.

317. Geometrical illustration of square root.

By Art. $309,47^{2}=(40+7)^{2}=40^{2}+2 \times(40 \times 7)+7^{2}=2209$,

20
or 40^{2} is represented by a square 40 mits of length on a side;
$2 \times(40 \times 7)$ by two rectangular strips, each 40 units long and 7 wide; 7^{2} by a small square 7 units on a side.
In extracting the square root of 2209 , the square of the tens, 1600 square units, is first removed, leaving a surface of 609 square units.
Much the largest part of this remaining surface is the two equal rectangles. Hence, dividing the area 609 by the combined length of these rectangles. Hence, dividing the area 609 by the combined le 2×40 or 80 , gives the width approximately, or 7 .
If this width is correct, the entire length of the three figures remaining after the large square (1600) is removed is $40+40+7$, or 87 . $87 \times 7=609$, the remaining area, hence, 7 is the correct width, or the second figure of the root.
318. Geometrical illustration of cube root
$54^{3}=(50+4)^{3}=50^{3}+3 \times\left(50^{2} \times 4\right)+3 \times\left(50 \times 4^{2}\right)+4^{3}$. Expressing this geometrically, we have,
$3 \times\left(50 \times 4^{2}\right)$ by 3 other solids, each 50 units long, 4 units wide, and 4 units thick;
3^{3} by a small cube, each edge of which is 3 units.
Hence, in extracting the cube root of 157,464 , the cube of the tens, 125,000 is first removed, leaving a volume of 32464 cubic units. Much the largest part of this is the 3 solids whose bases may be taken as 50×50 each, or $3 \times 50 \times 50$, or 7500 in all.

Hence, dividing the remaining volume, 32464 , by 7500 , gives the thickness of them approximately as 4.
If this thickness is correct, the sum of the bases of all the remaining solids (after the large cabe, 125000 , is removed) is

$$
3 \times 50^{2}+3 \times 50 \times 4+4^{2}, \text { or } 8116
$$

But $8116 \times 3-23877$, the remaining volume.
Hence, 4 is the correct thickness, or the second figure of the root,
319. Factorial Method of Extracting Roots.-If a number be separated into its prime factors, and each of these factors occurs an even number of times, the square root of the number may be obtained by multiplying together all the factors half the number of times they each occur; if each factor occurs three or a multiple of three times, the cube root may be obtained by multiplying together all the factors one-third of the number of times which each occurs, etc.

Ex. Extract the square root of 324 .

$$
\text { Since } 324=2 \times 2 \times 3 \times 3 \times 3 \times 3
$$

$$
\sqrt{324}=2 \times 3^{2}=18, \text { Root. }
$$

Find the cube root of the following:

1. 13824.
1. 46656 .
2. 110592 .
3. 250047 .
4. 421875 .
5. 884736 .
6. 2460375.
1. 4251528.
1. Higher Roots Obtained by Successive Extractions.
-From the meaning of an exponent it follows that the square number. Hence, reversing the process, the fourth root of a
of the square of a number gives the fourth power of the
or, 50^{3} is represented by a cube, each edge of which contains 50 linear units; $3 \times\left(50^{2} \times 4\right)$ is represented by three rectangular solids, each 50 units long, 50 units wide, and 4 units thick:
number is the square root of the square root of the number. Similarly, the sixth root of a number is the square root of the cube root of the number. The eighth, ninth, tenth roots of a number may be found by similar methods.
Ex. Obtain sixth root of $7,529,536$.
Extracting the cube root, we obtain 196.
Extracting the equare rool of 196 , we obtain 14 as the sixth root of the original number. ${ }^{\text {ITATIS }}$

EXERCISE 157.

Find the fourth root of the following:

1. 331776.	8. 47458321.	5. 1196883216.
2. 4879681.	4. 81450625.	6. 11574317056.

6. 11574317056 .

Find the sixth root of:
7. 148035889 . \quad 8. 2176782336.
Find the sixth root of the following to 2 places of decimals : 9.30. 10.55. | 11.78. | 12.101.

Compute to 2 decimals the values of:

CHAPTER XIX

MENSURATION.

321. Mensuration is that branch of mathematics which treats of the measurement of lines, surfaces, and volumes.
Since lines are measured more readily than any other kind of geometrical magnitude, it will be found that, in problems of mensuration, certain lines are usually measured first, and, from the results obtained, the lengths of other lines, or required areas, or volumes, are computed by principles determined by geometry.
It will not be possible to demonstrate fully these principles in the present brief treatment of the subject; but, wherever possible, they will be so presented and illustrated, as to make their truth clear to the prpil and enable him to recall them readily. He should constantly remember, however, that the complete demonstration of the rules and formulas used in this chapter belongs to another branch of mathematies, the subject of Geometry.
The limitations in the degree of accuracy with which a line can be measured are discussed in Art. 78, which should be reviewed.

I. Mensuration of Lines.

322. Definitions.-A plane surface is a surface such that if any two points in it be taken and joined by a straight line. the line will be wholly in the surface.
Extract to three decimal places:
323. The square root of 7.0763 ; of .70763 ; and of 4.0763 .
324. The square root of .387 ; of .0387 ; and of .00765 .
325. The square root of .938 ; of .0938 ; and of .000765 .

Extract to two decimal places:
25. The cube root of 6.318 ; of 6318 ; of .075 .
26. The cube root of .07165 ; of .007165 ; of 19.0019 .

27 . The sixth root of 2.175 ; of .2175 ; of .025 .

RIGHT TRIANGLE.
ce bounded by thre
A triangle is a portion of a plane surface bounded by three straight lines, as the figure $A B C$.
number is the square root of the square root of the number. Similarly, the sixth root of a number is the square root of the cube root of the number. The eighth, ninth, tenth roots of a number may be found by similar methods.
Ex. Obtain sixth root of $7,529,536$.
Extracting the cube root, we obtain 196.
Extracting the equare rool of 196 , we obtain 14 as the sixth root of the original number. ${ }^{\text {ITATIS }}$

EXERCISE 157.

Find the fourth root of the following:

1. 331776.	8. 47458321.	5. 1196883216.
2. 4879681.	4. 81450625.	6. 11574317056.

6. 11574317056 .

Find the sixth root of:
7. 148035889 . \quad 8. 2176782336.
Find the sixth root of the following to 2 places of decimals : 9.30. 10.55. | 11.78. | 12.101.

Compute to 2 decimals the values of:

CHAPTER XIX

MENSURATION.

321. Mensuration is that branch of mathematics which treats of the measurement of lines, surfaces, and volumes.
Since lines are measured more readily than any other kind of geometrical magnitude, it will be found that, in problems of mensuration, certain lines are usually measured first, and, from the results obtained, the lengths of other lines, or required areas, or volumes, are computed by principles determined by geometry.
It will not be possible to demonstrate fully these principles in the present brief treatment of the subject; but, wherever possible, they will be so presented and illustrated, as to make their truth clear to the prpil and enable him to recall them readily. He should constantly remember, however, that the complete demonstration of the rules and formulas used in this chapter belongs to another branch of mathematies, the subject of Geometry.
The limitations in the degree of accuracy with which a line can be measured are discussed in Art. 78, which should be reviewed.

I. Mensuration of Lines.

322. Definitions.-A plane surface is a surface such that if any two points in it be taken and joined by a straight line. the line will be wholly in the surface.
Extract to three decimal places:
323. The square root of 7.0763 ; of .70763 ; and of 4.0763 .
324. The square root of .387 ; of .0387 ; and of .00765 .
325. The square root of .938 ; of .0938 ; and of .000765 .

Extract to two decimal places:
25. The cube root of 6.318 ; of 6318 ; of .075 .
26. The cube root of .07165 ; of .007165 ; of 19.0019 .

27 . The sixth root of 2.175 ; of .2175 ; of .025 .

RIGHT TRIANGLE.
ce bounded by thre
A triangle is a portion of a plane surface bounded by three straight lines, as the figure $A B C$.

The base of a triangle is the side upon which it is regarded as standing.
The altitude of a triangle is the perpendicular distance to the base from the vertex, or point where the other two sides meet.
A right triangle is a triangle, one of whose angles is a right angle.
The hypotenuse of a right triangle is the side opposite the right angle.
Circle and circumference are defined in Art. 192.

A radius is a line drawn from the center of a circle to any point of the circumference.
Parallel lines are lines in a plane surface which do not meet, however far they be produced.
323. Formulas for mensuration of lines.

1. The square on the hypotenuse of a right triangle equals the sum of the squares on the o then two sides, or, denoting the hypotenuse by h, and the other two sides by a and b

T and $a^{2}=h^{2}-b^{2}$,

whence $t-\sqrt{a^{2}+b}$
$\sqrt{a}=V h^{2}-b^{2} . ~ A D$
Hence, given any two sides of a right triangle, the third side may be computed without the labor of measuring it. D
Ex. Find the hypotenuse of a right triangle of which the two other sides are 50 ft . and 60 ft .

$$
\sqrt{50^{2}+60^{2}}=78.102+
$$

$$
\text { Hypotenuse }=78.102+\mathrm{ft} \text {. }
$$

2. Circumference of a circle $=$ diameter $\times 8.1416$ (approx.).
($3 \times$ is sometimes used instead of 3.1416 , though it is not quite so accurate).
Hence, also, diameter $=\frac{\text { circf. }}{3.1416}=$ circf. $\times .3183$ (approx).
Let the pupil measure the diameter and circumference of a silver dollar, and show that the circf. $=$ diam. $\times 3.1416$ (approx.). Let him measure other circles, as a dimeer plate, wagon-wheel, etc., similarly.

EXERCISE 158

In the following examples a and b represent the legs of a right triangle, and c, the hypotenuse.

$$
\begin{array}{ll}
\text { 1. Given } a=8, & b=15, \text { find } c \text {. } \\
\text { 2. Given } b=35, & c=37, \text { find } a \text {. } \\
\text { S. Given } c=29, & a=21, \text { find } b \text {. } \\
\text { 4. Given } b=28, & a=45, \text { find } c \text {. } \\
\text { 5. Given } a=112, & c=113 \text {, find } b \text {. } \\
\text { 6. Given } c=73, & b=55, \text { find } a \text {. } \\
\text { 7. Given } a=24, & b=143 \text {, find } c \text {. } \\
\text { 8. Given } b=780, & c=901 \text {, find } a \text {. } \\
\text { 9. Given } c=1105, & a=561 \text {, find } b \text {. }
\end{array}
$$

Find correctly to 3 decimal places, the remaining side, when :

$$
\begin{array}{l|l}
\text { 10. } a=5, b=8 . & \text { 13. } c=43, a=34 . \\
\text { 11. } b=2, c=11 . & \text { 13. } a=92, b=65 .
\end{array}
$$

Find the circumference of each circle, when:
A14. Radius $=7 . \quad \mid$ 16. Radius $=8 \frac{1}{2}$. 18. Radius $=74.6$.
15. Diameter $=46.17$. Diameter $=13 \frac{1}{\frac{1}{3} .}$ 19. Diam. $=175.4$.

Find the diameter of the circle, when :
20. Circumference $=40 . \quad$ 22. Circum. $=57.3$.
21. Cireumference $=375$. \quad 23. Circum. $=103.8$.
24. A ladder 25 ft . long stands against the side of a house, and with its foot 7 ft . from the wall. How high is the top of the ladder?
25. A field 156 rds. long and 133 rds. wide is cut by a path running diagonally across it. Find the length of the path.
26. A flag pole was broken 16 ft . from the ground, and the top struck 63 ft , from the foot of the pole. How long was the pole?
2\%. Two rafters 20.5 ft . long meet at the ridge of a roof 4.5 ft. above the level of the walls. How wide is the house?
28. A ladder 65 ft . long stands in the street; if it fall on one side, it touehes a point on that house 16 ft . above the pavement; but on the other side the point it touches is 56 ft . above the pavement. How wide is the street?
29. If the diameter of a pipe is $8 \frac{1}{2} \mathrm{in}$., what is its circumference? What is the diameter of another pipe, whose circumference is $8 \frac{1}{2}$ in.?
30. The diameter of the earth is about 7920 miles. How many miles is it around the earth? (\&)
S1. A rope is wound spirally around a cylindrical mast 2 ft . in diameter and 60 ft . high, the spires being 1 ft . apart. How long is the rope?
II. Mensuration of Plane Areas.
324. Definitions.-Triangle and circle have already been defined.
An equilateral triangle is one which has all its sides equal.
A quadrilateral is a portion of a plane bounded by four straight lines.
A parallelogram is a quadrilateral whose opposite sides are parallel.
A trapezoid is a quadrilateral which has two and only two of its sides parallel.
The altitude of a parallelogram or trapezoid is the perpendicular distance between parallel sides.
A rectangle is a parallelogram whose angles are right angles.

A square is a rectangle whose sides are equal.

A polygon is a portion of a plane surface bounded by straight lines. A polygon of three sides is called a triangle; of four sides, a quadrilateral; of five sides, a pentagon; of six sides, a hexagon, etc.

A regular polygon is one in which the sides are all equal, and the angles are all equal.
The perimeter of a polygon is the sum of the lengths of its sides.
A unit of area is a square, each side of which is a linear unit, as a square inch, or a square yard.

The area of a plane flgure is the number of square units which it contains (see also Art. 175).
325. Formulas for areas of plane figures.

1. Area of a triangle $=\frac{1}{2}$ base \times altitude.
2. " " parallelogram $=$ base \times altitude.
3. " " trapezoid $=\frac{1}{2}$ sum of parallel sides \times altitude.
4.

- 5. "- " circular ring $=\left(R^{2}-r^{2}\right) \times 3.1416$, where R and r are the radii of the two circles.

When the tirre sides of a triangle are given instead of the base and altitude,
6. Area of a triangle $=\sqrt{s(s-a)(s-b)(s-c)}$, where a, b, c denote the three sides, and $s \neq \frac{1}{2}(a+b+c)$.
7. Area of equilateral triangle $=\frac{a^{2} \sqrt{3}}{4}$, where a denotes one of the sides.

It should be clearly understood that when we speak of multiplying one line by another (as the base by the altitnde), we mean that the number of line by another (as the base by the altude), we mean that the number of
linear units in one line is to be multiplied by the number of linear units in the other line.

It has been shown (Art. 175) that the product of the number of linear units in the base of a rectangle by the uumber of linear units in the altitude equals the number of units of area in the rectangle. Thus,
To obtain the area of a parallelogram, it is shown in geometry that the triangle $F C D=$ triangle $E A B$,
\therefore area $A B C D=$ area of rectangle $A E F D=A D \times D F=$ base \times altitude.

To obtain the area of a triangle, it is shown that triangle $A B C=$ triangle $A D C$.

ares triangle $A B$
 draw $E G$ parallel to $A B$, and produce raw E Cet it $A C$ to meet it at E, and prove triangle $G(F)$
$G D)$.
$\begin{aligned} \therefore \text { area } A B C D & =\text { area } A B G \\ & =B G \times P Q\end{aligned}$

In order to understand the formula for obtaining the area of a circle, it will be useobtaining the area of a circle, it will ine use-
ful to regard the circle as split $u p$ into parts ful to regard the circle as split up into parts
as in the figure opposite; and then conceive the parts oab,obc,ocd, etc., as arranged in the figure on the next page.

Ti.n

$a b e d \in f$
The smaller the parts into which the circle is divided, the more nearly will their bases, when taken thus, approximate to a straight line, and their areas taken together $=\frac{1}{4}$ rectangle $R S T U$, whose base is the circumference of the circle and altitude its radius.
area of circle $=\frac{1}{2}$ circumference $\times R$

$$
=\frac{1}{2} \times 2 R \times 3.1416 \times R=R^{2} \times 3.1416
$$

Note.-The student should carefully observe that the determination of all the above areas is made by first measuring certain straight lines, and computing the area from the lengths obtained. This is much more expeditwous than any direct counting of the units of area, which is indeed often umpossible.

Ex. Find area of a triangle whose sides are $13,14,15$.

1. A rectangle 8 yards long and 11 ft .8 in. wide.
2. The walls and ceiling of a room $17 \frac{1}{2} \times 16 \frac{6}{\frac{2}{2}} \times 8 \frac{1}{f}$ feet.
3. A parallelogram whose base is 30 yd . and alt. 20 ft . (R)
4. A straight rectangular street 7 mi . long and $2 \frac{1}{2}$ rd. wide.
5.) \bar{A} page $8 \frac{3}{3}$ in. long and $4 \frac{1}{2}$ in. wide.
5. A triangle on base of 18 in . and alt. 15 in.
6. A triangular field whose alt. is 40 yd . and base 45 rd .
7. A trapezoid whose bases are 60 and 75 feet and alt. is

15 yd.
9. A trapezoid whose bases are 3 mi . and 400 rd . respectively, and altitude is 80 rd .
10. A circle whose radius is 6 in.
11. A circle whose diam. is 10 rds.
12. A circle whose circumference is 80 ft .
18. A triangle whose sides are $9,10,17 \mathrm{in}$.
14. A triangle whose sides are $12,17,25 \mathrm{ft}$.
15. A triangle whose sides are $13,30,37 \mathrm{yds}$.
16. A triangle whose sides are $20,37,51 \mathrm{rds}$.
17. A triangle whose sides are $25,63,74 \mathrm{mi}$
18. An equilateral triangle whose sides are each 5 in
19. An equilateral triangle whose sides are each 80 rds .
20. A circular ring whose two diameters are 28 and 16 ft .
21. A circular race-track is 3 rds. wide and placed around and just inside a field whose radius is 63 rds. Find area of the track in acres.
22. What is the land in a river-bed worth at $\$ 60$ an aere, if the river increases from 6 to 60 rds. in width and is 20 miles long? (Trapezoid.)
23. A farm in shape of a triangle whose sides are 140, 143, 157 rods was sold at $\$ 85$ an acre. Find the value of the farm.
24. A bam is 48 feet wide and 90 feet long. At the corner its height is 20 ft ., but at the middle the height to the peak is 38 ft . Find (a) the area of the end; (b) the length of the rafters; and (c) the entire exterior surface of the barn,

III. Mensuration of the Surfaces of Solid Figures.

326. Definitions.-A solid is that which has length, breadth, and thickness.
A prism is a solid bounded by two equal and parallel polygons called bases, and by parallelograms (which together form the lateral surface).
The altitude of a prism is the perpendicular distance between the bases.
Prisms are trianjular, quadrangular, pentagonal, etc.,
according as their bases are triangles, quadrilaterals, pentagons, etc.
A regular prism is one which has regular polygons for its bases.

QUADRANGULAR
PRISM.

PENTAGONA
PRISM.

cube.

A right prism is one in which the other faces are perpendicular to the bases.
An ordinary box is a right rectangular prism.
A cube is a prism bounded by squares.
A pyramid is a solid bounded by a polygon called the base, and by triangles meeting at a point called the vertex.

The triangles which meet at the vertex taken together form the lateral surface.

The altitude of a pyramid is the perpendicular distance from the vertex to the base.

A pyramid is triangular, quadrangular, pentagonal, etc, according as the base is a triangle, quadrilateral, pentagon, etc.

A regular pyramid has a regular polygon for its base, and the triangles bounding the pyramid all equal.
The slant height of a regular pyramid is the perpendicular distance from the vertex to one side of the base.

A cylinder is a solid formed by the revolution of a rectangle about one of its sides as an axis. Hence, a cylinder has two circles for bases.

A cone is a solid formed by the revolution of a right triangle about one of its sides as an axis. Hence, a cone has a circle for its base.

The altitude of a cone is the perpendicular distance from the vertex to the base. R The slant height is the distance from the vertex to any point in the circumference of the base.

The frustum of a pyramid is the portion of the pyramid intercepted between the base and a plane parallel to the base.

The frustum of a cone is the portion of a cone intercepted between the base and a plane parallel to the base.

A sphere is a solid bounded by a curved surface, every point of which is equally distant from a point within called the

The radius of a sphere is a line drawn from the center to any point of the surface. The diameter is a line

2. Convex surface of a cylinder $=$ circf.of base \times alt. $=2 \pi R H$ (where $\pi=3.1416, R=$ radius of base, $H=$ altitude).
3. Lateral surface of a regular pyramid $=\frac{1}{2}$ perimeter of base X slant height.
4. Convex surface of a con $=\frac{1}{2}$ circf. of base \times slant height $=$ $\pi R L$ (where $\mathrm{L}=$ slant height).
5. Lateral surface of frustum of regular pyramid $=\frac{1}{2}$ sum of perimeters of bases \times slant height.
6. Convex surface of frustum of cone $=\frac{1}{2}$ sum of circumferences of bases \times slant height $=\pi(R+r) L$.
7. Surface of a sphere $=3.1416 \times$ diameter squared.

$$
=\pi D^{2}, \text { or } 4 \pi R^{2}
$$

These formulas (except 7) are derived from those given in Art. 325. Thus the lateral surface of a right prism is composed of rectangles, all having the same altitude; that of a regular pyramid is composed of equal triangles; that of a frustum of a regular pyramid of equal trapezoids. Also the convex surface of a cylinder unrolled forms a rectangle; of a cone face of a cylinder unrolled forms a rectangle; of a cone forms a portion of a circle, called a sector, as in the Fig. $A B O$, its area being $1 B C \times A C$, which is determined in the same way that the area of a circle is obtained;
the convex surface of a frustum of a cone equals the the convex surface of a fris
difference between two sectors

The student should read at this point the note to Art. 325.

EXERCISE 160.

Find the area of the lateral surface of

1. A right prism 10 in . high on square base, 3 in . on a side.
2. A right prism 8 ft . high, and on an octagonal base 9 in. on each side.
3. A regular pyramid on a hexagonal base 5 in . on a side, and of slant height of 10 in .
4. A regular pyramid on pentagonal base, 7 ft . on a side, and slant height $=19 \mathrm{yds}$.
5. A frustum of a triangular pyramid, each side of the
lower base being 6 ft , and of the upper base being 5 ft ., and with slant height of 8 ft
6. A cylinder of revolution 7 ft . long, the radius of whose base is 3 ft .
7. A cone of revolution on base of radius 8 ft ., and whose slant height is 40 ft .
8. A pipe 18 in. through and a mile long.
9. A cone whose radius is 6 im . and slant height is a yard.
10. The frustum of a cone of revolution, if the radii of the bases are 7 and 17 in . respectively, and the slant height is 20 in.
11. Find area of surface of a sphere whose radius is 3 ft .
12. Find area of surface of a sphere whose diameter is 19 in .
13. At $12 ¢$ a sq. ft., what is the cost of painting a pyramidal spire, whose base is a hexagon of 9 ft . on a side and slant height is 90 ft ?
14. What will it cost to paint a eylindrical water-tower at 20 c a sq. yd ., if the diameter of the tower is 10 ft , and its height is 80 ft ?
15. Compute the cost of gilding a dome in the shape of a hemisphere, whose radius is 18 ft , at $\$ 1.75$ a sq. yd
16. A post 40 ft . long, in the shape of the frustum of a cone, is 10 in , thick at one end and 18 in . at the other. Find its entire superficial area,

IV. Mensuration of Solids.

328. Definitions.-Beside the definitions given in Art. 326, it should be recalled (see Arts. 178, 179) that a unit of volume is a cube, each edge of which is a linear unit, as a cubic inch, or a cubie yard; and that the volume of a solid is the number of cubic units which the solid contains. Thus the volume of a room is the number of cubic feet which it contains.
329. Formulas for volumes of solids.
330. Volume of a prism $=$ area of base \times altitude.
331. Volume of a rectangular prism $=$ length \times breadth \times thickness.
332. Volume of a cube $=$ cube of its edge
333. Volume of a cylinder $=$ area of base \times altitude $=\pi R^{2} H$.
334. Volume of a pyramid $=\frac{1}{8}$ area of base \times altitude.
335. Volume of a cone $=\frac{1}{3}$ area of base \times altitude $=\frac{1}{3} \pi R^{2} H$.
336. Volume of a frustum of pyramid
$=\frac{1}{3}$ altitude \times (sum of areas of bases + square root of their product)
$=\frac{1}{8} H(B+b+\sqrt{B b})$ (when $H=$ alt., $B, b=$ areas of bases).
337. Volume of a frustum of cone $=$ same as in 7.
$=\frac{1}{3} H \pi\left(R^{2}+r^{2}+R r\right)$ where R and r are radii of bases.
338. Volume of a sphere $=\frac{1}{3}$ surface \times radius,

It sho$=\frac{4}{3} \pi R^{3}$
It should be remarked again that the student needs to study solid geometry, in order to anderstand fully the reasons for these formulas.
It will be of service, however, to recall (see Art. 179) that in a rectangular prism the volume, or number of cubic units, is equal to the number of linear units in the three edges multiplied together.

It is also to be observed that a rectangular prism may be conceived as divided into two equal triangular prisms with equal bases and the same altitude. Hence, the volume of each will equal half the volume of the rectangular prism, or the volume of a tri-
angular prism $=$ base \times alf.
Any other prism may be split up into

triangular prisms and its volume obtained by the same rule.
A cylinder may be conceived as determined by a prism with an infinite number of sides.

Any triangular prism, as $A B C D E F$, may be separated into three equivalent pyrumids, for $B-D E F=F-A B C($ or $B-A C F)=B$ $-A D F$
\therefore Volume of pyramid $B-D E F=\frac{1}{5}$ prism $A B$ $C D E F$.

The sphere may be regarded as an aggregate of very small pyramids with their common vertex at the center of the sphere, and the sum of their bases approximating to the surface of the sphere. Hence, the volume of the sum of the volumes of the pyramids will be determined by $\frac{1}{3}$ the product of the surface of the sphere x its radius.
The stadent should again read the note to Art, 325 , and state how it applies to the mensuration of volumes.

EXERCISE 161.

Find the volume of:
7. A prism on base of 10 sq . ft . and whose height is 12 ft . 2. A rectangular prism whose dimensions are $8 \times 9 \times 10 \mathrm{ft}$.
S. A room whose dimensions are $15 \mathrm{ft} .3 \mathrm{in} . \times 13 \mathrm{ft} .4 \mathrm{in}$. $\times 11 \mathrm{ft} .6 \mathrm{in}$.
4. A 12 -in. cube. A $13-\mathrm{ft}$ cube.
5. A pyramid 9 ft . high whose base is 100 sq . ft .
6. A pyramid whose alt. is 28 ft . and base is 60 sq . yds.
7. A cylinder whose radius is 9 in . and alt. is 10 ft .
8. A piece of wire $\frac{1}{2} \mathrm{in}$. thick and 75 yds . long.
9. A sphere of radius 5 in . One of radius 7 ft .
10. A sphere whose diameter is 11 in
11. The frustum of a pyramid whose bases are 32 and 50 sq. ft . and alt. is 9 ft .
12. The frustum of a cone 6 ft . high, the radii of whose bases are 6 ft . and 8 ft .
13. How many cubic feet of water in a cylindrical water-
tank 10 ft . in diameter and 80 ft . high? How many gallons?
14. How many cu. in. in a glass shaped in the frustum of a cone $3 \frac{1}{2} \mathrm{in}$. high, if the diameters of the base and top are 2 and 3 in. respectively?
15. How much larger is a 4 -inch cube than a 4 -in. sphere?
16. From a 7 -ft. cube of granite the greatest possible sphere was cut out. How many cu. ft. of stone were removed? What was the area of the surface of the sphere?
17. Supposing a drop of water to be a sphere having $\frac{1}{5}$ in. diameter. How many drops of rain in a cyiindrical pail 20
in. deep and 8 in . in diameter? How many such drops in a gallon?
18. If a bushel-measure in form of a cylinder is 18 inches in diameter, how deep is it? If it is 18 inches deep, what is its diameter?
19. Into a cylindrical water-tank 13 ft . in diameter and standing on end, an iron globe 10 ft . in diameter is sunk. How far will the surface of the water rise?
20. A heap of wheat in shape of a cone is 8 ft . deep and the diameter of the base is 15 feet. How many bushels in the heap?
21. A regular pyramid is 40 ft . high and stands on an equilateral triangle for base whose sides are each 6 ft . Find its volume. Find its slant height and lateral area.
V. Lines, Areas, and Volumes of Similar Figures.
330. Definitions.- Similar surfaces are those which have the same shape. Thus, any two squares are similar plane figures.
Similar solids are solids which have the same shape. Thus, any two cubes, or two spheres, are similar.
331. Properties of Similar Figures.-In any two similar figures
I. Any two corresponding lines have the same ratio as any other two corresponding lines;
II. The areas of any two smilar figures are to each other as the squares of any two corresponding lines;
III. The volumes of any two similar solids are to each other as the cubes of any two corresponding lines.
Let the pupil illustrate these principles by drawing two squares with edges 2 in. and 5 in. respectively, and comparing their areas: and by drawing, or forming, two cubes with edges 2 in . and 5 in . respectively, and determining the number of cubie inches in each figure.
It is to be observed that the comparison of surfaces and solids of the same shape is made to depend again on the measurement of struight lines and computations from them (see Art. 325, note).

Ex. If a pipe 1 in . in diameter discharges 50 gal in a minute, how much will a pipe 2 in . in diameter discharge?

The quantity discharged by a pipe is in proportion to the area of the section of the pipe, and hence, in proportion to the square of its diameter. section
Hence,

$$
\begin{aligned}
& 1^{2}: 2^{2}=50:() \\
& \text { ALER No. gals. required }=\frac{50 \times 4}{1}=200 . \\
& \text { EXERCISE 162. }
\end{aligned}
$$

1. One of two similar triangles contains 135 sq . in. If its base is 15 in., what is the area of the other whose base is 18 in.?
2. Two sides of a polygon are 27 and 32 inches. In a similar polygon the less of the two corresponding sides is 18 in. What is the length of the other?
S. A polygon whose base is 12 ft . contains $62 \mathrm{sq} . \mathrm{ft}$. What is the area of a similar polygon whose base is 42 ft .?
3. If the area of a circle, whose radius is 5 in., is 78.54 sq . in., find the area of a circle whose radius is 7 in . Prove your answer correct.
4. If a cylinder whose alt, is 8 ft . has a convex surface of 44 sq. ft., what is the convex surface of a similar cylinder whose alt. is 20 ft .?
5. The volume of a solid is 52 cu . in. and one side is 4 in Find the volume of a similar solid if a corresponding side is 6 in.
6. The volume of a solid is 400 cu . ft . and one side is 12 ft . Find the volume of a similar solid if the corresponding side is 21 ft .

8 . If the sides of two squares are as $2: 3$, what is the ratio of their areas? If the edges of two cubes are as $3: 5$, what is the ratio of their volumes?
9. Two spheres have radii equal to 7 and 9 inches respectively. What is the ratio of their circumferences? Of the areas of their surfaces? Of their volumes?
10. A man whose coal-bin is of a certain size, builds another having each dimension twice as great. How much lumber would he require compared with the first bin? How many times as much coal will it hold?
11. The volumes of two similar solids are 297 cu . in. and 704 cu. in. If the shortest side of the less is 3 in ., what is the shortest side of the other?
12. The areas of two similar triangles are 324 and 1444 sq. ft . respectively. If the base of the greater is 14 ft ., what is the base of the less ?
13. If there are 300 yards in a $4-\mathrm{in}$. ball of yarn, how many yards will there be in a $6-\mathrm{i}$. ball? In a $2-\mathrm{in}$. ball?
14. If it costs $\$ 250$ to paint a certain house, how much will it cost to paint another, all of whose dimensions are double those of the first?
15. If the planet Jupiter has 11 times the diameter of the earth, how do their surfaces compare? How do their volumes compare?
16. How many rods in the radius of a circle twice as large as another which contains 160 sq . rds. ?
17. What is the ratio of the depths of similar quart and peck measures? A peck and bushel measure?
18. If a grindstone 18 in . in diameter costs $\$ 4$, what ought another cost having the same thickness but 24 in. in diameter? 19. If a $3-\mathrm{in}$. roll of butter is worth 60 cents, what is a 5 A in. roll worth?
20. If a person 5 ft .6 in . tall ought to weigh 150 lbs , what should a person 6 ft . tall weigh ?

E BIBLIOTECAS

the various tables for metric weights and measures which are about to be given.

In these tables, only those units printed in black letters are much used in practice (just as in U. S. money only the dollar and cent are much used), the other units serving for computation, or other theoretic purposes merely.
334. I. Measures of Length.-The primary unit of length, as has been said, is the meter.

TABLE OF LENGTH
10 millimeters $(\mathrm{mm})=$.1 centimeter $(\mathrm{cm}$.$) .$
10 centimeters $=1$ decimeter (dm
10 decimeters $=1$ meter $(\mathrm{m}$.)
10 meters
$=1$ meter (m.)
10 dekameters
10 hektometers
10 kilometers

$$
=1 \text { hektometer (} \mathrm{Hm} \text {.). }
$$

$=1$ kilometer (Km.
$=1$ myriameter (Mm.).

How many:

EXERCISE 163

\qquad

1. Meters in a kilometer? In a Dm.? In 5 Hm .?
2. Centimeters in a meter? In a Hm .? In 8 dm .?
3. mm . in a cm.? In 3 m .? In 5 dm ?
4. cm . in 800 mm ? In 4 m ? In $\frac{1}{\mathrm{~m}}$?
5. dm. in 25 m ? ? In 500 cm .? In 12 Dm ?
6. m . in 300 cm ? In 8000 dm .? In 15 Hm ?
7. m . in 3.5 Dm ? In 3.5 dm .? In 7 cm ? ?
8. cm in 1.2 dm ? In 1.2 mm ? In 11 m ?
9. Hm . in 7 m ? ? In 70 Km ? In 77 cm ?
10. Km . in 300 Hm .? In 56 Dm ? In 8 m ? ?
11. The pupil may now state his own rule for changing metric quantities from one denomination to a higher, and his metric quantities from one denomination to a higher, and his
other rule for changing to a lower unit. A thorough mastery other rule for changing to a lower unit. A thorough mastery of this process by sufficient drill renders all the rest of metric system questions comparatively easy.
12. II. Measures of Area.-The unit of area is the square meter.

TABLE OF SQUARE MEASURE.
100 sq. millimeters (sq. mm.) $=1$ sq. centimeter (sq. cm.).
$100 \mathrm{sq} . \mathrm{cm} . \quad=1$ sq. decimeter (sq. dm.).
100 sq . dm.
100 sq. m.
$100 \mathrm{sq} . \mathrm{Dm}$.
$100 \mathrm{sq} . \mathrm{Hm}$.
100 sq . Km.
1 L
II. Measures of Land Surface.-The ratio, 100 , between two successive units of square measure is too great for many practical purposes, as in measuring land. Hence, a new unit, the are, is selected, which is increased or decreased with 10 as a scale.
The unit of land measure is the are (pronounced Square "air"), which equals 100 square meters.

TABEE OF LAND MEASURE
10 centares (ca.) = 1 deciare (da.).
10 deciares
$=1$ are (a.).
10 ares
10 dekares
$=1 \mathrm{sq}$. myriameter (sq. Mm.)
\square
$=1 \mathrm{sq}$. meter (sq. m.).
$=1$ sq. dekameter (sq. Dm.) $=1$ sq. hektometer (sq. Hm.) $=1$ sq. kilometer (sq. Km.). $=1$ sq.myriameter (sq. Mm.).
\qquad
$=1$ dekare (Da.).
$=1$ hektare (Ha.).

EXERCISE 164.

ORAL.
How many: ${ }^{2}$?

1. Sq. m . in a $\mathrm{sq} . \mathrm{Hm}$.? In a sq. Km . ? In an are?
2. Sq. cm . in a $\mathrm{sq} . \mathrm{m}$. ? In a sq. dm. ? In $7 \mathrm{sq} . \mathrm{m}$?
S. Centares in an are? In a Da.? In 15 a. ?
3. Ares in 25 Ha ? In 500 ca ? In 7 ce ?
4. Ares in $\frac{1}{2}$ Ha.? In 63 Da ? In 63 da.
5. Ha in 3 a? In 303 a? In 36 ?
6. Sq. dm. in $16 \mathrm{sq} . \mathrm{m}$. ? In $16 \mathrm{sq} . \mathrm{cm}$? In $106 \mathrm{sq} . \mathrm{cm}$?
7. Sq. m . in 2 sq . Dm.? In $22 \mathrm{sq} . \mathrm{dm}$.? In $22 \mathrm{sq} . \mathrm{cm}$? ?
8. Sq. m. in 2 sq. Dm.? In 22 sq. dm.?
9. Sq. m. in 5 a. ? In 75 a. ? In 83 Ha. ?
10. a. in 15 Ha ? In 35 ca ? In 35 Da ?
(To be continued by the teacher.)
11. IV. Measures of Volume. The cubic meter is the unit of volume.

TABLE OF CUBIC MEASURE

1000 cubic millimeters $=1$ cubic centimeter ($\mathrm{cu} . \mathrm{cm}$.).
$1000 \mathrm{cu} . \mathrm{cm} . \quad=1$ cubic decimeter (cu. dm.).
$1000 \mathrm{cu} . \mathrm{dm}$. $=1$ cubic meter (cu. m.).
Let the student form a cubic centimeter by cutting out a piece of pasteboard of the shape indicated in the figure, cutting it half through at the dotted lines, then folding together in the shape of a cube and pasting with mucilage.
338. V. Measures of Wood, etc. -The ratio, 1000 , between two successive units in the above table is too great for many practical purposes, as in measuring mood. Hence, a new unit, the stere, is taken, which is multiplied and divided according to the scale of 10 .

The unit of wood measure is the stere (pronounced "stair "), which equals one cubic meter.

TABLE OF WOOD MEASURE.

10 millisteres (ms.) $=1$ centistere (cs.). 10 centisteres $=1$ decistere (ds.). 10 decisteres $=1$ stere (s.).

H BTDJTOXERCISE 165.

How many:

1. Cu. cm. in a cu. m.? In $16 \mathrm{cu} . \mathrm{dm}$.? In $38 \mathrm{cu} . \mathrm{mm}$.?
2. Cu. cm . in a $\mathrm{cu} . \mathrm{m}$. ? In $16 \mathrm{cu} . \mathrm{dm}$. ? In $38 \mathrm{cu} . \mathrm{mm}$. ?
3. Cu. cm . in $6 \mathrm{cu} . \mathrm{mm}$? In $3 \mathrm{cu} . \mathrm{m}$? In 75 cu . dm ?
s. $\mathrm{Cu} . \mathrm{m}$. in $76 \mathrm{cu} . \mathrm{dm}$.? In $768 \mathrm{cu} . \mathrm{cm}$.? In $500 \mathrm{cu} . \mathrm{mm}$?
4. cs. in 1 stere? In 3 ds ? In 35 ds ?
5. St, in 3 ds ? In 75 cs ? In 8 ess? In 800 ds ?
6. Cu. m. in 53 st.? In 25 ds ? In 6 es.?
7. St. in $14 \mathrm{cu} . \mathrm{dm}$? In 240 cu cm.? In 240 cs ?
8. Let the pupil construet a $\mathrm{cu} . \mathrm{dm}$. and a $\mathrm{cu} . \mathrm{cm}$. from pasteboard. Let him clearly see how the lengths of their edges compare; how the areas of their faces compare; and how their volumes compare.
9. VI. Measures of Capacity.-The liter (pronounced "leeter") is the unit of capacity. It equals a cubic decimeter; that is, the velume of a cube whose edge is $\frac{1}{10}$ of a meter.

TABLE
10 milliliters (ml . 10 centiliters 10 deeiliters 10 liters 10 dekaliters 10 hektoliters 10 kiloliters

CAPACITY.
1 centiliter (cl.). 1 deciliter (dl.). 1 liter (l.).
1 dekaliter (Dl.).
1 hektoliter (HI.)
1 kiloliter (K1.). $=1$ myrialiter (M.).

EXERCISE 166
ORAL.

How many

1. Liters in a K1.? In a HI? In 5 Dl ? In 75 dl .
2. Dl in 7 Kl ? In 40 Hl ? In 71 ? In 58 dl.?
s. Liters in a cubic meter? In $206 \mathrm{cu} . \mathrm{cm}$?
3. cl. in 31 .? In 1 Hl.? In 55 ml ?
4. HI. in 25 Kl .? In 6 1.? In 44 Dl ? In 325 cl ?
5. dl. in 3 Dl ? In $151 . ?$ In 77 cl .? In 156 ml ?
6. I. in $30 \mathrm{co} . \mathrm{dm}$? In $6 \mathrm{ct} . \mathrm{cm}$. In $45 \mathrm{cu} . \mathrm{m}$.?
7. Let the pupil construct a liter out of pasteboard.
8. VII. Measures of Weight.-The gram is the unit of weight. It is the weight of a cubic centimeter of distilled water at its greatest density; that is, when at a temperature of 39.2° Fahrenheit.

TABLE OF WEIGHT

10 milligrams (mg.) $=1$ centigram (cg.).
10 centigrams $=1$ decigram (dg.).
10 decigrams $\quad=1$ gram (g.).
10 grams
10 dekagrams
10 hektograms
10 kilograms
10 myriagrams
10 quintals $=1$ metric ton.

$$
=1 \text { gram (g.). }
$$

$=1$ dekagram (Dg .).
$=1$ hektogram (Hg.).
$=1$ kilogram (Kg.).
$=1$ myriagram (Mg.).
$=1$ quintal.

EXERCISE 167.

How many:

1. Grams in a Kg.? In 5 Hg ? In 87 dg ?
2. eg. in 4 g .? In 31 Dg .? In 7 mg ? In 70 g ?
3. dg. in 15 g ? ? In 17 Hg .? In 36 mg .? In 360 g ?
4. Kg. in 50 g .? In $\frac{1}{2} \mathrm{~g}$? ? In 7 Dg ? In 4 dg ?
5. Grams in weight of $1 \mathrm{cu} . \mathrm{m}$. of water? In $7 \mathrm{cu} . \mathrm{dm}$. water?
6. Kg , in $30 \mathrm{cu} . \mathrm{m}$. water? In $16 \mathrm{cu} . \mathrm{Km}$. of water?
7. cg. in $1 \mathrm{cu} . \mathrm{cm}$. of water? In $13 \mathrm{cu} . \mathrm{dm}$. of water?

NOTATION NUMFRAATION, REDUCTION.

341. The methods of notation and numeration used in the metric system have been indicated in general already. With respect to notation it should be further remarked that
(1) Of the abbreviations used, those for units larger than the primary units begin with capital letters; the others with small letters.
(2) The place occupied by each unit with reference to the decimal point (when the scale is 10) should be fixed in mind.

(3) In writing a metric number for which the scale is 100 , the number of units of each denomination must occupy two
places (by the aid of zeroes if necessary); when the scale is 1000 , three places. Thus, 35 sq . Km. 8 sq. Hm. 17 sq. m. is written 35080017 sq . m.
With respect to numeration or reading metric numbers, it should be remarked that a metric number may be read in either of two ways:
(1) By specifying each unit.

Thus, 37.56 m . may be read as " 3 dekameters 7 meters 5 decimeters 6 (centimeters," or
(2) By reading the entire number as an abstract number, and then affixing the name of the primary unit. According to this method the above number would read "thirty-seven and fiftysix hundredths meters."
342. Reduction.-A metric number is reduced to a lower denomination by moning the decimal point to the right, one place for each reduction of the unit when the scale is 10; two places when the scale is 100 ; three places when the scale is 1000.

Thus, 6.728 m . $=672.8 \mathrm{~cm}$.
A metric number is reduced to a higher denomination by moving the decimal point to the left, correspondingly to the above rule.

Thus, $8596.2 \mathrm{~mm} .=8.5962 \mathrm{~m}$.
It is often an advantage, instead of making a single direct reduction, to make two steps of the reduction, by
(1) Converting the number of given units into primary units, and
(2) Converting the number of primary units into regured units.

Ex. Convert 938765.23 dm . into kilometers.
We first change decimeters into meters, and then convert meters into kilometers.

Hence, $\quad 938765.23 \mathrm{dm} .=93876.523 \mathrm{~m} .=93.876583 \mathrm{Km}$. Reduce EXERCISE 168.

Reduce

1. 7.324 Km . to dm. To Dm. To cm .
2. 36.08 Dg . to Kg . To cg . To dg
3. 712.45 sq. m. to sq. cm. To sq. Hm. To Ha.

OPERATIONS WITH METRIC NUMBERS.
4. 503.217 dl . to ml . To Dl. To Kl
5. 55.171 ca. to Ha. To a. To eq. Dm.
6. $.025 \mathrm{cu} . \mathrm{m}$. to $\mathrm{cu} . \mathrm{cm}$. To l. To dst.
7. 5.3 st. to dst. To cu. dm. To st.
8. 12.345 Km , to Dm. To dm. To mm.
9. 3267.1 cg . to Dg . To Kg. To mg.
10. 106.73 dl . to ml . To Dl. To Kl.
11. $8.3 \mathrm{cu} . \mathrm{cm}$. to $\mathrm{eu} . \mathrm{m}$. To . To $\mathrm{cu} . \mathrm{mm}$.
12. 46.71 Dl . to cu. m . To cu. cm . To dl.
13. 500.7 Hg . to mg . To dg. To Kg.
14. 375.5 a. to Ha. To ca. Tosq. Dm.
15. 40 Ha . to a. To sq. m. To ca. To sq. Dm.
16. 345.75 m , to cm . To Hm . To Km . To mm .
17. $863200 \mathrm{sq} . \mathrm{em}$. to sq. m . To Ha. To sq. Dm.
18. 385 l to cl . To $\mathrm{cu} . \mathrm{m}$. To $\mathrm{cu} . \mathrm{Km}$.
19. How many Kgs, in the weight of 75 l . of water? Of 1 cu. m. of water? Of $170 \mathrm{cu} . \mathrm{mm}$. of water? Of $35 \mathrm{cu} . \mathrm{cm}$. of water? Of 11 Kl . of water?
20. How many 1. of water are needed to weigh 75 Kg .? To weigh 5000 Kg .? To weigh 30 g. ? To weigh 58.7 cg .? To weigh 138.75 Dg . ?
21. Change 42.3 Hl . to dl. $\mathrm{To}_{0} \mathrm{cu} . \mathrm{cm}$. To cu, m. Find its weight (if water) in g . In Kg .

OPERATIONS WITH METRIC NUMBERS
343. Addition.-Metric numbers may be added in the same way as any other decimal numbers. It is necessary in all cases to reduce to the same denomination the metric numbers which are to be added.
Ex. Add 37 cm ., 36.26489 Hm ., 3 Km .
We reduce to meters all the numbers to be added.

$$
\begin{aligned}
37 \mathrm{~cm} . & =0.37 \mathrm{~m} . \\
36.26489 \mathrm{Hm} . & =3626.489 \mathrm{~m} . \\
3 \mathrm{Km} . & =\frac{3000 . \mathrm{m} .}{6626,859 \mathrm{~m} .}, \text { Sum. }
\end{aligned}
$$

344. Subtraction.

Ex. Subtract 387.92 cg . from 5.827 Dg .
Reducing both numbers to grams and subtracting.

$$
5.827 \mathrm{Dg} \cdot 58,27 \mathrm{~g}
$$

$387.92 \mathrm{cg} .=3.8792 \mathrm{~g}$.

345. Multiplication.

Ex. Find the area of a rectangular field which is 0.5 Km . long and 27.8 m . wide.
$0.5 \mathrm{Km} .=500 \mathrm{~m}$
Area $=27.8 \times 500$ sq. $\mathrm{m} .=13900.0$ sq. m.

$$
=1.39 \mathrm{Ha} \text {., Area. }
$$

346. Division.

Ex. 1. Divide 21.856 Dm. by 3.2 cm .

$$
\begin{aligned}
21.856 \mathrm{Dm} . & =218.56 \mathrm{~m} . \\
3.2 \mathrm{~cm} . & =.032 \mathrm{~m} . \\
218.56 \div .032 & =6830, \text { Quotient. }
\end{aligned}
$$

Ex. 2. How high must a box be in order that it may hold 30 liters, if it is 50 cm . long and 2 dm . wide?

Since $11 .=1 \mathrm{cu} . \mathrm{dm}$.,
$30 \mathrm{l}=30 \mathrm{cu} . \mathrm{dm} .=$ volume of the box
Since $50 \mathrm{~cm} .=5 \mathrm{dm}$.,
the area of base of the box $=5 \times 2 \mathrm{sq} . \mathrm{dm} .=10 \mathrm{sq} . \mathrm{dm}$.
T~NTM
Height of the box $=$ volume \div area of base

Add:

EXERCISE 169.

1. $3.6 \mathrm{~m} .+45 \mathrm{~cm} .+.06 \mathrm{Km} .+3.2 \mathrm{Dm}$.
2. $7 \mathrm{a} .+120 \mathrm{ca}+.08 \mathrm{Ha}$. $\square \square$ 3. $9 \mathrm{cu} . \mathrm{dm} .+300 \mathrm{cu} . \mathrm{mm} .+50.6 \mathrm{cu} . \mathrm{m}$.
3. $4.81 \mathrm{dg} .+325.1 \mathrm{mg} .+14.78 \mathrm{Dg} .+1.31 \mathrm{Kg}$.
4. $43 \mathrm{cl}+7.1 \mathrm{Hl} .+305 \mathrm{ml} .+2.5 . \mathrm{Kl}+27.8 \mathrm{l}$.
5. $75.38 \mathrm{Ha}+438.1 \mathrm{a}+9587 \mathrm{ca}$
6. $9.03 \mathrm{~m} .+903 \mathrm{~mm} .+9030 \mathrm{~cm} .+90.3 \mathrm{Dm} .+0.903 \mathrm{Km}$.
7. $307.5 \mathrm{dg} .+48.091 \mathrm{~g} .+385.61 \mathrm{mg} .+7 \mathrm{Kg} .+9.9 \mathrm{Dg}$.
8. $17 \mathrm{cu} . \mathrm{dm} .+385 \mathrm{cu} . \mathrm{cm} .+4128 \mathrm{cu} . \mathrm{mm} .+30.9 \mathrm{cu} . \mathrm{m}$.
9. $14 \mathrm{l} .+1.403 \mathrm{Kl} .+378.12 \mathrm{cl} .+99 \mathrm{Hl} .+14 \mathrm{dl}$.
10. $77 \mathrm{cu} . \mathrm{cm} .+32.31+9.5 \mathrm{dl}+307.5 \mathrm{cu} . \mathrm{dm} .+4 \mathrm{Dl}$.
11. 38 sq. Dm. +19.3 Ha. +1435 sq. m. +281.5 a.

Subtract:

13. 7.3 cm . from $.08 \mathrm{Km} . |$| $15.5 .7 \mathrm{sq} . \mathrm{dm}$. from .09 Ha. |
| :--- | :--- |
14. .46 Hl . from $8769.1 \mathrm{cl} . \quad 16.3 .57 \mathrm{~g}$. from 2.538 Kg .
15. What is the difference between 7 Hm .5 Dm .3 m .4 cm . and 8 Km .3 Hm .4 dm .2 mm .?
16. What is the difference between 8 Kl .51 .7 dl .4 ml . and $7 \mathrm{HI}, 2 \mathrm{Dl} .1 \mathrm{l} .5 \mathrm{cl}$?
17. From 57.3128 Kl. take $4875.625 \mathrm{cu} . \mathrm{cm}$.

Multiply:
20. 3 Dm .5 m .4 cm . by 5 .
21. 7 Kg .3 Hg .2 Dg .7 dg .8 cg. by 35.
29. Find the total length of 19 poles, each 7 m .4 cm .3 mm . long.
23. Find the entire weight of 40 easks, each weighing 4 Kg .

7 Dg .5 g .
24. Find the total area of 32 fields, each containing 36 Ha . 8 a.

25 . Find the entire capacity of 16 cans, each containing 4.037 Hl . Change result to cu. meters.

Find the area of a surface:
26. $3.02 \mathrm{~m} . \times 25 \mathrm{~cm}$.
27. $94.5 \mathrm{Km} . \times 6.8 \mathrm{~m}$.
28. $3.6 \mathrm{~mm} . \times 7.5 \mathrm{Hm}$.

Divide:
80. 1800 dL . by 90 Dl . $+32.3 .8 \mathrm{cu} . \mathrm{m}$. by $1.9 \mathrm{cu} . \mathrm{mm}$.
31. 540 Ha . by 6 a. ss. $77 \mathrm{sq} . \mathrm{mm}$. by 5 sq . Dm.
S4. 17 Km .4 Dm .5 m .6 cm .5 mm . by 5 .
35. 130 На. 9 a. 4 ca. by 8 .
s6. 28 Kg .9 Hg .4 dg .3 mg . by 25.
s7. A field containing 56 Ha . is 35 Dm . long. Find its width. If it had been 26 Dm .5 cm . long, find its width.
38. How many cu. m. in a box $30.6 \mathrm{dm} . \times 204 \mathrm{~cm} . \times 0.5$ Dm.?
89. How many liters in a box $3 \mathrm{~m} . \times 8 \mathrm{dm} . \times 5 \mathrm{~cm}$. ? 40. A tank $12 \mathrm{~m} . \times 75.8 \mathrm{dm} . \times 1.05 \mathrm{Dm}$, is full of water. Find its weight in Kg .
41. A vat is $4 \mathrm{~m} . \times 36 \mathrm{dm} . \times 250 \mathrm{~cm}$. Find its capacity in K1. Find in Kg. the weight of water it will contain.
42. A box 15 dm . long and 80 cm . wide contains a cu. m . How deep is it?
4. A room is 5.2 m . long, 4.5 m . wide, 3.2 m . high. Find cost of plastering it at 42 cents per sq. m. Find No. of KI. of air in the room.
44 A bin $7.4 \mathrm{~m} . \times 3.6 \mathrm{~m} . \times 2.5 \mathrm{~m}$, will contain how many HI. of grain? How many steres of wood?
45. What cost a pile of wood 12.3 m . long, 5.2 m . wide, and
a Dm. high, at $\$ 3.50$ a stere?
46. A cellar is 12.4 m . $\times 9.6 \mathrm{~m} . \times 8.5 \mathrm{~m}$. How many cu. m. of earth were removed in digging it? How many steres of wood might be piled in it? How many liters of water would it contain? What does this volume of water weigh in kilograms? How many HI of corn would the cellar hold?
47. How many liters in a cube whose edges are all 20 cm .?
48. A tank contains 9600 Kg . of water. It is 32 m . long and 1.2 m . deep. How wide is it?
49. A bar of metal is $3 \mathrm{~m} . \times 2.8 \mathrm{~m} . \times 1.5 \mathrm{~m}$. and weighs 4.5 times as much as an equal volume of water. Find the weight of this bar (Kg.).
A certain vat is $14 \mathrm{~m} . \times 10.8 \mathrm{~m} . \times 9.5 \mathrm{~m}$.
50. Find its capacity in steres. In liters. In IE1.
51. Find the weight of water it will contain.
52. Find the weight of tar it will contain, if tar is 1.8 as heavy as water.
53. Find the value of wheat it will hold at $\$ 2.40$ a Hl .
54. Find the total area of its 6 faces in ares.
55. Find the edge of a cubical cistern of same contents.
56. If a piece of ore weighs 45 Kg ., and of this 675 g . are silver, what per cent. of the ore is silver?
57 . If a certain wine contains 12.8% alcohol, and 2.1% extract, the rest being water, what \% is there of water? How many Kg . of water are there in 50 l . of the wine? How many cu. cm. of extract?
58 . Divide $0.005 \mathrm{cu} . \mathrm{dm}$. by 0.02 , and express the quotient as a decimal of a cu. m .
59. A bin which holds 70 Hl . stands on a base $26 \mathrm{dm} . \times 2$ m. How high is it?

METRIC EQUIVALENTS.

347. Direct Equivalents.-The following table shows the relation between different important metric units and the units of weight and measure in common use in the United States and Great Britain. The table should be committed to memory, the equivalents printed in black letters being of especial importance.

22
348. The inverse equivalents, showing the value of units in use in the United States and Great Britain in terms of the metric units, are also often useful.

Ex. 2. Find the area in hektares and also in acres of a field 50 Dm . long and 175 m . wide.
$50 \mathrm{Dm} .=500 \mathrm{~m}$.
Area $=175 \times 500 \mathrm{sq} . \mathrm{m} .=87500 \mathrm{sq} . \mathrm{m}$.
$=8.75 \mathrm{Ha}$. (since 10000 sq. $\mathrm{m} .=1 \mathrm{Ha}$.)
$=2.471 \mathrm{~A} . \times 8.75$

Change:

1. 5 mi . to Km . 2. 13 bu. to HI.
S. 56 A to Ha .
2. 45 gal . to l .
3. 20 cd . to st .
4. $13 \mathrm{cu} . \mathrm{yd}$. to cu. m.
5. 60 lb . to Kg .

EXERCISE 170.

8. 50 Hl to bu 9. 25 Hm . to rds. 10. 30 m . to ft .
11. 32 st. to ed.
12. 425 a. to A.
18. 126 l . to gal.
14. 325 l . to pk.
15. 100 Kg to ewt.
16. $40 \mathrm{cu} . \mathrm{m}$. to bu 17. 9 Kl t to bu. 18. 72 rd. to Hm . 19. 25 lb . to g . 20. $5 \mathrm{cu} . \mathrm{m}$. to $\mathrm{cu} . \mathrm{ft}$. 21. 95 a. to sq. rd. 22. 8 t . to Kg .

- 2s. 7 1. to pk.

24. $109 \mathrm{cu} . \mathrm{cm}$. to cu . in.
25. 40 sq. m. to sq . ft.
26. 30 gal to dl .
27. 4 a , to sq. yd .
28. 16 mm . to in.
29. 85 ml . to pts. (oats). 30, 43 pt . to cl , (milk).
30. 2 mi . 45 rd . to Km .

S2. 4 bu. 3 pk .3 qt , to HI.
3s. 3 gal. 2 qt. 1 pt. to 1 .
34. 40 A .100 sq. rd. 6 sq. yd. to Ha.
85. 3 T. 15 cwt .40 lb . to Kg
s6. 7.53 Ha . to acres and lower denominations.
s7. 18.32 HI , to bushels and lower denominations.
38. 7528 Kg . to tons and lower denominations. s9. 87.5381 . to gal. and lower denominations. 40. 24.25 Km . to miles and lower denominations.

Find the weight of:
41. 17 l . of water in pounds.
4. 28 Kl . of water in tons.
4. $6 \mathrm{cu} . \mathrm{m}$. of water in tons. 44. 1000 gal . of water in Kg . $45.25 \mathrm{cu} . \mathrm{yd}$. of water in H 46. 1 cu . in. of water in g .
47. How many cu. yds, in a room $3 \mathrm{Dm} . \times 25 \mathrm{~m} . \times 120 \mathrm{dm}$.
48. How many tons of water will a cistern $26 \mathrm{~m} . \times 20 \mathrm{~m}$. $\times 155 \mathrm{dm}$. contain?
49. A box contains 35.2 l., and its lid is $0.44 \mathrm{~m} . \times 25 \mathrm{~cm}$. What is its height in inches?
50. A vat is 4.5 m . long and 18 cm . deep. It will hold 605.88 lbs . of water. What is its width in decimeters?

51 . If I buy 360 bu . of wheat at $\$.95$ a bushel, and sell it at $\$ 2.95$ a hektoliter, how much do I gain?
52. A bin is 19 ft . $\times 12 \mathrm{ft} . \times 5 \mathrm{ft}$. How many Hl . will it contain?
53. How many acres in a field 75 m . long and 64 m . wide? 5/. Atmospheric pressure is about 1 Kg , per sq. cm. How many pounds is that to the square foot?
55. From the datum that a liter of water weighs a Kg , compute the weight of a cubic foot of water in pounds
56. If a train travels 50 miles an hour, how many meters is it moving each second?
57. Change your height and weight to equivalent metric units.
58. How many Kg , will a standard bbl of water weigh?
59. A cubic inch of a certain material weighs $2 \frac{1}{2} \mathrm{oz}$. How many Kg . in the weight of a block of it 11 yds. $\times 25 \mathrm{ft} . \times 16 \mathrm{ft}$. ?
60. The circumference of a wheel is 4 m .5 mm . How many revolutions will it make in 20 miles?
61. Explain how to construct the table of inverse equivalents ($\S 348$) from the table of direct equivalents ($\S 347$). By the use of only one table, what two rules will enable one to make any changes whatever from either system to the other?
62. The inside measurements of a cubical vessel are each 23 inches. How many liters of water will it contain? What will this water weigh in pounds?
63. How many quarts of milk will a box $3 \mathrm{dm} . \times 24 \mathrm{~cm}$.

15 cm . contain? How many quarts of corn? 64. Bought a farm of 220 acres at $\$ 60$ an acre. For what must I sell it per Ha. to gain 20% ?
65. Bought 560 bushels of grain at $\$ 1.70$ per HI. and sold it at 90 cents per bushel. What was my total gain and my gain \% ? D
66. How many gallons in a tank $4.6 \mathrm{~m} . \times 3 \mathrm{~m} . \times 25 \mathrm{dm}$?
67. A road 84 Km . long is 12 m . wide. What is the land worth at \$15 an acre?
68. Bought wood at $\$ 4.40$ a cord and sold it at $\$ 1.50$ a stere. Did I gain or lose? What \% ?
69. The scale of a map is 1 to 80000 . The distance between two cities on the map is 15 cm . How many miles between the cities ?
ro. On a map which is drawn on the scale of half an inch to the mile, 2 cities are 30 cm . apart. How many Km . are they really apart? How many miles?
71. When milk sells for 8 cents a quart, what is a Kl. of it worth?
72. If a pound of butter is worth 5 qts. of milk, how many liters of milk should a Kg . of butter be worth?
75. If a sq. rod of land is worth a stere of wood, how many Ha. of the same land are worth 500 cords of the same wood?
74. A cistern is 6 m . $\times 54 \mathrm{dm} . \times 4.5 \mathrm{~m}$. Determine
(a) how many liters of water it will contain.
(b) what they will weigh in tons.
(c) how many gallons it will contain.
(d) how many bushels it will contain.
(e) how many steres of wood can be piled into it.
(f) how many ares in the sum of all its faces.
(g) how many rods in the sum of all its edges.
349. The specific gravity of a body is the ratio between the weight of the body and the weight of an equal bulk of water.

Since a kilogram is the weight of a liter, or cubic decimeter, of water, the metric system affords peculiar advantages in dealing with problems relating to specific gravity.

Ex. A bar of iron 5 dm . long, 4 cm . wide, and 10 mm . thick, has a specific gravity of 7.8. Find its weight in kilograms and pounds.
W $4 \mathrm{~cm}=0.4 \mathrm{dm}, 10 \mathrm{~mm} .=0.1 \mathrm{dm}$.
Volume of bar $=5 \times 0.4 \times 0.1 \mathrm{cu} . \mathrm{dm}$.
$=0.2 \mathrm{cu} . \mathrm{dm}$.
Weight of an equal volume of water $=0.2 \mathrm{Kg}$.
$\left.\begin{array}{rl}\text { " " the bar of iron } & =0.2 \mathrm{Kg} . \times 7.8=1.56 \mathrm{Kg} . \\ & =1.56 \mathrm{lb}, \times 2.2046=3.439 \mathrm{lb} .\end{array}\right\}$ Result.

1. A block of stone contains $50 \mathrm{cu} . \mathrm{dm}$. What is its weight (sp. gr. 6.6)? Answer in Kg . and in lbs.
2. An irregular stone (sp.gr. 6.5) weighs 11.7 Kg . How many cu. m. in its volume? How many cu. ft.?
3. The sp. gr. of lead is 11.3 ; how many tons of lead in a bar $4 \mathrm{~m} \times 3 \mathrm{~m} . \times 2 \mathrm{~m}$.?
4. How many eu. ft. in the wood of a brush-heap (sp. gr. $0.7)$, which weighs 27.3 Kg . ?
5. What is the weight of a granite shaft (sp. gr. 3.2) 8 m .
$\times 75 \mathrm{dm} . \times 620 \mathrm{~cm}$.? (Answer in metric tons.)
6. A bar of iron (sp. gr. 7.8) is $12 \mathrm{ft} .>3 \mathrm{ft} . \times 2 \mathrm{ft}$. Find its weight in Kg .
7. A coil of gold wire (sp. gr. 19.3) weighs a ton. How many cu. dm. in the coil? How many cu. in. ?
8. A sheet of zinc weighs 300 Kg . (sp. gr. 7). How many cu. dm . in the zinc?
9. A bar of steel 35 m . long and 2.6 sq . dm . on the end, weighs how many pounds? (Sp. gr. 7.8.)
10. If a bar of metal containing $86 \mathrm{cu} . \mathrm{dm}$. weighs 1267.64 lbs., what is its sp. gr.?
11. If a cubic meter of copper weighs 19580 lbs., find its sp. gr.
12. If a cubic meter of cork weighs 660 lbs ., find its sp . gr
13. A tank $8 \mathrm{~m} . \times 6 \mathrm{~m} . \times 45 \mathrm{dm}$. contains 178.2 tons of oil. What is the sp. gr. of the oil?
14. A cubie yard of a certain substance weighs as much as a cubic meter of water. What is its sp. gr. ?
15. A liter of a certain liquid weighs as much as a gallon of water. Find its sp. gr.
16. A cubic foot of ice weighs 27.84 Kg . Find its sp.gr.
17. What is the sp. gr. of silver, when $12 \mathrm{cu} . \mathrm{dm}$. of silver weigh 277.2 lbs. ?
18. What is the sp. gr. of air when the air in a room 7.2 m . $\times 6.5 \mathrm{~m} . \times 35 \mathrm{dm}$. weighs 212.94 Kg . ?
19. State carefully and correctly a rule for each case:
(a) given volume and sp. gr., to find weight.
(b) given volume and weight, to find sp. gr.
(c) given weight and sp. gr., to find volume.
20. A vessel when empty weighs 2.5 Kg , and when full of mercury (sp. gr. 13.5) it weighs 121502.5 Kg . Find the capacity of the vessel.
21. An empty vessel weighs 3.3 lbs ., and when full of milk weighs 22.1078 lbs. How many liters will the vessel contain? (Sp. gr. milk 1.03.)
22. A vessel holding a Dl. weighs when empty 2.4 Kg ., and when full of oil 22 lbs. Find sp. gr. of the oil.
23. Find the weight in grams of a pint of sulphuric acid (sp. gr. =1.8.)
24. If a bar of copper (sp. gr. 8.9) is $1.2 \mathrm{~m} . \times 0.4 \mathrm{~cm} . \times 0.6$ mm ., find its weight in ounces. In grams.
25. If a bar is $3 \mathrm{dm} . \times 6.4 \mathrm{~cm} . \times 55 \mathrm{~mm}$., how many coins, each weighing 4.5 grams, can be made from it ($\mathrm{sp} . \mathrm{gr}$. $=12.3$) ? 26. If sulphuric acid has a sp. gr. of 1.84 , how many liters are there in 14 Kg of the acid?
26. A tank $2.5 \mathrm{~m} . \times 12.6 \mathrm{dm} . \times 75 \mathrm{~cm}$, is $\frac{2}{3}$ full of tar (sp. gr. 2.5). Find in pounds the weight of the tar.
27. A glass inkstand, in the form of a cube, 8 cm . on each edge, contains a dl. of ink. If glass is 3 times as heavy as water, what ought the empty inkstand weigh? (Ans. in Kg.)
28. A box $3.8 \mathrm{~m} . \times 3.5 \mathrm{~m}$. $\times 50 \mathrm{~cm}$. contains a liquid 0.92 times as heavy as water. Find the weight of the liquid when the box is $\frac{3}{4}$ full. Find the total weight if the other part be filled with water.
so. If 100 cu . in. of air weigh 31 g ., find the sp . gr . of air. Find also the weight in Kg . of a cubic meter of air.
S1. A Kg. of gold (sp. gr. 19.36) is beaten into sheets 0.01 mm . thick. How many ares will it cover?
39 . If sea-water is 2.8% salt, and has a sp. gr. of 1.025 , how many Kg . of salt can be obtained from $1000 \mathrm{cu} . \mathrm{m}$. of sea-water?

METRIC SYSTEM.

33. A reetangular block of an alloy is $3.4 \mathrm{~m} . \times 16 \mathrm{dm} . \times$ 25 cm . If the sp. gr. of the alloy is 15 , and the block contains 6.12 Kg . of brass, what per cent. of it is brass
34. A rectangular vessel, 10 cm . wide and 3 cm . deep, contains 3 Kg . of sea-water (sp. gr. 1.025). How long is the vessel?
35. A mixture is formed by diluting 11 . of nitric acid with 21 . of water. If the sp. gr. of the acid is 1.5 , what is the weight of the mixture? What $\%$ of this weight is nitric acid? s6. It being given that a cu. in. equals $16.39 \mathrm{cu} . \mathrm{em}$., how many cu. in. of gold (sp.gr. 19.3) weigh 100 Kg . ?
36. A tank containing a certain volume of liquid, which weighs .962 as much as an equal volume of water, is emptied at the rate of 251 . per hour. At the end of 3 hours the tank contains 163.2 Kg . of the liquid. What was the weight in Kg . of the liquid in the tank at first? What was its volume in gallons?
37. What must be the height of a tank whose bottom is 1 $\mathrm{m} .2 \mathrm{dm} .>7 \mathrm{dm}$., and which holds 414.54 Kg . of oil (sp. gr. 1.05)?
38. If 20 cu . cm . of iron weigh as much as $144 \mathrm{cu} . \mathrm{cm}$. of water, what will be the weight in Kg . of an iron cube 21 cm . on each edge? Of a cubic meter of iron?
39. A block of wood is $0.1 \mathrm{~m} . \times 0.15 \mathrm{~m}$. and weighs 3 Kg .

CHAPTER XXI.

ARITHMETICAL HISTORY.

HISTORY OF NUMERATION AND NOTATION.

350. Number Groups.-Arithmetic begins with the making of units into groups, and the dealing with number by some group method. The first grouping of units in almost all savage tribes is done by aid of the fingers, either of one hand or of both hands, or by use of all the fingers and the toes. Hence the first number groups were fives, tens, or twenties.
For instance, one South African tribe uses three persons for numeration purposes, the first to count units on his fingers, the second to count tens, purposes, the fist thdreds.
Five is the primary number group among tribes who do not count much beyond twenty, as thme in North Siberia, in New Hebrides, and the Esquimaux; twenty was the primary group among the Phoenicians, Basques, Aztecs, and is so among most of the tribes of Sonth America, and some of those of North America. Ten is the ussal base among primitive peoples in the rest of the world. However, the Maories of New Zealand nse eleven as a base (thus, for them, the symbols 13 would mean one 11 and 3 units, or 14). The Indo-European races seem to have used twelve as a base to a great ertent, owing probably to the fact that two, three, four, and six will all Tide it eractly. Twelve is in fact the best practical base, but ten is now oo well established to make posible a peneral change to twelve.
The ancient Babylonians used sixty as a base, for a reason which will be DIRECCION GENERAL given later.
351. Number Words.-Owing to the difficulty which savage peoples have in forming and using abstract language the groups formed by them by the aid of their fingers and

METRIC SYSTEM.

33. A reetangular block of an alloy is $3.4 \mathrm{~m} . \times 16 \mathrm{dm} . \times$ 25 cm . If the sp. gr. of the alloy is 15 , and the block contains 6.12 Kg . of brass, what per cent. of it is brass
34. A rectangular vessel, 10 cm . wide and 3 cm . deep, contains 3 Kg . of sea-water (sp. gr. 1.025). How long is the vessel?
35. A mixture is formed by diluting 11 . of nitric acid with 21 . of water. If the sp. gr. of the acid is 1.5 , what is the weight of the mixture? What $\%$ of this weight is nitric acid? s6. It being given that a cu. in. equals $16.39 \mathrm{cu} . \mathrm{em}$., how many cu. in. of gold (sp.gr. 19.3) weigh 100 Kg . ?
36. A tank containing a certain volume of liquid, which weighs .962 as much as an equal volume of water, is emptied at the rate of 251 . per hour. At the end of 3 hours the tank contains 163.2 Kg . of the liquid. What was the weight in Kg . of the liquid in the tank at first? What was its volume in gallons?
37. What must be the height of a tank whose bottom is 1 $\mathrm{m} .2 \mathrm{dm} .>7 \mathrm{dm}$., and which holds 414.54 Kg . of oil (sp. gr. 1.05)?
38. If 20 cu . cm . of iron weigh as much as $144 \mathrm{cu} . \mathrm{cm}$. of water, what will be the weight in Kg . of an iron cube 21 cm . on each edge? Of a cubic meter of iron?
39. A block of wood is $0.1 \mathrm{~m} . \times 0.15 \mathrm{~m}$. and weighs 3 Kg .

CHAPTER XXI.

ARITHMETICAL HISTORY.

HISTORY OF NUMERATION AND NOTATION.

350. Number Groups.-Arithmetic begins with the making of units into groups, and the dealing with number by some group method. The first grouping of units in almost all savage tribes is done by aid of the fingers, either of one hand or of both hands, or by use of all the fingers and the toes. Hence the first number groups were fives, tens, or twenties.
For instance, one South African tribe uses three persons for numeration purposes, the first to count units on his fingers, the second to count tens, purposes, the fist thdreds.
Five is the primary number group among tribes who do not count much beyond twenty, as thme in North Siberia, in New Hebrides, and the Esquimaux; twenty was the primary group among the Phoenicians, Basques, Aztecs, and is so among most of the tribes of Sonth America, and some of those of North America. Ten is the ussal base among primitive peoples in the rest of the world. However, the Maories of New Zealand nse eleven as a base (thus, for them, the symbols 13 would mean one 11 and 3 units, or 14). The Indo-European races seem to have used twelve as a base to a great ertent, owing probably to the fact that two, three, four, and six will all Tide it eractly. Twelve is in fact the best practical base, but ten is now oo well established to make posible a peneral change to twelve.
The ancient Babylonians used sixty as a base, for a reason which will be DIRECCION GENERAL given later.
351. Number Words.-Owing to the difficulty which savage peoples have in forming and using abstract language the groups formed by them by the aid of their fingers and
toes. For language purposes they seem at first to use smaller groups of units.

Not a few tribes have no number words beyond two ; they count "one, two, many," Others have a binary system, in that for four they use "two-two"; for six, "two-two-two," etc.

The Campos of Peri count to three; for four, they say "one and three"; for five, "two and three."

If a tribe has a number word for four, it is almost sure to go one step further and have a word for five, and thus reach a quinary system. Five is often expressed by the word for hand; six as "hand one"; seven as "hand two," etc.; ten as "both hands"; twelve as "two on the foot"; twenty as "the whole man"; sixty as "three men," etc.

The number words "one, two, three," etce, no doubt originally had similar concrete meanings, but these were early lost, as it was an advantage, when number words were much used, to have purely abstract terms for them.
As civilization developed, primitive systems of numeration survived along with later systems, and mixed systems resulted. Thas in our use of "pair, brace, couple," the binary system survives along with our decimal "pair, brace, couple," the binary system survives along sie also the French system. In our use of score (as in thiree score and ten, se
352. Number Symbols.-The first number symbols were fingers held up, or pebbles laid aside, or scratches made on some object, as wood or stone.
The/Greeks, by using the separate joints of the fingers, could indicate numbers up to 10,000 on the hands. Proceeding from the little finger of the left hand throogh to the little finger of the right hand, the joints of the first three fingers denoted units; those of the next two fingers denoted tens; of the next two, hundreds; and of the last three, thousands. The Chinese to-day, by using the two sides and the front of each finger-joint as symbols, today, by using the two sides and the front of each inger-joint as symbols,

The following are illustrations of early written symbols used for numbers:

HISTORY OF NUMERATION AND NOTATION. 347

	1	2	4	5	10	100	
Assyrian	γ	YY	rv		$<$	V	
Early Beyptian	1	I\\|			ก	©	
Hieratic Egyptian	\|	11	-	4	\wedge	,	
Early Greek	I	II		II	Δ	H	
Late Greek	α	β	δ	ε	ι	ρ	

Number symbols are combined in these early systems in additive or multiplicative ways (thus, $\mathbf{Y} \mathbf{Y}$ for "two" is an example of the additive use of the symbol for one; \mathbf{Y} of the multiplicative use of symbols).

The Romans also use a subtractive principle in combining symbols, as in IV., IX., etc.

The positional (or exponential) system of written symbols was used to some extent by the Babylonians, but was rediscovered by the Hindoos, and the zero symbol invented, about 400 A . D. The figures $1,2,3,4$, etc., were originally the initial letters of the Hindoo words for the corresponding numeral adjectives, but the form of some of them has been much changed. Thus the symbol for 7 has had the following forms:

$$
\mathbb{N}
$$

The Semitic peoples write from right to left, the Chinese from top to botm, the Aryan peoples from left to right. Similarly, in writing numbers, each of these peoples as a rule follows its own order, putting the symbols for the largest groups first.
353. Higher Number Words. The Hindoos used a separate name for each order of units; thus, they read 52965378196 as " 5 kharva, 2 padwa, 9 vyarbada," etc. This system re quired the use of an unnecessarily large set of number words. In modern times, the Italians grouped the digits into periods, sometimes of six, sometimes of three figures. The number given above would at one time have been read by them thus, " 52 thousand thousand thousand, 965 thousand thousand, 378 thousand, 196."

The word million was invented by the Italians in the fourteenth century, and words billion, trillion, etc., by the French about the year 1500 .
At that time figures were generally separated into periods of six figures each, hence, billion meant one million million, trillion meant one million bilion, etc. These words continue to have these values in England, Germany, and the north of Earope generaily. About the year 1750 it became the costom in Frauce to divide figures into periods of three figures each hence billion came to mean one thousand million, trillion one thousand billion, etc., which is the meaning now assigned to these words in the United States, France, and the south of Europe generally.

HISTORY OF ARITHMETICAL OPERATIONS.
354. Finger Reckoning. -The ancient Greeks, for example, had methods of performing addition, subtraction, etc., by a finger symbolism. The precise methods employed are not now understood, but there is a possibility that they may yet be worked out by a study of Greek monuments and literature. Finger reekoning was also mueh used in the Middle Ages in the monastic work of calculating the date of Easter, etc.
355. Abacus. - The method of counting by tens early led to the invention of the abacus.

This instrument had many different forms among different peoples, as the Egyptins, Chinese, Greeks, and Romans. The typical form is a rectangular frame containing paraltel wires, on each of which are 9 buttons or counters. The counters on the wire to the extreme right (or left) represent units; those on the next wire represent tens, etc.
Let the teacher show the class an abacus, and how addition and subtraction are performed on it. Multiplication is performed by successive additions, and division by successive subtractions. Thus, to multiply 37 by 64 , $37 \times 64=(30+7)(60+4)=30 \times 60+30 \times 4+7 \times 60+7 \times 4$ Frequently a flat board covered with dust was used as an abacos. Lanes or columns were marked out in the dust, and in these pebbles were nsed as counters. Sometimes grooves were cut in a metallic plate, and movable buttons used in the grooves. Abacus reckoning was modified into reckoning with marks on horizontal lines, called counters. This was used in

England as late as the seventeenth century, and Shakespeare makes allusions to it. *
Addition and subtraction, and even multiplication can be performed rapidly with the abacus, but its use has the serious disadvantage that no record is kept of the steps of the work.
356. Addition and Subtraction.-The Hindoos performed their arithmetical work upon a small board, on which they made large marks by a cane or brush. To save space, they erased a figure as soon as it had done its service. Hence, their methods of operation differed in some respects from those employed at present. The Hindoos usually performed addition and subtraction from left to right, and set the result above the numbers added or subtracted instead 634, Sum. of below. Thus, to add 376 and 258 , they would376 arrange the work as at the right, and say " 3 and 258
$2=5$, set down 5 above $3 ; 7$ and $5=12$, erase 5 and put 6 in its place, set down $2 ; 8$ and $6=14$, erase 2 and put 3 in its place, and set down 4 above 6."

The Arabs followed the same methods, except that they crossed out figures and wrote others above them, instead of erasing them. 653 , they proceeded in the manner indicated at the right.
The present method of subtracting from right to left and setting results below came into use in Europe after the year 1200 A. D.
35\%. Multiplication was performed by the Hindoos in several different ways, of which the following two are the most representative. Ex. Multiply 157 by 62. The multiplier is written below and the product above the multiplicand. Thus, $6 \times 1=6$, set down 6 above $1 ; 6 \times 5=30$, erase 6 and put 9 in its place; set down 0 above $5 ; 6 \times 7=42$, etc.
*Othello, act I, scene 1, line 31, "counter-caster" Cymb, V 4,107 As You Like It, II, 7,63 ,

The Hindoos erased figures so that the result of their work would appear thus:
The Arahs crossed out figures, leaving the work as given above.
The Hindoos also used
a diagonal method of multiplication. Themultiplication of 157 by 62 by this method is here given:
The method of multiplication commonly used
at present is found in Pacioli (1494 A. D.), but it had been occasionally used long before.

A kind of multiplication called complementary multiplication, or sluggard's rule, was mueh used in the Middle Ages. In working with it the multiplication table was notneeded beyond 5×5, but the method was tedions in operation. The principle on which it was based is as follows; If a and b represent digits, then.

$$
\begin{gathered}
a \times b=(10-a)(10-b)+10(a+b-10) \\
\text { For example } 7 \times 6-3 \times 4+10(13-10)=12+30=42 .
\end{gathered}
$$

358. Division. - In all ancient mathematics we find no idea of a quotient. Division is performed by successive subtractions. After the Hindoos devised our present system of notation, they performed division by writing the divisor below the dividend, and setting down and erasing remainders above.

Ex. Divide 8479 by 36 .
36 is contained in 84 twice; $2 \times 3=6,6$ from 8 leaves 2 , hich set down above $8 ; 2 \times 6=12$, erase 2 and set down 1 above it, 2 from 4 leaves 2 , which set down above 4 , etc.

The quotient is 235 , with remainder 19 . As the Hindoos erased fogures instead of scrat
he result of their work would appear as follows:

8479235
This "scratch" or "galley" method continued to be the favorite method of division in Europe till about the year 1700.

Our present method is given by Pacioli (1494), and is called by him the method "giving" (i.e., bringing down one more figure after each subtraction), but.he prefers the other method.
359. Factors. Primes.-The Greeks classified numbers in a great variety of ways; for example, as triangular, perfect, defeetive, excessive, etc
The distinction of odd and even is due to Pythogoras (550 B. C.). Euclid discusses the properties of prime numbers (300 B. c.). Eratosthenes (200 в. c.) invented the method of determining primes, called the "sieve."
The Hindoos discovered the short way of determining whether a number is divisible by 3 or 9 . They used this property of numbers in a method of verifying operations, called "casting out the nines," which is still used to some extent.
360. Fractions presented great difficulties to early peoples. An early Egyptian MS. (dating 1500 B. C.) shows that the Egyptians used only those fractions which have unity for a numerator.
This MS. gives tables by whick other fractions can be reduced to these unit fractions. Thus, ${ }_{3}^{2}=\frac{3}{3}+\frac{1}{2}$. Fractions were written by writing only the denominator with a dot or special mark over it. By this method, even the addition of fractions was extremely complex.
The Babylonians used only those fractions which have 60 for a denominator (called sexagesimal fractions). 1
These fractions were expressed by writing the numerator a little to ther right of its ordinary position, and omitting the denominator. The use of sexagesimal fractions survives in our present system of dividing a degree into 60 minutes, etc.
The Greeks used both the unit fractions of the Egyptians, and fractions of any numerator or denominator.
They indicated unit fractions by writing only the denominator with an accent, thus, pub means nlf. If the numerator was not unity, they wrote
it with an accent, and the denominator twice, with a double accent. Thus, is' $\mathrm{k} \gamma^{\prime \prime} \kappa \gamma^{\prime \prime}$ means $\frac{14}{2}$.

The Romans used only those fractions which have 12 for a denominator (called duodecimal fractions), and a few others derived from them, as $\frac{1}{24}, \frac{1}{48}, \frac{1}{72}, \frac{1}{144}, \frac{1}{288}$.
The addition and subtraetion of such fractions present no difficulty, but multiplication and division are extremely complex.

The Hindoos used fractions in general, writing the numerator above the denominator, with no line between. Thus, $\frac{2}{3}$ means $\frac{2}{3}$, and $\frac{8}{3}$ means $5 \frac{2}{3}$.

Methods of obtaining the L. C. D. of fractions are given by Tartaglia (1556 A. D.).

The method of dividing by a fraction by inverting the divisor and multiplying, is given by Stifel (1544).
361. Decimal Fractions,-Several close approaches were made to decimal fractions before they were finally invented. Thus, in the Middle Ages, the square root of 3 was extracted by anneting six zeroes to the 3 , extracting the square root of 3000000 , and writing the last three figures of the root over
 converted into sexagesimal fractions.

Rudolff (1525) divided a number by 1000 by marking off the last three figures with a comma.

Stevinus (Belgium, 1548-1620) was the inventor of decimal fractions. As he had no decimal point, however, his notation was clumsy. Thus he expressed 3.912 either as 3912 , or $3_{(0)} 9_{(1)} 1_{(2)} 2_{(3)}$, and read it " 3 and 9 primes 1 sekonde 2 terzes." ete.
Later 3.912 was written 3.912
The decimal point was first used by Pitisens (Germany, 1612).
Decimal fractions at first were used in a very limited way, as in the calculation of interest. They did not come into general use till after the adoption of the metric system (1799).

HISTORY OF COMPOUND QUANTITIES.

362. The earliest units of length were taken from convenient parts of the human body, as the digit (a finger breadth), palm, span, foot, cubit, ell, the futhom (the extended arms). These units were convenient, being always at hand, but were not uniform enough when transactions were required to be exact. Later, the length of some natural object, as a grain of barley, became the unit of length. Finally, the length of some piece of metal, kept in the government archives, was used as a standard.

In very early times (in Egypt, Assyria, Canaan) two principal units of length, the digit and the cubit, were used.

The foot first came into general use in Greece and Rome, and from Rome it spread all over Europe. The Romans divided the foot into 12 "unciae" or inches.

In the year 1324, English Iav first defined the length of 3 barley-corns as equal to 1 inch, 12 inches $=1$ foot, etc.
363. Of units of weight, the pound or libra originated in Rome, and from Rome was handed down to the various European peoples.

The Romans divided the libra into 12 unciae or ounces (thus the words ounce and inch each mean one-twelfth). The Greeks at times also divided the pound into 16 parts.

In the Middle Ages it became customary for merchants to make their profits in many cases, not merely by buying goods at one price and selling them at another, but by buying goods/according to one kind of a pound (or other measure) and selling them by another, just as coal is now often bought by the long ton and sold by the short ton. In this way many different kinds of pound (and of other measures) arose, each trade or guild often having its own. Thus, the Troy pound was one used at a famous fair at the city of Troyes in France. Many changes and customs also arose which are now diffierilt to trace.

In the year 1266 English law fixed the weight of 32 barley corns as equal to 1 pennyweight, 20 pennyweights $=1 \mathrm{oz}, 12 \mathrm{oz} .=1 \mathrm{lb}$.
364. Of units of capacity a bushel (diminutive of box) measure vas kept in the town hall at Winchester, the ancient 23

Saxon capital of England. This was the standard bushel in England till the year 1826, when the Imperial bushel of 2218.192 cu . in. was adopted by law. The Winchester bushel, however, continues to be standard in the United States.
365. Of units of value the libra, or pound of silver, was used in the Roman empire. From it are derived the pound of Great Britain, the liore of France, the lira of Italy, etc.

These were all originally of the same value, about $\$ 15$, but the currency of each country was debased by the government at different times, till in England the unit now has but $\frac{1}{3}$ its original value, in France, $\frac{2}{3}$, etc. Sterling mems easterling, referring to the coinage of the Hanseatic League, to the east of Great Britain.
366. In units of time, the Babylonians divided the day into 24 hours, the hour into 60 minutes, and the minute into 60 seconds. The month is determined approximately by the time it takes the moon to go round the earth, $29 \frac{1}{2}$ days.

The Babylonians divided the circle into 360 degrees for convenience in astronomical work, since 360 in a close approximation to the number of days in the year, and then divided the circumference into 6 equal parts of 60 degrees each, because they knew that a radius applied as a chord 6 times exactly completes a circumference. Hence, probably arose the whole system of sexagesimal notation.
367. The metric system was adopted in France in 1799. The theory of the system is that the meter is 1000000 of a quadrant of the earth's circumference through Paris, though owing to an error in the calculation it is actually a very small fraction less. Hence, the meter as used must be taken as the distance between two marks on a bar of platinum kept in Paris.

The liter, gram, and other units are derived from the meter in the manner described in Chapter XX.

The metric system has been adopted in all countries of the civilized world except Great Britain and the United States. It is used in such countries as Mexico, Hayti, Congo Free State, etc.

HISTORY OF OTHER TOPIOS AND PROCESSES.

368. Percentage and Interest were used among the Romans, but these took their modern form among the Italians (especially at Florence, where bookkeeping by double entry was also invented).

Many mistakes in computing discount were made, and the method of true discount was not established till about the year 1700 .

Equation or Payments is treated by Tartaglia (1556)
Exchange was developed to its present form among the Dutch.
369. Proportion, or the Rule of Three, till early in the nineteenth century, was used to include almost all the operafions of arithmetic except the fundamental ones, and that in a very mechanical and superficial way. At one time eleven different kinds of proportion were used. During the nineteenth century an intelligent method of analysis has gradually taken the place of the mechanical "Rule of Three."

Partnership problems occur in Ahmes' treatise (Egypt, 1500 в. с.).
370. Involution and Evolution were performed by the Hindoos much as at present.

For other details of the history of arithmetic, the student is referred to Cajori's History of Elementary Mathematies, and to Fink's Brief History of Mathematics (translated by Beman nd Smith).

EXERCISE 172.

A MISCELLANEOUS EXERCISE.

2. Find, to 3 decimal places, the number of gallons in a bushel.
3. Divide tweive per cent. of four hundred sixty by two-thirds of seven nd two-tenths.
s. Reduce 2.4637 years to lower denominations
4. What is the value of:
$37 \times+2+86-(738-528 \div 4)+19 \times 17-1300$.
5. Change sacre to lower denominations,
6. Compute: .01 of $\frac{3}{4} \times 200 \times .08 \frac{7}{5} \div .035$.
7. Subtract the sum of $9 \frac{3}{5}, 8 \frac{7}{5}, 4 \frac{9}{16}$ from the sum of $7 \frac{5}{12}, 8_{10}^{3}, 10_{16}^{16}$.
8. Reduce 75 rd .3 yd. 1 ft .5 in . to inches.
9. Find 25 S6 of $\$ 295$.
10. Compute the interest of $\$ 270$ at 4% for 3 yr. 15 days.
11. What will 3 f acres of land cost, if $7 \frac{1}{5}$ acres cost $\$ 655 \frac{1}{2}$?
12. Find the loss per cent. when a horse which sold for $\$ 225$ cost $\$ 325$
13. Find the H. C. F. and L. C. M. of $473,516,559$.
14. At $\frac{7}{6}$ dollar each, how many books can be purchased with $\$ 17 \frac{1}{2}$?
15. If a man cau mow a lawn in 6 days and his boy can do it in 9 days, hos many days will they both require to do it, working together?
16. Change the following fractions to other equivalent fractions having 72 for their denominator
17. If 9 be added to both terms of the fraction $\frac{13}{3}$, will the value of the fraction be increased or diminished?
18. If the divisor is $\frac{3}{4}$, the quotient $\frac{3}{3}$, and the remainner $\frac{1}{3}$, what was the dividend?
19. How many bushels of corn at $\$ 3$ a bnshel will pay for $\frac{4}{5}$ barrel of flour at $\$ 6 \frac{1}{3}$ a barrel?
20. A carpenter worked $23 \frac{1}{2}$ days and paid $\frac{3}{7}$ of his earnings for board and other expenses. If he saved $\$ 531$ in this time, what was his daily wage?
21. A and B can spade a garden in 5 days, but B alone could do it in 7 days. How long would A regmire?
22. Reduce 5 wk .3 da .11 lir .16 min . to minutes.
\%s. Find the actual gain if a selling
23. Add 84, 105, $12 \frac{2}{3}, 5 \frac{19}{2}, 9 \frac{12}{2}, 17 \frac{6}{6}$.
24. Simplify $\left(2 \frac{3}{3} \times 11 \frac{3}{4}\right) \div\left(\frac{2}{3}\right.$ of $\left.18 \frac{3}{5} \times 14\right)$.
25. Find the least whole number that is exactly divisible by $4 \frac{3}{3}, 3 \frac{1}{2}, 4 \frac{2}{3}$.
26. A certain ore contains 81% of metal. How much metal will be obtained from 75 tons of ore?
27. A man lost 10% in selling a carriage for $\$ 234$. What should he have sold it for to gain 10% ?
28. What is the difference between the $\sqrt{10.01}$ and the $\sqrt{10.01}$ expressed in 3 decimal places?
29. Reduce 5.1735 mi , to lower denominations.
s1. If $\frac{14}{12}$ of one line is $\frac{14}{5}$ of another, which line is the greater?
30. After I sold 8 of my apple crop to one man and $\frac{3}{4}$ of the remainder to another there were 186 barrels left. How many barrels were there in the crop?
31. If a man can repair $\frac{5}{8}$ of a bridge in 10 days and his brother can repair ${ }_{3}$ of it in 6 days, how long would it require them both to repair the entire bridge, working together?

34 . If the circumference of a wheel is 3 yd. 11 in ., how many revolutions will it make in going a mile?
35. A man spent $\frac{1}{3}, \frac{1}{4}, \frac{2}{3}$ of his money and had $\$ 2613$ left. How many dollars did he spend altogether?
86. Of the earth's surface 39.871% lies in the Torrid Zone, and $25.91 \frac{1}{2} \%$ lies in the Temperate Zones. What part lies in each Frigid Zone?
37. A tank's inside dimensions are 3 ft .4 in . by 2 ft .6 in , by 1 ft .10 in . How many gallons of water will it contain?
38. How many bushels of grain will it hold?
39. Reduce 8 mi .5 yd .4 in . to inches.
40. Find the interest of $\$ 916.50$ for 4 yr. 6 mo .24 da at 4%.
41. Write a list of the prime numbers between 200 and 300 .

4e. A merchant marks goods 20% above cost and sells them $12 \frac{1}{2} \%$ below marking price. What is his per cent, of gain?
45 . Two cities have longitude $90^{\circ} 15^{\prime} 16^{\prime \prime} \mathrm{W}$. and $30^{\circ} 20^{\prime} 14^{\prime \prime} \mathrm{E}$. respectively. What is their difference in time? 44. If a man buys stock at 40% discount and every three months receives a dividend of 2% on the par value of the stock, what annual rate of interest does he receive on his investment? 45 . What sum of money put at interest for 7 yr .6 mo . 12 da at 31% will gain $\$ 1392.16$ interest?
46. The expenses of a town for a year are $\$ 7324$ and the balance in treasury is $\$ 696$. There are 6862 polls to be assessed at $\$ 0.25$ each, and taxable property amounting to $\$ 1965000$. Besides the town tax there is a county tax of 14 mills and a state tax of mill on every dollar of taxable property. Mr. A. pays for 2 polls and has property worth $\$ 28970$. Find his total tax.
47. How many rails will be required to fence a field 5456 yd . long and 40513 yd . wide, provided the fences are all straight, all 6 rails high, and the rails of equal length, and the longest that can be used without cutting any?
48. What is the smallest sum of money with which I can purchase either chairs at $\$ 8$ each, or desks at $\$ 24$, or tables at $\$ 52$, or couches at $\$ 72$?
49. A farmer planted $\frac{8}{}$ acre on Monday, $\%$ acre on Tuesday, z acre on Wednesday, 1 acre on Thusday, ${ }^{15}$ acre on Friday, and the rest of his 2-acre lot on Satarday. Find on which day he planted the most ground and on which day the least.
50. A owned $\frac{5}{7}$ of a store and sold $\frac{2}{3}$ of his share to B, who sold $\frac{2}{5}$ of what he bought to C. C, in turn, sold $\hat{\phi}$ of his purchase to D. What part of the entire store dia each then own?
51. If I paid $\$ 40$ ani acre for some land, how much must I ask for it, that I may abate 25% from my asking price and still gain 30% on the cost?

53. The front wheel of a wagon was 11 f . in circumference and the rea wheel was 13 ff . A screw in the tire of each was uppermost when the wagon started, and when it stopped the same screws were uppermost again for the 633 d time. How many miles had the vehicle traveled?
54. A real estate agent sold $5 \frac{5}{5}$ acres at $\$ 138 \frac{3}{j}$ each; $12 \frac{5}{6}$ acres at $\$ 1188$ each ; and 201 L acres at $\$ 123.60$ each. Find the number of acres sold, the aggregate price, and the average price per acre.
55. If I buy a lot and it increases in value each year at the rate of 50% over the value of the previous year for 5 years and then is worth $\$ 9000$, how much did it cost?
56. What is the value of

$$
\left\{6+\times\left(\frac{2}{5}\right)^{2}+\frac{2}{3} \text { of } \frac{3}{7}\right\} \div\left\{18 \frac{1}{5}-14 \frac{1}{2}+\frac{2}{2} \div\left(\frac{5}{5}\right)^{2} \times \frac{7}{3}\right\} ?
$$

57. A farmer having a triangular piece of land, the sides of which are $481 \mathrm{f}, 1144 \mathrm{ft}$, and 1469 ft , wishes to enclose it with a fence having panels of the greatest possible uniform length. What will be the leugth of each panel?
58. What number is that from which if $11 \frac{2}{3}$ be subtracted, $\frac{7}{5}$ of the remainder is 1104?
59. A woman at her death left her son $\$ 11640$, which was $\frac{3}{2}$ of $\frac{3}{4}$ of her wealth. He at his death left fof his portion to his daughter. What part of her grandmother's estate did the daughter receive? (Compute this fractional part two distinet ways.)
60. An agent wishing to sell a house and lot asked 40% more than it cost. But he finally sold it for 20% less than his asking price, thereby
gaining \$4896. How much did the house and lot cost? What was his asking price? What was the selling price?
61. Reduce 3 lb .8 oz. 19 pwt .6 gr . to grains.
62. Which is the greater, $V 50$ or $\sqrt[v]{346}$?

6S. Divide 38 mi .100 rd .5 yd .2 ft by 6.
64. A man bought wood for $\$ 287 \%$ and coal for $\$ 384 \%$ and oil for $\$ 766^{5}$. . He sold the wood for $\$ 327 \frac{1}{5}$ and the coal for $\$ 375 \frac{1}{5}$ and the oil for $\$ 88$? How much did he gain ou all?
65. A merchant bought 3 hhd. of molasses, each containing 63 gal., at 40% a gal. and paid $\$ 6.75$ for freight and cartage. Allowing 4% for waste and 5% of sales for bad debts and 2% of the remainder for collecting, what must he charge per gallon in order to make 27% on the entire cost?
66. Find the G. C. D. of $2538,4089,4324$.

67 . If cloth $1 \frac{1}{2} \mathrm{yd}$. wide require $8 \frac{2}{3} \mathrm{yd}$. in length for a suit of clothes, how many yd . in length will cloth $\frac{3}{3}$ yd. wide require for same suit?
68. Reduce 207958 in. to higher denominations.
69. Collect : $\quad \frac{0.7 \text { of } 4.5 \times 6.8}{017 \text { of } 4.2 \times 9}+\frac{3.9 \times 5.7 \times 1.6}{0.64}$.
20. Of a certain ore 6% is iron and 45% is rock, the rest being conglomerate. In a car of ore weighing 20 tons, how much is iron and how much rock ?
71. Compute the compound interest on $\$ 2560$ for 3 yr .5 mo .10 da . at 3%. 72. Find the G. C. D. of $2680,1541,2211$.
78. A man owning 80% of a store sold $\frac{3}{3}$ of his share for $\$ 6781 \frac{5}{5}$; what was the value of the entire store at same rate?
${ }_{74}$ Change 16 wk .5 da. 9 hr .40 min .20 see to seconds.
75. A square field contains 3 acres. Find the length of each side in
76. What is the edge of a cubical box that will just contain a bushel ? Of another that will exactly contain a gallon?
77 . If $\frac{5}{8} \mathrm{lb}$. of sugar be worth $\ddagger \mathrm{lb}$. of butter, and butter be worth $\$ \mathrm{~s}$ per pound, how many pounds of sugar witl \$75 boy?
\%8. I gained 333% in selling a gray horse, and with the money bought a black horse which I sold for $\$ 120$, losing 20%. On the two horses did I gain or lose? What per cent.?
79. A can do a piece of work in 15 days; A and B together can do it in 10 days; A and Can do it in 6 days. How many days will B and C require, working together?

Exercise 8.
 20.19.
So. 151 30.151
31.377 31. 377.
s2. 4479. s2.
ss.
5479. 34. 72. 35. 78. S6. 134051 37. 167307. 38. 198. 39. 7545.
40. 3882 . 47. 1941.

Exercise 9
20.19.
21.43

$$
\begin{aligned}
& \text { 21. } 43 . \\
& 22.19 .
\end{aligned}
$$

25. 28.	S4. 72.	44.
84. 52.	35. 68.	45.62
8.	45.	

4.
5.
6.
7. 12.

26. 17.

6. 17. 36.3 . 46. 10.

1. 25
2. 45.

41.2.
\square 55. 7191 54. 467
4. 784 lb . 980 lb . 1764 lb.
5. 1095 da 1825 da 2555 da
6. $\$ 2900$, $\$ 4850$, $\$ 5800$.
7. 1792 boys
8. 3512 girls
9. 4296 ft ,
10. 8645 men
11. $\$ 16818$.
12. $\$ 54024$.
1s. $\$ 35834$.
14. 296149 yd.
15. 54078 ft.
16. 117648 in .
17. 13112 min.
18. $248808 \mathrm{rd}$.
19. 8274.
20. 15036.
21. 233945.
22. 472182.
25. 376012.
24. 54537.
25. 36536.
26. 34227.
27. 43225. 28. 121383. 29. 2806032. 30. 2585160. s1. 5259186. 38. 723765442616. ss. $\$ 70$. 34. 94 et. 35. $\$ 500$. 36. $\$ 1575$. s7. $\$ 215$. s8. \$9085.

Exercise 11.

Exercise 14.

$15+$

3. 2667 . $1915 \frac{1}{2}$.
4. 858 .
22. $\begin{aligned} Q_{1} & =17 \\ \text { R. } & =47\end{aligned}$
23. $\begin{aligned} \mathrm{Q} & =8, \\ \mathrm{R} . & =7 .\end{aligned}$ $\mathrm{R}=7$.
$\mathrm{Q}=25$ $\mathrm{Q}=25$
$\mathrm{R} .=71$ $\begin{aligned} & \mathrm{R} .=7 . \\ & 4 . \\ & \mathrm{Q} .=25, \\ & \mathrm{R} .=71 .\end{aligned}$
5. $\mathrm{Q} .=29$, $\mathrm{R} .=113$. 6. $\mathrm{Q} .=32$, $\mathrm{R} .=73$.
$\mathrm{Q} .=24$ R. $=143$.
88. $\mathrm{Q} .=2$,
R. $=96$.
29. Q.
29. $\begin{aligned} \mathrm{Q} . & =21, \\ \mathrm{R} . & =95,\end{aligned}$
$\begin{aligned} \mathrm{R} & =95 . \\ \mathrm{Q} & =18\end{aligned}$
Q. $=18$,
R. $=233$.
31. $\mathrm{Q} .=20$, $\mathrm{R} .=163$.
38. $\mathrm{Q}=16$,
R. $=283$.
33. $\mathrm{Q}=13$, R. $=169$.

Exercise 17.

$18.6460 . \quad 27.8474$
$\quad 19$.

$$
\begin{aligned}
& 6 \text { and } 126 \text {. } \\
& \text { 10. A, } 600 ; \mathrm{B}, 300 \text {; } \\
& \text { C, } 150 ; \mathrm{D}, 50 \text {. } \\
& \text { 11. } 27629 \text { and } 28700
\end{aligned}
$$

9. 11 and 121
10. 7469. 0.
1. 106900 29. 198500 so. 698000 31. 13740000 32. 14400000 . 33. 33180000 . S4. 64070000 . 35. 15650000 .
2. 913. 35. 950 永 9.

1. 3045.	18.
2. 3575.	13.

$\begin{array}{lll}\text { 10. } 9512 . & \text { 21. } 90 \frac{1}{3} . & \text { S2. } 436 \frac{2}{3} .\end{array}$

5. $\$ 8568$.

[^3]\[

$$
\begin{aligned}
\text { 7. } & =3485 \\
\mathrm{R} . & =424 .
\end{aligned}
$$
\]

8. 1005415082 , 10. 42953119.
9. 12.
1. 1763
2. 21.

Exercise 22.

26. $\begin{aligned} \mathrm{Q} & =3, \\ \mathrm{R} . & =24480 .\end{aligned}$
$\begin{aligned} \mathrm{R} . & =24480 . \\ \mathrm{Q} . & =4,\end{aligned}$
$\begin{aligned} \text { 27. } \mathrm{Q} & =4, \\ \mathrm{R} . & =9744\end{aligned}$
8. $\mathrm{Q}=2$,
R. $=199584$
29. $\mathrm{Q}=1$
R. $=42453 \%$

Exercise 23

(18. 8000.
900.
19. 18 yd .

	13. $\$ 900$.	19. 18 yd.
lb.	15. $\$ 216$.	20. 32 bu.
qt.	15. 49 men.	21. 9 firkins.
16. 54 da.	23. 4 rolls.	
	$1 \% .300 \mathrm{ft}$. 23. 45 bales.	

Exercîse 24

| Exercíse 24. | | |
| :--- | :--- | :--- | :--- |
| 11. 12. | 16.32. | 21. 10. |
| 18. 18. | 17.4. | 22.24. |
| 1s. 24. | 18.54. | 23.18. |
| 14.27. | 19.8. | 24.48. |
| 15.30. | 20.14. | |

11. 15.	16. 7.	21. 15.
12. 21.	17. 11.	29. 13.
15. 27.	18. 16.	23. 36.
14.81 .	19. 17.	24. 29.
	20. 8.	25. 37

Exercise 26.

13. 84

1. 24.
1. 45.
1. 50. \quad| \%. 30. |
| :--- |
| 8. 144. |
| 9. 630. |
1. 90.
1. 168.
1. 140 .
2. 360.

140.19 .1680.
$\begin{array}{ll}\text { 14. } & 5040 . \\ \text { 15. } & 3780 . \\ \text { 16. } 2310 . \\ \text { 17. } 4004 .\end{array}$
18. 4620 .
25. 1800. 26. 5040. 27. 4620. 28. 24570. 29. 198450. 30. 39270.

Exercise 27.

$$
\text { 1. 12. ALERE F \%. } 6 \text { and } 6048
$$

17880.11 ft.

10． 4480
11． 1980. 12． 11340 ．

19．L．C．M．$=$ the product
of the two of the tw O．An indefinite number．
21． 20.

13． 3 ft ． 14． 6 yd ． 14． 6 yd ．

15． 60 qt ． 16． 120 ft | 17.11 ft |
| :--- |
| 18. |

Exercise 31.

Exercise 32
1．
18． 533_{15}^{5} ．
18． 533_{15}^{5}
14． $32 \frac{1}{17}$.
14． $32 \frac{1}{2}$.
15． $26 \frac{2}{2} \frac{5}{4}$.
3． $18 \frac{3}{4} \mathrm{in}$ ．
（7．）
9．$\$ 221$
6． 19 g gal． 17． 1418

19． 1035.
20． 183^{2}嚖50．

 18． 2111

22． 2525 ．
28． $751 \frac{5}{25}$ ．

Exercise 34

1．$\frac{9}{12}$ ，$\frac{19}{19}$ ．		
2．$\frac{1}{27}$ ，$\frac{9}{29}$ ．	15．${ }^{\frac{18}{8}}$ ，$\frac{15}{15}$ ， 7^{2} ．	28．$\frac{7}{8}$ ．
8．$\frac{23}{15}, \frac{11}{28}$ ．		29．$\frac{3}{3}$ ．
4．$\frac{3}{12}, \frac{9}{12}$ ．	17．$\frac{45}{5}, \frac{18}{38}, \frac{8}{36}$ ．	30．${ }^{3}$
		31．$\frac{7}{18}$
6．$\frac{85}{80}$ ，8\％．	19． $8^{*} 6, \frac{15}{8}, \frac{8}{3} 3^{3}$.	38．$\frac{7}{12}$ ．
7．$\frac{25}{85}$ ，咅 ${ }^{\text {a }}$	20．$\frac{188}{154,} 1354$,	S8．${ }^{\text {²，}}$
8．$\frac{1585}{58}$ ，$\frac{18}{18 \%}$ ．		S4．$\frac{13}{13}$ and $\frac{19}{24}$ ； 13 and $\frac{18}{55}$ ．
9． 78 ，$\frac{5}{86}$ ．		35．Yes．
10．$\frac{6}{12}, \frac{1}{12}, \frac{3}{12}$ ．	23．$\frac{80}{300}, \frac{36}{300}, \frac{105}{80}$ ．	36．Yes．
11． 3 ，$\frac{2}{6}$ ，$\frac{5}{5}$		37．$\frac{18}{15}$
12．$\frac{18}{2}, \frac{4}{21}, \frac{2}{2 \pi}$		38．Yes ；no ；yes．
13．$\frac{45}{7}, \frac{19}{12}$ ，$\frac{69}{7}$ ．		

29． 2
30．$\frac{2}{3}$ ．
31．$\frac{7}{13}$.

35．Yes．
37．$\frac{18}{5}$ ．
38．Yes ；no ；yes．

Exercise 35.

9． 148.	13． $2 \frac{3}{105}$	
10． 25.	14． 149.	18． $3{ }_{2} \frac{13}{16}$ ．
11．13818．	15． 4_{1210}	19． 4 f ．
12． 2 年．	16． 4143.	20． 4_{185}^{183} ．
Exercise		
8．$\frac{19}{29}$	11．$\frac{1}{3}$ ．	14． $1_{176}{ }^{7}$
9．$\frac{37}{85}$ ．	12．${ }^{181} 16$.	15． 11.
10．$\frac{1}{8}$ ．	13.	16． 217 \％．

Exercise 37

A $\begin{aligned} & \text { 1．} 61 . \\ & \text { 2．} 7 \frac{1}{12} \\ & \text { 3．} 121 . \\ & \text { i．} 812\end{aligned}$
B． 819.
6．12\％
7． 932.

8． 121.
4． $15 \frac{1}{3}$ ．

Exercise 38.

25．$\frac{187}{1987}$ 26． $1 \frac{15 y}{137}$ ．
27． 1939.
28．告亲
29．$\frac{509}{1870}$ SO．듇․

Exercise 39.

1. $\$ 398$.	6. $\$ 1.55 \frac{1}{4}$.	11. $\$ 6330$	16. 70
2. 81151.	7. \$8213.	12. $164 \frac{3}{3} \mathrm{sq} . \mathrm{ft}$.	17. 178.
3. 815 s .	8. $\$ 30$.	13. $2508 \frac{2}{3} \mathrm{sq} . \mathrm{ft}$,	18. ${ }^{5}$
4. $\$ 871$.	9. $8277 \frac{1}{1}$.	14. 1 , $\frac{3}{8}$.	19.3霖 yd .
5. $\$ 360$.	10. $81658 \frac{1}{2}$.	15. \%.	

Exercise 46.

Exercise 51.

84. 650 T .

Exercise 55

\qquad

$$
\begin{array}{ll}
\text { o. } 4 . \\
\text { 1. . } 01 .
\end{array}
$$

$$
\text { 12. . } 1 .
$$

13. 100.2001.	17.	24.	21. $\$ 3906.28$.
14. .09018009.	18.4 .90038.	28. 272.85.	
15. 108.	$19 . .616$.	23. 20.3186.	
16. 484.	$20 . .145485$.	24. $\$ 1236.02$.	

Exercise 56.

21. 1000.	s1. 112.	40. 21,4.
22. 00001.	S2. .00112.	41. 808.08.
23. 500.	38. 0005.	42. 800808.
24. 4.	34. 32.	43. .0164.
25. 800.	35. 81.5.	44.6.
26. 7.	36. 2.51.	45. $.3787+$.
27. 3100.	37. 1012.	46. 1.3808
28. 17700.	38. 205200.	47. $3.3061+$
29. 1000.	39. 43.6.	48. $1327+$.

Exercise 57.

1. 41.5.	9. 4.
2. 4.2.	10. .4.
3. 38.	11. .01.
4. 1.56	19

86. 4905

82401 $\frac{18}{45}$
89. $1003{ }^{25} \mathrm{qt}$. 90. 871 per 91. $\$ 459371$
92. ${ }^{2} 12$.
93. 1254
94. 1_{1}^{2} \%.
96. $\$ 6$.
97. Increased;

In $^{2 \cdot 6}$.
38. Dim'd; $\frac{20}{80}$
99. 1381 !
100. 528 A .
101. $\$ 15 \frac{1}{2}$.
102. 1710 c .

10s. 6 弪荡 da .
105. $6=50$
104. $827+3$.
104. $827+3$.
105. 98 T.
106. Dim'd; $1^{18} 8{ }^{18}$
107. 890 ; 870
108. $265 ; 35$.
109. Last, 7 t d
81. 90 w . balls
82. 625 sheep.
83. 31 mi an hr .
110. 91 da.
85. 90 A 112. $3_{\frac{3}{25}}^{3} \mathrm{hr}$.

- Exercise 54.
$\begin{array}{llll}\text { 1. } \$ 4.14 . & \text { 6. } 221.5119 .11,1.54 . & \text { 16. } 271,395 . & 21.812 .77 .\end{array}$ $\begin{array}{lllll}\text { 1. } \$ 4.14 . & \text { 6. } 221.5118 . & 12.13 . & \text { 17. } 9 . & \text { 23. } 001265 . \\ \text { 2. } \$ 13.446 . & \text { 7. } 9.5243 . & \text { 1. } 296 . & \text { 18. } \\ \text { 3. } 32.77 \mathrm{in} . & \text { 8. } 8293 . & \text { 18. . } 0983 . & \text { 18. } 007 . & \text { 23. } 8128.48,\end{array}$
$\begin{array}{lllll}4.17 .127 . & \text { 9. .17. 14. } 0102 . & \text { 19. } 9.999 . & \text { 24. } 884.94 .\end{array}$
$\begin{array}{lrrr}\text { 5. 47.18. } & 10.18 . & 16.63,662 & 20.1 .989797 . \\ \text { 25. } 399.441 .\end{array}$

7. 373.089 . 8. 74.4964 m 9. 8020.528964 .
8. $\$ 134.98$.
9. $\$ 490.18$.
10. 3150.356

11. 34000 .
14..$~$
000004
12. 20000 . 19. 0009125 16. 20000 . 19. 000912. 18. 100000000 . 21. 17.674 .

() \bigcirc Exercise 60 .
 11.13 eh .
 11. 13 ch

1. $\$ 161.27$.
2. 861.47 . 12. 41 p .
3. $\$ 6.75$.
4. $\$ 18$. 5. 890.22 . LERE 14. 49 p . M 22.823 .33. 4. 890.22 . LCRE 14. $49 \mathrm{sh} \quad$ 28. $\$ 39.60$.
5. \$69.75. 15. 891.35. 16. $\$ 253.19$. 17. $\$ 5.43$ 롱. 18. \$.50. 19. $\$ 372.50$.
6. $\$ 5,85$.
7. $\$ 2.06$. 8. $\$ 3386.1$ 9. 89.91 ?
8. $\$ 2.12 \frac{1}{2}$.
9. 859.50.
10. $\$ 11.88$. 27. $\$ 62.25$. 28. $\$ 51.33$.

Exercise 61.
3. $\$ 10.4$
4. $\$ 9.03$

1. $\$ 8.73$.
2. $\$ 32.96$.
3. $\$ 77.36$.
4. $\$ 622.79$

Exercise 62.
3. Dealer owes 4. \$374.64.
5. \$487.33.

Exercise 64.
 卦

1. 117930 oz .
2. 10080 lb .
3. 193615 oz
4. 10 T. 8 cwt .5 oz
5. 9 T. $70 \mathrm{lb}, 15 \mathrm{oz}$
6. 2317766 oz
7. 19 10 68 oz
8. 19 ewt
9. 64 f .
10. 91790 lb .
11. 3 T. $15 \mathrm{cwt}, 40 \mathrm{lb} .10 \mathrm{oz}$.
12. 7 T. 8 cwt .9 lb .5 oz.
$\quad \begin{aligned} & \text { 6. } 7 \mathrm{~T} .8 \mathrm{cwt}, 9 \mathrm{Ib}, 5 \mathrm{oz} \text {. } \\ & \text { 8. } 6 \text { T. } 12 \mathrm{cwt}, 80 \mathrm{lb} .\end{aligned}$

14. 48 men.

15. 44 b . 16. 9 T. 17 ewt. 95 lb .

Exercise 66

1. 1556 gr
2. 3738 gr .
3. 32889 gr
4. $50,412 \mathrm{gr}$.
5. $46,222 \mathrm{gr}$.
6. 3018 pwt.
7. 2 lb .7 oz .10 pwt .16 gr
8. 10 oz .13 pwt. 5 gr 9. $3 \mathrm{lb}, 11 \mathrm{oz} .14 \mathrm{pwt}$. 10. 5 lb .6 oz .21 gr . 11. 8 ib .16 12. 4 lb .8 oz. 5 pwt. 9 gr .
9. 2 ib. 10 oz .10 pwt.; 11 medals.

Exercise 67

1. 2628 gr .
2. 21490 gr
3. 11855 gr .
4. 2916 gr .
5. 33940 gr .
6. 57792 gr .
7. 10 ₹ 632 - 8 gr . 8. $3 \tilde{3} 4311 \mathrm{gr}$.
8. 1 lb .6 ₹ $1 \bigcirc 5 \mathrm{gr}$. 10. 3 lb .332 乌. 11. $4 \mathrm{lb} .1 \frac{7}{3} 6317 \mathrm{gr}$ 12. 7 lb .2 Э 10 gr

Exercise 69.

.. 128971
2. $12087 \frac{1}{2} \mathrm{ft}$.
s. 19978 ft .
4. 21131 ft .
5. 7306 in .
6. 7306 in .
7. 160586 in .
8. 237620 in .

1. 16741 sq . ft.
2. 102456 sq. ft ,
3. 130903 sq. ft.
4. 130903 sq. ft .
5. 138373 sq .
6. 138873 sq. in.
7. $25095024 \mathrm{sq} . \mathrm{in}$.
8. $3 \mathrm{~A} .88 \mathrm{sq}, \mathrm{rd}, 6 \mathrm{sq} . \mathrm{yd}$
9. 5 yd .2 ft .10 in . 10. 8 rd .3 yd .1 ft .6 in
10. 2 mi . $220 \mathrm{rd}$.2 yd .
11. $7 \mathrm{mi} .305 \mathrm{rd}, 2 \mathrm{yd}$.
ft. 3
12. 6 mi .5 yd .1 in .
13. 4 mi .125 rd .2 ft .
14. 240001
15. 51.
1. 2464 rails.
2. $\$ 121893.75$.
3. 2300 panels.

Exercise 71
8. 60 sq. rd. 25 sq. yd. 11. 2 A. 112 sq. rd. 21

$$
7 \text { sq. ft. }
$$

9. 24 sq. rd. 2 sq. yd.

8 sq. ft. 80 sq. in.
10. 30 sq. yd. 5 sq. ft.

$$
125 \text { sq. in. }
$$

1. 102152 cu. in.
s. 980 cu . ft.
$\mathrm{cu} . \mathrm{ft}$
2. 380 pt
3. 380 pt
. 779 pt -
4. 685 pt .
5. 685 pt .
6. 831 qt
7. 831 qt

1. 326 far.

Exercise 73.

5. $3 \mathrm{cu} . \mathrm{yd}, 15 \mathrm{cu} . \mathrm{ft} .7 .127 \mathrm{cu}, \mathrm{yd} .26 \mathrm{cu}$.

$$
525 \mathrm{ca} . \mathrm{in} .
$$

6. $75 \mathrm{cu} . \mathrm{yd} .21 \mathrm{cu} . \mathrm{f}$

Exercise 75.

8. 3 bu .2 pk. $4 \mathrm{qt}$.1 pt . $14.14 .93 \mathrm{cu} . \mathrm{ft}$.
9. 5 bbl. 20 gal. $2 \mathrm{qt} . \quad 15.67 .2 \mathrm{cu}$. in.; $57 \frac{3}{4} \mathrm{cu}$.
11. 3 bbl 8 . 7 qt. 1 p

$$
\begin{aligned}
& \text { bDl. } \\
& 3 \mathrm{gi} .
\end{aligned}
$$

16. 9.31 nearly.
$27 \mathrm{gal} .3 \mathrm{qt}$.1 pt .2 gi . 13. $7276 \frac{1}{2} \mathrm{cu}$. in.
17. 48 gal .1 pt .

2. 9949 far.

s. 16115 far.
4. 70735 far.
5. $87 ; 28$.
6. $\$ 84 ; 52 \%$.

12．£ 103 d． 2 far．
17．$\$ 320.82$

Exercise 79
1．$\$ 38.60$ ． LERE FLAN 5.388 .6 fr ．，or $315,137.5061 .14 \mathrm{fr}$ ．，or 4104.2 8．$\$ 36.89$ ．
ALERE FLA
VERITAT

C． 639.63

Exercise 80

1． 6830 min ．
2． 885990 min ．
s． 1304320 min
4． 2714991 min
5． 19009545 sec
6． 27291638 sec
6． 27291638 see

9． 7 yr .121 da .16 hr ．16． 196 da ．
10． 1 da． 11 hr .35 min ．17． 159 da．
40 sec．$\quad 18.85 \mathrm{da}$.
11． $2 \mathrm{yr}, 19 \mathrm{hr}, 8 \mathrm{~min}$ ． 19.188 da ．
12． 2 yr． $19 \mathrm{hr} .8 \mathrm{~min} . \quad 19.188 \mathrm{da}$ ．
12． 9 yr． $307 \mathrm{da} .7 \mathrm{hr} . \quad 20.316 \mathrm{da}$ ．
21.187 da
7． 15 hr .55 min 30 13． 2912430 sec ． 21.187 da ．
8． 64 da .19 hr .24 min .15 .78 da ． 23. Fall．

1． $127045^{\prime \prime}$
2． $540050^{\prime \prime}$ ．
s．738640＂．

Exercise 82.

7． 1440 p．； 4320 p．11． 147 bun
2． $51 \mathrm{ft} ; 3$ 童 $\mathrm{ft} \quad 8.480 \mathrm{~s} ; 960 \mathrm{~s}$ ．
12． 4.
$\begin{array}{ll}128 \text { u．；} 15 \text { doz } \\ \$ 4.32 . & \text { 9．ba．} 3 \text { bun．} 1 \text { r．} 6 \text { q．} 13 . \text { Barley；} \$ 19.71 .\end{array}$

Exercise 84.

1． 8748 oz ．
2． 4056231 min
3． $14869 d^{\prime \prime}$ in．
4． 31459 ＂．
5． $151231 \frac{3}{4}$ sq．ft．
6． 13383 sh ．

7． 15956 lb ．
8． 3770095 sec ．
9． 1661 pt ．
10． 1883 pt ．
11． $171632 \mathrm{cu} . \mathrm{in}$ ．
12． 27372 sq．yd．

15． 26861 in ．
14． 45010 gr ． 15． 91491 in ． 16． 55556 gr ．
17． $3 \mathrm{mi} .73 \mathrm{rd}, 4 \mathrm{yd}$ ． 1 ft .6 in.

ANSWERS．

18． 3 A． 65 sq．rd． $15 \mathrm{sq} .24 .3 \mathrm{cu}, \mathrm{yd} .20 \mathrm{cu} . \mathrm{ft}, 29.7310 \mathrm{p}$ ． yd． 508 cn in．\quad so． 1710 times． 19． 7 T． 18 cwt． $76 \mathrm{lb} .25 .66^{\circ} 35^{\prime} 28^{\prime \prime}$ ． 81.41 da .51 hr 4 oz ．$\quad 26.8 \mathrm{lb} .11 \mathrm{oz} 16 \mathrm{pwt} .32 .448$.
$20.8 \mathrm{bu} .3 \mathrm{pk}, 2 \mathrm{qt} .1 \mathrm{pt} . \quad 20 \mathrm{gr}$ ． 33.86624.
21． 15 da． 10 hr ， 39 min ．27． $307 \mathrm{rd} .1 \mathrm{yd} 2 \mathrm{ft},$.9 牦． 1 mi .130 rd ．

40 see．in．${ }^{\text {a }}$ ，\＄12523							

29． 9 bbl， 21 gal， 2 qt．28． 146 sq．rd， 27 sq．yd．36． 480 sacks．
1 pt.
146 sq．rd
$6 \mathrm{sq} . \mathrm{ft}$ 37． 150 sacks

$$
\begin{aligned}
& \text { s. } \$ 11.67 . \\
& \text { \& } \$ 22.05 .
\end{aligned}
$$

$$
\begin{array}{rr}
\text { or } 518.7 & 8 . \\
\mathrm{mk} \\
\$ 2.32 .
\end{array}
$$

$$
\begin{aligned}
& \text { mk. }
\end{aligned}
$$

23． $7 \mathrm{lb}, 8 \rightrightarrows 432$ Э 16
gr．
Exercise 85.
1． $20 \mathrm{owt}, 50 \mathrm{lb}, 2 \mathrm{oz}$ ． $10.32 \mathrm{~A} .103 \mathrm{sq} . \mathrm{rd}, 18 \mathrm{sq}, \mathrm{yd} .1 \mathrm{sq}$ ．

2． 16 yr .70 da .20 hr .55 min ． 1 sec．
s． 51 lb .15 pwt． 15 gr ．
4． $27 \mathrm{lb}, 4 \% 431 \bigcirc 19 \mathrm{gr}$ ．
5． 38 bu． 2 pk .7 qt ．
6． 47 bbl .11 gal． 3 gi．
8． $39 \mathrm{cu} . \mathrm{yd} .25 \mathrm{~cm} . \mathrm{ft} .1435 \mathrm{cu} . \mathrm{in}$
9． 112 mi .285 rd .2 yd .1 ft .7 in ．

1． $8 \mathrm{bbl}, 4 \mathrm{gal}, 3 \mathrm{qt}, 1 \mathrm{pt}$ ．
2． 3 T． 15 cwt .97 lb .2 oz
3． 2 Ib .9 〒 731 ค12 gr．
$4.13 \mathrm{cu} . \mathrm{yd} .17 \mathrm{cu} . \mathrm{ft} .538 \mathrm{cf}$ ．in．
5． 8 gat． 2 qt .1 pt .1 gi ．
6． $8^{\circ} 37^{\prime} 35^{\prime \prime}$ ． 11 gl 1 in
7． $11 \mathrm{mi} .186 \mathrm{rd} .4 \mathrm{yd} 1 \mathrm{ft},. 3 \mathrm{in}$ ．
8． 36 A． 118 sq．rd． 14 sq．yd． 6
ft .65 sq ．in．
9． $103^{\circ} 25^{\prime} 17^{\prime \prime}$ ．
10． $54^{\circ} 20^{\prime} 14^{\prime \prime}$ ．
11． 30 mi ． 270 rd .1 yd． 9 in．
12． 3 bbl .15 gal .2 qt .2 gi ．
15． $68 \mathrm{mi}, 153 \mathrm{rd}$.8 yd． $2 \mathrm{ft}, 2 \mathrm{in}$
14． $6 \mathrm{~A} .135 \mathrm{sq} . \mathrm{rd} .5 \mathrm{sq} . \mathrm{yd} .1 \mathrm{sq}$ ．ft 29．May $17,1881$.
14． 60 sq in
15． 13 T． 3 cwt， 50 lo .1 oz ．
16． $44^{\circ} 13^{\prime} 10^{\prime \prime}$ ．

Exercise 86,

 $\mathrm{ft}, 15 \mathrm{sq} . \mathrm{in}$ ．11． 44 T． 6 cwt .59 lb .4 oz
12． $24 \mathrm{mi} .232 \mathrm{rd} .3 \mathrm{yd} .2 \mathrm{ft}, 3 \mathrm{in}$ ．
13． 44 yr． 14 da． 22 hr． 47 min． 12 sec．
15． 42 A． 182 sq ．rd． 2 sq. yd． 1 sq ． ft． 117 sq ．in
16． 42 lb .6 等 2 Э 16 gr ．

17． 1 mi． 174 rd． 5 yd． 1 in．
18． 51 sq．rd． 21 sq．yd． 3 sq．ft． 6 sq．in．
19． 9 mo .12 da
49． 8 mo .10 da ．
21． 4 yr． 4 mo .7 da ．
28.67 yr． 9 mo． 22 da．

Exercise 87.

1． $55214 s .10 \mathrm{~d} .2$ far．
2． 58 T． 9 cwt .78 lb .12 oz ．
－ 17 bbl 14 mal － at

\qquad
8． $79 \mathrm{~A} .12 \mathrm{sq}, \mathrm{rd} .30 \mathrm{sq}, \mathrm{yd}, 1 \mathrm{sq}$ ， ft． 63 sq．in．

4． 125 yr． $157 \mathrm{da} .11 \mathrm{hr}, 25 \mathrm{~min} .20$ 9． $89 \mathrm{~A} .114 \mathrm{sq} . \mathrm{rd}$ 10． $109^{\circ} 26^{\prime} 15^{\prime \prime}$
5． $360 \mathrm{lb}, 4 \xi 7317 \mathrm{gr}$ ．
6． $121 \mathrm{mi} .136 \mathrm{rd} .5 \mathrm{yd} .2 \mathrm{ft}, 8 \mathrm{in}$ ．
7． $142 \mathrm{mi}, 102 \mathrm{rd} .8$ yd． 6 in ．

11． 1078 bu .3 pk .1 qt .1 pt.
18． 491 T． 5 cwt． 30 lb ．
15． 29 A． 56 sq．rd． 28 sq．yd． 4 sq．ft． 14． $21 \mathrm{mi} .300 \mathrm{rd} .1 \mathrm{ft}, 3 \mathrm{in}$ ．

Ezercise 88.

1． $13 \mathrm{bu} .3 \mathrm{pk}, 7 \mathrm{qt} .1 \mathrm{pt}$ ．
2． 3 yr． 214 da． 17 hr .8 min ．
3． 9 T． 17 cwt
3． 9 T． 17 cwt 48 lb .15 oz
4． 15 gal .1 pt .3 gi ．
5． $5 \mathrm{mi} .121 \mathrm{rd}$.2 yd． $1 \mathrm{ft}, 7 \mathrm{fm}$ ．
6． 8 mi .75 rd .2 ft .9 in ．
7． 4 A． 130 sq．rd． $27 \mathrm{sq} . \mathrm{yd}, 8 \mathrm{sq}$ ．
ft． 5 sq ．in．

1． $21^{\circ} 17^{\prime} 30^{\prime \prime}$
2． $75^{\circ} 10^{\prime} 30^{\prime \prime}$
S． $118^{\circ} 57^{\prime} 15^{\prime \prime}$ ．
4． $142^{\circ} 59^{\prime \prime} 45^{\prime \prime}$ ．
5． 2 hr .52 min .40 sec
6． $5 \mathrm{hr}, 10 \mathrm{~min} .41 \mathrm{sec}$
7． 48 min． 81 sec ．
7． 48 min .31 sec ． 17.44 min .3 sec ．past 6 A．M．； 15
8． 4 hr． 38 min． 14 see． 9． $76^{\circ} 20^{\prime}$ ．
11． 2 br 48
$2 \mathrm{hr} .48 \mathrm{~min} .34 \mathrm{sec} ; 48 \mathrm{~min}$ ．
34 sec, past 2 p．M．； 11 min.
26 sec ．past 7 ．
26 sec．past 7 A．m．
8． $5 \mathrm{~A}, 155 \mathrm{sq}$, rd． $8 \mathrm{sq} . \mathrm{ft} .140 \mathrm{sq}$ ．in 9． $6 \mathrm{lb}, 5$ ₹ 531 Э 7 gr ．

10． 171.

15． 540.
12． 18.
15． 720 ．
14． 8 hr ，
15． 884 nearly．
16． 480 ．
Exercise 90.

12． 19 sec ．past 5 p．м．； 29 min .41 see．past 1 р．м．
18． $44^{\circ} 35^{\prime} 50^{\prime \prime}$ ．
4． $123^{\circ} 44^{\prime \prime} \mathrm{W}$
15． 32 min .59 sec ．past $9 \mathrm{~A} . \mathrm{m}$ $\min .57$ sec．past 6 Р．M．o
day preyious． 18． 2^{2} day previous．
18． $2^{\circ} 20^{\circ}$ ．
19． $122^{\circ} 42^{\prime} \mathrm{E}$ ．
20． $137^{\circ} 4^{\prime} 15^{\prime \prime} ; 9 \mathrm{hr} .8 \mathrm{~min} .17 \mathrm{sec}$

1． 280 rd ．

2． $18 \mathrm{cwt} .38 \mathrm{lb} .5 \frac{1}{3} \mathrm{oz}$ ．

S． 10 oz .13 pwt .8 gr

4． 5 s． $11 d .1$ far．

5． $108 \mathrm{da} .3 \mathrm{hr}, 33 \mathrm{~min} .20 \mathrm{sec}$ 6． $20^{\prime} 50^{\prime \prime}$ ．
7． 5 sq．yd． 7 sq．ft． 185 sq ．fn．
8． $2 \mathrm{gal} .1 \mathrm{qt} 11 gi.$.
9． 8 ₹ 631 － 4 gr
10． $26 \mathrm{cu} . \mathrm{ft} .1080 \mathrm{cu}$ ．in．
11． 3 pk .1 pt ．
12． 137 sq．rd． 28 sq．yd． 1 sq．ft． 68_{29}^{8} sq，in．
13． $3_{25}^{2} \mathrm{~min}$ ．
14．${ }^{2} 5 \mathrm{pt}$ ．
15． $28 \frac{8}{5} \mathrm{sq}$ ．in．
16． $7 \frac{\mathrm{y}}{\mathrm{g}} \mathrm{in}$ ．
17． $25 \frac{1}{2} \mathrm{hr}$ ．
18． $6 \frac{1}{5} \mathrm{pt}$ ．

19．$\frac{3}{16} \mathrm{da}$ ．
20．$\frac{5}{4}$ bu
21．$\frac{17}{8} \mathrm{lb}$ ．
22．$\frac{7}{3} \mathrm{mi}$ ．
23．if A ．
24． 111 gal ．
25．麔 wk．
26．䔒皆等 T ．
27． 107 rd． 1 yd． 6 in．
28． $203 \mathrm{da} .9 \mathrm{hr} .56 \mathrm{~min}, 30 \mathrm{sec}$ ．
29． 5 oz .2 pwt， 22 gr ．
so． $106 \mathrm{sq} . \mathrm{rd} .28$ sq．yd． 6 sq．ft．
s1． 58 sq．rd． 11 sq．yd． 5 sq．ft． $88 \frac{1}{1}$ sq．in．
39． $34 \mathrm{rd}$.

Exercise 92.

1． 6 da， 3 hr ．
2． $11 \mathrm{oz}, 2$ pwt．
3． 16 cwt .64 lb .12 .8 oz ．
11． 14 gal． 1 pt． 1.6 gi．

4． 2 pk． 2 qu． 8 pt
5． 269 rd .2 yd .1 ft .3 .12 in ．
6． $67 \mathrm{sq} . \mathrm{rd} .20 \mathrm{sq} . \mathrm{yd}, 5 \mathrm{sq}$ ．ft． 18.72 sq ，in．

15． $2 \mathrm{mo}, 4 \mathrm{da} .2 \mathrm{hr} .16 \mathrm{~min} .48 \mathrm{sec}$ 14． $45 \mathrm{rd}, 11.88 \mathrm{in}$ ．
15． $3 \mathrm{mo}, 21 \mathrm{da}, 14 \mathrm{hr} .24 \mathrm{~min}$ ．
16． $1305^{\circ}+$ ．
17．． $6401+\mathrm{mi}$
18． $.6401+\mathrm{mi}$.
7． 637317.76 mr
18． $8276+\mathrm{T}$
s． 29 da． 16 hr .11 min .16 .8 sec ，
9． $10 \mathrm{cu} . \mathrm{ft} .216 \mathrm{cu}$ in
10． $14 \mathrm{rd}$..3 yd .2 ft .10 .56 in ．
20．． $0107+\mathrm{yr}$ ．

Exercise 94.
1． 66 sq．rd． 9 sq．yd． 3 sq．ft．13． 919 ， 8.
s． 26 da， $6 \mathrm{hr}, 28 \mathrm{~min} .42 \mathrm{sec}$ ．
4．$\$ 51.75$.
5． 1 cu ．yd． $5 \mathrm{cu} . \mathrm{ft}$ ；$\frac{1}{2} \frac{25}{5} \mathrm{OZ}$
6． $16688 \frac{1}{4}$ steps
6． $16688 \frac{7}{}$ steps
－ 8.21 mi .192 rd ．
$\frac{\text { 9．} 81,96 .}{10.2 \mathrm{~min} .30 \mathrm{sec} \text { ．past } 7 \mathrm{am}}$
10． $2 \mathrm{~min}, 30 \mathrm{sec}$ ．past $7 \mathrm{~A} . \mathrm{m}$
17． 51 min .27 sec ．past noon．
12．$\$ 25.95$ ． 14．\＄317．70． 15． 85527.79 ． 16． 8.5027 .79.
16．$\frac{1}{7}$.
17．0．1．
18． 4 bu． 3 pk .7 qt ． $1 \frac{3}{8} \mathrm{pt}$ ．
19． 45 da ． 6 hr .15 min ．
20． 66 ft ．
21．$/ 3 \mathrm{mi} .45 \mathrm{rd} .1 \mathrm{yd}, 2 \mathrm{ft}, 1,2+\mathrm{in}$ ． 21． 3 mi ． 2 ．
22． 8 ．
28．$\$ 50.54+$
24． $587 \frac{3}{3}$ ．
25．63115 da．

Exercise 114.

22. $\$ 273.55$.
23. $\$ 273.55$. \qquad
24. $1175.21+\mathrm{bu}$; 10940.26 gal .
25. 85055 is ga 29. $\$ 37.44$. 24. $8855+1 \mathrm{~b}$
26. $\$ 89760$. 26. 3.96 in. ; 0000625 . so. $273.67 \mathrm{sq} . \mathrm{yd}$. 38. $\$ 4693.331$ se. $\$ 4693.231$.
SS. 1105.8432 sq. ft .
TALERE FLAMMAMEIse 108.

27. 24 boys
28. 10 days.
S. 7 lb . \& $\$ 75.60$. 5. 45 bu .
29. 63.6 tons.
 11. 72 horses. $17 . \$ 4060$. 18. $\$ 715.50 . \quad 18 . \$ 7820$.

Exercise 110
34. \$338.58.
35. $\$ 24.35$. 36. 263.18 ib . 37. 239.37 gal. 38. 56.55 cu . in 39. $79_{1}^{3} \mathrm{cu} . \mathrm{ft}$. 40. 3464417 lb .
19. \& 70.
20. 152 p .
21. 210 m .
22. 3 ft .
23. $\frac{5}{8} \mathrm{bu}$.
24. 18 tr

1. 11 books.
2. 250 boys.
3. 250 boys.
4. 240 lbs.

4240 lbs .
6. 30
7. 11
8. 32
9. 8
$\begin{array}{ll}\text { 6. } 300 \text { da. } 11 . ~ \\ \text { 7. } 1121.00 \\ \text { A. } & 18.80 .51 .\end{array}$ $\begin{array}{ll}\text { 8. } 325 \mathrm{yr} . & 18 . \\ \text { 8. } \$ 4.80 .\end{array}$
9. 348 T .
10. 1032 ci 14. $\$ 30 \frac{5}{8}$. Exercise 113
 31% gain. 19. $10 \frac{1}{2} \%$ gain 20. 80% gain.

8. 21%.
9. $12 \frac{1}{2} \%$ gain.
10. 70% gain.
11. 100% gain
12. $33 \frac{2}{3} \% ; 75 \%$; $62 \frac{1}{2} \%$. 29. 0.81%.
13. $7 \frac{2}{5} \%$ 30. $0.5 \frac{5}{4} \%$
14. 8%.
15. 18%
16. $37 \frac{1}{2} \%$.
21. 331% gain 22. 25% gain.
27. $0.67+\%$.

| 28. 14% gain. | 38. $83 \% \%$ |
| :--- | :--- | 24. $41 \frac{1}{2} \%$ loss $\quad 39.87 \frac{1}{2} \%$ $\bigcirc \xrightarrow{45.72 . \% \%} \begin{aligned} & 46.16 \% \text { gain. } \\ & 46 .\end{aligned}$

31. $0.5 \frac{5}{9}$ \%
32. 60%.
33. $66 \frac{2}{2} \%$,
25.16% loss. 26. $\frac{1}{2} \%$.
34.
35. 5%
36. 55% boys. 4. 85%. 43. 24%. 44. 85%. 47. 20% gain. 48. Newsp., 331% 49. Cattle ; 80%.
37. 21000.

1\%. 162 lb .
18. $\$ 59.50$. 19. $\frac{3}{15}$; worth $\$ 33331$.
34. 30%.
34. 30%
85. 36%
s6. $66 \frac{7}{3} \%$.
87.80%.
다둔․․․․․

ANSWERS.

xxiv
9. Gained $\$.30 ; 3 \frac{3}{4} \%$.
11. Lost $\$ 32 ; 16 \%$
12. $\$ 1.14$; $\$ 1.20$.
18. $\$ 3.20$, 14. $\$ 420$.

Exercise 119.
3. 81058.49 .
$\$ 499.20$. $\begin{array}{r}9.20 . \\ \hline 20 .\end{array}$
2. $\$ 12062,50$
3. 5%.
4. $3 \frac{1}{2} \%$
5. $\$ 2335$.
1.83150.

1. $\$ 31.50$;
2. $\$ 253.50$. $45.90 ; \$ 54$.

8 $\$ 12.53$; 826.78 ; $\$ 30.98$.
881.09: \$15.12; $\$ 200$;
$881.09 ; \$ 15.12 ; \$ 200$.
.881

1. $\$ 72.80$.
2. $\$ 198.80$.

Exercise
121.
6. $\$ 22356$. 7. 0085. 8. $\$ 235.20$. 10. Take $\frac{2}{5}$ of the results of example 3 .
122.
万. $\$ 881.25$; $\$ 1092.75$ $\$ 10211.30$.
5. 32%
6. $\$ 430.92$.
11. $\$ 3459$. 12. $\$ 3027$. 18. $\$ 3475.50$. 14. $\$ 10102.50$. 15. 50 sh .

Exercise 123

Exercise 124.

1. $\$ 62.50$; 41
s. First, 5 答 $+\%$;
2. First, 55% S Second, $5 \frac{5}{\square}$ Exercise 125.
3. 831.
1. $16 \frac{0}{3} \%$
2. $\$ 39200$.
3. 85240
4. $2 \frac{1}{2} \%$.
5. Lost; $\$ 6.25 ; 4 \%$.

6. $33 \frac{1}{3} \% ; 50 \%$ -
7. $\$ 11400$.
8. $\$ 15345$.

Exercise 130.

1. $\$ 363$.

Exercise 137.
8. $\$ 1325.35$.
s. $\$ 422.08$.

1. $\$ 1179 ; \$ 1176$.
2. $\$ 13.05$; $\$ 18.49$.
3. 8790.67 .
4. $\$ 14.73 ; \$ 635.27$
5. $\$ 1886.10$.

Sont 1, 1895 ; 48 da ; $\$ 12.80$. \$ 1587,20 .

Exercise 138
8. May 25, 1897; 54 da.; \$21.32 ; 82009.08
9. 8 mo. 9 da. ; $\$ 15.94 ; \$ 875.81$
10. 2 mo .27 da ; $\$ 20.61$; $\$ 1197.84$.
11. Mar. 18,1896 ; 79 da. ; $\$ 28.88$;
$\$ 1790.07$.
18. T. D. $=\$ 74.47 ;$ B. D. $=\$ 87.50$. 13. $\$ 467.92$.
14. $\$ 2312.90$.

Exercise 139.

■ B Exercise 143.

1. 810957.50 .

2. 830649.50
3. $£ 2750$.
4. 11922.68 fr .
5. 2160
6. $\$ 659.87$
7. $\$ 2740.79$.
8. $\$ 1759.04$.
9. $\$ 1759,04$
10. $\$ 315.88$
11. 41680 fr .
12. 38160.62 mk .

Exercise 144.

1. $6 \mathrm{mo}, 15 \mathrm{da}$. (abont).

6. 62 da.; Dec, 18.

2. 6 mo .23 da.
s. April 24 .
3. Oet. 17 .

7 mo .3
da. $\begin{aligned} & \text { 8. } 8 \text { mo. } 25 \\ & \text { 8. Nov. } 1 . \\ & \text { 9. Aug. } 29 .\end{aligned}$
Exercise 145 .

$$
\text { 28. } \$ 5000 .
$$

$$
\begin{aligned}
& 24 . \\
& 25 . \\
& 21 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { 24. } \$ 3 . \\
& \text { 25. } 51 . \\
& \text { 26. } 24 . \\
& \text { ov. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 26. } 24 \frac{3}{2} . \\
& 27.62 .
\end{aligned}
$$

$$
\begin{aligned}
& 28.05 \\
& 28.0245+. \\
& 09 \text { 288 hr }
\end{aligned}
$$

$$
\begin{aligned}
& 28 . .0245+. \\
& 29.238 \mathrm{hr} .
\end{aligned}
$$

Exercise 148.

10. 11 mo .20 da . 11. 11 mo .23 da . 18. 22 mo .2 da . 18. $7 \mathrm{mo}, 16 \mathrm{da}$
17. 91.
18. $6 \frac{17}{130}$.
19.
20. 22.25.
3. 000054872 . 10. 287490
17. 219.
12. 127.
13. 18136.
13. $1812{ }^{\circ}$.

15. $364 \frac{14}{4}$. 16. 50625. 17. 279841. 18. 24414.06

20. $1 \frac{1321}{4000}$. 21. 432. 22. 1024. 28. 31 .
3\%. 18. 23. 18.

Exercise 152.

19. 7.86.	2s. 6.324.	36. 2.291.
20. 83.4.	29. 2.828.	37. 1,825.
21. .907.	30. 5.567.	38. 15.684.
22. 1.824.	31. 4.147.	59. 5.479.
28. 37.68	33. 3,674.	40. 2.723.
24. 7118.	35. 948.	41. 5.1079.
25. 3.4171.	34. 866 ,	42. 6.013.
26. 418.75.	35. 836.	43. 10.005.
27. 5.0809.		
Exercise 154.		
15. 78.7.	22. 7008.	29. 4.319.
16.8.09.	23. 1.817.	30. 3.036.
17. 918.	2.4. 2.289.	31. 4.013 .
18. 180.7.	25. 3.072.	33. 8.004.
19. 2.419.	26. 1.650.	33. 3.715.
20. 80.68.	27. 4.641.	13.4. 2.180.
21. 5.703.	2S. 2.683.	

Exercise 156.
2. $525,875,1925,2975$
\&. $5300,10600,15900$.
4. $552,828,1104,1380$.

1. $\$ 4.20, \$ 5.40, \$ 7.80$.
. $\$ 1600, \$ 2050, \$ 850$
s. $\$ 140, \$ 160, \$ 200$.
2. $\$ 9600, \$ 7200, \$ 3200$
3. $\$ 640, \$ 1420, \$ 1240$.

C. $\$ 5000, \$ 4000, \$ 3000$
 7. $\$ 240, \$ 200, \$ 135$
 8. $\$ 280, \$ 192, \$ 288$
 9. $\$ 12.60, \$ 18, \$ 18.90$.

1. 676.
1. 21952.

S. 12789.
5. 8615125.
3.0625
7. 12326.391.
8. 985.96

Exercise 162

Exercise 158

1. $194.4 \mathrm{sq} . \mathrm{in}$. 2. $21 \frac{1}{3} \mathrm{in}$.
s. 759.5 sq . ft.
2. 153.94 sq. in.
3. 275 sq . ft.
4. $175.5 \mathrm{cu} . \mathrm{in}$.
5. $2143.75 \mathrm{cu} . \mathrm{ft}$
6. $4: 9 ; 27: 125$
7.9: 49:81; $343: 729$.
7. Eourtimesasmuch; eight times as
much.
8. 4 in .
9. 612 ft

1s. $1012.5 \mathrm{yd} . ; 37.5 \mathrm{yd}$.

Exercise 168.

1. $=73240 \mathrm{dm} .=732.4 \mathrm{Dm} .=732400 \mathrm{~cm}$.
2. $=.3608 \mathrm{Kg} .=36080 \mathrm{eg} .=3608 \mathrm{dg}$.
S. $=50321.7 \mathrm{ml} .=5.03217 \mathrm{Dl} .=.0503217 \mathrm{KI}$.
3. $=.0055171 \mathrm{Ha}=.55171 \mathrm{a}=.55171 \mathrm{sq} . \mathrm{Dm}$.
4. $=25000 \mathrm{cu} . \mathrm{cm} .=25 \mathrm{~L}=.25 \mathrm{dst}$.
$\mathrm{F}_{\mathrm{c}}=53 \mathrm{dst} .=5300 \mathrm{eu} . \mathrm{dm} .=5.3 \mathrm{st}$.
$8 .=1234.5 \mathrm{Dm} .=123450 \mathrm{dm} .=12345000 \mathrm{~mm}$.
5. $=3.2671 \mathrm{Dg} .=.032671 \mathrm{Kg} .=\$ 2671 \mathrm{mg}$
6. $=3.207 \mathrm{Dg},=1.0673 \mathrm{Dt}=.010673 \mathrm{~K} 1$.
7. $=10023 \mathrm{mk}$. $=1.0073=00831 .=8300 \mathrm{cu} . \mathrm{mm}$.
8. $=.400088 \mathrm{~cm} .467100 \mathrm{cu} . \mathrm{cm} .=4671 \mathrm{dl}$.
9. $=4671 \mathrm{cl} . \mathrm{m} .=4070700 \mathrm{dg} .=50.07 \mathrm{Kg}$.

1s. $=50070000 \mathrm{mg} . ~=500200 \mathrm{dg} .=5.02 \mathrm{Kg}$. 17. $=86.32 \mathrm{sq} . \mathrm{m}=.008632 \mathrm{Ha}=.8682 \mathrm{sq}$. Dm. 20. 751 1 ; 50001 ; . 031 1 ; . 5871 1 ; 1.38751.
18. 8.45 in.; 12.32
19. 3.94 ft .
21. $207.84 \mathrm{cu} . \mathrm{ft}$. ; 360.333 sq. ft .
14. $\$ 1000$.
15. 1:121; 1:1331
16. 10.09 rd .
17. $1: 2 ; 1: \sqrt[3]{4}$.
18. $\$ 7 \frac{1}{5}$.
19. $\$ 2 \%$.
20. 194.74 lb .
s. $=7124500 \mathrm{sq} . \mathrm{cm} .=.071245 \mathrm{sq}$. Hm. $=.071245 \mathrm{Ha}$
14. $=3.755 \mathrm{Ha} .=37550 \mathrm{ca}=375.5 \mathrm{sq} . \mathrm{Dm}$.
$15 .=4000 \mathrm{a}=400000 \mathrm{sq} . \mathrm{m} .=400000 \mathrm{ca}=4000 \mathrm{sq} . \mathrm{Dm}$. 15. $=4000 \mathrm{a}=400000 \mathrm{sq} . \mathrm{m},=400000 \mathrm{ca}=4000 \mathrm{sq}$. Dm. 16. $=34575 \mathrm{~cm} .=3.4575 \mathrm{Hm} .=.34575 \mathrm{Km} .=345750 \mathrm{~mm}$. 18. $=38500 \mathrm{cl} .=385 \mathrm{cu} . \mathrm{m} .=.000000000385 \mathrm{cu} . \mathrm{Km}$. 19. 75 Kg . ; $1000 \mathrm{Kg} . ; 1.7 \mathrm{Kg}$; $3.5 \mathrm{Kg} . ; 11000 \mathrm{Kg}$. $\begin{aligned} & 20.751,5000 \\ & 21.4230 \mathrm{dl}=423000 \mathrm{cn} . \mathrm{cm}=423 \mathrm{cu} . \mathrm{m} . \\ & 423000 \mathrm{~g} .\end{aligned}=423 \mathrm{Kg} . \quad \mathrm{T}$

Exercise 169.

```
1. }96.05\textrm{m}\mathrm{ .
8. 16.2 s. T 8. 7178.22661 g.
```



```
3. 50,0020008 cu.,m. 1458,6061 g. 
4. 1458.6061 g
5. 3242.405 -
6. 8071.97 a.
10. 11858.2121
11. }380.827\textrm{l
6. 8071.97 s. 18. 226385 sq. m.
9. \(30.917389128 \mathrm{cu} . \mathrm{m}\).
11. 380.827 l .
15. 228985 sq. \(m\).
```

7. 1906.233 m .

8. 20 books.
9. $3 \frac{3}{5}$ da.
10. 12.276 bu
11. $\frac{55}{72}$; $3 \frac{1}{2} ; \frac{51}{2} ; \frac{56}{72} ;$ S9. 507064 in

12. Increased, $\frac{72}{100}$ 48. 8 hr .2 min .22 sec .
13. 19.
1. $\$ 4$.
2. $\$ 4$.
3. $17 \frac{1}{2} \mathrm{da}$.
4. 55396 mi
5. $\$ 120$.
6. 6411.
1. $1 \frac{11}{51}$.
2. 42.
1. 6 T. 7.5
2. $\$ 286$
-29. 1.008 .
$\quad 30.5 \mathrm{mi} .55 \mathrm{rd} .2 \mathrm{yd}$ $2 \mathrm{ft}, 6.96 \mathrm{in}$.
3. The former
4. 1984 bu.
5. 51 da.
6. $5321^{3}{ }^{2}$ times.
7. $\$ 18492$.
8. $17.10 \frac{1}{2} \%$.
9. $114 \frac{2}{7}$ gal.
10. 21582 gr.
11. The former
12. 6 mi .123 rd .2 yd 2 ft .4 in .
13. $\$ 43.207$
14. 62 cents (nearly).
15. 47.
1. 1912 yd.
68.3 mi .90 rd .1 yd .
2. $5_{1 \frac{7}{2}}^{\frac{1}{2}}$
3. $1 \frac{1}{5}$ T. ; 9 T
4. $\$ 274.68$.
5. 67.
1. $\$ 12715.50$.

7f. 10143620 sec
75. 21.909 rd .
76. $12.9+$ in. ;
6.14 in . (nearly).
77. $666 \frac{2}{3} \mathrm{lb}$.
77. 666 2 lb . 6%.
B, 30 da. ; C, 10 da. together, $7 \frac{1}{2} \mathrm{da}$.

SCHOOL ALGEBRAS

By FLETCHER DURELL, Ph.D.

Mathematical Master in the Lawrescenille Schoot,
EDWARD R. ROBBINS, A. B.,
Mathbuntical Mastzr in the Wihihar Pens Gbarter School

These books are remarkable, both for the originality in the development of the sabjeet and for the wonderful skill in preparing, adapting, and gradiug a large number of examples and review exercises. While seek ol current practices of teachers in other respects.

A GRAMMAR SCHOOL ALGEBRA. 287 pages. Half leather. 80 cents.
This volume closes with the subject of Radicals it is intended to contain only so much of the subject of Algebra as pupils in grammar schools are likely to study

A SCHOOL ALGEBRA. 372 pages. Half leather. \$1.00.
This volume covers the requirements of admission to the classical course of colleges, as agreed upon at the conference b
sentatives of leading colleges and preparatory schools.

A SCHOOL ALGEBRA COMPLETE. 450 pages. Half leather. $\$ 1.25$.
Whis book contains, in addition to the subjects usually treated in z school Algebra, the more advanced subjects required for admission to universities and scientific schools, to wit: Permatations and Combinations, Undetermined Coefficients, the Binominal Theorem, Continued Fractions, and Logarithms. This Algebra also contains a chapter on the "History of Elementary Algebra," the first of its kind published in America.
Points of Superiority Peculiar to the Durell and Robbins School Algebras.

1. The general theory, which makes evident to the pupil that new ssmbols and processes are introduced, not arhitrarily but tor the sake of DIRECCION GENERAI.DI
the economy or new power which is gained by their use Shis treatment the study of the subjeet 3larger educationat value.
2. Clear and simple presentation of first principles. Bright girls of ten ears read the first chapter; and with very little explanation on a few points of secondary importance, they understand the chapter clearly on first reading.
3. 20 books.
4. $3 \frac{3}{5}$ da.
5. 12.276 bu
6. $\frac{55}{72}$; $3 \frac{1}{2} ; \frac{51}{2} ; \frac{56}{72} ;$ S9. 507064 in

7. Increased, $\frac{72}{100}$ 48. 8 hr .2 min .22 sec .
8. 19.
1. $\$ 4$.
2. $\$ 4$.
3. $17 \frac{1}{2} \mathrm{da}$.
4. 55396 mi
5. $\$ 120$.
6. 6411.
1. $1 \frac{11}{51}$.
2. 42.
1. 6 T. 7.5
2. $\$ 286$
-29. 1.008 .
$\quad 30.5 \mathrm{mi} .55 \mathrm{rd} .2 \mathrm{yd}$ $2 \mathrm{ft}, 6.96 \mathrm{in}$.
3. The former
4. 1984 bu.
5. 51 da.
6. $5321^{3}{ }^{2}$ times.
7. $\$ 18492$.
8. $17.10 \frac{1}{2} \%$.
9. $114 \frac{2}{7}$ gal.
10. 21582 gr.
11. The former
12. 6 mi .123 rd .2 yd 2 ft .4 in .
13. $\$ 43.207$
14. 62 cents (nearly).
15. 47.
1. 1912 yd.
68.3 mi .90 rd .1 yd .
2. $5_{1 \frac{7}{2}}^{\frac{1}{2}}$
3. $1 \frac{1}{5}$ T. ; 9 T
4. $\$ 274.68$.
5. 67.
1. $\$ 12715.50$.

7f. 10143620 sec
75. 21.909 rd .
76. $12.9+$ in. ;
6.14 in . (nearly).
77. $666 \frac{2}{3} \mathrm{lb}$.
77. 666 2 lb . 6%.
B, 30 da. ; C, 10 da. together, $7 \frac{1}{2} \mathrm{da}$.

SCHOOL ALGEBRAS

By FLETCHER DURELL, Ph.D.

Mathematical Master in the Lawrescenille Schoot,
EDWARD R. ROBBINS, A. B.,
Mathbuntical Mastzr in the Wihihar Pens Gbarter School

These books are remarkable, both for the originality in the development of the sabjeet and for the wonderful skill in preparing, adapting, and gradiug a large number of examples and review exercises. While seek ol current practices of teachers in other respects.

A GRAMMAR SCHOOL ALGEBRA. 287 pages. Half leather. 80 cents.
This volume closes with the subject of Radicals it is intended to contain only so much of the subject of Algebra as pupils in grammar schools are likely to study

A SCHOOL ALGEBRA. 372 pages. Half leather. \$1.00.
This volume covers the requirements of admission to the classical course of colleges, as agreed upon at the conference b
sentatives of leading colleges and preparatory schools.

A SCHOOL ALGEBRA COMPLETE. 450 pages. Half leather. $\$ 1.25$.
Whis book contains, in addition to the subjects usually treated in z school Algebra, the more advanced subjects required for admission to universities and scientific schools, to wit: Permatations and Combinations, Undetermined Coefficients, the Binominal Theorem, Continued Fractions, and Logarithms. This Algebra also contains a chapter on the "History of Elementary Algebra," the first of its kind published in America.
Points of Superiority Peculiar to the Durell and Robbins School Algebras.

1. The general theory, which makes evident to the pupil that new ssmbols and processes are introduced, not arhitrarily but tor the sake of DIRECCION GENERAI.DI
the economy or new power which is gained by their use Shis treatment the study of the subjeet 3larger educationat value.
2. Clear and simple presentation of first principles. Bright girls of ten ears read the first chapter; and with very little explanation on a few points of secondary importance, they understand the chapter clearly on first reading.
3. Abundance of practice: (1) About 4000 problems and examples in he complete book-nearly 1000 more than in any other book of similar grade. Compare any chapter with corresponding chapter in other leading books, (2) every ber me the probexamples last; work may be limited with any problem. (3) The probhave no place in a text-book. The Durell and Robbins School Algebras are superior not only in the
development of the theory and in the number and character of the exer-cises-the main points to be considered in determining the strength of a text-book on Algebra-but also in modern methods, new treatment of subjects, systematic grouping of kindred processes, early introduction of substitution, emphasis placed upon verification of equations, concise definitions, elear and specific explanations, taetful omissions of a number of answers, frequent reviews, superior typography.

The success of these books is likely unprecedented. They have already secured for themselves, without any agency work except in Pennsylvania, adoption in the foremost schools in Pennsyivania, New Jersey, New York,
Massachusetts, Maine, Ohio, Indiana, Illinois, Michigan, South Dakota California, Texas, Oklahoma, Georgia, Tennessee, West Virginia, and California, Texas, Oklahoma, Georgia, Tennessee, West Virginia, and
Maryland.

Extracts from Letters by Superintendents, Príncipals, and Teachers of Schools in which the Books are Used.
W. F. SLATON, Gity Suparintendent,
Atlanta, Ga- The Dorell and Bobbins Atlanta, Ga The Durell and Robbint
Grammar Sohool Algobra is admimably suated to the advaneed grades of gram
mair schools and to the lower grades of high schools. In my juigment. factor done in this beok.
THOMAS A. BLACKFORD, ComAowdemy, Ogontz, Pa. - The authors of the cartainly accomplished their purpose, to simpifify principles and to make them
attractive. I know of no book that I [- $\begin{aligned} & \text { attractive. I know of no book that I } \\ & \text { wruld stronger rocommend for adop- } \\ & \text { tion. }\end{aligned}$

GEORGE GILBERT, Principal Chester Aoudemy, Ohester. Pa- -1 am pleased
with tho book under the tost of the school-room. It is certaimly gotten up
on the right plan....It must be a favorite with teachers.
SISTER M. FLARIA, Directress S8,
Peter's Acaiemy. Oolumbia, Pa.-It is the poter scazieny, most complete in in Algebra I hase
DR. M. R. ALEXAN DER, Principal hambersburg Acoue Pa-The Darall and Robbins School
Algebra is a most excellent work, both in Aosign and execution. I am sure it will attain great success.

CHARLES F. HARPER, Principa! CHARLES F.
Pubtio High school, New Britain, Goun,
-...A firstcelass binding; excellent
 eraded problems; clearly stated rules;
oasy explanations; and an abondaneo of
yaried examples, both for daily stondies varied examp
and reviews.
PROF. JOHN T. DUFFIELD, Princeton University.-I have had some occa-
sion to examine the work, as it has been sion to oxamine the work, as it has been
used by my grandson sines he entered
use used by my grandson since he entered
Liawrenceville $1 t$ gives me pleasure to express my highest apprecintion of its
merits. Its conciso and accurate definimerits. Its concise and accurate dafini-
tions, its tactfal presentation of processes, its judicious solection and arrange-
ment of examples, and its avoldance of ment of examples, and its avoldance of
supertiuous explanations, ail show it to saportinous explanations, ail show
be the work of teachers of experience,
of scholarshin. of scholarship, and of good common
sense. I congratulate the authors on sense. I congratulate the authors on
having rondered a valuable service to
mathematical mathematical science, and one that will roflect honor on their institution and
their alma mater.
PROF. IRA B. PEAVY, Deqartment
of Mathematick, State Normal School, Vdinboro, Po.. Aftar Normal Schoor,
Duroll and Robbins tested the
Domplete School Durell and Robbins Complete School
Algebrainall of our classes forone sear. gives me pleasure to testify to its
merits. The authors have done what so merits. The authors have done what so
few are able to do-written a book that
 PROF. MARTIN BAHLER, Principal Orange schools, Ohanpe, N. ©lasses, and do not expect to nse any other for a long
time to come. It is superior to any time to come. It is superior to any
other book of the kind that has come
to my notice.
W. M. SWINGEL, Ph. D., Principat. in a clear and forcible manner, and the in a deation is made in a way to bo essily
apdical
undertood by the beginner it is one underatood by tho begimner. It is one
of the best of elomenatary sigobras. D. G. ESHBACH, B.S., Principal commend the clear and explicit statements in introducing now subjects and the progressive and accumulative ar-
rangement of the problems. I have ned the book in froctoring with oue
nenass and in radicals with another, and
elan have secured excellont rosults. I think
yon have mado a hite and procict a largo
salo
W. W. RUPERT, Gity shperintendent Pottstorien, Pa,-This book is, indoudd, ant men who are both mathematiclans and
first-class teachers.

DR. ROBERT J. ALEY, Professor of Hathemater, That in nilarily, Bloom mpton. Ind-- whe Durell and kobbins
Sehool Algebra is remarkable for its Secool A zebre is remarkabie for is
elearness, and for the attractive form in
which the varions subjects are which the various subjects are pre
sented. For the stadent it is cartsini sented. For the stadent it is certainily
an interesting book, and for the teacher a suggestive one. Dr. Durell is also
author of "A Now Life in Education," author of A Now Life in Edducation,
one of tho very best books on pedazoz of recent years. fin the Inland Edu-
oator, May, 1898.) (In cator, May, 1898.)
PROF, MARK MOFFETT, Superinare nsing the Durell and Robbins
Sohool Alenbra in the Arst School Alpobra in the first year of our
high school with marked success high school with marked success, It
contains an admirablo gelection of problema, serving pupils of that grade best
of ail books I have used, both in variety of ail books I have used, both in variety
and number, while general principles and number, while geveral principles
and othor matters have been discussed
as fully as can bo understood without as folly as can bo anderstood withont
the teacher's diroction The authors
have had the rare pood sense of stor the teacher 8 rirectiou sense of stop
hase had the rare kood seng when enough discussion has been
ping ping whon enough discussion has anreasonable elaborations given. No unreasonable elaborations
are to be found which in some books
often dishoarten the pupil. often dishoarten the pupll.
PROF, H. R. HIGLEV, A.M., De partment of Mainematick, Sate No have
Schoo, East Stoutshurg, Pa- We
used the Durell and Robbins School AI used the Duroll and Robbins School Al. gebra Complete in our classes daring the
past year, and expect to use it for years
and boome The book Is just what the past year, and expect to use it for ears
to come. The book is just what the
practical teacher should have. Our practical teacher should have. Ou
papils wore never so well prepared ay
they have been since we use this book. THE EDUCATIONAL FORUM, Th Auditorium, Chicago, Mtinois.-The suband Robbins Grammar School Algebra
been simplified, and the practical reason for each sted is given in such a plain
common-sense way that algebra is mado ommon-sense way that aigebra provious
far more attractive than by any
text-book....This method is extremely prsctical, and adids method is extremel.
terest of the pupil.

WILLIAM J. BOONE, Prosident of the
College of Idaho. Oaldwell. Idaho:-The
 sents the subject in the liveliest. clear
est, snd most forceful manner. I am arqualinted with about two dozen toxt on elementary algebra: but
PROF. G. H. DOSCH, Department of
Prof. G. H. Dosch, Departmal Col
Mathematics, Central Pennslouria
lege.-We are using the Durell and Rob-lege.- We are using the Durell and Rob-
bins School Agebra Complete. We ary
dolighted witg the mesults. It is an oxins School Algebra Gomplete. We ar.
delighted with the results, It is an ex-
cellent work, elesr, thorough, and up to dalight
cellent
dates.

[^0]: * In each example, the multiplication must be performed first.
 t This is $9-6=3$.
 \ddagger This is $2+15-7=10$.

[^1]: 9. $456,684,720$.
 10. $280,448,640$.
 11. $396,495,660$.
 12. $945,810,1260$
[^2]: In this table, the columns headed "Prop." give the number of tens of dollars, not number of dollars of property tax

[^3]: 6. 27981 .
