GEOMETRY,

PROPOSITION XI. THEOREM.

Two rectansular parallelopipedons having a common lower
base, are to each other as their altitudes.

Let the parallelopipedons AG and AL have the common
lower base ABCD: then are they to each other as their
altitudes AE and Al

1°. T.et the altitudes be commensurable, and suppose,
for example, that AE is to Al, as 15 is to 8.

Conceive AE to be divided into 15 equal parts, of which
Al contains 8; through the points of division let planes
be passed parallel to ABCD. These planes divide the
parallelopipedon AG into 15 parallelopipedons, which have
equal bases (P. IL, C.) and equal altitudes; hence, they
are equal (P. X., Cor. 3).

Now, AG contains 15, and AL 8 of
these equal parallelopipedons; hence, AG
is to AL, as 15 is to 8, or as AE is to
Al. In like manner, it may be shown
that AG is to AL, as AE is to Al, when
the altitudes are to each other as any
other whole numbers.

92° L.t the altitudes be incommen-
surable.
Now, if AG is not to AL, as AE is to Al, let us suppose
that
AG A s AR ST A

in which AO is greater than Al
Divide AE into equal parts, such that each is less than
Ol : there is at least one point of division m, between O
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and I. Let P denote the parallelopipedon, whose base is
ABCD, and altitude Am ; since the altitudes AE, Am, are fo
each other as two whole numbers, we

have,
AG-— P AR Am

But, by hypothesis, we have,

AG i AL - AR = A

therefore (B. IL, P. IV., C.),

AlSS-cup A= Ay

But AO is greater than Am; hence, if the
proportion is true, AL must be greater than P. On the
contrary, it is less; consequently, the fourth term of the
proportion can not be greater than Al. In like manner, it
may be shown that the fourth term can not be less than
Al; it is, therefore, equal to Al. In this case, therefore,
AG is to AL as AE is to Al

Hence, in all cases, the given parallelopipedons are to
each other as their altitudes; which was to be proved.

Sch. Any two rectangular parallelopipedons whose bases
are equal in all respects, are to each other as their alti-
tudes.

PROPOSITION XII. THEOREM.

Two rectansular parallelopipedons having equal daltitudes,

are to each other as their bases.

Let the rectangular parallelopipedons AG and AK have
the same altitude AE: then are they to each other as
their bases.
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For, place them so that
the plane angle EAO shall be
common, and produce the
plane of the face NL, until
it intersects the plane of the
face HC, in PQ; we thus
form a third rectangular par-
allelopipedon AQ.

The parallelopipedons AG
and AQ have a common base
AH; they are therefore to
each other as their altitudes
AB and AO (P. XL): hence,
we have the proportion,

vol. AG : wol. AQ :: AB : AO.

The parallelopipedons AQ and AK have the common base
AL; they are therefore to each other as their altitudes
AD and AM: hence,

wol. AQ : wol. AK :: AD : AM.

Multiplying these proportions, term by term (B. IL, P. XIL),
and omitting the common factor, vol. AQ, we have,

vol. AG : wol. AK :: ABxAD : AOxAM.

But ABxAD is equal to the area of the base ABCD, and
AO xAM is equal to the area of the base AMNO: hence,
two rectangular parallelopipedons having equal altitudes,
are to each other as their bases; which was to be proved.

PROPOSITION XIIT. THEOREM.

Any two rectansular parallelopipedons are to each other as

the products of their bases and altitudes; that is, as the
products of their three dimensions.

T.et AZ and AG be any
two rectangular parallelopip-
edons: then are they to each
other as the products of their
three dimensions.

For, place them so that
the plane angle EAO shall be
common, and produce the

faces necessary to complete
the rectangular parallelopip-
edon AK. The parallelopipe-
dons AZ and AK have a com-
mon base AN ; hence (P. XI.),

vol. AZ : wol AK :: AX : AE

The parallelopipedons AK and AG have a common alti-
tude AE; hence (P. XIL),

vol. AK : wol. AG :: AMNO : ABCD.

Multiplying these proportions, term by term, and omitting
the common factor, vol. AK, we have,

vol. AZ : wol. AG :: AMNO xAX : ABCD xAE;
or, since AMNO is equal to AM xAO, and ABCD to ABXxAD,
vol. AZ : wol. AG AM x AO xAX : ABxAD xAE;

which was to be proved.
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Cor. 1. If we make the three edges AM, AO, and AX,
cach equal to the linear unit, the parallelopipedon AZ be-
comes a cube constructed on that unit, as an edge; and
consequently, it is the unit of volume. Under this sup-
position, the last proportion becomes,

1 : wol. AG :: 1 : ABXADXAE;
whence, vol. AG — AB x AD x AE.

Hence, the volume of any rectansular parallelopipedon s
equal to the product of its three dimensions; that is, the
number of times which it contains the unit of volume, is
equal to the continued product of the number of linear
units in its length, the number of linear units in its
bréadth, and the number of linear units in its height.

Cor. 2. The volume of a rectansular parallelopipedorn s

equal to the product of its base and, altitude; that is, the

number of times which it contains the unit of volume, is
equal to the number of superficial units in its base, mul-
tiplied by the number of linear units in its altitude.

Cor. 3. The volume of any parallelopipedon is equal to
the product of its base and altitude (P. X, G0 1.

PROPOSITION XIV. THEOREM.

The volume of any prismy is equal to the prodwect of its

base and altitude.

Let ABCDE-K be any prism: then is its volume equal
to the product of its base and altitude.

For, through any lateral edge, as AF, and the other
lateral 'edges not in the same faces, pass the planes AH,
Al, dividing the prism into triangular prisms. These
prisms all have a common altitude equal to that of the

given prism.
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Now, the volume of any one of the triangular prisms,
as ABC-H, is equal to half that of a parallelopipedon con-
structed on the edges BA, BC, BG (P.

VIL, C.); but the volume of this paral-

lelopipedon is equal to the product of

its base and altitude (P. XIIL, C. 8

and because the base of the prism is

half that of the parallelopipedon, the

volume of the prism is also equal to

the product of its base and altitude:

hence, the sum of the triangular prisms,

which make up the given prism, is

equal to the sum of their bases, which make up the
base of the given prism, into their common altitude:
which was to be proved.

Cor. Any two prisms are to each other as the products
of their bases and altitudes. Prisms having equal bases
are to each other as their altitudes. Prisms having equal
altitudes are to each other as their bases.

PROPOSITION XV. THEOREM.

1 ~ g = - - 5
Two triansular pyramids having equal bases and equal

altitudes are equal in volume.

Let S-ABC, and S-ab¢, be two pyramids having their
equal bases ABC and abc in the same plane, and let AT
be their common altitude: then are they equal in wvol-
ume.

For, if they are mnot equal in volume, suppose ‘one of
them, as S-ABC, to be the greater, and let their difference
be equal to a prism whose base is ABC, and whose alti-
tude is Aa.
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Divido the  altitude AT into: equnli parts.s An, oy, i, they have the sa-me. altitude k, and lh?ir bases ‘EFD, efd,
Ciih of which is Jess than Aaq; and let K denobe one 4of are equal: for a like ‘1‘eas_4_ln, tI-‘H? tht‘rd exterior prism
these parts; through the points of division pass planes HIG-K, and the 3‘3(:'0“(1 mterior prism hig—d, are equal., 3‘11‘1
parallel to the.plane of the bases; the sections of the two so. on to t}w _Iast- in each set: hence, each of the exterior
pyramids, by each of these planes, are equal, namely, DEF PI'ISITf‘f:_e}f‘-’f?I)tlI‘-g the first B‘CA—D, has an _(‘-Q‘ml correspond-
B 7 GHi fo ghi &o. (P TLAC. 25, 1r?g Irt[ef'lm.al' prism ; the 1)1‘131‘11 BCA-D, is, .there_fore, the
difference between the sum of all the exterior prisms, and
the sum of all the interior prisms. But the difference
between these two sets of prisms is greater than that
between the two pyramids, which latter difference was
supposed to be equal to a prism whose base is BCA, and
whose altitude is equal to Aa, greater than k; conse-
quently, the prism BCA-D is greater than a prism having

the same base and a greater altitude, which is impossible :
hence, the supposed inequality between the two pyramids
can not exist; they are, therefore, equal in volume ; which
was to be proved.

b PROPOSITION XVI. THEOREM.

On the triangles ABC, DEF, &ec., as lower bases, con- Any triangular prism may be divided into three triansular
struct exterior prisms whose lateral edges are parallel t'() pyramids, equal to each other in volunve.
AS, and whose altitudes are equal to k: and on the‘ t%l-
angles def, ghi, &c., taken as upper bases, construct 11‘11.0&
rior prisms, whose lateral edges are pm-all'c—.-.i 1.” .“S' 3 Al Brinn palar S Uramids
equal to k. It is evident that the equal triangular pyramids.

For, through the edge AC, pass
the plane ACF, and through the

Let ABC-D be a triangular prism :
then can it be divided into three

whose altitudes are :
sum of the exterior prisms is greater than the pyranni(i

: also that the sum of the interior prisms I
]Se_:BCt’ll::dt};i&(;vi::;;{-il hLS—ubr:.-: hence, the difference be- edge E.F pass the plane EFC. The
- ‘01"' the exterior and the sum of the pyr.a-rnlds ACE-F and ECD-F, have
their bases ACE and ECD equal,
beecause they are halves of the

tween the sum : e o
interior prisms, is greater than the difference between th
two pyramids. : :
Now, beginning at the bases, the second exterior prism
EFD-G s equal to the first interior prism efd-a, because

same parallelogram ACDE; and they
have a common altitude, because
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their bases are in the same plane AD, and their vertices
at the same point F; hence, they are equal in volume
(P. XV.). The pyramids ABC-F and DEF-C, have their
bases ABC and DEF, equal, because they are the bases of
the given prism, and their altitudes are equal because
each is equal to the altitude of the prism; they are,
therefore, equal in volume: hence, the three pyramids
into which the prism is divided, are all equal in volume;
which was to be proved.

Cor. 1. A triangular pyramid is one third of a prism
having an equal base and an equal altitude.

Cor. 2. The volume of a triangular pyramid is equal
to one third of the product of its base and altitude.

PROPOSITION XVIL. THEOREM.

The volume of any pyramid, is equal to one third of the
product of its base and altitude.

Tet S-ABCDE, be any pyramid: then is its volume
aqual to one third of the product of its base and altitude.

For, through any lateral edge, as SE,
pass the planes SEB, SEC, dividing the S
pyramid into triangular pyramids. The \
altitudes of these pyramids- are equal to
each other, because each is equal to that
of the given pyramid. Now, the volume
of each triangular pyramid is equal to one
third of the product of its base and alti-
tude (P. XVL, C. 2); hence, the sum of
the volumes of the triangular pyramids,
is equal to one third of the product of the sum of their
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bases by their common altitude. But the sum of the
triangular pyramids is equal to the given pyramid, and
the sum of their bases is equal to the base of the given
pyramid: hence, the volume of the given pyramid is
equal to one third of the product of its base and altitude :
which was to be proved. I

Tt = L s

Cor. 1. The volume of a pyramid is equal to one third
of the volume of a prism having an equal base and an
equal altitude.

Cor. 2. Any two pyramids are to each other as the
products of their bases and altitudes. Pyramids having
equal bases are to each other as their altitudes. Pyramids
having equal altitudes are to each other as their bas;es.

Scholium. The volume of a polyedron may be found by
dividing it into triangular pyramids, and computing their
volumes separately. The sum of these volumes is equal
to the volume of the polyedron.

PROPOSITION XVIII. THEOREM.

The volume of a frustum of any triansular pyramid is
equal to the sum of the volumes of three pyramids
whose common altitude is that of the [rustum, and
whose bases are the lower base of the frustuni, the upper
base of the frustum, and a mean proportional between
the two bases.

Let FGH-h be a frustum of any triangular pyramid:
then is its volume equal to that of three pyramids whose
common altitude is that of the frustum, and whose bases
are the lower base FGH, the upper base fgh, and a mean
proportional between these bases.

For, through the edge FH, pass the plane FHg, and
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through the edge fg, pass the plane fgH, dividing the
frustum into three pyramids. The pyra-
mid g-FGH, has for its base the lower
base FGH of the frustum, and its alti-
tude is equal to that of the frustum,
because its vertex g is in the plane of
the upper base. The pyramid H-fgh,
has for its base the upper base fgh of
the frustum, and its altitude is equal to
that of the frustum, because itS8 vertex
lies in the plane of the lower base.

The remaining pyramid may be regarded as having the
triangle FfH for its base, and the point g for its vertex.
From g, draw gK parallel to fF, and draw also KH and
Kf. Then the pyramids K-FfH and g-FfH, are equal; for
they have a common base, and their altitudes are equal,
because their vertices K and g are in a line parallel to
the base (B. VL, P. XIL, C. 2).

Now, the pyramid K-FfH may be regarded as having
FKH for its base and f for its vertex. From K, draw KL
parallel to GH; it is parallel to gh: then the triangle
FKL is equal to fgh, for the side FK is equal to fg, the
angle F to the angle f, and the angle K to the angle g.
Buf, FKH is a mean proportional between FKL and FGH
(B. IV., P. XXIV., C)), or between fgh and FGH. The pyra-
mid f-FKH, has, therefore, for its base a mean propor-
tional between the upper and lower bases of the frustum,
and its altitude is equal to that of the frustum; but the
pyramid f~FKH is equal in volume to the pyramid g-FfH:
hence, the volume of the given frustum is equal to that
of three pyramids whose common altitude is equal to that
of the frustum, and whose bases are the upper base, the
Jower base, and a mean proportional between them ;
which was to be proved.
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Cor., The volume of the [frustum of any pyramid is
equal to the sum of the volumes of three pyramids whose
common. altitude is that of the frustum, and whose bases
are the lower base of the frustwm, the upper base of the
[frustum, and a mean proportional between them.

For, let ABCDE-e be a frustum of
a pyramid whose vertex is S, and let
PQ be a section parallel to the bases,
such that distance from S is a mean
proportional between the distances
from S to the two bases of the frus-
tum. ILet planes be passed through
SB, and SE, SD, dividing the frustum
into triangular frustums; the section

of each of the triangular frustums is a mean proportional

between its bases (P. IIL, €. 4). Now the sum of the tri-
angular frustums is equal to the sum of three sets of
pyramids, whose altitude is that of the given frustum.
The sum of the bases of the first set is the lower base
of the frustum, the sum of the bases of the second set
is the upper base of the frustum, and the sum of the
bases of the third set is a mean proportional between
these bases. Hence, the sum of the partial frustums,
that is, the given frustum, is equal to the sum of three
pyramids having the same altitude as the given frustum,
and whose bases are the two bases of the frustum and a
mean proportional between them. A
PROPOSITION XIX. THEOREM.
Stmilar triangular prisms arve to each other as the cubes
of their homologous edges.

Let CBD-P, c¢bd—-p, be two similar triangular prisms,
and let BC, be, be any two homologous edges: then is
the prism CBD-P to the prism cbd-p, as BC' to be'

|

P S ————
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For, the homologous angles B and b are equal, and the
faces which bound them are similar (D. 16): hence, these
triedral angles may be applied,
one to the other, so that the
angle c¢bd will coincide with
CBD, the edge ba with BA. In
this case, the prism cbd—p will

take the position Bed-p. From
A draw AH perpendicular to the
common base of the prisms:
then the plane BAH is perpendicular to the plane of the
common base (B. VL, P. XVL). From g, in the plane
BAH, draw ah perpendicular to BH: then ah is also per-
pendicular to the base BDC (B. VL, P. XVIL); and AH, ah,
are the altitudes of the two prisms.

Since the bases CBD, cbd, are similar, we have (B. IV,
P. XXV),

2

base CBD : base ¢bd :: CB® : cb.

Now, because of the similar triangles ABH, aBh, and of
the similar parallelograms AC, ac, we have,

AH = ak = CBe ¢l
hence, multiplying these proportions term by term, we have,
base CBD x<AH : base chdxah : CB® : ¢b’

But, base CBD xAH is equal to the volume of the prism
CDB-A, and base cbdxah is equal to the volume of the
prism cbd-p: hence,

prism CDB-P : prism cbd-p :: CB® : ¢b’;

which was to be proved.
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- e :
Cor. 1. Any two similar prisms are to each other as
the cubes of their homologous edges.

For, since the prisms are similar, their bases are simi-
lar polygons (D. 16); and these similar polygons may each
be divided into the same number of similar triangles,
similarly placed (B. IV., P. XXVL); therefore, each prism
may be divided into the same number of triangular
prisms, having their faces similar and like placed ; conse-
quently, the triangular prisms are similar (D. 16). But
these triangular prisms are to each other as the cubes of
their homologous edges, and being like parts of the polyg-
onal prisms, the polygonal prisms themselves are to ea;,ch
other as the cubes of their homologous edges.

Y — < = — - <

Cor. 2. Similar prisms are to each other as the cubes
of their altitudes, or as the cubes of any other homolo-
gous lines.

PROPOSITION XX. THEOREM.

Similar pyramids are to each other as the cubes of their

homologous edges.

Let S-ABCDE, and S-abede, be two similar pyramids, so
placed that their homologous angles at the vertex shall
coincide, and let AB and ab be any two
homologous edges: then are the pyra-
mids to each other as the cubes of AB
and ab.

For, the face SAB, being similar to
Sab, the edge AB is parallel to the edge
ab, and the face SBC being similar to
Sbe, the edge BC is parallel to be; hence,
the planes of the bases are parallel (B.
VE-P. XTH):
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Draw SO perpendicular to the base ABCDE; it will
also be perpendicular to the base abede. Iet it pierce
that plane at the point o; then SO is to
So, as SA is to Sa (P. IIL), or as AB is
to ab; hence,

350> 1501 AB = ab:

But the bases being similar polygons, we

have (B. IV., P. XXVIL),

base ABCDE - base abcde :: AB' : ab’

Multiplying these proportions, term  Pp, term, we have,

base ABCDE x3SO : base abecdexiSo :: AB' : ab"

But, base ABCDE x1S0O is equal to the volume of the pyra-
mid S-ABCDE, and base abcde x1So is equal to the volume
of the pyramid S-abcde; hence,

pyramid S-ABCDE : pyramid S-abcde : : AB® : ab’;

which was to be proved.

Cor. Similar pyramids are to each other as the cubes
of their altitudes, or as the cubes of any other homolo-

gous lines.

BOOK VII.

GENERAL FORMULAS.

If we denote the volume of any prism by V, its base

H

by B, and its altitude by H, we shall have (P. XIV.),
V="B'x H . <~ «

If we denote the volume of any pyramid by V, its
base by B, and its altitude by H, we have (P. XVIL),

V= Bx4H . = . < ieuteon

If we denote the volume of the frustum of any pyra-
mid by V, its lower base by B, its upper base by b, and
its altitude by H, we shall have (P. XVTIIL, ),

V=B+b+ VBxb) x¢d . . . (3)

REGULAR POLYEDRONS.

A ReGuLAR POLYEDRON is one whose faces are all equal
regular polygons, and whose polyedral angles are equal,
each to each. :

There are five regular polyedrons, namely:

1. The TETRAEDRON, or regular pyramid—a polyedron
bounded by four equal equilateral triangles.

2. The HEXAEDRON, or cube—a polyedron bounded by
six equal squares.

8. The OcrAEDRON—A polyedron bounded by eight equal
equilateral triangles.

4. The DODECAEDRON—a polyedron bounded by twelve
equal and regular pentagons.

e B T e b
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5. The IcosaAEDRON—a polyedron bounded by twenty
equal equilateral triangles. 5

In the Tetraedron, the triangles are grouped about the
polyedral angles in sets of three, in the Octaedron they
are grouped in sets of four, and in the Icosaedron they are
grouped in sets of five. Now, a greater number of equi-
lateral triangles can not be grouped so as to form a salient
polyedral angle; for, if they could, the sum of the plane
angles formed by the edges would be equal to, or greater
than, four right angles, which is impossible (B. VI, P. XX)).

In the Hexaedron, the squares are grouped about the
polyedral angles in sets of three. Now, a greater number
of squares can not be grouped so as to form a salient
polyedral angle; for the same reason as before.

In the Dodecaedron, the regular pentagons are grouped
about the polyedral angles in sets of three, and for the
same reason as before, they can not be grouped in any
greater number so as to form a salient polyedral angle.

Furthermore, no other regular polygons can be grouped
s0 as to form a salient polyedral angle; therefore,

Only five regular polyedrons can be formed.

TETRAEDRON OCTAEDRON ICOSAEDRON

A
9

HEXAEDRON DODECAEDRON

¢ EXERCISES.

1. What is the convex surface of a right prism whose
altitude is 20 feet and whose base is a pentagon each
side of which is 15 feet?

2. The altitude of a pyramid is 10 feet and the area
of its base 25 square feet; find the area of a section made

by a plane 6 feet from the vertex and parallel to the base.
3. Find the convex surface of a right triangular pyra-

mid, each side of the base being 4 feet and the slant
height 12 feet.

4. A right pyramid whose altitude is 8 feet and whose
base is a square each side of which is 4 feet, is cut by a
plane parallel to the base and 2 feet from the vertex ;
required the convex surface of the frustum included be-
tween the base and the cutting plane.

5. The three concurrent edges of a rectangular paral-
lelopipedon are 4, 6, and 8 feet ; find the length of the
diagonal.

6. Of two rectangular parallelopipedons having equal
bases, the altitude of the first is 12 feet and its volume
is 275 cubic feet; the altitude of the second is 8 feet
find its volume.

7. Two rectangular parallelopipedons having equal alti-
tudes are respectively 80 and 45 cubic feet in volume,
and the area of the base of the first is 12 square feet ;
find the base of the second and the altitude of both.

8. Find the volume of a triangular prism whose base
is an equilateral triangle of which the altitude is 8 feet,
the altitude of the prism being 8 feet.

9. The volumes of two pyramids having equal altitudes
are respectively 60 and 115 cubic yards and the base of
the smaller is 8 square yards; find the base of the larger.
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10. Given a pyramid whose volume is 512 cubic feet
and altitude 8 feet; find the volume of a similar pyramid
whose altitude is 12 feet, and find Mso the area of the
base of each.

11." Find the volume of the frustum of a right trian-
gular pyramid with each gside of the lower base 6 feet
and each side of the upper base 4 feet, the altitude being
5 feet.

12. Tind the volume of the pyramid of which the
frustum given in the last example is a frustum.

[Find the radii of the inscribed circles of the upper
and lower bases (B. IV., P. VL, C. 2); then the altitude of
the pyramid, slant height, and the two radii form two
similar triangles from which the altitude may be found.]

13. @iven two similar prisms; the base of the first
contains 30 square yards and its altitude is 8 yards; the
altitude of the second prism is 6 yards—find ifs volume
and the area of its base.

14, A pyramid, whose base is a regular pentagon of
which the apothem is 3.5 feet, contains 129 cubic feet;
fnd the volume of a similar pyramid, the apothem of
whose base is 4 feet.

1{5. Show that the four diagonals of a parallelopipedon
bisect each other in a common point.

16. Show that the two lines joining the points of the
opposite faces of a parallelopipedon, in which the diago-
nals of those faces intersect, bisect each other at the point
in which the diagonals of the parallelopipedon intersect.

17. Show that two regular polyedrons of the same kind
are similar.

18. Show that the surfaces of any two similar polye-
drons are to each other as the squares of any two
homologons edges

BOO K- NFI L

THE CYLINDER, THE CONE, AND THE SPHERE.

DEFINITIONS.

1. A Cyrmwper is a volume which may be generated

by a rectangle revolving about one of its sides as an axzs.

Thus, if the rectangle ABCD be turned about the side
AB, as an axis, it will generate the cylinder FGCQ-P.

The fixed line AB is called fhe awxis of
the cylinder; the curved surface generated
by the side CD, opposite the axis, is called
the convex surface of the cylinder; the equal
circles FGCQ, and EHDP, generated by the
remaining sides BC and AD, are called bases
of the cylinder ; and the perpendicular dis-
tance between the planes of the bases is
called the altitude of the cylinder.

The line DC, which generates the convex surface, is, in
any position, called an element of the surface: the ele-
ments are all perpendicular to the planes of the bases,
and any one of them is equal to the altitude of the cylinder.

Any line of the generating rectangle ABCD, as IK,
which is perpendicular to the axis, will generate a circle
whose plane is perpendicular to the axis, and which is
equal to either base: hence, any section of a cylinder by
a plane perpendicular to the axis, is a circle equal to
either base. Any section, FCDE, made by a plane through
the axis, is a rectangle double the generating rectangle.




