

UNIVERSIDAD AUTÓNOMA DE NUEVOLEON
DIRECCIÓN GENERA DE BIBLIOTECAS

$$
513+374
$$

UNIVERSIDAD AUTONOMA DE NUEVO LEON
DIRECCION GENERALIDE BIBLIOTECAS

Geometry and Trigonometry

FROM THE WORKS OF

A. M. LEGENDRE

ADAPTED TO THE COURSE OF MATHEMATICAI INSTRUOTION
ADAPTED TO THE COURSE UNTTED STATES

BY CHARLES DAVIES, LL.D

EDITED BY

DIRECCIÓN GENERA DE BIBI...at.ingan fana
AMERICAN BOOK COMPANY

DAVIES' MATHEMATICS.

-

THE WEST POINT COURSE,
mblioteca

P R E F A C EAcervo generad

1. COMMON SCHOOL COURSE.

DAVIES PRIMARX ARITHMETIC. - The fuodamentat principles displayed in ObDAVIES' INTELLECTVUAL ARITHMETIC.-Refering all operations to the unit a
 DAVIES ELEMENTS OR WRITTEN ARITHMETIC-A tion to the whiole subject. Theory suborainale - The most successful combintion DAVIES PRACTICAL ARUTHMETIC* - The H
II. ACADEMIC COURSE.
11. AUATY ARITHMETIC*-Trating the subject

DAVIES' UNIVERSITY ARITHMETIC* Treating the swicet exhaustively as a EIEMENTABY ALGEBRA*-A cannecting link, conducting the pupil

 DAVIES' ELEM ENTS OF SUBYEYING.
AVIES' ELEMENTS OF SURVEYING.
most practical presenution for youth of 12 to 16 .
III. COLIEGIATE COURSE.

0^{F}the various treatises on Elementary Geometry which have appeared during the present century, that of \mathbf{M}. Legendre stands pre-eminent. Its pecullar merits have won for it not only a European reputathon, but have also caused it to be selected as the basis of many of the best works on the subject that have been published in this country.

In the original treatise of Legendre, the propositions are not enuncrated in general terms, but by means of the diagrams employed in their demonstration. This departure from the method of Euclid is mueh to be regretted. The propositions of Geometry are general truths, and ought to be stated in general terms, without reference to particular diagrams. In the following work, each proposition is first enunctated in general terms, and afterward with reference to a particular flgare, that flgure befing taken to represent any one of the class to which it belongs. By this arrangement, the dimculty experienced by beginners in comprehending abstract truths is lessened, without in any manner fmpairing the generality of the truths evolved.

The term solid, used not only by Legendre, but by many other authors, to denote a limited portion of space, seems calculated to introduce the foreign idea of matter into a science which deals only with the abstract properties and relations of figured space. The term rotume has been introduced in its place, under the belief that it corresponas more exictly to the Idea intended. Many other departures have been made from the original text, the value and utility of which have been made manifest in the practical tests to which the work has been subjected.
D- In the present edition, numerous changes have been made, both in the Geometry and in the Trigonometry. The definitions have been carefolly revised-the demonstrations have been harmonized, and, in many instances, abbreviated-the prinelpal object being to simplify the subject is much as possible, without departing from the general plan. These changes are due to Professor Peok, of the Department of Pure Mathematics
and Astronomy in Columbia College. For his aid, in its present permanent form, I tender him my gratern

The edition of Legendre, referred to in the last pa Itered in form or substance; and yet, Geometry must
or subs and a ande more practical science, To attain this object, without derangingla/system is long ased, and so generally approved, an Appendix hion broblems of Geonfetifai construch is added to Legendre, embracing many Problems of G tion, and many applications of Algobra to Geometry.

It would be unjust to those giving instraction, to add to their dally labors, the additional one, of linding appropriate solutions to so many difficult problems: hence, a Key has been made for the use of Teachers, in which the best methods of constraction and solution are fully given.
FISHKIL-ON-HUDSOM, Gume, F875. CHAREES DA VIES.

CONTENTS.

GEOMETRY.

............................. 18

Exercises,

NOTE. - The edition of Legendire referred to in the foregoing preface was prepared by the late Professor Davies the year before his lamented death. The present edition is the result of a careful re-examination of the work, into which have been incorporated such emendations, in the way of greater clearness of expression of of proof, as could be made without altering it in form or substance.

Practical exercises have been placea at the end of the several books, and comprise additional theorems, problems, and numerical exercises upon the princfples of the Book or Books preceding. They will, it is hoped, be found of service in aceustoming students, early in and throughout their course, to make for themselves practical application of geometrio principles, and constitute, in adaition, a large body of review and test queetions for the convenience of teachers. for the convenience of teachers. he discussions and to make the treatment conform in every particular to the latest and best methods.

It is belleved that in clearness and precision of definition, in general simplleity and rigor of demonstration, in orderly and logical development of the subject, and in compactness of form, Davies Legendre is superlor to any work of its grade for the general training of the logical powers of pupils, and for their instruction in the great body of elementary geometric puphls,

NC

Exercises. .. 140

MADE NUTMor. LEON

Regular Polygons - Measurement of the Circle, $\ldots 1^{142}$ Exerclses, A
 185
Exercises,
BOOK VII 189
Polyedrons
Exercises, 221

CONTENTS.

Limiting Value of Gircular Functions, ... 57
Relations of Circuiar Funetions, ..69-61
Eunetions of Negative Ares,.. 62-65
Particular Values of Certain Functions,
66
of Tolation between Functions and Ares,67-70
…........... $70-71$
Functions of Doubio and
Additional Formulas,
Method of Computing a Table of Natural Sines
Mothod of Computing a Table of Natural sines, 84

SPHERICAL TRIGONOMETRY.

Spherical Trigonometry Deflned, 76General Principles,76
Formulas for Right-angied Triangles, $7 \pi-80$
Napler's Cireular Parts,80
Solution of Right-angled Spherical Triangles, 84-88
Quadrantal Triangles,................................... 89
Formalas for Oblique-angled Triangles 90-98
solution of Oblique-angled Triangles, 98-116

MENSURATION

Mensuration Defined

117The Area of a Parallelogram, 118
The Area of a Triangle190
Formula for the sine and Cosine of Half an Angle 120
Area of a Trapezoid, 126
Area of a Polygon, R 120
Area of a Regular Polygon 128
To flud the Gircumference of a Circl 130
To find the Dlameter of a Circle,................. 180
find the Length of an Arc, 181
rea of a circle
131
Area of a Sector,183
Area of a Segment. 133

Area of a Circular Ring
Division by Logarithms,Arithmetical ComplementRalsing to Poweris by Logarithms,Extraction of Roots by Logarithms,

PLAANE TRIGONOMETRY

Plane Trigonometry Dofined, Functions of an Arc,

17
$18-21$
 Use of the Table.
Solution of Right-angled Triangles,
4-27
solution of Oblique-angled Triangles, $86-49$

DTRECCION GENVBR

ANALYTICAL TRIGONOMETRY.

Analytical Trigonometry Defined,

Rules for Signs of the Fonctions,

Area of the Surface of a Prism, .. 184
Area of the Surface of a Pyramia,
Area of the Frustum of a Cone,
Area of the surface of a Sphere,
A rea of a Zone, . .a.................. 18 .. 187
Area of a spherical polygon.. 187
Volume of a Priem, ... 138
Volume of a Pyramid, _.. 139
Volume of the Frostum of a Pyramid, 189
Volume of a Sphere, ...d. A.
Volume of a wedge,
Volume of a Prismola,
Volumes of Regular Polyedrons,
141

LOGARITHMIC TABLES.

Logarithms of Numbers from 1 to 10,000 Sines and Tangents.
 1-16 $17-62$

UNIVERSIDAD AUTÓNC

ELEMENTS

OF

GEOMETRY.

INTRODUCTION.

DEFINITIONS OF TERMS.

1. QUaNITHY is any thing which can be increased, diminished, and measured.

To measure a thing, is to find out how many times it contains some other thing, of the same kind, taken as a standard. The assumed standard is called the unit of measure.
2. In Geommtry, there are four species of quantity, viz.: Lines, Surfaces, Volumes, and Angles. These are called Geometrical Magnitudes.

Since the unit of measure of a quantity is of the same kind as the quantity measured, there are four kinds of units of measure, viz.: Units of Length, Units of Surface, Units of Volume, and Units of Angular Measure.
3. Geometry is that branch of Mathematics which treats of the properties, relations, and measurement of the Geometrical Magnitudes.
4. In Geometry, the quantities considered are generally represented by means of the straight line and curve. The operations to be performed upon the quantities, and the relations between them, are indicated by signs, as in Analysis.

The following are the principal signs employed :
The Sign of Addition, + , called plus:
Thus, $A+B$, indicates that B is to be added to A.
The Sign of Subtraction, \rightarrow, called minus :
Thus, $A-B$, indicates that B is to be subtracted from A.

The Sign of Multiplication, x :
Thus, $A \times B$, Vindicates that A is to be multiplied by B.
The Sign of Division, $-\div$:
Thus, $A \div B$, or, A
divided by B, B indes
The Exponential Sign:
Thus, A^{3}, indicates that A is to be taken three times as a factor, or raised to the third power.

The Radical Sign,
Thus, $\sqrt{A}, \sqrt[3]{B}$, indicate that the square root of A, and the cube root of B, are to be taken.

When a compound quantity is to be operated upon as a single quantity, its parts are connected by a vinculum or by a parenthesis:
7 Thus, $\overline{A+B} \times C$, indicates that the sum of A and B is to be multiplied by, C; and $(A+B) \div C$, indicates that the sum of A and B is to be divided by C.

A number written before a quantity, shows how many times it is to be taken.

Thus, $3(A+B)$, indicates that the sum of A and B is to be taken three times.

The Sign of Equality, $=$:
Thus, $A=B+C$, indicates that A is equal to the sum of B and C.

The expression, $A=B+C$, is called an equation. The part on the left of the sign of equality is called the first member; that on the right, the second member.

The Sign of Inequality, <:
Thus, $\sqrt{A}<\sqrt[3]{B}$, indicates that the square root of A is less than the cube root of B. The opening of the sign is towards the greater quantity.

The sign, \therefore is used as an abbreviation of the word hence, or consequently.

The symbols, $1^{\circ}, 2^{\circ}$, etc., mean 1 st, 2 d , etc.
5. The general truths of Geometry are deduced by a course of logical reasoning, the premises being definitions and principles previously established. The course of reasoning employed in establishing any truth or principle is called a demonstration.
6. A Theorem is a truth requiring demonstration.
7. An Axiom is a self-evident truth.
8. A Problem is a question requiring solution.
9. A Postulate is a self-evident Problem.

Theorems, Axioms, Problems, and Postulates, are all called Propositions.
10. A Lemma is an auxiliary proposition.

D] 11. A Corollary is an obvious consequence of one or more propositions.
12. A Scholium is a remark made upon one or more propositions, with reference to their connection, their use, their extent, or their limitation.
13. An Hypothesis is a supposition made, either in the statement of a proposition, or in the course of a demonstration.
14. Magnitudes are equal to each other, when each contains the same unit an equal number of times.
15. Magnitudes are equal in all respects, when they may be so placed as to coincide throughout their whole extent; they are equal in all their parts when each part of one is equal to the corresponding part of the other, when taken either in the same or in the reverse order.

ELEMENTS OF GEOMETRY.

BOOK I.

ELEMENTARY PRINCIPLES.

DEFINITIONS.

1. Geometry is that branch of Mathematics which treats of the properties, relations, and measurements of the Geometrical Magnitudes.
2. A PornT is that which has position, but not magnitude.
3. A IJine is that which has length, but neither breadth nor thickness.

Lines are divided into two classes, straight and curved.
4. A Stratght Line is one which does not change its direction at any point.

When the sense is obvious, to avoid repetition, the word line, alone, is commonly used for straight line; and the word curve, alone, for curved line.
v 6. A line made up of straight lines,
6. A line made up of straight lines, not lying in the same direction, is called a broken line.
7. A Surface is that which has length and breadth without thickness.
13. An Hypothesis is a supposition made, either in the statement of a proposition, or in the course of a demonstration.
14. Magnitudes are equal to each other, when each contains the same unit an equal number of times.
15. Magnitudes are equal in all respects, when they may be so placed as to coincide throughout their whole extent; they are equal in all their parts when each part of one is equal to the corresponding part of the other, when taken either in the same or in the reverse order.

ELEMENTS OF GEOMETRY.

BOOK I.

ELEMENTARY PRINCIPLES.

DEFINITIONS.

1. Geometry is that branch of Mathematics which treats of the properties, relations, and measurements of the Geometrical Magnitudes.
2. A PornT is that which has position, but not magnitude.
3. A IJine is that which has length, but neither breadth nor thickness.

Lines are divided into two classes, straight and curved.
4. A Stratght Line is one which does not change its direction at any point.

When the sense is obvious, to avoid repetition, the word line, alone, is commonly used for straight line; and the word curve, alone, for curved line.
v 6. A line made up of straight lines,
6. A line made up of straight lines, not lying in the same direction, is called a broken line.
7. A Surface is that which has length and breadth without thickness.

Surfaces are divided into two classes, plane and curved surfaces.
8. A Plane is a surface, such, that if any two of its points be joined by a straight line, that line will lie wholly in the surface.
9. A Curved Surface is a surface which is neither a plane nor composed of planes.
10. A Plane Anglis is the amount of divergence of two straight lines lying in the same plane.
Thus, the amount of divergence of the lines $A B$ and $A C$, is an angle. The lines $A B$ and $A C$ are called sides, and their common point A, is called the vertex. An angle is designated by naming its sides, or sometimes by simply naming its vertex; thus, the above is called the angle BAC, or simply, the angle A.
11. When one straight line meets another, the two angles which they form are called adjacent angles. Thus, the angles ABD and DBC are adjacent. V
 12. A Right Angle is formed by one straight line meeting another so as to make the adjacent angles equal. The first $\quad \mid$ line is then said to be perpendioular to the second.
13. An Oblique Angle is formed by one straight line meeting another so as to make the adjacent angles unequal.

Oblique angles are subdivided into two classes, acute angles, and obtuse angles.
14. An Acute Angle is less than a right angle.

15. An Obtuse Angle is greater than a right angle.
16. Two straight lines are parallel, when they lie in the same plane and can not meet, how far soever, either way, both may be produced. They then have the same direction.
17. A Plane Figure is a portion of a plane bounded by lines, either straight or curved.
18. A Polygon is a plane figure bounded by straight lines.

The bounding lines are called sides of the polygon. The broken line, made up of all the sides of the polygon, is called the perimeter of the polygon. The angles formed by the sides are called angles of the polygon.
19. Polygons are classified according to the number of their sides or angles.

A Polygon of three sides is called a triangle; one of four sides, a quadrilateral; one of five sides, a pentagon; one of six sides, a hexagon; one of seven sides, a heptagon; one of eight sides, an octagon; one of ten sides, a decagon; one of twelve sides, a dodecagon, \&e.

- 20. An Equifaterat Pofigoy is one whose sides are

An Equiangular Polygon is one whose angles are all equal.
D.
A. A Regunar Porygon is one which is both equilateral and equiangular. 1 L
21. Two polygons are mutually equilateral, when their sides, taken in the same order, are equal, each to each : that is, following their perimeters in the same direction, the first
side of the one is equal to the first side of the other, the second side of the one to the second side of the other, and so on.
22. Two polygons are mutually equiangular, when their angles, taken in the same order, are equal, each to each.
23. A Diagonat of a polygon is a straight line joining the vertices of two angles, not consecutive.
24. A Bask of a polygon is any one of its sides on which the polygon is supposed to stand.
-25. Triangles may be classified with reference to either their sides, or their angles.

When classified with reference to their sides, there are two classes: scalene and isosceles.

1st. A Soaliene Treangle is one which has no two of its sides equal.

2d. An Isoscries Triangie is one which has two of its sides equal.

When all of the sides are equal, the triangle is Equilateral.
When classified with reference to their angles, there are two classes: right-angled and oblique-angled.

1st. A Right-angled Triangle is one that has one right angle.

The side opposite the right angle is called the hypothenuse.

2d. An Oblique-angled Triangle is one whose angles are all oblique.

If one angle of an oblique-angled triangle is obtuse, the triangle is said to be obTUSE-ANGled. If all of the angles are acute, the triangle is said to be ACUTE-ANGLED.
26. Quadrilaterals are classified with reference to the relative directions of their sides. There are then two classes; the first class embraces those which have no two sides parallel; the second class embraces those which have at least two sides parallel.

Quadrilaterals of the first class, are called trapeziums.
Quadrilaterals of the second class, are divided into two species: trapezoids and parallelograms.
27. A Trapezom is a quadrilateral which has only two of its sides parallel.
28. A Paramiklogram is a quadrilateral which has its opposite sides parallel, two and two.
There are two varieties of parallelograms: rectangles and rhomboids.

1st. A Reoringle is a parallelogram \square
hose angles are all right angles.

MA, REMEMEDEO

2d. A Rномвоі is a parallelogram whose angles are all oblique. AS

A Rhombus is an equilateral rhomboid.
29. SPACE is indefinite extension.
30. A Volume is a limited portion of space, combining the three dimensions of length, breadth, and thickness.

1. Things which are equal to the same thing, are equal to each other.
2. If equals are added to equals, the sums are equal.
3. If equals are subtracted from equals, the remainders are equal.
4. If equals are added to unequals, the sums are unequal.
5. If equals are subtracted from unequals, the remainders are unequal.
6. If equals are multiplied by equals, the products are equal.
7. If equals are divided by equals, the quotients are equal.
8. The whole is greater than any of its parts.
9. The whole is equal to the sum of all its parts.

POSTULATES

1. A straight line can be drawn joining any two points.
2. A straight line may be prolonged to any length.
3. If two straight lines are unequal, the length of the less may be laid off on the greater.
4. A straight line may be bisected; that is, divided into two equal parts.
5. An angle may be bisected.
6. A perpendicular may be drawn to a given straight line, either from a point without, or from a point on the line.
7. A straight line may be drawn, making with a given straight line an angle equal to a given angle.
8. A straight line may be drawn through a given point, parallel to a given line.

NOTE.

In making references, the following abbreviations are employed, viz: A. for Axiom: B. for Book; C. for Corollary; D. for Definition; I for Introduction; P. for Proposition; Prob, for Problem; Post. for Postalate; and S. for Scholium. In referring to the same Book, the number of the Book is not given; in referring to any other Book, the number of the Book is given.
MA DE NUEVO LEON
[10. All right angles are equal. 11. Only one straight line can be drawn joining two given points.
12. The shortest distance from one point to another is measured on the straight line which joins them.
13. Through the same point, only one straight line can be drawn parallel to a given straight line.

PROPOSITION I THEOREM.

If a straight line meets another straight line, the sum of the adjacent angles is equal to two right angles.

Let $D C$ meet $A B$ at C : then is the sum of the angles DCA and DCB equal to two right angles.

At C, let CE be drawn perpendicular to $A B$ (Post. 6) ; then, by definition (D. 12), the angles ECA

and ECB are both right angles, and consequently, their sum is equal to two right angles.

The angle DCA is equal to the sum of the angles ECA and ECD (A. 9); hence,

$$
\begin{aligned}
& \mathrm{DCA}+\mathrm{DCB}=\mathrm{ECA}+\mathrm{ECD}+\mathrm{DCB} \text {; } \\
& \mathrm{ECD}+\mathrm{DCB} \text { is equal to } \mathrm{ECB}(\mathrm{~A} .9) \text {; hence, } \\
& \mathrm{DCA}+\mathrm{DCB}=\mathrm{ECA}+\mathrm{ECB} .
\end{aligned}
$$

The sum of the angles ECA and ECB, is equal to two
right angles; consequently, its equal, that is, the sum of
the angles DCA and DCB, must also be equal to two right angles; which was to be proved.

Cor. 1. If one of the angles $D C A, D C B$, is a right angle, the other must also be a right angle.

Cor. 2. The sum of the angles $B A C, C A D, D A E, E A F$, formed about a given point on the same side of a straight line $B F$, is equal to two right angles. For, their sum is equal to the sum of the
angles $E A B$ and EAF; which, from the proposition just demonstrated, is equal to two right angles.

DEFINITIONS

If two straight lines intersect each other, they form four angles about the point of intersection, which have received different names, with respect to each other.
1°. Adjacent Angles are those which lie on the same side of one line, and on opposite sides of the other; thus, $A C E$ and ECB, or $A C E$ and $A C D$, are adjacent
 angles.
2°. Opposite, or Vertical Angliks, are those which lie on opposite sides of both lines; thus, $A C E$ and $D C B$, or $A C D$ and ECB, are opposite angles. From the proposition just demonstrated, the sum of any two adjacent angles is equal to two right angles.

PROPOSITION II. THEOREM.
If two straight lines intersect each other, the opposite or Net $A B$ and $D E$ vertical angles are equat. C : then are the opposite or vertical angles equal.
D
F The sum of the adjacent angles $A C E$ and $A C D$, is equal to
 two right angles (P. I.) : the sum of the adjacent angles ACE and ECB, is also equal to two right angles. But things which are equal to the same thing, are equal to each other (A. 1) ; hence,

$$
\mathrm{ACE}+\mathrm{ACD}=\mathrm{ACE}+\mathrm{ECB} ;
$$

Taking from both the common angle ACE (A. 3), there remains,

In like manner, we find,

$$
A C D+A C E=A C D+D C B
$$

and, taking away the common angle $A C D$, we have,

$$
\begin{aligned}
& \text { Hence, the proposition is proved. } \\
& \qquad A C E=D C B .
\end{aligned}
$$

Hence, the proposition is proved.

Cor. 1. If one of the angles about C is a right angle, all of the others are right angles also. For, (P. I., C. 1), each of its adjacent angles is a right angle; and from the proposition just demonstrated, its opposite angle is also a right angle.

Cor. 2. If one line $D E$, is per-
pendicular to another $A B$, then is the second line $A B$ T perpendicular to the first $D E$. For, the angles DCA and
DCB are right angles, by definition (D. 12); and from what has just been proved, the angles ACE and BCE are also right angles. Hence, the two lines are mutually perpendicular to each other.
Cor. 3. The sum of all the angles $A C B, B C D, D C E, E C F, F C A$, that can be formed about a point, is equal to four right angles.

For, if two lines are drawn through the point, mutually perpendicular to each other, the sum of the angles which they form is equal to four right angles, and it is also equal to the sum of the given angles (A. 9). Hence, the sum of the given angles is equal to four right angles.

PROPOSITION III. THEOREM.

If two straight lines have two points in common, they coincide throughout their whole extent, and form one and the same line.

Let A and B be two points common to two lines: then the A B C D lines coincide throughout.

Between A and B they must
coincide (A. 11). Suppose, now, that they begin to separate at some point C, beyond $A B$, the one becoming $A C E$, and the other $A C D$. If the lines do separate at C, one or the other must change direction at this point; but this is contradictory to the definition of a straight line (D. 4): hence, the supposition that they separate at any point is absurd. They must, therefore, coincide throughout; which
Nas to be proved. cor. Two straight lines can intersect in only one point.
Note.-The method of demonstration employed above, is called the reductio ad absurdum. It consists in assuming an hypothesis which is the contradictory of the proposition to be proved, and then continuing the reasoning until the assumed hypothesis is shown to be false. Its contradietory is thus proved to be true. This method of demonstration is often used in Geometry.

BOOK I.

PROPOSITION IV. THEOREM

If a straight line meets two other straight lines at a common point, malving the sum of the contiguous angles equal to two right ansles, the two lines met form one and the same straight line.

Let $D C$ meet $A C$ and $B C$ at C,
making the sum of the angles DCA and DCB equal to two right angles: then is $C B$ the prolongation of AC.
IT For, if not, suppose CE to be the prolongation of AC then is the sum of the angles DCA and DCE equal to two right angles (P. I.): consequently, we have (A. 1), $1 \mathrm{DCA}+\mathrm{DCB}=\mathrm{DCA}+\mathrm{DCE}$;

Taking from both the common angle DCA, there remains

```
DCB = DCE
```

which is impossible, since a part can not be equal to the
whole (A. 8). Hence, CB must be the prolongation of $A C$;

PROPOSITION V. THEOREM

If two triangles have two sides and the inctuded angle of the one equal to two sides and the inctuded angle of the other, each to each, the triangles are equal in all respects.

In the triangles $A B C$ and $D E F$, let $A B$ be equal to $D E$,
$A C$ to $D F$, and the angle A to the angle D : then are the triangles equal in all respects.

For, let $A B C$ be applied to DEF, in such a manner that the angle A shall coincide with the angle D, the side $A B$
 taking the direction $D E$ and the side $A C$ the direction $D F$. Then, because $A B$ is equal to $D E$, the ver tex B will coincide with the vertex E; and because $A C$ is equal to $D F$, the vertex C will coincide with the vertex F; consequently, the side BC will coincide with the side EF (A. 11). The two triangles, therefore, coincide throughout, and are consequently equal in all respects (I., D. 15); which was to be proved.

PROPOSITION VI. THEOREM.

If two triangles have two angles and the inciuded side of the one equal to two angles and the included side of the other, each to each, the triangles are equal in all respects.
N \triangle In the triangles $A B C$ and $D E F$, let the angle B be equal to the angle E, the angle C to the angle F, and the side $B C$ to the side EF: then are the triangles equal in all respects.

For, let $A B C$ be applied to DEF in such a manner that the angle B shall coincide with the angle E, the side $B C$ taking the direction $E F$, and the side $B A$ the diree
tion ED. Then, because $B C$ is equal to $E F$, the vertex C will coincide with the vertex F; and because the angle C is equal to the angle F, the side $C A$ will take the direction FD. Now, the vertex A being at the same time on the limes $E D$ and $F D$, it must be at their intersection D (P. MI. O.): hence, the triangles coincide throughout and are therefore equal in all respects (I., D. 15) ; which was to be proved. LAMMAMY

PROPOSITION VII. THEOREM.

TT) sum of amy two sides of a triangle is greater than the
third side. Let $A B C$ be a triangle: then will the sum of any two sides, as $A B, B C$, be greater than the third side AC.

For, the distance from A to C, measured on any broken line $A B, B C$, is greater than
 the distance meastred on the straight line $A C$ (A. 12) : hence, the sum of $A B$ and $B C$ is greater than $A C$; which was to be proved.

Cor. If from both members of the inequality,
U N $V \square \cap A C<A B+B C$,
we take away either of the sides $A B, B C$, as $B C$, for example, there remains (A. 5),

$$
\text { DIR } A C-B C<A B ; \subset D R D
$$

that is, the difference between any two sides of a triangle is less than the third side.

Scholium. In order that any three given lines may rep-
resent the sides of a triangle, the sum of any two must be greater than the third, and the difference of any two must be less than the third.

PROPOSITION VIII. THEOREM.

| if from any point within a triangle two straight lines are drawn to the extremities of any side, their sum is less than that of the two remaining sides of the triangle.

Let O be any point within the triangle $B A C$, and let the lines $O B, O C$, be drawn to the extremities of any side, as $B C$: then the sum of $B O$ and $O C$ is less than the sum of the sides BA and AC.

Prolong one of the lines, as BO,

till it meets the side $A C$ in D; then, from Prop. VII., we have,

$$
O C<O D+D C
$$

adding $B O$ to both members of this inequality, recollecting that the sum of $B O$ and $O D$ is equal to $B D$, we have (A. 4),

$$
B O+O C<B D+D C .
$$

AFrom the triangle BAD, we bave (P . VII), ,

$$
B D<B A+A D
$$

adding $D C$ to both members of this inequality, recolleeting that the sum of $A D$ and $D C$ is equal to $A C$, we have,
$B D+D C<B A+A C$.
But it was shown that $B O+O C$ is less than $B D+D C$; still more, then, is $B O+O C$ less than $B A+A C$; which was to be proved.

PROPOSITION IX. THEOREM

2 If two triangles have two sides of the one equal to two sides of the other, each to each, and the included angles unequal, the third sides are unequal; and the greater side belongs to the triangle which has the greater inctuded angle. ALERE FLAMMAM
In the triangles $B A C$ and $D E F$, let $A B$ be equal to $D E$, $A C$ to $D F$, and the angle A greater than the angle D : then is BC greater than EF.

- Let the line $A G$ be drawn, making the angle CAG equal to the angle D (Post. 7); make $A G$ equal to $D E$, and draw GC. Then the triangles AGC and DEF have two sides and the incladed angle of the one equal to two sides and the included angle of the other, each to each; consequently, GC is equal to EF (P. V.).

Now, the point G may be without the triangle $A B C$, it may be on the side $B C$, or it may be within the triangle ABC. Wach case will be considered separately.

whence, by addition, recollecting that the sum of BI and $I C$ is equal to $B C$, and the sum of $G I$ and $I A$, to $G A$, we have,

$$
A G+B C>A B+G C
$$

Or, since $A G=A B$, and $G C=E F$, we have,

$$
A B+B C>A B+E F .
$$

Taking away the common part $A B$, there remains (A. 5),

$$
\mathrm{BC}>\mathrm{EF} .
$$

2°. When G is on $B C$.
In this case, it is obvious that GC is less than BC; or since $G C=E F$, we have,

$$
\mathrm{BC}>\mathrm{EF} .
$$

3°. When G is within the triangle $A B C$.
From Proposition VIII, we have,

$$
B A+B C>G A+G C
$$

$$
\text { or, since } G A=B A \text {, and } G C=E F \text {, we }
$$

have,

$$
B A+B C>B A+E F
$$

Taking away the common part $A B$, there remains,

$$
\mathrm{BC}>\mathrm{EF} .
$$

Hence, in each case, BC is greater than EF; which was to be proved.
A Conversely: If in two triangles $A B C$ and $D E F$, the side $A B$ is equal to the side $D E$, the side $A C$ to $D F$, and $B C$ greater than $E F$, then is the angle $B A C$ greater than the angle EDF.
For, if not, BAC must either be equal to, or less than,
$E D F$. In the former case, $B C$ would be equal to $E F$ (P. V.), and in the latter case, BC would be less than EF; either of which would contradict the hypothesis: hence, BAC must be greater than EDF.

PROPOSITION X . THEOREM.

If two triangles have the three sides of the one equal to the three sides of the other, each to each, the triangles are equat in all respects.
In the triangles $A B C$ and $D E F$, let $A B$ be equal to $D E$, $A C$ to $D F$, and $B C$ to $E F$: then are the triangles equal in all respeets. ALERE FLAMMAMM
For, since the sides $A B, A C$, are equal to $D E, D F$, each to each, if the angle A were greater than D, it would follow, by the last Proposition, that the side BC would be greater than EF; and if the angle A were less than
 D, the side $B C$ would be less than $E F$. But $B C$ is equal to EF, by hypothesis; therefore, the angle A can neither be greater nor less than D : hence, it must be equal to it. The two triangles have, therefore, two sides and the included angle of the one equal to two sides and the included angle of the other, each to each; and, consequently, they are equal in all respects (P. V.); which was to be proved.
Scholium. In triangles, equal in all respects, the equal sides lie opposite the equal angles; and conversely.

PROPOSITION XI THEOREM.

In an isosceles triangle the angles opposite the equat sides
are equal.
Let $B A C$ be an isosceles triangle, having the side $A B$ equal to the side $A C$: then the angle C is equal to the angle B.

Join the vertex A and the middle point D of the base $B C$. Then, $A B$ is equal to $A C$, by hypothesis, $A D$ common, and $B D$ equal to $D C$, by construction: hence, the triangles $B A D$, and DAC, have the three sides of the one equal to those of the other, each to each; therefore, by the last Proposition, the angle B is equal to the angle C; which was to be proved.

Cor. 1. An equilateral triangle is equiangular.
Cor. 2. The angle $B A D$ is equal to $D A C$, and $B D A$ to CDA : hence, the last two are right angles. Consequently, a straight line drawn from the vertex of an isosceles triangle to the midalle of the base, bisects the angle at the vertex, and is perpendicular to the base.

PROPOSITION XII THEOREM.

If two angles of a triangle are equal, the sides opposite to them are also equal, and consequently, the triangle is isasceles.
In the triangle $A B C$, let the angle $A B C$ be equal to the angle $A C B$: then is $A C$ equal to $A B$, and consequently, the triangle is isosceles.

For, if $A B$ and $A C$ are not equal,
 suppose one of them, 28 AB , to be the
greater. On this, take $B D$ equal to $A C$ (Post. 3), and draw DC. Then, in the triangles $A B C, D B C$, we have the side $B D$ equal to $A C$, by construction, the side $B C$ common, and the included angle $A C B$ equal to the included angle $D B C$, by hypothesis : hence, the two triangles are equal

GEOMETRY.

in all respects (P. V.). But this is impossible, because a part can not be equal to the whole (A. 8) : hence, the hypothesis that $A B$ and $A C$ are unequal, is false. They must, therefore, be equal; which was to be proved.

Cor. An equiangular triangle is equilateral.

ALEREOPOSITION XIII THEOREM.

In
any triangle, the greater side is opposite the greater
angle; and, conversely, the greater angle is opposite the greater side.

In the triangle $A B C$, let the angle
$A C B$ be greater than the angle $A B C$:
then the side $A B$ is greater than the
side $A C$.
For, draw $C D$, making the angle $B C D$ equal to the angle B (Post. 7) : then, in the triangle $D C B$, we have the angles $D C B$ and $D B C$ equal : hence, the opposite sides DB and DC are equal (P. XII.). In the triangle $A C D$, we have (P . VII.),

$$
A D+D C>A C
$$

which was to be proved.

Conversely: Let $A B$ be greater than $A C$: then the angle $A C B$ is greater than the angle $A B C$.

For, if $A C B$ were less than $A B C$, the side $A B$ would be less than the side $A C$, from what has just been proved; if $A C B$ were equal to $A B C$, the side $A B$ would be equal to $A C$, by Prop. XII. ; but both conclusions contradict
the hypothesis: hence, $A C B$ can neither be less than, nor equal to, $A B C$; it must, therefore, be greater; which was to be proved.

PROPOSITION XIV. THEOREM.

From a given point only one perpendicular can be drawn to a siven straight line.

Let A be a given point, and $A B$ a perpendicular to $D E$: then can no other perpendicular to $D E$ be drawn from A.

For, suppose a second perpendicular $A C$ to be drawn. Prolong $A B$ till $B F$ is equal to $A B$, and draw $C F$. Then, the triangles $A B C$ and $F B C$ have $A B$ equal to $B F$, by construction, $C B$ common, and the included angles $A B C$ and FBC equal, because both are right angles: hence, the angles $A C B$ and $F C B$ are equal (P. V.). But $A C B$ is, by a hypothesis, a right angle: hence, FCB must also be a right angle, and consequently, the line ACF must be a straight line (P. IV.): But this is impossible (A. 11). The hypothesis that two perpendiculars can be drawn is, therefore, absurd; consequently, only one such perpendicular can be drawn; which was to be proved.

If the given point is on the given line, the proposition is equally true. For, if from A two perpendiculars $A B$ and $A C$ could be drawn to $D E$, we should have BAE and CAE each equal to a right angle; and consequently, equal to each other; which is absurd (A. 8).
 3

PROPOSITION XV. THEOREM

If from a point without a straight line a perpendicular is let fall on the line, and oblique lines are drawn to different points of it:

1. The perpendicular is shorter than any oblique line.
2°. Any two obligue lines that meet the given line at points equally distant from the foot of the perpendicular, are equal.
3°. Of two obtique lines that meet the siven line at points unequally distant from the foot of the perpendicular, the one which meets it at the greater distance is the longer.

Let A be a given point, $D E$ a given straight line, $A B$ a perpendicular to $D E$, and $A D, A C, A E$ oblique lines, $B C$ being equal to $B E$, and $B D$ greater than $B C$. Then $A B$ is less than any of the oblique lines, $A C$ is equal to $A E$, and $A D$ greater than $A C$.

Prolong $A B$ until $B F$ is equal to $A B$, and draw
FC, FD.
1°. In the triangles $A B C, F B C$, we have the side $A B$ equal to $B F$, by construction, the side $B C$ common, and the included angles $A B C$ and $F B C$ equal, because both are right angles: hence, $F C$ is equal to $A C$ (P. V.). But, $A F$ is shorter than $A C F(A .12)$: hence, $A B$, the half of $A F$, is shorter than $A C$, the half of $A C F$; which was to be proved.
2°. In the triangles $A B C$ and $A B E$, we have the side $B C$ equal to $B E$, by hypothesis, the side $A B$ common, and the included angles $A B C$ and $A B E$ equal, because both are
right angles: hence, $A C$ is equal to $A E ;$ which was to be proved.
3°. It may be shown, as in the first case, that $A D$ is equal to DF. Then, because the point C lies within the triangle $A D F$, the sum of the lines $A D$ and $D F$ is greater than the sum of the lines $A C$ and CF (P. VHI): hence, $A D$, the half of $A D F$, is greater than $A C$, the half of ACF; which was to be proved.

Cor. 1. The perpendicular is the shortest distance from a point to a line.

Cor. 2. From a given point to a given straight line, only two equal straight lines can be drawn; for, if there could be more, there would be at least two equal oblique lines on the same side of the perpendicular; which is impossible.

PROPOSTTION XVI. THEOREM.

If a perpendicular is drawn to a siven straight line at its middle point:
1.. Any point of the perpendicutar is equally distant from the extremities of the line:
2°. Any point, without the perpendicular, is wnequally distant from the evtremities.
Let $A B$ be a given straight line, C its middle point, and $E F$ the perpendicular. Then any point of EF is equally distant from A and B; and any point without $E F$, is unequally distant from A and B.
1°. From any point of EF, as D, draw the lines DA and DB. Then DA and DB
 are equal (P. XV.) : hence, D is equally
Y distant from A and B; which was to be proved.
2°. From any point without $E F$, as I, draw $I A$ and IB. One of these lines, as IA, will cut EF in some point D; draw $D B$. Then, from what has just been shown, DA and DB are equal; but $I B$ is less than the sum of $I D$ and $D B$ (P . VII) ; and because the sum of $I D$ and $D B$ is equal to the sum of ID and $D A$, or $I A$, we have $I B$ less than $I A$: hence, I is unequally distant from A and B; which was to be proved.

Cor. If a straight line, EF, has two of its points, E and F, each equally distant from A and B, it is perpendicular to the line $A B$ at its middle point.

PROPOSITION XVIL THEOREM.

If two right-angled triangles have the hypothenuse and a side of the one equat to the hypothenuse and a side of the other, each to each, the triangles are equal in all respects.
Let the right-angled triangles $A B C$ and $D E F$ have the hypothenuse $A C$ equal to $D F$, and the side $A B$ equal to $D E$: then the triangles are equal in all respects.

If the side BC is equal to EF , the triangles are equal, in accordance with Proposition X. Let us suppose then, that $B C$ and $E F$ are unequal, and that $B C$ is the longer. On BC lay off $B G$ equal to $E F$, and draw $A G$. The triangles $A B G$ and $D E F$ have $A B$ equal to $D E$, by hypothesis, $B G$ equal to $E F$, by construction, and the angles B and E
equal, because both are right angles; consequently, $A G$ is equal to DF (P. V.). But, $A C$ is equal to $D F$, by hypothesis: hence, $A G$ and $A C$ are equal, which is impossible (P. XV.). The hypothesis that BC and EF are unequal, is, therefore, absurd: hence, the triangles have all their sidee equal, each to each, and are, consequently, equal in all respects; which was to be proved.

PROPOSITION XVIII. THEOREM.
If two straight lines are perpendioular to a third straight line, they are parallel.
Let the two lines $A C, B D$, be perpendicular to $A B$: then they are parallel.
For, if they could meet in a point 0 , there would be two perpendiculars $O A, O B$, drawn from the same point to the same straight line; which is
impossible (P. XIV.) : hence, the lines are parallel ; which was to be proved.

DEFINITIONS

If a straight line EF intersect two other straight lines $A B$ and $C D$, it is called a secant, with respect to them. The eight angles formed about the points of intersection have different names, with respect to each other:

1. Intertior angles on the same

side, are those that lie on the same
side of the secant and within the other two lines. Thus, BGH and GHD are interior angles on the same side.
2°. ExtERIOR ANGLES ON THE SAME SIDE are those that lie on the same side of the secant and without the other two lines. Thus, EGB and DHF are exterior angles on the same side.
 that lie on opposite sides of the secant and within the other two lines, but not adjacent. Thus, AGH and GHD are alternate angles.
4°. AETERNATE ExTERRIOR ANGLES are those that lie on opposite sides of the secant and without the other two lines. Thus; AGE and FHD are alternate exterior angles.

5\%. OPPOSITE EXTERIOR AND INTERIOR ANGLES are those that lie on the same side of the secant, the one within and the other without the other two lines, but not adjacent. Thus, EGB and GHD are opposite exterior and interior angles.

PROPOSITION XIX. THEOREM

If two straight lines meet a third straight line, making the sum of the interior angles on the same side equat to two right angles, the two lines are parallel.

Let the lines $K C$ and $H D$ meet the line $B A$, making the sum of the angles $B A C$ and $A B D$ equal to two right angles; then $K C$ and $H D$ are parallel. \square
Through G, the middle point of $A B$, draw $G F$ perpendieular to $K C$, and prolong it to E.

The sum of the angles GBE and $G B D$ is equal to two right
angles (P. I.); the sum of the angles FAG and GBD is equal to two right angles, by hypothesis: hence (A. 1),

$$
\mathrm{GBE}+\mathrm{GBD}=\mathrm{FAG}+\mathrm{GBD} .
$$

Taking away the common part GBD, we have the angle GBE equal to the angle FAG. Again, the angles BGE and AGF are equal, because they are vertical angles (P. II.): hence, the triangles GEB and GFA have two of their angles and the included side equal, each to each; they are, therefore, equal in all respects (P. VL.): hence, the angle GEB is equal to the angle GFA. But, GFA is a right angle, by construction; GEB must, therefore, be a right angle: hence, the lines $K C$ and $H D$ are perpendicular to EF, and are, therefore, parallel (P. XVII.) ; which was to be proved.

Cor. 1. If two straight lines are cut by a third straight line, making the alternate angles equal to each other, the two straight lines are parallel.

Let the angle HGA be equal to GHD. Adding to both the angle HGB, we have,

$$
H G A+H G B=G H D+H G B .
$$

But the first sum is equal to two
right angles (P. I.) : hence, the sec-
ond sum is also equal to two right angles; therefore, from what has just been shown, $A B$ and $C D$ are parallel.

Cor. 2. If two straight lines are cut by a third, making the opposite exterior and interior angles equal, the two straight lines are parallel. Let the angles EGB and GHD be equal: Now EGB and AGH are equal, because they are vertical angles (P. II.) ; and consequently, AGH and GHD are equal : hence, from Cor. 1, $A B$ and $C D$ are parallel.

PROPOSTTION XX. THEOREM.

4 If a straight line intersects two parallel straight lines, the sum of the interior angles on the same side is equal to two right angles.

Let the parallels $A B, C D$, be cut by the secant line $F E$: then the sum of $H G B$ and $G H D$ is equal to two right angles.

For, if the sum of HGB and GHD is not equal to two right angles, let IGL be drawn, making the sum of HGL and GHD equal to two right angles; then IL and CD are parallel (P. XIX.) ; and consequently, we have two lines, GB, GL, drawn through the same point G and parallel to CD, which is impossible (A. 13): hence, the sum of HGB and GHD is equal to two right angles; which was to be proved.

In like manner, it may be proved that the sum of HGA and GHC is equal to two right angles.

Cor. 1. If HGB is a right angle, GHD is a right angle also: henee, if a line is perpendicular to one of two parallels, it is perpendicular to the other also.

Cor. 2. If a straight line intersects two parallels, the alternate angles are equal.

For, if $A B$ and $C D$ are parallel, the sum of BGH and GHD is equal to two right angles; the sum of BGH and HGA is also equal to two right angles (P. I.) : hence, these sums are equal. Taking away the

common part BGH, there remains the angle GHD equal to HGA. In like manner, it may be shown that BGH and GHC are equal.

Cor. 3. If a straight line intersects two parallels, the opposite exterior and interior angles are equal. The angles DHG and HGA are equal, from what has just been shown. The angles HGA and BGE are equal, because they are vertical : hence, DHG and BGE are equal. In like manner, it may be shown that CHG and AGE are equal.

Scholium. Of the eight angles formed by a line cutting two parallel lines obliquely, the four acute angles are equal, and so, also, are the four obtuse angles.

PROPOSITION XXI. THEOREM.

If two straight lines intersect a third straight line, making the sum of the interior angles on the same side less than two right angles, the two lines will meet if sufficiently produced.

Let the two lines CD, IL, meet the line EF, making the sum of the interior angles HGL, GHD, less than two right angles: then will IL and CD meet if sufficiently produced.

For, if they do not meet, they must be parallel (D, 16). But, if they were parallel, the sum of the
interior angles HGL, GHD, would be equal to two right angles (P. XX.), which contradicts the hypothesis: hence, IL, CD, will meet if sufficiently produced; which was to be proved.

BOOK I.
Cor. It is evident that IL and CD will meet on that side of EF, on which the sum of the two angles is less than two right angles

D1 O M

PROPOSIIION XXII. THEOREM.

If two straight lines are parallet to a third line, they are

Let $A B$ and $C D$ be respectively parallel to $E F$: then are they parallel to each other.

For, draw $P R$ perpendicular to $E F$; then is it perpendicular to $\dot{A} B$, and also to $C D \bigcirc(\mathrm{P} . \mathrm{XX}$., C. 1): hence, $A B$ and $C D$ are perpendicular to the same straight line, and consequently, they are parallel to each other (P. XVHI.); which was to be proved.

PROPOSITION XXIII. THEOREM

> Two parallels are every-where equally distant

Let $A B$ and $C D$ be parallel: then are they every-where equally distant.

From any two points of $A B$, as F and E, draw $F H$ and $E G$ perpendicular to $C D$; they are also perpendicular to $A B(P . X X, C .1)$, $A \frac{A}{F}$ and measure the distance between
$A B$ and $C D$, at the points F and E. Draw also $F G$. The lines FH and EG are parallel (P. XVIII.): hence, the alternate angles HFG and FGE are equal (P. XX., C. 2). The lines $A B$ and $C D$ are parallel, by hypothesis: hence,
the alternate angles EFG and FGH are equal. The triangles $F G E$ and $F G H$ have, therefore, the angle HGF equal GFE, GFH equal to FGE, and the side FG common; they are, therefore, equal in all respects (P. VI) : hence, FH is equal to EG ; and consequently, AB and CD are every-where equally distant; which was to be proved.

PROPOSITION XXIV. THEOREM.

5 If two angles have their sides parallel, and lying either in the same or in opposite directions, they are equal.

1. Let the angles $A B C$ and DEF have their sides parallel, and lying in the same direction: then are they equal.
Prolong FE to L. Then, because $D E$ and $A L$ are parallel, the exterior angle DEF is equal to its opposite interior angle ALE (P. XX., C. 3) ; and, because $B C$ and LF are parallel, the exterior angle ALE is equal to its opposite interior angle $A B C$: hence, $D E F$ is equal to $A B C$; which was to be proved.
2°. Let the angles $A B C$ and GHK have their sides paralle, and lying in opposite directions: then are they equal.

Prolong GH to M . Then, because KH and BM are parallel, the exterior

- angle GHK is equal to its opposite interior angle HMB; and because $H M$ and $B C$ are parallel, the angle $H M B$ is equal to its alternate angle MBC (P. XX., C. 2): herce, GHK is equal to ABC; which was to be proved.

Cor. The opposite angles of a parallelogram are equal.

PROPOSITION XXV. THEOREM.

In any triangle, the sum of the three angles is equat to two right angles.
Let CBA be any triangle: then the sum of the angles C, A, and B, is equal to two right
angles. ALIKL LAMAMA WIC
For, prolong CA to D, and draw AE parallel to BC.

Then, since AE and CB are parallel, and CD cuts them, the exterior angle DAE is equal to its opposite interior angle C ($\mathrm{P} . \mathrm{XX} ., \mathrm{C} .3$). In like manner, since $A E$ and $C B$ are parallel, and $A B$ cuts them, the alternate angles $A B C$ and $B A E$ are equal: hence, the sum of the three angles of the triangle $B A C$ is equal to the sum of the angles CAB, BAE, EAD ; but this sum is equal to two right angles (P. L, C. 2) ; consequently, the sum of the three angles of the triangle, is equal to two right angles (A. 1) ; which was to be proved

Cor. 1. Two angles of a triangle being given, the third may be found by subtracting their sum from two right T angles.

Cor: 2. If two angles of one triangle are respectively equal to two angles of another, the two triangles are mutually equiangular.

Cor. 3. In any triangle, there can be but one right angle; for if there were two, the third angle would be zero. Nor can a triangle have more than one obtuse angle.

Cor. 4. In any right-angled triangle, the sum of the acute angles is equal to a right angle.

Cor. 5. Since every equilateral triangle is also equiangular (P. XI., C. 1), each of its angles is equal to the third part of two right angles; so that, if the right angle is expressed by 1 , each angle of an equilateral triangle is expressed by $\frac{8}{3}$.

Cor. 6. In any triangle $A B C$, the exterior angle $B A D$ is equal to the sum of the interior opposite angles B and C. For, $A E$ being parallel to $B C$, the part $B A E$ is equal to the angle B, and the other part DAE, is equal to the angle C.

PROPOSITION XXVI. THEOREM.
The sum of the interior angles of a polygon is equat to two right angles taken as many times, less two, as the polygon has sides.
Let $A B C D E$ be any polygon; then the sum of its interior angles A, B, C, D, and E, is equal to two right angles taken as many times, less two, as the polygon has sides.

From the vertex of any angle A, draw diagonals $A C, A D$. The polygon will be divided into as many triangles, less two as it has sides, having the point A for a common vertex, and for bases, the sides of the polygon, except the two which
form the angle A. It is evident, also, that the angles of these triangles does not differ from the sum of the angles of the polygen? hence, the sum of the angles of the polygon is equal to two right angles, taken as many times as there are triangles; that is, as many times, less two, as the polvgon has sides; which was to be proved.

Cor. 1. The sum of the interior angles of a quadrilateral is equal to two right angles taken twice; that is, to four right angles. If the angles of a quadrilateral are equal, each is a right angle.

Cor. 2. The sum of the interior angles of a pentagon is equal to two right angles taken three times; that is, to six right angles: hence, when a pentagon is equiangular, each angle is equal to the fifth part of six right angles, or to $\%$ of one right angle.

Cor. 3. The sum of the interior angles of a hexagon is equal to eight right angles: henee, in the equiangular hexagon, each angle is the sixth part of eight right angles, or $\frac{4}{3}$ of one right angle.

Cor. 4. In any equiangular polygon, any interior angle is equal to twice as many right angles as the figure has sides, less four right angles, divided by the number of angles.

PROPOSITION XXVII. THEOREM.

The sum of the exterior angles of a polyson is equal to

Let the sides of the polygon $A B C D E$ be prolonged, in the same order, forming the exterior angles, $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}$; then the sum of these exterior angles is equal to four right angles.

For, each interior angle, together with
 the corresponding exterior angle, is equal to two right angles (P. I.) ; hence, the sum of all the interior and exterior angles is equal to two right angles taker.
as many times as the polygon has sides. But the sum of the interior angles is equal to two right angles taken as many times, less two, as the polygon has sides: hence, the sum of the exterior angles is equal to two right angles taken twice; that is, equal to four right angles; which was to be proved.

PROPOSITION XXVII. THEOREM.

In any parallelogram, the opposite sides are equal, each to each.

Let $A B C D$ be a parallelogram: then $A B$ is equal to $D C$, and $A D$ to $B C$. For, draw the diagonal $B D$. Then, because $A B$ and $D C$ are parallel, the
 angle DBA is equal to its alternate angle $B D C$ ($\mathrm{P} . \mathrm{XX}, \mathrm{C} .2$) ; and, because $A D$ and $B C$ are parallel, the angle $B D A$ is equal to its alternate angle $D B C$. The triangles $A B D$ and $C D B$, have, therefore, the angle DBA equal to CDB, the angle BDA equal to DBC, and the included side $D B$ common; consequently, they are equal in all respects: hence, $A B$ is equal to $D C$, and $A D$ to BC ; which was to be proved.

Cor. 1. A diagonal of a parallelogram divides it into two triangles equal in all respects.

F Cor. 2. Two parallels included between two other par-

 allels, are equal.Cor. 3. If two parallelograms have two sides and the included angle of the one, equal to two sides and the included angle of the other, each to each, they are equal.

PROPOSITION XXIX. THEOREM.

If the opposite sides of a quadrilateral are equal, each to each, the figure is a parallelogram.

In the quadrilateral $A B C D$, let $A B$ be equal to $D C$, and $A D$ to $B C$: then is it a parallelogram. ITATIS

Draw the diagonal DB. Then, the
 triangles $A D B$ and $C B D$, have the sides
of the one equal to the sides of the other, each to each; and therefore, the triangles are equal in all respects: hence, the angle $A B D$ is equal to the angle $C D B$ ($\mathrm{P} . \mathrm{X} ., \mathrm{S}$.$) ;$ and consequently, $A B$ is parallel to $D C$ (P. XIX., C. 1). The angle $D B C$ is also equal to the angle BDA, and consequently, $B C$ is parallel to $A D$: hence, the opposite sides are parallel, two and two; that is, the figure is a parallelogram (D. 28); which was to be proved.

PROPOSITION XXX. THEOREM.

If two sides of a quadrilateral are equal and parallel, the
In the quadrilateral $A B C D$, let $A B$ be equal and parallel to $D C$: then the figure is a parallelogram:

Draw the diagonal DB. Then, because $A B$ and $D C$ are parallel, the angle $A B D$ is equal to its alternate angle CDB. Now, the triangles $A B D$ and $C D B$ have the side $D C$ equal to $A B$, by hypothesis, the side $D B$ common, and the included angle $A B D$ equal to $B D C$, from what has just been shown;
hence, the triangles are equal in all respects ($\mathrm{P} . \mathrm{V}_{\text {. }}$); and consequently, the alternate angles $A D B$ and $D B C$ are equal. The sides $B C$ and $A D$ are, therefore, parallel, and the figure is a parallelogram; which was to be proved.

Cor. If two points are taken at equal distances from a given straight line, and on the same side of it, the straight line joining them is parallel to the given line.

PROPOSITION XXXI. THEOREM

The diagonals of a paralletogram divide each other into equal parts, or mutwally bisect each other.

Let $A B C D$ be a parallelogram, and $A C$, $B D$, its diagonals : then $A E$ is equal to $E C$, and $B E$ to $E D$.
For, the triangles $B E C$ and $A E D$, have

the angles $E B C$ and $A D E$ equal ($\mathrm{P} . \mathrm{XX}$.,
C. 2), the angles ECB and DAE equal, and the included sides $B C$ and $A D$ equal : hence, the triangles are equal in all respects ($\mathrm{P} . \mathrm{VL}$) ; consequently, AE is equal to EC , and BE to ED; which was to be proved.

Schotium. In a rhombus, the sides $A B, B C$, being equal, the triangles $A E B, E B C$, have the sides of the one equal to the corresponding sides of the other; they are, therefore, equal in all respects: hence, the angles AEB, $B E C$, are equal, and therefore, the two diagonals bisect each other at right angles.

EXERCISES

1. Show that the lines which bisect (halve) two vertical angles, form one and the same straight line.
2. Given two lines, $B E$
and $A D$; join B with D and A with E, A and show that $B D+A E$ is greater than $B E+A D$. (P. VII.)

3. One of the two interior angles on the same side, formed by a straight line meeting two parallels, is one-half of a right angle; what is the other angle equal to?
4. The sum of two angles of a triangle is $\frac{4}{3}$ of a right angle: what is the other angle equal to?
5. One of the acute angles of a right-angled triangle is $\frac{\%}{5}$ of a right angle; what is the other?
6. Show that the line which bisects the exterior vertical angle of an isosceles triangle is parallel to the base of the triangle. (P. XXV., C. 6 ; P. XIX., C. 1.)
7. The sum of the in-
terior angles of a polygon is 12 right angles; what is the polygon?
8. What is the sum of the interior angles of a heptagon equal to?
9. The sum of five angles of a given equiangular polygon is 8 right angles; what is the polygen? 10. What part of a right angle is an angle of an equiangular decagon?
10. How many sides has a polygon in which the sum of the interior angles is equal to the sum of the exterior angles?
11. Construct a square, having given one of its diagonals.

Note 1.-The complement of an angle is the difference between that angle and a right angle; thus, $E O B$ is the complement of $A O E$.

Note 2.-The supplement of an angle is the difference between that angle and two right angles; thus, EOC is the supplement of $A O E$.
13. An angle is $\frac{5}{8}$ of a right angle; what is its complement? and what its supplement?
14. Show that any two adjacent angles of a parallelogram are supplements of each other.
15. Show that if two parallelograms have one angle ir each equal, their remaining angles are equal each to each.
16. Show that if two sides of a quadrilateral are parallel and two opposite angles equal, the figure is a parallelogram.
17. Show that if the opposite angles of a quadrilateral are equal, each to each, the figure is a parallelogram.
18. Show that the lines which bisect the angles of any quadrilateral form, by their intersection, another quadrilateral, the opposite angles of which are supplements of each other. [Twice the angle B is equal to the sum of the angles CDE and DEF.]
the second couplet. The first and fourth terms are called extremes; the second and third, means, and the fourth term, a fourth proportional to the three others. When the second term is equal to the third, it is said to be a mean proportional between the extremes. In this case, there are but three different quantities in the proportion, and the last is said to be a third proportional to the two others. Thus, if we have,

$$
A: B: B: C,
$$

B is a mean proportional between A and C, and C is a third proportional to A and B.
5. Quantities are in proportion by alternation, when antecedent is compared with antecedent, and consequent with consequent.
6. Quantities are in proportion by inversion, when antecedents are made consequents, and consequents, antecedents.
7. Quantities are in proportion by composition, when the sum of antecedent and consequent is compared with either antecedent or consequent.
8. Quantities are in proportion by division, when the difference of the antecedent and consequent is compared with either antecedent or consequent.
9. Four quantities are reciprocally proportional, when the first is to the second as the fourth is to the third. Two varying quantities are reciprocally proportional, when their product is a fixed quantity, as $x y=m$.
10. Equimultiples of two or more quantities, are the products obtained by multiplying each by the same quantity. Thus, $m \mathrm{~A}$ and $m \mathrm{~B}$, are equimultiples of A and B

PROPOSITION I. THEOREM.

If four quantities are in proportion, the product of the means is equal to the product of the extremes.

Assume the proportion,
A : B : $15 C$: whence $\quad \frac{B}{A}=\frac{D}{C}$
clearing of fractions, we have,
$\frac{B}{A}=\frac{D}{C} ;$
which was to be proved.
Cor. If B is equal to C, there are but three propor-
tional quantities; in this case, the square of the mean is equal to the product of the extremes.

PROPOSITION II. THEOREM.

If the product of two factors is equal to the product of two other factors, either pair of factors may be made the extremes and the other pair the means of a proportion.

Assume $R \cap B \times C=A \times D$; $\circlearrowleft \square \cap$
dividing each member by $A \times C$, we have,
$D \sqrt{\frac{B}{A}}=\frac{D}{C}$, or $A: B: C: D$; R I
in like manner, we have,

$$
\frac{A}{B}=\frac{C}{D}, \quad \text { or } \quad B: A: D: C \text {; }
$$

which was to be proved.

PROPOSITION III. THEOREM.

If four quantities are in proportion, they are in proportion by alternation.

Assume the proportion,

$$
A: B: C: D \text {; whence, } \quad \frac{B}{A}=\frac{D}{C} \text {. }
$$

Multiplying each member by $\frac{C}{B}$, we have,

$$
\frac{C}{A}=\frac{D}{B} ; \quad \text { or } \quad A: C: B: D ;
$$

which was to be proved.

PROPOSITION IV. THEOREM.
If one couplet in each of two proportions is the same, the other couplets form a proportion.

Assume the proportions,
and $A: B:: F: G$; whence, $\frac{B}{A}=\frac{G}{F}$.

$$
\frac{D}{C}=\frac{G}{F} ; \quad \text { whence, } C: D:: F: G ;
$$

which was to be proved.
Cor. If the antecedents, in two proportions, are the same, the consequents are proportional. For, the antecedents of the second couplets may be made the consequents of the first, by alternation (P. III.).

BOOK II.

PROPOSITION V. THEOREM.

If four quantities are in proportion, they are in proportion ○1○1 by inversion.

Assume the proportion,

$$
A L: B \text { Cl: } \quad \mathrm{D} \text {; wence, } \quad \frac{B}{A}=\frac{D}{C} \text {. }
$$

If we take the reciprocals of each member (A. 7), we have,

$$
\frac{A}{B}=\frac{C}{D} ; \quad \text { whence }
$$

which was to be proved.

PROPOSITION VL. THEOREM.
If four quantities are in proportion, they are in proportion by composition or division.

Assume the proportion,

$$
A: B: C: D \text {; whence, } \quad \frac{B}{A}=\frac{D}{C}
$$

If we add 1 to each member, and subtract 1 from each U member

$$
\frac{B}{A}+1=\frac{D}{C}+1 ; \quad \text { and } \quad \frac{B}{A}-1=\frac{D}{C}-1
$$

whence, by reducing to a common denominator, we have,

$$
\begin{aligned}
& \frac{B+A}{A}=\frac{D+C}{C}, \quad \text { and } \frac{B-A}{A}=\frac{D-C}{C} ; \text { whence, } \\
& A: B+A:: C: D+C \text {, and } A: B-A: C: D-C ;
\end{aligned}
$$

which was to be proved.

PROPOSITION VIL THEOREM.

Equimultiples of two quantities are proportional to the quantities themselves.

Let A and B be any two quantities; then $\frac{B}{A}$ will denote their ratio.

If we multiply each term of this fraction by m, its value will not be changed; and we shall have,

$$
\frac{m \mathrm{~B}}{m \mathrm{~A}}=\frac{\mathrm{B}}{\mathrm{~A}} ; \quad \text { whence, } \quad m \mathrm{~A}: m \mathrm{~B}:: \mathrm{A}: \mathrm{B} ;
$$

which was to be proved.

PROPOSITION VIII. THEOREM.
If four quantities are in proportion, any equimultiples of the first couplet are proportional to any equimultiples of the secand couplet.

Assume the proportion,
$\sqrt[A]{A}: B:: C: D ;$ whence, $\frac{B}{A}=\frac{D}{C}$.
If we multiply each term of the first member by m, and each term of the seeond member by n, we have,

$$
\frac{m \mathrm{~B}}{m \mathrm{~A}}=\frac{n \mathrm{D}}{n \mathrm{C}} ; \quad \text { whence, } \quad m \mathrm{~A}: m \mathrm{~B}:: n \mathrm{C}: n \mathrm{D} ;
$$

which was to be proved.

PROPOSITION IX．THEOREM．

If two quantities are increased or diminished by like parts of each．the results are proportional to the quantities themselves．

If we make $m=1 \pm \frac{p}{q}$
in which $\frac{p}{q}$ is any fraction，
we have，$A: B:: A$

$$
A: B::
$$

which was to be proved．

PROPOSITYON X ．THEOREM．
If both terms of the first couplet of a proportion are in－ creased or diminished by like parts of each；and if both terms of the second couplet are increased or diminished by any other like parts of each，the results are in pro－ UN portion．D ค T A A ロ T ロロ吅 T
Since we have，Prop．VIIL，

$$
m \mathrm{~A}: m \mathrm{~B}:: n \mathrm{C}: n \mathrm{D}
$$

if we make $m=1 \pm \frac{p}{q}$ ，and $n=1 \pm \frac{p^{\prime}}{q^{\prime}}$ ，we have，AI

$$
\mathrm{A} \pm \frac{p}{q} \mathrm{~A}: \mathrm{B} \pm \frac{p}{q} \mathrm{~B}:: \mathrm{C} \pm \frac{p^{\prime}}{q^{\prime}} \mathrm{C}: \mathrm{D} \pm \frac{p^{\prime}}{q^{\prime}} \mathrm{D}
$$

which was to be proved．

PROPOSITION XI．THEOREM．

In any continued proportion，the sum of the antecedents is to the sum of the consequents，as any antecedent to its corresponding consequent．

From the definition of a continued proportion（D．3），

$$
A: B:: C: D: E: F: G: H, \text { \& }:=B
$$

hence，

Adding and factoring，we have，
$B(A+C+E+G+\& C)=.A(B+D+F+H+\& c):$.
hence，from Proposition II，
$\square A+G+E+G+\& c \cdot: B+D+F+H+\& c:: A: B ;$ which was to be proved．

PROPOSITION XII THEOREM

The products of the corresponding terms of two proportions are proportional.

Assume the two proportions,

and

Multiplying the equations, member by member, we have,

$$
\frac{\mathrm{BF}}{\mathrm{AE}}=\frac{\mathrm{DH}}{\mathrm{CG}} ; \quad \text { whence, }
$$

which was to be proved.

Cor. 1. If the corresponding terms of two proportions are equal, each term of the resulting proportion is the square of the corresponding term in either of the given proportions: hence, If four quantities are proportional,
their squares are proportionat.
Cor. 2. If the principle of the proposition be extended
to three or more proportions, and the corresponding terms of each be supposed equal, it will follow that, like powers of proportional quantities are proportionals.

BOOK III.

THE CIRCLE AND THE MEASUREMENT OF ANGLES

DEFINITIONS.

1. A Ctrcle is a plane figure, bounded by a curved line, every point of which is equally distant from a point within, called the centre.

The bounding line is called the cir-
 cumference.
2. A RadIUS is a straight line drawn from the centre to any point of the circumference.
3. A Diameter is a straight line drawn through the centre and terminating in the circumference.

All radii of the same circle are equal. All diameters are also equal, and each is double the radius.
4. An ARC is any part of a circumference.
$\sqrt{A} 5$. A CHORD is a straight line joining the extremities of an arc.

Any ehord belongs to two arcs: the smaller one is meant, unless the contrary is expressed.
6. A Segment is a part of a cirele included between an are and its chord.
7. A Sector is a part of a circle included between an arc and the two radii drawn to its extremities.

PROPOSITION XII THEOREM

The products of the corresponding terms of two proportions are proportional.

Assume the two proportions,

and

Multiplying the equations, member by member, we have,

$$
\frac{\mathrm{BF}}{\mathrm{AE}}=\frac{\mathrm{DH}}{\mathrm{CG}} ; \quad \text { whence, }
$$

which was to be proved.

Cor. 1. If the corresponding terms of two proportions are equal, each term of the resulting proportion is the square of the corresponding term in either of the given proportions: hence, If four quantities are proportional,
their squares are proportionat.
Cor. 2. If the principle of the proposition be extended
to three or more proportions, and the corresponding terms of each be supposed equal, it will follow that, like powers of proportional quantities are proportionals.

BOOK III.

THE CIRCLE AND THE MEASUREMENT OF ANGLES

DEFINITIONS.

1. A Ctrcle is a plane figure, bounded by a curved line, every point of which is equally distant from a point within, called the centre.

The bounding line is called the cir-
 cumference.
2. A RadIUS is a straight line drawn from the centre to any point of the circumference.
3. A Diameter is a straight line drawn through the centre and terminating in the circumference.

All radii of the same circle are equal. All diameters are also equal, and each is double the radius.
4. An ARC is any part of a circumference.
$\sqrt{A} 5$. A CHORD is a straight line joining the extremities of an arc.

Any ehord belongs to two arcs: the smaller one is meant, unless the contrary is expressed.
6. A Segment is a part of a cirele included between an are and its chord.
7. A Sector is a part of a circle included between an arc and the two radii drawn to its extremities.
8. An Inscribed Angle is an angle whose vertex is in the circumference, and whose sides are chords.
9. An Insoribed Poitygon is a polygon whose vertices are all in the circumference. The sides are chords.
10. A SECANT is a straight line which cuts the oircumference in two points.
11. A Tangent is a straight line which touches the eircumference in one point only. This point is called, the point of contact, or the point of tangency.
12. Two circles are tangent to each other, when they toveh each other in one point only. This point is called, the point of contact, or the point of tangency.
13. A Polygon is circumscribed about a circle, when each of its sides is tangent to the circumference
14. A Circle is inscribed in a polygon, when its circumference touches each of the sides of the polygon.

POSTULATE.

A circumference can be described from any point as a centre, and with any radius.

PROPOSITION I THEOREM

Any diameter divides the circle, and also its circumference, into two equal parts.

Let AEBF be a circle, and $A B$ any diameter: then will it divide the circle and its circumference into two equal parts.

For, let AFB be applied to AEB, the diameter $A B$ remaining common; then
 will they coincide; otherwise there would
be some points in either one or the other of the curves unequally distant from the centre; which is impossible (D. 1) : hence, $A B$ divides the circle, and also its circumference, into two equal parts; which was to be proved.

PROPOSITION II THEOREM.

A diameter is greater than any other chord.

V Let $A D$ be a chord, and $A B$ a diameter through one extremity, as A : then will $A B$ be greater than $A D$.

Draw the radius CD. In the triangle $A C D$, we have $A D$ less than the sum of $A C$ and CD (B. I., P. VII), But this sum is equal to $A B$ (D. 3): hence, $A B$ is greater than $A D$ which was to be proved.

PROPOSITION III. THEOREM.
A straight line can not meet a circumference in more than说 two points.
Let $A E B F$ be a circumference, and $A B$ a straight line: then $A B$ can not meet the circumference in more than two points. \qquad
For, suppose that $A B$ could meet the circumference in three points. By draw-

ing radii to these points, we should have three equal straight lines drawn from the same point to the same [T straight line; which is impossible (B. I., P. XV., C. 2): hence, $A B$ can not meet the circumference in more than two points; which was to be proved.

PROPOSITION IV. THEOREM.

In equal circtes, equal arcs are subtended by equat chords; and conversely, equal chords subtend equal arcs.
1°. In the equal cir-

- cles ADB and EGF, let
the ares $A M D$ and $E N G$ be equal: then are the chords $A D$ and $E G$ equal.

Draw the diameters $A B$ and EF. If the semicircle $A D B$ be applied to the semicircle EGF, it will coincide with it, and the semi-circumference $A D B$ will coincide with the semi-circumference EGF. But the part $A M D$ is equal to the part $E N G$, by hypothesis: hence, the point D will fall on G; therefore,
the chord AD will coincide with EG (A, 11), and is, therefore, equal to it; which was to be proved.
2°. Let the chords $A D$ and EG be equal: then will the ares $A M D$ and $E N G$ be equal.

Draw the radii $C D$ and, $O G$. The triangles $A C D$ and EOG have all the sides of the one equal to the corresponding sides of the other; they are, therefore, equal in all respects: hence, the angle $A C D$ is equal to EOG. If, now, the sector $A C D$ be placed upon the sector EOG, so that the angle $A C D$ shall coincide with the angle EOG, the sectors will coincide throughout; and, consequently, the ares AMD and ENG will coincide: hence, they are equal; which was to be proved.

In equal cir

PROPOSITION V. THEOREM.

chord; and conversely, a greater chord subtends a greater
1°. In the equal circles
$A D L$ and EGK, let the are EGP be greater than the arc $A M D$: then is the chord. EP greater than the chord AD.

For, place the circle EGK upon AHL, so that the centre O shall fall upon the centre C, and the point E upon A then, because the are EGP is greater than AMD, the point P will fall at some point H, beyond D, and the chord EP will take the position AH .

Draw the radii $C A, C D$, and $C H$. Now, the sides $A C, C H$, of the triangle $A C H$, are equal to the sides $A C, C D$, of the triangle $A C D$, and the angle $A C H$ is
greater than $A C D$: hence, the side $A H$, or its equal $E P$, is greater than the side AD (B. I., P. IX.); which was to be proved.
2°. Let the chord EP, or its equal AH , be greatr than $A D$: then is the are EGP, or its equal ADH, greater than AMD.
For, if ADH were equal
to $A M D$, the chord $A H$ would be equal to the chord $A D$ (P. IV.) ; which contradicts the hypothesis. And, if the are $A D H$ were less than $A M D$, the chord $A H$ would be less than AD; which also contradicts the hypothesis. Then, since the are ADH, subtended by the greater chord, can neither be equal to, nor less than AMD, it must be greater than AMD ; which was to be proved.

PROPOSITION VI. THEOREM.
The radius which is perpendicular to a chord, bisects that chord, and also the are subtended by it.

Let CG be the radius which is perpendicular to the chord $A B$: then this radius bisects the chord $A B$, and also the arc AGB.

For, draw the radii $C A$ and $C B$. Then, the right-angled triangles $C D A$ and $C D B$ have the hypothenuse $C A$ equal to CB_{2} and the side $C D$ common; the triangles are, therefore, equal in all respects: hence, $A D$ is equal to $D B$. Again, because $C G$ is perpen-

dicular to $A B$, at its middle point, the chords GA and GB are equal (B. I., P. XVI.) ; and consequently, the arcs GA and GB are also equal (P. IV.): hence, CG bisects the chord $A B$, and also the are $A G B$; which was to be proved.

Cor. A straight line, perpendicular to a chord, at its middle point, passes through the centre of the eircle.

Scholium. The centre C, the middle point D of the chord $A B$, and the middle point G of the subtended arc, are points of the radius perpendicular to the chord. But two points determine the position of a straight line (A. 11): hence, any straight line which passes through two of these points, passes through the third, and is perpendicular to the chord.

PROPOSITION VII. THEOREM.

Through any three points, not in the same straight line, one circumference may be made to pass, and but one.

Let A, B, and C, be any three points, not in a straight line: then may one circumference be made to pass through them, and but one. V

Join the points by the lines $A B$, $B C$, and bisect these lines by perpendiculars $D E$ and $F G$; then will these perpendiculars meet in some point 0 . For, if they do not meet,
 they are parallel. Draw DF. The sum of the angles EDF and GFD is less than the sum of the angles EDB and GFB, i. e_{n}
less than two right angles: therefore, DE and FG are not parallel, and will meet at some point, as O (B. I, P. XXI.)

Now, O is on a perpendicular
to $A B$ at its middle point; it is, therefore, equally distant from A and B (B. I., P. XVI.). For a like reason, O is equally distant from B and C. If, therefore, a circumference be described from O as a
 centre, with a radius equal to the distance from 0 to A, it will pass through A, B, and C. Again, O is the only point which is equally distant from A, B, and C : for, $D E$ contains all of the points which are equally distant from A and B; and $F G$ all of the points which are equally distant from B and C; and consequently, their point of intersection O, is the only point that is equally distant from A, B, and C : hence, one circumference may be made to pass through these points, and but one; which was to be proved.

Cor. Two eircumferences can not intersect in more than two points ; for, if they could intersect in three points, there would be two circumferences passing through the same three points; which is impossible.

For, let the circle KLG be placed upon ACH, so that the centre R shall fall upon the centre O, and the point K upon the point A : then will the chord KL coincide with AC (P. IV.); and consequently, they are equally distant from the centre; which was tó be proved.

2°. Let $A B$ be less than $K L$: then is it at a greater distance from the centre.

For, place the circle KLG upon ACH, so that R shall fall upon O, and K upon A. Then, because the chord KL is greater than $A B$, the are KSL is greater than $A M B$; and consequently, the point L will fall at a point C, beyond B, and the chord KL will take the direction $A C$. Draw $O D$ and $O E$, respectively perpendicular to $A C$ and $A B$; then $O E$ is greater than $O F$ (A. 8), and $O F$ than $O D$ (B. L., P. XV.) : hence, $O E$ is greater than $O D$. But, $O E$ and $O D$ are the distances of the two chords from the centre (B. I., P. XV., C. 1) : hence, the less chord is at the greater distance from the centre; which was to be proved.

UNIVERSIDAD AUTONC PROPOSITION VIII. THEOREM.
7 In equal cireles, equal chords are equally distant from the centres; and of two unequal chords, the less is at the greater distance from the centre.
1°. In the equal circles $A C H$ and KLG, let the chords $A C$ and $K L$ be equal; then are they equally distant from the centres.

Scholium. All the propositions relating to chords and arcs of equal circles, are also true for chords and arcs of one and the same circle. For, any circle may be regarded as made up of two equal circles. so placed that they coincide in all their parts.

PROPOSITION IX. THEOREM

If a straight line is perpendicular to a radius at its outer eatremity, it is tangent to the circle at that point; conversely, if a straight line is tangent to a circle at any point, it is perpendicular to the radius drawn to that point. FLAMMAM
1°. Let $B D$ be perpendicular to the radius $C A$, at A : then is it tangent to the circle at A

For, take any other point of
$B D$, as E, and draw $C E$: then
$C E$ is greater than $C A$ (B. I.,
P. XV.) ; and consequently, the point E lies without the circle: hence, BD touches the eircumFerence at the point A; it is,
therefore, tangent to it at that point (D. 11) ; which was to be proved.

2 . Let $B D$ be tangent to the circle at A : then is it perpendicular to $C A$.

For, let E be any point of the tangent, except the point of contact, and draw $C E$. Then, because BD is a tangent, E lies without the circle; and consequently, CEis greater than CA: hence, CA is shorter than any other line that can be drawn from C to $B D$; it is, therefore, perpendicular to BD (B. I., P. XV., C. 1); which was to be proved.

Cor. At a given point of a circumference, only one tangent can be drawn. For, if two tangents could be drawn, they would, both be perpendicular to the same radius at the same point; which is impossible (B. L, P. XIV.).

PROPOSITION X. THEOREM.

Two parallels intercept equal ares of a circumference.
There may be three cases: both parallels may be secants; one may be a secant and the other a tangent; or, both may be tangents.
1°. Let the secants $A B$ and $D E$ be parallel: then the intercepted arcs $M N$ and $P Q$ are equal.

For, draw the radius CH perpendicular to the chord MP; it is also perpendicular to $N Q$ (B. I., P. XX., C. 1), and H is at the middle point of the arc MHP, and also of the are NHQ: hence, MN, which is the difference of $H N$ and $H M$, is equal to PQ , which is the difference of HQ and HP (A. 3) ; which was to be proved.
2°. Let the secant $A B$ and tangent $D E$ be parallel; then the intercepted ares MH and PH are equal.
 MH and PH are equal ; which was to be proved.
3°. Let the tangents DE and IL be parallel, and let H and K be their points of contact: then the intercepted ares HMK and HPK are equal.

For, draw the secant $A B$ parallel to DE; then, from what has just been shown, we have HM equal to HP, and MK equal to PK: hence, HMK, which is the sum of $H M$ and $M K$, is equal to HPK, which is the sum of HP and PK; which was to be proved.

[I]

If two circumferences intersect each other. the line joining
their centres bisects at right angles the line joining the points of intersection.

Let the circumferences, whose centres are C and D, intersect at the points A and B : then $C D$ bisects $A B$ at right angles. For the point C, being the centre of the circle, is equally distant from A and B; in like manner, D is equally distant from A and B : hence, $C D$ bisects $A B$ at right angles (B. I., P. XVI., C.) ; which was to be proved. RCCMAN

PROPOSITION XII. THEOREM.

If two circumferences intersect each other, the distance between their centres is less than the sum, and greater than the difference, of their radii.
Let the circumferences, whose centres are C and D, intersect at A : then $C D$ is less than the sum, and greater than the difference of the radii of the two circles.

For, draw $A C$ and $A D$, forming the triangle $A C D$. Then $C D$ is less
 than the sum of $A C$ and $A D$, and greater than their difference (B. I., P. VII.); which was to be proved.

PROPOSITION XIIL THEOREM.

If the distance between the centres of two circles is equal to the sum of their radii, the circles are tangent externally.
Let C and D be the centres of two circles, and let the distance between the centres be equal to the sum of the radii: then the circles are tangent externally

For, they have at least one point, A, on the line CD, common; for, if not, the distance between their centres would be greater than the sum of their radii, which contradicts the hypothesis, and is, therefore, impossi-

ble. Again, they have no other point in common; for, if they had two points in common, the distance between their centres would be less than the sum of their radii, which contradicts the hypothesis: hence, they have one and only one point in common, and are tangent externally; which was to be proved.

PROPOSITION XIV. THEOREM.

If the distance between the centres of two circles is equal to the difference of their radii, one circle is tangent to the other internally.

Let C and D be the centres of two circles, and let the distance between these centres be equal to the difference of the radii: then one circle is tangent to the other internally.

For, the circles will have at least one point, A, on $D C$, common; for, if not, the distance between the centres would be less than the difference of their radii, which eontradicts the hypothesis. Again, they will have no other point in common; for, if they had two points in common, the distance between their centres would be greater than the difference of their radii, which contradicts the hypothesis : hence, they have one and only one point in common, and one is tangent to the other internally; which was to be proved.

Cor. 1. If two circles are tangent, either externally or internally, the point of contact is on the straight line drawn through their centres
Cor: 2. All circles whose centres are on the same straight line, and which pass through a common point of that line, are tangent to each other at that point. And if a straight line be drawn tangent to one of the circles at their common point, it is tangent to them all at that point.

Scholium. From the preceding propositions, we infer that two circles may have any one of six positions with respect to each other, depending upon the distance between their centres:
1°. When the distance between their centres is greater
than the sum of their radii, they are external, one to the other:
2°. When this distance is equal to the sum of the radii, they are tangent, externally :
3°. When this distance is less than the sum, and greater than the difference of the radii, they intersect each other:
4°. When this distance is equal to the difference of their radii, one is tangent to the other, internally:
5°. When this distance is less than the difference of the radii, one is wholly within the other:
6°. When this distance is equal to zero, they have a common centre; or, they are concentric.

In equal circles, radii making equal angles at the centre intercept equal aras of the cireumference; conversely, radii which intercept equal arcs, make equal angles at the centre.
1°. In the equal circles $A D B$ and EGF, let the angles $A C D$ and $E O G$ be equal: then the arcs $A M D$ and $E N G$ are equal.

For, draw the chords $A D$
d EG; then the triangles $A C D$ and EOG have two sides and their included angle, in the one, equal to two sides and their ineluded angle, in

the other, each to each. They are, therefore, equal in all respects; consequently, $A D$ is equal to $E G$. But, since the chords $A D$ and $E G$ are equal, the ares $A M D$ and ENG are also equal (P. IV.) ; which was to be proved.
2°. Let the ares $A M D$ and ENG be equal: then the angles $A C D$ and $E O G$ are equal.

For, since the ares AMD and ENG are equal, the chords $A D$ and $E G$ are equal (P. IV.) ; consequently, the triangles $A C D$ and EOG have their sides equal, each to each; they are,
therefore, equal in all respeets: hence, the angle $A C D$ is equal
 was to be proved.
PROPOSITION XVI.
the angle EOG; which In eque equal cir

In the equal circles, whose centres are C and O, let the angles $A C B$ and $D O E$ be commensurable; that is, be exactly measured by a common unit: then are they proportional to the intercepted ares $A B$ and $D E$.

Let the angle M be a common unit; and suppose, for example, that this unit is contained 7 times in the angle $A C B$, and 4 times in the angle DOE. Then, suppose ACB be divided into 7 angles, by the radii $\mathrm{C} m, \mathrm{C}_{n}, \mathrm{C}_{p}, \& \& \mathrm{c}$.; and DOE into 4 angles, by the radii $O x, O y$, and $O z$, each equal to the unit M.

From the last proposition, the ares $\mathrm{A} m, m n, \& \mathrm{c} ., \mathrm{D} x, x y$, \&c., are equal to each other; and because there are 7 of these ares in $A B$, and 4 in DE, we shall have,

$$
\operatorname{arc} A B: \operatorname{arc} D E:: 7: 4
$$

But, by hypothesis, we have,

$$
\text { angle } \mathrm{ACB} \text { : angle } \mathrm{DOE}:: 7: 4 ;
$$

hence, from (B. II, P. IV.), we have,

$$
\text { angle } A C B \text { : angle } D O E:: \operatorname{arc} A B: \operatorname{arc} D E \text {. }
$$

If any other numbers than 7 and 4 had been used, the same proportion would have been found; which was to be proved.

Cor. If the intercepted arcs are commensurable, they are proportional to the corresponding angles at the centre, as may be shown by changing the order of the couplets in the above proportion.

PROPOSITION XVII. THEOREM.
In equat circles, incommensurable angles at the centre are

In the equal circles, whose In are C let centres are C and O, let
$A C B$ and $F O H$ be incomAce mensurable: then are they proportional and FH .

For, let the less angle $F O H$, be placed upon the greater angle $A C B$, so that it shall take the position ACD. Then,
if the proposition is not true, let us suppose that the angle $A C B$ is to the angle $F O H$, or its equal $A C D$, as the arc $A B$ is to an arc $A O$, greater than FH , or its equal AD ; whence,

$$
1
$$

Conceive the are $A B$ to be divided into equal parts, each less than $D O$: there will be at least one point of division between D and 0 ; let I be that point; and draw Cl. Then the arcs $A B, A 1$, will be commensurable, and we

$$
\begin{aligned}
& \text { shall have' (P. XVI.), } \\
& \text { Conceive the are } A B \text { to be }
\end{aligned}
$$

Comparing the two proportions, we see that the antecedents are the same in both: hence, the consequents are proportional (B. II, P. IV., C.) ; hence,

$$
\text { angle } A C D: \text { angle } A C I: \operatorname{arc} A O: \operatorname{arc} A I .
$$

But, $A O$ is greater than Al : hence, if this proportion is true, the angle $A C D$ must be greater than the angle ACl . On the contrary, it is less: hence, the fourth term of the assumed proportion can not be greater than $A D$. In a similar manner, it may be shown that the fourth term can not be less than $A D$: hence, it must be equal to $A D$; therefore, we have,

$$
\text { angle } A C B: \text { angle } A C D:: \operatorname{arc} A B: \operatorname{arc} A D ; \square
$$ which was to be proved.

Cor. 1. The intercepted ares are proportional to the corresponding angles at the centre, as may be shown by
changing the order of the couplets in the preceding proportion.

Cor. 2. In equal circles, angles at the centre are proportional to their intercepted ares, and the reverse, whether they are commensurable or incommensurable

Cor. 3. In equal circles, sectors are proportional to their angles, and also to their ares.

Scholium. Since the intercepted ares are proportional to the corresponding angles at the centre, the ares may be taken as the measures of the angles. That is, if a circumference be described from the vertex of any angle, as a centre, and with a fixed radius, the arc intercepted between the sides of the angle may be taken as the measure of the angle. In Geometry, the right angle, which is measured by a quarter of a circumference, or a quadrant, is taken as a unit. If, therefore, any angle is measured by one half or two thirds of a quadrant, it is equal to one half or two thirds of a right angle.

PROPOSITION XVIIL THEOREM

An inscribed angle is measuored by hatf of the ard inctuded A between its sides.

There may be three cases: the centre of the circle? may lie on one of the sides of the angle; it may lie within the angle; or, it may lie without the angle.
1°. Let $E A D$ be an inscribed angle, one of whose sides $A E$ passes through the centre: then it is measured by half of the are DE.

For, draw the radius CD. The external angle DCE, of the triangle DCA, is equal to the sum of the opposite interior angles CAD and CDA (B. L., P. XXV., C. 6). - But, the triangle DCA being isosceles, the angles D and A are equal; therefore, the angle DCE is double the angle DAE. Because DCE is at the centre, it is measurea by the aree DE (P. XVII., S.): hence, the angle DAE is measured by half of the are DE; which was to be proved.

2°. Let DAB be an inscribed angle, and let the centre lie within it: then the angle is measured by half of the are BED.
For, draw the diameter AE. Then, from what has just been proved, the angle DAE is measured by half of DE, and the angle $E A B$ by half of $E B$: hence, $B A D$, which is the sum of EAB and DAE, is measured by half of the sum of $D E$ and $E B$, or by half of BED; which was to be proved.
3°. Let BAD be an inscribed angle, and let the centre lie without it: then it is measured by half of the arc BD. For, draw the diameter AE. Then, from what precedes, the angle DAE is measured by half of $D E$, and the angle BAE by half of $B E$: hence, $B A D$, which is the difference of BAE and DAE, is measured by half of the difference of $B E$ and $D E$, or by half of the are $B D$; which was to be proved.

Cor. 1. All the angles BAC, BDC, BEC , inscribed in the same segment, are equal; because they are each measured by half of the same are BOC.

Cor. 2. Any angle BAD, inscribed in a semicircle, is a right angle; because it is measured by half the semi-circumference BOD, or by a quadrant (P . XVIL, S.).

Cor. 3. Any angle BAC, inseribed in a segment greater than a semicircle, is acute; for it is measured by half the arc BOC, less than a semi-circumference.

Any angle BOC, inscribed in a seg-
 for it is measured by half the are BAC, greater than a semi-circumference.
C, of an inscribed quadrilateral $A B C D$ are together equal to two right angles; for the angle DAB is measured by half
 the are DCB, the angle DCB by half the arc DAB: hence, the two angles, taken together, are measured by half the circumference: hence, their sum is equal to two right angles.

PROPOSITION XIX. THEOREM.

Any angle formed by two chords, which intersect, is measured by half the sum of the included ares.
Let $D E B$ be an angle formed by the intersection of the chords $A B$ and $C D$: then it is measured by half the sum of the ares $A C$ and $D B$.VMAM
For, draw $A D$: then, the angle $D E B$, being an exterior angle of the triangle DEA, is equal to the sum of the angles EDA and EAD (B. I., P. XXV, C. 6). But, the angle EDA is measured by half the are $A C$, and $E A D$ by half the are $D B$ (P. XVIII): hence, the angle
 $D E B$ is measured by half the sum of the arcs $A C$ and $D B$; which was to be proved.

The ande formed by two secants, intersecting without the circumference, is measured by half the difference of the inctuded ares.
Let $A B, A C$, be two secants: then the angle $B A C$ is measured by half the difference of the $\operatorname{arcs} B C$ and DF.

Draw DE parallel to $A C$: the arc EC is equal to $D F(P . X$.$) , and the angle$ $B D E$ to the angle $B A C$ (B. I. P. XX, C. 3). But BDE is measured by half the arc BE (P. XVIII) : hence, BAC is also measured by half the are $B E$; that is, by half the difference of $B C$ and $E C$, or by half the difference of BC and DF; which was to be proved.

PROPOSITION XXI THEOREM

An angle formed by a tangent and a chord meeting it at the point of contact, is measured by half the included are.

Let $B E$ be tangent to the circle $A M C$, and let $A C$ be a chord drawn from the point of contact A : then $B A C$ is measured by half of the arc AMC.

For, draw the diameter $A D$. The angle $B A D$ is a right angle ($\mathrm{P} . \mathrm{XX}$.), and is measured by half the semi-cireumference AMD (P. XVII, S.) ; the angle DAC is measured by half of the are DC (P. XVIIL) : hence, the angle BAC, which is equal to the sum of the angles $B A D$
 and DAC, is measured by half the sum of the ares AMD and DC, or by half of the arc AMC; which was to be proved.

The angle CAE, which is the difference of DAE and
DAC, is measured by half the difference of the ares DCA and $D C$, or by half the arc $C A$.
MA DE NUEVO LEÓN
of $B C$, describe ares intersecting at D; draw the line $A D$: then $A D$ is the perpendicular required. For, D and A are each equally distant from B and C; consequently, $D A$ is perperdicular to $B C$ at the given point A (B. L., P. XVI., C.).

PROBLEM III.

To draw a perpendicular to a siven straight line, from a given point without that line.

Let FG be the given line, and A the given point.
From A, as a centre, with a radius sufficiently great, describe an arc cutting FG in two points, B and D with B and D as centres, and, a radius greater than one half of $B D$, describe ares intersecting at E; draw $A E$: then $A E$ is the perpendicular required. For, A and E are each equally distant from B and D : hence, $A E$ is perpendicular to $B D$ (B. I., P. XVI, C.).
 describe arcs intersecting at E and F : join E and F, by the straight line $E F$. Then EF bisects the given line $A B$. For, E and F are each equally distant from
A and B; and consequently, the line $E F$ bisects $A B$ (B. I.
P. XVI, C.).

$$
\begin{gather*}
\text { PROBLEM IV. } \\
\text { At a point on a given straight line, to construct an angle } \\
\text { equal to a given angle. }
\end{gather*}
$$

Let A be the given point, $A B$ the given line, and IKL the given angle. K as a cen- AS ter, with any radius KI , describe the are IL, terminating in the sides of the angle. From A as a centre, with a radius $A B$, equal to $K I$, describe the
indefinite are BO ; then, with a radius equal to the chord LI, from B as a centre, describe an are cutting the arc $B O$ in D; draw $A D$: then $B A D$ is
 hence, they are equal (P,IV.);
therefore, the angles BAD , 1 KL , measured by them, are also
equal ($\mathrm{P} . \mathrm{XV}$.). equal (P. XV.).

M V
To bisect a siven are or a given angle.
1: Let $A E B$ be a given arc, and C its centre.
Draw the chord $A B$; through C, draw $C D$ perpendicular to $A B$ (Prob. III.) : then $C D$ bisects the are $A E B$ (P. VI.).

2°. Let $A C B$ be a given angle.
With C as a centre, and any radius $C B$, describe the are $B A$; bisect it by the line $C D$, as just explained: then $C D$ bisects the angle $A C B$.

For, the ares $A E$ and $E B$ are equal, from what was just shown; consequently, the angles $A C E$ and $E C B$ are also equal (P. XV.).

Scholium. If each half of an arc or angle is bisected, the original are or angle is divided into four equal parts; and if each of these is bisected, the original are or angle is divided into eight equal parts; and so on.

PROBLEM VL.

Through a given point, to draw a straight line parallel to a given straight line.

Let A be a given point, and $B C$ a given line.
From the point A as a centre, with a radius $A E$, greater than the shortest distance from A to $B C$, describe an indefinite are $E O$; from E as a centre, with the same radius,
 describe the arc $A F$; lay off $E D$ equal to $A F$, and draw $A D$: then $A D$ is the parallel required.

For, drawing $A E$, the angles $A E F, E A D$, are equal (P. XV.) ; therefore, the lines $A D, E F$ are parallel (B. I., P. XIX., C. 1).

PROBLEM VII

Given, two angles of a triangle, to construet the third angle.
Let A and B be given angles of a triangle.

Draw a line DF, and at some point of it, as E, construct the angle $F E H$ equal to A, and $H E C$ equal to B. Then, CED is equal to the required
angle. TDT T A
For, the sum of the three angles at E is equal to two right angles (B. I., P. I., C. 2), as is also the sum of the three angles of a triangle (B. I., P. XXV.). Consequently, the third angle CED must be equal to the third angle of the triangle.

PROBLEM VIII

PROBLEM X.

Given, two sides and the included angle of a triangle, to construet the triangle.

Let B and C denote the given sides, and A the given angle.
Draw the indefinite line $D F$, and at D construct an angle FDE, equal to the angle A; on DF, lay off DH equal to the side C, and on $D E$, lay off $D G$ equal to the side B; draw
 GH: then DGH is the required triangle (B. I, P. V.).

Given, one side and two angles of a triangle, to construet

The two angles may be either both adjacent to the given side, or one may be adjacent and the other opposite to it. In the latter case, construct the third angle by Problem VII. We shall then have two angles and their included side.

Draw a straight line, and on it lay off $D E$ equal to the given side; at D construct an angle equal to one of the adjacent angles, and at E construct an angle equal to the other adjacent angle produce the sides DF and EG till they intersect at H : then DEH is the triangle required (B. I, P. VI.).

Given, the three sides of a triangle, to construct the triangle.

Let A, B, and C, be the given sides, Draw $D E$, and make it equal to the side A; from D as a centre, with a radius equal to the side B, describe an are; from E as a centre, with a radius equal to the side C, describe an are intersecting the former at F; draw DF and EF: then DEF is the triangle required (B, I, P. X.).

Scholium. In order that the construction may be possible, any one of the given sides must be less than the sum of the two others, and greater than their difference (B. I., P. VII, S.).

PROBLEM XI
Given, two sides of a triangle, and the angle opposite one of them, to construet the triangle.

Let A and B be the given sides, and C the given

 angle.Draw an indefinite line $D G$, and at some point of it, as D, construct an angle GDE equal to the given angle; on one side of this angle lay off the distance DE equal to the side B adjacent to the given angle; from E as a centre, with a radius equal to the side opposite the given angle, describe an are cutting the side DG at G : draw EG. Then DEG is the required triangle.

For, the sides DE and EG are equal to the given sides, and the angle D, opposite one of them, is equal to the given angle.

Scholium. If the side opposite the given angle is greater than the other given side, there is but one solution. If the given angle/ is acute, and the side opposite the given angle is less than the other given side, and greater than the shortest distance from E to $D G$, there are two solutions, $D E G$ and DEF. If the side opposite the given angle is equal to the shortest distance from E to $D G$, the arc will be tangent to $D G$, the angle opposite $D E$ is a right angle, and there is but one solution. If the side opposite the given angle is shorter than the distance from E to $D G$, there is no solution.

BOOK III.

For, the opposite sides are parallel by construction; and consequently; the figure is a parallelogram (D. 28); it is also formed with the given sides and given angle.

PROBLEM XTII.

To find the centre of a given circumference or arc.
Take any three points A, B, and C, on the circumference or are, and join them by the chords $A B$, $B C$; bisect these chords by the perpendiculars $D E$ and $F G$: then their point of intersection, 0 , is the centre required (P. VII.).

Scholium. The same construction enables us to pass a circumference through any three points not in a straight line. If the points are vertices of a triangle, the circle is circumscribed about it.

Given, two adjacent sides of a parallelogram and their
included angle, to construct the parallelogram.
Let A and B be the given sides, and C the given angle.

Draw the line DH, and at some point as D, construet the angle HDF equal to the angle C. Lay off $D E$ equal to the side A, and $D F$ equal to the side B; draw $F G$ parallel to $D E$, and EG parallel to DF; then DFGE is the parallelogram required.

2°. Let C be the centre of the given circle, and A a point without the circle, through which the tangent is to be drawn.

Draw the line $A C$; bisect it at O, and from 0 as a centre, with a radius $O C$, deseribe the eireumference $A B C D$ join the point A writh the points of intersection D and B : then both $A D$ and $A B$ are tangent to the given circle and there are two solutions.
For, the angles $A B C$ and $A D C$ are right angles (P. XVII., C. 2): hence, each of the lines $A B$ and $A D$ is per-
 pendicular to a radius at its extremity; and consequently, they are tangent to the given circle (P. IX.).

Corollary. The right-angled triangles $A B C$ and $A D C$, have a common hypothenuse $A C$, and the side $B C$ equal to $D C$; and consequently, they are equal in all respects (B. L, P. XVHI): hence, $A B$ is equal to $A D$, and the angle $C A B$ is equal to the angle CAD. The tangents are therefore equal, and the line $A C$ bisects the angle between them.

PROBLEM XV.
To inscribe a circle in a given triangle.
Let $A B C$ be the given tri- O B BRAC angle.

Bisect the angles A and B, by the lines $A O$ and $B O$, meeting in the point O (Prob. V.); from the point O let fall the

perpendiculars $O D, O E, O F$, on the sides of the triangle: these perpendiculars are all equal.

For, in the triangles $B O D$ and $B O E$, the angles $O B E$ and $O B D$ are equal, by construction; the angles $O D B$ and OEB are equal, because each is a right angle ; and consequently, the angles $B O D$ and $B O E$ are also equal (B. L, P. XXV., C. 2), and the side $O B$ is common; and therefore, the triangles are equal in all respects (B. I., P. VL.): hence, $O D$ is equal to $O E$. In like manner, it may be shown that $O D$ is equal to $O F$.

From O as a centre, with a radius OD, describe a circle, and it will be the circle required. For, each side is perpendicular to a radius at its extremity, and is therefore tangent to the circle.

Corollary. The lines that bisect the three angles of a triangle all meet in one point.

PROBLEM XVI.
On a given straight line, to construct a segment that shall contain a given angle.

Produce $A B$ towards D; at B construct the angle DBE equal to the given angle; draw $B O$ perpendicular to $B E$,
and at the middle point G, of $A B$, draw $G O$ perpendicular to $A B$; from their point of intersection O, as a centre, with a radius $O B$, describe the arc $A M B$: then the segment $A M B$ is the segment required.

For, the angle $A B F$, equal to $E B D$, is measured by half of the $\operatorname{arc} A K B$ ($\mathrm{P} . \mathrm{XXI}$); and the inscribed angle $A M B$ is measured by half of the same are: hence, the angle AMB is equal to the angle EBD, and consequently, to the given angle.

Note.- A quadrant or quarter of a circumference, as $C D$, is, for convenience, divided into 90 equal parts, each of which is called a degree. A degree is denoted by the symbol ${ }^{\circ}$; thus, 25° is read 25 degrees, etc. Since a quadrant contains 90°, the whole circumference contains 360°. A right angle, as CAD, which is the unit of measure for angles, being measured by a quadrant (P. XVII., S.), is said to be an angle of 90°; an angle which is one third of a right angle is an angle of 30°; an angle of 120° is $\frac{198}{80}$ or $\frac{4}{3}$ of a right angle, etc.

EXERCISES.

1. Draw a circumference of given radius through two given points.
2. Construct an equilateral triangle, having given one of its sides.
3. At a point on a given straight line, construct an angle of 30°.
4. Through a given point without a given line, draw a line forming with the given line an angle of 30°.
5. A line 8 feet long is met at one extremity by a second line, making with it an angle of 30°; find the centre of the circle of which the first line is a chord and the second a tangent.
6. How many degrees in an angle inseribed in an arc of 135° ?
7. How many degrees in the angle formed by two secants meeting without the circle and including ares of 60° and 110° ?
8. At one extremity of a chord, which divides the circumference into two arcs of 290° and 70° respectively, a tangent is drawn; how many degrees in each of the angles formed by the tangent and the chord?
9. Show that the sum of the alternate angles of an inscribed hexagon is equal to four right angles
10. The sides of a triangle are 3,5 , and 7 feet; struct the triangle.
11. Show that the three perpendiculars erected at the middle points of the three sides of a triangle meet in a common point.
12. Construct an isosceles triangle with a given base and a given vertical angle.
13. At a point on a given straight line, construct an angle of 45°
14. Construct an isosceles triangle so that the base shall be a given line and the vertical angle a right angle.
15. Construct a triangle, having given one angle, one of its including sides, and the difference of the two other sides.
16. From a given point, A, without a circle, draw two tangents, $A B$ and $A C$, and at any point, D, in the included are, draw a fhird tangent and produce it to meet the two others; show that the three tangents form a triangle whose perimeter is constant.
17. On a straight line 5 feet long, con-
 struet a circular segment that shall contain an angle of 30°.
18. Show that parallel tangents to a circle include semi-circumferences between their points of contact.
19. Show that four circles can be drawn tangent to three intersecting straight lines.

BOOK IV.

MBASUREMENT AND RELATION OF POLYGONS.

DEFINITIONS.

1. Simmar Polygons are polygons which are mutually equiangular, and which have the sides about the equal angles, taken in the same order, proportional.
2. In similar polygons, the parts which are similarly placed in each, are called homologous.

The corresponding angles are homologous angles, the corresponding sides are homologous sides, the corresponding diagonals are homologous diagonals, and so on.
3. Simmar Arcs, Sectors, or Segments, in different circles, are those which correspond to equal angles at the centre.

Thus, if the angles A and O are
equal, the arcs BFC and DGE are similar, the sectors BAC and DOE are similar, and the segments BFC and DGE are similar.
4. The Ammutude of a Triangle is the perpendicular distance from the vertex of any angle to the opposite side, or the opposite side produced. D1D1U1UNHN

The vertex of the angle from which the distance is measured, is called the vertex of the triangle, and the opposite side is called the base of the triangle.
14. Construct an isosceles triangle so that the base shall be a given line and the vertical angle a right angle.
15. Construct a triangle, having given one angle, one of its including sides, and the difference of the two other sides.
16. From a given point, A, without a circle, draw two tangents, $A B$ and $A C$, and at any point, D, in the included are, draw a fhird tangent and produce it to meet the two others; show that the three tangents form a triangle whose perimeter is constant.
17. On a straight line 5 feet long, con-
 struet a circular segment that shall contain an angle of 30°.
18. Show that parallel tangents to a circle include semi-circumferences between their points of contact.
19. Show that four circles can be drawn tangent to three intersecting straight lines.

BOOK IV.

MBASUREMENT AND RELATION OF POLYGONS.

DEFINITIONS.

1. Simmar Polygons are polygons which are mutually equiangular, and which have the sides about the equal angles, taken in the same order, proportional.
2. In similar polygons, the parts which are similarly placed in each, are called homologous.

The corresponding angles are homologous angles, the corresponding sides are homologous sides, the corresponding diagonals are homologous diagonals, and so on.
3. Simmar Arcs, Sectors, or Segments, in different circles, are those which correspond to equal angles at the centre.

Thus, if the angles A and O are
equal, the arcs BFC and DGE are similar, the sectors BAC and DOE are similar, and the segments BFC and DGE are similar.
4. The Ammutude of a Triangle is the perpendicular distance from the vertex of any angle to the opposite side, or the opposite side produced. D1D1U1UNHN

The vertex of the angle from which the distance is measured, is called the vertex of the triangle, and the opposite side is called the base of the triangle.
5. The Auttude of a Parallelogram is the perpendicular distance between two opposite sides.

These sides are called bases; one the upper, and the other, the lower base.
6. The Aitutude of A Trapezold is the perpendicular distance between its parallel sides.

These sides are called bases; one the upper, and the other, the lower base.

7. The Area of a surface is its numerical value expressed in terms of some other surface taken as a unit. The unit adopted is a square described on the linear unit as a side.

PROPOSITION I. THEOREM.

Parallelograms which have equal bases and equat altitudes, - \bigcirc are equal.

Let the parallelograms $A B C D$ and EFGH have equal bases and equal altitudes: then the parallelograms are equal.
For, let them be so placed that their lower bases shall coincide; then, because they have the same altitude, their upper bases will be in the same line DG, parallel to $A B$.

The triangles $D A H$ and $C B G$, have the sides $A D$ and $B C$ equal, because they are opposite sides of the parallelogram $A C$ (B. I., P. XXVIII.) ; the sides $A H$ and $B G$ equal, because they are opposite sides of the parallelogram AG; the angles DAH and CBG equal, beoause their sides are
parallel and lie in the same direction (B. I., P. XXIV.): hence, the triangles are equal (B. I, P. V.).

If from the quadrilateral $A B G D$, we take away the triangle DAH, there will remain the parallelogram $A G$; if from the same quadrilateral $A B G D$, we take away the triangle CBG, there will remain the parallelogram AC: hence, the parallelogram $A C$ is equal to the parallelogram EG (A. 3) ; which was to be proved.

PROPOSITION II. THEOREM.

A triangle is equal to one half of a parallelogram having an equal base and an equal altitiude.
Let the triangle $A B C$, and the parallelogram $A B F D$, have equal bases and equal altitudes: then the triangle is equal to one half of the parallelogram.

For, let them be so placed that the base of the triangle shall coincide
 with the lower base of
the parallelogram; then, be-
cause they have equal altitudes, the vertex of the triangle will lie in the upper base of the parallelogram, or in the prolongation of that base.

From A, draw $A E$ parallel to $B C$, forming the parallelogram $A B C E$. This parallelogram is equal to the parallelogram ABFD, from Proposition I. But the triangle ABC is equal to half of the parallelogram ABCE (B. L, P. XXVIII., C. 1): hence, it is equal to half of the parallelogram ABFD (A. 7) ; which was to be proved.

Cor. Triangles having equal bases and equal altitudes are equal, for they are halves of equal parallelograms.

PROPOSITION II. THEOREM.

Rectangles having equal altitudes, are proportional to their bases.

There may be two cases: the bases may be commensurable, or they may be incommensurable.

1. Let $A B C D$ and HEFK, be two rectangles whose altitudes $A D$ and $H K$ are equal, and whose bases $A B$ and $H E$ are commensurable: then the areas of the rectangles are proportional to their bases.

Suppose that $A B$ is to $H E$, as 7 is to 4. Conceive $A B$ to be divided into 7 equal parts, and $H E$ into 4 equal parts, and at the points of division, let perpendieulars be drawn to $A B$ and $H E$. Then will $A B C D$ be divided into 7 , and HEFK into 4 rectangles, all of which are equal, beeause they have equal bases and equal altitudes (P. I.):

hence, we have,

But we have, by hypothesis,

$$
\mathrm{AB}: \mathrm{HE}:: 7: 4 .
$$

From these proportions, we have (B. II., P. IV.), \square,

$$
A B C D: H E F K \text { : : } A B \text { : } H E \text {. }
$$

Had any other numbers than 7 and 4 been used, the same proportion would have been found; which was to be proved.
2°. Let the bases of the rectangles be incommensurable: then the rectangles are proportional to their bases.

For, place the rectangle HEFK upon the rectangle $A B C D$, so that it shall take the position AEFD. Then, if the rectangles are not proportional to their bases, let us suppose that

$$
A B C D: A E F D: A B: A O \text {; }
$$

in which $A O$ is greater than $A E$. Divide $A B$ into equal parts, each less than $O E$; at least one point of division, as I, will fall between E and O; at this point, draw $I K$ perpendicular to $A B$. Then, because $A B$ and $A I$ are commensurable, we shall have, from what has just been shown,

$$
A B C D: A I K D: A B: A I .
$$

The above proportions have their antecedents the same in each; hence (B. П., P. IV., C.),
-0
The rectangle AEFD is less than AIKD ; and if the above proportion were true, the line $A O$ would be less than $A I$; whereas, it is greater. The fourth term of the proportion, therefore, cannot be greater than $A E$. In like manner, it may be shown that it cannot be less than $A E$; consequently, it must be equal to $A E$: hence,

DE BIB Meem nefo (abs ME:

which was to be proved.
Cor. If rectangles have equal bases, they are to each other as their altitudes.

PROPOSITION IV. THEOREM.

Any two rectangles are to each other as the products of their bases and altitudes.

Let $A B C D$ and $A E G F$ be two rectangles: then $A B C D$ is ta $A E G F$, as $A B \times A D$ is to $A E \times A F$.

For, place the rectangles so that the angles DAB and EAF shall be opposite or vertical ; then, produce the sides CD and GE till they meet in H .
The rectangles $A B C D$ and $A D H E$
 have the same altitude $A D$: hence (P. III.)

$$
A B C D \because A D H E:: A B=A E .
$$

The rectangles $A D H E$ and AEGF have the same altitude $A E$: hence,

$$
A D H E \because A E G F: A D: A F .
$$

Multiplying these proportions, term by term (B. II, P. XII.), and omitting the common factor ADHE (B. II., P. VII.), we have,
\int UABCD:AEGF::AB $\left.\times A D: A E \times A F ;\right]$
which was to be proved.

Cor. If we suppose $A E$ and $A F$, each to be equal to the linear unit, the rectangle AEGF is the superficial unit, and we have,

$$
\begin{aligned}
A B C D & : 1 \\
A B C D & =A B \times A D: 1 ;
\end{aligned}
$$

hence, the area of a rectangle is equal to the product of its base and altitude; that is, the number of superficial units in the rectangle, is equal to the product of the number of linear units in its base by the number of linear units in its altitude.

The product of two lines is sometimes called the rectangle of the lines, because the product is equal to the area of a rectangle constructed with the lines as sides.

PROPOSITION V. THEOREM.

The area of a parallelogram is equal to the product of its base and altitude.

Let $A B C D$ be a parallelogram, $A B$ its base, and $B E$ its altitude: then the area of $A B C D$ is equal to $A B \times B E$.

For, construct the rectangle $A B E F$, having the same base and altitude:
 then will the rectangle be equal to the parallelogram (P. I.) ; but the area of the rectangle is equal to $\mathrm{AB} \times \mathrm{BE}$: hence, the area of the parallelogram is also equal to $A B \times B E$; which was to be proved.

Cor. Parallelograms are to each other as the products of their bases and altitudes. If their altitudes are equal, they are to each other as their bases. If their bases are equal, they are to each other as their altitudes.

PROPOSITION VI. THEOREM.

The area of a triangle is equal to half the product of its base ana altitude.

Let $A B C$ be a triangle, $B C$ its base, and $A D$ its altitude: then its area is equal to $: B C \times A D$.
For, from C, draw $C E$ parallel to $B A$, and from A, draw (AE parallel to BC. The area of the parallelogram BCEA is $B C \times A D \quad(P . V) ;$ but the triangle $A B C$ is half of the parallel-
 ogram BCEA: hence, its area is equal to $\frac{1}{2} B C \times A D$; which was to be proved.

Cor. 1. Triangles are to each other, as the products of their bases and altitudes (B. II, P. VH.). If the altitudes are equal, they are to each other as their bases. If the bases are equal, they are to each other as their altitudes.

Cor. 2. The area of a triangle is equal to half the product of its perimeter and the radius of the inseribed circle.
For, let DEF be a circle in-
scribed in the triangle $A B C$. Draw $O D, O E$, OF contact, and $O A, O B$, and $O C$, to the vertices.

The area of $O B C$ is equal to $\frac{1}{2} O E \times B C$; the area of $O A C$ is equal to $10 F \times A C$; and the area of $O A B$ is equal to $\frac{1}{2} O D \times A B$; and since $O D, O E$, and $O F$, are equal, the area of the triangle $A B C$ ($A .9$), is equal to $\frac{1}{2} O D(A B+B C+C A)$.

PROPOSITION VIL THEOREM.

The area of a troperoid is equal to the product of its altitude and half the sum of its parallel sides.

Let $A B C D$ be a trapezoid, $D E$ its altitude, and $A B$ and $D C$ its parallel sides: then its area is equal to $D E \times \frac{1}{2}(A B+D C)$.

For, draw the diagonal $A C$, forming the triangles $A B C$ and $A C D$. The altitude of each of these triangles is equal
 to $D E$. The area of $A B C$ is equal to $\frac{1}{2} A B \times D E(P . V L)$; the area of $A C D$ is equal to $\frac{1}{2} D C \times D E$: hence, the area of the trapezoid, which is the sum of the triangles, is equal to the sum of $\frac{1}{2} A B \times D E$ and $\frac{1}{2} D C \times D E$, or to $\mathrm{DE} \times \frac{1}{2}(\mathrm{AB}+\mathrm{DC})$; which was to be proved.

Scholium. Through I, the middle point of $B C$, draw $I H$ parallel to $A B$, and $L I$ parallel to $A D$, meeting $D C$ produced, at K. Then, since $A I$ and $H K$ are parallelograms, we have $\mathrm{AL}=\mathrm{HI}=\mathrm{DK}$; and therefore, $\mathrm{HI}=\frac{1}{4}(\mathrm{AL}+\mathrm{DK})$. But since the triangles $L I B$ and $C I K$ are equal in all respects, $\mathrm{LB}=\mathrm{CK}$; hence, $\mathrm{AL}+\mathrm{DK}=\mathrm{AB}+\mathrm{DC}$; and we have $\mathrm{HI}=$ $\frac{1}{2}(A B+D C)$: hence,
 plied by the line which conneets the middle points of its
inctined sides.
DE BIBLIOTECAS
PROPOSITION VIII. THEOREM.
The square described on the sum of two lines is equat to the sum of the squares described on the lines, increased by twice the rectangle of the lines.

Let $A B$ and $B C$ be two lines, and $A C$ their sum: then $\overline{A C}^{2}=\overline{A B}^{2}+\overline{B C}^{2}+2 A B \times B C$.

On $A C$, construct the square $A D$; from B, draw $B H$ parallel to $A E$; lay off $A F$ equal to $A B$, and from F, draw $F G$ parallel to $A C$: then IG and IH are each equal to $B C$; and $I B$ and $I F$, to $A B$.
The square ACDE is composed of four parts. The part $A B I F$ is a square described on $A B$; the part $I G D H$ is equal to a square described on $B C$; the part $B C G 1$ is equal to the rectangle of $A B$ and $B C$; and the part FIHE is also equal to the rectangle of $A B$ and $B C$: hence, we have ($A .9$),

$$
\overline{A C}^{2}=\overline{A B}^{2}+{B C^{2}}^{2}+2 A B \times B C ;
$$

which was to be proved.
Cor. If the lines $A B$ and $B C$ are equal, the four parts of the square on $A C$ are also equal: hence, the square described on a line is equal to four times the square deseribed on half the line.

PROPOSITION IX. THEOREM.

The square described on the difference of two lines is equal to the sum of the squares described on the lines, diminished by twice the rectangle of the lines.

Let $A B$ and $B C$ be two lines, and $A C$ their difference; then

$$
\overline{A C}^{2}=\overline{A B}^{2}+\overline{B C}^{2}-2 \mathrm{AB} \times \mathrm{BC} .
$$

On $A B$ construct the square $A B I F$; from C draw $C G$ parallel to BI ; lay off $C D$ equal to $A C$, and from D draw DK parallel and equal to $B A$; complete the square EFLK;
then $E K$ is equal to $B C$, and $E F L K$ is equal to the square of $B C$.
The whole figure ABILKE is equal to the sum of the squares described on $A B$ and $B C$. The part CBIG is equal to the rectangle of $A B$ and $B C$; the part DGLK is also equal to the rectangle of $A B$ and $B C$. If from the
 whole figure ABILKE, the two parts CBIG and DGLK be taken, there will remain the part $A C D E$, which is equal to the square of $A C$: hence,

$$
\overline{A C}^{2}=\overline{A B}^{2}+\overline{B C}^{2}-2 \mathrm{AB} \times \mathrm{BC} ;
$$

which was to be proved.

PROPOSITION X. THEOREM.

The rectangle contained by the sum and difference of two lines, is equal to the difference of their squares.

Let $A B$ and $B C$ be two lines, of which $A B$ is the greater: then
$M A \operatorname{DR}$ prolong $A B$, and make $B K$ equal to $B C$; then $A K$ is equal to $A B+B C$; from K, draw $K L$ parallel to BI , and make it equal to $A C$; draw LE parallel to KA , and CG parallel to BI : then DG is equal to $B C$, and the figure DHIG is equal to the square on $B C$, and EDGF is equal to BKLH.

If we add to the figure $A B H E$, the rectangle $B K L H$, we have the rectangle AKLE, which is equal to the rectangle of $A B+B C$ and $A B-B C$. If to the same figure $A B H E$, we add the rectangle DGFE, equal to BKLH, we have the figure ABHDGF, which is equal to the difference of the squares of $A B$ and $B C$. But the sums of equals are equal (A. 2), hence,

$$
(A B+B C)(A B-B C)=\overrightarrow{A B}^{2}-\overline{B C^{2}}
$$

which was to be proved.

PROPOSITION XI. THEOREM.

described on the hypothenuse of a right-angled triangle, is equat to the sum of the squares described on the two other sides.

Let $A B C$ be a triangle, right-
 angled at A : then
$\bigcup \sqrt{\mathrm{BC}^{2}}=\overline{\mathrm{AB}}+\overline{\mathrm{AC}}^{2}$. Construct the square BG on the side BC , the square AH on the side $A B$, and the square $A I$ on the side $A C$; from A draw $A D$ perpendicular to $B C$, and prolong it to E : then $D E$ is parallel to $B F$; draw $A F$ and $H C$.

In the triangles $H B C$ and $A B F$, we have $H B$ equal to $A B$, because they are sides of the same square; $B C$ equal
to $B F$, for the same reason, and the included angles HBC and $A B F$ equal, because each is equal to the angle $A B C$ plus a right angle: hence, the triangles are equal in all respects (B. I., P. V.).

The triangle $A B F$, and the rectangle $B E$, have the same base $B F$, and because $D E$ is the prolongation of $D A$, their altitudes are equal: hence, the triangle $A B F$ is equal to half the rectangle $B E$ (P . II.). The triangle $H B C$, and the square $B L$, have the same base $B H$, and because $A C$ is the prolongation of LA (B. I., P. IV.), their altitudes are equal: hence, the triangle. $H B C$ is equal to half the square of $A H$. But, the triangles $A B F$ and $H B C$ are equal: hence, the rectangle $B E$ is equal to the square $A H$. In the same manner, it may be shown that the rectangle $D G$ is equal to the square Al : hence, the sum of the rectangles BE and $D G$, or the square $B G$, is equal to the sum of the squares AH and Al ; or, $\overline{\mathrm{BC}}^{2}=\mathrm{AB}^{2}+\overline{\mathrm{AC}}^{2}$; which was to be proved.

Cor. 1. The square of either side about the right angle is equal to the square of the hypothenuse diminished by the square of the other side: thus,
$\overline{A B}^{2}=\overline{B C}^{2}-\overline{A C}^{2} ;$ or, $\overline{A C}^{2}=\overline{B C}^{2}-\overline{\mathrm{AB}}^{2}$.
Cor.2. If from the vertex of the right angle, a perpendicular be drawn to the hypothenuse, dividing it into two segments, BD and DC , the square of the hypotheruse is to the square of either of the other sides, as the hypothenuse is to the segment adjacent to that side.

For, the square BG, is to the rectangle $B E$, as $B C$ to $B D$ ($\mathrm{P} . \mathrm{III}$); but the rectangle $B E$ is equal to the square AH: hence,

In like manner, we have,

Cor. 3. The squares of the sides about the right angle are to each other as the adjacent segments of the hypothenuse. $A M$. For, by combining the proportions of the preceding corollary (B. II., P. IV., C.), we have,

Cor. 4. The square described on the diagonal of a square is double the given square.

For, the square of the diagonal is equal to the sum of the squares of the two sides; but the square of each side is equal to the given square: hence,

$$
\overline{A C}^{2}=2 \overline{A B}^{2} ; \quad \text { or, } \quad \overline{\mathrm{AC}^{2}}=2 \overline{\mathrm{BC}}^{2}
$$

Cor. 5. From the last corollary, we have,
hence, by extracting the square root of each term, we have, $A C: A B:: \sqrt{2}: 1$;
that is, the diagonal of a square is to the side, as the square root of two is to one; consequently, the diagonal and the side of a square are incommensurable.

PROPOSITION XII THEOREM.

In any triangle, the square of a side opposite an acute angle is equal to the sum of the squares of the base and the other side, diminished by twice the rectangle of the base and the distance from the vertex of the acute angle to the foot of the perpendicular drawn from the vertex of the opposite angle to the base, or to the base produced.

Let $A B C$ be a triangle, C one of its acute angles, $B C$ its base, and $A D$ the perpendicular drawn from A to $B C$, or $B C$ produced; then

$$
\overline{A B}^{2}=\overline{B C}^{2}+{\overline{A C^{2}}}^{2}-2 \mathrm{BC} \times \mathrm{CD}
$$

For, whether the perpendicular meets the base, or the base produced, we have $B D$ equal to the difference of $B C$ and $C D$: hence (P. IX.),

$$
\overline{B D}^{2}=\overline{B C}^{2}+\overline{C D}^{2}-2 \mathrm{BC} \times \mathrm{CD}
$$

Adding $\overline{\mathrm{AD}}^{2}$ to both members, we have,

$$
\begin{aligned}
& \overline{B D}^{2}+\overline{A D}^{2}=\overline{B C}^{2}+\overline{C D}^{2}+\overline{A D}^{2}-2 B C \times C D \\
& \text { Hade numeoreon } \\
& \text { and } \\
& \overline{C D}^{2}+\overline{A D}^{2}=\overline{A C}^{2}: \\
& \begin{array}{l}
\text { hence, } \quad \overline{\mathrm{AB}}=\overline{\mathrm{BC}}^{2}+\overline{\mathrm{AC}}^{2}=2 \mathrm{BC} \times \mathrm{CD} \text {; } \\
\text { which was to be proved. }
\end{array} \\
& \text { which was to be proved. }
\end{aligned}
$$

BOOK IV.

$$
\overline{\mathrm{AB}}^{2}+\overline{\mathrm{AC}}^{2}=2 \overline{\mathrm{BE}}^{2}+2 \overline{\mathrm{EA}}^{2} .
$$

Draw $A D$ perpendicular to $B C$; then, from Proposition XII., we have,

$$
\overline{A C}^{2}=\mathrm{EC}^{2}+E \mathrm{~A}^{2}-2 \mathrm{EC} \times \mathrm{ED} .
$$

From Proposition XIIL, we have,

$$
\overline{\mathrm{AB}}{ }^{3}=\overline{\mathrm{BE}}^{2}+\overline{E A}^{2}+2 \mathrm{BE} \times \mathrm{ED} .
$$

Adding these equations, member to member (A. 2), recollecting that $B E$ is equal to $E C$, we have,

$$
\overline{\mathrm{AB}}^{2}+\overline{\mathrm{AC}}^{2}=2 \overline{\mathrm{BE}}^{2}+2 \overline{\mathrm{EA}}^{2}
$$

which was to be proved.

Cor. Let $A B C D$ be a parallelogram, and $B D, A C$, its diagonals. Then, since the diagonals mutually bisect each other (B. I., P. XXXI.), we have,

$$
{\overline{A B^{2}}}^{2}+\overline{B C}^{2}=2 \overline{A E}^{2}+2 \overline{B E}^{2}
$$

and, $\overline{C D}^{2}+\overline{D A}^{2}=2 \overline{C E}^{2}+2 \overline{D E}^{2}$; \qquad
whence, by addition, recollecting that $A E$ is equal to $C E$, and $B E$ to $D E$, we have,

$$
\overline{\mathrm{AB}}^{2}+\overline{\mathrm{BC}}^{2}+\overline{\mathrm{CD}}^{2}+\overline{\mathrm{DA}}^{2}=4 \overline{\mathrm{CE}}^{2}+4 \overline{\mathrm{DE}}^{2} ;
$$

but, $4 \mathrm{CE}^{2}$ is equal to $\overline{A C^{2}}$, and $\frac{\mathrm{EDE}^{2}}{}$ to $\overline{\mathrm{BD}^{2}}$ (P. VIII, C.):
hence, DLDUN

$$
\overline{\mathrm{AB}^{2}}+{\overline{B C^{2}}+\overline{C D^{2}}+\overline{D A^{2}}=\overline{\mathrm{AC}^{2}}+\overrightarrow{\mathrm{BD}^{2}} .}^{2}
$$

That is, the sum of the squares of the sides of a parallelogram, is equal to the sum of the squares of its diagonals.

PROPOSITION XV. THEOREM.

In any triangle, a line drawn parallel to the base divides the other sides proportionally.

Let $A B C$ be a triangle, and $D E$ a line parallel to the base $B C$: then

Draw $E B$ and DC. Then, because the triangles AED and DEB have their bases in the same line $A B$, and their vertices at the same point E, they have a common altitude : hence ($\mathrm{P} . \mathrm{VI}, \mathrm{C}$.),

$$
A E D: D E B
$$

$$
B B: A D
$$

DB.

The triangles AED and EDC, have their bases in the same line $A C$, and their vertices at the same point D; they have, therefore, a common altitude; hence,
AED : EDC : : AE : EC.

But the triangles DEB and EDC have a common base DE and their vertices in the line $B C$, parallel to $D E$; theyare, therefore, equal: hence, the two preceding proportions have a couplet in each equal; and consequently, the remaining terms are proportional (B. II., P. IV.), hence,

Cor. 1. We have, by composition (B. II., P. VI),

$$
A D+D B: A D:: A E+E C: A E ;
$$

or, $A B: A D:: A C: A E$;
and, in like manner,
$A B$: $D B$: : $A E$: $E C$.
Cor. 2. If any number of parallels be drawn cutting two lines, they divide the lines proportionally.

For, let O be the point where $A B$ and $C D$ meet. In the triangle $O E F$, the fine $A C$ being parallel to the base $E F$, we have,

$$
O E: A E: O F: C F
$$

In the triangle OGH, we have,
OE : EG : : OF : FH ;
hence (B. II., P. IV., C.),

In like manner
and so on.

T \triangle PROPOSIIION XVI. THEOREM.
 If a straight line divides two sides of a triangle proportionally, it is parallel to the third side.

Let $A B C$ be a triangle, and let $D E$ divide $A B$ and $A C$, so that

$$
A D: D B: A E: E C \text {; }
$$

then $D E$ is parallel to $B C$.
Draw DC and EB. Then the triangles

$A D E$ and $D E B$ have a common altitude; and consequently we have,

ADE \qquad DB.
The triangles $A D E$ and EDC have also a common altitude; and consequently, we have,

hence (B. II, P. IV.),

$A D E: D E B:=A D E: E D C$.

The antecedents of this proportion being equal, the consequents are equal; that is, the triangles DEB and EDC are equal. But these triangles have a common base DE : hence, their altitudes are equal (P. VI., C.) ; that is, the points B and C, of the line $B C$, are equally distant from $D E$, or $D E$ prolonged: hence, $B C$ and $D E$ are parallel (B. I., P. XXX., C.) ; which was to be proved.

11 In any triangle, the straight line which bisects the angle at the vertex, divides the base into two segments proportional to the adjacent sides. (O-H)

Let $A D$ bisect the vertical angle A of the triangle $B A C$: then the segments $B D$ and $D C$ are proportional to the adjacent sides BA and CA .

From C, draw CE parallel to DA, and produce it until
it meets BA prolonged, at E. Then, because CE and DA are parallel, the angles $B A D$ and $A E C$ are equal (B. I., P. XX., C. 3) ; the angles DAC and ACE are also equal (B. I, P. XX, C. 2). But, BAD and DAC are equal, by hypothesis; consequently, $A E C$ and $A C E$ are equal: hence, the triangle $A C E$ is isosceles, $A E$ being equal to

In the triangle $B E C$, the line $A D$ is parallel to the base EC: hence (P. XV.),

Triangles which are mutually equiangular, are similar.

Net the triangles $A B C$ and DEF have the angle A equal to the angle D, the angle B to the angle E, and the angle C to the angle F : then they are similar.
For, place the triangle DEF upon the triangle $A B C$, so that the angle E shall coincide with the angle B ; then will
 the point F fall at some point H, of $B C$; the point D at some point G, of $B A$;
the side DF will take the position GH, and BGH will be equal to EDF.

Since the angle BHG is equal to $B C A, G H$ will be parallel to AC (B. I, P. XIX.,
C. 2) ; and consequently, we have ($\mathrm{P} . \mathrm{XV}$.), VERITATIS

hence, the sides about the equal angles, taken in the same order, are proportional; and consequently, the triangles are similar (D. 1); which was to be proved.

Cor. If two triangles have two angles in one, equal to two angles in the other, each to each, they are similar (B. I., P. XXV., C. 2). \quad)

PROPOSTTION XIX. THEOREM. Triangles which have their corresponding sides proportional, are similar.

In the triangles $A B C$ and DEF, let the corresponding sides be proportional ; that is, let

BOOK IV.
$B A: E D:: B C$: $E F: C A: F D$;
then the triangles are similar.
For, on BA lay off BG equal to $E D$; on $B C$ lay off BH equal to EF , and draw GH. Then, because BG is equal to $E D$, and $B H$ to $E F$,
 we have,

$$
\mathrm{BA}: \mathrm{BG}:: \mathrm{BC}: \mathrm{BH}
$$

hence, GH is parallel to AC (P. XVI.) ; and consequently, the triangles $B A C$ and BGH are equiangular, and therefore similar : hence,

But, by hypothesis,
hence (B. II., P. IV., C.), we have,

$$
B H: E F:: H G: F D .
$$

But, $B H$ is equal to $E F$; hence, $H G$ is equal to $F D$. The triangles BHG and EFD have, therefore, their sides equal, each to each, and consequently, they are equal in all respects. Now, it has just been shown that BHG and BCA are similar: hence, EFD and BCA are also similar; which was to be proved.
D
Scholium. In order that polygons may be similar, they must fulfill two conditions: they must be mutually equiangular, and the corresponding sides must be proportional. In the case of triangles, either of these conditions involves the other, which is not true of any other species of polygons.

PROPOSITION XX. THEOREM.

Triangles which have an angle in each equal, and the including siles proportional, are similar.

In the triangles $A B C$ and $D E F$, let the angle B be equal to the angle E; and suppose that
then the triangles are similar.
For, place the angle E upon its equal B; F will fall Th at some point of $B C$, as H; D will fall at some point of BA, as G; DF will take the

position GH, and the triangle DEF will coincide with GBH, and consequently, is equal to it.

But, from the assumed proportion, and because BG is equal to $E D$, and $B H$ to $E F$, we have,

hence, GH is parallel to $A C$; and consequently, BAC and BGH are mutually equiangular, and therefore similar. But, $E D F$ is equal to $B G H$: hence, it is also similar to $B A C$; which was to be proved.)

PROPOSITION XXI. THEOREM

Triangles which have their sites parallet, each to each, or

 perpendicular, each to each, are similar.1°. Let the triangles $A B C$ and $D E F$ have the side $A B$ parallel to $D E, B C$ to $E F$, and $C A$ to $F D$; then they are similar.

For, since the side $A B$ is parallel to $D E$, and $B C$ to $E F_{\text {, }}$ the angle B is equal to the angle E (B. I., P. XXTV.) ; in like manner, the angle C is equal to the angle F, and the angle A to the angle D the triangles are, therefore,
 mutually equiangular, and consequently, are similar ($\mathrm{P} . \mathrm{XVIIL}$); which was to be proved.
2°. Let the triangles $A B C$ and $D E F$ have the side $A B$ perpendicular to $D E, B C$ to $E F$, and $C A$ to $F D$: then they are similar.

For, prolong the sides of the triangle DEF till they meet the sides of the triangle $A B C$. The sum of the interior angles of the quadrilateral BIEG is equal to four right angles (B. I., P. XXVL) ; but, the angles EIB and EGB are each right angles, by hypothesis; hence, the sum of the angles IEG, IBG is equal to two right angles; the sum of the angles IEG and $D E F$ is equal to two right angles, because they are adjacent; and since things which are equal to the same fling are equal to each other, the sum of the angles IEG and IBG is equal to the sum of the angles IEG and DEF; or, taking away the common part IEG, we have the angle IBG equal to the angle DEF. In like manner, the angle GCH may be proved equal to the angle EFD, and the angle HA to the angle EDF; the triangles $A B C$ and DEF are, therefore, mutually equiangular, and consequently similar ; which was to be proved.

Cor. 1. In the first case, the parallel sides are homolo-
gous; in the second case, the perpendicular sides are homologous.

Cor. 2. The homologous angles are those included by sides respectively parallel or perpendicular to each other.

Scholium. When two triangles have their sides perpendieular, each to each, they may have a different relative position from that shown in the figure. But we can always construct a triangle within the triangle $A B C$, whose sides shall be parallel to those of the other triangle, and then the demonstration will be the same as above.

PROPOSITION XXIL THEOREM

a straight line is drawn parallel to the base of a triangle, and straight lines are drawn from the vertex of the triangle to points of the base, these lines divide the base and the parallet proportionally.

Let $A B C$ be a triangle, $B C$ its base, A its vertex, $D E$ parallel to $B C$, and $A F, A G, A H$, lines drawn from A to points of the base: then
$\int \mathrm{DI}: \mathrm{BF}:: \mathrm{IK}: F \mathrm{FG}: \mathrm{KL}: \mathrm{GH}: \mathrm{LE}: \mathrm{HC}$.
For, the triangles AID and AFB, being similar (P . XXI.), we have,
$\mathrm{Al}: \mathrm{AFD}: \operatorname{DI}: \mathrm{BF}$; \square and, the triangles AIK and AFG, being similar, we have,

$$
A I: A F:: I K: F G ;
$$

hence (B. II., P. IV.), we have,

DI : $B F:: \mid K$: $F G$.
In like manner,
and, $\mathrm{IK}: \mathrm{FG}:: \mathrm{KL}: \mathrm{GH}$,
$\mathrm{KL}: \mathrm{GH}:: \mathrm{LE}: \mathrm{CH} ;$
hence (B. II., P. IV.)
$\mathrm{DI}: B F:=\mathrm{IK}: F G: \mathrm{KL}: G H:=L E: H C$;
which was to be proved.
Cor. If $B C$ is divided into equal parts at F, G, and H_{1} then $D E$ is divided into equal parts, at I, K, and L

PROPOSITION XXIII. THEOREM.

If, in a right-angled triangle, a perpendicular is drawn from the vertex of the right angle to the hypothenuse:
1°. The triangles on each side of the perpendioutar are similar to the given triangle, and to each other:
2°. Each side about the right angle is a mean proportional between the Fypothenuse and the adjacent segment:
3. The perpendicutar is a mean proportional between the two segments of the hypothenuse.
1°. Let $A B C$ be a right-angled triangle, A the vertex of the right angle, $B C$ the hypothe-
nuse, and $A D$ perpendicular to $B C$: then $A D B$ and $A D C$ are similar to $A B C$, and consequently, similar to each other.

The triangles $A D B$ and $A B C$ have
the angle B common, and the angles $A D B$ and $B A C$ equal,
because each is a right angle; they are, therefore, similar (P. XVIII., C.). In like manner, it may be shown that the triangles $A D C$ and $A B C$ are similar; and since $A D B$ and $A D C$ are each similar to $A B C$, they are similar to each other; which was to be proved.
 For, the triangles $A D B$ and $A D C$ being similar, their homologous sides are proportional ; hence,

$$
B D: A D:: A D: D C
$$

which was to be proved. AD AUS
Cor. 1. From the proportions,
and, $D\left[\begin{array}{l}B C: A B: A B: B D \\ B C: A C: A C: D C,\end{array}\right.$
we have (B. II., P. I.),
and,

$$
\widehat{A B^{2}}=B C \times B D,
$$

$$
\overline{A C}^{2}=\mathrm{BC} \times \mathrm{DC}
$$

BOOK IV.
whence, by addition,

$$
\begin{array}{ll}
& {\overline{A B^{2}}+\overline{\mathrm{AC}}^{2}}=\mathrm{BC}(\mathrm{BD}+\mathrm{DC}) ; \\
\text { or, } & \overline{\mathrm{AB}}^{2}+\overline{\mathrm{AC}}^{2}=\overline{\mathrm{BC}^{2}} ;
\end{array}
$$

as was shown in Proposition XI.
Cor. 2. If from any point A, in a semi-circumference $B A C$, chords are drawn to the extremities B and C of the diameter $B C$, and a perpendicular $A D$ is drawn to the diameter: then $A B C$ is a right-angled triangle, right-angled at A; and from
 what was proved above, each chord is
a mean proportional between the diameter and the adjacent segment; and, the perpendicular is a mean proportional between the segments of the diameter.

PROPOSITION XXIV. THEOREM.
12 Triangles which have an angle in each equal, are to each $1 \sqrt{\text { A }}$ other as the rectangles of the including sides. I

Let the triangles $G H K$ and $A B C$ have the angles G and A equal: then are they to each other as the rectangles of the sides about these angles.

For, lay off $A D$ equal to GH, AE to GK , and draw DE ;
then the triangles $A D E$ and
GHK are equal in all respects.

Draw EB.

The triangles $A D E$ and $A B E$ have their bases in the same line $A B$, and a common vertex E; therefore, they have the same altitude, and consequently, are to each other as their bases; that is,

$$
A D E: A B E: A A D: A B .
$$

The triangles $A B E$ and $A B C$, have their bases in the same line $A C$, and a common vertex B : hence, $A B E: A B C$
multiplying these proportions, term by term, and omitting the common factor $A B E$ (B. II., P. VII.), we have,

$$
A D E: A B C: A D \times A E: A B \times A C
$$

substituting for $A D E$, its equal, $G H K$, and for $A D \times A E$, its equal, $\mathrm{GH} \times \mathrm{GK}$, we have,
$\mathrm{GHK}: \mathrm{ABC}: \mathrm{GH} \times \mathrm{GK}$

$$
\mathrm{AB} \times \mathrm{AC}
$$

which was to be proved.

Cor. If $A D E$ and $A B C$ are similar, the angles D and B being bomologous, $D E$ is parallel to $B C$, and we have, $1, A D: A B$:: $A E: A C$;
hence (B. II. P. IV.), we have,
$A D E: A B E: A B E: A B C$;
that is, $A B E$ is a mean proportional between $A D E$ and $A B C$.

PROPOSITION XXV. THEOREM.

Similar triangles are to each other as the squares of their homologous sides.

Let the triangles $A B C$ and $D E F$ be similar, the angle A being equal to the angle D, B to E, and C to F : then the triangles are to each other as the squares of any two homologous sides.

Because the angles A and D are equal, we have (P. XXIV.),

```
ABC : DEF :: AB }\timesAC:DE\timesDF
```

and, because the triangles are similar, we have,
$A B: D E: A C: D F$;
multiplying the terms of this proportion by the corresponding terms of the proportion,

we have (B. II., P. XII),
$A B \times A C: D E \times D F: \overline{A C}^{2}: \overline{D F}^{2} ;$
combining this with the first proportion $(B . I I, P$. IV. $)$, we have,

$$
\overline{A B C}: \overline{D E F}:: \overline{A C}^{2}: \overline{D F}^{2}
$$

In like manner, it may be shown that the triangles are to each other as the squares of $A B$ and $D E$, or of $B C$ and EF; which was to be proved.

Any two homologous triangles are like parts of the

PROPOSITION XXVI. THEOREM.

Similar polygons may be divided into the same number of triangles, similar, each to each, and similarly placed.

Let $A B C D E$ and FGHIK be two similar polygons, the angle A being equal to the angle F, B to G, C to H, and so on : then can they be divided into the same number of similar triangles, similarly placed.

For, from A draw the diagonals $A C, A D$, and from A, homologous with A, draw [T the diagonals $F H, F I$, to the vertices H and 1 , homologrus with C and D.

Because the polygons are similar, the triangles $A B C$ and $F G H$ have the angles B and G equal, and the sides about these angles proportional; they are, therefore, similar ($\mathrm{P} . \mathrm{XX}$). Since these triangles are similar, we have the angle $A C B$ equal to $F H G$, and the sides $A C$ and $F H$, proportional to $B C$ and $G H$, or to $C D$ and HI . The angle BCD being equal to the angle GHI, if we take from the first the angle $A C B$, and from the second the equal angle FHG, we have the angle $A C D$ equal to the angle $F H$: hence, the triangles $A C D$ and FHI have an angle in each equal, and the including sides proportional ; they are therefore similar.

In like manner, it may be shown that $A D E$ and FIK are similar; which was to be proved. (J)

Cor. 1. The corresponding triangles in the two polygoons are homologous triangles, and the corresponding diagonals are homologous diagonals.
2°. The polygons are to each other as the squares of any two homologous sides.

For, let the polygons be divided into homologous triangles (P. XXVI., C. 1) ; then, because the homologous triangles $A B C$ and FGH are like parts of the polygons to
 which they belong, the polygons are to each other as these triangles; but these triangles, being similar, are to each other as the squares of $A B$ and $F G$: hence, the polygons are to each other as the squares of $A B$ and $F G$, or as the squares of any other two homologous sides; which was to be proved.

Cor. 1. Perimeters of similar polygons are to each other as their homologous diagonals, or as any other homologous lines; and the polygons are to each other as the squares of their homologous diagonals, or as the squares of any other homologous lines.

Cor. 2. If the three sides of a right-angled triangle are made homologous sides of three similar polygons,
these polygons are to each other as the squares of the sides of the triangle. But the square of the hypothenuse \int is equal to the sum of the squares of the other sides, and consequentiy, the polyson on the hypothenuse will be equal to the sum of the polygons on the other sides.

PROPOSITION XXVII. THEOREM. ERA

 If two chords intersect in a circle, their segments are reciprocally proportional.Let the chords $A B$ and $C D$ intersect at O : then are
their segments reciprocally proportional; that is, one segment of the first will be to one segment of the second, as the remaining segment of the second is to the remaining segment of the first.

For, draw CA and BD. Then the angles $O D B$ and $O A C$ are equal, because each is measured by half of the arc CB (B. III., P. XVIII.). The angles $O B D$ and OCA are also equal, because each is measured by half of the arc $A D$: hence, the triangles OBD and OCA are similar (P. XVIII., C.), and consequently, their homologous sides are proportional : hence,

DO : $A O: O B: O C ;$
which was to be proved.
Cor. From the above proportion, we have,

$$
D O \times O C=A O \times O B ;
$$

that is, the rectangle of the segments of one chord is equal to the rectangle of the segments of the other.

MA DE provesastiox Kan turionan.

If from a point without a circle, two secants are drawn terminating in the concave are, they are reciprocally propartional to their external segments.
Let $O B$ and $O C$ be two secants terminating in the concave arc of the circle BCD : then

$$
O B: O C: O D: O A
$$

For, draw $A C$ and $D B$. The triangles $O D B$ and $O A C$ have the angle O common, and the angles $O B D$ and $O C A$ equal, because each is measured by half of the are $A D$: hence, they are similar, and consequently, their homologous sides are proportional; whence,

or. From the above proportion, we have, $O B \times O A=O C \times O D$
that is, the rectangiles of each secant and its external segment are equal.

PROPOSITION XXX THEOREM.

If from a point without a circle, a tangent and a secant are drawn, the secent terminating in the concave are, the tangent is a mean proportional between the secant and its external segment.

Let $A D C$ be a circle, $O C$ a secant, and $O A$ a tangent: then $\triangle \mathrm{OC}: \mathrm{OA}: \therefore \mathrm{OA}: \mathrm{OD}$.

For, draw $A D$ and $A C$. The triangles $O A D$ and $O A C$ have the angle O common, and the angles $O A D$ and $A C D$ equal, because each is measured by half of the arc AD (B. III, P. XVII., P. XXI.) ; the triangles are therefore similar, and consequently, their homologous sides are propor-
 tional: hence,

$$
O C: O A: O A: O D
$$

which was to be proved.
Cor. From the above proportion, we have,

$$
\overline{A O}^{2}=O C \times O D
$$

that is, the square of the tangent is equal to the rectangle of the secant and its external segment.

- PRACTICAL APPLICATIONS.

PROBLEM I.
To divide a given straight line into parts proportional to given straight lines: also into equal parts.

1. Let $A B$ be a given straight line, and let it be re-
quired to divide it into parts proportional to the lines P, Q, and R. From one extremity A, draw the indefinite line $A G$, making any angle with $A B$; lay off $A C$ equal to $P, C D$ equal to Q and $D E$ equal to R; draw $E B$, and from the points C and D, draw Cl and DF parallel to EB : then $A I$, F, and $F B$, are proportional to P, Q, and $R\left(P . X V_{r}\right.$ C. 2).
2. Let $A H$ be a given straight line, and let it be required to divide it into any number of equal parts, say five.

From one extremity A draw the indefinite line $A G$ take Al equal to any convenient line, and lay off IK, KL, LM, and MB , Neach equal to Al . Draw BH , and from I, K, L, and M, draw the lines $I C, K D, L E$, and $M F$, parallel to $B H$: then $A H$ is divided into equal parts at C, D, E, and $F(P . X V, C .2)$.

PROBLEM II.

To construct a fourth proportional to three given straight lines.
Let A, B, and C, be the given lines. Draw $D E$ and DF, making any convenient angle with each other. Jay off $D A$ equal to $A, D B$ equal
to B, and $D C$ equal to C;
draw $A C$, and from B draw
$B X$ parallel to $A C$: then $D X$ is the fourth proportional required.

For (P. XV., C.), we have,
or,

Cor. If $D C$ is made equal to $D B, D X$ is a third proportional to $D A$ and $D B$, or to A and B.

PROBLEM II

To construct a mean proportional between two siven straight lines

Let A and B be the given lines On an indefinite line, lay off $D E$ equal to A, and $E F$ equal to B; on $D F$ as a diameter describe the semicircle DGF, and draw EG perpendicular to DF: then EG is the mean proportional required.

To divide a given straight line into two such parts, that the greater part shall be a mean proportional between the whole line and the other part.

Let $A B$ be the given line.
At the extremity B, draw $B C$
perpendicular to $A B$, and make it
equal to half of $A B$. With C as a
centre, and $C B$ as a radius, describe
the are DBE; draw $A C$, and produce
it till it terminates in the concave arc at E; with A as centre and $A D$ as radius, describe the are $D F$, then $A F$ is the greater part required.

For, $A B$ being perpendicular to $C B$ at B, is tangent to the are DBE : hence ($\mathrm{P} . \mathrm{XXX}$.),
 greater segment is a mean proportional between the whole line and the less segment, it is said to be divided in extreme and mean ratio.
Since $A B$ and $D E$ are equal, the line $A E$ is divided in extreme and mean ratio at D; for we have, from the [first of the above proportions, by substitution, E DE AD.
-1
DIRECCIÓN GENERA

PROBLEM V.

Through a given point, in a given angle, to draw a straight line so that the segments between the point and the sides of the angle shall be equal.

Let $B C D$ be the given angle, and A the given point.
Through A, draw $A E$ parallel to $D C$;
lay off $E F$ equal to $C E$, and draw $F A D$: then $A F$ and $A D$ are the segments required.

For (P. XV.), we have,

$$
F A: A D: F E: E C
$$

but, $F E$ is equal to $E C$; hence, $F A$ is equal to $A D$.

PROBLEM VI.

Let $A B C D E$ be the given polygon.
Draw $C A$; produce $E A$, and draw $B G$ parallel to $C A$; draw the line $C G$. Then the triangles BAC and GAC have the common base $A C$, and because their vertices B and G lie in the same line BG parallel to the base, their altitudeg/ane equal, and consequently, the triangles are equal: hence, the polygor GCDE is equal to the polygon $A B C D E$.
 \square Again, draw $C E$ produce $A E$ and draw DF parallel to $C E$; draw also CF, then will the triangles FCE and DCE be equal : hence, the triangle GCF is equal to the polygon GCDE, and consequently, to the given polygon. In like manner, a triangle may be constructed equal to any other given polygon.

PROBLEM VII.

To construct a square equal to a siven triangle
Let $A B C$ be the given triangle, $A D$ its altitude, and $B C$ its base.

Construet a mean proportional between $A D$ and helf of BC (Prob. III.). TISet XY be that mean proportional, and on it, as a side, construct a square: then this

 from the construction,

Scholium. By means of.Problems VI and VIL, a square may be constructed equal to any given polygon.

Let $F G$ be the given line, and $A B C D E$ the given polygon. Draw $A C$ and $A D$.

At F, construet the angle GFH equal to $B A C$, and at G the angle $F G H$ equal to $A B C$; then $F G H$ is similar to $A B C$ (P. XVIII. C.). In
like manner, construct the
triangle FHI similar to $A C D$, and FIK similar to $A D E$; then the polygon FGHIK is similar to the polygon ABCDE (P. XXVI., C. 2).

PROBLEM IX

To construct a square equal to the sum of two given squares; also a square equal to the difference of two given squares.
1°. Let A and B be the sides of the given squares, and let A be the greater.

Construct a right angle CDE ; make $D E$ equal to A, and $D C$ equal to B; draw $C E$, and on it
 construct a square: this square will be equal to the sum of the given squares (P. XI).
2°. Construct a right angle CDE.
Lay off $D C$ equal to B; with C as a centre, and $C E$, equal to A, as a radius, describe an arc cutting $D E$ at E; draw $C E$,
 and on DE construct a square: this square will be equal to the difference of the given squares (P. XL, C. 1).

Scholium. A polygon may be constructed similar to either of two given polygons, and equal to their sum or difference.

For, let A and B be homologous sides of the given polygons. Find a square equal to the sum or difference of the squares on A and, B; and let X be a side of that square. On X as a side, homologous to A or B, construct a polygon similar to the given polygons, and it will be equal to their sum or difference (P. XXVII, O. 2).

EXERCISES.

1. The altitude of an isosceles triangle is 3 feet, each of the equal sides is 5 feet; find the area.
2. The parallel sides of a trapezoid are 8 and 10 feet, and the altitude is 6 feet; what is the area?
3. The sides of a triangle are 60,80 , and 100 feet, the diameter of the inscribed circle is 40 feet; find the area.
4. Construct a square equal to the sum of the squares whose sides are respectively $16,12,8,4$, and 2 units in length. Show that the sum of the thre
5. Show that the sum of the three perpendiculars drawn from any point within an equilateral triangle to the three sides is equal to the altitude of the triangle.
6. Show that the sum of the squares of two lines, drawn from any point in the circumference of a circle to two points on the diameter of the circle equidistant from the centre, will be always the same.
7. The distance of a chord, 8 feet long, from the centre of a circle is 3 feet; what is the diameter of the circle?
8. Construct a triangle,
having given the vertical
\int angle, the line bisecting the base, and the angle which

9. The segments made by a perpendicular, drawn from a point on the circumference of a circle to a diameter, are 16 feet and 4 feet; find the length of the perpendicular.
10. Two similar triangles, $A B C$ and $D E F$, have the homologous sides $A C$ and $D F$ equal respectively to 4 feet and 6 feet, and the area of DEF is 9 square feet; find the area of $A B C$.
11. Two chords of a circle intersect; the segments of one are respectively 6 feet and 8 feet, and one segment of the other is 12 feet; find the remaining segment.
12. Two circles, whose radii are 6 feet and 10 feet, intersect, and the line joining their points of intersection is 8 feet; find the distance between their centres.
13. Find the area of a triangle whose sides are respectively 31,28 , and 20 feet.
14. Show that the area of an equilateral triangle is equal to one fourth the square of one side multiplied by $\sqrt{ } 3$; or to the square of one side multiplied by .433 .
15. From a point, 0 , in an equilateral triangle, $A B C$, the distances to the vertices were measured and found to be: $O B$ $=20, O A=28, O C=31$; find the area of the triangle and the length of each side.

the bisecting line makes with the base.
16. Show that if a line bisecting the exterior vertical
[$A D$ is made equal to $O A, C D$ to $O B, C F$ to $O C, B F$ to $O A, B E$
to $O B, A E$ to $O C$. 1 O

angle of a triangle is not par-
allel to the base, the distances of the point in which it meets the base produced, from the extremities of the base, are proportional to the other two sides of the triangle.

PROPOSITION II. THEOREM.

The circumference of a circle may be circumseribed about any regular polygon; a circle may also be inscribed in it.
1°. Let $A B C F$ be a regular polygon: then can the circumference of a circle be circumscribed about it.

For, through three consecutive vertices A, B, C, describe the circumference of a circle (B. III., Problem XIII. S.). Its centre 0 lies on PO, drawn perpendicular to $B C$, at its middle point P; draw $O A$ and $O D$. Let the quadrilateral OPCD be turned about the line OP, until PC. falls on PB; then, because the angle C is equal to B, the side $C D$ will take the direction $B A$: and because $C D$ is equal to $B A$, the vertex D, will fall upon the vertex A; and consequently, the line $O D$ will coincide with $O A$, and is, therefore, equal to it: hence, the circumference which passes through A, B, and C, passes through D. In like manner, it may be shown that it passes through each of the other vertices: hence, it is circumscribed about the polygon; which was to be proved.

2°. A circle may be inscribed in the polygon.

For, the sides $A B, B C, \& c$., being equal chords of the circumscribed circle, are equidistant from the centre O; hence, a circle described from O as a centre, with $O P$ as a radius, is tangent to each of the sides of the polygon, and consequently, is inscribed in it; which was to be proved.

Scholium. If the circumference of a circle is divided into equal arcs, the chords of these ares are sides of a regular inscribed polygon.

For, the sides are equal, because they are chords of equal ares, and the angles are equal, because they are measured by halves of equal ares.

If the vertices A, B, C, \&c., of a regular inscribed polygon be joined with the centre O, the triangles thus formed will be equal, because their sides are equal, each to each: hence, all of the angles about the point 0 are equal to each other.

DEFINITIONS:

1. The Centre of a Regular Polygon is the common
centre of the circumscribed and inscribed circles.
2. The Angere at the Centre is the angle formed by drawing lines from the centre to the extremities of any side.

The angle at the centre is equal to four right angles divided by the number of sides of the polygon.
3. The Apothem is the shortest distance from the centre to any side.
The apothem is equal to the radius of the inscribed

PROPOSITION IIL PROBLEM.

To inseribe a square in a given circle.
Let $A B C D$ be the given circle. Draw any two diameters $A C$ and $B D$ perpendicular to each other; they divide the circumference into four equal arcs (B. IIL, P. XVII., S.). Draw the chords $A B, B C, C D$, and $D A$: then the figure $A B C D$ is the square required
 (P. II., S.).

Scholium. The radius is to the side of the inscribed square as 1 is to $\sqrt{2}$.

PROPOSITION IV.

THEOREM.

If a regular hexagon is inscribed in a circle, any side is equal to the radius of the circle.
Let $A B D$ be a circle, and $A B C D E H$ a regular inscribed hexagon: then any side, as $A B$, is equal to the radius of the circle.
Draw the radii OA and OB. Then the angle $A O B$ is equal to one sixth of four right angles, or to two thirds of one right angle, because it is an angle at the centre (P II., D. 2). The sum of the twe angles $O A B$ and

OBA is, consequently, equal to four
thirds of a right angle (B. I., P. XXV., C. 1) ; but, the angles $O A B$ and $O B A$ are equal, because the opposite sides $O B$ and $O A$ are equal : hence, each is equal to two thirds
of a right angle. The three angles of the triangle $A O B$ are therefore equal, and consequently, the triangle is equilateral: hence, AB is equal to OA ; which was to be proved.

TOINOTM

PROPOSITION V. PROBLEM.

To inscribe a regular hexagon in a given circle.
Let ABE be a circle, and 0 its centre.

Beginning at any point of the circumference, as A, apply the radius $O A$ six times as a chord; then $A B C D E F$ is the hexagon required (P. IV.).

Cor. 1. If the alternate vertices of the regular hexagon are joined by the straight lines AC, $C E$, and $E A$, the inscribed triangle (P. II., S.)

Cor.2. If we draw the radii $O A$ and $O C$, the figure $A O C B$ is a rhombus, because its sides are equal: hence (B. IV., P. XIV., C.), we have,

$$
\overline{A B^{2}}+\overline{\mathrm{BC}^{2}+O A^{2}}+\overline{O C^{2}}=\overline{\mathrm{AC}^{2}}+\overline{O B^{2}} ;
$$

or, taking away from the first member the quantity OA^{2}, and from the second its equal $\overline{O B^{2}}$, and reducing, we have,

$$
3 \triangle \mathrm{~A}^{2}=\overline{\mathrm{AC}^{2} ;}
$$

whence (B. II. P. II.),

$$
\overrightarrow{\mathrm{AC}}^{2}: \mathrm{OA}^{2}:: 3: 1 ;
$$

or (B. II., P. XII, C. 2),

$$
A C: O A:: \sqrt{3}: 1 ;
$$

that is, the side of an inscribed equilateral triangle is to the radius, as the square root of 3 is to 1 .

PROPOSITION VI. THEOREM.

If the radius of a circle is divided in extreme and mean ratio, the greater segment is equal to one side of a regular inscribed decagon.

Let $A C G$ be a circle, $O A$ its radius, and $A B$, equal to $O M$, the greater segment of $O A$ when divided in extreme and mean ratio: then $A B$ is equal to the side of a regular inseribed decagon.

Draw $O B$ and $B M$. We have,
by hypothesis,
$A O: O M: O M$

hence, the triangles $O A B$ and $B A M$
have the sides about their com-
mon angle BAM, proportional; they
are, therefore, similar (B. IV, P, XX). But, the triangle OAB is isosceles; hence, BAM is also isosceles, and consequently, the side $B M$ is equal to $A B$. But, $A B$ is equal to $O M$, by hypothesis: hence, $B M$ is equal to $O M$, and consequently, the angles MOB and MBO are equal. The angle

AMB being an exterior angle of the triangle $O M B$, is equal the sum of the angles $M O B$ and $M B O$, or to twice the angle $M O B$; and beeause $A M B$ is equal to $O A B$, and also to $O B A$, the sum of the angles $O A B$ and $O B A$ is equal to four times the angle $A O B$: hence, $A O B$ is equal to one fifth of two Night angles, or to one tenth of four right angles; and consequently, the arc $A B$ is equal to one tenth of the circumference: hence, the chord $A B$ is equal to the side of a regular inscribed decagon; which was to be proved.

Cor. 1. If $A B$ is applied ten times as a chord, the sulting polygon is a regular inscribed decagon.
Cor
Cor. 2. If the vertices A, C, E, G, and I, of the alternate angles of the decagon are joined by straight lines, the resulting figure is a regular inscribed pentagon.

Scholium 1. If the ares subtended by the sides of any regular inseribed polygon are bisected, and chords of the semi-ares drawn, the resulting figure is a. regular inscribed polygon of double the number of sides.

Scholium 2. The area of any regular inscribed polygon is less than that of a regular inscribed polygon of double the number of sides, because a part is less than the whole.

PROPOSITION VH. PROBLEM.

To ciroumscribe, about a circle, a polygon which shall be simitar to a given regutar inscribed polygon.

Let TNQ be a circle, O its centre, and $A B C D E F$ a regular inscribed polygon.

At the middle points T, $N, P, \& c$., of the ares subtended by the sides of the inscribed polygon, draw tangents to the circle, and prolong them till they intersect; then the resulting figure is the polygon required.

1. The side HG being parallel to BA , and HI to $B C$, the angle H is equal

to the angle B. In like manner, it may be shown that any other angle of the circumscribed polygon is equal to the corresponding angle of the inscribed polygon: hence, the circumscribed polygon is equiangular.
/ 2°. Draw the straight lines $O G$, $O T, O H, O N$, and $O I$. Then, because the lines HT and HN are tangent to the cirele, OH bisects the angle NHT, and also the angle NOT (B. III., Prob. XIV., C.) ; consequently, it passes through the middle point B of the are NBT. In like manner, it may be shown that the straight ling drawn from the centre to the vertex of any other angle of the circumscibed polygon, passes through the corresponding vertex of the inscribed polygon.

The triangles OHG and OHI have the angles OHG and

OHI equal, from what has just been shown; the angles GOH and HOI equal, because they are measured by the equal ares $A B$ and $B C$, and the side OH common; they are, therefore, equal in all respects: hence, GH is equal to HI. In like manner, it may be shown that HI is equal to IK, IK to KL , and so on: hence, the circumscribed polygon is equilateral.

The cireumscribed polygon being both equiangular and equilateral, is regular and since it has the same number of sides as the inscribed polygon, it is similar to it.

Cor. 1. If straight lines are drawn from the centre of a regular circumscribed polygon to its vertices, and the consecutive points in which they intersect the cireumference joined by chords, the resulting figure is a regular inscribed polygon similar to the given polygon.

Cor. 2. The sum of the lines $H T$ and $H N$ is equal to the sum of HT and TG, or to HG; that is, to one of the sides of the circumscribed polygon.

Cor: 3. If at the vertices $A, B, C, \& c$., of the inscribed polygon, tangents are drawn to the cirele and prolonged till they meet the sides of the eircumscribed polygon, the resulting figure is a circumscribed polygon of double the number of sides.
is greater than that of a regular circumscribed polygon of double the number of sides, because the whole is greater than any of its parts.

Sch. 2. By means of a circumscribed and inscribed square, we may construct, in succession, regular circumscribed and inscribed polygons of $8,16,32$, \&c., sides. By means of the regular hexagon we may, in like man-

* ner, construct regular polygons of $12,24,48$, \&e., sides. By means of the decagon, we may construct regular polygons of $20,40,80, \& c$., sides.

PROPOSIMION VII THEOREM.

The area of a regular polygon is equal to half the product of its perimeter and apathem.

Let GHIK be a regular polygon, O its centre, and OT its apothem, or the radius of the inscribed circle: then the area of the polygon is equal to half the product of the perimeter and the apothem.

For, draw lines from the centre to the vertices of the polygon. These lines, divide the polygon into thiancles whoos baved mot the sides of the polygon, and whose altitudes are equal to the apothem. Now, the area of any triangle, as $O H G$, is
 equat to haif tilo prodice ot the side HG mind the apothem: heinco, the area of the polygon is equal to half the product of the perimeter and the apothem; which was to be proved.

Sch. 1. The area of any regular circumscribed polygon

PROPOSITION IX. THEOREM.

The perimeters of similar regular polygons are to each other as the radit of their circumscribed or inscribed circles; and their areas are to each other as the squares of those radii.

1. Let $A B C$ and KLM be similar regular polygons. Let $O A$ and $Q K$ be the radii of their circumscribed, $O D$ and QR be the radii of their inscribed circles: then the perimeters of the polygons are to each other as OA is to QK, or as OD is to QR.

For, the lines OA and QK are homologous lines of the polygons to which they belong, as are also the lines $O D$ and $Q R$: hence, the perimeter of $A B C$ is to the perimeter of $K L M$, as $O A$ is to $Q K$, or as $O D$ is to $Q R$ (R. IV., P. XXVII., C. 1); which was to be proved.

I 2°. The areas of the polygons are to each other as $\overline{\mathrm{OA}}^{2}$ is to QK^{2}, or as $\overline{\mathrm{OD}}^{2}$ is to QR^{2}.

For, $O A$ being homologous with $Q K$, and $O D$ with $Q R$, we have, the area of $A B C$ is to the area of KLM as $\overline{O A}^{2}$ is to QK^{2}, or as $\overline{\mathrm{OD}}^{2}$ is to QR^{2} (B. IV., P. XXVIL, C. 1) ; which was to be proved.

PROPOSTTION X. THEOREM.

Two regular polygons of the same number of sides can be constructed, the one circumscribed about a circle and the other insoribed in it, which shall differ from each other by less than any given surface.
Let $A B C E$ be a circle, 0 its centre, and Q the side of a square equal to or less than the given surface; then can two similar regular polygons be constructed, the one circumseribed about; and the other inscribed in the given circle, which shall differ from each other by less than the square of Q, and consequently, by less than the given surface.

Inscribe a square in the given circle (P. III), and by means of it, inscribe, in succession, regular polygons of $8,16,32, \& c$., sides (P. VII., S. 2), until one is found whose side is less than Q; let $A B$ be the side of such a polygon.

Construct a similar circum-
polygons differ from each other by less than the square of Q. from a and b, draw the lines $a O$ and $b 0$; they
For, pass through the points A and B. Draw also OK to the point of contact K; it bisects $A B$ at 1 and is perpendioular to it Prolong $A O$ to E.
Let P denote the circumscribed, and p the inseribed polygon: then, because they are regular and similar, we have (P. IX.),

$$
\mathrm{P}: p::{\overline{\mathrm{OK}^{2}} \text { or } \overline{\mathrm{OA}}^{2}: \overline{\mathrm{Ol}}^{2}: ~}_{\text {: }}
$$

hence, by division (B. II., P. VI.), we have,

But P is less than the square of AE (P. VII., S. 1) hence, $P-p$ is less than the square of $A B$, and consequently, less than the square of Q , or than the given surface; which was to be proved.

Duminiron.-The limit of a variable quantity is a quanVity to which it may be made to approach nearer than any given quantity, and which it reaches under a particular supposition.

Lemma.-Two variable quantities which constantly approach to equality, and of which the difference becomes less than any finite magnitude, are utimately equat.

For if they are not ultimately equal, let D be their ultimate difference. Now, by hypothesis, the quantities have approached nearer to equality than any given quantity, as D; hence D denotes their difference and a quantity greater than their difference, at the same time, which is impossible ; therefore, the two quantities are ultimately equal.*

* Newton's Prinoipia, Book L, Lemma I.

Cor. If we take any two similar regular polygons, the one circumscribed about, and the other inscribed in the circle, and bisect the arcs, and then circumscribe and inscribe two regular polygons having double the number of sides, it is plain that by continuing the operation, two new polygons may be found which shall differ from each other by less than any given surface; hence, by the lemma, the two polygons will become ultimately equal. But this equality can not take place for any finite number of sides; hence, the number of sides in each will be infinite, and each will coincide with the circle, which is their common limit. Under this hypothesis, the perimeter of each polygon will coincide with the circumference of the circle.

Scholium. The circle may be regarded as a regular polygon having an infinite number of sides. The circumference may be regarded as the perimeter, and the radius as the apothem.

PROPOSITION XI. PROBLEM.

a resular inscribed polyson, and that of a similar circumscribed polygon being given, to find the areas of the regular inscribed and circumscribed polygons having double the number of sides.

Let $A B$ be the side of the given inscribed, and EF that of the given circumscribed polygen. Let C be their common centre, AMB a portion of the circumference of the circle, and M the middle point of the are AMB.
3 Draw the chord AM, and/at A
and B draw the tangents $A P$ and $B Q$; then $A M$ is the side of the inscribed polygon, and $P Q$ the side of the circumscribed polygon of double the number of sides (P. VII). Draw CE, CP, CM, and CF.

Denote the area of the given inscribed polygon by p, the area of the given circumscribed polygon by P, and the areas of the inscribed and circumscribed polygons having double the number of sides, respectively by p^{\prime} and P^{\prime}.
1:. The triangles CAD, CAM, and CEM, are like parts of the polygons to which they belong: hence, they are proportional to the polygons themselves But CAM is a mean proportional between CAD and CEM (B. IV., P. XXIV., () ; consequently, p^{\prime} is a mean proportional between p and P

hence,

\square
2°. Because the triangles CPM and CPE have the common altitude CM, they are to each other as their bases: hence,

PM : PE;
and because CP bisects the angle ACM, we have (B. IV., P. XVII.),

Making p equal to 2.8284271 , and P equal to 3.3137085 , we have, from the same equations,
$p^{\prime}=3.0614674$. . . inscribed polygon of 16 sides. $\mathrm{P}^{\prime}=3.1825979$ circumscribed polygon of 16 sides.
By a continued application of these equations, we find the areas indicated below
Num

insoribed Poureoss 2.0000000 2.8284271 3.0614674 3.1214451 3.1365485 3.1403311 3.1412772 3.1415138 3.1415729 3.1415877 3.1415914 3.1415923 3.1415925

Giboumsoribed Polygons. 4.0000000 3.3137085 3.1825979 3.1517249 3.1441184 3.1422236
3.1417504 3.1416321 3.1416025
3.1415951
3.1415933
3.1415928
3.1415927

Now, the figures which express the areas of the last two polygons are the same for six decimal places; hence, those areas differ from each other by less than one millionth part of the measuring unit. But the circle differs from either of the polygons by less than they differ from each other. Hence, for all ordinary computation, it is sufficiently accurate to consider the area of a circle, whose radius is 1 , equal to 3.141592 ; the unit of measure being, as shown above, the square described on the radius. This value, 3.141592 , is represented by the Greek letter π.

Sch. For ordinary accuracy, π is taken equal to 3.1416 .

PROPOSITION XIII. THEOREM.

The circumferences of circles are to each other as their radii, and the areas are to each other as the squares of their radii.

Let C and O be the centres of two circles whose radii are $C A$ and $O B$: then the circumferences are to each other as their radii, and the areas are to each other as the squares of their radii.

For, let similar regular polygons MNPST and EFGKL be inscribed in the circles: then the perimeters of these polygons are to each other as their apothems, and the areas are to each other as the squares of their apothems, whatever may be the number of their sides (P. IX.).

If the number of sides is made infinite (P. X., Sch.), the polygons coincide with the circles, the perimeters with the circumferences, and the apothems with the radii: hence, the circumferences of the circles are to each other as their radii, and the areas are to each other as the squares of the radii; which was to be proved.
squares of the radii; which was
Diameters of circles are proportional to their adii: hence, the circumferences of circles are proportional to their diameters, and the areas are proportional to the squares of the diameters.

Cor. 2. Similar arcs, as $A B$ and $D E$, are like parts of the circumferences to which
they belong, and similar sectors, as $A C B$ and DOE, are like parts of the circles to which they belong: hence, similar arcs
 are to each other as their radii, and simitar sectors are to each other as the squares of their raditiERITATIS

Scholium. The term infinite, used in the proposition, is to be understood in its technical sense. When it is proposed to make the number of sides of the polygons infinite, by the method indicated in the scholium of Proposition X., it is simply meant to express the condition of things, when the inseribed polygons reach their limits; in which case, the difference between the area of either circle and its insoribed polygon, is less than any appreciable quantity. We have seen (P. XII.), that when the number of sides is 16384 , the areas differ by less than the millionth part of the measuring unit. By increasing the number of sides, we approximate still nearer.
of its perimeter and apothem, whatever may be the number of its sides (P. VIII.).

If the number of sides is made infinite, the polygon coincides with the circle, the perimeter with the circumference, and the apothem with the radius: hence, the area of the circle is equal to half the product of its circumference and radius; which was to be proved.

Cor. 1. The area of a sector is equal to half the product of its are and radius.

Cor. 2. The area of a sector is to the area of the circle, as the are of the sector to the circumference.

PROPOSITION XV. PROBLEM.

To find an expression for the area of any circle in terms of its radius.
Let C be the centre of a circle, and $C A$ its radius. Denote its area by area CA , its radius by R, and the area of a circle whose radius is 1 , by $\pi\left(\mathrm{P}\right.$. XII., S. $^{\text {. }}$).

Then, because the areas of circles are to each other as the squares of their radii (P. XIIL), we have,

$$
\text { area } C A: \pi:: R^{2}: 1 \text {; }
$$

whence,
That is, the area of any circle is 3.1416 times the square That is, the
of its radius.
(R).

- D D PROPOSITION XVI. PROBLEM.

To find an expression for the circumference of a circle, in terms of its radius, or diameter.
Let C be the centre of a circle, and $C A$ its radius.

Denote its circumference by circ. $C A$, its radius by R, and its diameter by D. From the last Proposition, we have,

$$
\text { area } C A=\pi R^{2} \text {; }
$$

and, from Proposition XIV., we have,
1 area $\mathrm{CA}=\frac{1}{2}$ circ. $\mathrm{CA} \times \mathrm{R}$;
hence, IER $^{\frac{1}{2}}$ circ. $\mathrm{CA} \times \mathrm{R}=\pi \mathrm{R}^{2}$;
whence, by reduction,

EXEROISES.

1. The side of an equilateral triangle inscribed in a circle is 6 feet; find the radius of the circle.
2. The radius of a circle is 10 feet; find the apothem of a regular inscribed hexagon.
3. Find the side of a square inscribed in a circle whose radius is 5 feet.
4. Draw a line whose length shall be $\sqrt{3}$.
5. The radius of a circle is 4 feet; find the area of an inscribed equilateral triangle.
6. Show that the sums of the alternate angles of an octagon inscribed in a circle are equal to each other.
7. The area of a regular hexagon, whose side is 20 feet, is 1039.23 square feet; find the apothem.
8. One side of a regular decagon is 20 feet, and its apothem 15.4 feet; find the perimeter and the area of a similar decagon whose apothem is 8 feet.
9. The area of a regular hexagon inscribed in a circle
is 9 square feet, and the area of a similar circumscribed hexagon is 12 square feet; find the areas of regular inscribed and circumscribed polygons of 12 sides. exact area in terms of the square described on the radius
It is not possible, therefore, to square the circle-that is, to construct a square whose area shall be exactly equal to that of the circle.

Scholium 2. Besides the approximate value of π, 3.1416, usually employed, the fractions $\frac{2}{6}$ and $\frac{355}{15}$ are also sometimes used to express the ratio of the diameter to the circumference.
10. Given two diagonals of a regular pentagon that intersect; show that the greater segments will be equal to each other and to a side of the pentagon, and that the diagonals cut each other in extreme and mean/ratio.
11. Show how to inscribe in a given circle a regular polygon of 15 sintes.
12. Find the side and the altitude of an equilateral triangle in terms of the radius of the inscribed circle.
13. Given an equilateral triangle inscribed in a circle, and a similar circumscribed triangle; determine the ratio of the two triangles to each other
14. The diameter of a circle is 20 feet; find the area of a sector whose are is 120°.
15. The circumference of a circle is 200 feet; find its area.
16. The area of a circle is 78.54 square yards; find its diameter.
17. The radius of a circle is 10 feet, and the area of a circular sector 1.00 square feet; find the arc of the sector in degrees.
18. Show that the area of an equilateral triangle circumseribed about a circle is greater than that of a square circumscribed about the same circle.
19. Let $A C$ and $B D$ be diameters perpendicular to each other; from P, the middle point of the radius $O A$, as a centie, and a radius equal to $P B$, describe an arc cutting $O C$ in Q; show that the radius $O C$ is divided in extreme and mean ratio at Q.

20. Show that the square of the side of a regular inscribed pentagon is equal to the square of the side of a regular inscribed decagon increased by the square of the radius of the circumseribing circle.
21. Show how, from 19 and 20 , to inscribe a regular pentagon in a given circle.
22. The side of a regular pentagon, inseribed in a circle, is 5 feet, and that of a regular inscribed deeagon is 2.65 feet; find the side and the area of a regular hexagon inscribed in the same circle.

Book VI.

PLANES AND POLYEDRAL ANGLES.

DEFINITIONS

1. A straight line is PERPENDICULAR TO A PLANE, when it is perpendicular to every straight line of the plane which passes through its Foor ; that is, through the point in which it meets the plane.

In this case, the plane is also perpendicular to the line.
2. A straight line is PARALLEL to A. PLANE, when it can not meet the plane, how far soever both may be produced.

In this case, the plane is also parallel to the line.
3. Two Planes are parallel, when they can not meet, how far soever both may be produced.
4. A Diedral Angle is the amount of divergence of

A two planes The line in which the planes meet is called the edge of the angle, and the planes themselves are called faces of the angle.

The measure of a diedral angle is the same as that of a plane angle formed by two straight lines, one in each face, and both perpendicular to the edge at the same point. A diedral angle may be acute, obtuse, or a right angle. In the latter case, the faces are perpendicular to each other.
13. Given an equilateral triangle inscribed in a circle, and a similar circumscribed triangle; determine the ratio of the two triangles to each other
14. The diameter of a circle is 20 feet; find the area of a sector whose are is 120°.
15. The circumference of a circle is 200 feet; find its area.
16. The area of a circle is 78.54 square yards; find its diameter.
17. The radius of a circle is 10 feet, and the area of a circular sector 1.00 square feet; find the arc of the sector in degrees.
18. Show that the area of an equilateral triangle circumseribed about a circle is greater than that of a square circumscribed about the same circle.
19. Let $A C$ and $B D$ be diameters perpendicular to each other; from P, the middle point of the radius $O A$, as a centie, and a radius equal to $P B$, describe an arc cutting $O C$ in Q; show that the radius $O C$ is divided in extreme and mean ratio at Q.

20. Show that the square of the side of a regular inscribed pentagon is equal to the square of the side of a regular inscribed decagon increased by the square of the radius of the circumseribing circle.
21. Show how, from 19 and 20 , to inscribe a regular pentagon in a given circle.
22. The side of a regular pentagon, inseribed in a circle, is 5 feet, and that of a regular inscribed deeagon is 2.65 feet; find the side and the area of a regular hexagon inscribed in the same circle.

Book VI.

PLANES AND POLYEDRAL ANGLES.

DEFINITIONS

1. A straight line is PERPENDICULAR TO A PLANE, when it is perpendicular to every straight line of the plane which passes through its Foor ; that is, through the point in which it meets the plane.

In this case, the plane is also perpendicular to the line.
2. A straight line is PARALLEL to A. PLANE, when it can not meet the plane, how far soever both may be produced.

In this case, the plane is also parallel to the line.
3. Two Planes are parallel, when they can not meet, how far soever both may be produced.
4. A Diedral Angle is the amount of divergence of

A two planes The line in which the planes meet is called the edge of the angle, and the planes themselves are called faces of the angle.

The measure of a diedral angle is the same as that of a plane angle formed by two straight lines, one in each face, and both perpendicular to the edge at the same point. A diedral angle may be acute, obtuse, or a right angle. In the latter case, the faces are perpendicular to each other.
5. A Polyedral angle is the amount of divergence of several planes meeting at a common point.

This point is called the vertex of the angle; the lines in which the planes meet are called edges of the angle, and the portions of the planes lying between the edges are called faces of the angle. Thus,
S is the vertex of the polyedral angle, whose edges/ are SA, SB, SC, $S D$, and whose faces are $A S B, B S C$, CSD, DSA.

A polyedral angle which has but three faces, is called a triedral
angle. POSTULIATE
angle. POSTULATE

A straight line may be drawn perpendicular to a plane from any point of the plane, or from any point without the plane. the plane

If a straight line has two of its points in a plane, it lies wholly in that plane.
For, by definition, a plane is a surface such, that if any two of its points are joined by a straight line, that line lies wholly in the surface (B. I., D. 8).

Cor. Through any point of a plane, an infinite number of straight lines may be drawn which lie in the plane. For, if a straight line is drawn from the given point to any other point of the plane, that line lies wholly in the plane.

Scholium. If any two points of a plane are joined by a straight line, the plane may be turned about that line as
an axis, so as to take an infinite number of positions Hence, we infer that an infinite number of planes may be passed through a given straight line.

PROPOSTTION II. THEOREM.

Through three points, not in the same straight line, one plane can be passed, and only one.

Let A, B, and C be the three points: then can one plane be passed through them, and only one.

Join two of the points, as A and B,
by the line $A B$. Through $A B$ let a plane be passed, and let this plane be tarned
 around $A B$ until it contains the point C; in this position it will pass through the plane be turned about $A B$, in either direction, it will no longer contain the point C : hence, one plane can always be passed through three points, and only one; which was to be proved.

Cor. 1. Three points, not in a straight line, determipe the position of a plane, because only one plane can be passed through them.

A
Cor. 2. A straight line and a point without that line determine the position of a plane, because only one plane can be passed through them.
Cor. 3. Two straight lines which intersect determine the position of a plane. For, let $A B$ and $A C$ intersect at A : then either line, as $A B$, and one point of the other, as C , determine the position of a plane.

Cor. 4. Two parallel straight lines determine the position
of a plane. For, let $A B$ and $C D$ be parallel. By definition (B. I., D. 16) two parallel lines always lie in the same plane. But either line, as $A B$, and any point of the other, as F, de-
 termine the position of a plane: hence, two parallels determine the position of a plane.

The intersection of two planes is a straight line.
Let $A B$ and $C D$ be two planes: then is their intersec tion a straight line.

For, let E and F be any two points common to the planes; draw the straight line EF. This line having two points in the plane $A B$, lies wholly in that plane; and having two points in the plane $C D$, lies
 wholly in that plane: hence, every point of EF is common to both planes. Furthermore, the planes can have no common point lying without EF, otherwise there would be two planes passing through a straight line and a point lying without it, which is impossible (P. II, C. 2) ; hence, the intersection of the two planes is a straight line; which was to be proved.

PROPOSITION IV. THEOREM.

If a straight lime is perpendieutar to two straight lines at their point of intersection, it is perpendicular to the plane of thase lines.

Let $M N$ be the plane of the two lines $B B, C C$, and let $A P$ be perpendicular to these lines at P : then is $A P$ per-
pendicular to every straight line of the plane which passes through P, and consequently, to the plane itself.

For, through P, draw in the plane MN , any line PQ ; through any point of this line, as Q, draw the line $B C$, so that $B Q$ shall be equal to QC (B. IV., Prob. V.) ; draw $A B, A Q$, and $A C$.

The base $B C$, of the triangle $B P C$, being bisected at Q, we have "(B. IV., P. XIV.),

$$
\overline{\mathrm{PC}}^{2}+\overline{\mathrm{PB}}^{2}=2 \overline{\mathrm{PQ}}^{2}+2 \overline{\mathrm{QC}}
$$

In like manner, we have, from the triangle $A B C$,

$$
{\overline{A C^{2}}}^{2}+\overline{A B}^{2}=2 \overline{A Q}^{2}+2 \overline{Q C}^{2}
$$

Subtracting the first of these equations from the second, member from member, we have,

$$
\overline{A C}^{2}-\overline{P C}^{2}+\overline{A B}^{2}-\overline{P B}^{2}=2 \overline{A Q}^{2}-2 \overline{P Q}^{2}
$$

But, from Proposition XI, G. 1, Book IV., we have,

$$
\overline{\mathrm{AC}}^{2}-\overline{\mathrm{PC}}^{2}=\overline{\mathrm{AP}}^{2}, \quad \text { and } \quad \overline{\mathrm{AB}}^{2}-\overline{\mathrm{PB}}^{2}=\overline{\mathrm{AP}}^{2}
$$

hence, by substitution, $\int_{2 \overline{A P}^{2}}=2 \overline{A Q}^{2}-2 \overline{\mathrm{PQ}^{2} ;} \bigcirc T$
whence,

$$
\overline{A P}^{2}=\overline{A Q}^{2}-\overline{\mathrm{PQ}}^{2} ; \quad \text { or, } \quad \overline{\mathrm{AP}^{2}}+\overline{\mathrm{PQ}}^{2}=\overline{\mathrm{AQ}}^{2}
$$

The triangle $A P Q$ is, therefore, right-angled at P (B. IV., P. XIII, S.), and consequently, $A P$ is perpendicular to $P Q$: hence, $A P$ is perpendicular to every line of the plane $M N$ passing through P, and consequently, to the plane itself; which was to be proved.

Cor. 1. Only one perpendicular can be drawn to a plane from a point without the plane. For, suppose two perpendiculars, as $A P$ and $A Q$, could be drawn from the point A to the plane MN. Draw $P Q$; then the triangle $A P Q$ would have two right angles, $A P Q$ and $A Q P$; R which is impossible (B.
 I., P. XXV., C. 3).

Cor. 2. Only one perpendicular can be drawn to a plane from a point of that plane. For, suppose that two perpendiculars could be drawn to the plane $M N$, from the point P. Pass a plane through the perpendiculars, and let $P Q$ be its intersection with $M N$; then we should have two perpendiculars drawn to the same straight line from a point of that line; which is impossible (B. I, P. XIV.).

PROPOSITION V.

THEOREM.

If from a point without a plane, a perpendicular is drawn
to the plane, and oblique lines drawn to different points

1. The perpendicutar is shorter than any oblique line:
2°. Oblique lines which meet the plane at equal distances from the foot of the perpendicutar, are equat:
2. Of two oblique lines which meet the plane at wnequal distances from the foot of the perpendicular, the one which meets it at the greater distance is the Tonger.
Let A be a point without the plane $M N$; let $A P$ be perpendicular to the plane; let $A C, A D$, be any two oblique lines meeting the plane at equal distances from the foot of the perpendicular; and let $A C$ and $A E$ be any
two oblique lines meeting the plane at unequal distances from the foot of the perpendicular:
1°. AP is shorter than any oblique line $A C$.

For, draw PC; then is AP less than AC (B. I., P. XV.); which was to be proved.

2°. $A C$ and $A D$ are equal.
For, draw $P D$; then the right-angled triangles $A P C$, $A P D$, have the side $A P$ common, and the sides $P C, P D$, equal: hence, the triangles are equal in all respects, and consequently, $A C$ and $A D$ are equal; which was to be proved.
$3^{\circ} . A E$ is greater than $A C$.
For, draw $P E$, and take $P B$ equal to $P C$; draw $A B$: then is $A E$ greater than $A B$ (B. I., P. XV.); but $A B$ and $A C$ are equal: hence, $A E$ is greater than $A C$; which was to be proved.

Cor. The equal oblique lines $A B, A C, A D$, meet the plane $M N$ in the circumference of a circle whose centre is P, and whose radius is $P B$: hence, to draw a perpendicular to a given plane $M N$, from a point A, without that plane, find three points B, C, D, of the plane equally distant from A, and then find the centre, P, of the circle whose circumference passes through these points: then AP is the perpendicular required.

Scholium. The angle ABP is called the inclination of the oblique line $A B$ to the plane $M N$. The equal oblique lines $A B, A C, A D$, are all equally inclined to the plane $M N$. The inclination of $A E$ is less than the inclination of any shorter line $A B$.

PROPOSITION VI. THEOREM.

If from the foot of a perpendicular to a plane, a straight line is drawn at right angles to any straight line of that plane, and the point of intersection joined with any point of the perpendicular, the last line is perpendicular to the line of the plane.

Let AP be perpendicular to the plane MN, P its foot, $B C$ the given line, and A any point of the perpendicular; draw PD at right angles to $B C$, and join the point D with A : then is $A D$ perpendicular to $B C$.

For, lay off $D B$ equal to $D C$, and draw $P B, P C, A B$, and $A C$. Because PD is perpendicular to $B C$, and $D B$ equal to $D C$, we have, $P B$ equal to $P C$ (B. I, P. XV.); and because AP is perpendicular to the plane $M N$, and $P B$ equal
to $P C$, we have $A B$ equal to $A C$ (P. V.). The line $A D$ has, therefore, two of its points A and D, each equally distant from B and C : hence, it is perpendicular to $B C$ (B. I, P. XVI., C.) ; which was to be proved.

the triangle APD; because it is perpendicular to $A D$ and PD, at D (P. IV.).

Cor. 2. The shortest distance between $A P$ and $B C$ is measured on PD, perpendicular to both. For, draw BE between any other points of the lines: then $B E$ is greater than $P B$, and $P B$ greater than PD: hence, PD is less than $B E$.

Scholium. The lines $A P$ and $B C$, though not in the same plane, are considered perpendicular to each other. In general, any two straight lines not in the same plane are considered as making an angle with each other, which angle is equal to that formed by drawing, through a given point, two lines respectively parallel to the given lines.

PROPOSITION VII. THEOREM.

If one of two parallels is perpendicular to a plane, the other one is also perpendicular to the same plane.
Let AP and ED be two parallels, and let AP be perpendicular to the plane MN: then is ED also perpendicular to the plane MN.

For, pass a plane through the parallels; its intersection with MN is $P D$; draw $A D$, and in the plane $M N$ draw $B C$ perpendicular to $P D$ at D. Now, BD is perpendicular to the plane APDE (P. VI, C. 1); the angle $B D E$ is consequently a
 right angle; but the angle EDP is a right angle, because ED is parallel to AP (B. I., P. XX, C. 1): hence, ED is perpendicular to $B D$ and $P D$, at their point of intersection, and consequently, to their plane MN (P. IV.) ; which was to be proved.

Cor. 1. If the lines AP and ED are perpendicular to the plane MN, they are parallel to each other. For, if not, conceive a line drawn through D parallel to PA; it would be perpendicular to the plane MN , from what has just been proved; we would, therefore, have two perpendiculars to the plane $M N$, at the same point; which is impossible (P. IV., C. 2).

Cor. 2. If two straight lines, A and B, are parallel to a third line C, they are parallel to each other. For, pass a plane perpendicular to C; it will be perpendicular to both A and B : hence, A and B are parallel.

ALERE PROPOSITION VIII. THEOREM.

If a straight line is parallet to a line of a plane, it is parallel to that plane.
Let the line $A B$ be parallel to the line $C D$ of the plane $M N$; then is $A B$ parallel to the plane $M N$.

For, through $A B$ and $C D$ pass-a plane (P. IL, C. 4) ; CD is its intersection with the plane MN. Now, since $A B$ lies in this plane, if it can meet the plane MN, it will meet it at some point of CD ; but this is impossible, because $A B$ and $C D$ are parallel: hence, $A B$ can not meet the plane $M N$, and consequently, it is parallel to it; which was to be proved.

point common to both. From O draw the lines $O A$ and $O B$: then, since $O A$ lies in the plane $M N$, it is perpendicular to $B A$ at $A(D .1)$. For a like reason, $O B$ is perpendicular to $A B$ at B : hence, the triangle $O A B$ has two right angles, which is impossible; consequently, the planes can not meet, and are therefore parallel; which was to be proved.

PROPOSITION X. THEOREM.

If a plane intersects two parallel planes, the lines of intersection are parallel.

Let the plane EH intersect the parallel planes $M N$ and $P Q$, in the lines $E F$ and $G H$: then are $E F$ and $G H$ parallel.

For, if they are not parallel, *they will meet if sufficiently prolonged, because they lie in the same plane; but if the lines meet, the planes $M N$ and $P Q$, in which they lie, also meet; but this is impossible, because these planes are parallel: hence, the lines EF and GH can not meet;
they are, therefore, parallel; which was to be proved.

UNIVER gatemany muta

If two planes are perpendicular to the same straight line, they are parallel to each other.

Let the planes $M N$ and $P Q$ be perpendicular to the line $A B$, at the points A and B : then are they parallel to each other.

For, if they are not parallel, they will meet; and let 0 be a

For, through $A B$ pass any plane; its intersections with $M N$ and $P Q$ are parallel ($\mathrm{P} . \mathrm{X}$.) ; but, its intersection with $P Q$ is perpendicular to $A B$ at B (D. 1); hence, its intersection with $M N$ is also perpendicular to $A B$ at A (B. I, P. $X X$., C. 1): hence, $A B$ is perpendicular to every line of the plane MN through A, and is, therefore, A perpendicular to that plane; which was to be proved.

THEOREM.
Parallel straight lines included between parallet planes, are equal. Let EG and FH be any two parallel lines included between the parallel planes $M N$ and $P Q$: then are they equal.

Through the parallels conceive a plane to be passed; it will intersect the plane $M N$ in the line $E F$, and $P Q$ in the line GH ; and these lines are parallel (Prop. X.). The figure EFHG is, therefore, a parallelogram: hence, $G E$ and $H F$ are equal (B. I., P. XXVIII.) ; which was to be
 proved.
Cor. 1. The distance between two parallel planes is measured on a perpendicular to both; but any two perpendiculars between the planes are equal: hence, parallel planes are every-where, equally distant.

Cor. 2. If a straight line GH is parallel to any plane MN, then can a plane be passed through GH parallel to MN: hence, if a straight line is parallel to a plane, all of its points are equally distant from that plane.

PROPOSITION XIII. THEOREM

If two angles, not sitwated in the same plane, have their sides parallel, and lying in the same direction, the angles are equal and their ptanes parallel.
Let CAE and DBF be two angles lying in the planes $M N$ and $P Q$, and let the sides $A C$ and $A E$ be respectively parallel to $B D$ and $B F$, and lying in the same direction: then are the angles CAE and DBF equal, and the planes $M N$ and $P Q$ parallel.

Take any two points of $A C$ and $A E$, as C and E, and make $B D$ equal to $A C$, and $B F$ to $A E$; draw $C E, D F, A B$, $C D$, and $E F$.

1\%. The angles $C A E$ and DBF are equal.
For, $A E$ and BF being parallel and
equal, the figure
$A B F E$ is a parallelogram (B I $P . X X X$.) ; hence, $E F$ is parallel and equal to $A B$. For a like reason, $C D$ is parallel and equal to $A B$: hence, $C D$ and $E F$ are parallel and equal to each other, and consequently, CE and DF are also parallel and equal to each other. The triangles CAE and DBF have, therefore, their corresponding sides equal, and consequently, the corresponding angles CAE and DBF are equal; which was to be proved.
2°. The planes of the angles, $M N$ and $P Q$, are parallel. For, from A draw $A G$ perpendicular to the plane $P Q$; at the point G, where it meets the plane, draw in the plane PQ, GH and GK parallel, respectively, to BD and BF ; then
is $A C$ parallel to $G H$, and $A E$ to GK (P. VII., C. 2). AG, being perpendicular to GH and GK (D. 1), is perpendicular to their parallels, $A C$ and $A E$ (B. I., P. XX., C. 1), and is, therefore, perpendicular to the plane MN (P. IV.). The planes $M N$ and $P Q$, being perpendicular to the same straight line, $A G$, are parallel to each other (P. IX.); which was to be proved.

Cor. If two parallel planes, $M N$ and $P Q$, are met by two other planes, $A D$ and $A F$, the angles $C A E$ and $D B F$, formed by their intersections, are equal.
(I) PROPOSITION XIV. THEOREM.

If three straight lines, not situated in the same plane, are equal and parallel, the triangles formed by joining the extremities of these lines are equal, and their planes parallel.
Let $A B, C D$, and $E F$ be equal parallel lines not in the same plane: then are the triangles $A C E$ and $B D F$ equal, and their planes paraflel.

For, $A B$ being equal and paral-
lel to $E F$, the figure $A B F E$ is a parallelogram, and consequently, $A E$ is equal and parallel to $B F$. For a like reason, $A C$ is equal and parallel to $B D$: hence, the included angles CAE and DBF are equal and their planes parallel (P. XIIL). Now, the triangles
 CAE and DBF have two sides and their included angles equal, each to each : hence, they are equal in all respects. The triangles are, therefore, equal and their planes parallel;

- which was to be proved.

PROPOSITION XV. THEOREM.
If two straight lines are cut by three parallel planes, they are divided proportionally.

Let the lines $A B$ and $C D$ be cut by the parallel planes $M N, P Q$, and $R S$, in the points A, E, B, and C, F, D; then

$$
A E: E B:=C F: F D .
$$

For, draw the line $A D$, and suppose it to pierce the plane PQ in G; draw $A C, B D, E G$, and $G F$.

The plane ABD intersects the parallel planes $R S$ and $P Q$ in the lines $B D$ and $E G$; consequently, these lines are parallel (P. X.) : hence (B. IV., P. XV.), AE : EB : : AG : GD.

The plane $A C D$ intersects the

which was to be proved.
Cor. 1. If two straight lines are cut by any number of parallel planes, they are divided proportionally.

Cor. 2. If any number of straight lines are cut by three parallel planes, they are divided proportionally.

PROPOSITION XVI. THEOREM

If a straight line is perpendicular to a plane, every plane passed through the line is also perpendicular to that plane. 1
Let AP be perpendicular to the plane $M N$, and let $B F$ be a plane passed through AP : then is BF perpendicular to MN.
In the plane MN, draw PD perpendicular to $B C$, the intersection of $B F$ and MN. Since AP is perpendicular to $M N$, it is perpendieular to $B C$ and DP (D. 1) ; and since AP and DP, in the planes $B F$ and $M N$, are perpendicular to the intersection of these planes
 at the same point, the angle which they form is equal to the angle formed by the planes (D. 4); but this angle is a right angle: hence, BF is perpendicular to MN ; which was to be proved.

Cor. If three lines $A P, B P$, and $D P$, are perpendicular to each other at a common point P, each line is perpen-
dieular to the plane of the two others, and the three planes are perpendicular to each other.

If two planes are perpendicular to each other, a straight line drawn in one of them, perpendicular to their intersection, is perpendicular to the other. (J)
Let the planes BF and MN be perpendicular to each other, and let the line $A P$, drawn in the plane $B F$, be perpendicular to the intersection $B C$; then is AP perpendicular to the plane MN.

For, in the plane MN, draw PD perpendicular to BC at P. Then because the planes BF and MN are perpendicular to each other, the angle APD is a right angle: hence, $A P$ is perpendicular to the two lines $P D$ and $B C$, at their intersection, and consequently, is perpendicular to their plane MN ; which was to be proved.

Cor. If the plane BF is perpendicular to the plane MN , and if at a point P of their intersection, a perpendicular is erected to the plane MN, that perpendicular is in the plane $B F$. For, if not, draw in the plane BF, PA perpendicular to PC, the common intersection; AP is perpendicular to the plane $M N$, by the theorem; therefore, at the same point P, there are two perpendiculars to the plane $M N$; which is impossible (P. IV., C. 2).

PROPOSITION XVIII. THEOREM.

If two planes cut each other, and are perpendicular to a third plane, their intersection is atso perpendicular to that plane.
Let the planes $B F, D H$, be perpendicular to $M N$: then
is their intersection AP perpendicular to MN.

For, at the point P, erect a perpendicular to the plane $M N$; that perpendicular must be in the plane $B F$, and also in the plane DH (P. XVII., C.) ; therefore, it is their common intersection AP ; which was to be proved.

PROPOSITION XIX. THEOREM.

The sum of any two of the plane angles formed by the edges of a triedral angle, is greater than the third.

Let SA, SB, and SC, be the edges of a triedral angle: then is the sum of any two of the plane angles formed by them, as ASC and CSB, greater than the third ASB.

If the plane angle $A S B$ is equal to, or less than, either of the other two, the truth of the proposition is evident. Let us suppose, then, that ASB is greater than either.
T) In the plane ASB, construct the angle $B S D$ equal to $B S C$; draw $A B$ in that plane, at pleasure; lay off SC equal to $S D$, and draw $A C$ and $C B$. The triangles BSD and BSC have the side SC equal to SD, by construction, the side $S B$ common, and the included angles.BSD and BSC equal, by
construction; the triangles are therefore equal in all respects :- hence, BD is equal to BC. But, from Proposition
VII., Book I., we have,
$\circlearrowleft \perp \sqrt{-1} B C+C A>B D+D A . A \bigcup \square$
Taking away the equal parts $B C$ and $B D$, we have,

hence (B. I., P. IX.), we have
and, adding the equal angles $B S C$ and BSD,
angle $A S C+$ angle $C S B>$ angle $A S D+$ angle $D S B$; or, angle $A S C+$ angle $C S B>$ angle $A S B$;
which was to be proved.

PROPOSTTTON XX. THEOREM.

The sum of the plane angles formed by the edges of any polyedral angle, is less than four right angles.
Let S be the vertex of any polyedral angle whose edges are SA, SB, SC, SD, and SE; then is the sum of the angles about S less than four right angles.

For, pass a plane cutting the edges in the points A, B, C, D, and E, and the faces in the lines $A B, B C, C D, D E$, and EA. From any point within the polygon thus formed, as O, draw the straight lines $\mathrm{OA}, \mathrm{OB}, \mathrm{OC}, \mathrm{OD}$, and OE.
We then have two sets of triangles, one set having a common vertex S , the other having a common vertex O, and both having common bases $A B, B C, C D, D E, E A$. Now, in the set which has the common vertex S, the sum of all the angles is equal to the sum of all the plane angles formed by the edges of the polyedral angle whose vertex is S, together with the sum of all the angles at the bases: viz., SAB,
SBA, SBC, \&o.; and the entire sum is equal to twice as many right angles as there are triangles. In the set whose common vertex is 0 , the sum of all the angles is equal to the four right angles about O , together with the interior angles of the polygon, and this sum is equal to twice as many right angles as there are triangles. Since
the number of triangles, in each set, is the same, it follows that these sums are equal. But in the triedral angle whose vertex is B, we have (P. XIX.),

$$
A B S+S B C>A B C
$$

and the like may be shown at each of the other verfices, C, D, E, A : hence, the sum of the angles at the bases, in the triangles whose common vertex is S , is greater than the sum of the angles at the bases, in the set whose common vertex is 0 : therefore, the sum of the vertical angles about, S, is less
 of the vertical angles about S, is less than the sum of the angles about 0 : that is, less than four right angles; which was to be proved.

Scholium. The above demonstration is made on the supposition that the polyedral angle is convex, that is, that the diedral angles of the consecutive faces are each less than two right angles.

PROPOSTTION XXI. THEOREM.

If the plane angles formed by the edges of two triedral angles are equat, each to each, the planes of the equal angles are equally inclinea to each other.

Let S and T be the vertices of two triedral angles, and let the angle ASC be equal to DTF, ASB to DTE, and BSC to ETF: then the planes of the equal angles are equally inclined to each other.

For, take any point of $S B$, as B, and from it draw in the two faces $A S B$ and $C S B$, the lines $B A$ and $B C$, respectively perpendicular to $S B$: then the angle $A B C$ measures the inclination of these faces Lay off TE equal to SE
and from E draw in the faces DTE and FTE, the lines ED and $E F$, respectively perpendicular to $T E$: then the angle DEF measures the inclination of these faces. Draw $A C$ and DF.

The right-angled triangles SBA and TED, have the side $S B$ equal to $T E$, and the angle $A S B$ equal to $D T E$; hence, $A B$
 is equal to $D E$, and $A S$ to $D T$.
In like manner, it may be shown that $B C$ is equal to $E F$, and CS to FT. The triangles ASC and DTF, have the angle ASC equal to DTF, by hypothesis, the side AS equal to DT, and the side CS to FT, from what has just been shown; hence, the triangles are equal in all respects, and consequently, $A C$ is equal to $D F$. Now, the triangles $A B C$ and DEF have their sides equal, each to each, and consequently, the corresponding angles are also equal ; that is, the angle $A B C$ is equal to $D E F$: hence, the inclination of the planes $A S B$ and $C S B$, is equal to the inclination of the planes DTE and FTE. In like manner, it may be shown that the planes of the other equal angles are equally inclined; which was to be proved.

Cor. If the plane angles $A S B$ and $B S C$ are equal, respectively, to the plane angles DTE and ETF, and the inclination of the faces $A S B$ and $B S C$ is equal to that of the faces DTE and ETF, then are the remaining plane angles, ASC and DTF, equal to each other.
Schotium 1. If the planes of the equal plane angles are like placed, the triedral angles are equal in all respects, for they may be placed so as to coineide. If the planes of the equal angles are not similarly placed, the triedral angles are said to be angles equal by symmetry, or symmetrical
triedral angles. In this case, they may be placed so that two of the homologous faces shall coincide, the triedral angles lying on opposite sides of the plane, which is then called a plane of symmetry. In this position, for every point on one side of the plane of symmetry, there is a corresponding point on the other side.
Scholium 2. If the plane angles ASB and DTE are equal to each other, and the inclination of the face ASB to each of the faces BSC and ASC is equal, respectively, to the inclination of DTE to each of the faces ETF and DTF, then are the plane angles BSC and CSA equal, respectively, to the plane angles ETF and FTD. For, place the plane angle ASB upon its equal DTE, so that the point S shall coincide with T, the edge $S A$ with $T D$, and the edge SB with TE, then will the face BSC take the direction of the face ETF, and the edge SC will lie somewhere in the plane ETF; the face ASC will take the direction of the face DTF, and the edge SC will lie somewhere in the plane DTF. Since SC is at the same time in both the planes ETF and DTF, it must be on their intersection (P. III.) : hence, the plane angles BSC and CSA coincide with and are equal, respectively, to ETF and FTD.

If the triedral angle whose vertex is S can not be made to coincide with the triedral angle whose vertex is T, it may be made to coincide with its symmetrical triedral angle, and the corresponding plane angles would be equal, as before.

Note 1.-The projection of a point on a plane is the foot of a perpendicular drawn from the point to the plane.

Note 2.-The projection of a line on a plane is that line of the plane which joins the projection of the two extreme points of the given line on the plane.

EXERCISES.

1. Find a point in a plane equidistant from two given points without and on the same side of the plane.
2. From two given points on the same side of a given plane, draw two lines that shall meet the plane in the same point and make equal angles with it.
[The angle made by a line with a plane is the angle which the line makes with its projection on the plane.]
3. What is the greatest number of equilateral triangles that can be grouped about a point so as to form a convex polyedral angle?
4. Show that if from any two points in the edge of a diedral angle straight lines are drawn in each of its faces perpendicular to the edge, these lines contain equal angles.
5. From any point within a diedral angle, draw a perpendicular to each of its two faces, and show that the angle contained by the perpendiculars is the supplement of the diedral angle.
6. Show that if a plane meets another plane, the sum of the adjacent diedral angles is equal to two right angles.
7. Show that if two planes intersect each other, the opposite or vertical diedral angles are equal to each other.
8. Show that if a plane intersects two parallel planes, the sum of the interior diedral angles on the same side is equal to two right angles.
9. Show that if two diedral angles have their faces parallel and lying in the same or in opposite directions, they are equal.
10. Show that every point of a plane bisecting a diedral angle is equidistant from the faces of the angle.
11. Show that the inclination of a line to a planethat is, the angle which the line makes with its own projection on the plane-is the least angle made by the line with any line of the plane.
12. Show that if three lines are perpendicular to a fourth at the same point, the first three are in the same plane.
13. Show that when a plane is perpendicular to a given line at its middle point, every point of the plane is equally distant from the extremities of the line, and that every point out of the plane is unequally distant from the extremities of the line.
14. Show that through a line parallel to a given plane, but one plane can be passed perpendicular to the given plane.
15. Show that if two planes which intersect contain two lines parallel to each other, the intersection of the planes is parallel to the lines.
16. Show that when a line is parallel to one plane and perpendicular to another, the two planes are perpendicular to each other.
17. Draw a perpendicular to two lines not in the same
plane. Show that the three planes which bisect the diedral angles formed by the consecutive faces of a triedral angle, meet in the same line.

BOOK VII.

POLYEDRONS

DEEINITIONS

1. A Polyeidron is a volume bounded by polygons.

The bounding polygons are called faces of the polyedron; the lines in which the faces meet, are called edges of the polyedron; the points in which the edges meet, are called vertices of the polyedron.
2. A Prism is a polyedron in which two of the faces are polygons equal in all respects, and having their homologous sides parallel. The other faces are parallelograms (B. I, P. XXX.).

The equal polygons are called bases of the prism; one the upper, and the other

the lower base; the parallelograms taken together make up the lateral or convex surface of the prism; the lines in which the lateral faces meet, are called lateral edges, and the lines in which the lateral faces meet either base are called basal edges of the prism.
3. The Autirude of a prism is the perpendicular distance between the planes of its bases.
4. A RIGHT Prism is one whose lateral edges are perpendicular to the planes of the bases.

In this case, any lateral edge is equal to the altitude.

11. Show that the inclination of a line to a planethat is, the angle which the line makes with its own projection on the plane-is the least angle made by the line with any line of the plane.
12. Show that if three lines are perpendicular to a fourth at the same point, the first three are in the same plane.
13. Show that when a plane is perpendicular to a given line at its middle point, every point of the plane is equally distant from the extremities of the line, and that every point out of the plane is unequally distant from the extremities of the line.
14. Show that through a line parallel to a given plane, but one plane can be passed perpendicular to the given plane.
15. Show that if two planes which intersect contain two lines parallel to each other, the intersection of the planes is parallel to the lines.
16. Show that when a line is parallel to one plane and perpendicular to another, the two planes are perpendicular to each other.
17. Draw a perpendicular to two lines not in the same
plane. Show that the three planes which bisect the diedral angles formed by the consecutive faces of a triedral angle, meet in the same line.

BOOK VII.

POLYEDRONS

DEEINITIONS

1. A Polyeidron is a volume bounded by polygons.

The bounding polygons are called faces of the polyedron; the lines in which the faces meet, are called edges of the polyedron; the points in which the edges meet, are called vertices of the polyedron.
2. A Prism is a polyedron in which two of the faces are polygons equal in all respects, and having their homologous sides parallel. The other faces are parallelograms (B. I, P. XXX.).

The equal polygons are called bases of the prism; one the upper, and the other

the lower base; the parallelograms taken together make up the lateral or convex surface of the prism; the lines in which the lateral faces meet, are called lateral edges, and the lines in which the lateral faces meet either base are called basal edges of the prism.
3. The Autirude of a prism is the perpendicular distance between the planes of its bases.
4. A RIGHT Prism is one whose lateral edges are perpendicular to the planes of the bases.

In this case, any lateral edge is equal to the altitude.

5. An Oblique Prism is one whose lateral edges are oblique to the planes of the bases.

In this case, any lateral edge is greater than the altitude.
6. Prisms are named from the number of sides of their bases; a triangular prism is one whose bases are triangles; a pentagonal prism is one whose bases are pentagons, \&c. ALERE FLAMMAM
7. A Paraliafoplpedon is a prism whose bases are parallelograms.

A Right Parallelopipedon is one whose lateral edges are perpendieular to the planes of the bases.

A Rectangular Parallelopipedon is one whose faces are all rectangles.

A Cube is a rectangular parallelopipedon whose faces are squares.
8. A PYRAMID is a polyedron bounded by a polygon called the bqse, and by triangles meeting at a common point, called the vertex of the pyramid.

The triangles taken together make up the lateral or convex surface of the pyramid;
the lines in which the lateral faces meet, are called the lateral edges, and the lines in which the lateral faces meet the base are called basal edges of the pyramid.
9. Pyramids are named from the number of sides of their bases; a triangular pyramid is one whose base is a triangle; a quadrangular pyramid is one whose base is a quadrilateral, and so on.
10. The Amtrude of a pyramid is the perpendicular distance from the vertex to the plane of its base.
11. A Right Pyramm is one whose base is a regular polygon, and in which the perpendicular, drawn from the vertex to the plane of the base, passes through the centre of the base.

This perpendicular is called the axis of the pyramid.
12. The Slant Height of a right pyramid, is the perpendicular distance from the vertex to any side of the base.
13. A Truncated Pyramid is that portion of a pyramid included between the base and any plane which cuts the pyramid.

When the cutting plane is parallel to the base, the truncated pyramid is called
 a FRUSTUM OF A PYRAMID, and the intersection of the cutting plane with the pyramid, is called the upper base of the frustum; the base of the pyramid is called the lower base of the frustum.
14. The Aumiude of a frustum of a pyramid, is the perpendicular distance between the planes of its bases.
15. The SLiANT Height of a frustum of a right pyramid, is that portion of the slant height of the pyramid which lies between the planes of its upper and lower bases.
16. Smmthar Polymdrons are those which are bounded by the same number of similar polygons, similarly placed.
Parts which are similarly placed, whether faces, edges, or angles, are called homologous.
17. A Diagonal of a polyedron, is a straight line joining the vertices of two polyedral angles not in the same face.
18. The Volume of a Polymdron is its numerical value expressed in terms of some other polyedron taken as a unit.

The unit generally employed is a cube constructed on the linear unit as an edge.

PROPOSITION I THEOREM.

The convex surface of a right prism is equal to the perimC eter of either base multiplieil by the altitude.

Let $A B C D E-K$ be a right prism: then is its convex surface equal to,

$$
(A B+B C+C D+D E+E A) \times A F .
$$

For, the convex surface is equal to the sum of all the rectangles $A G, B H$, CI, DK, EF, which compose it. Now, the altitude of each of the rectangles $A F, B G, C H$, \&e., is equal to the altitude of the prism, and the area of each rectangle is equal to its base multiplied by its altitude (B. IV., P. V.) : hence, the sum of these rectangles, or the convex surface of the prism; is equal to,

$$
(A B+B C+C D+D E+E A) \times A F
$$

that is, to the perimeter of the base multiplied by the altitude; which was to be proved.

Cor. If two right prisms have the same altitude, their convex surfaces are to each other as the perimeters of their bases.

PROPOSTTION II. THEOREM.

In any prism, the sections made by parallel planes arie polygons equal in all respects.

Let the prism AH be intersected by the parallel planes $N P, S V$: then are the sections NOPQR, STVXY, equal polygons.

For, the sides NO, ST, are parallel, being the intersections of parallel planes with a third plane ABGF; these sides, NO, ST, are included between the parallels NS, OT: hence, NO is equal to ST (B. I., P. XXVIIL, C. 2). For like reasons, the sides $O P, P Q, Q R$, \&c., of $N O P Q R$, are equal to the sides $T V, V X$, \&c., of STVXY, each to each; and since the equal sides are parallel, each to
 each, it follows that the angles NOP,
OPQ , \&c., of the first section, are equal to the angles STV, TVX, \&c., of the second section, each to each (B. Vi., P. XIII): hence, the two sections NOPQR, STVXY, are equal in all respects; which was to be proved.

Cor. The bases of a prism and any section of a prism parallel to the bases, are equal in all respects.

PROPOSITION III. THEOREM.

If a pyramid is cut by a plane parallel to the base: 1. The edges and the attitude are divided proportionally:

2°. The section is a polygon similar to the base.

Let the pyramid $S-A B C D E$, whose altitude is $S O$, be cut by the plane abcde, parallel to the base $A B C D E$.
1°. The edges and altitude are divided proportionally. For, let a plane be passed through the vertex S, parallel to the base AC; then the edges and the altitude are cut by three parallel planes, and are consequently divided proportionally (B. VI, P. XV., C. 2) ; which was to be proved.
2°. The section abede is similar to the base $A B C D E$.

- For, each side of the section is parallel to the corresponding side of the base
 (B. VI., P. X.); hence, the corresponding angles of the section and of the base are equal (B. VI., P. XIII.) ; the two polygons are therefore mutually equiangular. Again, because $a b$ is parallel to $A B$, and $b c$ to $B C$, the triangle $S b a$ is similar to $S B A$, and $S b c$ to $S B C$; hence,
$a b: \mathrm{AB}: \mathrm{Sb}: \mathrm{SB}$, and bc: $\mathrm{BC}:=\mathrm{Sb}: \mathrm{SB}$, whence (B. II., P. IV.), $a b: A B:: b c: B C$.

In like manner, it may be shown that the remaining
sides of abcde are proportional to the corresponding sides of $A B C D E$; hence (B. IV., D. 1), the polygons are similar which was to be proved.

Cor. 1. If two pyramids
$S-A B C D$ and $S-X Y Z$, having a common vertex S and their bases in the same plane, are cut by a plane aoz parallel to the plane of their bases, the sections are to each other as the bases.

For the polygons $a b c d$ and $A B C D$, being similar, are to each other as the squares of any homologous sides (B. IV., P. XXVII.) ; but

$$
\overline{a b}^{2}: \overline{\mathrm{AB}^{2}}:: \overline{\mathrm{Sa}}^{2}: \overline{\mathrm{SA}}^{2}:: \overline{\mathrm{So}}^{2}:: \overline{\mathrm{SO}}^{2} ;
$$

hence (B. II., P. IV.), we have, abcd $: \mathrm{ABCD}:: \overline{\mathrm{So}}^{2}: \overline{\mathrm{SO}}^{2}$
In like manner, we have,
hence, $\quad x y z: \overline{\mathrm{XY}}:: \overline{\mathrm{So}^{2}: \overline{\mathrm{SO}}^{2} ;}$

Cor. 2. If the bases are equal, any sections at equal distances from the vertex, or from the bases, are equal.

Cor. 3. The area of any section parallel to the base is proportional to the square of its distance from the vertex.
Cor. 4. If the two pyramids are cut by a plane KTR, so that ST is a mean proportional between So and SO, that is, so that ST^{2} is a mean proportional between $\overline{\mathrm{So}}^{2}$ and $\overline{\mathrm{SO}}^{2}$, the section KLMN is a mean proportional between $a b c d$ and $A B C D$, and also $P Q R$ is a mean proportional between $x y z$ and $X Y Z$.

PROPOSITION IV. THEOREM.

The convex surface of a right pyramid is equal to the perimeter of its base multiplied by half the slant height.
Let S be the vertex, $A B C D E$ the base, and $S F$, perpendicular to $E A$, the slant height of a right pyramid: then is the convex surface equal to,

$$
(A B+B C+C D+D E+E A) \times \frac{1}{2} S F
$$

Draw SO perpendicular to the plane of the base.

From the definition of a right pyramid, the point 0 is the centre of the base (D. 11) : hence, the lateral edges, SA, SB, \&c., are all equal (B. VI., P. V.) ; but the sides of the base are all equal, being sides of a regular polygon: hence, the lateral faces are all equal, and consequently their altitudes are all equal, each being equal to the slant height of the pyramid.
Now, the area of any lateral face, as SEA, is equal to its base EA, multiplied by half its altitude SF: hence, the sum of the areas of the lateral faces, or the convex surface of the pyramid, is equal to,

$$
\quad(A B+B C+C D+D E
$$

$$
+E A) \times \frac{1}{2} S F ;
$$

which was to be proved.
Scholium. The comvex surface of a frustum of a right pyramid is equal to half the sum of the perimeters of its upper and lower bases, multiplied by the slant height.

Let $A B C D E-e$ be a frustum of a right pyramid, whose vertex is S : then the section abcde is similar to the base ABCDE, and their homologous sides are parallel (P. III.). Any lateral face of the frustum, as AEea, is a trapezoid, whose altitude is equal to Ff , the slant height of the frustum; hence, its area is equal to $\frac{1}{2}(\mathrm{EA}+e a) \times \mathrm{Ff}$ (B. IV., P. VII).. But
 the area of the convex surface of the frustum is equal to the sum of the areas of its lateral faces; it is, therefore, equal to the half sum of the perimeters of its upper and lower bases, multiplied by the slant height.

PROPOSITION V. THEOREM.

If the three faces which include a triedral angle of a prism are equal in all respects to the three faces which include a triedral angle of a second prism, each to each, and are like placed, the two prisms are equal in all respects.
Let B and b be the vertices of two triedral angles, included by faces respectively equal to each other, and similarly placed: then the prism $A B C D E-K$ is equal to the prism abcde- k in all respects.

For, place the base abcde upon the equal base $A B C D E$, so that they shall coincide; then because the triedral angles whose vertices are b and B, are equal, the parallelogram bh will coincide with BH , and the parallelogram bf with BF : hence, the two sides $f g$ and $g h$, of one upper base, will coincide with the homologous sides FG and GH, of the other upper base; and because the upper bases are equal in all respects, and have been shown to coincide in part, they must coincide throughout; consequently, each of the lateral faces of one prism will coincide with the corresponding lateral face of the other prism; the prisms, therefore, coincide throughout, and are therefore equal in all respects; which was to be proved.
Cor. If two right prisms have their bases equal in all respects, and have also equal altitudes, the prisms themselves are equal in all respects. For, the faces which include any triedral angle of the one, are equal in all respects to the faces which include the corresponding triedral angle of the other, each to each, and they are similarly placed.

PROPOSITION VI. THEOREM.

In any parallelopipedon, the opposite faces are equal in all respects, each to each, and their planes are parallel.

Let $A B C D-H$ be a parallelopipedon: then its opposite faces are equal and their planes are parallel.

For, the bases, $A B C D$ and $E F G H$ are equal, and their planes parallel by definition (D. 7). The opposite faces $A E H D$ and $B F G C$, have the sides $A E$ and BF parallel, because they are opposite sides of the parallelogram BE ; and the sides EH and EG parallel, because they are opposite sides of the parallelogram $E G$; and consequently, the angles $A E H$ and $B F G$ are equal (B. VI., P. XIII. But the side $A E$ is equal to $B F$, and the side $E H$ to $F G$; hence, the faces $A E H D$ and $B F G C$ are equal; and because $A E$ is parallel to $B F$, and $E H$ to $F G$, the planes of the faces are parallel (B. VI., P. XIII). In like manner, it may be shown that the parallelograms ABFE and DCGH, are equal and their planes parallel: hence, the opposite faces are equal, each to each, and their planes are parallel;
which was to be proved.
Cor. 1. Any two opposite faces of a parallelopipedon may be taken as bases.

Cor. 2. In a rectangular parallelopipedon, the square of any of the diagonals is equal to the sum of the squares of the three edges which meet at the same vertex.

For, let FD be one of the diagonals, and draw FH.

Then, in the right-angled triangle FHD, we have,

$$
\overline{\mathrm{FD}^{2}}=\overline{\mathrm{DH}}^{2}+\overline{\mathrm{FH}}{ }^{2} .
$$

But DH is equal to FB , and $\overline{\mathrm{FH}}^{2}$ is equal to $\overline{F A}^{2}$ plus $\overline{\mathrm{AH}}^{2}$ or $\overline{\mathrm{FC}}^{2}$: hence,

$$
\overline{F D}^{2}=\overline{F B}^{2}+\overline{F A}^{2}+{\overline{F C^{2}}}^{2}
$$

Cor. 3. A parallelopipedon may be constructed on three straight lines $A B, A D$, and $A E$, intersecting in a common point A, and not lying in the same plane. For, pass through the extremity of each line, a plane parallel to the plane of the two others; then will these planes, together with the planes of the given lines, be the faces of a parallelopipedon.

PROPOSITION VII. THEOREM.

If a plane is passed through the diagonally opposite edges of a parallelopipedon, it divides the parallelopipedon into two equal triangutar prisms.

Let $A B C D-H$ be a parallelopipedon, and let a plane be passed through the edges BF and DH ; then are the prisms $A B D-H$ and $B C D-H$ equal in volume.

For, through the vertices F and B let planes be passed perpendicular to FB, the former cutting the other lateral edges in the points e, h, g, and the latter cutting those edges produced, in the points a, d, and c. The sections Fehg and Badc are parallelograms, because their opposite sides are parallel,

each to each (B. VI., P. X.) ; they are also equal (P. II) : hence, the polyedron $\mathrm{Badc-g}$ is a right prism (D. 2, 4), as are also the polyedrons $\mathrm{B} a d-h$ and $\mathrm{B} c d-h$.

Place the triangle Feh upon Bad, so that F shall coincide with B, e with a, and h with d; then, because eE , $h \mathrm{H}$, are perpendicular to the plane $F e h$, and $a \mathrm{~A}, d \mathrm{D}$, to the plane Bad , the line $e \mathrm{E}$ takes the direction $a \mathrm{~A}$, and the line $h \mathrm{H}$ the direction $d \mathrm{D}$. The lines $A E$ and ae are equal, because each is equal to BF (B. I., P. XXVII.). If we take away from the line $a E$ the part ae, there remains the part $e E$; and if from the same line, we take away the part $A E$, there remains the part $A a$: hence, $e E$ and $a A$ are equal ($\mathrm{A}, 3$); for a like reason $h \mathrm{H}$ is equal to $d \mathrm{D}$: hence, the point E coincides with A, and the point H with D, and consequently, the polyedrons Feh-H and Bad-D coincide throughout, and are therefore equal.

If from the polyedron $\mathrm{Bad}-\mathrm{H}$, we take away the part $B a d-D$, there remains the prism $B A D-H$; and if from the same polyedron we take away the part Feh-H, there remains the prism Bad-h: hence, these prisms are equal in volume. In like manner, it may be shown that the prisms $B C D-H$ and $B c d-h$ are equal in volume.
The prisms $\mathrm{Bad-h}$, and $\mathrm{Bcd}-\mathrm{h}$, have equal bases, because these bases are halves of. equal parallelograms (B. I., P. XXVIII., C. 1); they have also equal altitudes; they are therefore equal (P. V., C.) : hence, the prisms BAD-H and BCD-H are equal (A. 1); which was to be proved.

Cor. Any triangular prism $A B D-H$ is equal to half of the parallelopipedon $A G$, which has the same triedral angle A, and the same edges $A B, A D$, and $A E$.

PROPOSITION VIII THEOREM.

If two parallelopipedons have a common lower base, and their upper bases between the same parallets, they are equal in volume.

Let the parallelopipedons $A G$ and $A L$ have the common lower base ABCD, and their upper bases EFGH and IKLM, between the same parallels

EK and HL: then are they equal in volume.

For, in the triangular prisms $A E 1-M$ and $B F K-L$, the faces $A E I$ and BKF are equal, having their sides respectively equal; the faces AEHD and BFGC are equal (P. VL) ; the faces EHMI and FGLK are equal, as they consist, respectively, of the common part FGMI and the equal parts EHGE and IMLK: hence, the triangular prisms AEI-M and $B F K-L$ are equal ($\mathrm{P} . \mathrm{V}$.).

If from the polyedron $A B K E-H$, we take away the prism $B F K-L$, there remains the parallelopipedon $A G$; and if from the same polyedron we take away the prism AEL-M, there remains the parallelopipedon $A L$: hence, these parallelopipedons are equal in volume (A. 3); which was to be proved.

DE BIBLIOTECAS

PROPOSITION IX. THEOREM.

If two parallelopipedons have a common lower base and the same altitude, they are equal in volume.

Let the parallelopipedons $A G$ and $A L$ have the common lower base $A B C D$ and the lsame altitude: then are they equal in volume. VERITATIS

Because they have the same altitude, their upper bases lie in the same plane. Let the sides IM and KL be prolonged, and also the sides FE and GH ; these prolongations form a parallelogram $O Q$, which is equal to the common base of the given parallelopipedons, because its sides are respectively parallel
 and equal to the corresponding sides of that base.

Now, if a third parallelopipedon be constructed, having for its lower base the parallelogram $A B C D$, and for its upper base NOPQ, this third parallelopipedon will be equal in volume to the parallelopipedon $A G$, since they will have the same lower base, and their upper bases between the same parallels, QG, NF (P. VIII). For a like reason, this third parallelopipedon will also be equal in volume to the parallelopipedon $A L$: hence, the two parallelopipedons $A G$, $A L$, are equal in volume; which was to be proved.

Cor. Any oblique parallelopipedon is equal in volume to a right parallelopipedon having the same base and the same altitude.

PROPOSITION X. PROBLEM.

To construct a rectangular parallelopipeton equal in volume to a right parallelopipedon whose base is any parallelogram.

Let $A B C D-M$ be a right parallelopipedon, having for its base the parallelogram $A B C D$.

Through the edges AI and BK pass the planes $A Q$ and $B P$, respectively perpendicular to the plane AK, the former meeting the face DL in OQ, and the latter meeting that face produced in NP: then the polyedron AP is a rectangular parallelopipedon equal to the given parallelopipedon. It is a rectangular parallelopipedon, because all of its faces are rectangles, and it is equal to the given parallelopipedon, because the two may be regarded as having the common base AK (P. VI, C. 1), and an equal altitude $A O$ (P. IX.).

Cor. 1. Since any oblique parallelopipedon is equal in volume to a right parallelopipedon, having the same base and altitude (P. IX., Cor.) ; and since any right parallelopipedon is equal in volume to a rectangular parallelopipedon having an equal base and altitude; it follows, that any oblique parallelopipedon is equal in volume to a rec \mathbb{R} tangular parallelopipedon, having an equal base and an equal altitude.

Cor. 2. Any two parallelopipedons are equal in volume when they have equal bases and equal altitudes.

PROPOSITION XI. THEOREM.

Two rectangular parallelopipedons having a common lower base, are to each other as their altitudes.

Let the parallelopipedons $A G$ and $A L$ have the common lower base $A B C D$, then are they to each other as their altitudes $A E$ and ALRTITS
1°. Let the altitudes be commensurable, and suppose, for example, that $A E$ is to $A I$, as 15 is to 8 .
Conceive AE to be divided into 15 equal parts, of which Af contains 8; through the points of division let planes be passed parallel to $A B C D$. These planes divide the parallelopipedon $A G$ into 15 parallelopipedons, which have equal bases (P. II., C.) and equal altitudes; hence, they are equal ($\mathrm{P} . \mathrm{X}$, Cor. 3).

Now, AG contains 15, and AL 8 of these equal parallelopipedons; hence, AG is to $A L$, as 15 is to 8 , or as $A E$ is to AI. In like manner, it may be shown that $A G$ is to $A L$, as $A E$ is to $A I$, when the altitudes are to each other as any other whole numbers. T T $\triangle \triangle$ 2°. Let the altitudes be incommen-
 surable.

Now, if $A G$ is not to $A L$, as $A E$ is to $A I$, let us suppose that

$$
A G: A L: A E: A O \text {, }
$$

in which $A O$ is greater than $A I$.
Divide $A E$ into equal parts, such that each is less than OI ; there is at least one point of division m, between 0
and I. Let P denote the parallelopipedon, whose base is $A B C D$, and altitude $A m$; since the altitudes $A E, A m$, are to each other as two whole numbers, we
have,
$A G: P$
AE : A m
But, by hypothesis, we have,

$$
A G: A L:: A E
$$

therefore (B. II., P. IV., C.),

$$
A L: P: A O: A m
$$

But $A O$ is greater than $A m$; hence, if the
proportion is true, AL must be greater than P. On the contrary, it is less; consequently, the fourth term of the proportion can not be greater than AI. In like manner, it may be shown that the fourth term can not be less than Al ; it is, therefore, equal to Al . In this case, therefore, $A G$ is to $A L$ as $A E$ is to $A I$.

Hence, in all cases, the given parallelopipedons are to each other as their altitudes; which was to be proved.

Sch. Any two rectangular parallelopipedons whose bases are equal in all respects, are to each other as their altitudes.

PROPOSITION XII THEOREM.
Two rectangutar parallelopipedons having equal altitudes, are to each other as their bases.

Let the rectangular parallelopipedons AG and AK have the same altitude $A E$: then are they to each other as their bases.

For, place them so that the plane angle EAO shall be common, and produce the plane of the face $N L$, until it intersects the plane of the face $H C$, in $P Q$; we thus form a third rectangular parallelopipedon $A Q$ IERITATIS

The parallelopipedons AG and $A Q$ have a common base $A H$; they are therefore to each other as their altitudes $A B$ and $A O$ (P. XI): hence, we have the proportion,

The parallelopipedons $A Q$ and $A K$ have the common base AL; they are therefore to each other as their altitudes $A D$ and $A M$: hence,

$$
\text { vol. } \mathrm{AQ}: \text { vol. } \mathrm{AK}:: \mathrm{AD}: \mathrm{AM} \text {. }
$$

Multiplying these proportions, term by term (B. II., P. XII.), and omitting the common factor, vol. AQ, we have,
$\int \sqrt{\text { vol. } A G: v o l . ~} A K:: A B \times A D: A O \times A M$. \square
But $A B \times A D$ is equal to the area of the base $A B C D$, and $A O \times A M$ is equal to the area of the base $A M N O$: hence, two rectangular parallelopipedons having equal altitudes, are to each other as their bases; which was to be proved.

PROPOSITION XIII. THEOREM.

Any two rectangular paralletopipedons are to each other as the products of their bases and altitudes; that is, as the products of their three dimensions.

Let $A Z$ and $A G$ be any two rectangular parallelopipedons: then are they to each other as the products of their three dimensions.

For, place them so that the plane angle EAO shall be common, and produce the faces necessary to complete the rectangular parallelopipedon AK. The parallelopipedons $A Z$ and $A K$ have a common base AN ; hence (P. XI.),

$$
\text { vol. } \mathrm{AZ} \text { : vol. } \mathrm{AK}
$$

The parallelopipedons $A K$ and $A G$ have a common altitude AE ; hence (P. XII),
vol. AK : vol. AG : AMNO : ABCD.
Multiplying these proportions, term by term, and omitting the common factor, vol. AK, we have,

- vol. $A Z$: vol. $A G:: A M N O \times A X: A B C D \times A E$;
or, since $A M N O$ is equal to $A M \times A O$, and $A B C D$ to $A B \times A D$,

$$
\text { vol. } A Z: \text { vol. } A G:: A M \times A O \times A X: A B \times A D \times A E ;
$$

which was to be proved.

Cor. 1. If we make the three edges $A M, A O$, and $A X$, each equal to the linear unit, the parallelopipedon $A Z$ becomes a cube constructed on that unit, as an edge; and consequently, it is the unit of volume. Under this supposition, the last proportion becomes,
$1:$ vol. $A G: 1: A B \times A D \times A E$;
whence, $\quad A L E$ vol. $A G=A B \times A D \times A E$.
Hence, the volume of any rectangular parallelopipedon is equal to the product of its three dimensions; that is, the number of times which it contains the unit of volume, is equal to the continued product of the number of linear units in its length, the number of linear units in its breadth, and the number of linear units in its height.
Cor. 2. The volume of a rectangular parallelopipedon is equal to the product of its base and altitude; that is, the number of times which it contains the unit of volume, is equal to the number of superficial units in its base, multiplied by the number of linear units in its altitude.

Cor. 3. The volume of any parallelopipedon is equal to the product of its base and altitude (P. X., C. 1).

PROPOSTTION XIV. THEOREM. The volume of any prism is equal to the product of its base and altitude.

Let $A B C D E-K$ be any prism: then is its volume equal to the product of its base and altitude. AF and the other For, throuigh any lateral edge, as AF, and the other lateral edges not in the same faces, pass the planes $A H$, AI, dividing the prism into triangular prisms. These prisms all have a common altitude equal to that of the given prism.

Now, the volume of any one of the triangular prisms, as $A B C-H$, is equal to half that of a parallelopipedon constructed on the edges $B A, B C, B G(P$. VII., C.) ; but the volume of this parallelopipedon is equal to the product of its base and altitude (P. XIII, C. 3) ; and because the base of the prism is half that of the parallelopipedon, the volume of the prism is also equal to the product of its base and altitude: hence, the sum of the triangular prisms,
 which make up the given prism, is equal to the sum of their bases, which make up the base of the given prism, into their common altitude; which was to be proved.

Cor. Any two prisms are to each other as the products of their bases and altitudes. Prisms having equal bases are to each other as their altitudes. Prisms having equal altitudes are to each other as their bases.
PROPOSITION XV. THEOREM.

Two triangular pyramids having equal bases and equal NA altitudes are equat in volume.

Let $S-A B C$, and $S-a b c$, be two pyramids having their equal bases ABC and $a b c$ in the same plane, and let AT be their common altitude: then are they equal in volume.

For, if they are not equal in volume, suppose one of them, as S-ABC, to be the greater, and let their difference be equal to a prism whose base is $A B C$, and whose altitude is Aa.

Divide the altitude AT into equal parts, $A x, x y$, \&c., each of which is less than $A a$, and let k denote one of these parts; through the points of division pass planes parallel to the plane of the bases; the sections of the two pyramids, by each of these planes, are equal, namely, DEF to def, GHI to ghi, \&e. (P. III, C. 2).

On the triangles $A B C, D E F$, \&e., as lower bases, construct exterior prisms whose lateral edges are parallel to
AS, and whose altitudes are equal to k : and on the triangles def, ghi, \&c., taken as upper bases, construct interior prisms, whose lateral edges are parallel to $a s$, and whose altitudes are equal to k. It is evident that the sum of the exterior prisms is greater than the pyramid $S-A B C$, and also that the sum of the interior prisms is less than the pyramid S - $a b c$: hence, the difference between the sum of the exterior and the sum of the interior prisms, is greater than the difference between the two pyramids.

Now, beginning at the bases, the second exterior prism EFD-G, is equal to the first interior prism ef $d-a$, because
they have the same altitude k, and their bases EFD, efd, are equal: for a like reason, the third exterior prism HIG-K, and the second interior prism hig-d, are equal, and so on to the last in each set: hence, each of the exterior prisms, excepting the first BCA-D, has an equal corresponding interior prism; the prism BCA-D, is, therefore, the difference between the sum of all the exterior prisms, and the sum of all the interior prisms. But the difference between these two sets of prisms is greater than that between the two pyramids, which latter difference was supposed to be equal to a prism whose base is BCA, and whose altitude is equal to $A a$, greater than k; consequently, the prism BCA-D is greater than a prism having the same base and a greater altitude, which is impossible: hence, the supposed inequality between the two pyramids can not exist; they are, therefore, equal in volume; which was to be proved.

PROPOSITION XVI THEOREM.

Any triangular prism may be divided into three triangular pyramids, equal to each other in volume.

Let $A B C-D$ be a triangular prism then can it be divided into three equal triangular pyramids.

For, through the edge AC, pass the plane $A C F$, and through the edge EF pass the plane EFC. The pyramids $A C E-F$ and $E C D-F$, have their bases $A C E$ and $E C D$ equal, because they are halves of the same parallelogram $A C D E$; and they have a common altitude, because

their bases are in the same plane $A D$, and their vertices at the same point F; hence, they are equal in volume (P. XV.). The pyramids $A B C-F$ and $D E F-C$, have their bases $A B C$ and DEF, equal, because they are the bases of the given prism, and their altitudes are equal because each is equal to the altitude of the prism; they are, therefore, equal in volume: hence, the three pyramids into which the prism is divided, are all equal in volume; which was to be proved.

Cor. 1. A triangular pyramid is one third of a prism having an equal base and an equal altitude. -
[T Cor.2. The volume of a triangular pyramid is equal to one third of the product of its base and altitude.

PROPOSITION XVII THEOREM.
The volume of any pyramid is equal to one third product of its base and altitude.
Let $S-A B C D E$, be any pyramid: then is its volume equal to one third of the product of its base and altitude.

For, through any lateral edge, as SE , pass the planes SEB, SEC, dividing the A pyramid into triangular pyramids. The altitudes of these pyramids are equal to each other, because each is equal to that of the given pyramil. Now, the volume of each triangular pyramid is equal to one third of the product of its base and altitude (P. XVI., C. 2) ; hence, the sum of the volumes of the triangular pyramids, is equal to one third of the product of the sum of their
bases by their common altitude. But the sum of the triangular pyramids is equal to the given pyramid, and the sum of their bases is equal to the base of the given pyramid: hence, the volume of the given pyramid is equal to one third of the product of its base and altitude; which was to be proved.

Cor. 1. The volume of a pyramid is equal to one third of the volume of a prism having an equal base and an equal altitude.

Cor. 2. Any two pyramids are to each other as the products of their bases and altitudes. Pyramids having equal bases are to each other as their altitudes. Pyramids having equal altitudes are to each other as their bases.

Scholium. The volume of a polyedron may be found by dividing it into triangular pyramids, and computing their volumes separately. The sum of these volumes is equal to the volume of the polyedron.

PROPOSITION XVIII. THEOREM.

The volume of a frustum of any triangular pyramid is equal to the sum of the volumes of three pyramids whose common altitude is that of the frustum, and whase bases are the lower base of the frustum, the upper base of the frustum, and a mean proportional between the two bases.

Let $\mathrm{FGH}-h$ be a frustum of any triangular pyramid: then is its volume equal to that of three pyramids whose common altitude is that of the frustum, and whose bases are the lower base FGH, the upper base $f g h$, and a mean proportional between these bases.

For, through the edge FH , pass the plane FHg , and
through the edge $f g$, pass the plane $f g H$, dividing the frustum into three pyramids The pyramid g-FGH, has for its base the lower base FGH of the frustum, and its altitude is equal to that of the frustum, because its vertex g is in the plane of the upper base. The pyramid H -fgh, has for its base the upper base fgh of the frustum, and its altitude is equal to that of the frustum, because its vertex
 lies in the plane of the lower base.
The remaining pyramid miay be regarded as having the triangle $F f H$ for its base, and the point g for its vertex. From g, draw $g K$ parallel to $f F$, and draw also $K H$ and $K f$. Then the pyramids $K-F f H$ and $g-F f H$, are equal ; for they have a common base, and their altitudes are equal, because their vertices K and g are in a line parallel to the base (B. VI., P. XII., C. 2).

Now, the pyramid K-FfH may be regarded as having FKH for its base and f for its vertex. From K, draw KL parallel to GH; it is parallel to $g h$: then the triangle FKL is equal to $f g h$, for the side $F K$ is equal to $f g$, the angle F to the angle f, and the angle K to the angle g. But, FKH is a mean proportional between FKL and FGH (B. IV., P. XXIV, C.), or between fgh and FGH. The pyramid f-FKH, has, therefore, for its base a mean proportional between the upper and lower bases of the frustum, and its altitude is equal to that of the frustum; but the pyramid f-FKH is equal in volume to the pyramid $g-\mathrm{F} f \mathrm{H}$: hence, the volume of the given frustum is equal to that of three pyramids whose common altitude is equal to that of the frustum, and whose bases are the upper base, the lower base, and a mean proportional between them; which was to be proved.

Cor. The volume of the frustum of any pyramid is equal to the sum of the volumes of three pyramids whose common altitude is that of the frustum, and whase bases are the lower base of the frustum, the upper base of the frustum, and a mean proportional between them.

For, let $A B C D E-e$ be a frustum of a pyramid whose vertex is S , and let PQ be a section parallel to the bases, such that distance from S is a mean proportional between the distances from S to the two bases of the frustum. Let planes be passed through $S B$, and $S E, S D$, dividing the frustum into triangular frustums; the section
 of each of the triangular frustums is a mean proportional between its bases (P. III., C. 4). Now the sum of the triangular frustums is equal to the sum of three sets of pyramids, whose altitude is that of the given frustum. The sum of the bases of the first set is the lower base of the frustum, the sum of the bases of the second set is the upper base of the frustum, and the sum of the bases of the third set is a mean proportional between these bases. Hence, the sum of the partial frustums, that is, the given frustum, is equal to the sum of three pyramids having the same altitude as the given frustum, and whose bases are the two bases of the frustum and a mean proportional between them.

PROPOSITION XIX. THEOREM.

Similar triangular prisms are to each other as the cubes of their homologous edges.
Let CBD-P, $c b d-p$, be two similar triangular prisms, and let $\mathrm{BC}, b c$, be any two homologous edges: then is the prism CBD-P to the prism $c b d-p$, as $\overline{\mathrm{BC}}^{3}$ to $\overrightarrow{b e}$.

For, the homologous angles B and b are equal, and the faces which bound them are similar (D. 16): hence, these triedral angles may be applied, one to the other, so that the angle chd will coineide with $C B D$, the edge $b a$ with $B A$. In this ease, the prism cbd-p will take the position Bed-p. From A draw $A H$ perpendicular to the
 common base of the prisms: then the plane BAH is perpendicular to the plane of the common base (B. VI., P. XVI). From a, in the plane BAH , draw $a h$ perpendicular to BH : then $a h$ is also perpendicular to the base $B D C$ (B. VI, P. XVII.) ; and AH, ah, are the altitudes of the two prisms.

Since the bases CBD, cbd, are similar, we have (B. IV., P. XXY.),
base CBD : base cbd :: $\overline{\mathrm{CB}}^{2}: \overline{c b}^{2}$.
Now, because of the similar triangles $\mathrm{ABH}, a \mathrm{~B} h$, and of the similar parallelograms $A C$, $a c$, we have,
hence, multiplying these proportions term by term, we have,
base $\mathrm{CBD} \times \mathrm{AH}:$ base $c b d \times a h: \overline{\mathrm{CB}}$: $: \overline{c b}^{3}$.

But, base $C B D \times A H$ is equal to the volume of the prism CDB-A, and base cbd $\times a h$ is equal to the volume of the prism $c b d-p$: hence,

$$
\text { prism CDB-P : prism } c b d-p:: \overline{C B}^{3}: \overline{c b}^{3}
$$

which was to be proved.

Cor. 1. Any two similar prisms are to each other as the cubes of their homologous edges.

For, since the prisms are similar, their bases are similar polygons (D. 16) ; and these similar polygons may each be divided into the same number of similar triangles, similarly placed (B. IV., P. XXVI.) ; therefore, each prism may be divided into the same number of triangular prisms, having their faces similar and like placed; consequently, the triangular prisms are similar (D. 16). But these triangular prisms are to each other as the cubes of their homologous edges, and being like parts of the polygonal prisms, the polygonal prisms themselves are to each other as the cubes of their homologous edges.

Cor. 2. Similar prisms are to each other as the cubes of their altitudes, or as the cubes of any other homologous lines.

PROPOSITION XX THEOREM.

Similar pyramids are to each other as the cubes of their
homologous edges.
Let $S-A B C D E$, and $S-a b c d e$, be two similar pyramids, so placed that their homologous angles at the yertex shall coincide, and let $A B$ and $a b$ be any two homologous edges: then are the pyramids to each other as the cubes of $A B$. and $a b$.
For, the face $S A B$, being similar to Sab, the edge $A B$ is parallel to the edge $a b$, and the face SBC being similar to $S b c$, the edge BC is parallel to $b c$; hence, the planes of the bases are parallel (B. VI., P. XIIL).

Draw SO perpendicular to the base $A B C D E$; it will also be perpendicular to the base abcde. Let it pierce that plane at the point o; then $S O$ is to So, as $S A$ is to $S a(\mathrm{P} . I I)$), or as $A B$ is to $a b$; hence,

have (B. IV., P. XXVII.),

GENERAL FORMULAS.

If we denote the volume of any prism by V, its base by B, and its altitude by H, we shall have (P. XIV.),

$$
\begin{equation*}
\mathrm{V}=\mathrm{B} \times \mathrm{H} \tag{1.}
\end{equation*}
$$

If we denote the volume of any pyramid by V, its base by B, and its altitude by H, we have (P . XVII.),

$$
\begin{equation*}
V=B \times \frac{1}{3} H \tag{2.}
\end{equation*}
$$

If we denote the volume of the frustum of any pyramid by V, its lower base by B, its upper base by b, and its altitude by H, we shall have (P, XVHI, C.),

$$
\begin{equation*}
V=(B+b+\sqrt{B \times b}) \times \frac{1}{3} H \tag{3.}
\end{equation*}
$$

REGULAR POLYEDRONS

A Regular Polymdron is one whose faces are all equal regular polygons, and whose polyedral angles are equal, each to each.

There are five regular polyedrons, namely :

1. The Tritamdron, or regular pyramid-a polyedron bounded by four equal equilateral triangles.
2. The Hexaedron, or cube-a polyedron bounded by six equal squares.
3. The OotaEdron-a polyedron bounded by eight equal equilateral triangles.
4. The DodEcaEDRON-a polyedron bounded by twelve equal and regular pentagons.
5. The Icosamdron-a polyedron bounded by twenty equal equilateral triangles.

In the Tetraedron, the triangles are grouped about the polyedral angles in sets of three, in the Octaedron they are grouped in sets of four, and in the Icosaedron they are grouped in sets of five Now, a greater number of equilateral triangles ean not be grouped so as to form a salient polyedral angle; for, if they could, the sum of the plane angles formed by the edges would be equal to, or greater than, four right angles, which is impossible (B. VI., P. XX.). In the Hexaedron, the squares are grouped about the polyedral angles in sets of three. Now, a greater number of squares can not be grouped so as to form a salient polyedral angle, for the same reason as before.
In the Dodecaedron, the regular pentagons are grouped about the polyedral angles in sets of three, and for the same reason as before, they can not be grouped in any greater number so as to form a salient polyedral angle.

Furthermore, no other regular polygons can be grouped so as to form a salient polyedral angle; therefore,

Only five regular polyedrons can be formed.

CCIÓNTENER

- EXERCISES.

1. What is the convex surface of a right prism whose altitude is 20 feet and whose base is a pentagon each side of which is 15 feet?
2. The altitude of a pyramid is 10 feet and the area of its base 25 square feet; find the area of a section made by a plane 6 feet from the vertex and parallel to the base.
3. Find the convex surface of a right triangular pyramid, each side of the base being 4 feet and the slant height 12 feet.
4. A right pyramid whose altitude is 8 feet and whose base is a square each side of which is 4 feet, is cut by a plane parallel to the base and 2 feet from the vertex; required the convex surface of the frustum included between the base and the cutting plane.
5. The three concurrent edges of a rectangular parallelopipedon are 4,6 , and 8 feet; find the length of the diagonal.
6. Of two rectangular parallelopipedons having equal bases, the altitude of the first is 12 feet and its volume is 275 cubic feet; the altitude of the second is 8 feetfind its volume.
7. Two rectangular parallelopipedons having equal altitudes are respectively 80° and 45 cubic feet in volume, and the area of the base of the first is 12 square feet; find the base of the second and the altitude of both.
is an equilateral triangle of a triangular prism whose base is an equilateral triangle of whieh the altitude is 3 feet, the altitude of the prism being 8 feet.
8. The volumes of two pyramids having equal altitudes are respectively 60 and 115 cubic yards and the base of the smaller is 8 square yards; find the base of the larger.
9. Given a pyramid whose volume is 512 cubic feet and altitude 8 feet; find the volume of a similar pyramid whose altitude is 12 feet, and find so the area of the base of each.
10. Find the volume of the frustum of a right triangular pyramid with each side of the lower base 6 feet and each side of the upper base 4 feet, the altitude being 5 feet.
11. Find the volume of the pyramid of which the frustum given in the last example is a frustum.
[Find the radii of the inscribed cireles of the upper and lower bases (B. IV, P, VI., C. 2) ; then the altitude of the pyramid, slant height, and the two radii form two similar triangles from which the altitude may be found.]
12. Given two similar prisms; the base of the first contains 30 square yards and its altitude is 8 yards; the altitude of the second prism is 6 yards-find its volume and the area of its base.
13. A pyramid, whose base is a regular pentagon of which the apothem is 3.5 feet, contains 129 cubic feet; find the volume of a similar pyramid, the apothem of whose base is 4 feet.
14. Show that the four diagonals of a parallelopipedon bisect each other in a common point.

L
16. Show that the two lines joining the points of the opposite faces of a parallelopipedon, in which the diagonals of those faces intersect, bisect each other at the point in which the diagonals of the parallelopipedon intersect.
17. Shaw that two regular polyedrons of the same kind are similar. R OUB
18. Show that the surfaces of any two similar polyedrons are to each other as the squares of any tivo homologous edges

BOOK VIII.

THE CYLINDER, THE CONE, AND THE SPHERE.

DEFINITIONS.

1. A Cylinder is a volume which may be generated by a rectangle revolving about one of its sides as an axis.

Thus, if the rectangle $A B C D$ be turned about the side $A B$, as an axis, it will generate the cylinder $F G C Q-P$.

The fixed line $A B$ is called the axis of the cylinder; the curved surface generated by the side CD, opposite the axis, is called the convex surface of the cylinder; the equal circles FGCQ, and EHDP, generated by the remaining sides $B C$ and $A D$, are called bases of the cylinder; and the perpendicular distance between the planes of the bases is
 called the altitude of the cylinder.

The line DC, which generates the convex surface, is, in any position, called an element of the surface; the elements are all perpendicular to the planes of the bases, and any one of them is equal to the altitude of the cylinder.

Any line of the generating rectangle $A B C D$, as IK, which is perpendicular to the axis, will generate a circle whose plane is perpendicular to the axis, and which is equal to either base: hence, any section of a cylinder by a plane perpendicular to the axis, is a circle equal to either base. Any section, FCDE, made by a plane through the axis, is a rectangle double the generating rectangle.
10. Given a pyramid whose volume is 512 cubic feet and altitude 8 feet; find the volume of a similar pyramid whose altitude is 12 feet, and find so the area of the base of each.
11. Find the volume of the frustum of a right triangular pyramid with each side of the lower base 6 feet and each side of the upper base 4 feet, the altitude being 5 feet.
12. Find the volume of the pyramid of which the frustum given in the last example is a frustum.
[Find the radii of the inscribed cireles of the upper and lower bases (B. IV, P, VI., C. 2) ; then the altitude of the pyramid, slant height, and the two radii form two similar triangles from which the altitude may be found.]
13. Given two similar prisms; the base of the first contains 30 square yards and its altitude is 8 yards; the altitude of the second prism is 6 yards-find its volume and the area of its base.
14. A pyramid, whose base is a regular pentagon of which the apothem is 3.5 feet, contains 129 cubic feet; find the volume of a similar pyramid, the apothem of whose base is 4 feet.
15. Show that the four diagonals of a parallelopipedon bisect each other in a common point.

L
16. Show that the two lines joining the points of the opposite faces of a parallelopipedon, in which the diagonals of those faces intersect, bisect each other at the point in which the diagonals of the parallelopipedon intersect.
17. Shaw that two regular polyedrons of the same kind are similar. R OUB
18. Show that the surfaces of any two similar polyedrons are to each other as the squares of any tivo homologous edges

BOOK VIII.

THE CYLINDER, THE CONE, AND THE SPHERE.

DEFINITIONS.

1. A Cylinder is a volume which may be generated by a rectangle revolving about one of its sides as an axis.

Thus, if the rectangle $A B C D$ be turned about the side $A B$, as an axis, it will generate the cylinder $F G C Q-P$.

The fixed line $A B$ is called the axis of the cylinder; the curved surface generated by the side CD, opposite the axis, is called the convex surface of the cylinder; the equal circles FGCQ, and EHDP, generated by the remaining sides $B C$ and $A D$, are called bases of the cylinder; and the perpendicular distance between the planes of the bases is
 called the altitude of the cylinder.

The line DC, which generates the convex surface, is, in any position, called an element of the surface; the elements are all perpendicular to the planes of the bases, and any one of them is equal to the altitude of the cylinder.

Any line of the generating rectangle $A B C D$, as IK, which is perpendicular to the axis, will generate a circle whose plane is perpendicular to the axis, and which is equal to either base: hence, any section of a cylinder by a plane perpendicular to the axis, is a circle equal to either base. Any section, FCDE, made by a plane through the axis, is a rectangle double the generating rectangle.
2. Stmilar Cylinders are those which may be generated by similar rectangles revolving about homologous sides.

The axes of similar cylinders are proportional to the radii of their bases (B. IV., D. 1) ; they are also proportional to any other homologous lines of the cylinders.
3. A prism is said to be inseribed in a cylinder, when its bases are inscribed in the bases of the cylinder. In this case, the cylinder is said to be circumseribed about the prism.
The lateral edges of the inscribed prism are elements of the surface of the circumscribing cylinder.
4. A prism is said to be circumseribed
about a cylinder, when its bases are circumscribed about the bases of the cylinder. In this case, the cylinder is said to be inscribed in the prism.

The straight lines which join the corresponding points of contact in the upper and lower bases, are common to the sur-
face of the cylinder and to the lateral
faces of the prism, and they are the only lines which are common. The lateral faces of the prism are tangent to the cylinder along these lines, which are then called
 elements of contact.

Cone is a volume which may be generated by a

 ight-angled triangle revolving about one of the sides adjacent to the right angle, as an axis.Thus, if the triangle $S A B$, right-angled at A, be turned about the side $S A$, as an axis, it will generate the cone S-CDBE.

The fixed line SA, is called the axis of the cone; the curved surface generated by the hypothenuse SB, is called the convex surface of the cone; the circle generated by the side AB , is called the base of the cone; and the point S, is called the vertex of the cone; the distance from the vertex to any point in
 the circumference of the base, is called the slant height of the cone; and the perpendicular distance from the vertex to the plane of the base, is called the altitude of the cone.

The line SB, which generates the convex surface, is, in any position, called an element of the surface; the elements are all equal, and any one is equal to the slant height; the axis is equal to the altitude.
height; the axis is equal to the altitude.
Any line of the generating triangle SAB , as GH , which is perpendicular to the axis, generates a circle whose plane is perpendicular to the axis: hence, any section of a cone by a plane perpendicular to the axis, is a circle. Any section SBC, made by a plane through the axis, is an isosceles triangle, double the generating triangle.
A
6. A Truncated Cone is that portion of a cone included between the base and any plane which cuts the cone.
When the cutting plane is parallel to the plane of the hase, the truncated cone is called a Frustum of a Cone, and the intersection of the culting plane with the cone is called the upper base of the frustum; the base of the cone is called the lower base of the frustum.

If the trapezoid $H G A B$, right-angled at A and G, be revolved about $A G$, as an axis, it will generate a frustum of a cone, whose bases are ECDB and FKH, whose altitude is $A G$, and whose slant
 height is $B H$.
7. Simmar Cones are those which may be generated by similar right-angled triangles revolving about homologous sides.

The axes of similar cones are proportional to the radii of their bases (B. IV., D. 1) ; they are also proportional to any other homologous lines of the cones.

8. A pyramid is said to be in-
scribed in a cone, when its base is inscribed in the base of the cone, and when its vertex coincides with that of the cone.

The lateral edges of the inscribed pyramid are elements of the surface of the circumscribing cone.
9. A pyramid is said to be circumscribed about a cone hen its base is circumscribed about the base of the cone and when its vertex coincides with that of the cone.

In this case, the cone is inscribed in the pyramid.
The lateral faces of the circumseribing pyramid are tangent to the surface of the inseribed cone, along lines which are called elements of contact.
10. A frustum of a pyramid is inseribed in a frustum of a cone, when its bases are inscribed in the bases of the frustum of the cone.

The lateral edges of the inscribed frustum of a pyramid are elements of the surface of the circumscribing frustum of a cone.
11. A frustum of a pyramid is circumscribed about a frustum of a cone, when its bases are circumscribed about those of the frustum of the cone.

Its lateral faces are tangent to the surface of the frustum of the cone, along lines which are called elements of contact.
12. A Sphere is a volume bounded by a surface, every point of which is equally distant from a point within called the centre. A sphere may be generated by a semicircle revolving about its diameter as an axis.
13. A Radius of a sphere is a straight line drawn from the centre to any point of the surface. A DiAmeter is a straight line through the centre, limited by the surface.

All the radii of a sphere are equal: the diameters are also equal, and each is double the radius.
14. A Spherical Sector is a volume generated by a sector of the semicircle that generates the sphere. The surface generated by the are of the circular sector is the base of the sector. The other bounding surfaces are either surfaces of cones or planes. The spherical sector generated by $A C B$ is bounded by the surface generated by the are $A B$ and the conic surface generated by $B C$; the sector generated by $B C D$ is bounded by the surface generated by $B D$ and the conic surfaces generated by $B C$ and $D C$, and so on. S
15. A plane is Tangent to a Sphere when it touches it in a single point.
16. A ZONE is a portion of the surface of a sphere included between two parallel planes. The bounding lines
of the sections are called bases of the zone, and the distance between the planes is called the altitude of the zone. If one of the planes is tangent to the sphere, the zone has but one base.
17. A Spherical Segment is a portion of a sphere included between two parallel planes. The sections made by the planes are called bases of the segment, and the distance between them is called the altitude of the segment. If one of the planes is tangent to the sphere, the segment has but one base.
of its base multiplied by the altitude. For, inscribe in the cylinder a prism whose base is a regular polygon. The convex surface of this prism is equal to the perimeter of its base multiplied by its altitude (B. VII., P. I.), whatever may be the number of sides of its base. But, when the number of sides is infinite (B. V., P. X., Sch.), the convex surface of the prism coincides with that of the cylinder, the perimeter
of the base of the prism coincides with the circumference of the base of the cylinder, and the altitude of the prism is the same as that of the cylinder: hence, the convex surface of the cylinder is equal to the circumference of its base multiplied by its altitude; which was to be proved.

Cor. The convex surfaces of cylinders having equal altitudes are to each other as the circumferences of their bases.

PROPOSITION II. THEOREM.

The volume of a cylinder is equal to the product of its base and altitude.

Let ABD be the base of a cylinder whose altitude is H; then is its volume equal to the product of its base and altitude.

For, inscribe in it a prism whose base is a regular polygon. The volume of this prism is equal to the product of its base and altitude (B. VII., P. XIV.), whatever may be the number of sides of its base. But, when the number of sides is infinite, the prism coincides with the cylinder, the base of the prism with the base of the cylinder, and the altitude of the prism is the same as that of the cylinder: hence, the volume of the cylinder is equal to the product of its base and altitude; which was to be proved.

Cor. 1. Cylinders are to each other as the products of their bases and altitudes; cylinders having equal bases are to each other as their altitudes; cylinders having equal altitudes are to each other as their bases.

Cor. 2. Similar cylinders are to each other as the cubes of their altitudes, or as the cubes of the radii of their bases.

For, the bases are as the squares of their radii (B. V., P. XIII.), and the eylinders being similar, these radii are to each other as their altitudes (D. 2): hence, the bases are as the squares of the altitudes; therefore, the bases multiplied by the altitudes, or the cylinders themselves, are as the cubes of the altitudes.

PROPOSITION III. THEOREM.
Q
The convex surface of a cone is equat to the circumference \square of its base multiplied by half its slant height.

Let S-ACD be a cone whose base is ACD, and whose slant height is $S A$: then is its convex surface equal to the circumference of its base multiplied by half its slant height.

For, inscribe in it a right pyramid. The convex surface of this pyramid is equal to the perimeter of its base multiplied by half its slant height (B. VII., P. IV.), whatever may be the number of sides of its base. But when the number of sides of the base is infinite, the convex surface coincides with that of the cone, the perimeter of the base of the pyramid coincides with the circumference of the base of the cone, and the slant height of the pyramid is equal to the slant height of the cone: hence, the convex surface of the cone is equal to the circumference of its base multiplied by half its slant height; which was to be proved.

PROPOSITION IV. THEOREM

The convex surface of a frustum of a cone is equal to half the sum of the circumferences of its two bases multiplied by its slant height.

Let BIA-D be a frustum of a cone, BIA and EGD its two bases, and EB its slant height: then is its convex surface equal to half the sum of the circumferences of its two bases multiplied by its slant height.

For, inseribe in it the frustum of a right pyramid. The convex surface of this frustum is equal to half the sum of the perimeters of its bases, multiplied by the slant height (B. VH., P. IV., C.), whatever may be the number of its lateral faces. But
 when the number of these faces is infinite, the convex surface of the frustum of the pyramid coincides with that of the cone, the perimeters of its bases coincide with the circumferences of the bases of the frustum of the cone, and its slant height is equal to that of the cone: hence, the convex surface of the frustum of a cone is equal to half the sum of the circumferences of its bases multiplied by its slant height; which was to be proved.

Scholium. From the extremities A and D, and from the middle point l, of a line $A D$, let the lines $A O, D C$, and $l K$ be drawn perpendicular to the axis $O C$: then will $l \mathcal{K}$ be equal to half the sum of $A O$ and DC. For, draw $D d$ and $l i$, perpendicular to $A O$: then, because $A l$ is equal to $l \mathrm{D}$, we shall have Ai equal to id (B. IV., P. XV.), and consequently to $l s$; that is, $A O$ exceeds $l \mathrm{~K}$ as much as $l \mathrm{~K}$
exceeds $D C$: hence, $l K$ is equal to the half sum of $A O$ and DC.

Now, if the line $A D$ be revolved about $O C$, as an axis it will generate the surface of a frustum of a cone whose slant height is $A D$; the point l will generate a circumference which is equal to half the sum of the circumferences generated by A and D : hence, if a straight line is revolved about amother straight line, it generates a surface whose measure is equal to the product of the generatins line and the circumference senerated by its middle point.
This proposition holds true when the line $A D$ meets $O C$, and also when $A D$ is parallel to $O C$. 1 PROPOSTION y. THE

PROPOSTTION y.

THEOREM

The volume of a cone is equal to its base multiplied by
Let $A B D E$ be the base of a cone whose vertex is S, and whose altitude is So; then is its volume equal to the base multiplied by one third of the altitude

For, inscribe in the cone. a right pyramid. The volume of this pyramid is equal to its base multiplied by one third of its altitude (B. VII, P. XVII), whatever may be the number of its lateral faces. But, when the number of lateral faces is infinite, the pyramid coincides with the cone, the base of the pyramid coincides with that of the cone, and their altitudes are equal: hence, the volume of a cone is equal to its base multiplied by one third of its altitude; which was to be proved.

Cor. 1. A cone is equal to one third of a cylinder having an equal base and an equal altitude.

Cor. 2. Cones are to each other as the products of their bases and altitudes. Cones having equal bases are to each other as their altitudes. Cones having equal altitudes are to each other as their bases.

PROPOSITION VI. THEOREM.

The volume of a frustum of a cone is equal to the sum of the volumes of three cones, having for a common altitude the altitude of the frustum, and for bases the lower base of the frustum, the upper base of the frus tum, and a mean proportional between the bases.
Let BIA be the lower base of a frustum of a cone, EGD its upper base, and $O C$ its altitude: then is its volume equal to the sum of three cones whose common altitude is OC, and whose bases are the lower base, the upper base, and a mean proportional between them.

For, inscribe a frustum of a right pyramid in the given frustum. The volume of this frustum is equal to the sum of the volumes of three pyramids whose common altitude is that of the frustum, and whose bases are the lower base, the upper base, and a mean proportional between the
 two (B. VII, P. XVIII), whatever may
be the number of lateral faces. But when the number of faces is infinite, the frustum of the pyramid coincides with the frustum of the cone, its bases with the bases of the cone, the three pyramids become cones, and their
altitudes are equal to that of the frustum: hence, the volume of the frustum of a cone is equal to the sum of the volumes of three cones whose common altitude is that of the frustum, and whose bases are the lower base of the frustum, the upper base of the frustum, and a mean proportional between them; which was to be proved.

THEOREM.
Any section of a sphere made by a plane is a circle.
[T) Let C be the centre of a sphere, CA one of its radii, and $A M B$ any section made by a plane: then is this section a circle.
For, draw a radius CO perpendicular to the cutting plane, and let it pi its base the plane of the section at 0 . I vis be radii of the sphere to any two points $\mathrm{M}, \mathrm{M}^{\prime}$, of the eurve which bounds the section, and join these points with O : then, because the radii $\mathrm{CM}, \mathrm{CM}^{\prime}$ are

equal, the points M, M^{\prime}, will be equally
distant from 0 (B. VI., P. V., C.) ; hence, the section is a circle ; which was to be proved.

Cor. 1. When the cutting plane passes through the centre of the sphere, the radius of the section is equal to that of the sphere; when the cutting plane does not pass through the centre of the sphere, the radius of the section will be less than that of the sphere.

A section whose plane passes through the centre of the sphere, is called a great circle of the sphere. A section whose plane does not pass through the centre of the sphere,
is called a small circle of the sphere. All great circles of the same, or of equal spheres, are equal.

Cor. 2. Any great circle divides the sphere, and also the surface of the sphere, into equal parts. For, the parts may be so placed as to coincide, otherwise there would be some points of the surface unequally distant from the centre, which is impossible.

Cor. 3. The centre of a sphere, and the centre of any small circle of that sphere, are in a straight line perpendicular to the plane of the circle.

Cor. 4. The square of the radius of any small circle is equal to the square of the radius of the sphere diminished by the square of the distance from the centre of the sphere to the plane of the circle (B. IV., P. XI, C. 1): hence, circles which are equally distant from the centre, are equal; and of two circles which are unequally distant from the centre, that one is the less whose plane is at the greater distance from the centre.

Cor. 5. The circumference of a great circle may always be made to pass through any two points on the surface of a sphere. For, a plane can always be passed through these points and the centre of the sphere (B. VI, P. II.), and its section will be a great circle. If the two points are the extremities of a diameter, an infinite number of planes can be passed through them and the centre of the sphere (B. VI., P. L., S.); in this case, an infinite number of great circles can be made to pass through the two points.

Cor. 6. The bases of a zone are the circumferences of circles (D. 16), and the bases of a segment of a sphere are circles.

PROPOSITION VIII. THEOREM

Any plane perpendicular to a radius of a sphere at its outer extremity. is tangent to the sphere at that point.
Let C be the centre of a sphere, CA any radius, and FAG a plane perpendicular to $C A$ at. A : then is the plane FAG tangent to the sphere at A.
For, from any other point of the plane, as M, draw the line $M C$: then because $C A$ is a perpendicular to the plane, and CM an oblique line, CM is greater than CA (B. VI., P. V.) : hence, the point M lies without the sphere. The plane FAG, therefore, touches the sphere at A, and consequently is tangent to it at that point; which was to be proved.

Scholium. It may be shown, by a course of reasoning analogous to that employed in Book III., Propositions XI., XII., XIII., and XIV., that two spheres may have any one of six positions with respect to each other, viz.

1. When the distance between their centres is greater than the sum of their radii, they are external one to the other: 2°. When the distance is equal to the sum of their radii, they are tangent externally:
3°. When this distance is less than the sum, and greater than the difference of their radii, they intersect each other:
4°. When this distance is equal to the difference of their radii, they are tangent internally:
5°. When this distance is less than the difference of their radii, one is wholly within the other:
6°. When this distance is equal to zero, they have a common centre, or are concentric.

DEFINITIONS.

1°. If a semi-circumference is divided into equal ares, the chords of these arcs form half of the perimeter of a regular inscribed polygon; this half perimeter is called a regular semi-perimeter. The figure bounded by the regular semi-perimeter and the diameter of the semi-circum ference is called a regular semi-polygon. The diameter itself is called the axis of the semi-polygon.
2°. If lines are drawn from the extremities of any side perpendicular to the axis, the intercepted portion of the axis is called the projection of that side.

The broken line $A B C D G P$ is a regular semi-perimeter; the figure bounded by it and the diameter AP, is a regular semipolygon, AP is its axis, $H K$ is the projection of the side $B C$, and the axis, $A P$, is the projection of the entire semi-perimeter. p

PROPOSITION IX. LEMMA

If a regular semi-polyson is revolved about its axis, the surface generated by the semi-perimeter is equal to the axis multiplied by the circumference of the inscribed circle.

Let $A B C D E F$ be a regular semi-polygon, $A F$ its axis, and $O N$ its apothem: then is the surface generated by the regular semi-perimeter equal to $\mathrm{AF} \times$ circ. ON .

From the extremities of any side, as DE, draw DI and EH perpendicular to AF ; draw also NM perpendicular to AF, and-EK perpendicular to DI. Now, the surface generated by $D E$ is equal to $D E \times c i r e, N M$ (P. IV, S.). But,
because the triangles EDK and ONM are similar. (B. IV., P. XXI.), we have,
$D E$: $E K$ or $\mathrm{IH}:=\mathrm{ON}$: $N M$: : circ. ON : circ. $N M$; whence, 1 NOM

$$
\mathrm{DE} \times \text { circ. } \mathrm{NM}=\mathrm{IH}_{2} \times \text { circ } \mathrm{ON} \text {; }
$$

that is, the surface generated by any side is equal to the projection of that side multiplied by the circumference of the inscribed circle: hence, the surface generated by the entire semi-perimeter is equal to the sum of the projections of its sides, or the axis, multiplied by the circumference of the inscribed circle; which was to be proved.

Cor. The surface generated by any portion of the perimeter, as CDE, is equal to its projection PH , multiplied by the circumference of the inscribed circle.

The surface of a sphere is equal to its diameter multiplied by the circumference of a great circle.

Let $A B C D E$ be a semi-eircumference, 0 its centre, and $A E$ its diameter: then is the surface of the sphere generated by revolving the semi-circumference about AE , equal to $\mathrm{AE} \times$ circ. OE .

For, the semi-cireumference may be re garded as a regular semi-perimeter with an infinite number of sides, whose axis is $A E$,
 and the radius of whose inscribed circle is $O E$: hence (P. IX.), the surface generated by it is equal to $\mathrm{AE} \times$ circ. OE ; which was to be proved.

Cor. 1. The circumference of a great circle is equal to $2 \pi \mathrm{OE}$ (B. V., P. XVI) : hence, the area of the surface of the sphere is equal to $20 E \times 2 \pi \mathrm{OE}$, or to $4 \pi \overline{\mathrm{OE}}$, that is, the area of the surface of a sphere is equal to four great cireles.

Cor. 2. The surface generated by any are of the semicircle, as $B C$, is a zone, whose altitude is equal to the projection of that arc on the diameter. But, the arc BC is a portion of a semi-perimeter having an infinite number of sides, and the radius of whose inscribed circle is equal to that of the sphere: hence (P. IX., C.), the surface of a zone is equal to its altitude multiplied by the circumference of a great circle of the sphere.

Cor. 3. Zones, on the same sphere, or on equal spheres, are to each other as their altitudes.

If a triangle and a rectangle having the same base and equal altitudes, are revolved about the common base, the volume generated by the triangle is one third of that generated by the rectangle.

Let $A B C$ be a triangle, and $E F B C$ a rectangle, having the same base $B C$, and an equal altitude $A D$, and let them both be revolved about $B C$; then is the volume generated by $A B C$ one third of that generated by $E F B C$.

For, the cone generated by the right-angled triangle $A D B$, is equal to one third of the cylinder generated by the rectangle ADBF (P. V., C. 1), and the cone generated
by the triangle $A D C$, is equal to one third of the cylinder generated by the rectangle $A D C E$.

When $A D$ falls within the triangle, the sum of the cones generated by $A D B$ and $A D C$, is equal to the volume generated by the triangle $A B C$; and the sum of the cylinders generated by $A D B F$ and $A D C E$ is equal to the volume generated by the rectangle EFBC. When $A D$ falls without the triangle, the difference of the cones generated by $A D B$ and $A D C$, is equal to the volume generated by $A B C$; and the difference of the eylinders generated by $A D B F$ and $A D C E$, is equal to the volume generated by EFBC : hence, in either case, the volume generated by the triangle $A B C$, is equal to one third of the
 volume generated by the rectangle EFBC; which was to be proved.

Cor. The volume of the cylinder generated by EFBC, is equal to the product of its base and altitude, or to $\pi \overline{A D}^{2} \times \mathrm{BC}$: hence, the volume generated by the triangle $A B C$, is equal to $\frac{1}{3} \pi \overline{A D}^{2} \times B C$.

\int P \int PROPOSITION XII LHMMA. \square ?

If an isosceles triangle is revolved about a straight line passing through its vertex, the volume generated is equal to the surface generated by the base multiplied by one third of the altitude.
Let $C A B$ be an isosceles triangle, C its vertex, $A B$ its base, CI its altitude, and let it be revolved about the line $C D$, as an axis: then is the volume generated equal to surf. $\mathrm{AB} \times \frac{1}{3} \mathrm{Cl}$. There may be three cases:

1. Suppose the base, when produced, to meet the axis at D; draw AM, IK, and BN , perpendicular to $C D$, and $B O$ parallel to DC. Now, the volume generated by $C A B$ is equal to the differ-
 ence of the volumes generated by $C A D$ and $C B D$; hence (P . XI., C.),
vol. $\mathrm{CAB}=\frac{1}{3} \pi \overline{\mathrm{AM}}^{2} \times \mathrm{CD}-\frac{1}{3} \pi \overline{\mathrm{BN}}^{2} \times \mathrm{CD}=\frac{1}{3} \pi\left(\overline{\mathrm{AM}}^{2}-\overline{\mathrm{BN}}^{2}\right) \times \mathrm{CD}$.
But, $\overline{\mathrm{AM}}^{2}-\overline{\mathrm{BN}}^{2}$ is equal to $(\mathrm{AM}+\mathrm{BN})(\mathrm{AM}-\mathrm{BN}) \quad(\mathrm{B} . \mathrm{IV}$. P. X.) ; and because $A M+B N$ is equal to 21 K (P. IV., S.), and $A M-B N$ to $A O$, we have,

But, the right-angled triangles $A O B$ and $C D 1$ are similar (B. IV., P. XVIII.) ; hence,

$$
A O: A B: C I: C D ; \quad \text { or, } \quad A O \times C D=A B \times C I
$$

Substituting, and changing the order of the factors, we have,

$$
\text { vol. } \mathrm{CAB}=\mathrm{AB} \times 2 \pi \mathrm{IK} \times \frac{1}{3} \mathrm{CI} \text {. }
$$

But, $A B \times 2 \pi I K=$ the surface generated by $A B$; hence, vol. $\mathrm{CAB}=$ surf. $\mathrm{AB} \times \frac{1}{\frac{1}{3}} \mathrm{Cl}$.
2°. Suppose the axis to coincide with one of the equal sides. \square

Draw $C I$ perpendicular to $A B$, and $A M$ and $I K$, perpendicular to $C B$. Then, vol. $C A B=\frac{1}{3} \pi \overline{A M}^{2} \times C B=\frac{1}{3} \pi A M \times A M \times C B$.
 But, since $A M B$ and $C I B$ are similar,
$A M: A B: C I: C B$; whence, $A M \times C B=A B \times C l$.
Also, $\mathrm{AM}=2 \mathrm{IK}$; hence, by substitution, we have,

$$
\text { vol. } \mathrm{CAB}=\mathrm{AB} \times 2 \pi \mathrm{IK} \times \neq \mathrm{Cl}=\text { surf. } \mathrm{AB} \times+\mathrm{Cl} .
$$

3°. Suppose the base to be parallel to the axis. Draw $A M$ and $B N$ perpendicular to the axis. The volume generated by $C A B$, is equal to the cylinder generated by the rectangle $A B N M$, diminished by the sum of the cones generated by the triangles
 CAM and CBN ; hence,

$$
\text { vol. } \mathrm{CAB}=\pi \mathrm{Cl}^{2} \times \mathrm{AB}-\frac{1}{3} \pi \mathrm{Cl}^{2} \times \mathrm{AI}-\frac{1}{3} \pi \mathrm{Cl}^{2} \times \mathrm{IB} \text {. }
$$

But the sum of $A 1$ and $I B$ is equal to $A B$: hence, we have, by reducing, and ehanging the order of the factors,

$$
\text { vol. } \mathrm{CAB}=\mathrm{AB} \times 2 \pi \mathrm{Cl} \times \frac{1}{3} \mathrm{Cl} \text {. }
$$

But $A B \times 2 \pi C l$ is equal to the surface generated by $A B$ consequently,

$$
\text { vol. } \mathrm{CAB}=\text { surf. } \mathrm{AB} \times \frac{1}{3} \mathrm{Cl} \text {; }
$$

hence, in all cases, the volume generated $Y \mathrm{~V} C A B$ is equal to surf. $\mathrm{AB} \times \frac{1}{3} \mathrm{Cl}$; which was to be proved.

PROPOSITION XII. LEMMA.
If a resular semi-polyson is revolved about its axis, the volume generated is equal to the surface generated by
the semi-perimeter multiplied by one third of the apothem.
Let FBDG be a regular semi-polygon, FG its axis, ol its apothem, and let the semi-polygon be revolved about FG: then is the volume generated equal to surf. FBDG $\times \frac{1}{3} \mathrm{OI}$.

For, draw lines from the vertices to the centre 0 . These lines will divide the semi-polygon into isosceles triangles whose bases are sides of the semi-polygon, and whose altitudes are each equal to OI .

Now, the sum of the volumes generated by these triangles is equal to the volume generated by the semipolygon. But, the volume generated by any triangle, as $O A B$, is equal to surf. $A B \times 101$ (P . XII.) ; hence, the volume generated by the semi-polygon is equal to surf. FBDG $\times \frac{101}{3}$. which was to be proved.

Cor. The volume generated by a portion of the semipolygon, $O A B C$, limited by $O C, O A$, drawn to vertices is equal to surf. $A B C \times \frac{1}{3} O$.

PROPOSITION XIV. THEOREM.

The volume of a sphere is equat to its surface multiplied by one third of its radius.
Let ACE be a semicircle, AE its diameter, O its centre, and let the semicircle be revolved about $A E$: then is the volume generated equal to the surface generated by the semi-circumference multiplied by one third of the radius $O A$.

For, the semicircle may be regarded as a regular semi-polygon having an infinite number of sides, whose semi-perimeter coincides with the semi-circumference, and whose apothem is equal to the radius: hence (P. XIII), the volume generated by the semi circle is equal to the surface generated by the semicircumference multiplied by one thitd of the radius: which was to be proved.

Cor. 1. Any portion of the semicircle, as OBC, bounded by two radii, will generate a volume equal to the surface generated by the are $B C$ multiplied by one third of the
radius (P. XIII, C.). But this portion of the semicircle is a circular sector, the volume which it generates is a spherical sector, and the surface generated by the are is a zone: hence, the volume of a spherical seetor is equal to the zone which forms its base multiplied by one third of the radius.

Cor.2. If we denote the volume of a sphere by V, and its radius by R, the area of the surface will be equal to $4 \pi R^{2}$ (P. X., C. 1), and the volume of the sphere will be equal to $4 \pi R^{2} \times \frac{1}{3} R$; consequently, we have,
(T) $N=\frac{4}{3} \pi R^{3}$.

Again, if we denote the diameter of the sphere by D, we shall have R equal to $\frac{1}{2} D$, and R^{3} equal to $\frac{1}{8} D^{3}$, and consequently,

$$
V=\frac{1}{6} \pi D^{3}
$$

hence, the volumes of spheres are to each other as the cubes of their radii, or as the cubes of their diameters.

Scholium. If the figure EBDF, formed by drawing lines from the extremities of the are $B D$ perpendieular to $C A$, be revolved about $C A$, as an axis, it will generate a segment of a sphere whose volume may be found by adding to the spherical sector generated by CDB, the cone generated by CBE, and subtracting
 from their sum the cone generated by $C D F$. If the arc $B D$ is so taken that the points E and F fall on opposite sides of the centre C, the latter cone must be added, instead of subtracted. The area of the zone $B D$ is equal to $2 \pi C D \times E F(P . X$. C. 2) ; hence,
segment $\mathrm{EBDF}=\frac{1}{2} \pi\left(2 \overline{\mathrm{CD}}^{2} \times \mathrm{EF}+\overline{\mathrm{BE}}^{2} \times \mathrm{CE} \mp \overline{\mathrm{DF}}^{2} \times \mathrm{CF}\right)$

PROPOSITION XV. THEOREM.

The surface of a sphere is to the entire surface of the circumscribed cylinder, including its bases, as 2 is to 3 ; and the volumes are to each other in the same ratio.

Let PMQ be a semicircle, and PADQ a rectangle, whose sides $P A$ and $Q D$ are tangent to the semicircle at P and Q, and whose side $A D$, is tangent to the semicircle at M. If the semicircle and the rectangle be revolved about $P Q$, as an axis, the former will generate a sphere, and the latter a circumscribed cylinder
1°. The surface of the sphere is to the entire surface f the cylinder, as 2 is to 3 .
For, the surface of the sphere is equal to four great circles (P. X., C. 1) the convex surface of the cylinder is equal to the circumference of its base multiplied by its altitude (P. I.); that is, it is equal to the circumference of a great circle multiplied by its diam-
eter, or to four great circles (B. V.

P. XV.) ; adding to this the two bases,
each of which is equal to a great cirele, we have the entire surface of the cylinder equal to six great circles: hence, the surface of the sphere is to the entire surface of the circumscribed cylinder, as 4 is to 6 , or as 2 is to 3 ; which was to be proved.
2°. The volume of the sphere is to the cylinder as 2 is to 3 .

For, the volume of the sphere is equal to $\frac{4}{3} \pi R^{3}$ (P. XIV., C. 2) ; the volume of the cylinder is equal to its base multiplied by its altitude (P. II.) ; that is, it is equal to
$-R^{2} \times 2 R$, or to $\frac{6}{3} \pi R^{3}$: hence, the volume of the sphere is to that of the cylinder as 4 is to 6 , or as 2 is to 3 ; which was to be proved.

Cor. The surface of a sphere is to the entire surface of a circumscribed cylinder, as the volume of the sphere is to the volume of the eylinder.

Scholium. Any polyedron which is circumseribed about a sphere, that is, whose faces are all tangent to the sphere, may be regarded as made up of pyramids, whose bases are the faces of the polyedron, whose common vertex is at the centre of the sphere, and each of whose altitudes is equal to the radius of the sphere. But, the volume of any one of these pyramids is equal to its base multiplied by one third of its altitude: hence, the volume of a circumscribed polyedron is equal to its surface multiplied by one third of the radius of the inscribed sphere.

Now, because the volume of the sphere is also equal to its surface multiplied by one third of its radius, it follows that the volume of a sphere is to the volume of any circumscribed polyedron, as the surface of the sphere is to the surface of the polyedron.

Polyedrons circumscribed about the same, or about equal spheres, are proportional to their surfaces.

GENERAL FORMUL,AS.

If we denote the convex surface of a eylinder by S, its volume by V, the radius of its base by R, and its altitude by H, we have (P. I., II.),

$$
\begin{array}{llllllllll}
\mathrm{S}=2 \pi \mathrm{R} \times \mathrm{H} & \cdot & \cdot & \cdot & \cdot & . & \cdot & \cdot & (1 .) \tag{1.}\\
\mathrm{V}=\pi \mathrm{R}^{2} \times H & . & . & \cdot & \cdot & \cdot & \cdot & \cdot & (2 .)
\end{array}
$$

BOOK VIII.

If we denote the convex surface of a cone by S, its volume by V , the radius of its base by R , its altitude by H , and its slant height by H^{\prime}, we have (P. III., V.),

$$
\begin{align*}
& \mathrm{S}=\pi \mathrm{R} \times \mathrm{H}^{\prime} \\
& \mathrm{V}=\pi \mathrm{R}^{2} \times \frac{1}{3} \mathrm{H} \tag{3.}
\end{align*}
$$

If we denote the convex surface of a frustum of a cone by S, its volume by V, the radius of its lower base by R, the radius of its upper base by R^{\prime}, its altitude by H, and its slant height by H^{\prime}, we have (P. IV., VI.),

$$
\begin{aligned}
& S=\pi\left(R+R^{\prime}\right) \times H^{\prime} \cdot . \quad . \quad . \quad . \quad . \quad(5 .) \\
& V=\frac{1}{3} \pi\left(R^{2}+R^{\prime 2}+R \times R^{\prime}\right)^{\circ} \times H(6 .)
\end{aligned}
$$

If we
by V, its , and its diameter by D, we have (P. X., C. 1, XIV., C. 2, XIV., C. 1),

$$
\begin{aligned}
& S=4 \pi R^{2}
\end{aligned}
$$

If we denote the radius of a sphere by R, the area of any zone of the sphere by S, its altitude by H, and the volume of the corresponding spherical sector by V, we shall have (P. X., C. 2, XIV., C. 1)

If we denote the volume of the corresponding spherical segment by V, its altitude by H, the radius of its upper base by R^{\prime}, the radius of its lower base by $R^{\prime \prime}$, the distance of its upper base from the centre by H^{\prime}, and of its lower base from the centre by $H^{\prime \prime}$, we shall have (P. XIV., S.) :

$$
V=\frac{1}{3} \pi\left(2 R^{2} \times H+R^{2} H^{\prime} \mp R^{\prime \prime 2} \times H^{\prime \prime}\right) \quad \text {. (11.) }
$$

EXERCISES

1. The radius of the base of a cylinder is 2 feet, and its altitude 6 feet; find its entire surface, including the bases.
2. The volume of a cylinder, of which the radius of the base is 10 feet, is $\mathbf{6 2 8 3 . 2}$ cubic feet; find the volume of a similar cylinder of which the diameter of the base is 16 feet, and find also the altitude of each cylinder.
3. Two similar cones have the radii of the bases equal, respectively, to $4+\frac{1}{2}$ a feet, and the convex surface of the first is 667.59 square feet; find the convex surface of the second and the volume of both.
4. A line 12 feet long is revolved about another line as an axis; the distance of one extremity of the line from the axis is 4 feet and of the other extremity 6 feet; find the area of the surface generated.
5. Find the convex surface and the volume of the frustum of a cone the altitude of which is 6 feet, the radius of the lower base being 4 feet and that of the upper base 2 feet.
6. Find the surface and the volume of the cone of which the frustum in the preceding example is a frustum. 7. A small circle, the radius of which is 4 feet, is feet from the centre of a sphere; find the circumference of a great cirele of the same sphere
7. The radius of a sphere is, 10 feet; find the area of a small circle distant from the centre 6 feet.
8. Find the area of the surface generated by the semiperimeter of a regular semihexagon revolving about its axis, the radius of the inscribed circle being 5.2 feet and the axis 12 feet
9. The area of the surface generated by the semi-
perimeter of a regular semioctagon revolved about an axis is 178.2426 square feet, and the radius of the inscribed circle is 3.62 feet; find the axis
10. An isosceles triangle, whose base is 8 feet and altitude 9 feet, is revolved about a line passing through its vertex and parallel to its base; how many cubic feet in the volume generated?
11. The altitude of a zone is 3 feet and the radius of the sphere is 5 feet; find the area of the zone and the volume of the corresponding spherical sector
12. Find the surface and the volume of a sphere whose radius is 4 feet.
13. The radius of a sphere is 5 feet; how many cubic feet in a spherical segment whose altitude is 7 feet and the distance of whose lower base from the centre of the sphere is 3 feet?
14. A cone such that the diameter of its base is equal to its slant height is circumscribed about a sphere; show that the surface of the sphere is to the entire surface of the cone, including its base, as 4 is to 9 , and that the volumes are in the same ratio.
15. The radius of a sphere is 6 feet; find the entire surface and the volume of the circumscribing cylinder.
16. A cone, with the diameter of the base and the slant height equal, is circumscribed about a sphere whose radius is 5 feet; find the entire surface and the volume of the cone.
17. A cone, with the diameter of the base and the slant height equal, and a cylinder, are circumscribed about a sphere; what relation exists between the entire surfaces and the volumes of the cylinder, the cone and the sphere?
18. The edge of a regular octaedron is 10 feet, and the radius of the inscribed sphere is 4.08 feet; find the volume of the octaedron.
19. A Spherical Pyramid is a portion of a sphere

BOOK IX.

SPHERTGAT CEOMETET

DEEMNITIONS.

1. A Spherical Angle is the amount of divergence of the ares of two great circles of a sphere meeting at a point. The ares are called sides of the angle, and their point of intersection is called the vertex of the angle.

The measure of a spherical angle is the same as that of the diedral angle included between the planes of its sides. Spherical angles may be acute, right, or obtuse.
2. A Spherical Polygon is a portion of the surface of a sphere bounded by arcs of three or more great circles. The bounding ares are called sides of the polygon, and the points in which the sides meet are called vertices of the polygon. Each side is taken less than a semi-cireumference.
Spherical polygons are classified in the same manner as plane polygons.
3. A Spherical Tringle is a spherical polygon of three sides.

Spherical triangles are classified in the same manner as plane triangles.
4. A LUNE is a portion of the surface of a sphere bounded by semi-circumferences of two great circles.
5. A SPhertcal Weder is a portion of a sphere bounded by a lune and two semicircles which intersect in a diameter of the sphere.
bounded by a spherical polygon and sectors of circles whose common centre is the centre of the sphere.

The spherical polygon is called the base of the pyramid, and the centre of the sphere is called the vertex of he pyramid.
7. A Pole of A Circle is a point, on the surface of the sphere, equally distant from all the points of the circumference of the circle.
8. A Diagonal of a spherical polygon is an are of a great circle joining the vertices of any two angles which are not consecutive.

PROPOSITION I. THEOREM.

Any side of a spherical triangle is less than the sum of the two others.

Let $A B C$ be a spherical triangle situated on a sphere whose centre is 0 : then is any side, as $A B$, less than the sum of the sides $A C$ and $B C$

For, draw the radii $O A, O B$, and $O C$: these radii form the edges of a triedral angle whose vertex is 0 , and the plane angles included between them are measured by the $\operatorname{arcs} A B, A C$, and $B C$ (B. III, P. XVII, Sch.). But any plane angle, as $A O B$, is less than the sum of the plane angles $A O C$ and $B O C$ (B. VI., P. XIX.): hence, the arc $A B$ is less than the sum of the ares AC and. BC ; which was to be proved.

Cor. 1. Any side $A B$, of a spherical polygon $A B C D E$, is less than the sum of all the other sides.

For, draw the diagonals $A C$ and $A D$, dividing the polygon into triangles. The are $A B$ is less than the sum of $A C$ and $B C$, the are $A C$ is less than the sum of $A D$ and $D C$, and the arc $A D$ is less than the sum of $D E$ and $E A$; hence, $A B$ is less than the sum of $B C, C D, D E$, and $E A$.
Cor. 2. The arc of a small circle, on the surface of a sphere, is greater than the arc of a great circle joining its two extremities.
[TFor, divide the are of the small circle into equal parts, and through the two extremities of each part suppose the are of a great circle to be drawn. The sum of these ares, whatever may be their number, will be greater than the are of the great cirele joining the given points (C. 1). But when this number is infinite, each arc of the great circle will coincide with the corresponding arc of the small circle, and their sum is equal to the entire are of the small circle, which is, consequently, greater than the are of the great circle

Cor. 3. The shortest distance from one point to another on the surface of a sphere, is measured on the arc of a great circle joining them.

PROPOSITION II. THEOREM

 The sum of the sides of a spherical polyson is less than the circumference of a sreat circle.Let $A B C D E$ be a spherical polygon situated on a sphere whose centre is 0 : then is the sum of its sides less than the circumference of a great circle

For, draw the radii $O A, O B, O C, O D$, and $O E$: these radii form the edges of a polyedral angle whose vertex is at O, and the angles included between them are measured by the ares $A B, B C, C D, D E$, and $E A$. But the sum of these angles is less than four right angles (B. VI., P. XX.): hence, the sum of the ares which measure them is less than the circumference of a great circle; which was to be proved

PROPOSITION III THEOREM

If a diameter of a sphere is drawn perpendicular to the plane of any circle of the sphere, its extremities are poles of that circle.

Let C be the centre of a sphere, FNG any circle of the sphere, and DE a diameter of the sphere perpendicular to the plane of FNG: then are its extremities, D and E, poles of the circle FNG.

The diameter DE, being perpendioular to the plane of FNG, must pass through the centre 0 (B. VIII., P. VII., C. 3). If ares of great circles DN, DF DG, \&e., are drawn from D to different points of the circumference FNG, and chords of these arcs are drawn, these chords are equal (B. VI, P. V.), consequently, the ares themselves are equal. But these ares are the shortest lines that can be drawn from the point D to the different
points of the circumference (P. I., C. 3) : hence, the point D is equally distant from all the points of the circumference, and consequently is a pole of the circle (D. 7). In like manner, it may be shown that the point E is also a pole of the circle: hence, both D and E are poles of the circle FNG: which was to be proved.
Cor. 1. Let AMB be a great circle perpendicular to $D E$: then are the angles $D C M, E C M$, \&c., right angles; and consequently, the ares DM, EM, \&c., are each equal to a quadrant (B. III., P. XVII, S.) : hence, the two poles of a great circle are at equal distances from the circumference.

Cor. 2. The two poles of a small circle are at unequal
distances from the circumference, the sum of the distances distances from the circumference, the sum of the distances being equal to a semi-eircumference.
Cor. 3. If any point, as M, in the circumference of a great circle, is joined with either pole by the arc of a great circle, such are is perpendicular to the circumference $A M B$, since its plane passes through $C D$, which is perpendicular to AMB. Conversely: if $M N$ is perpendieular to the are $A M B$, it passes through the poles D and E : for, the plane of $M N$ being perpendicular to $A M B$ and passing through C, contains $C D$, which is perpendioular to the plane AMB (B. VI., P. XVII., C.).

Cor. 4. If the distance of a point D from each of the points A and M, in the circumference of a great circle, is equal to a quadrant, the point D is the pole of the are $A M$ (the arc $A M$ is supposed to be either less or greater than a semi-circumference).

For, let C be the centre of the sphere, and draw the radii $C D, C A, C M$. Since the angles $A C D, M C D$, are right angles, the line $C D$ is perpendicular to the two straight lines $C A, C M$: it is, therefore, perpendicular to their plane
(B. VI., P. IV.) : hence, the point D is the pole of the are $A M$.

Scholium. The properties of these poles enable us to describe ares of a circle on the surface of a sphere, with the same facility as on a plane surface. For, by turning the are DF about the point D, the extremity F will de seribe the small cirele FNG; and by turning the quadrant DFA round the point D, its extremity A will describe an arc of a great circle.

PROPOSITLON IV. THEOREM.

The angle formed by ares of two great cireles, is equat to that formed by the tangents to these arcs at their point of intersection, and is measured by the are of a great circle described from the vertex as a pole, and limited by the sides, produced if necessary.
Let the angle BAC be
formed by the two arcs $A B$
$A C$: then is it equal to the angle FAG formed by the tangents $A F, A G$, and is measured by the are $D E$ of a great circle, described about
A as a pole.
For, the tangent $A F$, drawn
in the plane of the are $A B$,
is perpendicular to the ra-
dius $A O$; and the tangent

G, drawn in the plane of 1)
the arc $A C$, is perpendicular to the same radius $A O$: hence, the angle $F A G$ is equal to the angle contained by the planes ABDH, ACEH (B. VI., D. 4); which is that of the ares $A B$, $A C$. Now, if the ares $A D$ and $A E$ are both quadrants, the
lines $O D, O E$, are perpendicular to $O A$, and the angle DOE is equal to the angle of the planes $A B D H, A C E H$: hence, the arc $D E$ is the measure of the angle contained by these planes, or of the angle CAB; which was to be proved.

Cor. 1. The angles of spherical triangles may be compared by means of the arcs of great circles described from their vertices as poles, and included between their sides.
A spherical angle can always be constructed equal to a given spherical angle.

Cor. 2. Vertical angles, such as $A C P$ and $B C N$, are equal; for either of them is the angle formed by the two planes $A C B, P C N$. When two ares ACB, PCN, intersect, the sum of two adjacent angles, as $A C P, P C B$, is equal to two right angles.

PROPOSITION V. THEOREM.

If from the vertices of the angles of a spherical triangle, as poles, ares be described forming a second sphericat triangle, the vertices of the angles of this second triangle are respectively poles of the sides of the first. \square

From the vertices A, B, C, as poles, let the arcs EF, FD, $D E$, be described, forming the triangle DFE: then are the vertices D, E, and F, respectively poles of the sides $B C, A C$, $A B$.

For, the point A being the

pole of the arc $E F$, the distance $A E$ is a quadrant; the point C being the pole of the are $D E$, the distance $C E$ is likewise a quadrant: hence, the point E is at a quadrant's distance from the points A and C : hence, it is the pole of the arc $A C$ (P. III, C. 4). It may be shown, in like manner, that D is the pole of the are $B C$, and F that of the are $A B$; which was to be proved.

Cor. The triangle $A B C$, may be described by means of DEF, as DEF is described by means of ABC. Triangles so related that any vertex of either is the pole of the side opposite it in the other, are called polar triangles.

Any angle,

PROPOSITION VI. THEOREM.

in one of two polar triangles, is measured by a semi-circumference, minus the side lying opposite to it in the other triangle.
Let $A B C$, and EFD, be any two polar triangles on a sphere whose centre is 0 : then is any angle in either triangle measured by a semi-circumference, minus the side lying opposite to it in the other triangle.

For, produce the sides $A B$, $A C$, if necessary, till they meet $E F$ in G and H. The point A being the pole of the arc GH, the angle A is measured by that arc (P. IV.). But, since E is the pole of $A H$, the are $E H$ is a quadrant; and since F is the pole of AG, FG is a quad-
rant: hence, the sum of the ares EH and GF is equal to a semi-circumference. But, the sum of the arcs EH and

GF is equal to the sum of the ares $E F$ and $G H$: hence, the arc GH, which measures the angle A, is equal to a semi-circumference minus the are $E F$. In like manner, it may be shown, that any other angle, in either triangle, is measured by a semi-circumference minus the side lying opposite to it in the other triangle; which was to be proved
Cor. 1. Beside the triangle DEF, three other triangles, polar to $A B C$, may be formed by the intersection of the ares DE, EF, DF, prolonged. But the proposition is applicable only to the central triangle, $A B C$, which is distinguished from the three others by the circumstance, that the vertices A and D lie on the same side of $B C ; B$ and E, on the same side of $A C$; C and F, on the same side of $A B$. The polar triangles $A B C$ and DEF are called supplemental triangles, any part of either being the supplement of the part opposite it in the other.

Cor. 2. Ares of great eircles, drawn from corresponding vertices of two supplemental polar triangles perpendicular to the respective sides opposite, are supplements of each other. For, from A draw the arc of a great cirele, AN, perpendieular to $B C$; it must, when prolonged, pass through D, the pole of $B C$, and must also, when prolonged to P, be perpendicular to EF (P. III, C. 3): DN and AP being quadrants (P. III. C. 1), DP and AN are supplements of each other.

PROPOSITION VII. THEOREM.

If from the vertices of any two angles of a spherical triangle, as poles, arcs of circles are described passing through the vertex of the third angle; and if from the second point in which these arcs intersect, arcs of great circles are drawn to the vertices, used as poles, the parts of the triangle thus formed are equal to those of the given triangle, each to each.

Let $A B C$ be a spherical triangle situated on a sphere whose centre is O, CED and CFD arcs of circles described about B and A as poles, and let $D A$ and $D B$ be arcs of great circles: then are the parts of the triangle $A B D$ equal to those of the given triangle $A B C$, each to each.
For, by construction, the side $A D$ is equal to $A C$, the side $B D$ is equal to $B C$, and the side $A B$ is common: hence, the sides are equal, each to each. Draw the radii $O A, O B, O C$, and $O D$. The radii $O A, O B$, and $O C$, form the
edges of a triedral angle whose vertex is 0 ; and the radii OA, OB, and OD , form the edges of a second triedral angle whose vertex is also at 0 ; and the plane angles formed by these edges are equal, each to each: hence, the planes of the equal angles are equally inclined to each other (B. VI., P. XXI.). But, the angles made by these planes are equal to the corresponding spherical angles; consequently, the angle $B A D$ is equal to $B A C$, the angle $A B D$ to $A B C$, and the angle $A D B$ to $A C B$: hence, the parts of the triangle $A B D$ are equal to the parts of the triangle $A C B$, each to each; which was to be proved.

Scholium 1. The triangles $A B C$ and $A B D$, are not, in general, capable of superposition, but their parts are symmetrically disposed with respect to AB. Triangles which have all the parts of the one equal to all the parts of the other, each to each, but are not capable of superposition, are called symmetricat triangles.

Schotium 2. Lf symmetrical triangles are isosceles, they can be so placed as to coincide throughout: hence, they are equal in area.

PROPOSITION VIII. THEOREM.

If two spherical triangles, on the same, or on equal spheres, have two sides and the inctuded angle of the one equal, to two sides and the included angle of the other, each to each, the remaining parts are equat, each to each.

Let the spherical triangles $A B C$ and $E F G$, on the sphere whose centre is 0 , have the side $E F$ equal to $A B$, the side EG equal to $A C$, and the angle $F E G$ equal to $B A C$: then is the side $F G$ equal to $B C$, the angle $E F G$ to $A B C$, and the angle EGF to ACB.

For, draw the radii OE, OF, OG, OA, OB, and OC , forming the triedral angles $O-E F G$ and $O-A B C$. Since the sides EF and EG are equal, respectively, to the sides $A B$
 and $A C$, the plane angles $E O F$ and EOG are equal, respectively, to the plane angles $A O B$ and $A O C$; and as the spherical angles FEG and $B A C$ are equal, the inclination of the faces EOF and EOG of the triedral angle $O-E F G$, is equal to the inclination of the faces $A Q B$ and $A O C$ of the triedral angle $O-A B C$; therefore (B. VI, P. XXI., C.), the angle FOG is equal to BOC, and the
side $F G$ equals the side $B C$: again, since the angle $E O F$ is equal to $A O B, F O G$ to $B O C$, and $G O E$ to $C O A$, the planes of the equal angles are equally inclined to each other (B. VI., P. XXI.), and, consequently (D. 1), the angle EFG is equal to $A B C$, and $E G F$ to $A C B$-hence, the remaining parts of the triangles are equal, each to each; which was to be proved.

PROPOSITION IX. THEOREM.

If two spherical triangles on the same, or on equat spheres, have two angles and the included side of the one equal to two angles and the included side of the other, each to each, the remaining.parts are equat, each to each.
Let the spherical triangles $A B C$ and EFG, on the sphere whose centre is O, have the angle $F E G$ equal to $B A C$, the angle EFG equal to $A B C$, and the side $E F$ equal to $A B$: then is the side $E G$ equal to $A C$, the side $F G$ to $B C$, and the angle $F G E$ to $B C A$.

For, draw radii, as before, form-
ing the triedral angles $O-E F G$ and
$O-A B C$. Since the side $E F$ is equal
to $A B$, the plane angle EOF is equal to $A O B$; as the angle $F E G$ is equal to $B A C$, and $E F G$ to $A B C$, the inclination of the face EOF, of the triedral angle O-EFG, to each of the faces EOG and FOG, is equal, respectively, to the inclina-
tion of the face $A O B$, of the triedral angle $O-A B C$, to each of the faces $A O C$ and $B O C$, and hence (B. VI, P. XXI, S. 2), the plane angles EOG and GOF are equal, respectively, to $A O C$ and $C O B$; therefore, the sides $E G$ and $G F$ are equal to the sides $A C$ and $C B$, and the angle $F G E$ to BCA; which was to be proved.

PROPOSITION X. THEOREM.

If two spherical triangles on the same, or on equal spheres, have their sides equat, each to each, their angles are equal, each to each, the equal angles lying opposite the equal sides.
Let the spherical triangles EFG and $A B C$, on the sphere whose centre is 0 , have the side $E F$ equal to $A B, E G$ equal to $A C$, and $F G$ equal to $B C$: then
the angle FEG is equal to $B A C$, $E F G$ to $A B C$, and EGF to $A C B$, and the equal angles lie opposite the equal sides.

For, draw the radii, as before; forming the triedral angles O-EFG and $O-A B C$. Because the sides of the triangles are respectively equal, the plane angle EOF is equal to $A O B, F O G$ to $B O C$, and GOE to COA. Hence (B. YI., P. XXI.), the planes of the equal angles are equally inclined to each other, and, consequently, the spherical angle EFG is equal to spherical angle $A B C, F E G$ to $B A C$, and EGF to $A C B$, the equal angles lying opposite the equal sides; which was to be proved.

PROPOSITION XI. THEOREM.
In any isosceles spherical triangle, the angles opposite the equal-sides are equal; and conversely, if two angles of a spherical triangle are equat, the triangle is isosceles.
1°. Let $A B C$ be a spherical triangle, on a sphere whose centre is O, having the side $A B$ equal to $A C$: then is the angle C equal to the angle B.

For, draw the arc of a great circle from the vertex A, to the middle point D, of the base $B C$: then in the two triangles $A D B$ and $A D C$, we shall have the side $A B$ equal to $A C$, by hypothesis, the side $B D$ equal to $D C$, by construction, and the side AD common; consequently, the triangles have their angles equal, each to each (P. X.) : hence, the
 angle C is equal to the angle B; which was to be proved.
2°. Let $A B C$ be a spherical triangle having the angle C equal to the angle B : then is the side $A B$ equal to the side $A C$, and consequently the triangle is isosceles.

For, suppose that $A B$ and $A C$ are not equal, but that one of them, as $A B$, is the greater. On $A B$ lay off the arc $B E$ equal to $A C$, and draw the arc of a great circle from E to C : then in the triangles $A C B$ and $E B C$, we shall have the side $A C$ equal to $E B$, by construction, the side $B C$ common, and the included angle $A C B$ equal to the included angle EBC, by hypothesis; hence, the remaining parts of the triangles are equal, each to each, and consequently, the angle $E C B$ is equal to the angle $A B C$. But, the angle $A C B$ is equal to $A B C$, by hypothesis, and therefore, the angle $E C B$ is equal to $A C B$, or a part is equal to the whole, which is impossible: hence, the supposition that $A B^{\circ}$ and $A C$ are unequal, is absurd; they are therefore equal, and consequently, the triangle $A B C$ is isosceles; which was to be proved.

Cor. The triangles $A D B$ and $A D C$, having all of their parts equal, each to each, the angle $A D B$ is equal to $A D C$, and the angle $D A B$ is equal to DAC; that is, if an arc ff a great circle is drawn from the vertex of an isosceles
spherical triangle to the midalle of its base, it is perpendicutar to the base, and bisects the vertical angle of the triangle.

PROPOSITION XIL THEOREM.

In any spherical triangle, the greater side is opposite the greater angle, and conversely, the greater angle is opposite the greater side.
1°. Let $A B C$ be a spherical triangle, on a sphere whose centre is O, in which the angle A is greater than the angle B : then is the side $B C$ greater than the side AC.
For, draw the are $A D$, making the angle $B A D$ equal to $A B D$; then is $A D$ equal to $B D$ (P. XI.). But, the sum of $A D$ and $D C$ is greater than $A C$ (P. I.) ; or, putting for $A D$ its equal $B D$, we have the sum of $B D$ and $D C$, or $B C$, greater than $A C$; which was to be proved.
2°. In the triangle $A B C$, let the side $B C$ be greater than $A C$: then is the angle A greater than the angle B.

For, if the angles A and B were equal, the sides BC and $A C$ would be equal; or if the angle A were less than the angle B, the side $B C$ would be less than $A C$, eittrer of which conclusions contradicts the hypothesis, and is impossible: hence, the angle A is greater than the angle B; which was to be proved. CCIONGENER

PROPOSITION XIII. THEOREM

If two triangles on the same, or on equal spheres, are mutually equiangutar, they are atso mutwally equilateral.

Let the spherical triangles A and B be mutually equiangular: then are they also mutually equilateral.

For, let P be the supplemental polar triangle of A, and Q, the supplemental polar triangle of B: then, because the triangles A and B are mutually equiangular, their supplemental triangles P and Q must be mutually equilateral ($\mathrm{P} . \mathrm{VL}$), and consequently mutually equiangular (P. X.). But, the triangles P and Q being mutually equiangular, their supplemental triangles A and B are mutually equilateral (P. VL); which was to be proved.

Scholium. Two plane triangles that are mutually equiangular are not necessarily mutually equilateral ; that is, they may be similar without being equal. Two spherical triangles on the same or on equal spheres can not bo similar without being equal in all respects.

W PROPOSITLON XT. THEOREM.

The sum of the angles of a spherical triangle is less than six right angles, and greater than two right angles.

Let $A B C$ be a spherical triangle, on a sphere whose centre is O, and DEF its supplemental triangle: then is
the sum of the angles A, B, and C, less than six right angles and greater than two.

For, any angle, as A, being measured by a semi-circumference, minus the side EF (P. VL), is less than two right angles: hence, the sum of the three angles is less than six right angles. Again, because the measure of each angle is equal to a semi-cireumference minus the side lying opposite to it, in the supplemental triangle, the measure of the sum of the three angles is equal to three semi-circumferences, minus the sum of the sides of the supplemental triangle DEF. But the latter sum is less than a circumference; consequently, the measure of the sum of the angles A, B, and C, is greater than a semi-circumference, and therefore the sum of the angles is greater than two right angles: hence, the sum of the angles A, B, and C, is less than six right angles and greater than two; which was to be proved.

For, since the arcs $A B$ and $A C$ are perpendicular to $B C$, each must pass through its pole (P. IIL, Cor. 3) : hence, their intersection A is that pole, and consequently, $A B$ and $A C$ are quadrants.

If the angle A is also a right
angle, the triangle $A B C$ is tri-rectangular; each of its angles is a right angle, and its sides are quadrants. Four tri-rectangular triangles make up the surface of a hemisphere, and eight the entire surface of a sphere.

Scholium. The right angle is taken as the unit of measure of spherical angles, and is denoted by 1.

The excess of the sum of the angles of a spherical triangle over two right angles, is called the spherical excess. If we denote the spherical excess by E, and the three angles expressed in terms of the right angle, as a unit, by A, B, and C, we have,

Cor. 1. The sum of the three angles of a spherical triangle is not constant, like that of the angles of a rectilineal triangle, but varies between two right angles and six, without ever reaching either of these limits. Two angles, therefore, do not serve to determine the third.

Cor. 2. A spherical triangle may have two, or even three of its angles right angles; also two, or even three of its angles obtuse.

Cor. 3. If a triangle, $A B C$, is bi-rectangular, that is, has two right angles B and C, the vertex A is the pole of the other side $B C$, and $A B, A C$, will be quadrants.

PROPOSITION XV. THEOREM.

Any lune is to the surface of the sphere, as the are which measures its angle is to the circumference of a.great eircles or, as the angle of the lune is to four right

Let AMBN be a lune, and MON the angle of the lune; then is the area of the lune to the surface of the sphere, as the arc $M N$ is to the circumference of a great circle MNPQ; or, as the angle MON is to four right angles (B. III, P. XVII., C. 2).

- In the first place, suppose the Tare MN and the circumference MNPQ to be commensurable. For example, let them be to each other as 5 is to 48 . Divide the eircumference $M N P Q$ into 48 equal parts, beginning at M; $M N$ will contain five of these parts. Join each point of division with the points A and
B, by a quadrant; there will be formed 96 equal isosceles spherical triangles (P. VII, S. 2) on the surface of the sphere, of which the lune will contain 10 , hence, in this case, the area of the lune is to the surface of the sphere, as 10 is to 96 , or as 5 is to 48 ; that is, as the are MN is to the circumference MNPQ, or as the angle of the lune is to four right angles.

In like manner, the same relation may be shown to exist when the are MN, and the circumference MNPQ are to each other as any other whole numbers.

If the arc $M N$, and the circumference $M N P Q$, are not commensurable, the same relation may be shown to exist
by a course of reasoning entirely analogous to that employed in Book IV, Proposition III. Hence, in all cases, the area of a lune is to the surface of the sphere, as the arc measuring the angle is to the circumference of a great circle; or, as the angle of the lune is to four right angles; which was to be proved.

Cor. 1. Lunes, on the same or on equal spheres, are to each other as their angles.

Cor. 2. If we denote the area of a tri-rectangular triangle by T, the area of a lune by L, and the angle of the lune by A, the right angle being denoted by 1 , we have,
whence,
hence, the area
ectan area of lune is equal to the area of a trirectangular triangle multiplied by twice the angle of the lune.

Scholium. The spherical wedge, whose angle is MON, is to the entire sphere, as the angle of the wedge is to four right angles, as may be shown by a course of reasoning entirely analogous to that just employed: hence, we infer that the volume of a spherical wedge is equal to the lune which forms its base, multiplied by one third of the radius.

\section*{PROPOSITION XVI THEOREM}
 B Symmetrical triangles are equal in area.

Let $A B C$ and DEF be symmetrical triangles on a sphere whose centre is O, the side $D E$ being equal to $A B$, the side $D F$ to $A C$, and the side $E F$ to $B C$: then are the triangles equal in area

For, conceive a small circle to be drawn through A, B, and C, and let P be its pole; draw ares of great circles from P to A, B, and C : these arcs will be equal (D. 7). Draw the arc of a great circle FQ, making the angle $D F Q$ equal to $A C P$, and lay off on it $F Q$ equal to CP ; draw arcs of great circles QD and QE.

In the triangles PAC and FDQ, we have the side $F D$ equal to $A C$, by hypothesis: the side FQ equal
to $P C$, by construction, and the angle $D F Q$ equal to $A C P$, IT by construction : hence ($\mathrm{P} . \mathrm{V} I \mathrm{I}$), the side DQ is equal to $A P$, the angle $F D Q$ to $P A C$, and the angle $F Q D$ to $A P C$. Now, because the triangles QFD and PAC are isosceles and equal in all their parts, they may be placed so as to coincide throughout, the base $F D$ falling on $A C, D Q$ on $C P$, and $F Q$ on $A P$: hence, they are equal in area.
If we take from the angle DFE the angle DFQ, and from the angle $A C B$ the angle $A C P$, the remaining angles QFE and PCB, will be equal. In the triangles $F Q E$ and PCB , we have the side QF equal to PC , by construction, the side FE equal to $B C$, by hypothesis, and the angle QFE equal to PCB, from what has just been shown:
hence, the triangles are equal in all their parts, and being hence, the triangles are equal in all their parts, and being isosceles, they may be placed so as to coincide throughout, the side $Q E$ falling on $P C$, and the side $Q F$ on $P B$; these triangles are, therefore, equal in area. In the triangles $Q D E$ and $P A B$, we have the sides $Q D$, $Q E, P A$, and $P B$, all equal, and the angle $D Q E$ equal to APB, because they are the sums of equal angles: hence, the triangles are equal in all their parts, and because they are isosceles, they may be so placed as to coincide
throughout, the side $Q D$ falling on $P B$, and the side $Q E$ on $P A$; these triangles are, therefore, equal in area.

Hence, the sum of the triangles QFD and QFE, is equal to the sum of the triangles PAC and PBC. If from the former sum we take away the triangle QDE, there will remain the triangle DFE; and if from the latter sum we take away the triangle PAB, there will remain the triangle $A B C$: hence, the triangles $A B C$ and DEF are equal in area.

If the point P falls within the triangle $A B C$, the point Q will fall within the triangle DEF, and we shall have the triangle DEF equal to the sum of the triangles QFD, QFE, and $Q D E$, and the triangle $A B C$ equal to the sum of the equal triangles PAC, PBC, and PAB. Hence, in either case, the triangles $A B C$ and DEF are equal in area; which was to be proved.

PROPOSITION XVIL THEOREM.

If the circumferences of two great civcles intersect on the surface of a hemisphere, the sum of the opposite triangles thus formed is equal to a lune, whose angle is equal to that formed by the circles.
Let the circumferences $A C B$, $P C N$, intersect on the surface of a hemisphere whose centre is 0 : then is the sum of the opposite triangles $A C P, N C B$, equal to the lune whose angle is NCB.

For, produce the ares CB, CN, on the other hemisphere till they
 meet at D. Now, since $A C B$ and
CBD are semi-circumferences, if we take away the common
part $C B$, we shall have $B D$ equal to $A C$. For a like reason, we have $D N$ equal to $C P$, and $B N$ equal to $A P$: hence, the two triangles $A C P, B N D$, have their sides respeetively equal : they are therefore symmetrical; consequently, they are equal in area (P. XVI). But the sum of the triangles $\mathrm{BDN}, \mathrm{BCN}$, is equal to the lune CBDNC, Those angle is NCB: hence, the sum of ACP and NCB is equal to the lune

whose angle is NCB; which was to be proved.
Scholium. It is evident that the two spherical pyramids, which have the triangles ACP, NCB, for bases, are together equal to the spherical wedge whose angle is NCB.

PROPOSITION XVIII. THEOREM.

The area of a spherical triangle is equal to its sphericat excess multiplied by a tri-rectangular triangle.
Let $A B C$ be a spherical triangle on a sphere whose centre is 0 : then is its surface equal to
U For, produce its sides till they $\quad(A+B+C-2) \times T$. meet the great circle DEFG, drawn at pleasure, without the triangle. By the last theorem, the two triangles $A D E, A G H$, are together equal to the lune whose angle is A; but the area of this lune is equal to $2 A \times T$ (P. XV., C. 2) : hence, the sum of the triangles $A D E$ and $A G H$,

is equal to $2 A \times T$. In like manner, it may be shown that the sum of the triangles BFG and BID is equal to $2 B \times T$, and that the sum of the triangles $C I H$ and $C F E$ is equal to $2 C \times T$.

But the sum of these six triangles exceeds the hemisphere, or four times T, by twice the triangle $A B C$. We therefore have,

$$
2 \times \text { area } \mathrm{ABC}=2 \mathrm{~A} \times \mathrm{T}+2 \mathrm{~B} \times \mathrm{T}+2 \mathrm{C} \times \mathrm{T}-4 \mathrm{~T}
$$

or, by reducing and factoring,

$$
\text { area } A B C=(A+B+C-2) \times T
$$

which was to be proved.
Scholium 1. The same relation which exists between the spherical triangle $A B C$, and the tri-rectangular triangle, exists also between the spherical pyramid which has ABC for its base, and the tri-rectangular pyramid. The triedral angle of the pyramid is to the triedral angle of the trirectangular pyramid, as the triangle $A B C$ to the tri-rectangular triangle. From these relations, the following consequences are deduced:
1°. Triangular spherical pyramids are to each other as their bases; and since a polygonal pyramid may always be divided into triangular pyramids, it follows that any two spherical pyramids are to each other as their bases $?$
2°. Polyedral angles at the centre of the same, or of
equal spheres, are to each other as the spherical polygons intercepted by their faces. $C A$

Scholium 2. A triedral angle whose faces are perpendicular to each other, is called a right triedral angle; and if the vertex is at the centre of a sphere, its faces intercept a tri-rectangular triangle. The right triedral
angle is taken as the unit of polyedral angles, and the tri-rectangular spherical triangle is taken as its measure. If the vertex of a polyedral angle is taken as the centre of a sphere, the portion of the surface intercepted by its faces is the measure of the polyedral angle, a tri-rectangular triangle of the same sphere being the unit.

The area of a spherical polygon is equal to its spherical ess multiplied by the tri-rectangular triangle.
et $A B C D E$ be a spherical polygon on a sphere whose centre is 0 , the sum of whose angles is S, and the number of whose sides is n : then is its area equal to

$$
(S-2 n+4) \times T
$$

For, draw the diagonals $A C, A D$, dividing the polygon into spherical triangles: there are $n-2$ such triangles. Now, the area of each tri-
angle is equal to its spherical excess
 into the tri-rectangular triangle:
hence, the sum of the areas of all the triangles, or the area of the pelygon, is equal to the sum of all the angles of the triangles, or the sum of the angles of the polygon diminished by $2(n-2)$, into the tri-rectangular triangle; or, $\left.{ }_{\text {area }} A B C D E=[S-2(n-2)] \times T ; \square\right]$
whence, by reduction,

$$
\text { area } \mathrm{ABCDE}=(\mathrm{S}-2 n+4) \times T \text {; }
$$

GENERAL SCHOLTUM 1

From any point P on a hemisphere, two ares of a great circle, PC and PD, can always be drawn, which shall be perpendicular to the circumference of the base of the hemisphere, and they will in general be unequal. Now, it may be proved, by a course of reasoning analogous to that employed in Book I., Proposition XV. :
1°. That the shorter of the

two ares, PC, is the shortest are that can be drawn from the given point to the circumference; and, therefore, that the longer of the two, PED, is the longest arc that can be drawn from the given point to the circumference:
2°. That two oblique ares, $P Q$ and $P R$, drawn from the same point, to points of the circumference at equal distances from the foot of the perpendicular, are equal
3°. That of two oblique ares, $P R$ and $P S$, drawn from the same point, that is the longer which meets the circumference at the greater distance from the foot of the perpendicular.

GENERAL SCHOLIUM 2.
The arc of a great circle drawn perpendicular to an arc of a second great circle of a sphere, passes through the poles of the second are (P. III, C. 3). The measure of a spherical angle is the are of a great circle included between the sides of the angle and at the distance of a quadrant from its vertex (P. IV.). It is evident, therefore,
that the pole of either side of an acute spherical angle lies without the sides of the angle; and that the pole of either side of an obtuse spherical angle lies within the sides of the angle

$$
\text { Now, let } A \text { be an acute spher- }
$$ ical angle, ST its measure, MN any are of a great circle, other than ST, drawn perpendicular to the side $A Q$, and included between the two sides $A Q$ and $A R$, and P the pole of the side $A Q$: and

Let B be an obtuse spherical angle, $C D$ its measure, $E F$ any arc of a great circle, other than $C D$, drawn perpendicular to the side BH , and ineluded between the two sides BH and $B G$, and 'P' the pole of the side BH : then

It may readily be shown (P. III., C. 1 , and Gen. S. I., 1°),

1°. That ST is longer than $M N$,
and, hence, is the longest arc of a great circle that can be drawn perpendicular to the side $A Q$ and included between the two sides $A Q$ and $A R$: and
2°. That $C D$ is shorter than $E F$, and, hence, is the shortest arc of a great circle that can be drawn perpendicular to the side BH and included between the two sides $B H$ and $B G$.

EXERCISES.

1. The sides of a spherical triangle are $80^{\circ}, 100^{\circ}$, and 110°; find the angles of its supplemental triangle, and the angles of each of its polar triangles.
2. Find the area of a tri-rectangular triangle, on a sphere whose diameter is 8 feet.
3. Find the area of a tri-rectangular triangle, on a sphere whose surface and volume may be expressed by the same number.
4. The angle of a lune, on a sphere whose radius is 5 feet, is 50°; find the area of the lune and the volume of the corresponding wedge.
5. The area of a lune is 33.5104 square feet and the angle of the lune is 60°; find the surface and the volume of the sphere.
6. Show that if two spherical triangles on unequal spheres are mutually equiangular, they are similar.
7. Show how to circumscribe a circle about a given spherical triangle.
8. Show how to inscribe a circle in a given spherical triangle.
9. Show that the intersection of the surfaces of two spheres is a circle, and that the line which joins the centres of two intersecting spheres is perpendicular to the circle in which their surfaces intersect.
10. Show that two spherical pyramids of the same or equal spheres, which have symmetrical triangles for bases, are equal in volume. [Proof analogous to that in P. XVL]
11. The circumferences of two great circles intersect on the surface of a hemisphere whose diameter is 10 feet, and the acute angle formed by them is 40°; find the sum of the opposite triangles thus formed and the sum of the corresponding spherical pyramids.
12. Show that the volume of a triangular spherical pyramid is equal to its base multiplied by one third the radius of the sphere.
13. Show that the volume of any spherical pyramid is equal to its base multiplied by one third the radius of the sphere.
14. Find the volume of a spherical pyramid whose base is a tri-rectangular triangle, the diameter of the sphere being 8 feet. \qquad
15. The angles of a triangle, on a sphere whose radius is 9 feet, are $100^{\circ}, 115^{\circ}$, and 120°; find the area of the triangle and the volume of the corresponding spherical pyramid.
(T) 16. A spherical pyramid, of a sphere whose diameter is -10 feet, has for its base a triangle of which the angles are $60^{\circ}, 80^{\circ}$, and 85°; what is its ratio to a pyramid whose base is a tri-rectangular triangle of the same sphere? 17. The sum of the angles of a regular spherical octagon is 1140°, and the radius of the sphere is 12 feet; find the area of the octagon.
16. The volume of a spherical pyramid, whose base is an equiangular triangle, is 84.8232 cubic feet, and the radius of the sphere is 6 feet; find one of the angles of the base.
17. Given a spherical angle of 40°; what is the number of degrees in the longest are of a great circle that can be drawn perpendicular to either side of the angle and included between the two sides?
18. Given a spherical angle of 115°; what is the number of degrees in the shortest arc of a great circle that can be drawn perpendicular to either side of the angle and included between the two sides?

A P P E N D I X.

GRADED EXERCISES IN PLANE GEOMETRY.

ADDITIONAL DEEINITLONS.

1. The Distance of a point from a line is measured on a perpendicular to that line.
2. The Bisectrix of an angle is a line that divides the angle into two equal parts.
3. A MeDLAN is a line drawn from any vertex of a triangle to the middle of the opposite side.
4. The Promection of a point, on a line, is the foot of a perpendicular drawn from the point to the line.
5. The Projection of one straight line on another, is that part of the second line which is contained between the projections of the two extreme points of the first line, upon the second.

PROPOSITIONS.

I. Theorem.-Show that the bisectrices of two adjacent angles are perpendicular to each other.
II. Theorkm.-Show that the perimeter of any triangle is greater than the sum of the distances from any point
12. Show that the volume of a triangular spherical pyramid is equal to its base multiplied by one third the radius of the sphere.
13. Show that the volume of any spherical pyramid is equal to its base multiplied by one third the radius of the sphere.
14. Find the volume of a spherical pyramid whose base is a tri-rectangular triangle, the diameter of the sphere being 8 feet. \qquad
15. The angles of a triangle, on a sphere whose radius is 9 feet, are $100^{\circ}, 115^{\circ}$, and 120°; find the area of the triangle and the volume of the corresponding spherical pyramid.
(T) 16. A spherical pyramid, of a sphere whose diameter is -10 feet, has for its base a triangle of which the angles are $60^{\circ}, 80^{\circ}$, and 85°; what is its ratio to a pyramid whose base is a tri-rectangular triangle of the same sphere? 17. The sum of the angles of a regular spherical octagon is 1140°, and the radius of the sphere is 12 feet; find the area of the octagon.
18. The volume of a spherical pyramid, whose base is an equiangular triangle, is 84.8232 cubic feet, and the radius of the sphere is 6 feet; find one of the angles of the base.
19. Given a spherical angle of 40°; what is the number of degrees in the longest are of a great circle that can be drawn perpendicular to either side of the angle and included between the two sides?
20. Given a spherical angle of 115°; what is the number of degrees in the shortest arc of a great circle that can be drawn perpendicular to either side of the angle and included between the two sides?

A P P E N D I X.

GRADED EXERCISES IN PLANE GEOMETRY.

ADDITIONAL DEEINITLONS.

1. The Distance of a point from a line is measured on a perpendicular to that line.
2. The Bisectrix of an angle is a line that divides the angle into two equal parts.
3. A MeDLAN is a line drawn from any vertex of a triangle to the middle of the opposite side.
4. The Promection of a point, on a line, is the foot of a perpendicular drawn from the point to the line.
5. The Projection of one straight line on another, is that part of the second line which is contained between the projections of the two extreme points of the first line, upon the second.

PROPOSITIONS.

I. Theorem.-Show that the bisectrices of two adjacent angles are perpendicular to each other.
II. Theorkm.-Show that the perimeter of any triangle is greater than the sum of the distances from any point
within the triangle to its three vertices, and less than twice that sum.
III. Theorem.-Show that the angle between the bisectrices of two consecutive angles of any quadrilateral, is equal to one half the sum of the other two angles.

1V. Theorem. Show that any point in the bisectrix of an angle is equally distant from the sides of the angle.
V. Theorem-If two sides of a triangle are prolonged beyond the third side, show that the bisectrices of this included angle and of the exterior angles all meet in the same point.
VI. Theorem.-Show that the projection of a line on a parallel line, is equal to the line itself; and that the projection of a line on a line to which it is oblique, is less than the line itself.
VII. Theorem.-If a line is drawn through the point of intersection of the diagonals of a parallelogram and limited by the sides of the parallelogram, show that the line is bisected at the point.
VIII. Theorem.-The bisectrices of the four angles of any parallelogram form, by their intersection, a rectangle whose diagonals are parallel to the sides of the given parallelogram.
IX. Thiorem.-Show that the sum of the distances from any point in the base of an isosceles triangle to the two other sides, is equal to the distance from the vertex of either angle at the base to the opposite side.
X. Theorem.-Show that the midale point of the hypoth-
enuse of any right-angled triangle is equally distant from the three vertices of the triangle.
XI. Problem.-Draw two lines that shall divide a given right angle into three equal parts.
XII. Theorem.-Draw a line AP through the vertex A of a triangle $A B F$ and perpendicular to the bisectrix of the angle A; construct a triangle PBF, having its vertex P on $A P$, and its base coinciding with that of the given triangle: then show that the perimeter of PBF is greater than that of ABF.
XIII. Theorem.-Let an altitude of the triangle $A B C$ be drawn from the vertex A; and also the bisectrix of the angle A; then show that their included angle is equal to half the difference of the angles B and C.
XIV. Problem-Given two lines that would meet, if sufficiently prolonged: then draw the bisectrix of their included angle, without finding its vertex.
XV. Problem.-From two points on the same side of a given line, to draw two lines that shall meet each other at some point of the given line, and make equal angles with that line
XVI. Theorem. Show that the sum of the lines drawn to a point of a given line, from two given points, is the least possible when these lines are equally inclined to the given line.
XVII. Problem.-From two given points, on the same side of a given line, draw two lines meeting on the given line and equal to each other.
XVIII. Problem.-Through a given point A, draw a line that shall be equally distant from two given points, B and C.
XIX. Problew.-Through a given point, draw a line cutting the sides of a givent angle and making the interior angles equal to each other. \qquad
XX. Problem. Draw a line PQ parallel to the base BC of a triangle $A B C$, so that $P Q$ shall be equal to the sum of BP and CQ .
XXI. Problem, -In a given isosceles triangle, draw a line that shall cut off a trapezoid whose base is the base of the given triangle and whose three other sides shall be equal to each other.
XXII. THEOREM.-If two opposite sides of a parallelogram are bisected, and lines are drawn from the points of bisection to the vertices of the opposite angles, show that these lines divide the diagonal, which they intersect, into three equal parts.
XXIII. Problem.-Construct a triangle, having given the two angles at the base and the sum of the three sides.
UXIV. Proburin-Construct a triangle, having given one angle, one of its including sides, and the sum of the two other sides.
XXV. Problem.-Construct an equilateral triangle, having given one of its altitudes.
XXVI. Theorem.-Show that the three altitudes of a triangle all intersect in a common point.
XXVII. Theorem.-If one of the acute angles of a rightangled triangle is double the other, show that the hypothenuse is double the smaller side about the right angle.
XXVIII. Theorem.-Let a median be drawn from the vertex of any angle A of a triangle $A B C$: then show that the angle A is a right angle when the median is equal to half the side $B C$, an acute angle when the median is greater than half of $B C$, and an obtuse angle when the median is less than half of BC.
XXIX. Theorem.-Let any quadrilateral be circumscribed about a circle: then show that the sum of two opposite sides is equal to the sum of the other two opposite sides.
XXX. Problem.-Draw a straight line tangent to two given circles.
XXXI. Problem.-Through a given point P, draw a circle that shall be tangent to a given line CB, at a given point B.
XXXII. ThEorem.-Let two circles intersect each other, and through either point of intersection let diameters of the circles be drawn: then show that the other extremities of these diameters and the other point of intersection lie in the same straight line.
XXXIII. Probies.-Through two given points A and B, draw a circle that shall be tangent to a given line CP.
XXXIV. Problem.-Draw a circle that shall be tangent to a given circle C, and also to a given line DP, at a given point P.
XXXV. Problem.-Draw a circle that shall be tangent to a given line TP, and also to a given circle C, at a given point Q .

XXXVI, Probiem.-Draw a circle that shall pass through a given point Q, and be tangent to a given circle C, at a given point P.
XXXVII. Problem.-Draw a circle, with a given radius, that shall be tangent to a given line $D P$, and to a given circle C.
XXXVIII. Problem.-Find a point in the prolongation of any diameter of a given circle, such that a tangent from it to the circumference shall be equal to the diameter of the circle.
XXXIX. Theorem.-Show that when two
two circles intersect each other, the longest common secant that can be drawn through either point of intersection, is parallel to the line joining the centres of the circles.
XL. Problem.-Construct the greatest possible equilateral triangle whose sides shall pass through three given points A, B, and C, not in the same straight line.
XLI. THeorem. Show that the bisectrices of the four angles of any quadrilateral intersect in four points, all of which lie on the circumference of the same circle.
XLII. Theorem.--If two circles touch each other externally, and if two common secants are drawn through the point of contact and terminating in the concave ares, show that the lines joining the extremities of these secants, in the two circles, are parallel.
XLIII. Theorev.-Let an equilateral triangle be inscribed in a circle, and let two of the subtended arcs be bisected by a chord of the circle: then show that the sides of the triangle divide the chord into three equal parts.
XLIV. Problem.-Find a point, within a triangle, such that the angles formed by drawing lines from it to the three vertices of the triangle shall be equal to each other.
XLV. Problem.-Inscribe a circle in a quadrant of a given circle.
.
XLVI. Problem.-Through a given point P, within a given angle $A B C$, draw a circle that shall be tangent to both sides of that angle.
XLVII. Theorem.-Show that the middle points of the sides of any quadrilateral are the vertices of an inscribed parallelogram.
XLVIII. Problem.-Inscribe in a given triangle, a triangle whose sides shall be parallel to the sides of a second given triangle.

XIIX. Problem.-Through a point P, within a given angle, draw a line such that/it and the parts of the sides that are intercepted shall contain a given area.
L. Problem.-Construct a parallelogram whose area and perimeter are respectively equal to the area and perimeter of a given triangle.
LI. Problem.-Inseribe a square in a semicircle; that is, a square two of whose vertices are in the diameter, and the other two in the semi-circumference.
LII. Problem.-Through a given point P draw a line cutting a triangle, so that the sum of the perpendiculars to it, from the two vertices on one side of the line, shall be equal to the perpendicular to it from the vertex, on the other side of the line.

IIII, Theorem.-Show that the line which joins the middle points of two opposite sides of any quadrilateral, bisects the line joining the midale points of the two diagonals.
LIV. Theorem - If from the extremities of one of the poblique sides of a trapezoid, lines are drawn to the middle point of the opposite side, show that the triangle thus formed is equal to one half the given trapezoid.
LV. Problem.-Find a point in the base of a triangle, such that the lines drawn from it, parallel to and limited by the other sides of the triangle, shall be equal to each other.
LVI. Theorem.-Show that the line drawn from the middle of the base of any triangle to the middle of any line of the triangle parallel to the base, will pass through the opposite vertex, if sufficiently produced.
IVII THEOREM. Show that the three medians of any triangle meet in a common point.
LVIII. Theorem.-On the sides $A B$ and $A C$ of any triangle $A B C$, construct any two parallelograms $A B D E$ and ACFG; prolong the sides DE and FG till they meet in H ; draw HA , and on the third side BC of the triangle, construct a parallelogram two of whose sides are parallel and equal to $H A$: then show that the parallelogram on $B C$ is equal to the sum of the parallelograms on $A B$ and $A C$.
LIX. Theorem.-Assuming the principle demonstrated in the last proposition, deduce from it the truth that the square on the hypothenuse of a right-angled triangle is equal to the sum of the squares on the two other sides.
LX. Theorem. - If from the middle of the base of a right-angled triangle, a line is drawn perpendicular to the hypothenuse dividing it into two segments, show that the difference of the squares of these segments is equal to the square of the other side about the right angle.

EXI. Theorem.-If lines are drawn from any point P to the four vertices of a rectangle, show that the sum of the squares of the two lines drawn to the extremities of one diagonal, is equal to the sum of the squares of the two lines drawn to the extremities of the other diagonal.
LXII. Theorem.-Let a line be drawn from the centre of a circle to any point of any chord; then show that the square of this line, plus the rectangle of the segments of the chord, is equal to the square of the radius.
LXIII. Problifm.-Draw a line from the vertex of an? scalene triangle to a point in the base, such that this line shall be a mean proportional between the segments into which it divides the base.
LXIV. Theorem.-Show that the sum of the squares of. the diagonals of any quadrilateral is equal to the sum of. the squares of the four sides of the quadrilateral, diminished by four times the square of the distance between the middle points of the diagonals.
LXV. Problem.-Construct an equilateral triangle equal in area to any given isosceles triangle.
LXVI. Theorkm.-In a triangle ABC, let two lines be drawn from the extremities of the base $B C$, intersecting at any point P on the median through A, and meeting the opposite sides in the points E and D : show that $D E$ is parallel to BC .

APPLIGATION OF IALGEBRA TO GEOMETRY.

To solve a geometrical problem by means of algebra, draw a figure which shall contain all the given and required parts and also such other lines as may be necessary to establish the relations between them; then denote the given parts by leading letters, and the required parts by final letters of the alphabet: next consider the relations between the given and required parts and express these relations by equations, taking care to have as many independent equations as there are parts to be determined (Bourdon, Art. 92). The solution of these equations will give the values of the required parts.

To indicate the method of proceeding, the solution of the first problem is given.

LiXVII. Problem.- In a right-angled triangle ABC, given the base BA and the sum of the hypothenuse and the perpendicular, to find the hypothenuse and the perpendicular.

Solution. Denote BA by c, BC by x, AC by y, and the sum of $B C$ and $A C$ by s.

> Then,
\square $x+y=s \cdot \square \cdot \cdot \cdot(1$. From B. IV., P. XI.,

$$
x^{2}=y^{2}+c^{2}
$$

From (1), we have,

$$
x=s-y
$$

Squaring,
$x^{2}=s^{2}-2 s y+y^{2}$.

Subtracting (2) from (3), $0=s^{2}-2 s y-c^{2}$.
Transposing and dividing, $y=\frac{s^{2}-c^{2}}{2 s}$;
whence,

$$
x=s-\frac{s^{2}-c^{2}}{2 s}=\frac{s^{2}+c^{2}}{2 s}
$$

If $c=3$ and $s=9$, we have $x=5$ and $y=4$.
LXVIII. Problem. - In a right-angled triangle, given the hypothenuse and the sum of the sides about the right angle, to find these sides.
LXIX. Problem.-In a rectangle, given the diagonal and the perpendicular, to find the sides.
LXX. Problem.-Given the base and perpendicular of a triangle, to find the side of an inscribed square.
I.XXI. Problem.-In an equilateral triangle, given the distances from a point within the triangle to each of the three sides, to find one of the equal sides.
LXXII. Problem.-In a right-angled triangle, given the base and the difference between the hypothenuse and the perpendicular, to find the sides.
LXXIII. Problem.-In a right-angled triangle, given the hypothemuse and the difference between the base and the hypothenuse and the diferendicular, to determine the triangle.
perpend
LXXIV. Problem.-Having given the area of a reetangle inscribed in a given triangle, to determine the sides of the rectangle.
I.XXV. Probliem.-In a triangle, having given the ratio of the two sides together with both segments of the base made by a perpendicular from the vertex, to determine the triangle.
LXXVI. Problem.-In a triangle, having given the base, the sum of the two other sides, and the length of a line drawn from the vertex to the middle of the base; to find the sides of the triangle.

○1 O M

I.XXVII. Problem.-In a triangle, having given the two sides about the vertieal angle, together witn the line bisecting that angle and terminating in the base; to find the base.
LXXVIII. Probiem.-To determine a right-angled triangle, having given the lengths of two lines drawn from the vertices of the acute angles to the middle points of [he opposite sides.
LXXIX. Probliem.-To determine a right-angled triangle, having given the perimeter and the radius of the inscribed circle.

LiXXX. Probhem.-To determine a triangle, having given the base, the perpendicular, and the ratio of the two sides.
LXXXI. Problem.-To determine a right-angled triangle, having given the hypothenuse and the side of the inscribed square.
LXXXII. Problifm.-To determine the radii of three equal circles, described within and tangent to a given circle, and also tangent to each other. also tangent to each other. (T) PA
LXXXIII. Problem.-In a right-angled triangle, having given the perimeter and the perpendicular let fall from the right angle on the hypothenuse, to determine the triangle.
LXXXIV. Problem.-To determine a right-angled triangle, having given the hypothenuse and the difference of two lines drawn from the two acute angles to the centre of the inscribed circle.
LXXXV. Problem.-To determine a triangle, having given the base, the perpendicular, and the difference of the two other sides.
LXXXVI. Problem.-To determine a triangle, having given the base, the perpendicular, and the rectangle of the two sides.
LXXXVII. Problem.-To determine a triangle, having given the lengths of three lines drawn from the three angles to the middle of the opposite sides.
LXXXVIII. Problem.-In a triangle, having given the three sides, to find the radius of the inscribed circle.
LXXXIX. Probliam.-To determine a right-angled triangle, having given the side of the inscribed square and the radius of the inscribed circle.
XC. Problem.-To determine a right-angled triangle, having given the hypothenuse and the radius of the in\therefore a $\begin{aligned} & \text { having given } \\ & \text { scribed circle. }\end{aligned}$
\qquad

DE BIBLIOTECAS

of which 2 is the characteristic and .352183 is the man tissa.
4. If, in the equation,

$$
\begin{equation*}
\log (10)^{p}=p \tag{3.}
\end{equation*}
$$

we make p successively equal to $0,1,2,3$, \&c., and also equal to $=0,-1,-2,-3$, \&c., we may form the following

If a number lies between 1 and 10 , its logarithm lies between 0 and 1 , that is, it is equal to 0 plus a decimal; if a number lies between 10 and 100 , its logarithm is equal to 1 plus a decimal; if between 100 and 1000 , its logarithm is equal to 2 plus a decimal; and so on; hence, we have the follawing

Rule.-The characteristic of the logarithm of an entire number is positive, and numerically 1 less than the num
ber of places of figures in the given number.
[If a decimal fraction lies between . 1 and 1, its logarithm lies between -1 and 0 , that is, it is equal to -1 plus a decimal; if a number lies between .01 and .1, its logarithm is equal to -2 plus a decimal; if between .001 and .01 , its logarithm is equal to -3 plus a decimal; and so on: hence, the following

Rutie.-The characteristic of the logarithm of a decimal fraction is negative, and numerically 1 greater than the number of 0 's that immediately follow the decimal point.

The characteristic alone is negative, the mantissa being always positive. This fact is indicated by writing the negative sign over the characteristic: thus, $\overline{2} .371465$, is equivalent to $-2+.371465$.

Nore.-It is to be observed, that the characteristic of he logarithm of a mixed number is the same as that of its entire part. Thus, the characteristic of the logarithm of 725.4275 is the same as the characteristic of the \log arithm of 725 .

GENERAL PRINCIPLES.

5. Let m and n denote any two numbers, and x and y their logarithms. We shall have, from the definition of a logarithm, the following equations,

$$
\begin{align*}
& 10^{x}=m . \tag{4.}\\
& 10^{y}=n .
\end{align*} . \quad . \quad . \quad . \quad . \quad . \quad(5 .)
$$

Multiplying (4) and (5), member by member, we have

$$
10^{x+y}=m n
$$

whence, by the definition,

$$
x+y=\log (m n)
$$

\qquad
That is, the logarithm of the product of two numbers is equat to the sum of the logarithms of the numbers.
6. Dividing (4) by (5), member by member, we have

$$
10^{x-y}=\frac{m}{n}
$$

whence, by the definition, A

$$
\begin{equation*}
x-y=\log \left(\frac{m}{n}\right) \tag{7.}
\end{equation*}
$$

That is, the logarithm of a quotient is equal to the logarithm of the dividend diminished by that of the divisor.
\%. Raising both members of (4) to the power denoted by p, we have,

$$
10^{x p}=m^{p}
$$

whence, by the definition,

$$
\begin{equation*}
x p=\log m^{p} \tag{8.}
\end{equation*}
$$

That is, the logarithm of any power of a number is equal to the logarithm of the number multiplied by the exponent of the power.
8. Extracting the root, indicated by r, of both members of (4), we have
whence, by the definition,

That is, the logarithm of any root of a number is equal to the logarithm of the number divided by the index of the root.

The preceding principles enable us to abbreviate the operations of multiplication and division, by converting them into the simpler ones of addition and subtraction

TABLE OF LOGARITHMS.
9. A Table of Logarithms is a table containing a set of numbers and their logarithms, so arranged that, having given any one of the numbers, we can find its logarithm; or, having the logarithm, we can find the corresponding number.

In the table appended, the complete logarithm is given for all numbers from 1 up to 100 . For other numbers,
the mantissas alone are given; the characteristic may be found by one of the rules of Art. 4.

Before explaining the use of the table, it is to be shown that the mantissa of the logarithm of any number is not changed by multiplying or dividing the number by any exact power of 10 .

Let n represent any number whatever, and 10° any power of $10, p$ being any whole number, either positive or negative. Then, in accordance with the principles of Arts. 5 and 3, we shall have

$$
\log \left(n \times 10^{p}\right)=\log n+\log 10^{p}=p+\log n
$$

but p is, by hypothesis, a whole number: hence, the decimal part of the $\log \left(n \times 10^{p}\right)$ is the same as that of $\log n$; which was to be proved.

Hence, in finding the mantissa of the logarithm of a number, the position of the decimal point may be changed at pleasure. Thus, the mantissa of the logarithm of 456357 , is the same as that of the number 4563.57 ; and the mantissa of the logarithm of 759 is the same as that of 7590 .

IA DE manvrr or vena hme rabie

1. To find the logarithm of a number less than 100.
2. Look on the first page, in the column headed " N ," for the given number; the number opposite is the logarithm required. Thus,

$$
\log 67=1.826075
$$

2°. To find the logarithm of a number between 100 and 10,000 .
11. Find the characteristic by the first rule of Art. 4 To determine the mantissa, find in the column headed "N" the left-hand three figures of the given number; then pass along the horizontal line in which these figures are found, to the column headed by the fourth figure of the given number, and take out the four figures found there; pass back again to the column headed " 0 ," and there will be found in this column, either upon the horizontal line of the first three figures or a few lines above it, a number consisting of six figures, the left-hand two figures of which must be prefixed to the four already taken out. Thus,

$$
\log 8979=3.953228
$$

If, however, any dots are found at the place of the four figures first taken out, or if in returning to the " 0 " column any dots are passed, the two figures to be prefixed are the left-hand two of the six figures of the " 0 " column immediately below. Dots in the number taken out must be replaced by zeros. Thus,

$$
\log 3098=3.491081
$$

[J $\log 2188 \neq 3.340047$. ${ }_{\text {Note.-The above method of finding the mantissa as- }}$ sumes that the given number has four places of figures. If, therefore, the number lies between 100 and 1000 , and has but three places of figures, find the characteristic by the first rule of Art. 4, and then, to find the mantissa, fill out the given number to four places of figures (or conceive it to be so filled out) by annexing 0 (see Art 9), and find the mantissa corresponding to the resulting number, as above.
3°. To find the logarithm of a number greater than 10,000 .
12. Find the characteristic by the first rule of Art. 4.

To find the mantissa: set aside all of the given number except the left-hand four figures, and find the mantissa corresponding to these four, as in Art. 11; multiply the corresponding tabular difference, found in column "D, by the part of the number set aside, and discard as many of the right-hand figures of the product as there are figures in the multiplier, and add the result thus obtained to the mantissa already found. If the left-hand figure of those discarded is 5 or more, increase the number added by 1 .

Note.-It is to be observed that the tabular difference, found in column " D, " is millionths, and not a whole number; and that, therefore, the result to be added "to the mantissa already found" is millionths.

Example-To find the logarithm of 672887 : the characteristic is 5 ; set aside 87 , and the mantissa corresponding to 6728 is .827886 ; the corresponding tabular difference is 65 , which multiplied by 87 , the part of the number set aside, gives 5655 ; as there are two figures in the multiplier, discard the right-hand two figures of [this product, leaving 56 ; but as the left-hand figure of those discarded is 5 , call the result 57 (which is millionths) ; adding this 57 to the mantissa already found, will give .827943 for the required mantissa; hence,

DE matymuman

 this: for the purpose of finding the mantissa, the given number is conceived to be a mixed one, thus, 6728.87, the mantissa not being affected by the position of the decimal point (see Art. 9). The numbers in the column"D" are the differences between the logarithms of two consecutive whole numbers. In the example just given, the mantissa of the logarithm of 6728 is .827886 , and that of 6729 is .827951 , and their difference is 65 millionths; 87 hundredths of this difference is 57 millionths; hence, the mantissa of the logarithm of 6728.87 is found by adding 57 millionths to .827886 . The principle employed is, that the differences of numbers are proportional to the differences of their logarithms, when these differences are small.
4. To find the logarithm of a decimal.
13. Find the characteristic by the second rule of Art. 4. To find the mantissa, drop the decimal point, and consider the decimal a whole number. Find the mantissa of the logarithm of this number as in preceding articles, and it will be the mantissa required. Thus,

$$
\begin{aligned}
\log .0327 & =\overline{2} .514548 \\
\log .378024 & =\overline{1} .577520
\end{aligned}
$$

Note.-To find the logarithm of a mixed number, find the characteristic by the Note, Art. 4; then drop the decimal point and proceed as above.

$\circlearrowleft 5^{\circ}$. To find the number corresponding to a given logarithm.

14. The rule is the reverse of those just given. Look in the table for the mantissa of the given logarithm. If it can not be found, take out the next less mantissa, and also the corresponding number, which set aside. Find the difference between the mantissa taken out and that of the given logarithm; annex any number of 0 's, and divide this result by the corresponding number in the column "D." Annex the quotient to the number set aside, and
then, if the characteristic is positive, point off, from the left hand, a number of places of figures equal to the characteristic plus 1 ; the result will be the number required.

If the characteristic is negative, prefix to the figures obtained a number of 0 's one less than the number of units in the negative characteristic and to the whole prefix a decimal point; the result, a pure decimal, will be the number required.

Examples.

1. Let it be required to find the number corresponding to the logarithm 5.233568 .
The next less mantissa in the table is 233504 ; the corresponding number is 1712 , and the tabular difference is 253 .

Given mantissa, Operation.

Next less mantissa,
233568

- 233504
- 1712

253) $6400000(25296$
\therefore The required number is 171225.296 .
The number corresponding to the logarithm $\overline{2} .233568$ is .0171225 .
-2. What is the number corresponding to the logarithm 2.785407 ? Ans. . 08101084 .
3. What is the number corresponding to the logarithm $\overline{1.846741 ? ~ A n s . ~ .702653 . ~}$

15. From the principle proved in Art. 5, we deduce the following

Rulle.-Find the logarithms of the factors, and take their
sum; then find the number corresponding to the resulting logarithm, and it will be the product required.

Examples.

1. Multiply 23.14 by 5.062

$\therefore 117.1347$, preduct.
2. Find the continued product of $3.902,597.16$, and

Here, the $\overline{2}$ cancels the +2 , and the 1 carried from the decimal part is set down.
3. Find the continued product of $3.586,2.1046$, 0.8372 , and 0.0294 .

Ans. 0.1857615.
 DIVISION BY MEANS OF ФOGARITHMS.
16. From the principle proved in Art. 6, we have the following \qquad DTR
Rule.-Find the - Fiver and subtract the number corresponding to the resulting logarithm, and it will be the quotient required.

Examples.

1. Divide 24163 by 4567 .

		Operation.	
$\log 24163$	\cdot	4.383151	
$\log 4567$	\cdot	$\frac{3.659631}{0.723520}$	$\therefore 5.29078$, quotient.

2. Divide 0.7438 by 12.9476 .

Operation.
$\log 0.7438$. . 1.871456
$\log 12.9476$. . 1.112189
$\overline{2.759267}$
0.057447 , quotient.

Here, 1 taken from $\overline{1}$, gives $\overline{2}$ for a result. The subtraction, as in this case, is always to be performed in the algebraic sense.
3. Divide 37.149 by 523.76 . Ans. 0.0709274 .

The operation of division, particularly when combined with that of multiplication, can often be simplified by using the prineiple of

THE ARITHMETICAL COMPLEMENT.

17. The ArITHMETICAL COMPLEmRNT of a logarithm is the result obtained by subtracting it from 10 . Thus, 8.130456 is the arithmetical complement of 1.869544. The arithmetical complement of a logarithm may be writ-
1) ten out by commencing at the left hand and subtracting each figure from 9. until the Tast significant figure is reached, which must be taken from 10 . The arithmetical complement is denoted by the symbol (a.c.)

Let a and b represent any two logarithms whatever, and $a-b$ their difference. Since we may add 10 to,
and subtract it from, $a-b$, without altering its value, we have,

$$
\begin{equation*}
a-b=a+(10-b)-10 \tag{10.}
\end{equation*}
$$

But $10-b$ is, by defmition, the arithmetical complement of b : hence, Equation (10) shows that the difference between two logarithms is equal to the first, plus the arithmetical complement of the second, minus 10 .

Hence, to divide one number by another by means of the arithmetical complement, we have the following

Rulw.-Find the logarithm of the dividend, and the arithmetical complement of the logarithm of the divisor, add them together, and diminish the sum by 10 ; the number corresponding to the resulting logarithm will be the quotient required.

1. Divide 327.5 by 22.07
2. Divide 327.5 by 22.07 Operation.
$\log 327.5 \cdot 2.515211$
(a. c.) $\log 22.07$
8.656198 $1.171409 \quad \therefore 14.839$, quotient.
The operation of subtracting 10 is performed mentally.
T 2. Divide 37.149 by 523.76. Ans. 0.0709273.
Divide the product of 358884 and 5672 , by the
product of 89721 and 42.056 .

$$
\begin{aligned}
& \log 358884 \text {. . } 5.554954 \\
& \text { (a.c.) } \log 89721 \\
& \because \\
& 5.554954 \\
& 8.376182 \\
& 2.731978 \\
& \left.\frac{Y}{1}\right] \text { TA } \\
& \text { (a. c.) } \log 42.056 \\
& \begin{array}{l}
3.753736 \\
5.047106
\end{array} \\
& \text { TG } A \text { TA }
\end{aligned}
$$

20 is here subtracted, as (a. c.) has been twice used.
4. Solve the proportion,

$$
3976: 7952: 5903: x
$$

Applying logarithms, the logarithm of the 4 th term is equal to the sum of the logarithms of the $2 d$ and $3 d$ terms, minus the logarithm of the 1st: Or, the arithmetical complement of the logarithm of the 1 st term, plus the logarithm of the $2 d$ term, plus the logarithm of the $3 d$ term, minus 10 , is equat to the logarithm of the 4 th term.

Operation.

(a. c.) $\log 3976$. . 6.400554

$\log 7952$	\cdot	3.900476
$\log 5903$	\cdot	3.771073
$\log x$	\cdot	$\cdot \underline{4.072103}$

ATSING TO POWERS BY MEANS OF LOGARITHMS
18. From Article 7, we have the following

Rule.-Find the logarithm of the number, and multiply it by the exponent of the power; then find the number corresponding to the resulting logarithm, and it will be the [贯ower required. $]$ Examples.

1. Find the 5 th power of 9 .

2. Find the 7 th power of 8 . Ans. 2097154, nearly.

EXTRACTING ROOTS BY MEANS OF LOGARITHMS.
19. From the principle proved in Art. 8, we have the following

Ruke. Find the logarithm of the number, and divide it by the index of the root; then find the number corresponding to the resulting logarithm, and it will be the root required.

1. Find the cube root of 4096 .

The logarithm of 4096 is 3.612360 , and one third of this is 1.204120 . The corresponding number is 16 , which is the root sought.

If the characteristic of the logarithm of the given number is negative and not exactly divisible by the index of the root, add to it such negative quantity as shall make it exactly divisible, and add also to the mantissa a numerically equal positive quantity.
2. Find the 4 th root of .000 .00081

The logarithm of .00000081 is $\overline{7} .908485$, which is equal to $\overline{8}+1.908485$, and one fourth of this is $\overline{2} .477121$. The number corresponding to this logarithm is .03 ; hence, .03 is the root required.

DIRECCION GENERA

PLANE TRIGONOMETRY.

20. Plane Trigonometry is that branch of Mathematics which treats of the solution of plane triangles.

In every plane triangle there are six parts: three sides and three angles. When three of these parts are given, one being a side, the remaining parts may be found by computation. The operation of finding the unknown parts is called the solution of the triangle.
21. A plane angle is measured by the arc of a circle included between its sides, the centre of the circle being at the vertex, and its radius being equal to 1 .

Thus, if the vertex A is taken as a centre, and the radius $A B$ is equal to 1 , the intercepted are $B C$ measures the angle A (B. III., P. XVII., S.).
Let $A B C D$ represent a circle whose radius is equal to 1 , and $A C, B D$, two diameters perpendieular to each other. These diameters divide the circumference into four equal parts, called quadrants; and because each of the angles at the centre is a right angle, it follows that a right angle is measured by a quadrant. An
 acute angle is measured by an arc less than a quadrant, and an obtuse angle, by an are greater than a quadrant.

EXTRACTING ROOTS BY MEANS OF LOGARITHMS.
19. From the principle proved in Art. 8, we have the following

Ruke. Find the logarithm of the number, and divide it by the index of the root; then find the number corresponding to the resulting logarithm, and it will be the root required.

1. Find the cube root of 4096 .

The logarithm of 4096 is 3.612360 , and one third of this is 1.204120 . The corresponding number is 16 , which is the root sought.

If the characteristic of the logarithm of the given number is negative and not exactly divisible by the index of the root, add to it such negative quantity as shall make it exactly divisible, and add also to the mantissa a numerically equal positive quantity.
2. Find the 4 th root of .000 .00081

The logarithm of .00000081 is $\overline{7} .908485$, which is equal to $\overline{8}+1.908485$, and one fourth of this is $\overline{2} .477121$. The number corresponding to this logarithm is .03 ; hence, .03 is the root required.

DIRECCION GENERA

PLANE TRIGONOMETRY.

20. Plane Trigonometry is that branch of Mathematics which treats of the solution of plane triangles.

In every plane triangle there are six parts: three sides and three angles. When three of these parts are given, one being a side, the remaining parts may be found by computation. The operation of finding the unknown parts is called the solution of the triangle.
21. A plane angle is measured by the arc of a circle included between its sides, the centre of the circle being at the vertex, and its radius being equal to 1 .

Thus, if the vertex A is taken as a centre, and the radius $A B$ is equal to 1 , the intercepted are $B C$ measures the angle A (B. III., P. XVII., S.).
Let $A B C D$ represent a circle whose radius is equal to 1 , and $A C, B D$, two diameters perpendieular to each other. These diameters divide the circumference into four equal parts, called quadrants; and because each of the angles at the centre is a right angle, it follows that a right angle is measured by a quadrant. An
 acute angle is measured by an arc less than a quadrant, and an obtuse angle, by an are greater than a quadrant.
22. In Geometry, the unit of angular measure is a right angle; so in Trigonometry, the primary unit is a quadrant, which is the measure of a right angle.

For convenience, the quadrant is divided into 90 equal parts, each of which is called a degree; each degree into 60 equal parts, called minutes; and each minute into 60 equal parts, called seconds. Degrees, minutes, and seconds, are denoted by the symbols ", " " Thus, the expression $7^{\circ} 22^{\prime} 33^{\prime \prime}$, is read, 7 degrees, 22 minutes, and 33 seconds. Fractional parts of a second are expressed decimally.

A quadrant contains 324,000 seconds, and an are of $7^{\circ} 22^{\prime} 33^{\prime \prime}$ contains 26553 seconds; hence, the angle measured by the latter are is the $\frac{{ }^{9} 6583}{324000}$ part of a right angle. In like manner, any angle may be expressed in terms of a right angle.

23. The complement of an arc is the difference between that are and 90°. The complement of an angle is the difference between that angle and a right angle.

Thus, EB is the complement of $A E$, and $F B$ is the complement of $C F$. In like manner, the angle EOB is the complement of the angle $A O E$,and $F O B$ is the complement of COF.
In a right-angled triangle, the
acute angles are complements of each other.
24. The supplement of an arc is the difference between that are and 180°. The supplement of an angle is the difference between that angle and two right angles.

Thus, EC is the supplement of AE, and FC the supplement of AF. In like manner, the angle EOC is the supplement of the angle AOE, and FOC the supplement of AOF.

In any plane triangle, any angle is the supplement of the sum of the two others.
25. Instead of the ares themselves, certain functions of the arcs, as explained below, are used. A function of a quantity is something which depends upon that quantity for its value.

The following functions are the only ones needed for solving triangles:
26. The sine of an arc is the distance of one extremity of the arc from the diameter through the other extremity.
Thus, PM is the sine of $A M$, and $P^{\prime} M^{\prime}$ is the sine of $A M^{\prime}$.
If $A M$ is equal to $M^{\prime} C, A M$ and $A M^{\prime}$ are supplements of each other ; and because MM^{\prime} is parallel to $A C, P M$ is equal to $\mathrm{P}^{\prime} \mathrm{M}^{\prime}$ (B. I., P. XXIII.) : hence, the sine of an are is equal to the sine of its supplement.

27. The cosine of an arc is the sine of the complement of the are, "complement sine" being contracted into cosine.

Thus, NM is the cosine of AM, and $N M^{\prime}$ is the cosine of $A M^{\prime}$. These lines are respectively equal to $O P$ and $O P^{\prime}$.

It is evident, from the equal triangles $O N M$ and $O N M^{\prime}$,
that $N M$ is equal to $N M$; hence, the cosine of an are is equal to the cosine of its supptement.
28. The tangent of an are is the perpendicular to the radius at one extremity of the arc, limited by the prolongation of the diameter drawn to the other extremity.

Thus, AT is the tangent of the are $A M$, and $A T^{\prime \prime \prime}$ is the tangent of the are $A M^{\prime}$.
If $A M$ is equal to $M^{\prime} C, A M$ and $A M$ are supplements of each other. But $\mathrm{AM}^{\prime \prime \prime}$ and AM^{\prime} are also supplements of each other: hence, the are $A M$ is equal to the are $A M^{\prime \prime \prime}$, and the correspond-
 ing angles, $A O M$ and $A O M^{\prime \prime \prime}$, are Calso equal. The right-angled triangles AOT and $A O T^{\prime \prime \prime}$ have a common base $A O$, and the angles at the base equal; consequently, the remaining parts are respectively equal : hence, AT is equal to $A T^{\prime \prime}$: But AT is the tangent of AM, and $A T^{\prime \prime \prime}$ is the tangent of $A M^{\prime}$: hence, the tangent of an are is equal to the tangent of its supplement.
29. The cotangent of an arc is the tangent of its complement, "complement tangent" being contracted into cotangent.

Thus, BT is the cotangent of the are $A M$, and $B T^{\prime \prime}$ is the cotangent of the are AM^{\prime}.
It is evident, from the equal triangles OBT^{\prime} and $\mathrm{OBT}^{\prime \prime}$, that BT^{\prime} is equal to $\mathrm{BT}^{\prime \prime}$; hence, the cotangent of an are is equal to the cotangent of its supplement.

When it is stated that the cotangent, tangent, \&c., of an arc are equal respectively to the cotangent, tangent, \&r., of its supplement, the numerical values only of the functions are referred to; no account being taken of the algebraic signs ascribed to the several functions in the different quadrants, as will be explained hereafter.

The sine, cosine, tangent, and cotangent of an arc, a, are, for convenience, written $\sin a, \cos a, \tan a$, and $\cot a$.

These functions of an are have been defined on the supposition that the radius of the are is equal to 1 ; in this case, they may also be considered as functions of the angle which the are measures.

Thus, PM, NM, AT, and BT^{\prime}, are respectively the sine, cosine, tangent, and cotangent of the angle $A O M$, as well as of the arc AM.
30. It is often convenient to use some other radius than 1 ; in such case, the functions of the arc to the radius 1 , may be reduced to corresponding functions, to the radius R, R denoting any radius.

Let $A O M$ represent any angle, $A M$ an are described from O as a centre with the radius $1, P M$ its sine; $A^{\prime} M^{\prime}$ an arc described from O as a centre, with any radius R, and $P^{\prime} M^{\prime}$ its sine.
 Then, because OPM and $O P^{\prime} M^{\prime}$ are similar triangles, we shall have,
or,
whence,
$P M: O M^{\prime}: P^{\prime} M^{\prime}$
$P M: R: P^{\prime} M^{\prime} ;$
$P M=\frac{P^{\prime} M^{\prime}}{R}$,
and $P^{\prime} M^{\prime}=P M \times R$; similarly for each of the other functions: hence,
Any function of an are whose radtus is 1 , is equal to the corresponding function of an are whose radius is R divided by that radius. Also, any function of an are whose radius is R, is equal to the corresponding funetion of an are whose radius is 1 multiplied by the radius R.

By means of this principle, formulas may be rendered homogeneous in terms of any radius.

TABLE OF NATURAL SINES.

31. A Natural Sine, Cosine, Tangent, or Cotangent, is the sine, cosine, tangent, or cotangent of an arc whose radius is 1 .

A Table of Natural Sines, Cosines, \&c., is a table by means of which the natural sine, cosine, tangent, or cotangent of any arc, or angle, may be found.

Such a table might be used for all the purposes of trigonometrical computation, but it is usually found more convenient to employ a table of logarithmic sines, as explained in the next article.

TABLE OF LOGARITHMIO SINES.
32. A Logarithmic Sine, Cosine, Tangent, or CotanGENT is the logarithm of the sine, cosine, tangent, or cotangent of an are whose radius is $10,000,000,000$. This value of the radius is taken simply for convenience in making the table, its logarithm being 10 .

A Table of Logarithme Sines is a table from which the logarithmic sine, cosine, tangent, or cotangent of any are, or angle, may be found.
Any logarithmic function of an arc, or angle, may be found by multiplying the corresponding natural function by $10,000,000,000$ (Art. 30), and then taking the logarithm of the result; or more simply, by taking the logarithm of the corresponding natural function, and then adding 10 to the result (Art. 5). N GEANDA
33. In the table appended, the logarithmic functions are given for every minute from 0° up to 90°. In addition, their rates of change for each second are given in the column headed "D."

The method of computing the numbers in the column headed " D ," will be understood from a single example. The logarithmic sines of $27^{\circ} 34$, and of $27^{\circ} 35^{\prime}$, are, respectively, 9.665375 and 9.665617 . The difference between their mantissas is 242 millionths; this, divided by 60 , the number of seconds in one minute, gives 4.03 millionths, which is the change in the mantissa for $1^{\prime \prime}$, between the limits $27^{\circ} 34^{\prime}$ and $27^{\circ} 35^{\prime}$.

For the sine and cosine, there are separate columns of differences, which are written to the right of the respective columns; but for the tangent and cotangent there is but a single column of differences, which is written between them. The logarithm of the tangent increases just as fast as that of the cotangent decreases, and the reverse, their sum being always equal to 20 . The reason of this is, that the product of the tangent and cotangent is always equal to the square of the radius; hence, the sum of their logarithms must always be equal to twice the logarithm of the radius, or 20 .

The arc, or angle, obtained by taking the degrees from the top of the page and the minutes from the left-hand column, is the complement of that obtained by taking the degrees from the bottom of the page, and the minutes from the right-hand column on the same horizontal line. But, by definition, the cosine and the cotangent of an arc, or angle, are, respectively, the sine and the tangent of the complement of that arc, or angle (Arts. 26 and 28): hence, the columns designated sine and tang at the top of the page, are designated cosine and cotang at the bottom. 11 ULCAS

USE OF THE TABLE

To find the logarithmic functions of an are, or angle, which is expressed in degrees and minutes.
34. If the are, or angle, is less than 45°, look for the degrees at the top of the page, and for the minutes in the left-hand column; then follow the corresponding horizontal line till you come to the column designated at the top by sine, cosine, tang, or cotang, as the case may be; the number there found is the logarithm required. Thus,

If the arc, or angle, is 45° or more, look for the degrees at the bottom of the page, and for the minutes in the right-hand column; then follow the corresponding horizontal line backward till you come to the column designated at the bottom by sine, cosine, tang, or cotang, as the case may be; the number there found is the logarithm required. Thus,

$\log \cos 52^{\circ} 18^{\prime}$. 9.786416

$\log \tan 52^{\circ} 18^{\prime}$

To find the togarithmie functions of an are or angle which is expressed in degrees, minutes, and seconds.
35. Find the logarithm corresponding to the degrees and minutes as before; then multiply the corresponding number taken from the column headed "D," which is millionths, by the number of seconds, and add the product to the preceding result for the sine or tangent, and subtract it therefrom for the cosine or cotangent.

Examples.

1. Find the logarithmic sine of $40^{\circ} 26^{\prime} 28^{\prime \prime}$.

Operation.

The same rule is followed for decimal parts, as in Art. 12.
2. Find the logarithmic cosine of $53^{\circ} 40^{\prime} 40^{\prime \prime}$.

Operation.
$\log \cos 53^{\circ} 40^{\prime}$. 9.772675
Tabular difference
No. of seconds
Product - 40
$\log \cos 53^{\circ} 40^{\prime} 40^{\prime \prime}$
If the are or angle is greater than 90°, find the required function of its supplement (Arts. 26 and 28).

[3. Find the logarithmic tangent of $118^{\circ} 18^{\prime} 25^{\prime \prime}$.

 A O Operation.Given arc $118^{\circ} 18^{\prime} 25^{\prime \prime}$
Supplement • $\overbrace{}^{\circ} \cdot 1^{\circ} 41^{\prime} 35^{\prime \prime}$
$\log \tan 61^{\circ} 41$. 10.268556
Tabular difference 5.04
No. of seconds
Product . . $\overline{176.40}$ to be added
$\log \tan 118^{\circ} 18^{\prime} 25^{\prime \prime}$ to be added 176
10.268732
4. Find the logarithmic sine of $32^{\circ} 18^{\prime} 35^{\prime \prime}$.

Ans. 9.727945.
5. Find the logarithmic cosine of $95^{\circ} 18^{\prime} 24^{\prime \prime}$.

Ans. 8.966080 .
6. Find the logarithmic cotangent of $125^{\circ} 23^{\prime} 50^{\prime \prime}$

Ans. 9.851619. function.
36. This is done by reversing the preceding rule

Look in the proper column of the table for the given logarithm; if it is found there, 'the degrees are to be taken from the top or bottom, and the minutes from the left or right hand column, as the case may be. If the given logarithm is not found in the table, then find the next less logarithm, and take from the table the corresponding degrees and minutes, and set them aside. Subtract the logarithm found in the table from the given logarithm, and divide the remainder by the corresponding tabular difference. The quotient will be seconds, which must be added to the degrees and minutes set aside in the case of a sine or tangent, and subtracted in the case of a cosine or a cotangent.

UNIVERSIDAD AUTÓNO

1. Find the are or angle corresponding to the logarithmic sine 9.422248 .

Hence, the required are is $15^{\circ} 19^{\prime} 51^{\prime \prime}$.
2. Find the are or angle corresponding to the logarithmic cosine 9.427485 .

Operation.
Given logarithm . . 9.427485
Next less in table . . 9.427354 . . . $74^{\circ} 29^{\prime}$
Tabular difference 7.58) 131.00 ($17^{\prime \prime}$, to be subt.
Hence, the required are is $74^{\circ} 28^{\prime} 43^{\prime \prime}$.
3. Find the arc or angle corresponding to the logarithmic sine 9.880054 . Ans. $49^{\circ} 20^{\circ} 50^{\prime \prime}$.
4. Find the are or angle corresponding to the logarithmic cotangent 10.008688 .

$$
\text { Ans. } 44^{\circ} 25^{\prime} 37^{\prime \prime}
$$

5. Find the are or angle corresponding to the logarithmic cosine 9.944599 .

$$
\text { Ans. } 28^{\circ} 19^{\prime} 45^{\prime \prime}
$$

SOLUTION OF RIGHT-ANGLED TRIANGLES.

3\%. In what follows, the three angles of every triangle are designated by the capital letters A, B, and C, A denoting the right angle; and the sides lying opposite the angles by the corresponding small letters a, b, and c. Since the order in which these letters are placed may be changed, without affecting the demonstration, it follows that whatever is proved with the letters placed in any given order, will be equally true when the letters are correspondingly placed in any other order.
Let CAB represent any triangle, rightangled at A. With C as a centre, and a radius $C D$, equal to 1 , describe the arc DG, and draw GF and $D E$ perpendicular to CA: then will FG be the sine of the angle $C, C F$ will be its cosine, and $D E$ its tangent.

Since the three triangles $C F G, C D E$, and $C A B$ are similar (B. IV., P. XVIII.), we may write the proportions,
 have the following

PRINCIPIEC

1. The perpendicular of any right-angled triangle is equal to the hypothenuse multiplied by the sine of the angle at the base.
2. The base is equal to the hypothenuse multiplied by
the cosine of the angle at the base.
3. The perpendicular is equal to the base multiplied by
the tangent of the angle at the base.
4. The sine of the angle at the boise is equal to the
perpendicular divided by the hypothenuse. perpendicular divided by the hypothenuse. 1 at and to the base divided by the hypothenuse
5. The tangent of the angle at the base is equal to the perpendicular divided by the base.

Either side about the right angle may be regarded as the base; the other is then to be taken as the perpendicular. B may be substituted for C in the formulas, provided that, at the same time, b is substituted for c, and c for b : from (4), (5), (6), we may thus obtain,

$$
\begin{align*}
& \sin \mathrm{B}=\frac{b}{a}, \ldots . . .\left(4^{\prime}\right) \\
& \cos \mathrm{B}=\frac{c}{a}, \quad \cdots \cdot . \cdot\left(5^{\prime}\right) \\
& \tan \mathrm{B}=\frac{b}{c} . \cdots\left(6^{\prime}\right)
\end{align*}
$$

From the relations shown in (4), (5), (6), (4), (5'), (6), the natural functions of the acute angles of a right-angled triangle are sometimes defined as ratios: thus, of either of such angles,

the sine is the ratio of the hypothenuse

 to the side opposite;the cosine is the ratio of the hypothenuse to the side adjacent; the tangent is the ratio of the side adjacent to the side opposite.

Formulas (1) to (6) are sufficient for the solution of every case of right-angled triangles. They are in proper form for use with a table of natural functions: when a table of logarithmic functions is used, as is done in this book, they must be made homogeneous in terms of R, R being equal to $10,000,000,000$, as stated in Art. 32 . The formulas may be made homogeneous by the principle of Art. 30 ; thus, for example, the second member of (4), being the value of $\sin C$ when the radius is 1 , must be multiplied by R for the value of $\sin C$ when the radius is R, giving

$$
\sin C=\frac{R c}{a}
$$

whence, by solving with reference to c,

$$
c=\frac{a \sin C}{\mathrm{R}}
$$

In like manner, the remaining formulas may be made homogeneous, giving

In applying logarithms to these formulas, care must be taken to observe the principles of logarithms (Arts. 5 and 6), giving, for example (as logarithm of R is 10),
$\log c=\log a+\log \sin C-10$,
$\log \sin C=\log c+10-\log a$

$$
=\log c+(\mathrm{a} . \mathrm{c.}) \log a(\text { see Art. 11); \&c. }
$$

In solving right-angled triangles, four cases arise:

Given the hypothenuse and one of the acute angles, to find the remaining parts.
38. The other acute angle may be found by subtracting the given one from 90° (Art. 23).

The sides about the right angle may be found by formulas (7) and (8).

1. Given $a=749$, and $\mathrm{C}=47^{\circ} 03^{\prime} 10^{\prime \prime}$; required B, c, and b.

Operation.

$B=90^{\circ}-47^{\circ} 03^{\prime} 10^{\prime \prime}=42^{\circ} 56^{\prime} 50^{\prime \prime}$.
Applying logarithms to formula (7), we have,

$$
\log c=\log a+\log \sin C-10
$$

$\log a$	(7.49)	2.874482
$\log \sin C$	$\left(47^{\circ} 03^{\prime} 10^{\prime \prime}\right)$	9.864501
$\log c$	- . . .	$\underline{2.738983}$

[The 10 is subtracted mentally.]
Applying logarithms to formula (8), we have,

2. Given $a=439$, and $\mathrm{B}=27^{\circ} 38^{\prime} 50^{\prime \prime}$, to find C, c,
A and b. Ans. $c=62^{\circ} 21^{\prime} 10^{\prime \prime}, b=203.708$, and $c=388.875$.
3. Given $a=125.7 \mathrm{yds}$, and $B=75^{\circ} 12$ ', to find the other parts.
BAs. $C=14^{\circ} 48^{\prime}, b=121.53$ yds, and $c=32.11$ yds.
4. Given $a=7.521 \mathrm{ft}_{\mathrm{L}}$, and $\mathrm{C}=57^{\circ} 34^{\prime} 48^{\prime \prime}$, to find the other parts.
.... Ans. $B=32^{\circ} 25^{\prime} 12^{\prime \prime}, c=6.348 \mathrm{ft}, \quad b=4.032 \mathrm{ft}$.

CASE II.

Given one of the sides about the right angle and one of the acute angles, to find the remaining parts.
39. The other acute angle may be found by subtracting the given one from 90°.

The hypothenuse may be found by formula (7), and the unknown side about the right angle by formula (8).

Examples.

1. Given $c=56.293$, and $C=54^{\circ} 27^{\prime} 39^{\prime \prime}$, to find B, a, and b.

Operation.

$$
B=90^{\circ}-54^{\circ} 27^{\prime} 39^{\prime \prime}=35^{\circ} 32^{\prime} 21^{\prime \prime}
$$

Applying logarithms to formula (7), we have

$$
\log a=\log c+10-\log \sin C
$$

but, $10-\log \sin C=$ (a. c.) of $\log \sin C$; whence
$\log c \quad(56.293)$
(a. c.) $\log \sin C\left(54^{\circ} 27^{\prime} 39^{\prime \prime}\right)$
$\log a$ \qquad 54 0.089527

Applying logarithms to formula (8), we have $\log b=\log a+\log \cos C-10 ;$
$\log a \quad(69.18) \cdot \cdot 1.839981$
$\log \cos \mathrm{C}\left(54^{\circ} 27^{\prime} 39^{\prime \prime}\right) \cdot \frac{9.764370}{1.604351} \therefore b=40.2114$.
$\log b$
Ans. $\mathrm{B}=35^{\circ} 32^{\prime} 21^{\prime \prime}, a=69.18$, and $b=40.2114$.
2. Given $c=358$, and $B=28^{\circ} 47^{\prime}$, to find C, a, and b. Ans. $C=61^{\circ} 13^{\prime}, a=408.466$, and $b=196.676$.
3. Given $b=152.67$ yds., and $C=50^{\circ} 18^{\prime} 32^{\prime \prime}$, to find the other parts.

Ans. $\mathrm{B}=39^{\circ} 41^{\prime} 28^{\prime \prime}, c=183.95$, and $a=239.05$.
4. Given $c=379.628$, and $C=39^{\circ} 26^{\prime} 16^{\prime \prime}$, to find B, a, and b.

Ans. $B=50^{\circ} 33^{\prime} 44^{\prime \prime}, a=597.613$, and $b=461.55$.

CASE III.

Given the two sides about the right angle, to find the remaining parts.
40. The angle at the base may be found by formula (12), and the solution may be completed as in Case II.

1. Given $b=26$, and $c=15$, to find C, B, and a.

Operation.
Applying logarithms to formula (12), we have

$$
\log \tan C=\log c+10-\log b
$$

[From Art. 28, it is evident that $\log \tan C$ here found corresponds to twoo angles, viz., $29^{\circ} 58^{\prime} 54^{\prime \prime}$, and 180° $29^{\circ} 58^{\prime} 54^{\prime \prime}$, or $150^{\circ} 1^{\prime} 6^{\prime \prime}$ As, however, the triangle is right-angled, the angle C is acute, and the smaller value must be taken.]

$$
\mathrm{B}=90^{\circ}-\mathrm{C}=60^{\circ} 01^{\prime} 06^{\prime \prime}
$$

As in Case II.,
$\log a=\log c+10-\log \sin C ;$
$\log \mathrm{e} \cdot(15)$. . 1.176091
(a. c.) $\log \sin C\left(29^{\circ} 58^{\prime} 54^{\prime \prime}\right) \quad 0.301271$
$a=30.017$.
Ans. $\mathrm{C}=29^{\circ} 58^{\prime} 54^{\prime \prime}, B=60^{\circ} 01^{\prime} 06^{\prime \prime}$, and $a=30.017$.
2. Given $b=1052 \mathrm{yds}$., and $c=347.21 \mathrm{yds}$, to find
B, C, and a.
$\mathrm{B}=71^{\circ} 44^{\prime} 05^{\prime \prime}, \mathrm{C}=18^{\circ} 15^{\prime} 55^{\prime \prime}$, and $a=1107.82 \mathrm{yds}$.
3. Given $b=122.416$, and $c=118.297$, to find B, C, and

$$
\mathrm{B}=45^{\circ} 58^{\prime} 50^{\prime \prime}, \mathrm{C}=44^{\circ} 1^{\prime} 10^{\prime \prime}, \text { and } a=170.235
$$

4. Given $b=103$, and $c=101$, to find B, C, and a.

$$
\mathrm{B}=45^{\circ} 33^{\prime} 42^{\prime \prime}, \mathrm{C}=44^{\circ} 26^{\prime} 18^{\prime \prime}, \text { and } a=144.256
$$

Given the hypothenuse and either side about the right angle,
to find the remaining parts.
41. The angle at the base may be found by one of formulas (10) and 11), and the remaining side may then be found by one of formulas (7) and (8).

Examples.

1. Given $a=2391.76$, and $b=385.7$, to find C, B, and c.

Operation

Applying logarithms to formula (11), we have $\log \cos C=\log b+10-\log a ;$
$\log b(385.7) \cdot \quad 2.586250$
(a. c.) $\log a(2391.76) \cdot \cdot 6.621282$
$\log \cos \mathrm{C} \cdot \cdot \underline{\underline{9.207532}} \therefore \mathrm{C}=80^{\circ} 43^{\prime} 11^{\prime \prime}$;

$$
B=90^{\circ}-80^{\circ} 43^{\prime} 11^{\prime \prime}=9^{\circ} 16^{\prime} 49^{\prime \prime} .
$$

From formula (7), we have
$\log c=\log a+\log \sin C-10 ;$
$\log a \quad(2391.76) \cdot 3.378718$
$\log \sin C\left(80^{\circ} 43^{\prime} 11^{\prime \prime}\right) \quad 9.994278$

$$
\log c \cdots \underline{3.372996} \quad \therefore \quad c=2360.45
$$

Ans. $\mathrm{B}=9^{\circ} 16^{\prime} 49^{\prime \prime}, \mathrm{C}=80^{\circ} 43^{\prime} 11^{\prime \prime}$, and $c=2360.45$.
2. Given $a=127.174$ yds., and $c=125.7$ yds., to find C, B, and b.

From formula (10), we have

$$
\log \sin C=\log c+10-\log a
$$

$\log c(125.7) \cdot . .2 .099335$
(a. c.) $\log a(127.174)$. 7.895602

$$
\log \sin C \cdot \cdot 9.994937 \quad \therefore C=81^{\circ} 16^{\prime} 6^{\prime \prime} \text {; }
$$

$A D] B=90^{\circ}-81^{\circ} 16^{\prime} 6^{\prime \prime}=8^{\circ} 43^{\circ} 54^{\prime \prime}$.
From formula (8), we have
$\log b=\log a+\log \cos C-10 ;$
$\log a \quad(127.174) \cdot 2.104398$
$\log \cos C\left(81^{\circ} 16^{\prime} 6^{\prime \prime}\right) \cdot \frac{9.181292}{1.285690} \quad \therefore b=19.3$.
Ans. $\mathrm{B}=8^{\circ} 43^{\prime} 54^{\prime \prime}, \mathrm{C}=81^{\circ} 16^{\prime} 6^{\prime \prime}$, and $b=19.3$ yds.
3. Given $a=100$, and $b=60$, to find $B_{1} C$, and c. Ans. $\mathrm{B}=36^{\circ} 52^{\prime} 11^{\prime \prime}, \mathrm{C}=53^{\circ} 7^{\prime} 49^{\prime \prime}$, and $c=80$.
4. Given $a=19.209$, and $c=15$, to find B, C, and b. Ans. $\mathrm{B}=38^{\circ} 39^{\prime} 30^{\prime \prime}, \mathrm{C}=51^{\circ} 20^{\prime} 30^{\prime \prime}, b=12$.

SOLUTION OF OBLIQUE-ANGLED TRIANGLES.

42. In the solution of oblique-angled triangles, four cases may arise. We shall discuss these cases in order.

CASE I.
angles, to determine the remaining
Given one side and two
43. Let $A B C$ represent any oblique-angled triangle. From the vertex C, draw $C D$ perpendicular to the base, forming two rightangled triangles $A C D$ and $B C D$. Assume the notation of the figure.

From formula (1), we have

Equating these two values, we have,
$b \sin \mathrm{~A}=a \sin \mathrm{~B}$:
whence (B. II, P. II), Since a and b are any two sides, and A and B the angles lying opposite to them, we have the following principle :

The sides of a plane triangle are proportional to the sines of their opposite angles.

It is to be observed that formula (13) is true for any value of the radius. Hence, to solve a triangle, when a side and two angles are given:

First find the third angle, by subtracting the sum of the given angles from 180°; then find each of the required sides by means of the principle just demonstrated.

Examples.

1. Given $B=58^{\circ} 07^{\prime}, C=22^{\circ} 37^{\prime}$, and $a=408$, to find A, b, and c.

$$
\begin{aligned}
& \text { Operation. } \\
& \text { B } \cdot . . . \cdot 58^{\circ} 07^{\prime} \\
& \text { C } \cdot . . . \cdot 22^{\circ} 37^{\prime} \\
& \text { A } \cdot .180^{\circ}-80^{\circ} 44^{\prime}=99^{\circ} 16^{\prime} .
\end{aligned}
$$

To find b, write the proportion,

$$
\sin \mathrm{A}: \sin \mathrm{B}:: a: b
$$

that is, the sine of the angle opposite the given side, is to the sine of the angle opposite the required side, as the given side is to the required side.

Applying logarithms, we have (Ex. 4, P. 15)

$$
\log b=(a . c .) \log \sin A+\log \sin B+\log a-10
$$

(a, c.) $\log \sin \mathrm{A}\left(99^{\circ} 16^{\prime}\right) \cdots 0.005705$
$\square \square \log \sin \mathrm{B}\left(58^{\circ} 97^{\prime}\right) \backsim 9.928972$
$\log a(408) \cdot \underline{2.610660}$

$$
\therefore b=351.024
$$

In like manner,
and $\log c=(\mathrm{a} . \mathrm{c}.) \log \sin \mathrm{A}+\log \sin \mathrm{C}+\log a-10$;
(a. c.) $\log \sin \mathrm{A}\left(99^{\circ} 16^{\prime}\right) \cdot . \cdot 0.005705$
$\log \sin C\left(22^{\circ} 37^{\prime}\right) \cdot \cdot \cdot 9.584968$
$\log a \quad(408) \quad$ • 2.610660 $\log c \cdot \cdot . \cdot 2.201333 \quad \therefore \varepsilon=158.976$.

Ans. $A=99^{\circ} 16^{\prime}, b=351.024$, and $c=158.976$.
2. Given $A=38^{\circ} 25^{\prime}, B=57^{\circ} 42^{\prime}$, and $c=400$, to find C, a, and b.

$$
(1)
$$

$$
\text { Ans. } C=83^{\circ} 53 ; a=249.974, b=340.04
$$

3. Given $\mathrm{A}=15^{\circ} 19^{\prime} 51^{\prime \prime}, \mathrm{C}=72^{\circ} 44^{\prime} 05^{\prime \prime}$, and $c=$ 250.4 yds., to find B, a, and b.

Ans. $B=91^{\circ} 56^{\prime} 04^{\prime \prime}, a=69.328$ yds., $b=262.066 \mathrm{yds}$.
4. Given $B=51^{\circ} 15^{\prime} 35^{\prime \prime}, C=37^{\circ} 21^{\prime} 25^{\prime \prime}$, and $a=$ 305.296 ft , to find A, b, and c.

Ans. $A=91^{\circ} 23^{\circ}, b=238.1978 \mathrm{ft} ., c=185.3 \mathrm{ft}$.

CASE II.

Given two sides and an angle opposite one of them, to find
44. The solution, in this ease, is commenced by finding a second angle by means of formula (13), after which we may proceed as in Cask I.; or, the solution may be completed by a continued application of formula (13).

Examples.

1. Given $\mathrm{A}=22^{\circ} 37^{\prime}, b=216$, and $a=117$, to find B, C, and c.

From formula (13), we have

$$
a: b:: \sin A: \sin B
$$

that is, the side opposite the given angle, is to the side opposite the required angle, as the sine of the given angle is to the sine of the required angle.

Whence, by the application of logarithms,
$\log \sin \mathrm{B}=(\mathrm{a} . \mathrm{c}.) \log a+\log b+\log \sin \mathrm{A}-10$;

(a.c.)$\log a$$(117)$	\cdot
$\log b \cdot(216)$	$\cdot 2.331814$
$\log \sin \mathrm{~A}\left(22^{\circ} 37^{\prime}\right)$	$\cdot \frac{9.584968}{9.851236}$

Hence, we find two values of B, which are supplements of each other, because the sine of any angle is equal to the sine of its supplement. This would seem to indicate that the problem admits of two solutions. It now remains to determine under what conditions there will be two solutions, one solution, or no solution.

There may be two cases: the given angle may be acute, or it may be obtuse.
the given ang
Represent the given parts of the triangle by A, a, b. The particular letters employed are of no consequence in the discussion, and, therefore, in the results, C or B may be substituted for A, provided that, at the same time, like changes are made in the corresponding small letters.

1st Case: A $<90^{\circ}$.

Let $A B C$ represent the triangle, in which the angle A, and the sides a and b are given. From C let fall a perpendicular upon $A B$, prolonged if necessary, and denote its length by p. We shall have, from formula (1), Art. 37,

$$
p=\frac{b \sin \mathrm{~A}}{\mathrm{R}}
$$

from which the value of p may be computed.
If a is greater than p and less than b, there will be two solutions. For, if with C as a centre, and a as a radius, an are be described, it will cut the line $A B$ in two points, B and B, each of which being joined with C, will give a triangle, and we shall thus have two triangles, $A B C$ and $A B^{\prime} C$, which will conform to the conditions of the problem.

In this case, the angles B^{\prime} and B, of the two triangles $A B^{\prime} C$ and $A B C$, will be supplements of each other.

If $a=p$, there will be but one solution. For, in this case the are will T be tangent to $A B$, the two points B and B will unite, and there will be but one triangle formed.

In this case, the angle $A B C$ will be equal to 90°.
If a is greater than both p and b, there will also be but one solution. For, although the are cuts $A B$ in two. points, and consequently gives two triangles, only one of them, $A B C$, conforms to the conditions of the problem.

In this case, the angle $A B C$ will be less than A and consequently acute.

If $a<p$, there will be no solution. For, the arc can neither cut $A B$ nor be tangent to it

2d Case: $\mathrm{A}>90^{\circ}$.
When the given angle A is obtuse, the angle $A B C$ will be acute; the side a will be greater than b, and there will be but one solution.
 tion, there are two solutions, the first corresponding to $\mathrm{B}=45^{\circ} 13^{\prime} 55^{\prime \prime}$, and the second to $B^{\prime}=134^{\circ} 46^{\prime} 05^{\prime \prime}$.

In the first case, we have

B $45^{\circ} 13^{\prime} 55^{\prime \prime}$ C. . $180^{\circ}-67^{\circ} 50^{\prime} 55^{\prime \prime}=112^{\circ} 09^{\prime} 05^{\prime \prime}$.

To find c, we have
$\sin \mathrm{B}: \sin \mathrm{C}:: b: c$;
and $\quad \log c=(\mathrm{a} . \mathrm{e}.) \log \sin B+\log \sin C+\log b-10$;
(a.c.) $\log \sin \mathrm{B} \quad\left(45^{\circ} 13^{\prime} 55^{\prime \prime}\right) \cdot-0.148764$
$\log \sin C\left(112^{\circ} 09^{\prime} 05^{\prime \prime}\right) \quad 9.966700$
$\log b \cdot(216) \cdot$. . . 2.334454
$\log c$. . . . $2.449918 \quad c=281.785$.
Ans. $\mathrm{B}=45^{\circ} 13^{\prime} 55^{\prime \prime}, \mathrm{C}=112^{\circ} 09^{\prime} 05^{\prime \prime}$, and $c=281.785$.

In the second case, we have,

3. Given $\mathrm{B}=18^{\circ} 52^{\prime} 13^{\prime \prime}, \quad b=27.465$ yds., and $a=$ 13.189 yds., to find A, C, and c.
\int Ans. $\mathrm{A}=8^{\circ} 56^{\prime} 05^{\prime \prime}, \mathrm{C}=152^{\circ} 11^{\prime} 42^{\prime \prime}, c=39.611 \mathrm{yds}$.
4. Given $\mathrm{C}=32^{\circ} 15^{\prime} 26^{\prime \prime}, \quad b=176.21 \mathrm{ft}$., and $c=$ 94.047 ft. , to find B, A, and a.

DAns. $B=90^{\circ}, A=57^{\circ} 44^{\prime} 34^{\frac{\pi}{2}}, a=142.014 \mathrm{ft}$.

CASE IIL

Given two sides and their included angle, to find the remaining parts.
45. The solution, in this case, is begun by finding the half sum and the half difference of the two required angles. The half sum of these angles may be found by subtracting the given angle from 180°, and dividing the remainder by 2 ; the half difference may be found by means of the following principle, now to be demonstrated, viz. :

In any plane triangle, the sum of the sides inctuding any angle, is to their difference, as the tangent of half the sum of the two other angles, is to the tangent of half their difference.

Let $A B C$ represent any plane triangle, c and b any two sides, and A their included angle. Then we are to show that

$$
c+b: c-b:: \tan \frac{1}{2}(C+B): \tan \frac{1}{2}(C-B) .
$$

With A as a centre, and b, the shorter of the two A sides, as a radius, describe a semicircle meeting $A B$ in 1 , and the prolongation of $A B$ in E. Draw $E C$ and $C l$, and through I draw $I H$ parallel to EC. Since the angle ECI is inscribed in a semicircle, it is a right angle (B. II, P. XVIIL, C. 2) : hence, EC is perpendicular to Cl , at the point C; and since $t \mathrm{H}$ is parallel to EC , it is also perpendicular to Cl .

The inscribed angle CIE is half the angle at the centre, $C A E$, intercepting the same arc $C E$. Since the

44
PLANE TRIGONOMETRY .
angle $C A E$ is exterior to the triangle $A B C$, we have (B. I., P. XXV., C. 6),

$$
\mathrm{CAE}=\mathrm{C}+\mathrm{B}
$$

$$
\text { hence, } \mathrm{CIE}=\frac{1}{2}(C+B) \text {. }
$$

$A C$ and $A F$, being radii of the same circle, are equal to each other, and therefore (B. I. P. XI.), the angle AFC is equal to the angle C; but the angle AFC is exterior to the triangle FBA, and hence we have

$$
\begin{aligned}
A F C \text { or } C & =F A B+B ; \\
F A B & =C-B .
\end{aligned}
$$

But the inscribed angle, $I C H$, is half the angle at the
centre, $F A B$, intercepting the same are Fl ; hence,

$$
\mathrm{ICH}=\frac{1}{2}(C-B)
$$

From the two right-angled triangles ICE and ICH, we "have (formula 3, Art. 37),

$$
E C=I C \tan C I E
$$

$$
=I C \tan \frac{1}{2}(C+B)
$$

Ond $\quad I H=I C \tan I C H A O$

$$
=I C \tan \frac{1}{2}(C-B) ;
$$

hence, we have, after omitting the equal factor IC (B, II, P. VII.), R U USN

$$
E C: I H:: \tan \frac{1}{2}\left(C^{-}+B\right): \tan \frac{1}{2}(C-B) .
$$

The triangles $E C B$ and $1 H B$ being similar $(B$, IV, P, XXI.),

PLANE TRIGONOMETRY.

$$
E C: I H: E B: I B
$$

or, since
and

$$
\mathrm{EB}=c+b
$$

$$
\mathrm{IB}=c-b
$$

$$
\mathrm{EC}: \mathrm{IH}:=c+b: c-b .
$$

Combining the preceding proportions, we have

$$
c+b: c-b:: \tan \frac{1}{2}(C+B): \tan \frac{1}{2}(C-B) ;
$$

which was to be proved.

By means of (14), the half difference of the two required angles may be found. Knowing the half sum and the half difference, the greater angle is found by adding the half difference to the half sum, and the less angle is found by subtracting the half difference from the half sum. Then the solution is completed as in Case I.

Examples.

1. Given $c=540, \quad b=450$, and $\mathrm{A}=80^{\circ}$, to find B . C, and a. TTM Operation.

$$
\begin{equation*}
c+b=990 \tag{R}
\end{equation*}
$$

$\square \square \begin{aligned} c-b & =90 ; \\ \frac{1}{2}(C+B) & =\frac{1}{2}\left(180^{\circ}-80^{\circ}\right)\end{aligned}$

$$
=50^{\circ} .
$$

Applying logarithms to formula (14), we have
$\log \tan \frac{1}{2}(\mathrm{C}-\mathrm{B})=(\mathrm{a} . \mathrm{c}.) \log (c+b)+\log (c-b)$

$$
+\log \tan \frac{1}{2}(C+B)-10 ;
$$

(a.c.) $\log (c+b) \cdot(990) \quad 7.004365$
$\log (c-b) \cdot(90) \quad 1.954243$
$\log \tan \frac{1}{2}(C+B)\left(50^{\circ}\right) 10.076187$
$\mathrm{A} \log \tan \frac{1}{2}(\mathrm{C}-\mathrm{B}) \quad 9.034795 \therefore \frac{1}{2}(\mathrm{C}-\mathrm{B})=6^{\circ} 11^{\prime}$

$$
C=50^{\circ}+6^{\circ} 11=56^{\circ} 11^{\prime} ;
$$

4. Given $a=464.7$ yds., $\quad b=289.3$ yds., and $\mathrm{C}=$ $87^{\circ} 03^{\prime} 48^{\prime \prime}$, to find A, B, and c.
Ans. $\mathrm{A}=60^{\circ} 13^{\prime} 39^{\prime \prime}, \mathrm{B}=32^{\circ} 42^{\prime} 33^{\prime \prime}, c=534.66 \mathrm{yds}$.
5. Given $a=16.9584 \mathrm{ft} ., \quad b=11.9613 \mathrm{ft}$., and $\mathrm{C}=$ $60^{\circ} 43^{\prime} 36^{\prime \prime}$, to find A, B, and c.

Ans. $\mathrm{A}=76^{\circ} 04^{\prime} 12^{\prime \prime}, \mathrm{B}=43^{\circ} 12^{\prime} 12^{\prime \prime}, c=15.22 \mathrm{ft}$,
6. Given $a=3754, b=3277.628$, and $\mathrm{C}=57^{\circ} 53^{\prime} 17^{\prime \prime}$, to find A, B, and c.

$$
B=50^{\circ}-6^{\circ} 11^{\prime}=43^{\circ} 49^{\prime}
$$

Ans. $\mathrm{A}=68^{\circ} 02^{\prime} 25^{\prime \prime}, \mathrm{B}=54^{\circ} 04^{\prime} 18^{\prime \prime}, c=3428.512$.

Given
46.

CASE IV.

 a triansle parts.* plane triangle, of which $B C$ is the longest side. Draw $A D$ perpendicular to the base, dividing it into two segments $C D$ and $B D$ \qquadto find the remaining the three sides of a triangle

The longest side is taken as
[the base, to make it certain that the perpendicular from the vertex shall fall on the base, and not on the base produced.]

From the right-angled triangles $C A D$ and $B A D$, we have have $\square \square \frac{A D^{2}}{}=A^{2}-D^{2}$,
and $\quad \overline{A D}^{2}=\overline{A B}^{2}-\overline{B D}^{2}$.
*The angles may be found by formula (A) or (B), Lemma, Art. 97, Mensu-
ration.

Equating these values of $\overline{\mathrm{AD}}^{2}$, we have,

$$
\overline{A C}^{2}-\overline{D C}^{2}=\overline{A B}^{2}-\overline{B D}^{2} ;
$$

whence, by transposition,

$$
-\overline{B_{D}^{2}}
$$

Hence (B. IV., P. X), we have

$$
(A C+A B)(A C-A B)=(D C+B D)(D C-B D)
$$

Converting this equation into a proportio
we have

or, denoting the greater segment by s and the less segment by s^{\prime}, and the sides of the triangle by a, b, and c,
\qquad $b+c: b-c$
that is, if in any plane triangle, a line be drawn from
the vertex perpendicular to the base, dividing it into two
segments; then,
The sum of the two segments, or the whole base, is to
the sum of the two other sides, as the difference of these sides is to the difference of the segments.

The half difference of the segments added to the half sim gives the greater segment, and the half difference subtracted from the half sum gives the less segment. The greater segment is, of course, adjacent to the greater side.] We shall then have two right-angled triangles, in each of which we know the hypothenuse and the base;
hence, the angles of these triangles may be found, and consequently, those of the given triangle.

Examples.

1. Given $a=40, b=34$, and $c=25$, to find A, B, and C .

Operation.
Applying logarithms to formula (15), we have
$\log \left(s-s^{\prime}\right)=$ (a. c.) $\log \left(s+s^{\prime}\right)+\log (b+c)+\log (b-c)-10 ;$

$$
\begin{aligned}
& \text { (a. c.) } \log \left(s+s^{\prime}\right) \cdot(40) \cdot 8.397940 \\
& \log (b+c) \text {. } \\
& \log (b-c) \text {. } \\
& \text { (5) • } 1.770852 \\
& \log \left(s-s^{\prime}\right) \quad \underline{0.954243} \quad \underline{1.123035} \therefore s-s^{\prime}=13.275 . \\
& s=\frac{1}{2}\left(s+s^{\prime}\right)+\frac{1}{3}\left(s-s^{\prime}\right)=26.6375 . \\
& s^{\prime}=\frac{1}{2}\left(s+s^{\prime}\right)-\frac{1}{2}\left(s-s^{\prime}\right)=13.3625 .
\end{aligned}
$$

From formula (11), we find
$\log \cos C=\log s+$ (a.c.) $\log b \quad \therefore C=38^{\circ} 25^{\prime} 20^{\prime \prime}$, and $\log \cos \mathrm{B}=\log s^{\prime}+(\mathrm{a}, \mathrm{c}) \log c \quad \therefore \mathrm{~B}=\frac{57^{\circ} 41^{\prime} 25^{\prime \prime}}{96^{\circ} 06^{\prime} 45^{\prime \prime}}$
$\left.\Delta A A^{A}=180^{\circ}-96^{\circ} 06^{\prime} 45^{\prime \prime}=83^{\circ} 53^{\prime} 15^{\prime \prime}.\right]$
2. Given $a=6, \quad b=5$, and $c=4$, to find A, B and C.
Ans. $\mathrm{A}=82^{\circ} 49^{\prime} 09^{\prime \prime}, \mathrm{B}=55^{\circ} 46^{\circ} 16^{\prime \prime}, \mathrm{C}=41^{\circ} 24^{\prime} 35^{\prime \prime}$.
3. Given $a=71.2 \mathrm{yds}, \quad b=64.8 \mathrm{yds}$, and $c=37 \mathrm{yds}$, to find A, B, and C.

Ans. $\mathrm{A}=84^{\circ} 01^{\prime} 53^{\prime \prime}, \mathrm{B}=64^{\circ} 50^{\prime} 51^{\prime \prime}, \mathrm{C}=31^{\circ} 07^{\prime} 16^{\prime \prime}$.

PROBLEMS.

1. Knowing the distance AB , equal to 600 yards, and the angles $B A C=57^{\circ} 355^{\prime}, A B C=64^{\circ} 51^{\prime}$, find the two distances $A C$ and $B C$.

$$
\text { Ans. }\left\{\begin{array}{l}
A C=643.49 \text { yds. } \\
B C=600.11 \text { yds. }
\end{array}\right.
$$

2. At what horizontal distance from a column, 200 feet high, will it subtend an angle of $31^{\circ} 17^{\prime} 12^{\prime \prime}$?
3. Required the height of a hill D above a horizontal plane $A B$, the distance between A and B being equal to 975 yards, and the angles of elevation at A and B being respectively $15^{\circ} 36^{\prime}$ and $27^{\circ} 29^{\prime}$.
4. The distances $A C$ and $B C$ are found by measurement to bo respectively, 588 feet and 672 feet, and their included angle $55^{\circ} 40^{\prime}$. Required the distance $A B$.

$$
\text { Ans. } \mathrm{DC}=587.61 \mathrm{yds}
$$

 tain the height of a tower, standing on the top of an inaccessible hill, there were measured, the angle of elevation of the top of the hill 40°, and of the top of the tower 51°; then measuring in a direct line 180 feet
farther from the hill, the angle of elevation of the top of the tower was $33^{\circ} 45^{\prime}$; required the height of the tower.

Ans. 83.998 ft .
6. Wanting to know the horizontal distance between two inaccessible objects E and W, the following measurements were made:

$$
\text { viz. : }\left\{\begin{array}{l}
\mathrm{BAW}=40^{\circ} 16^{\prime} \\
\mathrm{WAE}=57^{\circ} 40^{\prime} \\
\mathrm{ABE}=42^{\circ} 22^{\prime} \\
\mathrm{EBW}=71^{\circ} 07^{\prime}
\end{array}\right.
$$

Re
7.
Required the distance EW. Ans. 939.617 yds.
Wanting to know the horizontal distance between two inaccessible objects A and B, and not finding any station from which both of them could be seen, two points C and D were chosen at a distance from each other equal to 200 yards; from the former of these points,
A could be seen, and from the

latter, B; and at each of the points C and D a staff was set up. From C a distance CF was measured, not in the direction DC, equal to 200 yards, and from D, a distance DE equal to 200 yards, and the following angles taken:

$$
\begin{array}{ll}
\mathrm{AFC}=88^{\circ} 00^{\prime}, & \mathrm{BDE}=54^{\circ} 30^{\prime}, \\
\mathrm{BDC}=156^{\circ} 25^{\prime}, & \mathrm{ACF}=54^{\circ} 31^{\prime},
\end{array} \mathrm{BED}=83^{\circ} 30^{\prime}, ~ 30^{\prime} .
$$

Required the distance $A B$.
Ans. 345.459 yds .
8. The distances $A B, A C$, and $B C$, between the points A, B, and C, are known; viz.: $A B=800$ yds., $A C=$ 600 yds , and $\mathrm{BC}=400 \mathrm{yds}$. From a fourth point P, the angles APC and BPC are measured; viz: :

Required the distances $A P, B P$, and $C P$. Required the distances AP, BP, and CP . $\quad \begin{array}{r}\mathrm{AP}=710.198 \mathrm{yds} .\end{array}$ 934.289 yds. 1042.524 yds.

This problem is used in locating the position of buoys in maritime surveying, as follows. Three points, A, B, and C, on shore are known in position. The surveyor stationed at a buoy P, measures the angles APC and BPC. The distances $A P, B P$, and $C P$, are then found as follows

Suppose the circumference of a circle to be described through the points A, B, and P. Draw $C P$, cutting the circumference in D, and draw the lines $D B$ and $D A$.

The angles CPB and $D A B$, being inscribed in the same segment, are equal (B. III., P. XVII, C. 1) ; for a like reason, the angles CPA and DBA are equal: . hence, in the triangle $A D B$, we know two angles and one side; we may therefore, find the side DB. In the triangle ACB, we know the three sides, and we may compute the angle B. Subtracting from this the angle DBA, we have the angle DBC. Now, in the triangle DBC, we have twe sides and their included angle, and we can find the angle DCB. Finally, in the triangle $C P B$, we have two angles and one side, from which data we can find $C P$ and $B P$. In like manner, we can find AP.

ANALYTICAL TRIGONOMETRY.

47. Analytical Trigonometry is that branch of Mathematics which treats of the general properties and relations of trigonometrical functions.
 vertical diameter $B D$ is called the secondary diameter; the point A, from which arcs are usually reckoned, is called the origin of arcs, and the point B, 90° distant, is called the secondary origin. Arcs estimated from A , around toward B , that is, in a direction contrary to that of the motion of the hands of a watch, are considered positive; consequently, those reckoned in a contrary direction must be regarded as negative.

The arc $A B$, is called the first quadrant ; the arc BC , the second quadrant; the arc CD , the third quadrant; and the arc DA, the fourth quadrant. The point at which
8. The distances $A B, A C$, and $B C$, between the points A, B, and C, are known; viz.: $A B=800$ yds., $A C=$ 600 yds , and $\mathrm{BC}=400 \mathrm{yds}$. From a fourth point P, the angles APC and BPC are measured; viz: :

Required the distances $A P, B P$, and $C P$. Required the distances AP, BP, and CP . $\quad \begin{array}{r}\mathrm{AP}=710.198 \mathrm{yds} .\end{array}$ 934.289 yds. 1042.524 yds.

This problem is used in locating the position of buoys in maritime surveying, as follows. Three points, A, B, and C, on shore are known in position. The surveyor stationed at a buoy P, measures the angles APC and BPC. The distances $A P, B P$, and $C P$, are then found as follows

Suppose the circumference of a circle to be described through the points A, B, and P. Draw $C P$, cutting the circumference in D, and draw the lines $D B$ and $D A$.

The angles CPB and $D A B$, being inscribed in the same segment, are equal (B. III., P. XVII, C. 1) ; for a like reason, the angles CPA and DBA are equal: . hence, in the triangle $A D B$, we know two angles and one side; we may therefore, find the side DB. In the triangle ACB, we know the three sides, and we may compute the angle B. Subtracting from this the angle DBA, we have the angle DBC. Now, in the triangle DBC, we have twe sides and their included angle, and we can find the angle DCB. Finally, in the triangle $C P B$, we have two angles and one side, from which data we can find $C P$ and $B P$. In like manner, we can find AP.

ANALYTICAL TRIGONOMETRY.

47. Analytical Trigonometry is that branch of Mathematics which treats of the general properties and relations of trigonometrical functions.
 vertical diameter $B D$ is called the secondary diameter; the point A, from which arcs are usually reckoned, is called the origin of arcs, and the point B, 90° distant, is called the secondary origin. Arcs estimated from A , around toward B , that is, in a direction contrary to that of the motion of the hands of a watch, are considered positive; consequently, those reckoned in a contrary direction must be regarded as negative.

The arc $A B$, is called the first quadrant ; the arc BC , the second quadrant; the arc CD , the third quadrant; and the arc DA, the fourth quadrant. The point at which
an arc terminates, is called its extremity, and an are is said to be in that quadrant in which its extremity is situated. Thus, the are AM is in the first quadrant, the arc AM^{\prime} in the second, the arc $\mathrm{AM}^{\prime \prime}$ in the third, and the are $\mathrm{AM}^{\prime \prime \prime}$ in the fourth.
49. The complement of an are has been defined to be the difference between that arc and 90° (Art. 23) ;
 geometrically considered, the comple-1 ment of an arc is the arc included between the extremity of the are and the secondary origin. Thus, MB is the complement of $A M$; $M^{\prime} B$, the complement of $A M^{\prime} ; M^{\prime \prime} B$, the complement of $\mathrm{AM}^{\prime \prime}$, and so on. When the are is greater than a quadrant, the complement is negative, according to the conventional principle agreed upon (Art. 48). The supplement of an are has been defined to be the difference between that arc and 180° (Art. 24); geometrically considered, it is the arc included between the extremity of the are and the left-hand extremity of the initial diameter. Thus, MC is the supplement of AM, and $M^{\prime \prime} C$ the supplement of $A M^{\prime \prime}$. The supplement is negative, when the are is greater than two quadrants.
50. The sine of an are is the distance from the initial diameter to the extremity of the arc. Thus, PM is the sine of $A M$, and $P^{\prime \prime} M^{\prime \prime}$ is the sine of the arc $\mathrm{AM}^{\prime \prime}$. The term distance is used in the sense of shortest or perpendicular distance.

51. The cosine of an arc is the distance from the secondary diameter to the extremity of the are: thus, NM is the cosine of AM, and $N^{\prime} M^{\prime}$ is the cosine of $A M^{\prime}$.
The cosine may be measured on the initial diameter: thus, $O P$ is equal to the cosine of $A M$, and $O P^{\prime}$ to the cosine of $A M^{\prime}$; that is, the cosine of an arc is equal to the distance, measured on the initial diameter, from the centre of the are to the foot of the sine.
52. The versed-sine of an arc is the distance from the sine to the origin of arcs: thus, PA is the versed-sine of $A M$, and $P^{\prime} A$ is the versed-sine of $A M^{\prime}$.
53. The co-versed-sine of an arc is the distance from the cosine to the secondary origin: thus, NB is the co-versed-sine of $A M$, and $N^{\prime \prime} B$ is the co-versed-sine of $A M^{\prime \prime}$.
54. The tangent of an arc is that part of a perpendicular to the initial diameter, at the origin of arcs, included between the origin and the prolongation of the diameter drawn to the extremity of the arc: thus, AT is the tangent of $A M$, or of $A M^{\prime \prime}$, and $A T^{\prime \prime \prime}$ is the tangent of $A M^{\prime}$, or of $A M^{\prime \prime \prime}$.
55. The cotangent of an are is that part of a perpendicular to the secondary diameter, at the secondary origin, included between the secondary origin and the prolongation of the diameter drawn to the extremity of the arc. (thus, $B T^{\prime}$ is the cotangent of $A M$, or of $A M^{\prime \prime}$, and $B T^{\prime \prime}$ is the cotangent of $A M$, or of $A M^{\prime \prime}$. $\triangle S$
56. The secant of an arc is the distance from the centre of the arc to the extremity of the tangent: thus, OT is the secant of AM, or of AM", and OT'" is the secant of $A M^{\prime}$. or of AM $^{\prime \prime \prime}$.
an arc terminates, is called its extremity, and an are is said to be in that quadrant in which its extremity is situated. Thus, the are AM is in the first quadrant, the arc AM^{\prime} in the second, the are $A M^{\prime \prime}$ in the third, and the arc $\mathrm{AM}^{\prime \prime \prime}$ in the fourth.
49. The complement of an are has been defined to be the difference between that arc and 90° (Art. 23):
 geometrically considered, the complement of an arg is the are included between the extremity of the arc and the secondary origin. Thus, MB is the complement of $A M$; $M B$, the complement of $A M^{\prime} ; M^{\prime \prime} B$, the complement of $\mathrm{AM}^{\prime \prime}$, and so on. When the are is greater than a quadrant, the complement is negative, according to the conventional principle agreed upon (Art. 48). The supplement of an are has been defined to be the difference between that arc and 180° (Art. 24); geometrically considered, it is the are included between the extremity of the arc and the left-hand extremity of the initial diameter. Thus, MC is the supplement of AM, and
$M^{\prime \prime} C$ the supplement of $A M^{\prime \prime}$. The supplement is negative, when the are is greater than two quadrants.
 diameter to the extremity of the arc. Thus, PM is the sine of $A M$, and $P^{\prime \prime} M^{\prime \prime}$ is the sine of the are $A M^{\prime \prime}$. The term distance is used in the sense of shortest or perpendicular distance.

51. The cosine of an arc is the distance from the secondary diameter to the extremity of the are: thus, NM is the cosine of $A M$, and $N^{\prime} M^{\prime}$ is the cosine of $A M^{\prime}$.

The cosine may be measured on the initial diameter: thus, $O P$ is equal to the cosine of $A M$, and $O P^{\prime}$ to the cosine of AM'; that is, the cosine of an arc is equal to the distance, measured on the initial diameter, from the centre of the arc to the foot of the sine.
52. The versed-sine of an arc is the distance from the sine to the origin of arcs: thus, PA is the versed-sine of $A M$, and $P^{\prime} A$ is the versed-sine of $A M^{\prime}$.
53. The co-versed-sine of an arc is the distance from the cosine to the secondary origin: thus, NB is the co-versed-sine of $A M$, and $N^{\prime \prime} B$ is the co-versed-sine of $A M$ ".
54. The tangent of an arc is that part of a perpendicular to the initial diameter, at the origin of arcs, included between the origin and the prolongation of the diameter drawn to the extremity of the are: thus, AT is the tangent of $A M$, or of $A M^{\prime \prime}$, and $A T^{\prime \prime \prime}$ is the tangent of $A M^{\prime}$, or of AM'". $^{\prime \prime}$.
55. The cotangent of an arc is that part of a perpendieular to the secondary diameter, at the secondary origin, included between the secondary origin and the prolongation of the diameter drawn to the extremity of the arc: thus, $B T^{\prime}$ is the cotangent of $A M$, or of $\mathrm{AM}^{\prime \prime}$, and $\mathrm{BT}^{\prime \prime}$ is the cotangent of $A M$, or of $A M^{\prime \prime \prime}$.
56. The secant of an arc is the distance from the centre of the arc to the extremity of the tangent: thus, OT is the secant of AM, or of $A M^{\prime \prime}$, and OT"' is the secant of $A M^{\prime}$. or of $A M^{\prime \prime \prime}$.

5\%. The cosecant of an arc is the distance from the centre of the arc to the extremity of the cotangent: thus, $O T^{\prime}$ is the coseeant of $A M$, or of $A M^{\prime \prime}$, and $O T^{\prime \prime}$ is the cosecant of $A M^{\prime}$, or of $A M^{\prime \prime}$.
The prefix co, as used here, is equivalent to complement; thus, the cosine of an are is the "complement sine," that is, the sine of the complement, of that are, and so on, as explained in Art. 27.

The eight trigonometrical functions above defined are also called circular functions.

RULES FOR DETERMINING THE ALGEBRAIC SIGNS OF CIRCUL,AR FUNCTIONS.
58. All distances estimated upward are regarded as positive; consequently, all distances estimated downward must be considered negative.

Thus, AT, PM, NB, $P^{\prime} M^{\prime}$, are positive, and $A T^{\prime \prime \prime}, P^{\prime \prime} M^{\prime \prime \prime}, P^{\prime \prime} M^{\prime \prime}$, \&c., are negative.

All distances estimated toward the right are regarded as positive; consequently, all distances estimated toward the left must be considered negative.

Thus, NM, BT', PA, \&c., are positive, and $\mathrm{N}^{\prime} \mathrm{M}^{\prime}, \mathrm{BT}^{\prime \prime}$, \&c., are negative.

These two rules are sufficient for determining the algebraic signs of all the circular functions, except the secant and cosecant. For the secant and cosecant, the following is the rule:

All distances estimated from the centre in a direction toward the extremity of the are are regarded as positive;
consequently, all distances estimated in a direction away from the extremity of the are must be considered negative.

Thus, OT, regarded as the secant of AM, is estimated in a direction toward M , and is positive; but OT, regarded as the secant of $\mathrm{AM}^{\prime \prime}$, is estimated in a direction away from $\mathrm{M}^{\prime \prime}$, and is negative.

These conventional rules enable us to give at once the proper sign to any function of an arc in any quadrant.
59. In accordance with the above rules, and the definitions of the circular functions, we have the following principles:

The sine is positive in the first and second quadrants, and negative in the third and fourth.
The cosine is positive in the first and fourth quadrants, and negative in the second and third.
The versed-sine and the co-versed-sine are always positive.
The tangent and cotangent are positive in the forst and third quadrants, and negative in the second and fourth.

The secant is positive in the first and fourth quadrants, and negative in the second and third.

The cosecant is positive in the first and second quadrants, and negative in the third and fourth.
rants, ana negative in the third and fourth.

LIMITING VALUES OF THE CIRCULAR FUNCTIONS.
60. The limiting values of the circular functions are those values which they have at the beginning and the end of the different quadrants. Their numerical values are discovered by following them as the are increases from 0° around to 360°, and so on around through 450°,
$540^{\circ}, \& \mathrm{c}$. The signs of these values are determined by the principle, that the sign of a varying magnitude up to the limit, is the sign at the limit. For illustration, let us examine the limiting values of the sine and the tangent.

If we suppose the arc to be 0 , the sine will be 0 ; as the are increases, the sine increases until the are becomes equal to 90°. when the sine becomes equal to +1 , which is its greatest possible value; as the are increases from 90°, the sine diminishes until the arc becomes equal to 180°, when the sine becomes equal to +0 ; as the are increases from 180°, the sine becomes negative, and increases Qumerically, but decreases algebraically, until the arc becomes equal to 270°, when the sine becomes equal to -1 , which is its least algebraical value; as the arc increases from 270°, the sine decreases numerically, but increases algebraically, until the are becomes 360°, when the sine becomes equal to -0 . It is -0 , for this value of the are, in accordance with the principle of limits.

The tangent is 0 when the arc is 0 , and increases till the arc becomes 90°, when the tangent is $+\infty$; in passing through 90°, the tangent changes from $+\infty$ to $-\infty$, and as the arc increases the tangent decreases numerically, but increases algebraically, till the arc becomes
T equal to 180°, when the tangent becomes equal to -0
from 180° to 270° the tangent is again positive, and at 270° it becomes equal to $+\infty$; from 270° to 360°, the tangent is again negative, and at 360° it becomes equal to -0 .

If we still suppose the arc to increase after reaching 360°, the functions will again go through the same changes, that is, the functions of an are are the same as the functions of that are increased by $360^{\circ}, 720^{\circ}$, \&c.

By discussing the limiting values of all the circular functions we may form the following table:

TABLE I.

$\mathrm{ArO}=0^{\circ}$.	Arc $=90^{\circ}$.	$\mathrm{Aro}=180^{\circ}$.	$\mathrm{Are}=270{ }^{\circ}$	$\mathrm{ArO}=360^{\circ}$.
$\sin =0$	$\sin =1$	sin $=0$	$\sin \quad=-1$	$\sin =-0$
$\cos =1$	$0_{008}=0$	$\cos =-1$	cos $=-0$	$\cos =1$
$\mathrm{v} \cdot \sin =0$	$\mathrm{v}-\mathrm{sin}=1$	$\mathrm{v}-\sin =2$	v sin $=1$	v - $\sin =0$
covesin $=1$	$\mathrm{co}-\mathrm{v} \cdot \mathrm{sin}=0$	cowrsin $=1$	covesin $=2$	co-v-sin $=1$
$\tan =0$	$\tan =\infty$	$\tan =-0$	$\tan =\infty$	$\tan =-0$
$\cot =\infty$	$\cot =0$	cot $=-\infty$	$\cot =0$	cot $1=-\infty$
see $=1$	sec $=\infty$	sec $=-1$	Bec $=-\infty$	$\mathrm{sec}=1$
coseo $=\infty$	cosee $=1$	$\operatorname{cosec}=\infty$	cosec $=-1$	coseo -->

RELAATIONS BETWEEN THE CIRCULAR FUNCTIONS OF ANY ARC.
61. Let $A M$, denoted by a, represent any are whose radius is 1. Draw the lines as represented in the figure. Then we shall have,

MA ME NuTITB.

$$
\begin{equation*}
\mathrm{PM}^{2}+\overline{\mathrm{OP}}^{2}=\overline{\mathrm{OM}}^{2}, \quad \text { or, } \quad \sin ^{2} a+\cos ^{2} a=1 \tag{1.}
\end{equation*}
$$

The symbols $\sin ^{2} a, \cos ^{2} a, \& c_{\text {, }}$ denote the square of the sine of a, the square of the cosine of a, \&e.

From formula (1) we have, by transposition,

$$
\begin{align*}
& \sin ^{2} a=1-\cos ^{2} a ; \ldots \cdot \tag{2.}\\
& \cos ^{2} a=1-\sin ^{2} a \tag{3.}
\end{align*} . . . \cdot
$$

We have, from the figure,

$$
P A=O A-O P
$$

$$
\mathrm{NB}=\mathrm{OB}-\mathrm{ON},
$$

From the similar triangles OAT and OPM, we have,

From the similar triangles $O N M$ and $O B T^{\prime}$, we have, $\mathrm{ON}: \mathrm{NM}:: \mathrm{OB}: \mathrm{BF}^{\prime}$, or, $\sin a: \cos a:: 1: \cot a$.
whence, $\cot a=\frac{\cos a}{\sin a}$.
$\tan a \cot a=1 ;$. (8.)
U whence, by division, \square

$$
\tan a=\frac{1}{\cot a} ; \circlearrowleft \cdot \square \backsim
$$

and

$$
\cot a=\frac{1}{\tan a}
$$

$\mathrm{OP}: \mathrm{OM}:: \mathrm{OA}:$ OT, or, $\quad \cos a: 1:: 1: \sec a ;$
whence,

$$
\begin{equation*}
\sec a=\frac{1}{\cos a} \tag{11.}
\end{equation*}
$$

From the similar triangles ONM and OBT', we have,
$\mathrm{ON}: \mathrm{OM}:: \mathrm{OB}: \mathrm{OT}^{\prime}$, or, $\sin a: 1:: 1: \operatorname{cosec} a$;
whence

$$
\begin{equation*}
\operatorname{cosec} a=\frac{1}{\sin a} \tag{12.}
\end{equation*}
$$

From the right-angled triangle OAT, we have,

$$
\begin{equation*}
\overline{\mathrm{OT}}^{2}=\overline{\mathrm{OA}}^{2}+{\overline{\mathrm{AT}^{2}} ; \quad \text { or, } \quad \sec ^{2} a=1+\tan ^{2} a ~}_{\text {a }} \tag{13.}
\end{equation*}
$$

From the right-angled triangle OBT', we have,

It is to be observed that formulas (5), (7), (12), and (14), may be deduced from formulas (4), (6), (11), and (13), by substituting $90^{\circ}-a$, for a, and then making the proper reductions.

Collecting the preceding formulas, we have the following table:

TABLE II

FUNCTIONS OF NEGATIVE ARCS

62. Let $A M^{\prime \prime}$, estimated from A toward D, be numerically equal to $A M$; then, if we denote the are $A M$ by a, the are $A M^{+\prime \prime}$ will be denoted by - a (Art. 48).

A being the midale point of the are $M^{\prime \prime \prime} A M$, the radius $O A$ bisects the chord $M^{\prime \prime \prime} M$ at right angles (B. III., P . VI.) ; therefore, $\mathrm{PM}^{\prime \prime \prime}$ is numerically equal to $P M$, but $\mathrm{PM}^{\prime \prime \prime}$ being measured downward from the initial diameter is negative, while PM being measured upward is positive, and, therefore, $\mathrm{PM}^{\prime \prime \prime}=-\mathrm{PM}$; OP is equal to the cosine of both $A M^{\prime \prime \prime}$ and $A M$ (Art. 61) hence, we have,

$$
\begin{aligned}
& \sin (-a)=-\sin a \\
& \cos (-a)=\cos a .
\end{aligned}
$$

$$
\sin (-a)=-\sin a
$$

Dividing (1) by (2), member by member, and then dividing (2) by (1), member by member, we have (formulas 6 and 7, Art. 61),
$\int \sqrt{\int} \tan (-a)=-\tan (a) ; \quad \cot (-a)=-\cot a$.
Taking the reciprocals of the members of (2), and then he reciprocals of the members of (1), we have (formulas 11 and 12 , Art. 61),

- $\sec (-a)=\sec a$;

FUNCTIONS OF ARCS

FORMED BY ADDING AN ARC TO, OR SUBTRACTING IT FROM, ANY NUMBER OF QUADRANTS.
63. Let a denote any arc less than 90°. By definition, we have,

$$
\begin{array}{lr}
\sin \left(90^{\circ}-a\right)=\cos a ; & \cos \left(90^{\circ}-a\right)=\sin a . \\
\tan \left(90^{\circ}-a\right)=\cot a ; & \cot \left(90^{\circ}-a\right)=\tan a . \\
\sec \left(90^{\circ}-a\right)=\operatorname{cosec} a ; \quad \operatorname{cosec}\left(90^{\circ}-a\right)=\sec a .
\end{array}
$$

Let the arc $\mathrm{BM}^{\prime}=\mathrm{AM}=\boldsymbol{a}$; then $\mathrm{AM}^{\prime}=90^{\circ}+a$. Draw lines, as in the figure. Then $\mathrm{PM}=\sin a ; \mathrm{OP}=\cos a$; $\mathrm{ON}=\mathrm{P}^{\prime} \mathrm{M}^{\prime}=\sin \left(90^{\circ}+a\right) ; \mathrm{NM}^{\prime}=\cos$ $\left(90^{\circ}+a\right)$.
The right-angled triangles ONM and OPM have the angles $N O M$ and
 POM equal (B. III., P. XV.), the angles ONM' and OPM equal, both being right angles, and therefore (B. I., P. XXV., C. 2), the angles $O^{\prime} \mathrm{N}$ and OMP equal; they have, also, the sides OM^{\prime} and OM equal, and are, consequently (B. I., P. VL), equal in all respects: hence, $\mathrm{ON}=\mathrm{OP}$, and $\mathrm{NM}^{\prime}=\mathrm{PM}$. These are $n u$ merical relations; by the rules for signs, Art. 58, ON and OP are both positive, $N M$ ' is negrative, and $P M$ positive; and hence, algebraically, $\mathrm{ON}=\mathrm{OP}$, and $\mathrm{NM}^{\prime}=-\mathrm{PM}$; therefore, we have,

$$
\sin \left(90^{\circ}+a\right)=\cos a ; \text {.... (1.) }
$$

$$
\cos \left(90^{\circ}+a\right)=-\sin a(2 .)
$$

Dividing (1) by (2), member by member, we have,

$$
\frac{\sin \left(90^{\circ}+a\right)}{\cos \left(90^{\circ}+a\right)}=\frac{\cos a}{-\sin a}
$$

or (formulas 6 and 7, Art. 61),
$\tan \left(90^{\circ}+a\right)=-\cot a$.

In like manner, dividing (2) by (1), member by member, we have,

$$
\cot \left(90^{\circ}\right.
$$

$$
+a)=-\tan a .
$$

Taking the reciprocals of both members of (2), we have (formulas 11 and 12, Art. 61),

$$
\text { ALERE } \sec \left(90^{\circ}+a\right)=-\operatorname{cosec} a
$$

In like manner, taking the reciprocals of both members of (1), we have,

$$
\operatorname{cosec}\left(90^{\circ}+a\right)=\sec a
$$

Again, let $\mathrm{M}^{\prime \prime} \mathrm{C}=\mathrm{AM}=a$; then $A M^{\prime \prime}=180^{\circ}-\alpha$. As before, the right-angled triangles $O P^{\prime \prime} M^{\prime \prime}$ and OPM may be proved equal in all respects, giving the numerical relations, $P^{\prime \prime} M^{\prime \prime}=P M$, and $O P^{\prime \prime}=O P$,
and, by the application of the rules
for signs, Art. 58, may be obtamed,
$P^{\prime \prime} M^{\prime \prime}=P M$, and $O P^{\prime \prime}=-O P$; hence,
$\mathrm{P}^{\prime \prime} \mathrm{M}^{\prime \prime}=\mathrm{PM}$, and $\mathrm{OP}=-\mathrm{OP}$; hence,
$\sin \left(180^{\circ}-a\right)=\sin a ;$ $\cos \left(180^{\circ}-a\right)=-\cos a$.

From these equations (1) and (2), and formulas (6), $\int(7),(11)$, and (12), Art. 61, may be obtained, as before,

$$
\tan \left(180^{\circ}-a\right)=-\tan a
$$

$$
\cot \left(180^{\circ}-a\right)=-\cot a
$$

$$
\begin{aligned}
\sec \left(180^{\circ}-a\right) & =-\sec a \\
\operatorname{cosec}\left(180^{\circ}-a\right) & =\operatorname{cosec} a
\end{aligned}
$$

In like manner, the values of the several functions of the remaining ares in question may be obtained in terms of functions of the are a. Tabulating the results, we have the following

TABLE III.

It will be observed that, when the arc is added to, or
subtracted from, an even number of quadrants, the name of the function is the same in both columns; and when the arc is added to, or subtracted from, an odd number of quadrants, the names of the functions in the two columns are contrary: in all cases, the algebraic sign is determined by the rules already given (Art. 58).

By means of this table, we may find the functions of any arc in terms of the functions of an arc less than 90°. Thus,
$\square \square]^{\sin } 115^{\circ}=\sin \left(90^{\circ}+25^{\circ}\right)=\cos 25^{\circ}$, $\sin 284^{\circ}=\sin \left(270^{\circ}+14^{\circ}\right)=-\cos 14^{\circ}$, $\sin 400^{\circ}=\sin \left(360^{\circ}+40^{\circ}\right)=\sin 40^{\circ}$, $\tan 210^{\circ}=\tan \left(180^{\circ}+30^{\circ}\right)=\tan 30^{\circ}$.
\&c.
\&c.
\&c.

PARTICULAR VALUES OF CERTATN FUNCTIONS.
64. Let MAM be any arc, denoted by $2 a, M^{\prime} M$ its chord, and $O A$ a radius drawn perpendicular to $M^{\prime} M$: then will $P M=\frac{1}{2} M^{\prime} M$, and $A M=\frac{1}{2} M A M$ (B. III., P. VI). But PM is the sine of $A M$, or, $P M=\sin a$: hence,

that is, the sine of equal to one half the chord of twice the are.

Let $\mathrm{M}^{\prime} \mathrm{AM}=60^{\circ}$, then will $\mathrm{AM}=30^{\circ}$, and $\mathrm{M}^{\prime} \mathrm{M}$ will equal the radius, or 1 (B. V., P. IV.): hence, we have
that is, the sine of 30° is equal to half the radius.

Also, $\quad \cos 30^{\circ}=\sqrt{1-\sin ^{2} 30^{\circ}}=\frac{1}{2} \sqrt{3}$
ence,

$$
\tan 30^{\circ}=\frac{\sin 30^{\circ}}{\cos 30^{\circ}}=\sqrt{\frac{1}{3}} .
$$

U ${ }^{\text {nen }} M^{\prime} A M=90^{\circ}$: then will $A M=45^{\circ}$, and $M^{\prime} M=$ $\sqrt{2}$ (B. V., P. III.) : hence, we have
$\begin{aligned} \sin 45^{\circ} & =\frac{1}{2} \sqrt{2} ; \\ \cos 45^{\circ} & =\sqrt{1-\sin ^{2} 45^{\circ}}=\frac{1}{2} \sqrt{2}\end{aligned}$ Alsó,
hence,

$$
\tan 45^{\circ}=\frac{\sin 45^{\circ}}{\cos 45^{\circ}}=1
$$

Many other numerical values might be deduced.

FORMULAS

EXPRESSING RELATIONS BETWEAN THE CIRCULAAR FUNCTIONS OF DIFFERENT ARCS.
65. Let $A B$ and $B M$ represent two ares, having the common radius 1 ; denote the first by a, and the second by b; then, $\mathrm{AM}=$ $a+b$. From M draw PM perpendicular to $C A$, and $N M$ perpendicular to $C B$; from N draw $N P^{\prime}$ perpendicular, and $N L$ parallel, to $C A$.

Then, by definition, we have
$\mathrm{PM}=\sin (a+b), \quad \mathrm{NM}=\sin b, \quad$ and $\quad \mathrm{CN}=\cos b$
From the figure, we have

$$
\begin{equation*}
P M=P L+L M \text {. } \tag{1.}
\end{equation*}
$$

From the right-angled triangle $C P^{\prime} N$ (Art. 37), we have
or, since

$$
\mathrm{P}^{\prime} \mathrm{N}=\mathrm{CN} \sin a
$$

the right- $\mathrm{P}^{\prime} \mathrm{N}=\mathrm{CN} \sin a ;$

$$
P^{\prime} N=P L
$$

$\mathrm{PL}=\cos b \sin a=\sin a \cos b$. \qquad
Since the triangle MLN is similar to CP'N (B. IV., P. XXI.), the angle LMN is equal to the angle P'CN; hence, from the right-angled triangle $M L N$, we have
$\mathrm{LM}=\mathrm{NM} \cos a=\sin b \cos a=\cos a \sin b$.
Substituting the values of PM, PL, and LM, in equation (1), we have LIECAS
$\sin (a+b)=\sin a \cos b+\cos a \sin b ; \quad$ (A.)
that is, the sine of the sum of two ares is equal to the sine of the first into the cosine of the second, plus the cosine of the first into the sine of the second.

Since the above formula is true for any values of a and b, we may substitute $-b$ for b; whence,

$$
\sin (a-b)=\sin a \cos (-b)+\cos a \sin (-b)
$$

out (Art. 62)

$$
\cos (-b)=\cos b, \quad \text { and } \sin (-b)=-\sin b ;
$$

hence, $\quad \sin (a-b)=\sin a \cos b-\cos a \sin b$;
that is, the sine of the difference of two ares is equal to the sine of the first into the cosine of the second, minus the cosine of the first into the sine of the second.

If, in formula (B), we substitute $\left(90^{\circ}-a\right)$, for a, we have
$\sin \left(90^{\circ}-a-b\right)=\sin \left(90^{\circ}-a\right) \cos b-\cos \left(90^{\circ}-a\right) \sin b ; \quad$ (2.)
but (Art. 63),
$\sin \left(90^{\circ}-a-b\right)=\sin \left[90^{\circ}-(a+b)\right]=\cos (a+b)$,
and,
J $\cos \left(90^{\circ}-a\right)=\sin a ;$

$$
\begin{equation*}
\cos (a+b)=\cos a \cos b-\sin a \sin b \tag{C.}
\end{equation*}
$$

that is, the cosine of the sum of two ares is equal to the rectangle of their cosines, minus the rectangle of their sines.

If, in formula (C), we substitute $-b$, for b, we find $\cos (a-b)=\cos a \cos (-b)-\sin a \sin (-b)$ $\cos (a-b)=\cos a \cos b+\sin a \sin b ;$ (D.)
that is, the cosine of the difference of two ares is equal to the rectangle of their cosines, plus the rectangle of their sines.

If we divide formula (A) by formula (C), member by member, we have

$$
\frac{\sin (a+b)}{\cos (a+b)}=\frac{\sin a \cos b+\cos a \sin b}{\cos a \cos b-\sin a \sin b}
$$

Dividing both terms of the second member by $\cos \alpha \cos b$, recollecting that the sine divided by the cosine is equal to the tangent, we find

that is, the tangent of the sum of two ares, is equal to the sum of their tangents, divided by 1 minus the rectangle of their tangents.

If, in formula (E), we substitute $-b$ for b ing that $\tan (-b)=-\tan b$, we have

$\tan (a-b)=\frac{\tan a-\tan b}{1+\tan a \tan b}$
 [A $\quad \tan (a-b)=\frac{\tan a-\tan b}{1+\tan a \tan b}$

that is, the tangent of the difference of two ares is equal to the difference of their tangents, divided by 1 plas the rectangle of their tangents.

In like manner, dividing formula (C) by formula (A), member by member, and reducing, we have

$$
\begin{equation*}
\cot (a+b)=\frac{\cot a \cot b-1}{\cot a+\cot b} \tag{G.}
\end{equation*}
$$

and thence, by the substitution of $-b$ for b,

FUNCTIONS OF DOUBLE ARCS AND HALF ARCS 66. If, in formulas (A), (C), (E), and (G), we make $b=a$, we find

$$
\begin{equation*}
\cot (a-b)=\frac{\cot a \cot b+1}{\cot b-\cot a} \tag{1.}
\end{equation*}
$$

Taking the reciprocals of both members of the last two formulas, we have also,

We also have, from the same equations,

$$
\begin{equation*}
1-\cos 2 a=2 \sin ^{2} a ; \tag{3.}
\end{equation*}
$$(4.)

Dividing equation (A), first by equation (4), and then by equation (3), member by member, we have

$$
\begin{align*}
& \frac{\sin 2 a}{1+\cos 2 a}=\tan a \tag{5.}\\
& \frac{\sin 2 a}{1-\cos 2 a}=\cot a
\end{align*}
$$

, we have

$\triangle \cot \frac{1}{2} a=\frac{1+\cos a}{\sin a}$, and $\tan \frac{1}{2} a=\frac{1-\cos a}{\sin a}$.

\square QTDT ADDITIONAL FORMUL,AS

6\%. If formulas (A) and (B) are first added, member to member, and then subtracted, member from member, and the same operations are performed upon (C) and (D),

$$
1+\cos 2 a=2 \cos ^{2} a
$$ we obtain

$$
\begin{align*}
& \text { whence, by solving these equations, } \\
& \sin a=\sqrt{\frac{1-\cos 2 a}{2}} ; \tag{1.}\\
& D I \cdot \square \cdot \cos a=\sqrt{\frac{1+\cos 2 a}{2}} \cdot \cdot \dot{\text { (2.) }}
\end{align*}
$$

$\sin (a+b)+\sin (a-b)=2 \sin a \cos b$
$\sin (a+b)-\sin (a-b)=2 \cos a \sin b$
$\cos (a+b)+\cos (a-b)=2 \cos a \cos b$ $\cos (a-b)-\cos (a+b)=2 \sin a \sin b$

If in these we make

and
$a-b=q$
and then substitute in the aoove formulas, we obtain

$$
\begin{aligned}
& \sin p+\sin q=2 \sin \frac{1}{2}(p+q) \cos \frac{1}{2}(p-q) . \\
& \sin p-\sin q=2 \cos \frac{1}{2}(p+q) \sin \frac{1}{2}(p-q) . \\
& \cos p+\cos q=2 \cos \frac{1}{2}(p+q) \cos \frac{1}{2}(p-q) . \\
& \cos q-\cos p=2 \sin \frac{1}{2}(p+q) \sin \frac{1}{2}(p-q) .
\end{aligned}
$$

From formulas (L) and (K), by division, we obtain
$\frac{\sin p-\sin q}{\sin p+\sin q}=\frac{\cos \frac{1}{2}(p+q) \sin \frac{1}{2}(p-q)}{\sin \frac{1}{2}(p+q) \cos \frac{1}{2}(p-q)}$

$$
=\frac{\tan \frac{1}{2}(p-q)}{\tan \frac{1}{8}(p+q)}
$$

$$
D \square \cap=\frac{\tan \frac{1}{2}(p-q)}{\tan \frac{1}{2}(p+q)} .
$$

Hence since p and q represent any ares whatever, the sum of the sines of two ares is to their difference, as the tangent of one half the sum of the arcs is to the tangent of one half their difference.

Also, in like manner, we obtain

$$
\begin{align*}
& \frac{\sin p+\sin q}{\cos p+\cos q}=\frac{\sin \frac{1}{2}(p+q) \cos \frac{1}{2}(p-q)}{\cos \frac{1}{2}(p+q) \cos \frac{1}{2}(p-q)}=\tan \frac{1}{2}(p+q) \\
& \frac{\sin p-\sin q}{\cos p+\cos q}=\frac{\cos \frac{1}{2}(p+q) \sin \frac{1}{2}(p-q)}{\cos \frac{1}{2}(p+q) \cos \frac{1}{2}(p-q)}=\tan \frac{1}{2}(p-q), \tag{3.}\\
& \frac{\sin p+\sin q}{\sin (p+q)}=\frac{\sin \frac{1}{2}(p+q) \cos \frac{1}{2}(p-q)}{\sin \frac{1}{2}(p+q) \cos \frac{1}{2}(p+q)}=\frac{\cos \frac{1}{2}(p-q)}{\cos \frac{1}{2}(p+q)}, \\
& \sin p-\sin q=\frac{\sin \frac{1}{2}(p-q) \cos \frac{1}{2}(p+q)}{2}=\sin \frac{1}{2}(p-q) \\
& \overline{\sin (p+q)}=\frac{\sin \frac{1}{2}(p+q) \cos \frac{1}{2}(p+q)}{\sin \frac{1}{2}(p+q)} \\
& \sin (p-q)=\sin \frac{1}{2}(p-q) \cos \frac{1}{2}(p-q)=\cos \frac{1}{2}(p-q) \\
& \frac{\sin p-\sin q}{\sin }=\frac{\sin \frac{1}{2}(p-q) \cos \frac{1}{2}(p+q)}{\sin }=\frac{\cos \frac{1}{2}(p-q)}{\cos \frac{1}{2}(p+q)}, \tag{6.}\\
& \text { all of which give proportions analogous to that deduced } \\
& \text { from formula (1). } \\
& \text { Since the second members of (6) and (4) are the same, } \\
& \text { we have } \\
& \sin p-\sin q=\sin (p+q) \\
& \sin (p-q)=\frac{\sin (p+q)}{\sin p+\sin q} ; . \tag{7.}
\end{align*}
$$

A that is, the sine of the difference of two ares is to the difference of the sines, as the sum of the sines is to the sine of the sum.

W All of the preceding formulas may be made homogeneous in terms of R, R being any radius, as explained in Art. 30 ; or, we may simply introduce R, as a factor, into each term as many times as may be necessary to render all of its terms of the same degree.

The cosines of the corresponding ares may be com-

METHOD OF COMPUTING A TABLE OF NATURAL SINES.
68. Since the length of the semi-circumference of a circle whose radius is 1 , is equal to the number $3.14159265 \ldots$, if we divide this number by 10800 , the number of minutes in 180°, the quotient, $.0002908882 \ldots$, will be the length of the are of one minute; and since this are is so small that it does not differ materially from its sine or tangent, this may be placed in the table as the sine of one minute.

Formula (3) of Table II, gives

$$
\cos 1^{\prime}=\sqrt{1-\sin ^{2} 1^{\prime}}=.9999999577
$$

Having thus determined, to a near degree of approximation, the sine and cosine of one minute, we take the first formula of Art. 67, and put it under the form,

$$
\sin (a+b)=2 \sin a \cos b-\sin (a-b)
$$

and make in this, $b=1^{\prime}$, and then in succession,

$$
a=1, \quad a=2^{\prime}, \quad a=3^{\prime}, \quad a=4^{\prime}, \quad \& c
$$

$$
\begin{aligned}
& \text { and obtain, } \\
& \qquad \sin 2^{\prime}=2 \sin 1^{\prime} \cos 1^{\prime}-\sin 0=.0005817764 .
\end{aligned}
$$

$$
\sin 3^{\prime}=2 \sin 2^{\prime} \cos 1^{\prime}-\sin 1^{\prime}=.0008726646 \ldots
$$

$$
D \sin 4^{\prime}=2 \sin 3^{\prime} \cos 1^{\prime}-\sin 2^{\prime}=0.0011635526 \ldots
$$

$$
\sin 5^{\prime}=\quad \& c
$$

thus obtaining the sine of every number of degrees and minutes from 1^{\prime} to 45°.
puted by means of equation (1).

Having found the sines and cosines of ares less than 45°, those of the ares between 45° and 90° may be deduced, by considering that the sine of an arc is equal to the cosine of its complement, and the cosine equal to the sine of its complement. Thus,
$\sin 50^{\circ}=\sin \left(90^{\circ}-40^{\circ}\right)=\cos 40^{\circ}, \quad \cos 50^{\circ}=\sin 40^{\circ}$,
in which the second members are known from the previous computations.

To find the tangent of any are, divide its sine by its cosine. To find the cotangent, take the reciprocal of the corresponding tangent.

As the accuracy of the calculation of the sine of any arc, by the above method, depends upon the accuracy of each previous calculation, it would be well to verify the work, by calculating the sines of the degrees separately (after having found the sines of one and two degrees), by the last proportion of Art. 67. Thus,

$$
\sin 1^{\circ}: \sin 2^{\circ}-\sin 1^{\circ}:: \sin 2^{\circ}+\sin 1^{\circ}: \sin 3^{\circ} ;
$$

is the same as that included between the planes AOC and $A O B$; and the side a is the measure of the plane angle BOC, O being the centre of the sphere, and OB the radius, equal to 1 .
71. Spherical triangles, like plane triangles, are divided into two classes, right-angled spherical tri-
angles, and oblique-angled spherical triangles. Each class will be considered in turn.

We. shall, as before, denote the angles by the capital letters A, B, and C, and the sides opposite by the small letters a, b, and c.

\%. For the purpose of deducing the formulas required in the solution of spherical triangles, we shall suppose the triangles to be situated on spheres whose radii are equal to 1. The formulas thus deduced may be rendered applicable to triangles lying on any sphere, by making them homogeneous in terms of the radius of that sphere, as explained in Art. 30. The only cases considered will be those in which each of the sides and angles is less than 180°.
Any angle of a spherical triangle is the same as the diedral angle included by the planes of its sides, and its measure is equal to that of the angle included between two right lines, one in each plane, and both perpendicular to their common intersection at the same point (B. VI, D. 4).

The radius of the sphere being equal to 1 , each side of the triangle will measure the angle, at the centre, subtended by it. Thus, in the triangle $A B C$, the angle at A
69. Spherical Trigonometry is that branch of Mathematics which treats of the solution of spherical triangles. In every spherical triangle there are six parts: three sides and three angles. In general, any three of these parts being given, the remaining parts may be found.

GENERAL PRINCIPLES

 and let O be the centre of the sphere on which it is situated. Denote the angles of the triangle by the letters A, B, and C, and the sides opposite by the letters a, b, and c, recollecting that B and C may change places, provided that b and c change places at the same time.Draw $O A, O B$, and $O C$, each equal to 1. From B, draw $B P$ perpendicular to $O A$, and frem P draw $P Q$ perpendicular to $O C$; then join the points Q and B, by the line $Q B$. The line QB will be perpendicular to $O C$ (B. VI., P. VI.), and the angle $P Q B$ will be equal to the inclination of the
planes $O C B$ and $O C A$; that is, it will be equal to the spherical angle C.

We have, from the figure;
$\mathrm{PB}=\sin c, \quad \mathrm{OP}=\cos c, \quad \mathrm{QB}=\sin a, \quad \mathrm{OQ}=\cos a$.

From the right-angled triangles $O Q P$ and $Q P B$, we have $O Q=O P \cos A O C$; or, $\cos a=\cos c \cos b$. (1.) $\mathrm{PB}=\mathrm{QB} \sin \mathrm{PQB} ; \quad$ or, $\quad \sin c=\sin a \sin C$.

From the right-angled triangle QPB, we have
If, in (2), we change c and C into b and B, we have

$$
\sin b=\sin a \sin \mathrm{~B}
$$

If, in (3), we change b and C into c and B, we have $\cos B=\cot a \tan c$.

If, in (4), we change b, c, and C, into c, b, and B, we have

$$
\sin c=\tan b \cot \mathrm{~B}
$$

Multiplying (4) by (7), member by member, we have
$\sin b \sin c=\tan b \tan c \cot \mathrm{~B} \cot \mathrm{C}$.
Dividing both members by $\tan b \tan c$, we have
but, from the right-angled triangle $P Q O$, we have $\mathrm{QP}=\mathrm{OQ} \tan \mathrm{QOP}=\cos a \tan b ;$

$$
\cos b \cos c=\cot \mathrm{B} \cot \mathrm{C}
$$

and substituting for $\cos b \cos c$, its value, $\cos a$, taken from (1), we have
$\cos a=\cot \mathrm{B} \cot \mathrm{C}$.
(8.)

From the right-angled triangle OQP, we have $\sin Q O P$, or $\sin b=\frac{Q P}{O P}$
but, from the right-angled triangle QPB, we have $\square \square \mathrm{QP}=\mathrm{PB} \cot \mathrm{PQB}=\sin c \cot \mathrm{C}$; \triangle substituting for $Q P$ and $O P$ their values, we have

$$
\begin{equation*}
\sin b=\frac{\sin c \cot C}{\cos c}=\tan c \cot C . \tag{4.}
\end{equation*}
$$

Formula (6) may be written under the form
4 DE NUTab Embition
Substituting for $\cos a$, its value, $\cos b \cos c$, taken from (1), and reducing, we have

BIDTD $\cos B \leq \frac{\cos b \sin c}{\sin a}$

Again, substituting for $\sin c$, its value, $\sin a \sin C$, taken from (2), and reducing, we have

Ohanging B, b, and C, in (9), into C, c, and B, we have

(1) $\cos C=\cos c \sin \mathrm{~B}$.

These ten formulas are sufficient for the solution of any right-angled spherical triangle whatever. For the purpose of classifying them under two general rules, and for convenience in remembering them, these formulas are usually put under other forms by the use of

NAPIER'S CIRCULAR PARTS

73. The two sides about the right angle, the complements of their opposite angles, and the complement of the hypothenuse, are called Napier's Circular Parts.

If we take any three of the five parts, as shown in the figure, they will either be adjacent to each other, or one of them will be separated from each of the two others by an intervening part. In the first case, the one lying between the two other parts is called the middle part, and the two others, adjacent parts. In the second case, the one separated from both the other parts, is called the middle part, and the two others, opposite parts. Thus, if $90^{\circ}-a$ is the middle part, $90^{\circ}-\mathrm{B}$ and $90^{\circ}-\mathrm{C}$ are adjacent parts; and b and c are opposite parts; if c is the middle part, b and $90^{\circ}-\mathrm{B}$ are adjacent parts (the right angle not being considered), and $90^{\circ}-\mathrm{C}$ and $90^{\circ}-a$ are opposite parts : and similarly, for each of the other parts, taken as a middle part.
74. Let us now consider, in succession, each of the five parts as a middle part, when the two other parts are opposite. Beginning with the hypothenuse, we have, from formulas (1), (2), (5), (9), and (10), Art. 72,

$$
\begin{array}{ll}
\sin \left(90^{\circ}-a\right) & =\cos b \cos c ; \\
\sin c & =\cos \left(90^{\circ}-a\right) \cos \left(90^{\circ}-\mathrm{C}\right) \\
\sin b & =\cos \left(90^{\circ}-a\right) \cos \left(90^{\circ}-\mathrm{B}\right) \\
\sin \left(90^{\circ}-\mathrm{B}\right) & =\cos b \cos \left(90^{\circ}-\mathrm{C}\right) ; \\
\sin \left(90^{\circ}-\mathrm{C}\right) & =\cos c \cos \left(90^{\circ}-\mathrm{B}\right)
\end{array}
$$

Comparing these formulas with the figure, we see that
The sine of the midalle part is equal to the rectangle of the cosines of the opposite parts.

Let us now take the same middle parts, and the other parts adjacent. Formulas (8), (7), (4), (6), and (3), Art. 72 , give

$$
\begin{equation*}
\sin \left(90^{\circ}-a\right)=\tan \left(90^{\circ}-\mathrm{B}\right) \tan \left(90^{\circ}-\mathrm{C}\right) ; \tag{7.}
\end{equation*}
$$

$\begin{aligned} & \sin c \\ & \sin b=\tan b \tan \left(90^{\circ}-\mathrm{B}\right) ; \\ &=\tan c \tan \left(90^{\circ}-\mathrm{C}\right) ;\end{aligned}$
$\sin b \quad=\tan c \tan \left(90^{\circ}-\mathrm{C}\right) ;$. . . (8.)
$\sin \left(90^{\circ}-\mathrm{B}\right)=\tan \left(90^{\circ}-a\right) \tan c ;$
$B T B \sin \left(90^{\circ}-C\right)=\tan \left(90^{\circ}-a\right) \tan b$.
Comparing these formulas with the figure, we see that
The sine of the middle part is equal to the rectangle of the tangents of the adjacent parts.

These two rules are called Napier's rules for circular parts, and are sufficient to solve any right-angled spherical triangle. \qquad
75. In applying Napier's rules for circular parts, the part sought will be determined by its sine. Now, the same sine corresponds to two different arcs, or angles, supplements of each other; it is, therefore, necessary to discover such relations between the given and the required parts, as will serve to point out which of the two ares, or angles, is to be taken.

Two parts of a spherical triangle are said to be of the same species, when they are each less than 90°, or each greater than 90°; and of different species, when one is less and the other greater than 90°

From formulas (9) and (10), Art. 72, we have,
$\sin C \cos B$
$=\frac{\cos B}{\cos b}$

$$
\sin B=\frac{\cos C}{\cos c}
$$

since the angles B and C are each less than 180°, their sines must always be positive: hence, $\cos B$ must have the same sign as $\cos b$, and the $\cos C$ must have the same sign as cos c. This can only be the case when B is of the same species as b, and C of the same species as c; that is, each side about the right angle is always of the same species as its opposite angle.

From formula (1), we see that when a is less than 90°, or when $\cos a$ is positive, the cosines of b and c will have the same sign; and hence, b and c will be of the same species: when a is greater than 90°, or when $\cos a$ is negative, the cosines of b and c will have contrary signs, and hence b and c will be of different species:
therefore, when the hypothenuse is less than 90°, the two sides about the right angle, and consequently the two oblique angles, will be of the same species; when the hypothenuse is greater than 90°, the two sides about the right angle, and consequently the two oblique angles, will be of different species.

These two principles enable us to determine the nature of the part sought, in every case, except when an oblique angle and the side opposite are given, to find the remaining parts. In this case, there may be two solutions, one solution, or no solution.

There may be two cases:
1°. Let there be given B and b, and B acute. Construct B and prolong its sides till they meet in ' B^{\prime}. Then will $B C B^{\prime}$ and $B A B^{\prime}$
 be semi-circumferences of great circles, and the spherical angles B and B^{\prime} will be equal to each other. As B is acute, its measure is the longest arc of a great circle that can be drawn perpendicular to the side $B A$ and included between the sides of the angle B (B. IX., Gen. S. 2); hence, if the given side is greater than the measure of the given angle opposite, that is, if
A $b>B$, no triangle can be constructed, that is, there can be no solution: if $b=B, B C$ and $B A^{\prime}$ will each be a quadrant (B. IX., P. IV.), and the triangle $B A^{\prime} C^{\prime}$, or its equal $\mathrm{B}^{\prime} \mathrm{A}^{\prime} \mathrm{C}^{\prime}$, will be birectangular (B. IX., P. XIV., C. 8), and there will be but one solution: if $b<\mathrm{B}$, there will be two solutions, $B A C$ and $B^{\prime} A C$, the reguired parts of one being supplements of the required parts of the other.

Since $\mathrm{B}<90^{\circ}$, if $b<\mathrm{B}, b$ differs more from 90° than B does; and if $b>B, b$ differs less from 90° than B.

2d. Let B be obtuse. Construct B as before. As B is obtuse, its measure is the shortest arc of a great circle that can be drawn perpendicular to the side $B A$ and included between the sides of the angle B (B. IX., Gen. S. 2); hence, if $b<B$, there can be no solution: if $b=B$, the corresponding triangle, $B^{\prime} C^{\prime}$ or $B^{\prime} A^{\prime} C^{\prime}$, will be birectangular and there will be but one solution, as before: and if $b>B$, there will be two solutions, $B A C$ and $B^{\prime} A C$.

Since $B>90^{\circ}$, if $b>B, b$ differs more from 90° than B does; and if $b<B, b$ differs less from 90° than B.

Hence, it appears, from both cases, that
If b differs more from 90° than B, there will be two solutions, the required parts in the one case being supplements of the required parts in the other case.
If $b=B$, the triangle will be birectangular, and there will be but one solution.

If b differs less from 90° than B , the triangle can not be constructed, that is, there will be no solution.
NIVARSDADADUND
SOLUTION OF RIGHT-ANGLED SPHERICAL TRIANGLES.
76. In a right-angled spherical triangle, the right angle is always known. If any two of the other parts are given, the remaining parts may be found by Napier's rules for circular parts. Six cases may arise. There may be given,
I. The hypothenuse and one side.
II. The hypothenuse and one oblique angle.
III. The two sides about the right angle.
IV. One side and its adjacent angle.
V. One side and its opposite angle.
VI. The two oblique angles.

In any one of these cases, we select that part which is either adjacent to, or separated from, each of the other given parts, and calling it the middle part, we employ that one of Napier's rules which is applicable. Having determined a third part, the two others may then be found in a similar manner. It is to be observed, that the formulas employed are to be rendered homogeneous, in terms of R, as explained in Art, 30. This is done by simply multiplying the radius, R, into the middle part.

$$
\text { 1. Given } a=105^{\circ} 17^{\prime} 29^{\prime \prime}, \text { and } b=
$$

$$
38^{\circ} 47^{\prime} 11^{\prime \prime} \text {, to find } \mathrm{C}, \mathrm{c} \text {, and } \mathrm{B} \text {. }
$$

Since $a>90^{\circ}, b$ and c must be of different species, that is, $c>90^{\circ}$, and hence 930. NUEVOLEO

Operation.

(R)

Formula (10), Art. 74 , gives for $90^{\circ}-\mathrm{C}$, middle part,

$\square \int \log \cos C=\log \cot a+\log \tan b-10$;

[^0]Formula (2), Art. 74, gives for c, middle part,
2. Given $b=51^{\circ} 30^{\prime}$, and $\mathrm{B}=58^{\circ} 35^{\prime}$, to find a, c, and C.

Because $b<B$, there are two solutions.

Operation.

$\log \sin a\left(105^{\circ} 17^{\prime} 29^{\prime \prime}\right) \quad 9.984346$
$\log \sin \mathrm{C}\left(102^{\circ} 41^{\prime} 33^{\prime \prime}\right) \quad 9.989256$
. $\log \sin c \quad \underline{9.973602}$
Formula (4) gives for $90^{\circ} \perp B$, middle part,
$\log \cos B=\log \sin C+\log \cos b-10$
$\log \sin \mathrm{C}\left(102^{\circ} 41^{\prime} 33^{\prime \prime}\right) \quad 9.989256$
$\log \cos b \quad\left(38^{\circ} 47^{\prime} 11^{\prime \prime}\right) \quad 9.891808$

$$
\therefore B=40^{\circ} 29^{\prime} 50^{\prime \prime} .
$$

Ans. $c=109^{\circ} 46^{\prime} 32^{\prime \prime}, \mathrm{B}=40^{\circ} 29^{\prime} 50^{\prime \prime}, \mathrm{C}=102^{\circ} 41^{\prime} 33^{\prime \prime}$,

It is better, in all cases, to find the required parts in terms of the two given parts. This may always be done
by one of the formulas of Art. 74. Select the formula
which contains the two given parts and the required part,
and transform it, if necessary, so as to find the required
part in terms of the given parts.
Thus, let a and B be given, to find C. Regarding
$\int-90^{\circ}-a$ as a middle part, we have, from formula (6),

$$
\text { whence, } \quad \cot C=\frac{\cos a}{\cot B}
$$

and, by the application of logarithms, 4 LI

$$
\log \cot C=\log \cos a+(a . c .) \log \cot B
$$

from which C may be found. In like manner, other cases may be treated.

As a check, to test the accuracy of the above work, formula (2) may be used. Thus, from that formula,
$\log \sin c=\log \sin a+\log \sin \mathrm{C}-10$
As found above,
 9.962392 9.922903 9.885295

As the test is satisfied, the work is probably correct. Other cases may be treated in like manner.
∞ D
3. Given $a=86^{\circ} 51^{\prime}$, and $\mathrm{B}=18^{\circ} 03^{\prime} 32^{\prime \prime}$, to find b, , and C. $\int 0^{\prime \prime}$ ($80^{\circ} 41^{\prime} 14^{\prime \prime}, \mathrm{C}=88^{\circ} 58^{\prime} 25^{\prime \prime}$

Ans. $b=18^{\circ} 01^{\prime} 50^{\prime \prime}, c=86^{\circ} 41^{\prime} 14^{\prime \prime}, \mathrm{C}=88^{\circ} 58^{\prime} 25^{\prime \prime}$.
4. Given $b=155^{\circ} 27^{\prime} 54^{\prime \prime}$, and $c=29^{\circ} 46^{\prime} 08^{\prime \prime}$, to find
a, B, and C.
Ans. $a=142^{\circ} 09^{\prime} 13^{\prime \prime}, \mathrm{B}=137^{\circ} 24^{\prime} 21^{\prime \prime}, \mathrm{C}=54^{\circ} 01^{\prime} 16^{\prime \prime}$.

$$
\text { 5. Given } c=73^{\circ} 41^{\prime} 35^{\prime \prime} \text {, and } \mathrm{B}=99^{\circ} 17^{\prime} 33^{\prime \prime} \text {, to find }
$$ a, b, and C.

 6. Given $b=115^{\circ} 20^{\prime}$, and $B=91^{\circ} 01^{\prime} 47^{\prime \prime}$, to find a, c, and C.

7. Given $B=47^{\circ} 13^{\prime} 43^{\prime \prime}$, and $C=126^{\circ} 40^{\prime} 24^{\prime \prime}$, to find a, b, and c.
Ans. $a=133^{\circ} 32^{\prime} 26^{\prime \prime}, \quad b=32^{\circ} 08^{\prime} 56^{\prime \prime}, c=144^{\circ} 27^{\prime} 03^{\prime \prime}$.

QUADRANTAL SPHERICAL TRLANGLES.

77. A Quadrantal Spherieal Triangle is one in which one side is equal to 90°. To solve such a triangle, we pass to its supplemental polar triangle, by subtracting each side and each angle from 180° (B. IX., P. VL). The resulting polar triangle will be right-angled, and may be solved by the rules already given. The supplemental polar triangle of any quadrantal triangle being solved, the parts of the given triangle may be found by subtracting each part of the supplemental triangle from 180°.

Example.

Let $A^{\prime} B^{\prime} C^{\prime}$ be a quadrantal triangle, in

$$
c^{\prime}=18^{\circ} 37^{\prime}
$$

Passing to the supplemental polar triangle, we have

$$
A=90^{\circ}, \quad b=104^{\circ} 18^{\prime}, \quad \text { and } \quad C=161^{\circ} 23^{\prime}
$$

A Solving this triangle by previous rules, we find $a=76^{\circ} 25^{\prime} 11^{\prime \prime}, \quad c=161^{\circ} 55^{\prime} 20^{\prime \prime}, \quad \mathrm{B}=94^{\circ} 81^{\prime} 21^{\prime \prime}$;
hence, the required parts of the given quadrantal triangle $A^{\prime}=103^{\circ} 34^{\prime} 49^{\prime \prime}, \quad C^{\prime}=18^{\circ} 04^{\prime} 40^{\prime \prime}, \quad b^{\prime}=85^{\circ} 28^{\prime} 39^{\prime \prime}$,

Other quadrantal triangles may be solved in like manner.

FORMULAS

USED IN SOLVING OBLIQUE-ANGLED SPHERICAL TRIANGLES.
78. To show that, in a spherical triangle, the sines of the sides are proportional to the sines of their opposite angles.
Let $A B C$ represent an oblique-angled spherical triangle. From any vertex, as C, draw the arc of a great cirele, $C B^{\prime}$, perpendicular to the opposite side. The two triangles $A C B^{\prime}$ and $B C B^{\prime}$ will be rightangled at B^{\prime}.

From the triangle $A C B$ ', we have,
 formula (2) Art. 74 $\sin C B^{\prime}=\sin A \sin b$

From the triangle BCB^{\prime}, we have

$$
\sin C B^{\prime}=\sin B \sin a .
$$

Equating these values of $\sin \mathrm{CB}^{\prime}$, we have
@in $\mathrm{A} \sin b=\sin \mathrm{B} \sin a$;
from which results the proportion,

$$
\begin{aligned}
& \text { from which results the proportion, } \\
& \qquad \begin{array}{r}
\sin a: \sin b:: \sin \mathrm{A}: \sin \mathrm{B} .
\end{array} \\
& \text { In like manner, we may deduce } \\
& \sin a: \sin c:: \sin \mathrm{A}: \sin C, \text {. . . (2.) } \\
& \sin b: \sin c:: \sin \mathrm{B}: \sin C . . .
\end{aligned}
$$

That is, in any spherical triangle, the sines of the sides are proportional to the sines of their opposite angles.

Had the perpendicular fallen on the prolongation of $A B$, he same relation would have been found.
79. To find an expression for the cosine of any side of a spherical triangle.

Let $A B C$ represent any spherical triangle, and O the centre of the sphere on which it is situated. Draw the radii $O A$, $O B$, and $O C$; from C draw $C P$ perpendicular to the plane $A O B$; from P, the foot of this perpendicular, draw $P D$ and $P E$ respectively perpendicular to $O A$ and $O B$; join $C D$ and $C E$, these lines will be respect-
 ively perpendicular to $O A$ and $O B$
(B. VI., P. VI.), and the angles CDP and CEP will be equal to the angles A and B respectively. Draw $D L$ and $P Q$, the one perpendicular, and the other parallel to $O B$. We then have

$$
\begin{equation*}
\mathrm{OE}=\cos a, \quad \mathrm{DC}=\sin b, \quad \mathrm{OD}=\cos b \tag{1.}
\end{equation*}
$$

We have from the figure,

In the right-angled triangle OLD,

$$
\mathrm{OL}=\mathrm{OD} \cos \mathrm{DOL}=\cos b \cos c
$$

The right-angled triangle $P Q D$ has its sides respectively perpendicular to those of OLD; it is, therefore, similar to it, and the angle QDP is equal to c, and we have

$$
\begin{equation*}
Q P=P D \sin Q D P=P D \sin c \tag{2.}
\end{equation*}
$$

\qquad
The right-angled triangle CPD gives

$$
P D=C D \cos C D P=\sin b \cos A ;
$$

substituting this value in (2), we have

$$
\mathrm{QP}=\sin b \sin c \cos \mathrm{~A}
$$

and now substituting these values of $O E, O L$, and $Q P$, in (1), we have

$$
\cos a=\cos b \cos c+\sin b \sin c \cos \text { A. . . . (3.) }
$$

In the same way, we may deduce,
$\cos b=\cos a \cos c+\sin a \sin c \cos \mathrm{~B}$, . (4.)
$\cos c=\cos a \cos b+\sin a \sin b \cos \mathrm{C}$.
That is, the cosine of any side of a spherical triangle is equal to the rectangle of the cosines of the two other sides, plus the rectangle of the sines of these sides into the cosine of their included angle.
80. To find an expression for the cosine of any angle of a spherical triangle.

If we represent the angles of the supplemental polar triangle of $A B C$, by A^{\prime}, B^{\prime}, and C^{\prime}, and the sides by a^{\prime}, b^{\prime}, and c, we have (B. IX., P. VI.),
$a=180^{\circ}-A^{\prime}, \quad b=180^{\circ}-B^{\prime}, \quad c=180^{\circ}-C^{\prime}$,
$A=180^{\circ}-a^{\circ} \quad B=180^{\circ}-b$
$C=180^{\circ}-c^{\prime}$
Substituting these values in equation (3), of the preceding article, and recollecting that
$\int \perp \sqrt{-1} R \cos \left(180^{\circ}-A^{\prime}\right)=A \cos A^{\prime}, \square O D \backsim$

$$
\sin \left(180^{\circ}-B^{\prime}\right)=\sin B^{\prime}, \& c
$$

we have $-\cos A^{\prime}=\cos B^{\prime} \cos C^{\prime}-\sin B^{\prime} \sin C^{\prime} \cos a^{\prime} ; A \square \square$
or, changing the signs and omitting the primes (since the preceding result is true for any triangle),
$\cos A=\sin B \sin C \cos a-\cos B \cos C$.
(1.)

In the same way, we may deduce,

$$
\begin{aligned}
& \cos B=\sin A \sin C \cos b-\cos A \cos C \\
& \cos C=\sin A \sin B \cos c-\cos A \cos B
\end{aligned}
$$

That is, the cosine of any angle of a spherical triangle is equal to the rectangle of the sines of the two other angles into the cosine of their included side, minus the rectangle of the cosines of these angles.

The formulas deduced in Arts. 79 and 80, for $\cos a$, $\cos A$, etc., are not convenient for use, as logarithms can not be applied to them; other formulas are, therefore, derived from them, to which logarithms may be applied.
81. To find an expression for the cosine of one half of any angle of a spherical triangle.

From equation (3), Art. 79, we deduce
$\cos A=\frac{\cos a-\cos b \cos }{\sin b \sin c}$
If we add this equation, member by member, to the number 1 , and recollect that $1+\cos A$, in the first member, is equal to $2 \cos ^{2} \frac{1}{4} \mathrm{~A}(\operatorname{Art} .66)$, and reduce, we have

$$
2 \cos ^{2} \frac{1}{2} A=\frac{\sin b \sin c+\cos a-\cos b \cos c}{\sin b \sin c}
$$

or, formula (C), Art. $65, \square \perp$

$$
\begin{equation*}
2 \cos ^{2} \frac{1}{2} \mathrm{~A}=\frac{\cos a-\cos (b+c)}{\sin b \sin c} \ldots . \tag{2.}
\end{equation*}
$$

And since, formula (N), Art, 67
$\cos a-\cos (b+c)=2 \sin \frac{1}{2}(a+b+c) \sin \frac{1}{2}(b+c-a)$
equation (2) becomes, after dividing both members by 2 ,
$\cos ^{2} \frac{1}{2} \mathrm{~A}=\sin \frac{1}{2}(a+b+c) \sin \frac{1}{2}(b+c-a)$. $\sin b \sin c$

If in this we make
and extract the square root of both members, we have

$$
\begin{aligned}
& \cos \frac{1}{2} A=\sqrt{\frac{\sin \frac{1}{2} s \sin \left(\frac{1}{2} s-a\right)}{\sin b \sin c}} \ldots \\
& \cdots
\end{aligned}
$$

That is, the cosine of one hatf of any angle of a spherical triangle is equal to the square root of the sine of one half of the sum of the three sides, into the sine of one half this sum minus the side opposite the angle, divided by the rectangle of the sines of the adjacent sides.

If we subtract equation (1), of this article, member by member, from the number 1 , and recollect that
82. From the foregoing values of the functions of one half of any angle, may be deduced values of the functions of one half of any side of a spherical triangle.

Representing the angles and sides of the supplemental polar triangle of $A B C$ as in Art. 80 , we have

$$
\begin{gathered}
\mathrm{A}=180^{\circ}-a^{\prime}, \quad b=180^{\circ}-\mathrm{B}^{\prime}, \quad c=180^{\circ}-\mathrm{C}^{\prime} \\
\frac{1}{2} s=270^{\circ}-\frac{1}{2}\left(\mathrm{~A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right) \\
\frac{1}{2} \dot{s}-a=90^{\circ}-\frac{1}{2}\left(\mathrm{~B}^{\prime}+\mathrm{C}^{\prime}-\mathrm{A}^{\prime}\right) .
\end{gathered}
$$

Substituting these values in (3), Art. 81, and reducing by the aid of the formulas in "Table III, Art. 63 , we find

Substituting and omitting the primes, we have

In a similar way, we may deduce from (4), Art. 81 ,
$\square)^{-1} \cos \frac{1}{2} a=\sqrt{\frac{\cos \left(\frac{1}{2} \mathrm{~S}-\mathrm{B}\right) \cos \left(\frac{1}{2} \mathrm{~S}-\mathrm{C}\right)}{\sin \mathrm{B} \sin \mathrm{C}}}$.
and thence, $\tan \frac{1}{2} a=\sqrt{\frac{-\cos \frac{1}{2} S \cos \left(\frac{1}{2} S-A\right)}{\cos \left(\frac{1}{2} S-B\right) \cos \left(\frac{1}{2} S-C\right)}}$.
83. To deduce Napier's Analogies.

From equation (1), Art. 80, we have
$\cos A+\cos B \cos C=\sin B \sin C \cos a$

$$
=\sin C \frac{\sin A}{\sin a} \sin b \cos a
$$

since, from proportion (1), Art. 78, we have

Adding (1) and (2), and dividing by $\sin C$, we obtain

$$
(\cos A+\cos B) \frac{1+\cos C}{\sin C}=\frac{\sin A}{\sin a} \sin (a+b)
$$

The proportion

$$
\sin A: \sin B: \sin a: \sin b
$$

taken first by composition, and then by division, gives
$\int \sqrt{-1} \sin A+\sin B=\frac{\sin A}{\sin a}(\sin a+\sin b)$, (4.)

$$
\begin{equation*}
\sin A-\sin B=\frac{\sin A}{\sin a}(\sin a-\sin b) \tag{5.}
\end{equation*}
$$

Dividing (4) and (5), in succession, by (3), we obtain

$$
\begin{align*}
& \frac{\sin A+\sin B}{\cos A+\cos B} \times \frac{\sin C}{1+\cos C}=\frac{\sin a+\sin b}{\sin (a+b)} \\
& \sin A-\sin B \tag{7.}
\end{align*}
$$

Art. 66, equation (6) and (4)

$$
\begin{equation*}
\tan \frac{1}{2}(A+B) \tan \frac{1}{2} C=\frac{\cos \frac{1}{2}(a-b)}{\cos \frac{1}{2}(a+b)} \tag{8.}
\end{equation*}
$$

and, by the similar formulas (3) and (5), of Art. 67, equation (7) becomes

$$
\begin{equation*}
\cdots \quad \tan \frac{1}{2}(\mathrm{~A}-\mathrm{B}) \tan \frac{1}{2} \mathrm{C}=\frac{\sin \frac{1}{2}(a-b)}{\sin \frac{1}{2}(a+b)} \tag{9.}
\end{equation*}
$$

As $\tan \frac{1}{2} C=\frac{1}{\cot \frac{1}{2} C}$, formulas (8) and (9) may be written

But, by formulas (2) and (4), Art. 67, and formula ($E^{\prime \prime}$), the first set of Napier's Analogies ; viz.,

$\sin \frac{1}{2}(a+b): \sin \frac{1}{2}(a-b):: \cot \frac{1}{2} C: \tan \frac{1}{2}(A-B)$. (11.)
A If in these we substitute the values of a, b, C, A, and B, in terms of the corresponding parts of the supple mental polar triangle, as expressed in Art. 80, we obtain
$\cos \frac{1}{2}(\mathrm{~A}+\mathrm{B}): \cos \frac{1}{2}(\mathrm{~A}-\mathrm{B}): ; \tan \frac{1}{2} c: \tan \frac{1}{2}(a+b), \quad$ (12.)
$\sin \frac{1}{2}(A+B): \sin \frac{1}{2}(A-B):: \tan \frac{1}{2} c: \tan \frac{1}{2}(a-b) ; \quad$ (13.)
the second set of Napier's Analogies.

In applying logarithms to any of the preceding formu. las, they must be made homogeneous in terms of R, as explained in Art. 30.

In all the formulas, the letters may be interchanged at pleasure, provided that, when one large letter is substituted for another, the like substitution is made in the corresponding small letters, and the reverse: for example, C may be substituted for A, provided that at the same time c is substituted for $a, \& c$.

Note.-It may be noted that, in formulas (10) and (12), whenever the sign of the first term of the proportion is minus, the sign of the last term must, also, be minus, i. e., whenever $\frac{1}{2}(a+b)$ is greater than $90^{\circ}, \frac{1}{2}(A+B)$ must, also, be greater than 90°, and the reverse; and similarly, whenever $\frac{1}{2}(a+b)$ is less than $90^{\circ}, \frac{1}{2}(\mathrm{~A}+\mathrm{B})$ must, also, be less than 90°, and the reverse.
, and th
SOLUTION OF OBITQUE-ANGLFD SPHERICAL TRIANGLES.
84. In the solution of oblique-angled triangles six di
ferent cases may arise: viz., there may be given,
I. Two sides and an angle opposite one of them.
II. Two angles and a side opposite one of them.
III. Two sides and their included angle. T \square A
IV. Two angles and their included side.
V. The three sides.
VI. The three angles.

CASE I.

Given two sides and an angle opposite one of them.
85. The solution, in this case, is commenced by finding the angle opposite the second given side, for which purpose formula (1), Art. 78, is employed.

As this angle is found by means of its sine, and because the same sine corresponds to two different arcs, there would seem to be two different solutions. To ascertain when there are two solutions, when one solution, and when no solution at all, it becomes necessary to examine the relations which may exist between the given parts. Two cases may arise, viz., the given angle may be acute, or it may be obtuse.

We shall consider each case separately (B. IX., Gen. S. 1).

$$
\text { 1st Case: } \mathrm{A}<90^{\circ} .
$$

Let A be the given acute angle, and let a and b be the given sides. Prolong
the ares $A C$ and $A B$ till
they meet at A^{\prime}, forming the lune $A A^{\prime}$; and from C, draw the arc $C B^{\prime \prime}$ perpendicular to ABA. From
 C, as a pole, and with the are a, describe the are of a small circle B^{\prime}. If this circle cuts $A B A^{\prime}$, in two points between A and A^{\prime}, there will be two solutions; for if C be joined with each point of intersection by the arc of a great circle, we shall have two triangles, $A B C$ and $A B^{\prime} C$, both of which will conform to the conditions of the problem.

If only one point of intersection lies between A and A^{\prime}, or if the small circle is tangent to $A B A^{\prime}$, there will be but one solution.
If there is no point

of intersection, or if there are points of intersection which do not lie between A and A^{\prime}, there will be no solution.

From formula (2), Art. 72, we have $\sin C B^{\prime \prime}=\sin b \sin A$,
from which the perpendicular may be found. This perpendicular will be less than 90°, since it can not exceed the measure of the angle A (B. IX., Gen. S. 2, 1°); denote its value by \boldsymbol{p}. By inspection of the figure, we find the following relations:

1. When a is greater than p ; and at the same time less than both b and $180^{\circ}-\mathrm{b}$, there will be two solutions.
2. When a is freater than p , and intermediate in waiue between b ana $180^{\circ}-\mathrm{b}$; or, when a is equal to p , there will be but one solution. 1 ; when a is

If $a=b$, and is also less than $180^{\circ}-b$, one of the points of intersection will be at A, and there will be but

3. When a is sreater than p , and at the same time sreater than both b and $180^{\circ}-\mathrm{b}$; or, when a is less than p , there will be no solution.

2d Case: $\mathrm{A}>90^{\circ}$.
Adopt the same construction as before. In this case, the perpendicular will be greater than 90°, because it can not be less than the measure of the angle A (B. IX., Gen. S. 2, 2°): it will, also, be greater than any other are $C A, C B, C A^{\prime}$, that can be drawn from C to $A B A$:
 By a course of reasoning entirely analogous to that in the preceding case, we have the following principles:
4. When a is less than p , and at the same time sreater than both b and $180^{\circ}-\mathrm{b}$, there will be two solutions.
5. When a is less than p , and intermediate in value between b and $180^{\circ}-\mathrm{b}$; or, when a is equal to p , there will be but one solution.
6. When a is less than p , and at the same time less than both b and $180^{\circ}-\mathrm{b}$; or, when a is greater than p , there will be no solution.
A Having found the angle or angles opposite the second side, the solution may be completed by means of Napier's Analogies.

1. Given $a=43^{\circ} 27^{\prime} 36^{\prime \prime}, b=82^{\circ} 58^{\prime} 17^{\prime \prime}$, and $\mathrm{A}=$ $29^{\circ} 32^{\prime} 29^{\prime \prime}$, to find B, C, and c.

We see that $a>p$, since p can not exceed A (B. IX, Gen. S. 2, 1°); we see, further, that a is less than both
b and $180^{\circ}-b$; hence, from the first condition there will be two solutions.

Applying logarithms to formula (1), Art. 78, we have
$\log \sin B=(a . c.) \log \sin a+\log \sin b+\log \sin A-10 ;$
(a. c.) $\log \sin a$..IM. $\left(43^{\circ} 276^{\prime \prime}\right)$
$\log \sin b$ T.T. $\left(82^{\circ} 58^{\prime} 17^{\prime \prime}\right)$
$\log \sin A\left(\cdot{ }^{\circ} 39^{\circ} 32^{\prime} 29^{\prime \prime}\right)$ $\log \sin B$

$$
\therefore B=45^{\circ} 21^{\prime} 01^{\prime \prime} \text {, and } B^{\prime}=134^{\circ} 38^{\prime} 59^{\prime \prime} .
$$

From the first of Napier's Analogies (10), Art. 83, we find
$\log \cot \frac{1}{2} C=($ a.c. $) \log \cos \frac{1}{2}(a-b)+\log \cos \frac{1}{2}(a+b)$

Taking the first value of B, we have
$\frac{1}{2}(\mathrm{~A}+\mathrm{B})=37^{\circ} 26^{\prime} 45^{\prime \prime} ;$
also, $\quad \frac{1}{2}(a+b)=63^{\circ} 12^{\prime} 56^{\prime \prime}$;
Tand $\int \frac{1}{2}(a-b)=19^{\circ} 45^{\prime} 20^{\prime \prime}$. $)^{\square} \square$
(a. c.) $\log \cos \frac{1}{2}(a-b)$
$\left(19^{\circ} 45^{\prime} 20^{\prime \prime}\right)$
0.026344

- $\quad \log \cos \frac{1}{2}(a+b)$
$\left(63^{\circ} 12^{\prime} 56^{\prime \prime}\right) \cdot 9.653825$
$\log \tan \frac{1}{2}(A+B) \cdot\left(37^{\circ} 26^{\prime} 45^{\prime \prime}\right) \cdot \frac{9.884130}{9 .} \cdot \frac{9.564299}{}$
$\therefore \quad \frac{1}{2} \mathrm{C}=69^{\circ} 51^{\prime} 45^{\prime \prime}$, and $\mathrm{C}=139^{\circ} 43^{\prime} 30^{\prime \prime}$.

Applying logarithms to the proportion,

$\sin A: \sin C:=\sin a: \sin c$,

we have
$\log \sin c=$ (a. c.) $\log \sin A+\log \sin C+l \log \sin a-10$

$$
\begin{gathered}
\text { (a. c.) } \begin{array}{r}
\log \sin \mathrm{A}
\end{array} \cdot \cdot\left(29^{\circ} 32^{\prime} 29^{\prime \prime}\right) \\
\log \sin \mathrm{C}
\end{gathered} \cdot\left(\begin{array}{l}
\left.139^{\circ} 43^{\prime} 30^{\prime \prime}\right) \\
\log \sin a \\
\sin \\
\log \sin c \\
\hline
\end{array}\left(43^{\circ} 27^{\prime} 36^{\prime \prime}\right) \cdot 9.810539 .9 .837492\right.
$$

$$
\therefore c=115^{\circ} 35^{\prime} 48^{\prime \prime}
$$

We take the greater value of c, because the angle C, being greater than the angle B, requires that the side c should be greater than the side b. By using the second value of B, we may find, in a similar manner,

$C^{\prime}=32^{\circ} 20^{\prime} 28^{\prime \prime}, \quad$ and $\quad c^{\prime}=48^{\circ} 16^{\prime} 18^{\prime \prime}$.

2. Given $a=97^{\circ} 35^{\prime}, b=27^{\circ} 08^{\prime} 22^{\prime \prime}$, and $\mathrm{A}=40^{\circ} 51^{\prime}$ $18^{\prime \prime}$, to find B, C, and c.

Ans. $\mathrm{B}=17^{\circ} 31^{\prime} 09^{\prime \prime}, \mathrm{C}=144^{\circ} 48^{\prime} 10^{\prime \prime}, c=119^{\circ} 08^{\prime} 25^{\prime \prime}$.
3. Given $a=115^{\circ} 20^{\prime} 10^{\prime}, b=57^{\circ} 30^{\prime} 06^{\prime \prime}$, and $\mathrm{A}=$ $126^{\circ} 37^{\prime} 30^{\prime \prime}$, to find B, C, and c.
Ans. $\mathrm{B}=48^{\circ} 29^{\prime} 48^{\prime \prime}, \mathrm{C}=61^{\circ} 40^{\prime} 16^{\prime \prime}, c=82^{\circ} 34^{\circ} 04^{\prime \prime}$.
4. Given $b=79^{\circ} 14^{\prime}, c=30^{\circ} 20^{\prime} 45^{\prime \prime}$, and $\mathrm{B}=121^{\circ}$ $10^{\prime} 26^{\prime \prime}$, to find C, A, and a.

Ans. $\mathrm{C}=26^{\circ} 06^{\prime} 16^{\prime \prime}, \mathrm{A}=49^{\circ} 44^{\prime} 16^{\prime \prime}, a=61^{\circ} 11^{\prime} 06^{\prime \prime}$.

The side c may be found by means of formula (12), Art. 83 , or by means of formula (2), Art. 78.

CASE II.

Given two angles and a side opposite one of them
86. The solution, in this case, is commenced by finding the side opposite the second given angle, by means of formula (1), Art. 78. The solution is completed as in Case I.

Since the second side is found by means of its sine, there may be two solutions. To investigate this case, we pass to the supplemental polar triangle, by substituting for each part its supplement. In this triangle, there will be given two sides and an angle opposite one; it may therefore be discussed as in the preceding case. When the supplemental triangle has two solutions, one solution, or no solution, the given triangle will, in like manner, have two solutions, one solution, or no solution.

Let the given parts be A^{\prime}, B^{\prime}, and a^{\prime}, and let p^{\prime} be the arc, $C^{\prime} D^{\prime}$, of a great circle drawn from the extremity of the given side perpendicular to the side opposite : we
\int There will be two cases: a^{\prime}

may be less than 90°; or, a^{\prime} may be greater than 90°.

D] 1 1st Case: $a^{\prime}<90^{\circ}$. $\square 1 R A$

Passing to the supplemental polar triangle, we shall have given a, b, A; and since, in the given triangle, $a^{\prime}<90^{\circ}$, in this supplemental triangle $\mathrm{A}>90^{\circ}$: call the perpendicular $C D, p$. The conditions determining the num-
ber of solutions in this supplemental triangle are given in principles $4,5,6$, Art. 85 .

From principle 4, Art. 85, it appears that, for two solutions, a must be less than p, that is,

$$
a<p:
$$

subtracting each member of this inequality from 180°, we have

$$
180^{\circ}-a>180^{\circ}-p
$$

but, $180^{\circ}-a=\mathrm{A}^{\prime}$; and (B. IX, P. VI., C. 2), $180^{\circ}-p=\boldsymbol{p}^{\prime}$; hence
 than b, that is,
subtracting each member of this inequality from 180°, we have

$$
<180^{\circ}-b
$$

or, $\quad A^{\prime}<B^{\prime}$:
it further appears from the same principle, that a must be greater than $180^{\circ}-b$, that is,
$\square \square \square \quad a>180^{\circ}-b$;
subtracting each member of this inequality from 180°, we have

4 or

$$
\begin{gathered}
180^{\circ}-a<180^{\circ}-\left(180^{\circ}-b\right) \\
A^{\prime}<180^{\circ}-B^{\prime}
\end{gathered}
$$

Collecting the results, and, for convenience, omitting the primes, we have the following prineiple:

Two angles and a side opposite one of them being given, and the given side less than $90^{\circ}, i . e ., \mathrm{A}, \mathrm{B}, a$ given, and $a<90^{\circ}$;

1. When A is greater than p, and at the same time less than both B and $180^{\circ}-\mathrm{B}$, there will be two solutions.

In like manner, from principle 5, Art. 85, we have
2. When A is greater than p, and intermediate in value between B and $180^{\circ}-\mathrm{B}$; or, when A is equal to p , there will be but one solution.

And from principle 6, Art. 85, we have
3. When A is greater than P , and at the same time greater than both B and $180^{\circ}-\mathrm{B}$; or, when A is less than p , there will be no solution.

It is to be noted that, in this case, the perpendicular is less than 90°, and less, also, than the given side; i. e.,

UNIVERS sad caes. $^{2} 9$ so. UTONC

Passing to the supplemental polar triangle, we shall have given a, b, A, and $A<90^{\circ}$. The conditions determining the number of solutions in this supplemental triangle are given in principles $1,2,3$, Art. 85.

From principle 1, Art. 85 , it appears that, for two solutions, a must be greater than p, that is,

$$
a>p
$$

subtracting each member of this inequality from 180°, we have

$$
\begin{gathered}
180^{\circ}-a<180^{\circ}-p \\
A^{\prime}<p^{\prime}:
\end{gathered}
$$

in the same manner as before, we may obtain from this principle 1 ,
and

$$
\begin{aligned}
& A^{\prime}>\mathrm{B}^{\prime} \\
& \mathrm{A}^{\prime}>180^{\circ}-\mathrm{B}^{\prime} .
\end{aligned}
$$

As before, collecting the results and omitting the primes, we have the following principle:

Two angles and a side opposite one of them being given, the given side greater than 90°, i. e., A, B, a given, and $a>90^{\circ}$;
4. When A is less than p , and at the same time greater than both B and 180° - B, there will be two solutions.

In like manner, from principle 2, Art. 85, we have

5. When A is less than p , and intermediate in value between B and $180^{\circ}-\mathrm{B}$; or, when A is equal to p , there will be but one solution.

And from principle 3, Art. 85, we have
6. When A is less than p , and at the same time less than both B and $180^{\circ}-\mathrm{B}$; or, when A is greater than p , there will be no solution.

It is to be noted that, in this case, the perpendicular is greater than 90°, and greater, also, than the given side; i. $e_{\text {. }}, p>a$.

From the principles deduced in Articles 85 and 86 , it is evident that,

if the given				
parts of the				
spherical trian-	Pendicular	Odd.	Adjacent.	Opposite.
gles considered	p	A	b	a
		a	B	A

are named as
panying table, we shall have the following principles, applicable to all the cases:

The sine of p is equal to the rectangle of the sines of the odd part and the adjacent part.
8. p is always of the same species as the odd part, and differs more from 90° than the odd part, i. e., when the odd part is less than $90^{\circ}, p$ is still less; and when the odd part is greater than $90^{\circ}, p$ is still greater.
9. There will be two solutions:
1°. When (odd part being less than 90°) the opposite part is greater than p, and less than the adjacent part and its supplement.

2°. When (odd part being greater than 90°) the opposite part is less than p, and greater than the adjacent part and its supplement.
10. There will be one solution:
1°. When (odd part being less than 90°) the opposite part is greater than p, and intermediate in value between the adjacent part and its supplement.
2°. When (odd part being greater than 90°) the
opposite part is less than p, and intermediate in value between the adjacent part and its supplement.
3°. When the opposite part is equal to p.
11. There will be no solution:
1°. When (odd part being less than 90°) the opposite part is either less than p, or greater than p and greater also than both the adjacent part and its supplement.
2°. When (odd part being greater than 90°) the opposite part is either greater than p, or less than p and less also than both the adjacent part and its supplement.

Examples.

1. Given $\mathrm{A}=95^{\circ} 16^{\prime}, \mathrm{B}=80^{\circ} 42^{\prime} 10^{\prime \prime}$, and $a=57^{\circ} 38^{\prime}$, to find c, b, and C.
p might be computed from the formula,
$\log \sin p=\log \sin \mathrm{B}+\log \sin a-10 ;$
but it is not necessary, as $p<a$ (see principle 8).
Because $A>p$, and intermediate between $80^{\circ} 42^{\prime} 10^{\prime \prime}$ and $99^{\circ} 17^{r} 50^{\prime \prime}$, there will, from the second condition, be but one solution.

Applying logarithms to proportion (1), Art. 78, we have

- $\log \sin b=$ (a.c.) $\log \sin A+\log \sin B+\log \sin a-10$;
(a.c) $\log \sin A\left(95^{\circ} 167\right) 0.001837$
$\log \sin E\left(80^{\circ} 42^{\prime} 10^{\prime}\right) 9.994257$
$\log \sin a \quad\left(57^{\circ} 38\right) \quad 9.926671$
$\log \sin b$. . $9.922765 \quad \therefore b=56^{\circ} 49^{\prime} 57^{\prime \prime}$.

We take the smaller value of b, for the reason that A, being greater than B, requires that a should be greater than b.

Applying logarithms to proportion (12), Art. 83, we have
$\log \tan \frac{1}{2} c=(a . e.) \log \cos \frac{1}{2}(A-B)+\log \cos \frac{1}{2}(A+B)$
$\log \tan \frac{1}{2}(a+b)-10$

Applying logarithms to the proportion,
$\sin a: \sin c:: \sin A: \sin C$,
we have
$\log \sin C=$ (a. c.) $\log \sin a+\log \sin c+\log \sin A=10$
(a. c.) $\log \sin a \quad\left(57^{\circ} 38^{\prime}\right) \quad$. 0.073329
$\log \sin c \quad\left(6^{\circ} 18^{\prime} 18^{\prime \prime}\right) \cdot 9.040685$
$\log \sin A\left(95^{\circ} 16^{\prime}\right) \cdot \underline{9.998163}$ $\log \sin$ C . . . $\overline{9.112177}$

The smaller value of C is taken, for the same reason as before.
2. Given $\mathrm{A}=50^{\circ} 12^{\prime}, \mathrm{B}=58^{\circ} 08^{\prime}$, and $a=62^{\circ} 42^{\prime}$, to find b, c, and C .
$b=79^{\circ} 12^{\prime} 10^{\prime \prime}, \quad c=119^{\circ} 03^{\prime} 26^{\prime \prime}, \quad \mathrm{C}=130^{\circ} 54^{\prime} 28^{\prime \prime}$,
$b^{\prime}=100^{\circ} 47^{\prime} 50^{\prime \prime}, \quad c^{\prime}=152^{\circ} 14^{\prime} 18^{\prime \prime}, \quad C^{\prime}=156^{\circ} 15^{\prime} 06^{\prime \prime}$.
3. Given $\mathrm{C}=115^{\circ} 20^{\prime}, \mathrm{A}=57^{\circ} 30^{\prime}$, and $c=126^{\circ} 38^{\prime}$, to find a, b, and B .

Ans. $a=48^{\circ} 29^{\prime} 13^{\prime \prime}, b=118^{\circ} 20^{\prime} 44^{\prime \prime}, \mathrm{B}=97^{\circ} 35^{\prime} 06^{\prime \prime}$.

CASE III

Given two sides and their included angle.
8\%. The remaining angles are found by means of Napier's Analogies, and the remaining side as in the preceding cases.

Examples

1. Given $a=62^{\circ} 38^{\prime}, b=10^{\circ} 13^{\prime} 19^{\prime \prime}$, and ${ }^{\circ} \mathrm{C}=150^{\circ}$ $24^{\prime} 12^{\prime \prime}$, to find c, A, and B.

Applying logarithms to proportions (10) and (11), Art.

 83 , we have$\log \tan \frac{1}{2}(A+B)=(a . c.) \log \cos \frac{1}{2}(a+b)+\log \cos \frac{1}{2}(a-b)$

$$
+\log \cot \frac{1}{2} \mathrm{C}-10 ;(\mathbb{R}
$$

$\log \tan \frac{1}{2}(\mathrm{~A}-\mathrm{B})=$ (a. c.) $\log \sin \frac{1}{2}(a+b)+\log \sin \frac{1}{2}(a-b)$ F B B O O $+\log \cot \frac{1}{2} C-10$;
we have

$$
\frac{1}{2}(a-b)=26^{\circ} 12^{\prime} 20^{\prime \prime}
$$

$$
\frac{1}{2} \mathrm{C}=75^{\circ} 12^{\prime} 06^{\prime \prime}
$$

and

$$
\frac{1}{2}(a+b)=36^{\circ} 25^{\prime} 39^{\prime \prime}
$$

(a. c.) $\log \cos \frac{1}{2}(a+b) \cdot\left(36^{\circ} 25^{\prime} 39^{\prime \prime}\right) \cdot 0.094415$ $\log \cos \frac{1}{2}(a-b) \cdot\left(26^{\circ} 12^{\prime} 20^{\prime}\right) \cdot 9.952897$ $\log \cot \frac{1}{2} \mathrm{C}$. . . $\left(72^{\circ} 12^{\prime} 06^{\prime \prime}\right) \cdot 9.421901$ $\log \tan \frac{1}{2}(A+B) \cdot . .$.

$$
\frac{1}{2}(\mathrm{~A}+\mathrm{B})=16^{\circ} 24^{\prime} 51^{\prime \prime} .
$$

(a. c.) $\log \sin \frac{1}{8}(a+b) \cdot\left(36^{\circ} 25^{\prime} 39^{\prime \prime}\right) \cdot 0.226356$ 9.645022 9.421901 $\log \cot \frac{1}{2} \mathrm{C}$
$\log \tan \frac{1}{2}(\mathrm{~A}-\mathrm{B})$
$\left(75^{\circ} 12^{\prime} 06^{\prime \prime}\right) \cdot$
$\cdot \cdot \cdot \frac{9.421901}{9.293279}$ $\therefore \frac{1}{2}(\mathrm{~A}-\mathrm{B})=11^{\circ} 06^{\prime} 53^{\prime \prime}$.
The greater angle is equal to the half sum plus the half difference, and the less is equal to the half sum minus the half difference. Hence, we have
$A=27^{\circ} 31^{\prime} 44^{\prime \prime}, \quad$ and $\quad B=5^{\circ} 17^{\prime} 58^{\prime \prime}$.
Applying logarithms to proportion (13), Art. 83, we have . \qquad
$\log \tan \frac{1}{2} c=(\mathrm{a} . \mathrm{c}.) \log \sin \frac{1}{2}(\mathrm{~A}-\mathrm{B})+\log \sin \frac{1}{2}(\mathrm{~A}+\mathrm{B})$
$+\log \tan \frac{1}{2}(a-b)-10$

$\log \tan \frac{1}{2}(a-b)$
$\log \tan \frac{1}{2} c$$\left(26^{\circ} 12^{\prime} 20^{\prime \prime}\right) \cdot .99 .692125$ $\therefore \frac{1}{2} c=35^{\circ} 48^{\prime} 33^{\prime \prime}$, and $c=71^{\circ} 37^{\prime} 06^{\prime \prime}$.
2. Given $a=68^{\circ} 46^{\prime} 02^{\prime \prime}, \quad b=37^{\circ} 10^{\prime}$, and $\mathrm{C}=39^{\circ}$ $23^{\prime} 23^{\prime \prime}$, to find c, A, and B.

Ans. $\mathrm{A}=120^{\circ} 59^{\prime} 21^{\prime \prime}, \mathrm{B}=33^{\circ} 45^{\prime} 13^{\prime \prime}, c=43^{\circ} 37^{\prime} 48^{\prime \prime}$.
3. Given $a=84^{\circ} 14^{\prime} 29^{\prime \prime}, b=44^{\circ} 13^{\prime} 45^{\prime \prime}$, and $\mathrm{C}=$ $36^{\circ} 45^{\prime} 28^{\prime \prime}$, to find A and B.

Ans. $\mathrm{A}=130^{\circ} 05^{\prime} 22^{\prime \prime}, \mathrm{B}=32^{\circ} 26^{\prime} 06^{\prime \prime}$.
4. Given $b=61^{\circ} 12^{\prime}, c=131^{\circ} 44^{\prime}$, and $\mathrm{A}=88^{\circ} 40^{\prime}$, to find B, C, and a. (See Note, Art. 83.)
Ans. $\mathrm{B}=66^{\circ} 55^{\prime} 59^{\prime \prime}, \mathrm{C}=128^{\circ} 25^{\prime} 05^{\prime \prime}, a=72^{\circ} 12^{\prime} 46^{\prime \prime}$.

CASE IV.

Given two angles and their included side.
88. The solution of this case is entirely analogous to that of Case III.

Applying logarithms to proportions (12) and (13), Art. 83 , and to proportion (11), Art. 83, we have
$\log \tan \frac{1}{2}(a+b)=(\mathrm{a}, \mathrm{c}.) \log \cos \frac{1}{2}(\mathrm{~A}+\mathrm{B})+\log \cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})$
$\log \tan \frac{1}{2}(a-b)=($ a. c. $) \log \sin \frac{1}{2}(A+B)+\log \sin \frac{1}{2}(A-B)$

$\Delta \quad \log \cot \frac{1}{2} C=$ (a.c.) $\log \sin \frac{1}{2}(a-b)+\log \sin \frac{1}{2}(a+b)$

The application of these formulas is sufficient for the

1. Given $\mathrm{A}=81^{\circ} 38^{\prime} 20^{\prime \prime}, \mathrm{B}=70^{\circ} 09^{\prime} 38^{\prime \prime}$, and $c=$ $59^{\circ} 16^{\prime} 22^{\prime \prime}$, to find C, a, and b.
Ans. $C=64^{\circ} 46^{\prime} 24^{\prime \prime}, a=70^{\circ} 04^{\prime} 17^{\prime \prime}, b=63^{\circ} 21^{\prime} 27^{\prime \prime}$.
2. Given $\mathrm{A}=34^{\circ} 15^{\prime} 03^{\prime \prime}, \mathrm{B}=42^{\circ} 15^{\prime} 13^{\prime \prime}$, and $\mathrm{c}=$ $76^{\circ} 35^{\prime} 36^{\prime \prime}$, to find C, a, and b.

Ans. $C=121^{\circ} 36^{\prime} 12^{\prime \prime}, a=40^{\circ} 0^{\prime} 10^{\prime \prime}, b=50^{\circ} 10^{\prime} 30^{\prime \prime}$. 3. Given $B=82^{\circ} 24^{\prime}, C=120^{\circ} 38^{\prime}$, and $a=75^{\circ} 19^{\prime}$, to find A, b, and c.

Ans. $\mathrm{A}=73^{\circ} 31^{\prime} 13^{\prime \prime}, b=90^{\circ} 50^{\prime} 50^{\prime \prime}, c=119^{\circ} 46^{\prime} 22^{\prime \prime}$.

Given the three sides, to find the remaining parts
89. The angles may be found by means of formula (3), Art. 81 ; or, one angle being found by that formula the two others may be found by means of Napier's Analogies.

Examples.

1. Given $a=74^{\circ} 23^{\prime}, \quad b=35^{\circ} 46^{\prime} 14^{\prime \prime}$, and $c=100^{\circ}$ 39^{\prime}, to find A, B, and C.
$\log \sin \frac{1}{2} s \cdot \cdot \cdot\left(105^{\circ} 24^{\prime} 07^{\prime \prime}\right) \cdot 9.984116$
$\log \sin \left(\frac{1}{2} s-a\right) \cdot\left(31^{\circ} 01^{\prime} 07^{\prime}\right) \cdot 9.712074$
(a. c.) $\log \sin b \quad \cdot \quad \cdot\left(35^{\circ} 46^{\prime} 14^{\prime \prime}\right) \cdot 0.233185$
(a. e.) $\log \sin c \quad . \quad \cdot\left(100^{\circ} 39^{\prime}\right)$. . 0.007546
2) 19.936921
$\log \cos \frac{1}{2} \mathrm{~A}$. 9.968460

$$
\therefore \frac{1}{8} A=21^{\circ} 34^{\prime} 23^{\prime \prime} \text {, and } A=43^{\circ} 08^{\prime} 46^{\prime \prime} \text {. }
$$

Using the same formula as before, and substituting B for A, b for a, and a for b, and recollecting that $\frac{1}{2} s-b=$ $69^{\circ} 37^{\prime} 53^{\prime \prime}$, we have
$\log \sin \frac{1}{2} s \cdot \cdot \cdot\left(105^{\circ} 24^{\prime} 07^{\prime \prime}\right) \cdot 9.984116$
$\log \sin \left(\frac{1}{2} s-b\right) \cdot\left(69^{\circ} 37^{\prime} 53^{\prime \prime}\right) \cdot 9.971958$ (a. e.) $\log \sin a \quad \cdot \quad\left(74^{\circ} 23^{\prime}\right) \cdot \cdot 0.016336$ (a. c.) $\log \sin c \quad\left(100^{\circ} 39^{\prime}\right) \cdot \quad$ 2) $\frac{0.007546}{\frac{19.979956}{9.989978}}$
$\log \cos \frac{1}{2} \mathrm{~B} \cdot9 .989978$
$\therefore \frac{1}{2} \mathrm{~B}=12^{\circ} 15^{\prime} 43^{\prime \prime}$, and $\mathrm{B}=24^{\circ} 31^{\prime} 26^{\prime \prime}$.
Using the same formula, substituting C for A, c for a, and a for c, recollecting that $\frac{1}{2} s-c=4^{\circ} 45^{\prime} 07^{\prime \prime}$, we have

$\square \square \exists \frac{1}{2} \mathrm{C}=67^{\circ} 52^{\prime} 25^{\prime \prime}$, and $\mathrm{C}=135^{\circ} 44^{\prime} 50^{\prime \prime}$.
2. Given $a=56^{\circ} 40^{\prime}, b=83^{\circ} 18^{\prime}$, and $c=114^{\circ} 80^{\prime}$, to find A, B, and C.
Ans. $\mathrm{A}=48^{\circ} 31^{\prime} 18^{\prime \prime}, \mathrm{B}=62^{\circ} 55^{\prime} 44^{\prime \prime}, \mathrm{C}=125^{\circ} 18^{\prime} 56^{\prime \prime}$.
3. Given $a=115^{\circ} 15^{\prime}, b=125^{\circ} 30^{\prime}$, and $c=110^{\circ} 15^{\prime}$, to find A, B, and C.
Ans. $\mathrm{A}=145^{\circ} 15^{\prime} 04^{\prime \prime}, \mathrm{B}=149^{\circ} 07^{\prime} 52, \mathrm{C}=143^{\circ} 45^{\prime} 10^{\prime \prime}$.

CASE VI.

The three angles being given, to find the sides.
90. The solution in this case is entirely analogous to the preceding one.

Applying logarithms to formula (2), Art. 82, we have
$\log \cos \frac{1}{2} a=\frac{1}{2} \Pi \log \cos \left(\frac{1}{2} S-B\right)+\log \cos \left(\frac{1}{2} S-C\right)$ (a. c.) $\log \sin B+(a . c.) \log \sin C]$.

In the same manner as before, we change the letters,
to suit each ease.
Examples.

1. Given $\mathrm{A}=48^{\circ} 30^{\prime}, \mathrm{B}=125^{\circ} 20^{\circ}$, and $\mathrm{C}=62^{\circ} 54^{\prime}$,
to find a, b, and c.

Ans. $a=56^{\circ} 39^{\prime} 30^{\prime \prime}, b=114^{\circ} 29^{\prime} 58^{\prime \prime}, c=83^{\circ} 12^{\prime} 06^{\prime \prime}$. 2. Given $\mathrm{A}=109^{\circ} 55^{\prime} 42^{\prime \prime}, \mathrm{B}=116^{\circ} 38^{\prime} 33^{\prime \prime}$, and $\mathrm{C}=$

$120^{\circ} 43^{\prime} 37^{\prime \prime}$, to find a, b, and c.
Ans. $a=98^{\circ} 21^{\prime} 40^{\prime \prime}, b=109^{\circ} 50^{\prime} 22^{\prime \prime}, c=115^{\circ} 13^{\prime} 28^{\prime \prime}$.
3. Given $A=160^{\circ} 20^{\prime}, B=135^{\circ} 15^{\prime}$, and $C=148^{\circ}$
$=25$, to find a, b, and c.
Ans. $a=155^{\circ} 56^{\prime} 10^{\prime \prime}, b=58^{\circ} 32^{\prime} 12^{\prime \prime}, c=140^{\circ} 36^{\prime} 48^{\prime \prime}$.

MENSURATION.

91. Mensuration is that branch of Mathematics which treats of the measurement of Geometrical Magnitudes.
92. The measurement of a quantity is the operation of finding how many times it contains another quantity of the same kind, taken as a standard. This standard is called the unit of measure.
93. The unit of measure for surfaces is a square, one of whose sides is the linear unit. The unit of measure for volumes is a cube, one of whose edges is the linear unit.

If the linear unit is one foot, the superficial unit is one square foot, and the unit of volume is one cubic foot. If the linear unit is one yard, the superficial unit is one square yard, and the unit of volume is one cubic yard.
94. In Mensuration, the expression product of two lines, is used to denote the product obtained by multiplying the number of linear units in one line by the namber of linear units in the other. The expression product of three lines, is used to denote the continued product of the number of linear units in each of the three lines.
Thus, when we say that the area of a parallelogram is equal to the product of its base and altitude, we mean that the number of superficial units in the parallelogram is equal to the number of linear units in the base, multiplied by the number of linear units in the altitude. In
3. Given $a=115^{\circ} 15^{\prime}, b=125^{\circ} 30^{\prime}$, and $c=110^{\circ} 15^{\prime}$, to find A, B, and C.
Ans. $\mathrm{A}=145^{\circ} 15^{\prime} 04^{\prime \prime}, \mathrm{B}=149^{\circ} 07^{\prime} 52, \mathrm{C}=143^{\circ} 45^{\prime} 10^{\prime \prime}$.

CASE VI.

The three angles being given, to find the sides.
90. The solution in this case is entirely analogous to the preceding one.

Applying logarithms to formula (2), Art. 82, we have
$\log \cos \frac{1}{2} a=\frac{1}{2} \Pi \log \cos \left(\frac{1}{2} S-B\right)+\log \cos \left(\frac{1}{2} S-C\right)$ (a. c.) $\log \sin B+(a . c.) \log \sin C]$.

In the same manner as before, we change the letters,
to suit each ease.
Examples.

1. Given $\mathrm{A}=48^{\circ} 30^{\prime}, \mathrm{B}=125^{\circ} 20^{\circ}$, and $\mathrm{C}=62^{\circ} 54^{\prime}$,
to find a, b, and c.

Ans. $a=56^{\circ} 39^{\prime} 30^{\prime \prime}, b=114^{\circ} 29^{\prime} 58^{\prime \prime}, c=83^{\circ} 12^{\prime} 06^{\prime \prime}$. 2. Given $\mathrm{A}=109^{\circ} 55^{\prime} 42^{\prime \prime}, \mathrm{B}=116^{\circ} 38^{\prime} 33^{\prime \prime}$, and $\mathrm{C}=$

$120^{\circ} 43^{\prime} 37^{\prime \prime}$, to find a, b, and c.
Ans. $a=98^{\circ} 21^{\prime} 40^{\prime \prime}, b=109^{\circ} 50^{\prime} 22^{\prime \prime}, c=115^{\circ} 13^{\prime} 28^{\prime \prime}$.
3. Given $A=160^{\circ} 20^{\prime}, B=135^{\circ} 15^{\prime}$, and $C=148^{\circ}$
$=25$, to find a, b, and c.
Ans. $a=155^{\circ} 56^{\prime} 10^{\prime \prime}, b=58^{\circ} 32^{\prime} 12^{\prime \prime}, c=140^{\circ} 36^{\prime} 48^{\prime \prime}$.

MENSURATION.

91. Mensuration is that branch of Mathematics which treats of the measurement of Geometrical Magnitudes.
92. The measurement of a quantity is the operation of finding how many times it contains another quantity of the same kind, taken as a standard. This standard is called the unit of measure.
93. The unit of measure for surfaces is a square, one of whose sides is the linear unit. The unit of measure for volumes is a cube, one of whose edges is the linear unit.

If the linear unit is one foot, the superficial unit is one square foot, and the unit of volume is one cubic foot. If the linear unit is one yard, the superficial unit is one square yard, and the unit of volume is one cubic yard.
94. In Mensuration, the expression product of two lines, is used to denote the product obtained by multiplying the number of linear units in one line by the namber of linear units in the other. The expression product of three lines, is used to denote the continued product of the number of linear units in each of the three lines.
Thus, when we say that the area of a parallelogram is equal to the product of its base and altitude, we mean that the number of superficial units in the parallelogram is equal to the number of linear units in the base, multiplied by the number of linear units in the altitude. In
ike manner, the number of units of volume, in a rectangular parallelopipedon, is equal to the number of superficial units in its base multiplied by the number of linear units in its altitude, and so on.

MENSURATION OF PLAANE FIGURES

To find the area of a parallelogram.
95. From the principle demonstrated in Book IV., Prop. V., we have the following

- Rule.- Multiply the base by the altitude; the product [J] will be the area required.
Examples.

1. Find the area of a parallelogram, whose base is 12.25 , and whose altitude is 8.5 .
2. How many square yards are there in a rectangle whose base is 66.3 feet, and altitude 33.3 feet? whose base is 66.3 feet, and altitude 33.3 feet?
Ans. $245.31 \mathrm{sq} . \mathrm{yds}$.
T) 4. What is the area of a rectangular board, whose Ans. 245.31 sq . yds. length is $12 \frac{1}{2}$ feet, and breadth 9 inches? Ans. $9 \frac{3}{8}$ sq. ft.
3. What is the number of square yards in a parallelogram, whose base is 37 feet, and altitude 5 feet 3 inches?

Ans. 21

To find the area of a plane triangle.
96. First Case. When the base and altitude are given.

From the principle demonstrated in Book IV., Prop. VI., we may write the following

Rule. - Multiply the base by half the altitude; the product will be the area required.

Examples.

1. Find the area of a triangle, whose base is 625 , and altitude 520 feet.

Ans. 162500 sq. ft.
2. Find the area of a triangle, in square yards, whose base is 40 , and altitude 30 feet. Ans. $66 \frac{9}{3}$.
3. Find the area of a triangle, in square yards, whose base is 49 , and altitude $25 \frac{1}{4}$ feet. Ans. 68.7361

Second Case. When two sides and their included angle are given.

$$
\text { Let } A B C \text { represent a plane triangle, }
$$ in which the side $\mathrm{AB}=c, \mathrm{BC}=a$, and the angle B, are given. From A draw $A D$ perpendicular to $B C$; this will be

 the altitude of the triangle. From formula (1), Art. 37, Plane Trigonometry, we have rule last given, we have

Substituting for $\sin B, \frac{\sin B}{R}$ (Trig., Art. 30), and applying logarithms, we have

$$
\log (2 Q)=\log a+\log c+\log \sin B-10 ;
$$

- OF SURFACES.
hence, we may write the following
Rule.-Add together the logarithms of the two sides and the logarithmie sine of their included angle; from this sum subtract 10 ; the remainder will be the logarithm of double the area of the triangle. Find, from the table, the number corresponding to this logarithm, and divide it by 2 ; the quotient will be the required area.

1. What is the area of a triangle, in which two sides, a and b, are respectively equal to 125.81 , and 57.65 , and whose included angle C is $57^{\circ} 25^{\prime}$?

Ans. $2 \mathrm{Q}=6111.4$, and $\mathrm{Q}=3055.7$
2. What is the area of a triangle, whose sides are 30 and 40 , and their included angle $28^{\circ} 57^{\prime}$?

Ans. 290.427.
3. What is the number of square yards in a triangle of which the sides are 25 feet and 21.25 feet, and their included angle 45° ? \qquad

LEMMA.

To find half an angle, when the three sides of a plane UIo fina half an angle, when the three siates of a plane
97. Let $A B C$ be a plane triangle, the angles and sides being denoted as in the figure.

When the angle, A, is acute, we have $A \quad C D$ (B. IV., P. XII.),

$$
a^{2}=b^{2}+c^{2}-2 c \cdot \mathrm{AD}
$$

but (Art. 37), $A D=b \cos A$; hence,

$$
a^{2}=b^{2}+c^{2}-2 b c \cos \mathrm{~A}
$$

When the angle A is obtuse, we have (B. IV., P. XIII.),

$$
a^{2}=b^{2}+c^{2}+2 c \cdot \mathrm{AD}
$$

but (Art. 37),
$A D=b \cos C A D$
but the angle $C A D$ is the supplement of the angle A of the given triangle, and, therefore (Art. 63),

$$
\cos C A D=-\cos A
$$

hence,

$$
\mathrm{AD}=-b \cos \mathrm{~A}
$$

and, consequently, we have

So that whether the angle, A, is acute or obtuse, we have
$a^{2}=b^{2}+c^{2}-2 b c \cos A ; \quad . \quad$.
whence,

If we add 1 to each member, and recollect that $1+\cos A=2 \cos ^{2} \frac{1}{2} A$ (Art. 66) equation (4), we have
$1+\cos A=2 \cos ^{2} A\left(\right.$ Art. $\left.\cos ^{2}\right)$

$$
\begin{equation*}
2 \cos ^{2} \frac{1}{2} \mathrm{~A}=\frac{2 b c+b^{2}+c^{2}-a^{2}}{2 b c} \tag{1}
\end{equation*}
$$

BJDTD $=\frac{(b+c)^{2}-a^{2}}{2 b c}$

$$
=\frac{(b+c+a)(b+c-a)}{2 b c}
$$

$$
\begin{equation*}
\cos ^{2} \frac{1}{2} \mathrm{~A}=\frac{(b+c+a)(b+c-a)}{4 b c} \tag{3.}
\end{equation*}
$$

MENSURATION

OF SURFACES
Placing, as before, $\quad a+b+c=s$,
we have

$$
\frac{a+b-c}{2}=\frac{1}{2} s-c
$$

and

Substituting in (5) and redueing, we have

$$
\begin{equation*}
\sin \frac{1}{2} A=\sqrt{\frac{\left(\frac{1}{2} s-b\right)\left(\frac{1}{2} s-c\right)}{b c}} \tag{6.}
\end{equation*}
$$

hence,
The sine of half an angle of a plane triangle, is equal to the square root of the product of half the sum of the three sides minus one of the adjacent sides and half that

$$
\begin{aligned}
& \text { The cosine of half of any angle of a plane triangle, is } \\
& \text { mat to the square root of the product of half the sum of }
\end{aligned}
$$ sum minus the other adjacent side, divided by the rectan-

qual to the square root of the product of half the sum of
the three sides, and half that sum minus the side opposite
the angle, divided by the rectangle of the adjacent sides.

By applying logarithms, we have
$\log \cos \frac{1}{2} \mathrm{~A}=\frac{1}{2}\left[\log \frac{1}{2} s+\log \left(\frac{1}{2} s-a\right)+(\right.$ a. c. $) \log b$

$$
+(\mathrm{a} . \mathrm{c} .) \log c] . \quad \text { (A.) }
$$

U If we subtract each member of equation (2) from 1 , and recollect that $1-\cos A=2 \sin ^{2} \frac{1}{2} A$ (Art. 66), we have
$2 \sin ^{2} \frac{1}{2} \mathrm{~A}=\frac{2 b c-b^{2}-c^{2}+a^{2}}{2 b c} \cdot(\square) \square$

$$
=\frac{a^{2}-(b-c)^{2}}{2 b c}
$$

$$
=\frac{(a+b-c)(a-b+c)}{2 b c}
$$

gle of the adjacent sides.
gle of the adjacent sides.
Applying logarithms, we have
$\log \sin \frac{1}{2} A=\frac{1}{2}\left[\log \left(\frac{1}{2} s-b\right)+\log \left(\frac{1}{2} s-c\right)+(\right.$ a. c. $) \log b$ $+(\mathrm{a}, \mathrm{c}.) \log \mathrm{c}]$. (B.)

Third Case. To find the area of a triangle when the three sides are given.

Let ABC represent a triangle whose sides a, b, and c are given. From the principle demonstrated in the last case, we have $\square \mathrm{Q}=\frac{1}{2} b c \sin \mathrm{~A}$.

But, from formula (A'), Trig., Art. 66, we have $\sin A=2 \sin \frac{1}{2} A \cos \frac{1}{2} A ;$
whence,

$$
Q=b c \sin \frac{1}{2} A \cos \frac{1}{2} A .
$$

Substituting for $\sin \frac{1}{2} \mathrm{~A}$ and $\cos \frac{1}{2} \mathrm{~A}$, their values, taken from Lemma, and reducing, we have

$$
Q=\sqrt{\frac{1}{2} s\left(\frac{1}{2} s-a\right)\left(\frac{1}{2} s-b\right)\left(\frac{1}{2} s-c\right)}
$$

hence, we may write the following
Rule.-Find half the sum of the three sides, and from it subtract each side separately. Find the continued produet of the half sum and the three remainders, and extract
its square root; the result will be the area required.
It is generally more convenient to employ logarithms; for this purpose, applying logarithms to the last equation, we have
$\log Q=\frac{1}{2}\left[\log \frac{1}{2} s+\log \left(\frac{1}{2} s-a\right)+\log \left(\frac{1}{2} s-b\right)+\log \left(\frac{1}{2} s-c\right)\right] ;$
hence, we have the following
Rune.-Find the half sum and the three remainders as before, then find the half sum of their logarithms; the
number corresponding to the resulting logarithm will be the area required.

Examples.

1. Find the area of a tríangle, whose sides are 20 , 30 , and 40

We have $\frac{1}{2} s=45, \frac{1}{2} s-a=25, \frac{1}{2} s-b=15, \frac{1}{2} s-c=5$. By the first rule,

$$
\mathrm{Q}=\sqrt{45 \times 25 \times 15 \times 5}=290.4737, \text { Ans }
$$

By the second rule,

2. How many square yards are there in a triangle, whose sides are 30,40 , and 50 feet? Ans. $66 \frac{2}{3}$.

To find the area of a trapezoid
98. From the principle demonstrated in Book IV. Prop. VII, we may write the following

Rule.-Find half the sum of the parallel sides, and multiply it by the altitude; the product will be the aren required.

Examples.

1. In a trapezoid the parallel sides are 750 and 1225 , and the perpendicular distance between them is 1540 ; what is the area? Ans. 1520750.
2. How many square feet are contained in a plank, whose length is 12 feet 6 inches, the breadth at the greater end 15 inches, and at the less end 11 inches?
. How many square yards are there in a trapezoid, whose parallel sides are 240 feet, 320 feet, and altitude 66 feet?

Ans. $2058 \frac{1}{5}$ sq. yd.

To find the area of any quadrilateral.
99. From what precedes, we deduce the following

Rule.-Join the vertices of two opposite angles by a diagonal; from each of the other vertices let fall perpendiculars upon this diagonal; multiply the diagonat by half of the sum of the perpendiculars, and the product will be the area required.

Examples

1. What is the area of the quadrilateral $A B C D$, the diagonal $A C$ being 42 , and the perpendiculars $\mathrm{D} g, \mathrm{~B} b$, equal to 18 and 16 feet?

$$
\text { Ans. } 714 \mathrm{sq} . \mathrm{ft} .(2 \mathrm{y}
$$

2. How many square yards of paying are there in the quadrilateral, whose diagonal is 65 feet, and the two perpendiculars let fall on it 28 and $33 \frac{1}{2}$ feet?

To find the area of any polygon.
100. From what precedes, we have the following

Rule.-Draw diagonals dividing the proposed polygon into trapezoids and triangles: then find the area of these fisures separately, and add them together for the area of the whole polygon.

Example.

1. Let it be required to determine the area of the polygon $A B C D E$ having five sides.

Let us suppose that we have measured the diagonals and perpendiculars,
and found $\mathrm{AC}=36.21, \quad \mathrm{EC}=39.11, \quad \mathrm{~B} b=4, \quad \mathrm{D} d=7.26$, $\mathrm{A} a=4.18:$ required the area. Ans. 296.1292.

To find the area of a regular polygon.
101. Let $A B$, denoted by s, represent one side of a regular polygon whose centre is C. Draw $C A$ and $C B$, and from C draw $C D$ perpendicular to $A B$. Then will $C D$ be the apothem, and we shall have $A D=B D$.

Denote the number of sides of the polygon by n; then will the angle $A C B$, at the centre, be equal to $\frac{360^{\circ}}{n}$ (B. V., page 144, D. 2), and the angle $A C D$, which is half of $A C B$, will be equal to $\frac{180^{\circ}}{n}$

In the right-angled triangle $A D C$, we shall have, formula (3), Art. 37, Trig.,

$$
C D=\frac{1}{2} s \tan C A D .
$$

But CAD, being the complement of ACD, we have
hence, $\square \mathrm{CD}=\frac{1}{2} s \cot \frac{180^{\circ}}{n}, \square$
a formula by means of which the apothem may be computed.

But the area is equal to the perimeter multiplied by half the apothem (Book V., Prop. VIII): hence the following

RuLE.-Find the apothem, by the preceding formula; multiply the perimeter by half the apothem; the product will be the area required.

Examples.

1. What is the area of a regular hexagon, each of whose sides is 20 ?
We have $\quad C D=10 \times \cot 30^{\circ}$;
or,

The perimeter is equal to 120 : hence, denoting the area
by Q ,
$=120 \times 17.3205$
$=1039.23$, Ans.
2. What is the area of an petagon, one of whose sides is 20 ?

The areas of some of the most important of the regupolygons have been computed by the preceding method, on the supposition that each side is equal to 1 , and the

T results are given in the following

TABLE.

The areas of similar polygons are to each other as the squares of their homologous sides (Book IV., Prop. XXVII.).

Denoting the area of a regular polygon whose side is s by Q , and that of a similar polygon whose side is 1 by T, the tabular area, we have

$$
\begin{aligned}
Q & : T:: s^{2}: 1^{2} \\
\therefore Q & =T s^{2}
\end{aligned}
$$

hence, the following
RuLe.-Multiply the corresponding tabular area by the square of the given side; the product will be the area required.

1. What is the area of a regular hexagon, each of whose sides is 20 ?

We have $T=2.5980762$, and $s^{2}=400:$ hence,
$\mathrm{Q}=2.5980762 \times 400=1039.23048$, Ans.
2. Find the area of a pentagon, whose side is 25 . Ans. 1075.298375.
Find the area of a decagon, whose side is 20 .

To find the circumference of a circle, when the diameter is given.
102. From the principle demonstrated in Book V., Prop. XVI, we may write the following

Rule. - Multiply the given diameter by 3.1416 ; the product will be the circumference required.

RuLe.-Multiply the number of degrees in the are by .0087266 , and the product by the diameter of the circle; the result will be the length required.

1. What is the circumference of a circle, whose diam eter is 25 ?

Ans. 78.54.
2. If the diameter of the earth is 7921 miles, what is the circumference? Ans. 24884.6136.

To find the diameter of a circle, when the circumference is
03. From the preceding case, we may write the fol-- lowing

Rube.-Divide the given circumference by 3.1416 ; the quotient will be the diameter required.

1. What is the diameter of a circle, whose circumference is 11652.1944 ?
2. What is the diameter of a circle, whose circumfer-
ence is 6850 ?
Ans. 2180.41.

To find the length of an arc containing any number of

UTo find the length of an arc containing any number of $\begin{gathered}\text { degrees. }\end{gathered}$
104. The length of an are of 1°, in a circle whose diameter is 1 , is equal to the circumference, or 3.1416 , divided by 360 ; that is, it is equal to 0.0087266 : hence, the length of an arc of n degrees will be $n \times 0.0087266$. To find the length of an are containing n degrees, when the diameter is d, we employ the principle demonstrated in Book V., Prop. XII., C. 2: hence, we may write the following
II. Find the area of the whole circle, by the last rule; then write the proportion, 360 is to the number of degrees in the are of the sector, as the area of the circle is to the area of the sector:

Examples.

1. Find the area of a circular sector, whose are contains 18°, the diameter of the circle being 3 feet.

Find the area of a sector, whose are is 20 feet, the dius being 10 radius being 10
3. Required the area of a sector, whose arc is $147^{\circ} 29$ and radius 25 feet. Ans. $804.3986 \mathrm{sq} . \mathrm{ft}$. and radius 25 feet.

To find the area of a circular segment.
10\%. Let $A B$ represent the chord corresponding to the two segments $A C B$ nd $A F B$. Draw $A E$ and $B E$. The segment $A C B$ is equal to the sector $E A C B$ minus the triangle $A E B$. The segment AFB is equal to the sector EAFB, plus
J the triangle AEB. Hence, we have the following

Rule.-Find the area of the corresponding sector, and also of the triangle formed by the chord of the segment and the two extreme radii of the sector: subtract the latter from the former when the segment is Tess than a semicircle, and add the latter to the former when the segment is greater than a semicircle; the result will be the area required.

Examples.

1. Find the area of a segment, whose chord is 12 and whose radius is 10 .

Solving the triangle $A E B$, we find the angle $A E B$ is equal to $73^{\circ} 44^{\prime}$, the area of the sector EACB equal to 64.35 , and the area of the triangle $A E B$ equal to 48 ; hence, the segment $A C B$ is equal to 16.35 .
2. Find the area of a segment, whose height is 18 , the diameter of the circle being 50 . Ans. 636.4834 .
3. Required the area of a segment, whose chord is 16 , the diameter being 20 .

Ans. 44.764.

To find the area of a circular ring contained between the circumferences of two concentric circles.
108. Let R and r denote the radii of the two circles, R being greater than r. The area of the outer circle is $R^{2} \times 3.1416$, and that of the inner circle is $r^{2} \times 3.1416$; hence, the area of the ring is equal to $\left(R^{2}-r^{2}\right) \times 3.1416$. Hence, the following

Runw.-Find the difference of the squares of the radii of the two circles, and multiply it by 3.1416 ; the product will be the area required.

Examples.

1. The diameters of two concentric circles being 10 and 6 , required the area of the ring contained between their circumferences.

Ans. 50.2656
2. What is the area of the ring, when the diameters of the circles are 10 and 20 ?

Ans. 235.62.

MENSURATION OF BROKEN AND OURVED SURFACES.

To fint the area of the entire surface of a right prism.
109. From the principle demonstrated in Book VII., Prop. I, we may write the following

Rule.-Multiply the perimeter of the base by the altitude, the product will be the area of the convex surface; to this udd the areas of the two bases; the result will be the area required.

Examples.

1. Find the surface of a cube, the length of each side being 20 feet.
2. Find the whole surface of a triangular prism, whose base is an equilateral triangle having each of its sides equal to 18 inches, and altitude 20 feet.

Ans. 91.949 sq. ft.

To find the area of the entire surface of a right pyramid.
110. From the principle demonstrated in Book VII, Prop. IV., we may write the following
-RuLk.-Multiply the perimeter of the base by half the slant height; the product will be the area of the convex surface; to this add the area of the base; the result will be the area required.

1. Find the convex surface of a right triangular pyramid, the slant height being 20 feet, and each side of the base 3 feet.

Ans. 90 sq. ft.
2. What is the entire surface of a right pyramia, whose slant height is 27 feet, and the base a pentagon of which each side is 25 feet? Ans. 2762.798 sq. ft .

To find the area of the convex surface of a frustum of a right pyramid.
111. From the principle demonstrated in Book VII., Prop. IV., S., we may write the following

Rule.-Multiply the half sum of the perimeters of the two bases by the slant height; the product will be the area required.

1. How many square feet are there in the convex surface of the frustum of a square pyramid, whose slant height is 10 feet, each side of the lower base 3 feet 4 inches, and each side of the upper base 2 feet 2 inches? Ans. 110 sq. ft.
2. What is the convex surface of the frustum of a heptagonal pyramid, whose slant height is 55 feet, each side of the lower base 8 feet, and each side of the upper base 4 feet? Ans. 2310 sq. ft.
3. Since a cylinder may be regarded as a prism whose base has an infinite number of sides, and a cone as a pyramid whose base has an infinite number of sides, the rules just given may be applied to find the areas of the surfaces of right cylinders, cones, and frustums of cones, by simply changing the term perimeter to circumference.
4. What is the area of the surface of a sphere, whose
5. What is the convex surface of a cylinder, the diameter of whose base is 20 , and whose altitude 50 ?
Ans. 3141.6.
. What is the entire surface of a cylinder, the altitude being 20 , and diameter of the base 2 feet?

Ans. 131.9472 sq. ft.
3. Required the convex surface of a cone, whose slant height is 50 feet, and the diameter of its base $8 \frac{1}{2}$ feet.

Ans. 667.59 sq. ft.
4. Required the entire surface of a cone, whose slant height is 36 , and the diameter of its base 18 feet.

$$
\text { Ans. } 1272.348 \text { sq. ft. }
$$

5. Find the convex surface of the frustum of a cone, the slant height of the frustum being $12 \frac{1}{2}$ feet, and the circumferences of the bases 8.4 feet and 6 . feet. Ans. 90 sq. ft .
6. Find the entire surface of the frustum of a cone, the slant height being 16 feet, and the radii of the bases 3 feet and 2 feet.

Ans. 292.1688 sq. ft.

U T To find the area of the surface of a sphere.
 113. From the principle demonstrated in Book VIII.,

 Prop. X., C. 1, we may write the followingRule-Find the area of one of its great circles, and multiply it by 4 ; the product will be the area required.

Examples.

1. What is the area of the surface of a sphere, whose radius is 16 ?

Ans. 3216.9984.
radius is 27.25 ? Ans. 9331.3374.

To find the area of a zone
114. From the principle demonstrated in Book VIII. Prop. X., C. 2, we may write the following

Rule.-Find the circumference of a great circle of the sphere, and multiply it by the altitude of the zone; the product will be the area required.

Examples.

1. The diameter of a sphere being 42 inches, what is the area of the surface of a zone whose altitude is 9 inches? Ans. 1187.5248 sq . in.
2. If the diameter of a sphere is $12 \frac{1}{2}$ feet, what will be the surface of a zone whose altitude is 2 feet?

Ans. 78.54 sq . ft.
To find the area of a spherical polygon.
115. From the principle demonstrated in Book IX., Prop. XIX., we may write the following

RuLe.-From the sum of the angles of the polygon, subtract 180° taken as many times, less two, as the polygon Thas sides, and divide the remainder by 90°; the quotient will be the spherical excess. Find the area of a great circle of the sphere, and divide it by 2 ; the quotient will be the area of a tri-rectangular triangle. Multiply the area of the tri-rectangular triangle by the spherical excess, and the product will be the area required.

This rule applies to the spherical triangle, as well as to any other spherical polygon.
$1 \bigcirc 1 \bigcirc$ Examples.

1. Required the area of a triangle, described on a sphere whose diameter is 30 feet, the angles being 140°, 92°, and 68°. ERE FLAMMAMM Ans. 471.24 sq. ft.
2. What is the area of a polygon of seven sides, described on a sphere whose diameter is 17 feet, the sum of the angles being 1080° ?

Ans. 226.98.
3. What is the area of a regular polygon of eight [Tides, described on a sphere whose diameter is 30 yards, each angle of the polygon being 140° ?
157.08 sq. yds

MENSURATION OF VOLUMES.
To find the volume of a prism.
116. From the principle demonstrated in Book VII,

Prop. XIV., we may write the following
Rule.-Multiply the area of the base by the altitude; the product will be the voiume required.

Examples.

1. What is the volume of a cube, whose side is 24 inches?
2. How many cubic feet in a block of marble, of which the length is 3 feet 2 inches, breadth 2 feet 8 inches, and height or thickness 2 feet 6 inches?

$$
\text { Ans. } 21 \frac{1}{6} \mathrm{cu} . \mathrm{ft} .
$$

3. Required the volume of a triangular prism, whose height is 10 feet, and the three sides of its triangular base 3,4 , and 5 feet. Ans. 60.

To find the volume of a pyramid.
11\%. From the principle demonstrated in Book VII, Prop. XVII, we may write the following

RuLe.- Multiply the area of the base by one third of the altitude; the product will be the volume required.

Examples.

1. Required the volume of a square pyramid, each side of its base being 30, and the altitude 25 . Ans. 7500 .
2. Find the volume of a triangular pyramid, whose altitude is 30 , and each side of the base 3 feet.

Ans. $38.9711 \mathrm{cu} . \mathrm{ft}$.
3. What is the volume of a pentagonal pyramid, its altitude being 12 feet, and each side of its base 2 feet? Ans. $27.5276 \mathrm{cu} . \mathrm{ft}$.
4. What is the volume of a hexagonal pyramid, whose altitude is 6.4 feet, and each side of its base 6 inches? $\square H$ Ans. $1.38564 \mathrm{eu} . \mathrm{ft}$.

To find the volume of a frustum of a pyramid
118. From the principle demonstrated in Book VII, Prop. XVIII., C., we may write the following

Rule.-Find the sum of the upper base, the lower base, and a mean proportional between them; multiply the result by one third of the altitude; the product will be the volume required.

This rule applies to the spherical triangle, as well as to any other spherical polygon.
$1 \bigcirc 1 \bigcirc$ Examples.

1. Required the area of a triangle, described on a sphere whose diameter is 30 feet, the angles being 140°, 92°, and 68°. ERE FLAMMAMM Ans. 471.24 sq. ft.
2. What is the area of a polygon of seven sides, described on a sphere whose diameter is 17 feet, the sum of the angles being 1080° ?

Ans. 226.98.
3. What is the area of a regular polygon of eight [Tides, described on a sphere whose diameter is 30 yards, each angle of the polygon being 140° ?
157.08 sq. yds

MENSURATION OF VOLUMES.
To find the volume of a prism.
116. From the principle demonstrated in Book VII,

Prop. XIV., we may write the following
Rule.-Multiply the area of the base by the altitude; the product will be the voiume required.

Examples.

1. What is the volume of a cube, whose side is 24 inches?
2. How many cubic feet in a block of marble, of which the length is 3 feet 2 inches, breadth 2 feet 8 inches, and height or thickness 2 feet 6 inches?

$$
\text { Ans. } 21 \frac{1}{6} \mathrm{cu} . \mathrm{ft} .
$$

3. Required the volume of a triangular prism, whose height is 10 feet, and the three sides of its triangular base 3,4 , and 5 feet. Ans. 60.

To find the volume of a pyramid.
11\%. From the principle demonstrated in Book VII, Prop. XVII, we may write the following

RuLe.- Multiply the area of the base by one third of the altitude; the product will be the volume required.

Examples.

1. Required the volume of a square pyramid, each side of its base being 30, and the altitude 25 . Ans. 7500 .
2. Find the volume of a triangular pyramid, whose altitude is 30 , and each side of the base 3 feet.

Ans. $38.9711 \mathrm{cu} . \mathrm{ft}$.
3. What is the volume of a pentagonal pyramid, its altitude being 12 feet, and each side of its base 2 feet? Ans. $27.5276 \mathrm{cu} . \mathrm{ft}$.
4. What is the volume of a hexagonal pyramid, whose altitude is 6.4 feet, and each side of its base 6 inches? $\square H$ Ans. $1.38564 \mathrm{eu} . \mathrm{ft}$.

To find the volume of a frustum of a pyramid
118. From the principle demonstrated in Book VII, Prop. XVIII., C., we may write the following

Rule.-Find the sum of the upper base, the lower base, and a mean proportional between them; multiply the result by one third of the altitude; the product will be the volume required.

Examples.

1. Find the number of cubic feet in a piece of timber, whose bases are squares, each side of the lower base being 15 inches, and each side of the upper base 6 inches, the altitude being 24 feet.

Ans. 19.5.
2. Required the volume of a pentagonal frustum, whose altitude is 5 feet, each side of the lower base 18 inches, and each side of the upper base 6 inches.
119. Since cylinders and cones are limiting cases of prisms and pyramids, the three preceding rules are equally applicable to them.

1. Required the volume of a cylinder whose altitude is 12 feet, and the diameter of its base 15 feet.

$$
\text { Ans. } 2120.58 \mathrm{cu} . \mathrm{ft} .
$$

2. Required the volume of a cylinder whose altitude is 20 feet, and the circumference of whose base is 5 feet 6 inches.

$$
\text { Ans. } 48.144 \mathrm{cu} . \mathrm{ft} .
$$

\int 3. Required the volume of a cone whose altitude is 27 feet, and the diameter of the base 10 feet.

Ans. $706.86 \mathrm{cu} . \mathrm{ft}$.
4. Required the volume of a cone whose altitude is $10 \frac{1}{2}$ feet, and the cireumference of its base 9 feet.
5. Find the volume of the frustum of a cone, the altitude being 18 , the diameter of the lower base 8 , and that of the upper base 4.

Ans. 527.7888.

There are three cases;
1st, When the length of the edge is equal to the length of the back;

2d, When it is less; and
$3 d$, When it is greater.
In the first case, the wedge is equal in volume to a right prism, whose base is the triangle $A D G$, and altitude $G H$ or $A B$: hence, its volume is equal to $A D G$ multiplied by $A B$.

In the second case, through H, a point of the edge, pass a plane HCB perpendicular to the back, and intersecting it in the line $B C$ parallel to AD. This plane will divide the wedge into two parts, one of which is represented by the figure.

Through G, draw the plane GNM parallel to $H C B$, and it will divide the part of the wedge represented by the figure into the right triangular prism GNM-B, and the quadrangular pyramid ADNM-G. Draw GP perpendicular to $N M$: it will also be perpendicular to the baek of the wedge (B. VI, P. XVII), and hence, will be equal to the altitude of the wedge.

Denote $A B$ by L, the breadth $A D$ by b, the edge $G H$ by 1 , the altitude by h, and the volume by V; then,

$$
\begin{aligned}
\mathrm{AM} & =\mathrm{L}-\boldsymbol{l}, \\
\mathrm{MB} & =\mathrm{GH}=\boldsymbol{l}, \\
\text { area } \mathrm{NGM} & =\frac{1}{2} b h:
\end{aligned}
$$

and

OF VOLUMES.
then
Prism $=\frac{1}{2} b h l ;$
Pyramid $=b(\mathrm{~L}-l) \frac{1}{\frac{1}{3}} h=\frac{1}{3} b h(\mathrm{~L}-l)$,
and

$$
\begin{aligned}
\mathrm{V} & =\frac{1}{2} b h l+\frac{1}{3} b h(\mathrm{~L}-l) \\
& =\frac{1}{2} b h l+\frac{1}{3} b h \mathrm{~L}-\frac{1}{3} b h l \\
& =\frac{1}{6} b h(l+2 \mathrm{~L}) .
\end{aligned}
$$

We can find a similar expression for the remaining part of the wedge, and by adding, the factor within the parenthesis becomes the entire length of the edge plus twice the length of the back.

In the third case, l is greater than L; the volume of each part is equal to the difference of the prism and pyramid, and is of the same form as before. Hence, in either case, we have the following

Rule--Add twice the length of the back to the length of the edge; multiply the sum by the breadth of the back, and that result by one sixth of the altitude; the final product will be the volume required.

1. If the back of a wedge is 40 by 20 feet, the erige 35 feet, and the altitude 10 feet, what is the volume? $\mathrm{L}^{2} \mathrm{~B}$. $\mathrm{Ans.}^{2} .3833 .33 \mathrm{cu} . \mathrm{ft}$.
2. What is the volume of a wedge, whose back is 18 feet by 9 , edge 20 feet, and altitude 6 feet?

Ans. $504 \mathrm{cu} . \mathrm{ft}$.

To find the volume of a prismoid.

122. A Prismoid is a frustum of a wedge.

Let L and B denote the length and breadth of the lower base, l and b the length and breadth of the upper base, M and m the length and breadth of Vthe A Section equidistant from the bases, and h the altitude of the prismoid.

Through the edges L and l, let a plane be passed, and it will divide the prismoid into two wedges, having for bases the bases of the prismoid, and for edges the lines L and l.

The volume of the prismoid, denoted by v, will be equal to the sum of the volumes of the two wedges; hence

hence, $\quad \mathrm{V}=\frac{1}{6} \mathrm{~B} h(l+2 \mathrm{~L})+\frac{1}{6} b h(\mathrm{~L}+2 l)$;
or, $\quad \mathrm{V}=\frac{1}{b} h(2 B L+2 b l+B l+b L)$;
which may be written under the form,
$\mathrm{V}=\frac{1}{6} h[(\mathrm{BL}+b l+\mathrm{Bl}+b \mathrm{~L})+\mathrm{BL}+b l]$.
Because the auxiliary section is midway between the bases, we have

Substituting in (A), we have

$$
\mathrm{V}=\frac{1}{b} h(\mathrm{BL}+b l+4 \mathrm{Mm}) .
$$

But BL is the area of the lower base, or lower section $b l$ is the area of the upper base, or upper section, and Mm is the area of the middle section; hence, the following

Rule.-To find the volume of a prismoid, find the sum of the areas of the extreme sections and four times the middle section; multiply the result by one sixth of the dis-- tance between the extreme sections; the result will be the volume required.

This rule is used in computing volumes of earth-work in railroad cutting and embankment, and is of very extensive application. It may be shown that the same rule holds for every one of the volumes heretofore discussed in this work. Thus, in a pyramid, we may regard the base as one extreme section, and the vertex (whose area is 0), as the other extreme; their sum is equal to the area of the base. The area of a section midway between them is equal to one fourth of the base: hence, four times the middle section is equal to the base. Multiplying the sum of these by one sixth of the altitude, gives the same result as that already found. The application of the rule to the case of cylinders, frustiums of cones, spheres, \&c., is left as an exercise for the student.

Examples.

1. One of the bases of a rectangular prismoid is 25 feet by 20 , the other 15 feet by 10 , and the altitude 12 feet: required the volume. Ans. $3700 \mathrm{cu} . \mathrm{ft}$.
2. What is the volume of a stick of hewn timber, whose ends are 30 inches by 27 , and 24 inches by 18 , its length being 24 feet?

Ans. $102 \mathrm{cu} . \mathrm{ft}$.

MENSURATION OF REGULAR POLYEDRONS.

123. A Regular Polyedron is a polyedron bounded by equal regular polygons.

The polyedral angles of any regular polyedron are all equal.
124. There are five regular polyedrons (Book VII., page 219

To find the diedral angle contained between two consecutive \square faces of a regular polyedron.
125. As in the figure, let the vertex, O, of a polyedral angle of a tetraedron be taken as the centre of a sphere whose radius is 1: then will the three faces of this polyedral angle, by their intersections with the surface of the sphere, determine the spherical
 triangle $F A B$. The plane angles $F O A, F O B$, and $A O B$, being equal to each other, the ares $F A, F B$, and $A B$, which measure these angles, are also equal to each other, and the spherical triangle $F A B$ is equilateral. The angle $F A B$ of the triangle is equal to the diedral angle of the planes FOA and $A O B$, that is, to the diedral angle between the faces of the tetraedron.

In like marmer, if the vertex of a polyedral angle of any one of the regular polyedrons be taken as the centre of a sphere whose radius is 1 , the faces of this polyedral angle will, by their intersections with the surface of the sphere, determine a regular spherical polygon; the number of sides of this spherical polygon will be equal to the
number of faces of the polyedral angle; each side of the polygon will be the measure of one of the plane angles formed by the edges of the polyedral angle; and each angle of the polygon will be equal to the diedral angle contained between two consecutive faces of the regular polyedron.

To find the required diedral angle, therefore, it only remains to deduce a formula for finding one angle of a regular spherical polygon when the sides are given.

Let $A B C D E$ represent a regular spherical polygon, and let P be the pole of a small circle passing through its vertices. Suppose P to be connected with each of the vertices by arcs of great circles; there will thus be formed as many equal isosceles triangles as the polygon has sides, the vertical angle in each being equal to 360° divided by the number
 of sides. Through P draw the arc of a great circle, $P Q$, perpendicular to $A B$: then will $A Q$ be equal to $B Q$, and the angle $A P Q$ to the angle $Q P B$ (B. IX., P. XI., C.). If we denote the number of sides of the spherical polygon by n^{\prime}, the angle APQ will be equal to 360°, or 180°

In the right-angled spherical triangle $A Q P$, we know the base $A Q$, and the vertical angle $A P Q$; hence, by Napier's rules for circular parts, we have
EBT $\sin \left(90^{\circ}-A P Q\right)=\cos \left(90^{\circ}-P A Q\right) \cos A Q$,
or,

$$
\cos A P Q=\sin P A Q \cos A Q ;
$$

denoting the side $A B$ of the polygon by s^{\prime}, and the angle PAQ, which is half the angle EAB of the polygon, by $\frac{1}{2} A$, we have

OF POLYEDRONS.
by the number of faces, will be the volume of the polyedron.

It only remains to deduce a formula for finding the altitude of the several pyramids, i.e., the distance from the centre to one face of the polyedron.

Conceive a perpendicular* $O C$ to be drawn from 0 , the centre of the polyedron, to one face; the foot of this perpendicular will be the centre of the face. From C, the foot of this perpendicular,

draw a perpendicular to one side of the
face in which it lies, and connect the point D with the centre of the polyedron. There will thus be formed a right-angled triangle, $O C D$, whose base, $C D$, is the apothem of the face, whose angle ODC is half the angle CDL contained between two consecutive faces of the polyedron, and whose altitude $O C$ is the required altitude of the pyramid, or, in other words, the radius of the inscribed sphere. This will be true for any one of the regular polyedrons-the hexaedron is taken here for simplicity of illustration.

Denote the line CD by p, the angle ODC by $\frac{1}{2} A$, and the perpendicular $O C$ by R. p may be found by the formula, given in Art, 101, for finding the apothem of a regular polygon; $\frac{1}{2}$ may be found from the formula for $\sin 1 A$, given in Art. 125 ; then, in the right-angled triangle OCD. we have, formula (3), Art. 37,

E.BIBLIOR=ptant

Compute the area of one of the faces of the given polyedron and multiply it by $\frac{1}{3}$, as determined by the formula just given, and multiply the result thus obtained by the number of faces of the polyedron; the final product will be the volume of the given regular polyedron.

The volumes of all the regular polyedrons have been computed on the supposition that their edges are each equal to 1 , and the results are given in the following

From the prineiples demonstrated in Book VII., we may write the following

Rule. - To find the volume of any regular polyedron, multiply the cube of its edge by the corresponding tabular volume; the product will be the volume required.

1. What is the volume of a tetraedron, whose edge is 15 ? Ans. 397.75.
[7. What is the volume of a hexaedron, whose edge is 12 ? Ans. 1728.
2. What is the volume of an octaedron, whose edge
is 20 ? Ans. 3771.236.
3. What is the volume of a dodecaedron, whose edge
is 25 ?
Ans. 119736.2328.
4. What is the volume of an icosaedron, whose edge is 20 ?
Ans. 17453.56

A TABLE

of

LOGARITHMS OF NUMBERS

FROM 1 TO 10,000.

Remarks. In the following table, in the nine right-hand columns of each page, where the first or leading figures change from 9 's to 0 's, points or dots are introduced instead of the 0 's, to catch the eye, and to indicate that from thence the two figures of the Logarithm to be taken from the second column, stand in the next line below.

The volumes of all the regular polyedrons have been computed on the supposition that their edges are each equal to 1 , and the results are given in the following

From the prineiples demonstrated in Book VII., we may write the following

Rule. - To find the volume of any regular polyedron, multiply the cube of its edge by the corresponding tabular volume; the product will be the volume required.

1. What is the volume of a tetraedron, whose edge is 15 ? Ans. 397.75.
[7. What is the volume of a hexaedron, whose edge is 12 ? Ans. 1728.
2. What is the volume of an octaedron, whose edge
is 20 ? Ans. 3771.236.
3. What is the volume of a dodecaedron, whose edge
is 25 ?
Ans. 119736.2328.
4. What is the volume of an icosaedron, whose edge is 20 ?
Ans. 17453.56

A TABLE

of

LOGARITHMS OF NUMBERS

FROM 1 TO 10,000.

Remarks. In the following table, in the nine right-hand columns of each page, where the first or leading figures change from 9 's to 0 's, points or dots are introduced instead of the 0 's, to catch the eye, and to indicate that from thence the two figures of the Logarithm to be taken from the second column, stand in the next line below.

4		？
\bigcirc		\bigcirc
	 	－
\cdots	＂中8\％ 	2
ω	 	ω
－	 	－
a	 	\because
©		\bigcirc
\sim	 	4
∞	 	∞
\bullet	品HKgis f	\bullet
0		\square

4	（1）		？
－			－
－	 	 	－
\checkmark	 	 	N
ω	 	 	ω
－	＂， －	Ni 日rist	－
a	 	 	4
ค	 	 	の
\checkmark	－ 	式答H 	\rightarrow
∞	 	 	∞
－	187 	Fi\％ 	\bullet
！			\％

2			?
-			-
	 	 	-
\star	 	 	*
ω	©0	 	ω
-	 	 	-
a	呺 80 -	 	a
\bigcirc	 	 	の
4	 	 	4
∞	 	 	∞
-	"* 	 	-
			\%

3		$?$
-		-
-		-
2	 	N
ω		ω
	 	,
a		a
-	 	©
4	 	$*$
∞		∞
-		-
-		\%

3		,
-		\bigcirc
-	은 	-
ג	 	*
ω	 	ω
-	 	-
0	 	0
๑	 	๑
\rightarrow	 	4
∞	 	∞
ω	 	\bullet
$\%$		\%

N.	0	1	2	3	4	5	6	7	8	9	D.
	806180										
641	6858										
	7585	7603	7670	7738	7806	7873	7941	800	8076	8143	
648	8211	8279	8846	8414	8481	8549	8616	8684	8751	8818	
644	8886	8953	9081	9088	9156	92	92	9358	9425	9499	67
645	9560	9627	9694	9762	9829	9896	998	**31	++98	-165	
640	810233	0300	0887	0484	0501	0569	068	0703	0770	0837	67
617	0904	0971	1039	1106	1173		1307	1374	1441	1508	
648	1575	1642	1709	1776	1843	1910	1977	2044	2111	2178	
649	2245	2812	2879	2445	2518	2579	26	2718	27	28	
650	8129	20	3047	3114	3181	3247	3814		3448	8514	
651	35	3	3	3781							
	18	4814	4381	4447	4514	4581	4647	4714	4780	4847	
653	4913	4980	5046	5118	5179	5246	5812	5378	6445	5511	
654	5578	5644	5711	5777	5843	5910	597	604	6109	6175	
	6241	6308	6874	6440	6506	6573	663	670	6771	6838	
656	6904	6970	7036	7102	7169	7235	7801	736	7483	74	
657	7565	7631		7784		7896	796		8094	8160	66
		829	88	842	84	85	86	86	8754	88	66
659	8885	89	90	90	91	02	988	98	9419	94	6
660	8195	96	9	9741	08	9873	9939	*	-*	${ }^{+1}$	
	8202	0267	0333	0399	04			${ }^{06}$			
							12	131	13	14	
	2188			236			2560		2691		
6	29	2887	29	301		314	32	327	3344	34	05
666	8474	3539	8605	8870	3735	380	886	3930	3998	4081	0
687	4126	4191		482	438	4451		4581	46	4711	
		4841			508	510		-			65
669	26	5491	55	56	5	57.	58	58	59		65
	$\begin{array}{r} 8960 \\ 67 \end{array}$										
					7698						
${ }^{678}$	8015	8080	8144				840	8467	8531	8595	$6 \pm$
674	(20	8724	8789	8858	8918	898	9046	9111	9175	9239	
675	9304	9868	9182	9497	9561	902	969	9754	2818	98	4
	9947	+111	+ 75	+13	+201	+26	+33	-396	+460	+52	
877 878	830589 1230	${ }^{0653}$	${ }^{0717}$	078	084	09	097	1037	1102	1186	
	1230 1870			20	14	15	${ }_{2}^{161}$	${ }^{107}$	${ }^{23}$		
	250			20	212		225	231	238		
680	3250	2578	203\%	2700	76	288	289	2956	302		
		3211	32	33			853				
688	3784	3848	49	397	408		4166	4230	42	48	
688	5481	4		4	4	478	4802	4866			
684 685	5056	51		82	581		-0,	550			
	632			58	59		697			82	63
687	6957	7020	70	714	7210	72	788			${ }^{7525}$	
					-		796				
689	8219	8283			8471	8534	858	8860	87		63
690	888848	8912		-	91						
691	9478	${ }^{9541}$	86	96				9918	098	\cdots	
692 693	840106 0733	${ }^{0169}$		02		042	04	0545	060	087	
	O738			09	18984		1109	1172	188	129	63
695	198	2047	21	217	2235	2297	238.		248		6
696	2809	2872	278		2809	2021		3016	3108	317	32
697	3233	329	3	34	3482	35.	3606	8689	878	379	68
698	8855	3918	3980	4042	4104	41	42	429	48	44	62
699	1477	4589	4801	46	4726	4788	4850	4918	497	5036	62

A TABLE OF LOGARITHMS FROM 1 TO 10,000 .

4.

A TABLE

LOGARITHMIC

SINES AND TANGENTS

- DE

\qquad for evekr
DEGREE AND MINUTE OF THE QUADRANT.

Remark. The minutes in the left-hand column of each page, increasing downward, belong to the degrees at the top; and those increasing upward, in the right-hand column, belong to the degrees below.

A TABLE

LOGARITHMIC

SINES AND TANGENTS

- DE

\qquad for evekr
DEGREE AND MINUTE OF THE QUADRANT.

Remark. The minutes in the left-hand column of each page, increasing downward, belong to the degrees at the top; and those increasing upward, in the right-hand column, belong to the degrees below.

(89 DEGRAES.)

M.	sine.	D.	Cosine.	D.	Tang.	D.	Cotang.	
0	8-2	119.68	9.99998	. 04	$8 \cdot 2$	$119 \cdot 67$	11.758079	6
1	24903			- 04	48	117	750	59
8	256094	115-80	99929	-04	256165	115.84	3835	58
3	263012	118.98	999927	. 04	263115	114.02	B885	57
4	269881	112-21	9998	-04	269956	$112 \cdot$	30044	56
5	276614	$110 \cdot 50$	999922	-04	276691	110.54	123309	55
6	283243	108-83	999920	-04	288323	$108 \cdot 87$	16677	58
7	289773	$107 \cdot 21$	999918	-. 04	289856 296292	$107 \cdot 26$ 105.70	101	58
8 8	88960	$105 \cdot 65$ $104 \cdot 13$	99918	-.04	896292	104-18	\%	51
10	308	102	999910	-04	308884	102-70	69113	50
11	8-814954	101	9.99	-0	8.	101	11. 681957	
12	321027			-04				
								48 46
14	332924							
15	338753	$95 \cdot 86$	897	.05	33888 844 8	$95 \cdot 90$ $94 \cdot 65$	538	4
			89	-05	350289		9711	
18	518	93.1		-05	3558	$92 \cdot 24$	14105	42
19	361315	91.03	9988	. 05	6142	91.08	638570	41
20	868777	89.90	99882	. 05	36689	89.8	6381	
21	$8 \cdot 3$		9.099879	. 05	8.372099	88.85	11.627708	
							711	
	38796			-.05			18	6
	393101	$84-6$		-05	3982	$84 \cdot 70$	20766	
							1	34
	4031	$82 \cdot 71$. 05)	$82 \cdot 7$	6662	33
				. 05	083	81.89	16	32
	41306			,	4182		530787	81
80	417019	96	908	. 06	418088	80.0	581982	
31	8-42271	.09	$9 \cdot 99$	-08	8.422		11.5	
82	42746	.28			427			
33	432156	$77 \cdot 40$	999841	O	4328	7.	5	
34	486800	76.57	999838	-06	115	$76 \cdot 63$	568410	
85	441894	75.77	999834	-03	441560	$75 \cdot 88$	8440	${ }^{1}$
80	445941	74.99	99988	06	448110	$75 \cdot 05$	¢	24
37	450440	$74-22$	99982	-06	150813	74.28 73.59	4980	
88	454803	78.46	99982	-06	455070	73.58	544930	
	45930	72	999820	-06	459481 468849	72	540519	$\stackrel{21}{80}$
40	463665	72	999810	. 0	4638	72	586151	
	8-467	$71-2$	2-8		46		1	
42	4722	\% 69.91	9998809	06	768		23	18
4	48008	$69 \cdot 24$	998	-08	8089	69-31	1918	16
45	4848	68.50	99979	\%	48505	68.	514	15
46	48		999793	- 0 \%	91	68.01	510880	
48	4.			-07	4972			
49							494738	
50	505045			-	50			
51	8.5			. 07	8 -50		490800	
59						64.39	12	
			99965				82810	
55	5243	62	9997	- 07	458	62-72	475114	
				-07			7185	
57		61	9997	-07	58208	61.	487920	
				-97		18		
59	539186	60.	9997	- Or	543084	$\underset{2}{2}$	$\begin{aligned} & 60553 \\ & 56916 \end{aligned}$	${ }_{0}$
							Tang.	

(88 DEGREES.)

(87 DEGREES.)

M.	Sine.	D.	Cosine.	D.	Tang.	D.	Cotang.	
0	8.718800	40.06	9.999404	$\cdot 11$	8.719396	$40 \cdot 17$	11-280604	60
1	721204	39.84	999398	- 11	721806	$39 \cdot 95$	278191	59
2	723595	39-62	999391	- 11	724204	39-74	275796	58
3	725972	39-41	999384	. 11	726588	$39 \cdot 52$	273412	57
4	728337	39-19	999378	-11	728959	$39-30$	271041	56
5	730688	38-98	999871	-11	731317	39:09	268683	55
6	783027	38.77	999864	-12	738668	38-89	266337	54
7	735354	38-57	999357	- 12	735996	38.68	264004	53
8	737687	38-36	999350	-12	738317	38.48	261683	58
9	739989	88-16	999343	12	740626	38-27	259374	51
10	742259	$37 \cdot 96$	999386	-12	7 ± 2922	88.07	257078	50
11	8.744536	37.76	9-999829	- 12	8.745207	37.87	11.254793	49
12 13	748802 749055	37.56	999322	-12	747479	$37 \cdot 68$	252521	48
14	751297	$37-17$	${ }_{999308}$	-12	751989	$37-29$ 37	248011	47
15	753528	36-98	999301	-12	754227	$37 \cdot 10$	245773	45
16	755747	86-79	999294	-12	756458	36-92	243547	44
17	757955	36-61	999286	-12	758668	36-78.	241332	43
18	760151	36.42	999279	12	760872	36-55	289128	42
19	762337	36-24	999272	-12	763065	36-36	236935	41
20	784511	86.06	299265	-12	765246	$36 \cdot 18$	234754	40
$\begin{aligned} & 21 \\ & 22 \end{aligned}$	8-766675	$35-88$ $35-70$	9.999257	-12	8-7874	36.	11-239583	39
23	770970	35-53	99250	13				38
24	773101	35.35	999235	-18	77886	35-48	226184	${ }^{36}$
25	775293	$35 \cdot 18$	999227	-13	775995	35-31	224005	35
27	777333	35.01	999220	13	778114	35.14	221885	34
27	779434	34.84	999212	-18	780222	34.97	219778	33
28 29	781524	34.67	999205	${ }^{-18}$	782320	34-80	217680	32
29	783605 785675	$\begin{aligned} & 34-51 \\ & 84-31 \end{aligned}$	999197 999189	-18	784408	84-64	215592 213514	81 80
31	8.787736	$34 \cdot 18$	9-999181	-18	788554	84-81	1-211446	
32	789787	$84 \cdot 02$	999174	-13	790618	$34 \cdot 15$	209387	28
38	791828	88.86	999168	-13	792662	38-99	207338	
34 35	793859	38-70	999158	-18	794701	33 -83	205299	26
35 36	795881	83-54	999150	$\cdot 13$	796731	83-68	203269	25
37	799897	33-23	${ }_{9} 9991414$	- 18	${ }_{800763}$	$33-52$ $33-37$	${ }^{201248}$	24
38	801892	33.08	999126	$\cdot 18$	802765	33-22	197235	23
89	808876	$32 \cdot 93$	999118	-13	804758	$83 \cdot 07$	195242	
40	805852	$32 \cdot 78$	990110	-13	806742	32.92	198258	20
41	8-807819	32-63	9-999102	-13	8-808717	82-78	11-191288	
42	809777	$32 \cdot 49$	999094	-14	810683	32-62	180317	
43	811726	32-34	999086	-14	812641	$32 \cdot 48$	187859	17
44	818867	32.19	999077	-14	814589	$32-88$	185414	16
45	815599	38.05	999069	$\cdot 14$	816529	$32 \cdot 19$	183471	15
46	817522	31.91	999081	-14	818461	32.05	181589	14
47	819436	81.77	999053	-14	820384	31-91	179616	18
48	821343	81.68	44	$\cdot 14$	822298	$31 \cdot 77$	177702	12
49	82392	31.49	9990	-14	$82+205$	81-68	175795	11
50	825130	$31-35$	999027	-14	826108	81.50	173897	10
	8.827011		9.999019	-14	8-827992	31.36	11-172008	
53	9		$\begin{aligned} & 9990 \\ & 9990 \end{aligned}$	14	829874 831748	$81-23$ $81-10$	170126 168258	8
54	832607	30-82	998998	-14.	838613	80.96	168387	6
55	84456	$30 \cdot 69$	998984	14	835471	80.83	164529	5
56	88	80.58	998976	$\cdot 14$	887321	30.70	182679	4
${ }^{67}$	888130	30-43	998967	$\cdot 15$	889163	30-57	160887	8
58	839956	30-30	998958	$\cdot 15$	840998	$30 \cdot 45$	159002	2
59 80	$\begin{aligned} & 841774 \\ & 843585 \end{aligned}$		998950 $9989+1$	-15	842825 844644	$30-32$ $80 \cdot 19$	157175	0
	Cosine.	D.						
			Sine.		Cotang.	D.	Tang	M.

(86 DEGREES.)

M.	Sine.	D.	Cosine.	D.	Tang.	D.	Cotang.	
$\begin{gathered} 0 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{gathered}$	$8-843585$ 845887 847183 848971 850751 852525 854291 856049 857801 859546 861288	$\begin{aligned} & 30 \cdot 05 \\ & 29.92 \\ & 29 \cdot 80 \\ & 29.67 \\ & 29.05 \\ & 29.43 \\ & 29.81 \\ & 29.19 \\ & 29.07 \\ & 28.90 \\ & 28 \cdot 64 \end{aligned}$	$9-998941$ 998932 998923 998914 998905 998896 998887 998878 998869 998860 998861	-15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15	8.844644 846455 848260 850057 851846 853628 855403 857171 858932 860686 868488	$30 \cdot 19$ 30.07 $29 \cdot 95$ 29.82 29.70 29.58 29.46 29.35 29.23 29.11 29.00	$\begin{array}{r} 11 \cdot 155356 \\ 153545 \\ 151740 \\ 149943 \\ 148154 \\ 146372 \\ 144597 \\ 142829 \\ 141068 \\ 139314 \\ 187567 \end{array}$	60 59 58 57 56 55 54 58 52 51 50 50
$\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \end{aligned}$	$8-863014$ 86738 86655 868165 86868 871565 875255 87495 876615 878285		9.9988811 99882 A9823 998813 998804 99875 998785 99876 998766 998757	-15 -15 -16 -16 -16 -16 -16 16 16 -16 -16		$\begin{aligned} & 28 \cdot 88 \\ & 28.77 \\ & 2886 \\ & 28 \cdot 64 \\ & 28.54 \\ & 28.32 \\ & 28.21 \\ & 28.11 \\ & 28 \cdot 00 \\ & 27 \cdot 89 \end{aligned}$	$11 \cdot 135827$ 134094 132368 130649 128936 127230 125531 123838 122151 120471	49 48 47 46 45 44 43 42 41 40
21 22 23 24 25 26 27 27 28 29 30	8.879949 881697 8882258 884903 886542 888174 889801 891421 893085 894643 898		$9-998747$ 998788 998788 998718 998708 998699 998689 998679 998669 998659	16 -16 -16 -16 -16 -16 -16 -16 -16 -17 -17	$8 \cdot 881202$ 888899 884530 88185 887833 889776 89112 892743 89466 895984	$\begin{aligned} & 27-79 \\ & 27.68 \\ & 27.58 \\ & 27.47 \\ & 27.37 \\ & 27.27 \\ & 27.17 \\ & 27.07 \\ & 26.97 \\ & 26.87 \end{aligned}$	$11-118798$ 117181 115470 118815 112167 110524 108888 107258 105634 104016	39 38 37 36 35 34 33 32 31 30
$\begin{aligned} & 31 \\ & 39 \\ & 33 \\ & 34 \\ & 35 \\ & 36 \\ & 37 \\ & 38 \\ & 39 \\ & 40 \end{aligned}$	8.896246 897842 899132 901017 902596 904169 905736 907297 908853 910404 8	$26 \cdot 60$ $26 \cdot 51$ 26.41 $28 \cdot 31$ 26.32 $26 \cdot 12$ 26.03 25.93 25.84 $25 \cdot 75$	9.998649 998639 908629 998619 998609 99859 998589 998578 99856 998558	17 -17 -17 -17 -17 -17 -17 -17 -17 -17	8.897596 893203 900803 902898 903987 905570 907147 908719 910285 911846	26.75 $26 \cdot 68$ 26-48 $26 \cdot 29$ $26-20$ $26 \cdot 10$ $26-01$ $25-92$	$11-102404$ 100797 099197 097602 008013 094430 092853 091281 059715 088151	29 28 27 26 25 24 23 29 21 20
$\begin{aligned} & 41 \\ & 42 \\ & 43 \\ & 44 \\ & 45 \\ & 46 \\ & 47 \\ & 48 \\ & 49 \\ & 50 \end{aligned}$	$8-911949$ 913888 915022 916550 91873 919591 92108 9226610 924112 925609		$9 \cdot 998548$ 998587 998527 99816 098506 098965 998458 098874 093644 098458	-17 -17 -17 -18 -18 -18 -18 -18 -18 -18	8.918401 91451 91645 918084 919688 92096 922619 924136 925649 927156		$11-088599$ 085049 088505 081968 080432 078904 077881 077884 0758351 074384	$\begin{aligned} & 19 \\ & 18 \\ & 17 \\ & 18 \\ & 15 \\ & 14 \\ & 13 \\ & 18 \\ & 11 \\ & 10 \end{aligned}$
51 51 52 53 54 55 56 57 58 59 60		$24-77$ 24.79 24.60 24.52 24.43 24.85 $24-27$ $24 .-19$ 24.11 24.08		-18 -18 -18 -18 -18 -18 -18 -18 -18 -18	$\begin{array}{r}\text { 8-028658 } \\ 980155 \\ 931817 \\ 933184 \\ 934618 \\ 986093 \\ 937565 \\ 939032 \\ 940494 \\ 941952 \\ \hline\end{array}$	$24-95$ 24.86 24.78 24.70 $24 .-61$ 24.53 24.55 $24 .-37$ $24-80$ 24.21	$\begin{array}{r} 11 \cdot 071348 \\ 069845 \\ 008388 \\ 066866 \\ 065384 \\ 068907 \\ 062435 \\ 060968 \\ 059508 \\ 058018 \\ \hline \end{array}$	9 9 8 7 6 4 3 2 1 0
	Cosine.	D.	Sine.		ta	D	Tang	M.

(85 DEGREES.)

M.	Sine.	D.	Cosine.	D.	Tang.	D.	Cotang.	
0	8-940296	24-03	9-998844	$\cdot 19$	8.941959	$24 \cdot 21$	11.058048	60
,	941738	23.94	998383	-19	943404	$24 \cdot 18$	056596	59
2	943174	23-87	998322	-19	944852	24.05	055148	58
3	944606	23.79	998811	- 19	946295	$23 \cdot 97$	053705	57
4	946034	23.71	998800	-19	947734	$23 \cdot 90$	052266	56
5	947456	23-63	898289	-19	949168	23-82	050832	55
$\stackrel{6}{8}$	048874	$23 \cdot 55$	998277	-19	950597	23-74	049408	54
7	950287	28.48	998268	- 19	952021	23-66	047979	58
8	951696	$23 \cdot 40$	998255	-19	958441	23-60	046559	52
9 10	953100	28-32	998243	$\cdot 19$	954856	23-51	045144	51
10	954499	23-25	998232	-19	956267	28.44	043733	
11	8.955894	$28 \cdot 17$	9-998220	-19	8-957674	23-37	11-042326	49
$\begin{aligned} & 12 \\ & 18 \end{aligned}$		$23-10$ $23-02$	998209	-19	959075 960478	23.29 23.23	040925	48
14	${ }_{960052}^{958670}$	23.05	${ }_{998186} 998197$	-19	${ }_{961886}^{960473}$	$23 \cdot 23$ $23 \cdot 14$	039527 038184	47 46
15	961429	22.88	998174	-19	963255	28-07	036745	45
16	962801	22-80	998168	-19	964839	23-00	035361	44
17	964170	22.73	998151	- 19	986019	$22 \cdot 93$	038981	48
18 19	${ }_{968898} 965584$	$22 \cdot 66$ 22.59	998189	-20 -20	${ }_{9687696}$	$22 \cdot 86$ 22.79	082606	$\frac{49}{41}$
19 20	966893 968249	- 22.59	9988128	-20 -20	968766 970133	- 22.79	O31234	41
	8-969600	$22 \cdot 44$	9-9981	- 20	8-971496	22-65	. 028504	
22	970947	$22 \cdot 38$	998092	- 20	972855	22.57	027145	38
$\begin{aligned} & 23 \\ & 24 \end{aligned}$	${ }_{973628} 97289$	$22-31$ $22-24$	998080	-20	974209 975560	$\underline{22.51}$	025701	${ }^{87}$
25	974962	$22 \cdot 17$	998056	-20	976908	22.87	023094	$\begin{aligned} & 36 \\ & 35 \end{aligned}$
26	276293	$22 \cdot 10$	298044	- 20	978248	22-30	021752	34
27	977619	22.03	998032	-20	979586	22.23	020414	38
$\stackrel{28}{29}$	978941 980259	$21 \cdot 97$ 21.90	9980	-20	980921	22-17	019079	32
30	981578	$\stackrel{21-88}{21-88}$	${ }_{997996} 998008$	-20	982851	- $22 \cdot 10$	O17749	81 80
31	8-982883	21.77	9-997985	- 20	8.984899	21-97	11.015101	
32	984189	21.70	997972	-20	986217	21.91	018783	28
38 84	985491 986789	${ }^{21.63}$	997959	-20	987532	21.84	012488	27
35	98808	${ }_{21.50}$	997935	-21	9890149	21.78	011188	26
36	989374	$21 \cdot 44$	997922	-21	991451	$21 \cdot 65$	008549	24
37	990660	21.38	997910	-21	992750	21.58	007250	23
38	991943	21.31	997897	-21	994045	21.52	005955	22
39 40	993292	21.25 21.19	997885	$\cdots 21$	995337	21.46	004663	21
40	994497	$21 \cdot 19$	997872	$\cdot 21$	996624	21.40	008376	20
	8.995768 997036		9.997860 997847	$\overbrace{-21}$	$8-997908$ 999188	${ }^{21 \cdot 34}$	11.002092	19
$\begin{aligned} & 43 \\ & 43 \end{aligned}$	998299	$\begin{aligned} & 21 \cdot 06 \\ & 21.00 \end{aligned}$	$\begin{aligned} & 9978477 \\ & 997885 \end{aligned}$	$\begin{array}{r} : 21 \\ -21 \end{array}$	$\begin{array}{r} 999188 \\ 9.000455 \end{array}$	$\begin{aligned} & 21 \cdot 27 \\ & 21 \cdot 21 \end{aligned}$	- 000812	18
44	999560	20.04	997828	$\cdot 21$	001788	$21 \cdot 15$	998262	16
45	9-000816	20.87	997809	21	003097	21.09	996993	15
46	002089	20.88	997797	-21	004972	21.03	995728	14
47	008318 004668	$20 \cdot 76$	997784	- 21	005534	$20 \cdot 97$	994466	18
48	005805	$20 \cdot 64$	997758	$\cdot \cdot 21$	008792	20.91 20.85	${ }_{991953} 998208$	12
50	007044	20.58	997745	- 21	009298	20.80	990702	10
	$9 \cdot 008278$	20.52	9.997732	$\cdot 21$	9.010546		0.989454	
52	009510	$20 \cdot 46$	997719	-21	011750	20-68	988810	8
5	-010737	$20 \cdot 40$	997703 997693	-21.	013031	20.68 $20 \cdot 56$	986969 985782	${ }_{6}^{7}$
55	013182	$20 \cdot 29$	997680	-22	015502	20-51	984498	5
56	014400	$20 \cdot 23$	997667	- 22	018739	20-45	983268	4
57	015612	20.17	997654	. 22	017959	$20 \cdot 40$	982041	8
58	016894	$20 \cdot 12$	997641	. 29	019188	20.33	980817	2
59	018031	20.06 80.00	997628	-29	020403	20.28	979597 978380	1
60	019235	20.00	996614	$\cdot 22$	021620	20-23	978380	
	Cosine.	D.	Sine.		Cotang.	D.	Tang.	M.

(84 DEGREES.)

M.	Sine.	D.	Cosine.	D.	Tang.	D.	Cotang.	
0	2-019235	20.00	9-997614	- 22	$9 \cdot 021620$	20-23	10.978380	60
1	020135	19.95	997601	-22	022834	20.17	977166 975956	59 58
	021638	19.89	997588	- 22	024044	20.11	975956	58
3 4 4	022825 024016	$19 \cdot 84$ 19.78	${ }^{997574}$	-22	025251	20.00	978545	56
5	025203	$19 \cdot 73$	997547	-22	027655	19.95	972345	55
6	026386	19.67	997584	-23	028852	19.90	97148	54
7	027567	$19+62$	997520	-28	030046	19.85	969954	53
8	028744	19.57	997507	23	031237 032425	19.79	${ }_{9} 9687675$	52
10	029918 031089	$\frac{19.51}{19.47}$	$\begin{aligned} & 907498 \\ & 997480 \end{aligned}$		$\begin{array}{r} 082425 \\ 088609 \end{array}$	$19 \cdot 74$ $19 \cdot 69$	${ }_{966891}^{96755}$	50
11	9-032257	19.41	9.997466	-23	9-084791	$19 \cdot 64$	-965209	
12	033421	$19 \cdot 36$ 19.30	997452	-23		19.58 79.58	964081 969856	48
13	${ }_{0}^{0345882}$	$19 \cdot 25$	997489	-23	038316	$19 \cdot 48$	961684	46
15	036896	19.20	997411	-28	039485	19-43	960515	45
16	038048	19-15	997897	$\cdot 28$	040651	19.88	959349	44
17	039197	$19 \cdot 10$	997383	-28	041813	19-38	958187	48 48 48
18	040342	19.05	997869	$\cdot .23$	O42978	$19 \cdot 28$ $19 \cdot 23$	${ }_{9}^{957027}$	$\frac{42}{41}$
$\begin{aligned} & 19 \\ & 20 \end{aligned}$	$\begin{aligned} & 041485 \\ & 042625 \end{aligned}$	18.99	${ }_{997841}$	-23	045284	19-18	954716	40
21	9-04376	18.80	9-997327	24	-046484	$19 \cdot 13$	10.953566	
22	044895	18.84	997313		047588		081073	38
23	046026	18.79	997299	.24	048727	19.03 18.98	9351273	${ }_{36}$
24	047154 018279	18.75 18.70	${ }_{9}^{997285}$	-24	0458008	18.93	915992	${ }_{35}$
26	049400	18-65	997257	-24	052141	18.89	947856	34
27	050519	$18 \cdot 60$	997242	-24	053977	18.84	946723	33
28 29	051635 052749	18.55 18.50 18	997228	-24	054407	$18 \cdot 79$ 18.74	9458598	${ }_{31}^{32}$
30	$\begin{array}{r} 052749 \\ 053859 \end{array}$	$18 \cdot 50$ 18.45	997214 997199	- 24	056659	$18 \cdot 70$	943841	30
81	$9 \cdot 054986$	$18 \cdot 41$	9-297185	-24	9.057781	18.65	10.942219	
32	056071	18.36	997170	$\stackrel{24}{-24}$	058800 060016	$18 \cdot 60$ 18.55	041100	$\begin{aligned} & 28 \\ & 28 \end{aligned}$
33 34	057172	$18 \cdot 31$ $18 \cdot 27$	997156 97141	${ }^{24}$	060016 061130	18.51	938870	26
85	059367	18.22	997127	24	062240	$18 \cdot 46$	937760	25
36	080480	18-17	997112	24	063348	$18 \cdot 48$	936652	24
37	061551	18.18	997098	-24	064458	$18 \cdot 37$ $18-83$	9855547	22
$\begin{aligned} & 38 \\ & 39 \end{aligned}$	082639 068724	18.08	997083 997068	${ }^{25}$	086655	$18 \cdot 28$	938345	21
40	${ }_{064806}$	$17 \cdot 99$	997053	-25	067762	18	932248	
	9.065885	$17 \cdot 94$	8.997039	25	9.068846	18.19	10.931154	
42	086962	$17 \cdot 90$	997024	-25	O89938	$18 \cdot 15$ $18 \cdot 10$		17
43	068036 069107	17.86 17.81	997009 996994	-25	0712118	18.06	927887	16
45	070176	17-77	998979	$\cdot 25$	073197	18.02	9268	15
46	071242	17.72	996964	25	074278	$17 \cdot 97$	92572	4
47	072306	$17 \cdot 68$	996949	$\cdot 25$	075856	17.93	924644	13
48	078366	$17 \cdot 68$	996934	25	076432	17.89	${ }_{9223568}$	12
49	074424	17.59	996919 996904	-25	${ }_{0}^{078576}$	17.84 17.80	921424	10
50	075480	17-55	996904					
51	$9 \cdot 076533$ 077583		$\begin{array}{r} 9 \cdot 996889 \\ 996874 \end{array}$		9.079644 080710	$\begin{aligned} & 17 \cdot 76 \\ & 17: 72 \end{aligned}$	$\begin{array}{r} 10 \cdot 920356 \\ 919290 \end{array}$	8
58	077588 078631		996874	-25	0817\%	$17 \cdot 67$	918227	7
54	079676	$17 \cdot 38$	996843	$\cdot 25$	082883	17.68	917187	6
65	080719	$17 \cdot 83$	996828	-25	0888	17.59	¢0	5
56	08175	17.29	9968	26	081947	17.51	4000	8
7	7	$17 \cdot 25$	${ }^{996797}$	-26	08600 087050	17.47	912950	2
58 59	083882	17.17	998786	-26	088098	$17 \cdot 48$	911902	1
60	085894	17-18	996751	26	089144	17-38	91085	
	Cosine	D.	Sine.		Cotang.	D.	Tang.	M.

(83 DEGREES.)

(81 DEGREES.)

M.	Sine.	D.	Cosine.	D.	Tang.	D.	Cotang.	
0	9-194332	18-28	9-994620	-38	9-199713	13.61	$10 \cdot 800287$	60
1	195129	18-26	994600	- 83	200529	18-59	799471	59
2	195925	18-23	994580	-88	201845	18-56	798655	58
3	196719	13-21	994580	-34	208159	13-54	797841	${ }^{57}$
4	197511	18-18	994540	-34	202971	18.52	797029	56
5	198302	13-16	994519	$\cdot 34$	203782	18-49	796218	55
6	199091	$18 \cdot 18$	994499	-84	204592	18-47	795408	54
7	199879	18-11	994479	-34	205400	$18 \cdot 45$	794600	53
8	200666	13.08	994559	-34	206207	13-42	793793	52
10	201451	13.06	994438	-34	207013	$18 \cdot 40$	792987	51
10	202234	13.04	994418	-34	207817	18-38	792188	50
11	9-203017	13.01	9-994397	-34	9.208619	13-35	-791381	49
12	203797	12.99	994377	-34	209420	13-38	790580	48
14	204577 205354	$12 \cdot 96$ $12 \cdot 94$	994357 994386	-84	210220 211018	$18-81$ $18-28$	789780	47
15	206131	12.92	994316	-34	211815	18-28	788185	45
16	206906	$12 \cdot 89$	094295	-34	212611	13-24	787889	44
17	207679	12.87	994974	$\cdot 35$	313405	13-21	786595	43
18	208452 209222	12.85 12.82	${ }_{9929838}^{9984}$	-35	214198	13.19	785802	42
19 20	$\begin{aligned} & 2092222 \\ & 209992 \end{aligned}$	$\begin{aligned} & 12 \cdot 89 \\ & 12.80 \end{aligned}$	${ }_{9}^{99423812}$	$\begin{aligned} & -35 \\ & -35 \end{aligned}$	$\begin{aligned} & 214989 \\ & 21.5780 \end{aligned}$	$\begin{aligned} & 18 \cdot 17 \\ & 13 \cdot 15 \end{aligned}$	785011 784200	${ }_{40}^{41}$
21	9-210760	18.78	9-904191	-35	2. 216568	18-12	10.7834	
22	211526	12.75	994171	-35	217356	18.10	782644	38
23	212291	12.78.	994150	-35	218142	13.08	781858	87
24	213055	12.71	904129	-35	218926	18.05	781074	36
25	213818	$12 \cdot 68$	991108	-85	219710	13.03	780290	35
26 27	214579	$12 \cdot 66$ 12.64	${ }_{9}^{994087}$	$\stackrel{35}{ }$	220492	12-01	779508	34
28	216097	12.61	994045	-35	222058	12.97	778728	38 32
29	216854	12.59	991024	-35	222830	12.94	777170	31
80	217609	12.57	994008	-85	223608	12.92	776391	80
	9-218363	12.55	9•903981	-35	2243	12.90	. 775618	
82	219116	12.58	993960	-35	225156	12.88	774844	28
83	219868	12.50	998989	-35	225929	12-86	774071	27
35	221367	12.48	${ }_{99389898}$	-35	226700 227471	12.84 12.81	773300 772529	26
36	222115	$12 \cdot 44$	993875	-36	228239	$12 \cdot 79$	771701	24
37	222881	$12 \cdot 42$	993854	$\cdot 86$	229007	$12 \cdot 77$	770993	98
$\begin{aligned} & 38 \\ & 30 \end{aligned}$	223606	12.39	993832	-36 .36	329778 230589	12-75	770297	82
40	225092	12.35	998789	-36	231302	12.71	768698	21 20
	9-225833	12.33	$9 \cdot 993768$		0.232065	12.69	767985	
48	226573	12.31	993746	-36	232826	12.67	767174	18
$4{ }_{4}^{43}$	227311	12.28 12.26	993725 998703	-36 -36	${ }_{234345}^{233586}$	12.65	766414	17
45	2289784	12.24	${ }_{993681}$	-36	234815 285108	$12 \cdot 62$ $12 \cdot 60$	765685 76887	16
46	229518	$12 \cdot 22$	993680	-36	285859	12.58	$76+141$	14
47	230252	$12 \cdot 20$	993638	-36	236614	12.56	763886	18
48	230984	12.18	998616	-36	287368	12.54	762632	12
49	231714	$12 \cdot 16$	993594	-37	288120	12.52	761880	11
50	23244	$12 \cdot 14$		-37	23887	$12 \cdot 50$	761128	
51	9.233172	12.12	$9 \cdot 9985$	- 37	9-2	12	-760	
${ }_{58}$	281625	$12 \cdot 07$	${ }_{9} 99355085$	-r7				8
54	235849	12.05	993484	-37	241885	12.42	758135	6
55	236073	12.03	933462	$\cdot 37$	242610	$12 \cdot 40$	757890	5
56	236705	12.01	938440	-37	243354	$12 \cdot 38$	756648	4
57	237515	11-99	993418	-37	24409	$12 \cdot 36$	755903	3
58		11.97	993396	87	244839	$12 \cdot 34$	75516	2
${ }_{6}^{59}$	${ }_{239670}^{23858}$	11.95 11.98	9938374	-37	245579	12.32 12.30	${ }_{758681} 754421$	1
	Cosine.	D.	Sine.		Cotang.	D.	Tang.	M.

(80 DEGREES.)

Sines and tangents. (11 degrees.)

(78 DEGREES.)

SINES AND TANGENTS. (13 DEGREES.)

M.	Sine.	D.	Cosine.	D.	Tang.	D.	Cotang.	
0	9-352088	$9 \cdot 1$	9.9887	- 49	9-3633	$9 \cdot 60$	10.6	80
1	352635	$9 \cdot 10$		-49	363940	59		59
2	358181	. 09	088666	-49	364515	9.58	35	58
3	853726	9.08	988638	-49	365090	9-57	4910	57
4	354271	$9 \cdot 07$	988607	-49	365684	9.55	684336	56
	354815	9.05	088578	-49	366337	9.54	683763	55
\%	355358	$9 \cdot 0 \pm$	988548	-49	368810	9-53	633190	54
7	355901	9-08	988519	-49	367882	9.52	632618	53
8	356443	9.02	988489	$\cdot 49$	867953	9.51	332047	52
9	356984	$9 \cdot 01$	988460	$\cdot 49$	368524	$9 \cdot 50$	631476	51
10	357524	8.99	988480	-49	369094	$9 \cdot 4$	630906	50
11	0.3580	8.98	9.98	-49	Q-368	$9 \cdot 48$	10.630387	49
12	358603	$8 \cdot 97$ 8.96	98	-49	3702	$9 \cdot 46$		4
14	359678	8.95	988812	- 50	370799 371367	. 45	82	17
15	360215	8-93	988282	-50	371938	- 43	86	45
18	360752	$8 \cdot 92$	988252	- 50	372499	$9 \cdot 42$	7501	44
17	361287	8-91	988223	-50	378084	9-41	626938	48
18	361822	$8 \cdot 90$	988193	-50	373629	. 40	626371	42
19	362356		988163	-50	374193	39	25807	41
20	362889	$8 \cdot 88$	988183	-50	874756	9-38	625244	40
21	9-369122	8.87	9.98810	50	9-8758		-6246	
22	-363954			- 50			624119	38
24	4	8.84	988013	-50	376442	${ }^{9.34}$	623558	${ }^{37}$
25	365546	8.82	987983	\cdots	${ }_{37756}$	$9 \cdot 82$	22437	
26	366075	8-81	987958	-50	378122	9-31	621878	34
27	866604	$8 \cdot 80$	987922	-50	378681	9-80	621319	33
28	367131 367659	$8 \cdot 79$	987898	-50	379239	9.29	620761	38
80	3081	$8 \cdot 7$	987862 987832	$\stackrel{-50}{-51}$	879 3803		620203 619646	31 30
31	9-3687	75	9.98780	51	- 880		. 619	
82	369286	8.74	987771	. 51			618584	
33	369761	8.78	987740	. 51	882020	9.24	617980	
34	370285	8.72	987710	- 51	382575	$8 \cdot 28$	617425	
85	370808	$8 \cdot 71$	987679	-51	3881	$9 \cdot 22$	61687	25
36	71830	8.70	987649	-51	3836	9-21	616318	24
38	${ }_{3718} 37$		987618	. 51	38	${ }^{9} \cdot 2 \cdot 20$	615766	23
89	372894	8 -66	987557	- 51	385	${ }_{9} \cdot 18$	614	${ }_{21}^{22}$
40	378414	8-65	98752	. 51	38588	$9 \cdot 17$	614112	20
41	9-3739	8	9.9874	51	9-38	$9 \cdot 15$	10.618	
48	874970	8:62	874	51	875	$\frac{9 \cdot 14}{9 \cdot 13}$	611	
44	875487	8.61	987403	-52	388084	$9 \cdot 12$	6119	16
45	78003	$8 \cdot 60$	987372	. 52	388631	$9 \cdot 11$	61138	15
46	376519	8.59	987341	-58	389178	3-10	61082	14
47	37703	$8 \cdot 58$	987810	- 52	389724	$9 \cdot 09$	6102	18
48	3775063	8.57	9872	${ }_{-52}$	8902	9.08	609730	18
50	378577	8.5	987217	- 52	8918	$9 \cdot 0$	6036	0
51	9-879089	53	9•98718		9.891		O	
52	379601	52	987155	-52	3924	9.04	\%oir	
58	113	8.51	${ }_{987098}$	- 52	3929	9.93	011	
55	381134	8.49	987061	. 52	394078	9.01	592	
56	881648	8.48	987080	-52	394614	$9 \cdot 00$	538	4
57	382152	8.47	9868	-52	895154	8.99	18	3
58	382661	8.	98690	-52	3956	98	,	
59	831	8.45	986936	-52	3962	$8 \cdot 97$	087e7	1
60	383675	8.4.4	986901	52	396771	$8 \cdot 96$	303229	0
	Cosine.	D.			Cotans			

(76 DEGREES.)

M.	Sine.	D.	Cosine.	D.	Tang.	D.	Cotang.	
0	9-383675	8.44	9.986904	. 52	9-396771	8-96	10.608229	60
1	${ }^{884182}$	$8 \cdot 48$	986873	. 58	397309	8.96	602691	59
2	384687	8.42	986841	-53	397846	8.95	602154	58 57
3 4 4	385192 885697	8-41	986809 986778	- 58 .58	398388 398919	8.94 8.98	601617 601081	$\begin{aligned} & 57 \\ & 56 \end{aligned}$
5	385697	8.40 8.39	${ }_{986746} 98078$	-53	399455	8.92	${ }_{6050545}^{6015}$	55
6	388704	$8 \cdot 38$	986714	-53	399990	$8 \cdot 91$	600010	54
7	887207	$8 \cdot 37$	986683	-58	400524	8.90	599476	58
8	387709	8.36	986651	-53	401058	8.89 8.88	598942	${ }_{51}^{52}$
	388810	8*35	988619	- 5.58	401591 402194		598409 597876	
10	888711	8-34,	986587	-53	402124	8-87	597876	
11	9-389211	8188	0.986555	-58	9.402656	8.86 8.85	10.597344	49
12	389711 890210	$8 \cdot 82$ 8.81	986523 986491	${ }_{-53}$	403187 403718	8.85 8.84	596813	$\begin{aligned} & 48 \\ & 47 \end{aligned}$
14	890708	$8 \cdot 30$	986459	-53	404249	8.88	595751	46
15	391206	8.28	986427	-53	404778	8.82	595322	45
16	391703	$8 \cdot 27$	986395	- 58	405808	8.81 8.80	594692	44
17	892199 892695	8.26 8.25	${ }_{986381} 98638$	- 54	405836 408364	8.80 8.79	59464 593686	48 42
19	898191	8.24	886290	-54	406893	$8 \cdot 78$	598108	41
20	398685	8.23	986266	-54	407419	8.77	592581	40
21	9-894179	$8 \cdot 22$	9-086284	54	8.407045	8.76	10.592055	39
23	3948168 3956	$8 \cdot 21$ $8 \cdot 20$	986202 986169	-54	408997	8.75 8.74	591529 591003	${ }^{38}$
24	395658	$8 \cdot 19$	986187	-54	409521	$8 \cdot 74$	590479	36
25	896150	$8 \cdot 18$	986104	. 54	410045	$8 \cdot 78$	589955	35
26	396641	$8 \cdot 17$	${ }^{986072}$	${ }_{-54}^{54}$	410569 411092	${ }_{8}^{8 \cdot 72}$	589431	34 38
28	897182 397621	$8 \cdot 17$ $8 \cdot 16$	${ }_{986007}^{986039}$	-54	411098	$8 \cdot 70$	588885	32
29	398141	$8 \cdot 15$	985974	-51	412137	$8 \cdot 69$	587883	31
80	398600	$8 \cdot 14$	985942	-54	412658	$8 \cdot 68$	587842	
31	9.399088	$8 \cdot 13$	0.985909	55	9.418179 418699	$8 \cdot 67$ $8 \cdot 66$	10.588821	29 28
32 83	399575 400062	8.12	985876 98543	. 55	418699 414219	$8 \cdot 66$ $8 \cdot 65$	585781	$\stackrel{28}{27}$
84	400549	8-10	985811	. 55	414738	$8 \cdot 64$	585262	28
35	401035	$8 \cdot 09$	985778	.55	415257	8.64	584743	25
36	401520	8.08	985745	- 55	${ }_{4152985}$	8-68	${ }_{583707}$	28
888	402005	8.07 8.06	${ }^{985712}$	- 55	416810	$8 \cdot 61$	583190	22
39	402972	8.05	985646	- 55	417326	8.60	582874	21
40	403455	8.04	985618	- 55	417842		582158	20
41	9-403938	$8 \cdot 08$	$0 \cdot 985580$	- 55	9.418358	8.58	10.581848	
42	404429 404901	8.02 8.01	985547	- 55	418878 419887	8.57		17
4	404901 405882	8.01 8.00	985614 985480	-55	419201	8.55	580099	18
45	405862	7.99	985447	. 55	420415	$8 \cdot 55$	579585	15
48	406341	7.98	985414	- 56	420927	$8 \cdot 54$	579073	14
47	406820 407299	$7 \cdot 97$ $7 \cdot 96$	985880 985847	- 56	421440	$8 \cdot 58$ $8 \cdot 52$	578560 578048	18
48	407299 407777	$7 \cdot 96$ $7 \cdot 95$	985347	-56	429463	$8 \cdot 51$	577537	11
50	408254	7.94	985880	$\cdot 56$	422974	8-50	577026	10
51	$9-408731$	7.94	- 9.985247		0. 423484		10.576516	
51 53	409207 409682	7.93 7.92	$\begin{aligned} & 985218 \\ & 985180 \end{aligned}$	- 56	$\begin{aligned} & 423993 \\ & 421503 \end{aligned}$		575497	7
54	410157	7-91	985146	- 56	425011	8.47	574989	6
55	410632	$7 \cdot 90$	985118	- 56	425519	8.46	574481	5
56	411108	$7 \cdot 89$	985079	-56	428027	8.45 8.44	573978 573468	3
$\stackrel{57}{58}$	411579 412052	7.88	985045	-56	427041	8 -48	572959	2
5	412052	7.86	984978	-56	427547	$8 \cdot 43$	572458	1
60	412998	$7 \cdot 85$	984944	. 56	428052	$8 \cdot 42$	571948	0
	Cosine.	D.	Sine.		Cotang.	D.	Tang.	M.

(75 DEGREES.)

M.	Sine.	D.	Cosine.	D.	Tang.	D.	Cotang.	
0	9-412996	$7 \cdot 85$	9-984944	. 57	9-428052	8.42	10.571948	60
1	413467	7.84	984910	- 57	428557	$8 \cdot 41$	571443	59
2	418938	7.83	981876	$\cdot 57$	129062	$8 \cdot 40$	570938	58
3	414408	7.88	984842	-57	429566	8-39	570434	57
4	414878	7-82	984808	- 57	430070	$8 \cdot 38$	569930	56
5	415347	7.81	984774	-57	430578	8.88	569427	55
${ }_{6}$	415815	$7 \cdot 80$	984740	. 57	481075	8.87	568925	54
8	416883	7.79 7.78	984706	-57	431577	8-86	568428	58
8	417217	- 7.78	9846837	$\cdot .57$	432580	8.35 8.34	567921 567420	${ }_{51}^{53}$
10	417684	$7 \cdot 76$	984603	$\cdot 57$	433080	8.33	566920	50
11	$9 \cdot 418150$	$7 \cdot 75$	9-984569	$\cdot 57$	0-483580	$8 \cdot 32$	10.566420	49
12	418615	$7 \cdot 74$	984585	$\cdot 57$	434080	$8 \cdot 32$	565920	48
18	419079	$7 \cdot 73$	984500	-57	434579	$8 \cdot 31$	565421	47
14	419544	$7 \cdot 78$	984466	$\cdot 57$	485078	$8 \cdot 30$	584922	46
15	420007	7.72	984432	-58	435576	$8 \cdot 29$	564424	45
16	420470	$7 \cdot 71$	984897	-58	436073	8.28	563927	44
17	420983	$7 \cdot 70$	984363	-58	436570	$8 \cdot 28$	563430	48
18	421895	$7 \cdot 69$	984328	-58	437087	$8 \cdot 27$	562983	48
19 20	$\begin{aligned} & 421857 \\ & 422318 \end{aligned}$	$\begin{aligned} & 7 \cdot 68 \\ & 7 \cdot 67 \end{aligned}$	984294 984259	$\begin{aligned} & -58 \\ & .58 \end{aligned}$	437568 438059	$8 \cdot 26$ $8 \cdot 25$	562487 561941	41
	9.422778	$7 \cdot 67$	9.9842		9-4885		. 561	
22	423238	$7 \cdot 68$	984190	. 58	4890	8.23	560952	38
23	423697	7.65	984155	-58	439548	8.23	580457	37
24	424156	7-64	984120	-58	440036	$8 \cdot 28$	559964	86
25	424615	$7 \cdot 63$	984085	- 58	440529	$8 \cdot 21$	559471	85
26		$7 \cdot 62$	984050	-58	441022 441514	$8-20$ $8-19$	558978	84
27 28 28	$\begin{aligned} & 425580 \\ & 425987 \end{aligned}$	$7 \cdot 61$ $7 \cdot 60$	$\begin{aligned} & 984015 \\ & 983981 \end{aligned}$	- 58	441514 442006	$8-19$ $8-19$	558486 557994	33 32
29	426443	$7 \cdot 60$	988946	-58	442497	8.18	${ }_{5} 57503$	81
30	426899	7-59	988911	- 58	442988	$8 \cdot 17$	557012	80
31	9*427354	7-58	9-988875 988840	58 .59 .59	9.448479 448968	$8 \cdot 16$ $8 \cdot 16$	10.556521	29
${ }_{38}$	427809 428263	$7 \cdot 56$	988805	- 59	+448968	$8 \cdot 15$	${ }_{5}^{556548}$	28
34	428717	7.55	983770	- 59	441947	$8 \cdot 14$	555053	26
35	429170	$7 \cdot 54$	983735	-59	445435	$8 \cdot 18$	554565	25
36	429623	7.58	983700	-59	445923	$8 \cdot 12$	554077	24
37	480075	7.52		-59	446411	$8 \cdot 12$ $8 \cdot 11$	558589 558102	
38 89	$\begin{aligned} & 430527 \\ & 430978 \end{aligned}$	$\begin{aligned} & 7 \cdot 52 \\ & 7.51 \end{aligned}$	$\begin{aligned} & 983629 \\ & 983591 \end{aligned}$	$\begin{array}{r} 59 \\ -59 \end{array}$	$\begin{aligned} & 446898 \\ & 447884 \end{aligned}$	$\begin{aligned} & 8 \cdot 11 \\ & 8 \cdot 10 \end{aligned}$	558102 552616	22
39 40	431489	7 7-50	988558	-59	447870	8.09	552618	20
41	9-481879	$7 \cdot 49$	9.983523	- 59	9*448356	8.09	10.551644	
42	432329	$7 \cdot 49$	983487	-59	448841	8.08	551159	18
43	432788	7.48	${ }^{983452}$. 59	449326	$8 \cdot 07$	550674	17
44	433226 438675	7.47 7.46	${ }_{9883816} 98$	-59	449810 450294	8.06 8.06	550190	16
$4{ }^{46}$	434122	$7 \cdot 45$	983345	-59	450777	8.05	54970828 54	15
47	434569	$7 \cdot 44$	983809	- 59	451260	8.04	5488740	13
48	435016	7.44	983273		451743	$8 \cdot 03$	548257	12
49	435462	$7 \cdot 48$	983988	-60	452225	8.02	547775	11
50	435908	$7 \cdot 42$	983202	-60	452706	8.02	547294	10
	9. 436358	7.41	9.983163		9-453187	8.01	10-546818	
$\begin{aligned} & 52 \\ & 58 \end{aligned}$	$\begin{array}{r} 430798 \\ 437248 \end{array}$	7-40	983094		4541	- 7 -99	5445852	8
54	437686	7.89	983058	-60	454628	$7 \cdot 99$	545372	8
55	438129	7-38	983022	- 60	455107	7-98	544893	5
56	438572	7.37	982986	-60	455586	7.97	544414	$\frac{4}{8}$
57	439014	$7 \cdot 86$	982950	-60	456084	7.96	543986	8 8 2
58 59 59	${ }_{4}^{439456}$	$7 \cdot 86$ $7 \cdot 85$	982914	-60	456542 457019	7.98 7.95	543458 542981	1
60	440338	7.34	982842	-60	457496	7-94	542804	${ }_{0}$
	Cosine.	D.	Sine.		Cotang.	D.	Tang.	M.

(73 DEGREES.)

			3
\%			\%
F	90.09090909 9090990990. 	 	\%
\%			8
-			\%
			易
\square			$=$
罸			
4		880	

(72 DEGREES.)

(71 DEGREES.)

M.	Sine.	D.	Cosine.	D.	Tang.	D.	Cotang.	
0	9-512642	$6 \cdot 12$	9.975670	$\cdot 73$	9.586972	6.84	$10 \cdot 463028$	
1	518009	$6 \cdot 11$	975627	-78	537382	6.88	462618	59
2	513375	6.11	975583	-73	537792	6.83	469208	58
8	518741	$6 \cdot 10$	975539	-73	588202	6.82	461798	57
4	514107	6.09	975496	-78	538611	6.82	461389	56
5	514472	6.09	975452	-78	539020	6-81	460980	55
$\stackrel{6}{7}$	514837 515202	6.08 6.08	975408	-73	539429	6.81	460571	54
S	515566	6.07	975321	-78	${ }_{540245}^{589887}$	6.80 8.80	460163	53
9	515930	6.07	975277	-73	540653	6.89	459765	${ }_{51}^{52}$
10	518294	6.06	975233	$\cdot 73$	541061	6.79	458989	
11	9.518657	6.05	9.975189	$\cdot 78$	9.541468	6.78	10.458532	49
12	517020	6.05	975145	$\cdot 73$	511875	6.78	$1{ }^{158125}$	48
18	517882	6.04	975101	-78	542281	6.77	457719	47
14	517745 518107	6.04 6.03	975057	$\cdot 73$	542688	6-77	457312	46
15 16	518107 518468	6.03 6.03	975013 974969	-73	543094	6.76	456806	45
17	518829	${ }_{6.02}$	974969	.74	${ }^{543499}$	6-76	456501	44
18	519190	6.01	974880	$\cdot 74$	544810	6.75	456095 455690	4
19	519551	6.01	974836	$\cdot 74$	544715	6.74	455285	41
20	519911	6.00	974792	$\cdot 74$	545119	6-74	454881	40
$\begin{aligned} & 21 \\ & 22 \end{aligned}$	9.520271	6.00	9.974748	$\cdot 74$	9. 5455524	6-78	10-454476	39
23	520631	5-99	974703		545928	6.78	454072	38
24	521349	5-98	974659	-74	546381 546735	6.72 6.72	453669 458265	37
25	521707	5-98	974570	-74	547138	6-72	452862	35
26	522066	$5 \cdot 97$	974525	$\cdot 74$	547540	$6 \cdot 71$	452460	34
${ }_{28}^{27}$	522424	$5 \cdot 96$	974481	$\cdot 74$	547943	6.70	452057	38
$\stackrel{28}{29}$	522781 523138	$5 \cdot 96$	974436	.74	548845	6-70	451655	32
80	${ }_{523495}$	$5 \cdot 95$	974347	-74	548747 549149	$6 \cdot 69$ $8 \cdot 69$	${ }_{4}^{451253}$	31 80
31	9.593852	$5 \cdot 94$	9.974302	- 75	9-549550	6.68	10-450450	
${ }_{83}^{32}$	5854208	$5 \cdot 94$	974257	. 75	549951	6.68	450049	28
33 34	524564	5-93 5	974212 974167	-75	550352 550752	$6 \cdot 67$ $6 \cdot 67$	449648 449248	27 26
85	525275	$5 \cdot 92$	974122	. 75	651152	6.66	448848	25
36	525630	5.91	974077	$\cdot 75$	551552	6.66	448448	24
87	525984	$\stackrel{5}{5 \cdot 91}$	${ }_{978987}^{974032}$	-75	651952	6.65	448018	23
39	526693	5-90	973942	. 75	552351 552750	$6 \cdot 65$ $6 \cdot 65$	447649 447250	22
40	527046	$5 \cdot 89$	973897	-75	558149	6.61	446851	20
	9-527400	$5 \cdot 89$	9.973852	$\cdot 75$	9.553548	6.64	10.446452	19
$\begin{aligned} & 42 \\ & 43 \end{aligned}$	528105	5	978807	-75	553946 554844	$6 \cdot 68$ $6 \cdot 68$	446054 445656	18
44	б28458	$5 \cdot 87$	973716	${ }_{76}$	5543441	6.63 6.62	445656 445259	18
45	528810	5787	973671	- 76	555139	$6 \cdot 62$	444861	15
46	539161	$5 \cdot 86$	978625	-76	555536	6.61	444464	14
47	529513	$5 \cdot 86$	978580	- 76	555933	$6 \cdot 61$	444087	13
48	589864	5-85	978535	-76	556329	$6 \cdot 60$	448671	12
50	${ }_{530565}^{680215}$	5.85 5.84	978489 973444	-76	556725 557121	6.60 6.59	${ }_{448879}^{448275}$	11
	9-580915		9.973398		$9 \cdot 557517$		10-442483	
$\frac{52}{52}$	581265	$5 \cdot 88$ $5 \cdot 82$	973352	. 76	557918	6.59	442087	8
54	531963	$5 \cdot 88$		-76	658808			7
55	532812	$5 \cdot 81$	973215	-76	559097	6.57	440908	5
56	582661	$5 \cdot 81$	973169	-76	559491	6.57	440509	4
57	538009	$5 \cdot 80$	973124	-76	559885	6.56	440115	3
58	533357	$5 \cdot 80$	973078	-78	560279	8.56	489721	2
59	583704	$5 \cdot 79$	973032	$\cdot 77$	560673	6.55	439327	1
60	584052	$5 \cdot 78$	972980	. 77	561068	6.55	438984	0
	Cosine.	D.	Sine.	D.	Cotang.	D.	Tang.	M.

(70 DEGREES.)

M.	Sine.	D.	Cosine.	D.	Tang.	D.	Cotang.	
0	9.554329	5.48	9.970152	. 81	9.584177	6.29	10.415823	60
,	554658	5-48	970103	-81	584555	6-29	1415445	б9
2	554987	5-47	970055	-81	584932	6-28	415068	58
8	555815	5.47	970006	-81	585809	$6 \cdot 28$	414691	57
4	555648	$5 \cdot 46$	969957	-81	585686	6.27	414814	56
${ }_{6}$	555971 556299	5*46	969909 969860	-81 -81	586062 586439	${ }_{6}^{6 \cdot 27}$	418938 418561	55
7	556626	$5 \cdot 45$	969811	-81	5868815	${ }_{8} \cdot 26$	418185	58
8	556958	5.44	969762	-81	587190	$6 \cdot 26$	418810	52
9	557280	5-44	989714	. 81	587566	$6 \cdot 25$	412434	51
10	557606	$5 \cdot 48$	969665	-81	587941	$6 \cdot 25$	412059	50
11	9-557932	$5 \cdot 43$	9-969616	-82	9. 588816	6.25	10-411684	49
18	558258	$5 \cdot 43$	969567	-82	588691	6.24	411309	48
13	558583 558909	5-42	969518 969469	-82 -82	589066 589440	6.24 6.23	410934 410580	47 48
15	559284	5.41	989420	-82	589814	$6 \cdot 23$	410186	45
16	559558	5.41	969370	-82	590188	6-23	409812	44
17	559883	$5 \cdot 40$	969321	. 82	590562	6.22	409488	43
18	560207	$5 \cdot 40$	969272	$\cdot 82$	590935	6.22	409065	42
20	560581 560855	5-39 $5 \cdot 89$	${ }_{969178} 96923$	-82	591808	$6 \cdot 22$ $6 \cdot 21$	408692 408319	414
21	9-561178	5-88	9.969124	- 82	9.592054	$6 \cdot 21$	10.407946	89
22	561501	5-38	969075	-82	592426	$6 \cdot 20$	407574	38
23	561824	5.37	969025	-88	592798	6-20	407202	${ }^{37}$
24 25	562146	5-36	${ }_{968928}^{9686}$	-88	${ }_{593170}^{598542}$	$6 \cdot 19$ 6.19	406829 408458	36 85 85
26	562790	5-36	968877	-88	598914	$6 \cdot 18$	406086	35 34
27	563112	$5 \cdot 86$	968827	-88	594285	6-18	405715	33
28	568438	$5 \cdot 35$	968777	. 88	594658	$6 \cdot 18$	405844	32
29	563755	$5 \cdot 35$	968728	-88	595027	8-17	404978	81
30	564075	5.84	968678	-88	595398	6.17	404602	80
31	9.564896	$5 \cdot 34$	9.968628	88	9.595768	6.17	10-404232	29
$\frac{82}{33}$	564716	${ }_{5}^{5 \cdot 38}$	9688528	-88	596138 596508	$6 \cdot 16$ $6 \cdot 16$	408868 403492	${ }_{27}^{28}$
84	565356	$5 \cdot 32$	988479	. 88	596878	$6 \cdot 16$	408122	26
85	565676	5.88	968429	. 83	597247	$6 \cdot 15$	402758	25
36 37	565995 566814	$5 \cdot 31$ $5 \cdot 31$	968379 968329	${ }^{-83}$	597616 597985	$6 \cdot 15$ $6 \cdot 15$	402384 402015	${ }^{23}$
38	566632	$5-81$	968278	. 88	598354	6.14	401646	22
89	566951	5-30	968228	- 84	598722	$6 \cdot 14$	401278	21
40	567269	5-30	968178	- 81	599091	6.13	400909	20
41	2-567587	5-29	9.968128	-84	9-599459	6.18	10-400541	19
42	567904	$5 \cdot 29$	988078	. 84	509827	$6 \cdot 13$	400173	18
48 44 1	${ }_{568539} 56829$	5-28	968027	-84 .84 84	600194 600562	$6-12$ $6 \cdot 12$	399806 399488	17
45	588856	5-28	967927	-84	600929	$6 \cdot 11$	899071	15
48	569178	5-27	987876	-84	601296	$6 \cdot 11$	398704	14
47	569488	$5 \cdot 27$	987828	. 84	601662	$6 \cdot 11$	398888	13
48	569804	$5 \cdot 26$	987775	. 84	602029	6.10	397971	12
49 50	570120 570485	$5 \cdot 26$	${ }_{9}^{967725}$	-84	602895 602761	$6-10$ $6-10$	397805 397239	11
51	9.570751	$5 \cdot 25$	D-967624	-84	9-603127	6.09	10-898873	
52	571086	5.24	967573	- 84	603498	$6 \cdot 09$	398507	8
53	571880	$5 \cdot 24$	967582 967471	-85	603858	6.09	396142	7
54	571695 572009	$5 \cdot 23$	967471 967421	-85	604223	6.08 6.08	395777	${ }_{5}$
56	572323	5-23	967870	. 85	604953	6.07	895047	4
57	572686	5-22	987819	-85	605817	6.07	394683	8
58	572950	5.22	967268	. 85	605682	6.07	394318	2
59	573263	$5 \cdot 21$	967217	. 85	606046	6.06 6.06	393954	1
60	573575	$5 \cdot 21$	967166	. 85	608410	6.06	398590	0
	Cosine.	D.	Sine.	D.	Cotang.	D.	Tang.	M.

(68 DEGREES.)

SINES AND TANGENTS. (23 DEGREES.)

M.	Sine.	D.	Cosine.	D.	Tang.	D.	Cotang.	
0	9-573575	$5 \cdot 21$	9.967186	. 85	9-608410	6.06	10-893590	
1	573888	$5 \cdot 20$	967115	-85	608773	6.06	393227	59
2	574200	$5 \cdot 20$	967064	-85	607187	6.05	392868	58
3	574512	$5 \cdot 19$	987018	-85	607500	6.05	392500	57
5	574824 575136	$5 \cdot 19$ $5 \cdot 19$	${ }_{9}^{986981}$	-85 -85	607863 608225	8.04 8.04	398187 891775	${ }_{55}^{56}$
${ }^{6}$	575447	5.18	${ }_{966859}$	-85	6082558 60858	8.04	891775 891412	${ }_{54}^{55}$
7	575758	$5 \cdot 18$	986808	-85	608950	6.03	391050	${ }_{53}^{54}$
8	576069	$5 \cdot 17$	966756	-86	609812	6.03	890688	
${ }^{9} 8$	576379 576689	$5 \cdot 17$	986705	. 86	609674	$6 \cdot 03$	390326	51
10	576689		966858		610086		389964	
11	9.576999	-16	9.986602	-86	9.610397	6.02 6.02	10-889603	49
18	5\%7618	$5 \cdot 15$	960499	. 86	611120			48
14.	577927	$5 \cdot 15$	966447	. 86	611480	6.01	888520	46
15	578286	$5 \cdot 14$	966395	-86	611841	6.01	388159	45
16	578545	$5 \cdot 14$	966344	- 86	612201	6.00	387799	44
17	578853	$5 \cdot 18$	966292	-86	619561	0.00	387439	43
18 19	579162 579470	5-13	966240 966188	.86 .86	612921 818281	$6-00$ 5.99	387079 886719	${ }_{41}^{42}$
19 20	-579777	5-12	966186	-86	613281	5.99	886719	41 40
21	9-580085	$5 \cdot 12$	9-986085	87	9.614000	8	10-386000	
22	580392	$5 \cdot 11$	966038	-87	614859	$5 \cdot 98$	385641	38
28	580699	$5 \cdot 11$	985981	-87	614718	$5 \cdot 98$		
24	581005	$5 \cdot 11$	965928	-87	615077	5.97	384938	36
25	581812	$5 \cdot 10$	965876	$\cdot 87$	615485	5.97	384565	85
26	581618	5-10	985824	-87	615793	5.97	884207	34
27	581924	5.09	965772	-87	616151	5.96	388849	${ }^{33}$
28	58	5.09	965720	$\cdot 87$	616509	5-96	883491	32
29	582585	5.09	965668	-87	616867	$5 \cdot 96$	383138	31
80		8	96	87	617224	95	382776	
81	9-588145	5.08	9.965563	-87	9.617582	5.95	10.382418	
32	583449	07	965511	. 87	617939	$5 \cdot 95$	382061	${ }_{27}^{28}$
38 84 8	583754 584058	5.07	965458 965406	-87	618295 618658	5.94	381705 381348	$\begin{aligned} & 27 \\ & 26 \end{aligned}$
85	584861	5-06	965858	. 88	619008	5.94	380992	25
36	584865	5.06	965301	. 88	619364	5.93	380636	24
37	584968	$5 \cdot 05$	965248	-88	619721 620076	$5 \cdot 93$	380279 879924	28 28
38 39 3	585272	$5 \cdot 05$	965195 965143	.88 .88	620076 620432	5.93 5.92	879924 379568	${ }_{21}^{22}$
40	585877	$5 \cdot 04$	965090	-88	620787	5.92	379218	20
41	9.586179	$5 \cdot 03$	9.985037	-88	9-621143	$5 \cdot 92$	10.378858	
42	586482	$5 \cdot 03$	964984	-88	621497	5.91	878503	18
43	586783	5.03	964931	-88	621852	$5 \cdot 10$	378148	17
44 45	${ }_{587386}^{587085}$	${ }_{5}^{5 \cdot 02}$	964879 964826	-88	622207 622561	$5 \cdot 90$ $5 \cdot 90$	877793 37439	${ }_{1}^{16}$
$\stackrel{45}{46}$	687688	$5 \cdot 01$	964478	. 88	622915	5-90	${ }^{377085}$	14
47	587989	5.01	964719	-88	628269	$5 \cdot 89$	- 876781	18
48	289	$5 \cdot 01$	964686	-89	623623	$5 \cdot 89$	${ }^{376377}$	12
49 50	588590 588890	5.00	964613 984560	.89 .89	623976 624330		376024 375670	110
	9-589190		$0 \cdot 964507$		9.624683		10-375817	
52	589489	4-99	964454	-89	625036	5-88	374964	
53	589789	4.99	964400	-89	625888	5.87		
54	590088	4.98	${ }_{964284}^{96484}$	-89	625741	$\frac{5.87}{5.87}$	374259	B
55	590387	4.98	${ }_{9}^{964294}$. 89	626093 62645	$5 \cdot 87$	378555	
${ }_{57}^{56}$	590984	4.97	964187	-89	${ }_{626797}$	5.86	873203	8
58	591282	$4 \cdot 97$	984133	-89	827149	5.86	372851	2
59	591580	$4 \cdot 96$	964080	-89	627501	$5 \cdot 85$	372499	1
60	591878	4.96	984026	-89	627852	5.85	372148	
	Cosine.	D.	Sine.	D.	Cotang.	D.	Tang.	M.
(67 DEGREES.)								

M.	Sine.	D.	Cosine.	D.	Tang.	D.	Cotang.	
,	9-591878	4-96	9-964026	-89	9-627852	5.85	10-372148	
	592176	$4 \cdot 95$	963972	-89	628203	$5 \cdot 85$		$\begin{aligned} & 60 \\ & 59 \end{aligned}$
8	592473	4-95	963919	-89	628554	5.85	371446	58
3 4 4	592770 593067	4.95	968865 968811	. 90	628905	5.84	871095	57
5	593368	4.94	963757	-90	629255	$5 \cdot 84$	745	56
6	598659	4-93	983704	-90	-6299956	5-83	370394 870044	55
7	593955	4-93	983650	-90	680306	$5 \cdot 83$	869694	54
8	594251	4-93	963596	-90	630656	$5 \cdot 88$	369344	52
10	594547 $59+842$	$4-92$ 4.92	963542 963488	$\begin{aligned} & .90 \\ & .90 \end{aligned}$	631005	$5 \cdot 82$ 5.82	368995	51
11	9-595187	$4 \cdot 91$	9-963484	-90	9-681704		10-368209	
12	595432	$4 \cdot 91$	963879	-90	632053	$5 \cdot 81$	387947	48
13	595727	$4 \cdot 91$	963325	-90	632401	$5 \cdot 81$	387599	47
15	596315	${ }_{4}^{4 \cdot 90}$	${ }_{968217} 963271$	-90	632750 688098	5.81	367250	46
16	596809	4-89	963163	- 90	${ }_{638447}$	$5 \cdot 80$	66902	45
17	596908	4.89	963108	- 91	633795	5.80	866205	43
18	597196	4.89	983054	-91	634143	5-79	365857	48
19	597490	4.88	962999		634490	5-79	365510	41
20	597788	4.88	962945	-91	634838	5-79	305162	40
$\begin{aligned} & 21 \\ & 22 \end{aligned}$	$\begin{array}{r} 9 \cdot 598075 \\ 598368 \end{array}$	$\begin{aligned} & 4 \cdot 87 \\ & 4 \cdot 87 \end{aligned}$	$\begin{aligned} & 9-962890 \\ & 962836 \end{aligned}$	$\begin{array}{r} -91 \\ -01 \end{array}$	9-635185	$5 \cdot 78$	-364815	39
23	598660	$4 \cdot 87$	982781	-91			384468	38
24	598952	4.86	962727	-91	686226	$5 \cdot 78$	364121 368774	37 36
25	44	4.86	c20	-91	686572	$5 \cdot 77$	368428	35
26	36	4.85	962617	$\cdot 91$	688919	5.77	363081	34
28	0118	4.85 4.85	962562 962508	$\cdot .91$	687265 637611	5.77	362785	${ }^{38}$
29	600409	4.84	962458	. 91	637956	${ }^{5.76}$	362389 362044	32
30	600700	4.84	962398	-92	688302	$5 \cdot 76$	362044	81 30
	D. 600990	4.84	$0 \cdot 962343$	-92	9-638647		10.361353	
32	601280 601570	${ }^{4.83}$	962288	-92	638992	$5 \cdot 75$	861008	28
34	601860	4-82	${ }_{962178}$.92	639837 689882	$5 \cdot 75$ $5 \cdot 74$	360663 360318	27
85	602150	$4 \cdot 82$	962123	. 92	840027	5.74	359973	${ }_{25}$
36	602439	4-82	962087	- 92	640371	$5 \cdot 74$	359899	24
38	602728 603017	4.81	962012	$\bigcirc 92$	640716	$5 \cdot 73$	359284	23
39	603305	${ }_{4}+81$	961902	-92	641080 641404	$\stackrel{5 \cdot 73}{5 \cdot 78}$	358940 858596	${ }_{21}^{22}$
40	603594	$4 \cdot 80$	961846	-02	641747	5.72	858596 358253	21 20
	$9 \cdot 603888$ 804170	4.80	9-961791		9-642091	$5 \cdot 72$	-357909	
43	604457	4.79 4.79	961785 961680	$\begin{array}{r} 92 \\ -92 \\ \hline 92 \end{array}$	648434 642777	$5 \cdot 72$	357566	18
44	604745	$4 \cdot 79$	981624	-93	643120	$\stackrel{5}{5-71}$	367223 356880	18
45	605032	$4 \cdot 78$	961569	-93	648468	5.71	856537	15
48	600819 605608	478	961513	-98	648806	$5 \cdot 71$	356194	14
48	605892		961458 961402	-93	644148 644490	$5 \cdot 70$ 5.70	355859	13
49	606179	4.77	961346	-93	644483	$5 \cdot 70$ $5 \cdot 70$	355510 355168	12
50	606465	4-76	961290	-93	645174	5.69	354826	10
	9.608751 67036	4-76	-961935		$9 \cdot 648516$	$5 \cdot 69$	10-354484	
53	807322	4.75	$\begin{aligned} & 961199 \\ & 961123 \end{aligned}$	$\begin{array}{r} -93 \\ -98 \end{array}$	645857 646199	5. 69 5.69	354143 853801	8
54	607607	$4 \cdot 75$	961067	-93	846549	$5 \cdot 68$	8588460	${ }_{6}$
55	607892	4.74	961011	-98	646881	5-68	358119	5
56	177	4.74 4.74	960955	-93	647222	5-68	352778	4
58	608745	${ }_{4} \cdot 7.78$	${ }_{9}^{960899}$	-93	647562 647903	$5 \cdot 67$	352438	8
59	609029	4-78	980786	-94	648243	${ }_{5}^{5.87}$	${ }_{351757}^{352097}$	2
60	13	$4 \cdot 73$	980780	-94	${ }_{648588}$	${ }_{5} 5 \cdot 66$	351757 351417	1
	Cosine.	D.	Sine.	D.	Cotang.	D.	Tang.	M.

(66 DEGREES.)

	m.	Sine.	D.	Cosine.	D.	Tang.	D.	Cotang.	
	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 3 \\ & \frac{4}{5} \\ & 6 \\ & 7 \end{aligned}$	$9 \cdot 609313$ 809597 609880 610164 610147 6010729 61012 61294 611576 611858 612140	4.73 4.72 4.72 4.72 4.71 4.71 4.70 4.70 4.70 4.89 4.89		-94 -94 .94 94 94 94 -94 -94 -94 -94 94 -94 -94		$\begin{aligned} & 5 \cdot 66 \\ & 5 \cdot 65 \\ & 5 \cdot 6.65 \\ & 5 \cdot 65 \\ & 5 \cdot 65 \\ & 5 \cdot 64 \\ & 5 \cdot 64 \\ & 5 \cdot 64 \\ & 5 \cdot 63 \end{aligned}$		60 59 58 57 56 56 55 54 53 52 51 50 50
	$\begin{aligned} & 11 \\ & 12 \\ & 18 \\ & 14 \\ & 16 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \end{aligned}$	$9 \cdot 612421$ 617202 61288 61384 613545 618525 61825 61405 61435 $61+665$ 614944	$\begin{aligned} & 4 \cdot 69 \\ & 4-68 \\ & 4-68 \\ & 4-67 \\ & 44.67 \\ & 4-67 \\ & 44.68 \\ & 4-66 \\ & 4-66 \\ & 4-96 \end{aligned}$	$\begin{array}{r}9960109 \\ 960053 \\ 95995 \\ 959938 \\ 95988 \\ 95985 \\ \hline 959768 \\ 95971 \\ 95965 \\ 959596 \\ \hline 95\end{array}$	$\begin{aligned} & .95 \\ & \hline 95 \\ & \hline 95 \\ & \hline .95 \\ & \hline .5 \\ & .95 \\ & .95 \\ & .95 \\ & .95 \\ & \hline .95 \end{aligned}$		$5 \cdot 63$ $5 \cdot 63$ $5 \cdot 63$ $5: 63$ $5: 62$ $5: 63$ $5: 62$ $5: 61$ $5: 61$ $5: 61$ $5 \cdot 61$ $5 \cdot 61$		$\begin{aligned} & 49 \\ & 48 \\ & 47 \\ & 48 \\ & 46 \\ & 45 \\ & 43 \\ & 43 \\ & 43 \\ & 41 \\ & 40 \end{aligned}$
	21 22 23 23 24 25 26 27 28 28 29 30				.95 .95 .95 -.95 -.96 .96 .96 .96 . .96 -96		$5 \cdot 80$ $5 \cdot 80$ 5.60 5.60 5.59 5.59 5.59 5.59 5.59 5.58 5.58 5.58 5.58		
	31 32 33 34 35 36 37 38 39 30 40	$9 \cdot 618004$ 618581 61558 618884 61981 619386 619862 619688 620313 620188 62048	$4 \cdot 61$ $4 \cdot 61$ 4.61 4.60 $4 \cdot 60$ $4 \cdot 60$ 4.59 4.59 $4 \cdot 59$ 4.58		.96 -.96 -.96 . .96 -.96 -.96 -.96 .97 .97	$9 \cdot 659039$ 65973 659708 66004 660756 660770 661013 661377 667710 662043	$\begin{aligned} & 5 \cdot 58 \\ & 5.58 \\ & 5.57 \\ & 5.57 \\ & 5.57 \\ & 5.57 \\ & 5.56 \\ & 5.56 \\ & 5.56 \\ & 5.56 \\ & 5.55 \\ & 5.55 \\ & 5.55 \end{aligned}$		$\begin{aligned} & 29 \\ & 28 \\ & 27 \\ & 27 \\ & 25 \\ & 25 \\ & 24 \\ & 23 \\ & 22 \end{aligned}$
	41 49 49 43 45 46 46 47 48 49 50 101				-97 -97 -97 -97 -97 -97 -97 -97 -97 -97		$5 \cdot 55$ $5 \cdot 54$ $5 \cdot 54$ $5 \cdot 54$ $5 \cdot 54$ $5 \cdot 58$ $5 \cdot 58$ $5 \cdot 58$ $5 \cdot 58$ $5 \cdot 53$ $5 \cdot 52$		
	51 51 52 53 54 55 56 57 58 59 59 60				-97 .97 -98 -98 -98 .98 .98 .98 .98 .98		$5+62$ $5 \cdot 52$ $5 \cdot 52$ $5 \cdot 51$ $5 \cdot 51$ $5 \cdot 51$ $5 \cdot 51$ $5 \cdot 50$		9 8 7 8 8 5 4 8
		Cosine.	D.	Sine.	D.	Cotang.	D.	Tang.	m.

(65 DEGREES.)

M.	Sine.	D.	Cosine.	D.	Tang.	D.	Cotang.	
0	9.641848	$4 \cdot 31$	9-953660	1.03	9.688182	$5 \cdot 34$	10.311818	60
1	042101	4-31	958599	1.03	688502	$5 \cdot 34$	811498	59
2	612360	4.81	958587	1.03	${ }_{6}^{6888823}$	${ }_{5}^{5 \cdot 34}$	311177	58
3	642618 642877	$4-30$ $4-80$	9533417	1.03	689143 689463	${ }_{5}^{5 \cdot 38}$	310857 310587	57
5	643135	4-80	958352	1-03	689788	5-38	310217	\%
6	643393	$4 \cdot 30$	953290	$1 \cdot 03$	690103	5-33	309897	54
7	643650	4-29	953228	$1 \cdot 03$	690423	5-33	309577	53
8	648908 $64+165$	4.29 $4 \cdot 29$	958166 958104	1.03 1.08	690742 691062	$5 \cdot 82$	309258 308938	52
10	644223	4-28	958042	1-08	691381	5-32	308619	50
11	9.644680	4-28	9-952080	1.04	9-691700	5-81	10-308800	49
12	644936	$4 \cdot 28$	952918	1.04	692019	5-81	307981	48
18	645198	4.27	${ }^{952855}$	${ }^{1.04}$	${ }_{6}^{6923388}$	${ }_{5}^{5-31}$	307662 307344	47 46
14	615450	$4-27$	${ }_{952793}^{9527}$	1.04	${ }^{692658}$	5-31	307344 307025	46
15 16	645962	${ }^{4}-27$	${ }_{952689}^{902731}$	1.04	693293	5.30	306707	4
17	646218	$4 \cdot 26$	952608	1.04	698612	5-80	306388	43
18	616474	4-26	952544	1.04	693980	5-30	306070	42
19	648729	4.25	952481	${ }^{1 \cdot 04}$	694248	$5 \cdot 30$ $5 \cdot 29$	305758	41 40
20	646984	$4 \cdot 25$	952410	1.04	694566			
$\frac{21}{20}$	$9 \cdot 647240$	$\frac{4-25}{4.25}$	$9-952356$ 952294	$1 \cdot 04$	$\begin{array}{r} 0 \cdot 694889 \\ 695201 \end{array}$	$\begin{aligned} & 5 \cdot 29 \\ & 5 \cdot 29 \end{aligned}$	$\begin{array}{r} 10-305117 \\ 804799 \end{array}$	$\begin{aligned} & 39 \\ & 38 \end{aligned}$
23	647749	$4 \cdot 24$	952231	1-04	695518	5.29	304182	37
24	648004	4.24	952168	1.05	695886	5.29	304164	36
25	645258	4-24	952106	1.05	696153		3038	85
20	648512 848768	$\stackrel{4}{4-23}$	952048	$\xrightarrow{1.05}$	696470 696787	5.28	303530 303213	34
28	649020	4.23	951917	105	697108	$5 \cdot 28$	302897	32
29	649274	4-22	951854	$1 \cdot 05$	697420	$5 \cdot 27$	302580	31
30	649527	$4 \cdot 22$	951791	1.05	697738	5-27	302264	30
81	D-649781	4.22	F.951728					
32 88	650034	4.22		$\begin{aligned} & 1 \cdot 05 \\ & 105 \end{aligned}$	698369 698685	$\begin{aligned} & 5 \cdot 27 \\ & 5 \cdot 26 \end{aligned}$	301631 301815	$\begin{aligned} & 28 \\ & 27 \end{aligned}$
34	650539	4-21	951589	1.05	699001	$5 \cdot 26$	300999	26
85	650792	$4 \cdot 21$	951476	1.05	699316		300684	25
36	651044	4.20	951412	1.05	699632	$5-26$	300368	24
37 38	651297 651549	4-20 4.20	95131286	1.06	${ }^{6990268}$	$5-28$ $5-25$	${ }_{299737}^{300058}$	$\begin{aligned} & 23 \\ & 22 \end{aligned}$
38	651800	4-19	951228	1.06	700578	$5 \cdot 25$	299422	21
40	652052	4-19	951159	1.06	700898	$5 \cdot 25$	299107	20
41	9-652304	$4-19$ $4-18$	9-951096	+1.06	$\begin{aligned} & 9 \cdot 701208 \\ & 701528 \end{aligned}$		$\begin{aligned} & 10-298792 \\ & 298477 \end{aligned}$	
42	652555 652806		951032	1.08	$\begin{aligned} & 701528 \\ & 701837 \end{aligned}$	5-24	$\begin{aligned} & 298477 \\ & 298168 \end{aligned}$	$\begin{aligned} & 18 \\ & 17 \end{aligned}$
44	653057	4.18	950985	1-06	702152	$5 \cdot 24$	297818	is
45	658308	$4 \cdot 18$	950841	1.06	702466	\%-24	297534	15.
46	653558	4-17	950778	1.06	709780	$5 \cdot 28$	297220	${ }_{18}^{14}$
47	658808	4-17	${ }_{9}^{950714}$	1.06	703095 703409	$5 \cdot 28$ $5 \cdot 23$	2996905	18
48	654059 854809	${ }_{4}^{4 \cdot 16}$	${ }_{950556}$	1-06	703723	$5 \cdot 28$	29627π	11
50	654558	$4 \cdot 16$	950522	1-07	704086	5-22	295964	10
51	9-654808	4-16	9.950458	1.07	9.704350	$5 \cdot 22$	10-295650	
52	655058	418	950894	1.07	704863	5.22	295837	8
53	655307	4.15	950380	1.07	704977 705290	$\frac{5}{5-22}$	${ }_{295038}^{29410}$	${ }_{8}$
54	655558 655805	$4 \cdot 15$ $4 \cdot 15$	950268 950202	${ }^{1} 1.07$	705608	5-21	294397	5
56	656054	$4 \cdot 14$	950138	1.07	705918	$5 \cdot 21$	291084	4
57	656302	$4 \cdot 14$	950074	1.07	706288	$5 \cdot 21$	293772	8
58	656551	4-14	950010	1.07		${ }_{5}^{5} \cdot 21$	2934146	1
59 60	858799 657047	4.18 $4-18$	949945	$\begin{aligned} & 1 \cdot 07 \\ & 1 \cdot 07 \end{aligned}$	700854 707166	$5 \cdot 21$ $5 \cdot 20$	2988884	1
	Cosine.	D.	Sine.	D.	Cotang.	D.	Tang.	M.
(63 DEGREES.)								

M.	Sine.	D.	Cosine.	D.	Tang.	D.	Cotang.	
0	9-657047	$4 \cdot 18$	9.949881	1-07	9.707166	$5 \cdot 20$	10-292834	
1	657295	4-18	949816	1-07	707478	$5 \cdot 20$	292622	59
,	657542	$4 \cdot 12$	949752	1.07	707790	$5 \cdot 20$	292810	58
8	657790	$4 \cdot 12$	949688	1.08	708102	$5 \cdot 20$	291898	57
4	${ }_{658037} 658$	$4 \cdot 12$	949628	1.08	708414	5-19	291586	56
\%	658884 65881	$4 \cdot 12$	${ }_{9}^{949558}$	1.08 1.08 1	708728 709037	$5 \cdot 19$	291274	55
7	658778	$4 \cdot 11$	949429	1.08	709349	$5 \cdot 19$	290963	54
8	659025	4-11	949364	1.08	709660	5-19	290340	${ }_{5}^{58}$
9	659271	$4 \cdot 10$	949800	1-08	709971	$5 \cdot 18$	290029	51
10	659517	4-10	949285	1.08	710282	5-18	289718	50
11	9-659768	$4 \cdot 10$	9-949170	1.08	9.710593	$5 \cdot 18$	10.289407	49
12	660009	4.09	949105	1.08	710904	5-18	289096	48
14	660255 860501	4.09	${ }_{949040}^{948975}$	1.08	717215	$5 \cdot 18$	288785	47
15	660746	$4 \cdot 09$	948910	1.08	711888	$5 \cdot 17$	888475	48
16	660991	$4 \cdot 08$	948845	1.08	712146	$5 \cdot 17$	287854	44
17	661236	$4 \cdot 08$	948780	1.09	712456	$5 \cdot 17$	287544	43
18	661481	4.08	948715	1.09	712768	$5 \cdot 18$	287284	42
19	661726	4.07	948650	1.09	718076	$5 \cdot 16$	286984	41
20	661970	4.07	948584	1.09	713386	5-16	286614	40
$\begin{aligned} & 21 \\ & 22 \end{aligned}$	$\begin{array}{r} 9 \cdot 662214 \\ 662459 \end{array}$	$\begin{aligned} & 4 \cdot 07 \\ & 4 \cdot 07 \end{aligned}$	9.248519	1.09	9-7136	5.	.286804	39
23	662703	$4 \cdot 06$	${ }_{948888}$	1.09	714811		285995	88
24	862946	4.06	948323	1.09	714624	$5 \cdot 15$	285376	36
25	683100	$4 \cdot 06$	948257	1.09	714938	\%-15	285067	85
26	663438	4.05	948192	1.09	715242	5-15	284758	34
27	663677	4.05	948126	$1 \cdot 09$	715551	$5 \cdot 14$	284149	33
28	868920	4.05	948080	1.09	716860	$5 \cdot 14$	284140	32
29	${ }^{664163}$	4.05	947995	1-10	716168	5:14	288882	81
30	664408	$4 \cdot 04$	947829	$1 \cdot 10$	716477	5.14	288523	30
$\begin{aligned} & 31 \\ & 32 \end{aligned}$	9-664648	4.04	9.947863	1-10	9 -7167	$5 \cdot 14$	10.283215	
32	${ }_{665138}^{66489}$	4.01	${ }^{947797}$	$1 \cdot 10$ $1 \cdot 10$	717098 717401	$5 \cdot 18$ $5 \cdot 18$	282907 289599	$\begin{aligned} & 28 \\ & 27 \end{aligned}$
84	665375	4.03	947665	1-10	717709	5-18	282291	26
85	685617	4.03	047800	1.10	718017	5-18	281983	25
36	665859	4.02	947538	$1 \cdot 10$	718325	5-18	281670	24
87	668100	$4 \cdot 02$	947467	1-10	718638	$5 \cdot 12$	281367	23
38 39	668342 686588	4.02	${ }^{9474881}$	+100	718940 719248	$5 \cdot 12$	281060	22
40	${ }_{666824}$	${ }_{4}^{4.01}$	${ }_{947269}$	+1.10	719248	5-12	2880752	$\stackrel{21}{20}$
	9.867005	4.01	9.947208	1-10	9-719862	$5 \cdot 12$	10-280138	
$\frac{42}{48}$	667305 667543	$\begin{aligned} & 4 \cdot 01 \\ & 4 \cdot 01 \end{aligned}$	947136 947070	1-11	$\begin{aligned} & 720169 \\ & 720176 \end{aligned}$	$5 \cdot 11$	279831	18
44	867786	$4 \cdot 00$	947004	1.71	720783	5-11	279217	17
45	668027	$4 \cdot 00$	246937	1.11	721089	$5 \cdot 11$	278911	15
46	688267	4.00	946871	1.11	721396	5-11	278604	14
47	688506	3-99	946804	1.11	721702	$5 \cdot 10$	278298	18
48	668748	8.99	946788	1-11	722009	$5 \cdot 10$	277991	12
49	668988	3.99	946671	1-11	732815	$5 \cdot 10$	277685	11
50	669225	8-99	946604	1.11	722621	5-10	277879	10
	$\begin{aligned} & 9 \cdot 869164 \\ & -869708 \end{aligned}$	8.98 8.98	9.946638	$1 \cdot 11$	9-722027	$5 \cdot 10$	10.277078	
53	689942	$8 \cdot 98$	946404	1.11	\% 7233588	5.09 5.09		8
54	670181	8.97	946337	1.11	728844	$5 \cdot 09$	276156	6
65	670119	3.97	946270	1-12	724149	5.09	275851	5
56	670658	3.97	946208	1-12	724454	$5 \cdot 09$	275546	4
57	670896 671184	$3 \cdot 97$	946136	1.12	724759	5.08	275241	3
58	871134 871372	3.98 3.95	946069	1.12	725065	$5 \cdot 08$	274935	2
60	${ }_{671609}$	$3 \cdot 96$	${ }^{946002}$	1-12	725869 725674	$5 \cdot 08$ $5 \cdot 08$	274631 974326	${ }_{0}^{1}$
	Cosine.	D.	Sine.	D.	Cotang.	D.	Tan	M.

M.	Sine.	D.	Cosine.	D.	Tang.	D.	Cotang.	
0	9.671609	3.96	9.945935	$1 \cdot 12$	9.725674	$5 \cdot 08$	10-274326	60
1	671847	$3 \cdot 95$	945888	1.12	725979	5.08	274021	59
2	672084	3.95	945800	1.12	726284	5.07	273716	58
3	672321	3.95	945733	$1 \cdot 12$	726888	$5 \cdot 07$	278412	${ }_{58}^{57}$
$\frac{4}{5}$	672558 672795	3.95 3.94	T 945666	1.12	728892 727197	5.07	278108 272808	56
5	672795 673032	${ }^{3 \cdot 94}$	945598 945531	${ }_{1}^{1.12}$	727197 727501	${ }_{5}^{5 \cdot 07}$	$\begin{aligned} & 272803 \\ & 272499 \end{aligned}$	$\begin{aligned} & 55 \\ & 54 \end{aligned}$
7	673268	$3 \cdot 94$	945164	1-13	727805	5.06	272195	53
8	673505	3.94	945896	1-13	728109	5.06	271891	52
	673741	3.93	945828	+13	728412 728716	5.06	271588 271284	$\frac{51}{50}$
10.	678977	3-93	945261	$\underline{1-13}$	728716		271284	
11	D. 674218	3.93	9.915193	$1 \cdot 13$	9-729020	5	$10-270980$ 270877	
$\left\|\begin{array}{\|l\|} 12 \\ 13 \end{array}\right\|$	674448 674684	$3 \cdot 92$ 3.92	945125	+1.18	729323	5.05 5.05	270877 270374	$\begin{aligned} & 48 \\ & 47 \end{aligned}$
14	674919	$3 \cdot 92$	944990	1.13	729929	5.05	270071	46
15	675155	3.92 8.91	9498922	1.13	730238 730535	5.05 5.05	269767 26965	45
16 17	675890 676824	8.91 8.91	9944854	1.18	730535 730888	5.04	269465 269162	$\begin{aligned} & 44 \\ & 48 \end{aligned}$
18	675859	3.91	944718	1-13	731141	5.04	288859	42
19	678094	3.91	947650	1.13	781444	5.04	268556	41
20	676828	3.90	944582	1-14	781746	5.04	268254	
21	9-676562	3.90	9.94514	1.14	9-782048	5.04	10. 267952	39
23	${ }_{67 \% 7030}^{67676}$	8.90	${ }^{944837}$	${ }_{1} 114$	782653	5.03	267347	37
24	677264	8.89	944809	1-14	782955	$5 \cdot 03$	267045	36
25	677498	8.89	944241	1.14	783257	5.03	266748	35
26 27 28	677731 677964	3.89 3.88	944172 944104	1714	${ }_{7838580}$	5.02	$\begin{aligned} & 266442 \\ & 266140 \end{aligned}$	84
- 28	${ }_{678197}^{67694}$	3.88 3.88	${ }_{9}^{9414036}$	${ }_{1} 1.14$	${ }_{734162}$	${ }_{5}^{5} .02$	265838	32
29	678430	3-88	948987	1.14	734483	5.02	265537	31
30	678663	3.88	948899	$1-14$	784784	$5 \cdot 02$	265236	30
81	9-678895	$8 \cdot 87$	9.943830	$1 \cdot 14$	9.735066	$5 \cdot 02$	10.264934	
${ }_{83} 82$	679128 679880	- ${ }_{8.87}^{8.87}$	948761	1.14	735367 735668		264633 284832	$\begin{aligned} & 28 \\ & 27 \end{aligned}$
34	${ }^{679598}$	$\frac{3}{3.87}$	943683 943624	-1.15	7358689 7858	$5 \cdot 01$ $5 \cdot 01$	${ }_{264031}^{26432}$	$\begin{aligned} & 27 \\ & 26 \end{aligned}$
35	679824	3.86	948555	1-15	736269	$5 \cdot 01$	263731	25
86	680056	3-86	943486	1.15	736570	$5 \cdot 01$	263430	$\stackrel{24}{83}$
37	680288	3.88	948417	1.15	736871	$5 \cdot 01$	263129	23
38 39	680519 680750	3.85 3.85	943348 943279	+1.15	737171 737771	$5 \cdot 00$ $5 \cdot 00$	262829 262529	${ }_{21}^{22}$
40	680982	8.85	933210	$1 \cdot 15$	787771	$5 \cdot 00$	262229	20
41	9-681213	8.85 8.81	9-943141	1.15	9-738071	$5 \cdot 00$	10.261929	19
43	681643 681674	${ }^{3} 8.81$	943072	1.15	7888871	$5 \cdot 09$ 4.99	261629	17
44	681905	8,84	942934	$1 \cdot 15$	788971	4.99	261029	16
45	688135	3.84	942864	1-15	739271	4.99	260729	15
46	682365	3.83	942795	$1 \cdot 16$	739570	$4 \cdot 99$	260430	15
47	682595	8.88	942726	1.16	789870	4.99	280130	13
48	682825 688055	8.83 8.83	${ }_{9} 94265857$	1.16	740169 740468	4-99 $4-98$	259881	12
50	${ }_{683284} 688$	${ }_{8.82}$	942517	1-16	740767	4 -98	259233	10
	9.683514	3.88	9.942488	1.18	${ }^{9.741066}$	4.98	10.258934	
58	$\begin{aligned} & 683748 \\ & 683972 \end{aligned}$	$\begin{aligned} & 3.82 \\ & 3.82 \end{aligned}$	942378 942808	1.16	$\begin{aligned} & 741865 \\ & 741664 \end{aligned}$	4.98	$\begin{aligned} & 258638 \\ & 25836 \end{aligned}$	7
54	684201	3.81	942239	1.16	741962	$4 \cdot 97$	258038	d
55	684430	8-81	942169	1.16	742261	$4 \cdot 97$	257739	5
56	684658	3.81	942099	$1 \cdot 16$	742559	$4 \cdot 97$	257441	4
57	684887	3-80	942029	1-16	742858	4-97	257142	8 8
58 59	685115 685843	3.80 8.80	941959 941889	$1 \cdot 16$ $1-17$	743156 7 ± 3454	$4 \cdot 97$ $4 \cdot 97$	2586546	2 1
60	685571	8.80	941819	1.17	748752	$4 \cdot 96$	256248	0
	Cosine.	D.	Sine.	D.	Cotang.	D.	Tang.	M.
(61 DEGREES.)								

M.	Sine.	D.	Cosine.	D.	Tang.	D.	Cotang.	
0	9-685571	$8 \cdot 80$	9.941819	$1 \cdot 17$	9-743752	4.96	10.256248	60
1	685799	3.79	941749	1.17	744050	4-96	255950	59
$\stackrel{2}{2}$	686027	8-79	941679	$1 \cdot 17$	744848	4.96	285652	${ }_{57}^{58}$
8	686354	3.79 8.79	941809	1.17	744645	$4 \cdot 96$ $4-98$ -	${ }_{2}^{255355}$	${ }^{57}$
$\frac{4}{5}$	686482	3.79	941539	$1 \cdot 17$	744943	4-96	255057	56
5	686709	3.78	941469	1-17	745240	4.98	254760	55
${ }^{6}$	686986 687163	3.78 8.78 8	941398 941328	$1 \cdot 17$ $1 \cdot 17$	745588 745885	$4 \cdot 95$ $4-95$	254462 254165	${ }_{58}^{54}$
8	687389	3-78	941258	$1 \cdot 17$	746132	4.95	253868	52
9	687616	8.77	941187	$1 \cdot 17$	746429	4-95	258571	51
10	687843	$3 \cdot 77$	941117	$1 \cdot 17$	746726	4.95	258274	50
11	9.688089	8.77	Q-941046	1-18	9-747023	4.94	10-252977	49
12	688295	8.77	940975	1-18	747819	4.94	252681	48
18	688521	8.76	940905	$1 \cdot 18$	747616	4.94	252384	47
14	688747	8.76	940834	$1 \cdot 18$	747913	4.94	252087	46
15	688972	$8 \cdot 76$	940763	$1 \cdot 18$	748209	4.94	251791	45 44
16	689198	${ }^{3.76}$	${ }_{9}^{940693}$	1.18	${ }_{7488501}$	4.98 4.93	251495 251199	$\begin{aligned} & 44 \\ & 48 \end{aligned}$
17 18 18	689423 689648	3.75 3.75	${ }_{940551} 94062$	1.18 1.18	7488097 74909	$4 \cdot 93$ $4-93$	$\stackrel{251199}{ }$	48
19	689873	3.75	940480	1.18	749893	4-93	250607	41
20	690098	3.75	940409	1-18	749689	4-93	250811	40
21	9-690323	3.74	9.940388	1.18	9-749985	4.98	10-250015	
22	690548	3.74	940267	$1 \cdot 18$	750281	4-92	249719	38
23	690772	3.74	940198	$1 \cdot 18$	750576	4-92	249484	${ }^{37}$
24	690996	$8 \cdot 74$	940125	1.19	750872	4.92	249128	36 85
${ }_{28}^{25}$	- 69181444	$3 \cdot 73$ 8.73	940054	1.19	751167	${ }^{4} 4.92$	248833 248588	35 34
27	691668	$8 \cdot 73$	939981	1.19	${ }_{751757}$	${ }_{4-92}$	248943	83
28	691898	3.73	989840	1-19	752052	4.91	247948	32
29	692115	${ }^{3.72}$	${ }_{9}^{9397688}$	1-19	752347	4.91 4.91	247653 247358	31 30
80	692889	3-72	939697	1-19	752642	4-91	247358	
31	9-692562	8.72	9.989625	1.19	9-752937	4.91	10-247063 248769	
32 38	693008	$8 \cdot 71$ $3 \cdot 71$	${ }_{939482}^{939554}$	+19	${ }_{753526}$	4.91	246474	$\stackrel{28}{27}$
34	693231	3.71	939410	1.19	758820	4-90	246180	26
35	693458	8.71	939839	$1 \cdot 19$	754115	4-90	245885	25
36	693676 693898	3.70 3.70	${ }_{939195}^{939267}$	$1 \cdot 20$ 1.20 1	754409 754708	$4 \cdot 90$ $4 \cdot 90$	245591 245297	23
37 38	693898 694120	3.70 3.70	939195	1.20 $1 \cdot 20$	754987	4-90 4.90	245003	23
89	694342	3-70	939052	1-20	755291	4-90	244709	21
40	694564	3.69	988980	$1 \cdot 20$	755585	4.89	244415	20
41	$9 \cdot 694786$ 695007	$8-69$ 8.69	$9 \cdot 988908$	$1 \cdot 20$	9-755878	$4 \cdot 89$	10. 244122	
43	${ }_{695229}^{695007}$	8-69 8.69	${ }_{988763}^{93888}$	1-20	756465		$\begin{aligned} & 243828 \\ & 243535 \end{aligned}$	
44	695450	3.68	938691	1-20	756759	4.89	243241	16
45	695671	3.68	938619	1.20	757052	4.89	242948	15
46 47	${ }_{695118}^{69882}$	$8 \cdot 68$ $3 \cdot 68$	${ }^{9388547}$	$1 \cdot 20$ 1.20 1	767345 757638		242655	14
48	696384	3.67	938402	1-21	757981	$4 \cdot 88$	242069	12
49	696554	3.67	938330	1.21	758224	4:88	241776	11
50	698775	3.67	938258	$1 \cdot 21$	758517	4-88	241483	10
51	9-696995	8.67	9.938185	1.21	9.758810	4.88	10.241190	
52	697215	- $\begin{aligned} & \text { 3-68 } \\ & 3-66\end{aligned}$	988118 988040	1.21	759895	4.87 4.87		8
58	697436 697654	3-66 $3 \cdot 66$	9887967	1.21	759887	$4 \cdot 87$	240818	6
55	697874	3-68	937895	1.21	759979	4.87	240021	5
56		$3 \cdot 65$	9378	1-21	T602	4	239728	4
57	698318	3-65	987749	$1 \cdot 21$	780564	4.87	23893144	3 2 2
59	698751	$3 \cdot 65$ $3 \cdot 65$	${ }_{987604}$	1.21	761148	4.86	238859	1
60	698970	3-64	987681	1-21	761439	$4 \cdot 86$	238561	0
	Cosine.	D.	Sine.	D.	Cotang.	D.	Tang.	M.

(60 DEGREES.)

M.	Sine.	D.	Cosine.	D.	Tang.	D.	Cotang.	
0	9-698970	3.64	9-987581	1:21	9•761439			
1	699189	64	987458	1.22	${ }^{7} 761731$	4.86		$\begin{aligned} & 60 \\ & 50 \end{aligned}$
2	699407	${ }^{3.64}$	937385	1-22	762023	4.86	287977	58
8	699626	3-84	937812	1.22	762314	4.86	237686	${ }^{57}$
5	699844 700062	. 63	987238 987165	1.22 1.29	762606 762897	4.85	7394	58
6	700280	- 6.63 3.68	987165 937092	1-22	762897	4.85 4.85	237103	55
7	700498	3. 63	937019	1.22	763879	4.85	236812	$\begin{aligned} & 54 \\ & 58 \end{aligned}$
8	700716	8.83	986948	1.29	763	$4 \cdot 85$	286230	52
10		$\stackrel{3}{8 \cdot 62}$		1-22	764061	$4 \cdot 85$	235939	51
	701151		86799	1.28	764358			50
11	9-701868	3-62	9.936725	1.22	9•764643	$4 \cdot 84$	235357	49
13	701802	${ }^{8 \cdot 61}$	${ }_{936578}^{98078}$	1.23	765204	4.84 4.84	34776	48
14	702019	$8 \cdot 61$	986505	1-23	765514	4.84	234486	46
15	702236	$3 \cdot 61$	936431	1-28	765805	4.84	234195	45
16	702452	8.61	936357	$1 \cdot 23$	766095	4-84	233905	44
17	702669	8.60	936284	$1 \cdot 23$	768385	$4 \cdot 88$	238615	48
18	7203101	$3 \cdot 80$ $3 \cdot 60$	986210	1-23	766675	4.83	238325	48
20	703317	3.60 3.60	$\begin{aligned} & 936186 \\ & 936062 \end{aligned}$	$\begin{aligned} & 1.28 \\ & 1-28 \end{aligned}$	767255	4.83 4.88	$\begin{aligned} & 233035 \\ & 282745 \end{aligned}$	41 40
21	9.703583	3.59	- 933598	$1-23$	9.767545	4-83	-232455	
	703749	8.59	935914	$1 \cdot 28$	767884		232166	38
24	703964	$8 \cdot 59$ 8.59	935840	$1 \cdot 23$	768124	4.82	231876	37
$\stackrel{24}{25}$	704179 704395	3.59 8.59	${ }_{935698}^{935786}$	1. 24	768418	4.82	231587	36
26	701610	8-68	${ }_{985618}^{93569}$	1-24	r68703 768992	+88	281297 231008	$\begin{array}{\|l\|} \hline 35 \\ 34 \end{array}$
27	704825	8.58	935543	1-24	789281	4.82	230719	${ }_{88}$
28	705040	3.58	935469 935895	1-24	769570	4-8	230430	32
80	${ }_{7} 805469$	$3 \cdot 58$ $8 \cdot 57$	935395	1-24	769860	4-81	230140	81
	9-705683	8.57	935246					
32	O588		335171	$1 \cdot 24$	770	4.		
83	706112	3.57	935097	1.24	771015	4.81	228985	$\begin{aligned} & 28 \\ & 27 \end{aligned}$
34	706326		935028	1-24	771803	$4-81$	228697	26
85	706589	3.56	034988	1.24	771592	4-81	228408	25
${ }^{36}$	708753	$8 \cdot 56$	934873	1.24	771880	4.80	28120	24
37	708967	3.56	934798	1.25	772168	$4 \cdot 80$	227832	23
${ }_{89} 88$	70718	3.55 3.55	98472	$1 \cdot 25$	772457	4.80	227543	22
89 40	707893 707606	3-65	984649	$\begin{aligned} & 1 \cdot 25 \\ & 1 \cdot 25 \end{aligned}$	772745 778033	4.80 4.80	227255 226967	${ }_{20}^{21}$
	9-707819	8.55	9-984499	$1 \cdot 25$	9.773321	4.80	-226679	
$\frac{42}{43}$	708082	$3 \cdot 54$ 8.54	4	$1 \cdot 25$	773608	4.79	228392	18
44	708458	3.51	934274	1.25	7788184	4.79 4 4	25818	17
45	708670	3.	984199	1.25	774471	4-79	225529	15
46	708882	8.58	984123	1-25	774759	4-79	225241	14
47	709094	8.53	934048	$1 \cdot 25$	775048	4-79	224954	13
48	709306	$8 \cdot 53$	938978	1.25	775883	4.79	224667	18
49	709518	3.58	933898	1.26	775621	$4 \cdot 78$	224879	11
50	709730	3-58	988822	$1 \cdot 26$	775908	4-78	224092	
	9-709911	3.52	93	${ }^{1} \cdot 26$	9.776195		-228805	
$\begin{aligned} & 53 \\ & 53 \end{aligned}$	$\begin{aligned} & 710158 \\ & 710864 \end{aligned}$	$8 \cdot 52$ 8.52	$\begin{aligned} & 983671 \\ & 938596 \end{aligned}$	1.26 1.26	776482 776769	$4 \cdot 78$ 4.78	223518	$\stackrel{8}{7}$
5	710575	3-52	935520	1.26	777055	4-78	222945	,
55	710786	3.51	938445	$1 \cdot 26$	777842	$4 \cdot 78$	222658	S
56	710997	3-51	933369	1.26	777628	4.77	222372	4
57	711208	3-51	938298	$1 \cdot 26$	777915	$4 \cdot 77$	222085	8
58	711419	8.51	983217	$1 \cdot 26$	778201	$4 \cdot 77$	221799	2
59	629	8.50 8.50	${ }_{9}^{938141}$	1.26	778487 778774	4.77	221512 221226	1
	\%11889	8.50	$98806{ }^{\text {a }}$		77874	4-77	221226	
	Cosine.	D.	Sine.	D.	Cotang.	D.	Tang.	M.

(59 DEGRRES.)

SINES AND TANGENTS. (31 DEGREFS)

M.	Sine.	D.	Cosine.	D.	Tang.	D.	Cotang.	
0	9-7118		9-938		9.7			
1	712050	3-50	9329	1.	772		-	59
2	712260	8.50	932914	$1 \cdot 27$	779346	4.76	220654	58
3	712469	3-49	932888	1-27	779632	$4 \cdot 76$	20868	57
4	712679	$3 \cdot 49$	932768	1.27	779918	4-76	20082	56
5	712889	3-49	932685	1.27	780203	4.76	219797	55
6	713098	3-49	932609	1-27	780489	$4 \cdot 76$	219511	54
8	713808	3.49	932533	$1 \cdot 27$	780775	$4 \cdot 76$	210225	58
8	${ }_{713726} 713578$	3-48	982457	1-97	781060 781346	4.76 4.75 4	8940	${ }_{5}^{52}$
10	713935	48	93	1-27	781681	$\begin{aligned} & 4-75 \\ & 4-75 \end{aligned}$	$\begin{array}{r} 218651 \\ 218369 \end{array}$	5
11	9.7141	18	9.0322	1.27	9-781916	$4 \cdot 75$	10.218084	
	7148		9321	1.27	782201	4.75	217799	48
14	714568	3.47	${ }_{981998}$	1.28	248	$4 \cdot 75$	217514	47
15	714978	3-47	981921	1.28	7880	㖪	17229	46
16	715186	3.47	931845	1.28	783341	4-75	216659	44
17	715304	$3 \cdot 46$	931768	1-28	788626	4.74	216374	43
18	715602	8.46	981691	1-28	783910	4.74	216090	42
19	715809	$8 \cdot 46$	931614	1.28	784195	$4 \cdot 74$	215805	41
20	716017	3-46	981537	1-28	784470	4-74	215521	40
21	$\begin{array}{r}9 \cdot 716224 \\ 71643 \\ \hline\end{array}$	8.45 8.45	$9 \cdot 981$	1.	. 78	1	215236	
	7164				785048	4.74	214952	88
$\stackrel{23}{24}$	7186	3.45	81306 81229	1.28	${ }_{785616} 78538$	4.78	914668	37
25	717058	3-45	931152	1.29	78590	4-73	214100	85
26	717259	3-44	310	1-29	786184	4.73	218818	34
27	717486	3.44	930998	1.29	788468	4.78	213582	83
$\begin{aligned} & 28 \\ & 29 \end{aligned}$	717879	${ }^{3 \cdot 44}$	30848	1.29 1.29	787036	$4 \cdot 73$ 4.78	213248	32 31 81
30	718085	3-48	93	1.29	787319	${ }_{4} \cdot 72$	212881	
31	9-7182	3.43 3.49	9-980	$1+29$	9.787	4.72	10. 212	
33	18897 718703	3.49 3.43	${ }_{9} 930811$	1.29		$4 \cdot 72$	212114	${ }_{27}^{28}$
34	718909	3-43	930456	1-29	788453	4.73	211547	26
35	719114	3-42	930378	1.29	788736	$4 \cdot 72$	211264	25
86	719320 719525	$3-48$ $3-42$	930300 930223	1-80	789019	$4 \cdot 72$	210981	24
88	\%1952	${ }_{8}$	9302	1-30	78	${ }_{4}^{4 \cdot 71}$	210898 210415	23 22
39	719935	8.41	930067	1-80	7898	$4 \cdot 71$	210182	${ }_{21}^{22}$
40	720140	3-41	929889	$1 \cdot 80$	790151	4.71	209849	
	$9 \cdot 720845$		9.929 929	$1 \cdot 30$ 1.30	$9 \cdot 790138$ 790716	71	10-209567	
43	720751	3.40	${ }_{929755}^{92983}$	1-30	7790989			
44	720958	3-40	929677	1830	791281	$4 \cdot 71$	208719	16
45	721162	$3 \cdot 40$	929599	1-30	791588	4-70	208487	15
46	721366	$3 \cdot 40$	029581	1-80	791816	4-70	208154	14
47	721570	3-40	929442	1-30	792128	4.70	207872	13
48	721784	8.	929364	1.81	79241	$4 \cdot 70$	7590	12
$\frac{49}{50}$	722181	3-39 $3 \cdot 38$	${ }_{9292986} 92$	$1 \cdot 81$ $1 \cdot 31$	792298	$4 \cdot 70$ $4-70$	20730 20702	11
51	9.722385	8.		$1 \cdot 31$	9.79			
52	72	3	929050	1-31	7985	4.69	200462	
58	72			1.31	793819	4.69	6181	
	72	8.	28893	1-31	794101	4.69	205899	${ }_{6}$
55	723	3.	28815	1.31	794383	4-69	205617	5
56 57	72	3.	928736	1-31	7946	4.69 4.69	55836	$\frac{1}{4}$
58	72380	${ }_{3}$	928078	${ }_{\text {1-31 }}^{1-31}$	795227	4-69	${ }^{2054785}$	$\stackrel{3}{2}$
59	724007	3.		1-31	795508	4-88	204492	1
60	210	3.37	3420	1-31	95789	4.68	20 ± 211	0
	C	D.	ne.	D.	ta	D.	Tan	M.

(58 DEGREES.)

SINES AND TANGENTS. (33 DEGREES.)

M.	Sine.	D.	Cosine.	D.	Tang.	D.	Cotang.	
0	9-736109	$3 \cdot 24$	9-923591	1.37	9.812517	$4 \cdot 61$	10.187482	
1	736303	3.24	923509	1-37	812794	4-61	187206	59
2	736498	8.24	928427	$1 \cdot 37$	813070	4.81	186930	58
8	738692	$3 \cdot 23$	923345	$1 \cdot 37$	818347	4.60	186653	57
5	787080	${ }_{3} \cdot 23$	9238181	37	813623	4.60	186377	56
6	737274	3-23	9233098	1.37	813899 814175	$4 \cdot 60$ 4.60	186101	${ }_{54}^{55}$
7	737487	8.23	923016	$1 \cdot 37$	814452	4-60	185518	53
8	787681	3-22	922933	1-37	814728	4.60	185272	52
9	737855	$3 \cdot 22$	922851	1-37	815004	$4 \cdot 60$	184996	51
10	738048	8-22	922768	1-88	815279	$4 \cdot 60$	184721	50
11	9.738241	$3 \cdot 22$	9.022686	1.38	9.815555	4-59	-184445	49
18	738434	3-22	922608	1.38	815881	4.59	184169	48
13 14 14	738827 738820	$8 \cdot 21$ $3 \cdot 21$	${ }^{9222520}$	1-38	816107	4.59	183893	47
15	789013	3-21	922855	1.88	816658	4-59	183842	45
16	739206	3-21	922272	1.88	816933	4-59	183087	44
17	739898	3-21	922189	1.88	817209	$4 \cdot 59$	182791	43
18	739590	$3 \cdot 20$	922106	1.38	817484	$4 \cdot 59$	182516	42
19	739783	$3 \cdot 20$	922023	1-38	817759	$4 \cdot 59$	182241	41
20	739975	3-20	921940	1.38	818035	$4 \cdot 58$	181965	40
21	9.740167	3.20	9-921857	1.89	9-818810	$4 \cdot 58$	10.181690	39
${ }_{23}^{22}$	740359 740550	$3 \cdot 20$ $3 \cdot 19$	921774	1.89	818585		181415	${ }_{37}^{38}$
24	740742	8-19	921607	1.89	8188185	4.58	181140	37 36
25	740934	3-19	921524	$1 \cdot 39$	819410	4-58	180590	35
26	74125	3-19	921441	1-39	819684	$4 \cdot 58$	180318	34
27	741816	3-19	921357	1.89	819959	$4 \cdot 58$	180041	38
28	741508	3-18	921274	1.89	820234	$4 \cdot 58$	179768	32
29	741699	8.18	921190	1.39	820508	4.57	179192	31
80	741889	3.18	921107	1-89	820788	4.	179217	30
81	9.742080	$8 \cdot 18$	9-921023	1-39	9.821057	4.57	10-178943	
38	743271	${ }^{3 \cdot 18}$	920989	1.40	821882	$4 \cdot 67$	178688	28
33 84	${ }_{7} 7426562$	$8 \cdot 17$ $8 \cdot 17$	${ }_{920772}^{920856}$	1.40 1.40	821606 821880	4.57	178894 178120	27 26
35	742842	$8 \cdot 17$	920688	$1 \cdot 40$	822154	$4 \cdot 57$	177846	25
36	743038	3-17	220804	1-40	822429	4-57	177571	24
37 38 8	743223 743413	$3 \cdot 17$ $3 \cdot 16$	${ }^{920520}$	1.40	822703	4.57 4.56	177297	23
39	743602	- $3 \cdot 16$	${ }_{9}^{920856}$	1.40	${ }^{822977}$	4.56 $4-58$	177023 176750	$\frac{23}{91}$
40	743792	3-16	920268	1-40	828524	4 ¢ 5	178 ± 78	20
41	$\begin{array}{r}9.743982 \\ 744171 \\ \hline\end{array}$	8.16 8.16	9.920184	1.40	8837	4-56	10-176202	
43	744361	${ }^{8 \cdot 16}$	920099	1-40	-824072	4.56	1	18
44	744550	3.15	919931	1.41	824619	4-56	175881	16
45	744739	8-15	919846	1-41	824893	4.56	175107	15
46 47	744998 745117	8.15 8.15	919762	1.41	835166	4-56	174884	14
47 48	${ }_{745306}$	$3 \cdot 15$ 8.14	${ }_{9} 919678$	1.41	825439 825718	+ $4 \cdot 55$	174561 174287	13
49	745494	3.14	919508	1.41	825986	$4 \cdot 55$	174014	11
50	745683	$3 \cdot 14$	919424	1-41	826259	$4 \cdot 55$	178741	10
	9.745871	3.14	9-919839	1.41	9.826532	4.55	10-178468	
$\begin{aligned} & 52 \\ & 53 \end{aligned}$	$\begin{array}{r} 746059 \\ 746248 \end{array}$	$\begin{aligned} & 3 \cdot 14 \\ & 8 \cdot 13 \end{aligned}$	919254 919169	1.41 1.41		4.55	178195	8
54	746436	3-13	919085	1.41	827851	4.55	1782949	${ }_{6}$
65	746624	3-13	919000	1.41	827624	4-55	172376	5
56	746812	8.13	918915	1.42	827897	4.54	178108	4
57	746989	8-13	918880	1.42	828170	$4 \cdot 51$	171830	3
58 59	187	$8 \cdot 12$ 8.12	${ }_{918659} 918745$	1.42	828442	$4 \cdot 54$	171558	2
60	747562	$8 \cdot 12$	918585	1.42	828715	4.64	171285	1
	Cosine.	D.	Sine.	D.	Cotang.	D.	Tang.	M.

(56 DEGREES.)

M.	Sine.	D.	Cosine.	D.	Tang.	D.	Cotang.	
0	9-747562	$3 \cdot 12$	9.918574	1-42	9-828987	4.54	10-171013	60
1	747749	$3 \cdot 12$	918489	1-42	-829260	4-54	170740	59
2	747936	3-12	918404	1.42	829582	4-54	170468	58
8	748123	8.11	918318	1.42	829805	4.54	170195	57
4	748310	3.11	918233	1.42	830077	4.54	169923	56
5	748197	8.11	918147	1.42	880349	4-53	169851	55
7	7488870	$3 \cdot 11$ 8×11	918082 917976	1.43	830821 830893	${ }_{4}^{4 \cdot 53}$	169379	5
8	740056	3. 10	917891	1-48	881165	4-58	168835	52
9	749243	3.10	917805	1.43	881437	$4 \cdot 53$	108563	51
10	749429	3.10	917719	1-43	831709	4-53	168291	50
11	9.749615	$3 \cdot 10$	9.91783	148	9.831981	4-53	$10 \cdot 168019$	49
$\frac{13}{18}$	749801 749987	3.10 3.09	917518	1 -43	832258	$4-53$	187747	48
14	750172	3.09	917376	$1-43$	832796	$4-58$	167204	4
15	750358	8.09	917290	1.43	832506	4-52	166932	45
16	750543	3.09	917204	1) 43	833339	4.52	166861	44
17	750729	3.09 8.08	917118	7.44	883611	4552	166389	43
18 19	${ }^{750914}$	3.08 3.08	917032	1-44	8889882	4.52	166118	42
20	751284	3.08	916859	1.44	894425	$4 \cdot 52$	165575	40
21	9-751469	3.08	9.916778	1-44	9.834696	$4 \cdot 52$	10-165804	39
$\begin{aligned} & 28 \\ & 28 \end{aligned}$	${ }^{751651}$	8.08 3.08	.916687	1-44	834967 885238	4-52	185033	38 87
24	752023	3.07	916514	1) 44	835509	4-62	164491	36
25	752208	3.07	918427	1-44	835780	4-51	164220	35
26	752392	3.07	916341	$1 \cdot 44$	836051	4-51	163949	34
$\stackrel{27}{27}$	752576	$\stackrel{3 \cdot 07}{8.07}$	${ }_{916254}^{916167}$	1.44	836329	4.51	163678	38 88 88
29	752941	3-06	916081	$1-45$	886864	4-51	163407 163136	32 81
30	753128	3.06	915994	1.45	837181	4-51	162386	30
81	9.753812	8.06	9.915907	1-15	9-887405	$4 \cdot 51$	10.162595	
32	753493	${ }^{3.08}$	915820	1.45	837675	$4 \cdot 51$	162395	28
83	753679	${ }^{8.06}$	915783	1.45	837946	4.51	162054	$\stackrel{27}{ }$
34 35 8	7588862	8.05 8.05	915646	${ }_{1}^{1-45}$	838218 838487	4.51	161784	${ }_{25}^{28}$
35 38	754229	8.05	915472	1-45	8838787	4.50 4.50	161513	${ }_{24}^{25}$
37	754412	3.05	915385	1-45	839027	$4 \cdot 50$	160978	28
38	754505	3.05	915297	1.45	839297	4-50	180703	$\stackrel{22}{21}$
39	754778	8.04	915210	1.45	839568	4-50	160432	21
40	754960	3.01	915123	$1 \cdot 46$	839838	$4 \cdot 50$	160162	
41	$9 \cdot 755143$ 755326	$\begin{aligned} & 3.04 \\ & \hline 0.04 \end{aligned}$	9.915035 914918	$1-46$ 1.468 1	9.840108 840378	4.50 4.50	10.159892	
43	755508	$8 \cdot 04$	914880	1-46	840017	+5.50	159628	18
44	755690	3.04	914773	1-46	840017	4-49	159088	16
45	755872	$3 \cdot 03$	014685	1.46	841187	$4{ }^{4} 19$	158813	15
46	758054	3.03	914598	1.46	841457	4.49	158543	14
47	756236	8.03	914510	$1 \cdot 46$	841726	$4 \cdot 49$	158274	18
48	756418	3.03	914422	1.46	841996	$4 \cdot 49$	158004	12
49	756800	$3 \cdot 03$	914384	1.46	842266	4-49	157784	11
50	756782	3.02	914246	1.47	842585	$4 \cdot 49$	157465	10
51	9.756963	8.02 3.02	9.914158	1.47	9-848805		10-157195	
58	$\begin{aligned} & 757144 \\ & 757326 \end{aligned}$	3.02 $3 \cdot 02$	$\begin{aligned} & 914070 \\ & 9189822 \end{aligned}$	1.47 1.47	848074 848343	$4-19$ $4-49$	156926 166657 16658	8
54	757507	3.02	$91889 \pm$	$1 \cdot 47$	848612	$4 \cdot 49$	156888	6
55	757688	3.01	913806	$1 \cdot 47$	843882	4.48	156118	5
56	757869	3.01	913718	1.47	814151	4.48	155849	4
57	758050	$3 \cdot 01$	918680	1.47	844420	4.48	155850	3
58	758230	3.01	918541	1.47	844889	4.48	155311	2
59	758411	$3 \cdot 01$	913453	1.47	844958	4.48	155042 154783	${ }_{0}^{1}$
60	758591	3.01	918365	$1 \cdot 47$	845227	4.48	154773	0
	Cosine.	D.	Sine.	D.	Cotaug.	D.	Tang.	M.

sines and tangents. (35 degrkes.)

SINES AND TANGENTS. (37 DEGREES.)
(53 DEGREES.)

56
(38 DEGREES.) A TABLE OF LOGARITHMIC

M.	Sine.	D.	Cosine.	D.	Tang.	D.	Cotang.	
0	9-789842	2-69	9-896582	1.64	9.	4.34	10.107190	60
1	789504	2-69	896488	1.65		$4 \cdot 34$		59
2	7896	69		$1 \cdot 65$	893831	$4 \cdot 84$	106689	8
3	7889827	$2 \cdot 69$ $2 \cdot 69$	18	1.65 1.65	893591 893851	$4-84$ 4.84	106149	$\frac{57}{56}$
5	7890149	2.69	396088	1.65	894111	4-34	105889	55
6	790310	2.68	895939	1.65	894371	4-34	105629	54
7	790471	2-68	895840	1.65	894632	$4 \cdot 83$		53
8	790632	2-68	895741	1.65	894892	${ }_{4}^{4-83}$	105108	${ }_{51}^{52}$
9	790		89564			$4-38$ 4.38		
10	7909	$2 \cdot 68$	895542	1.65	895422	4.3	104588	
11	9. 791115	2-68	2-895	$1 \cdot 66$	9. 89	4.33	$10 \cdot 104328$	48
12	791275	8.87	895348	1.66	895932 896192		108808	47
	791436	$2 \cdot 67$	8957145	1-66	896452	$4 \cdot 83$	103548	46
15	791757	$2 \cdot 67$	895045	1.66	898712	+ 433	832	45
16	791917	2-67	894945	$1 \cdot 66$	896971	$4-33$	08029	44
17	792077	$2 \cdot 67$	894846	1-66	897231	4.33	102769	48
18	792238		894746	1.66	897491	4-83	$\begin{array}{r} 102509 \\ 102249 \end{array}$	$\stackrel{42}{41}$
$\begin{aligned} & 19 \\ & 20 \end{aligned}$	${ }^{792397}$	$2 \cdot 66$	894646 894546	$\begin{aligned} & 1.66 \\ & 1.66 \end{aligned}$	$\begin{aligned} & 897751 \\ & 898010 \end{aligned}$	4-83	$\begin{aligned} & 102249 \\ & 101900 \end{aligned}$	40
21	9-792716	$2 \cdot 66$	8914	67	9.88	3	10-101730	
22			894346					
3	3085 3195	2.66	12446	- 1.67	8898889	4-38	$\begin{aligned} & 101211 \\ & 100951 \end{aligned}$	36
25	3354	${ }_{2} \cdot 6.6$	4046	1-67	899308	4-32	100892	35
	93514	2.65	898946	1.67	95	32	100432	84
2π	93678	2.65	3846	$1 \cdot 67$			099914	${ }_{32}$
	793832 798991	${ }^{65}$	938	${ }_{1} 1.67$	900346	4.32	099654	31
30	794150	64	893	1.67	9006	4-32	099395	80
31	9-794308	2-64	9-893444	1.68	0.900864	$4 \cdot 32$	10.099136	
32	794887	星	893545	1.68	9011	$4 \cdot 32$	8876	88
83	794626	64	8983243	1-68	901383	$4 \cdot 32$ $4-82$	98617	$\begin{aligned} & 27 \\ & 26 \end{aligned}$
8	794942		893142 893041	${ }_{1}^{1.68}$	901201	$4-32$	8899	25
86	795101	$2 \cdot 64$	898940	1.68	902160	4.82	7840	24
37	795259	$2 \cdot 63$	892889	1.68	902419	4.82 4.82	7321	$\begin{aligned} & 23 \\ & 22 \end{aligned}$
${ }_{39} 38$	9541	$2 \cdot 63$ $2 \cdot 63$	89273 89268	1.68 1.68	90268 90298	${ }_{4}^{4-32}$	097062	21
40	795788	${ }_{2}$-68	8925	1-68	903197	4-31	6803	20
41	9-795891	$2 \cdot 68$	9-89248	1.69	9.903455	4.81	. 0	
	796049	. 63		1-69		4-81		
44	796206 796884	${ }_{2} \cdot 6.62$	892182	1.69	904282	$4 \cdot 81$	95768	16
45	796521	$2 \cdot 62$	892030	$1 \cdot 69$	204401	$4 \cdot 31$	5509	,
46	798679	$2 \cdot 62$	891929	1.69	促	4.81	-	14
47	796836	$2 \cdot$	8918	1.	9050		094992	18
48	7979	.62	8927	1-69	055	4.81	094474	11
50	797807	${ }_{2 \cdot 61}^{2 \cdot 61}$	89152	1-70	905784	$4 \cdot 81$	12	10
	797484		9.891421	1-70	$8 \cdot 9080$		10.093	
52	797621	2.61	891319	$1-70$	906302	${ }^{4} \cdot 81$	093698	
53	79747	${ }^{2} \cdot 61$	8912175		908819	$4 \cdot 81$	093181	,
54	798091	${ }_{2 \cdot 61}$	891013	1-70	907077	4.31	092923	,
56	798247	2-61	890911	1.70	907336	$4 \cdot 81$	92664	${ }^{4}$
	79	$2 \cdot 60$	890809	1.70	907594	81	092406 092148	${ }_{2}$
	79856	${ }^{2 \cdot 60}$	8907	1.70		$4 \cdot 80$	091889	1
6	$\begin{aligned} & 798716 \\ & 798872 \end{aligned}$	2.60 2.60	890805 890508	1.70	908889	$4 \cdot 80$	091681	0
	Cosine	D.	Sine.	D.	Cotang.	D.	Tang.	M.

(51 DEGREES.)

SLNES AND TANGENTS. (39 DEGREES.)

SINES AND TANGENTS. (41 DEGREES.)

M.	Sine.	D.	Cosine.	D.	Tang.	D.	Cotang.	
0	9-808087	2.51	9.88425	1.77	9-323813	$4-27$	10.076187	60
1	808218	2. 51	884148	$1 \cdot 77$	924070	4-27	075930	59
	8888	$2 \cdot 51$	884042	$1 \cdot 77$	924327	4-27	O75673	58
3	808519	$2 \cdot 50$	883936	1.77	924583	4-27	075417	57
4	808669	$2 \cdot 50$	883829	1.77	924840	$4 \cdot 27$	075160	56
5	808819	$2 \cdot 50$	888723	1-77	925096	4-27	074904	55
6	808969	$2 \cdot 50$	883617	$1 \cdot 77$	925352	4-27	974648	54
7	809119	$2 \cdot 50$	883510	$1 \cdot 77$	925609	$4 \cdot 27$	074391	53
8	809269	$2 \cdot 50$	883404	$1 \cdot 77$	920865	$4 \cdot 27$	O74135	52
9	809419	2. 49	888297	1-78	926122	4.27	078878	51 50
10	309589	$2 \cdot 49$	888491	1.78	926378	4-27	073628	50
11	9.809718	(2) 49	9-883084	1.78	9-926634	4.27	10.073366	
$\begin{aligned} & 13 \\ & 13 \end{aligned}$	809868	$\begin{aligned} & 2.79 \\ & 2.49 \end{aligned}$	8882977	1.788	${ }_{9278890}$	$4 \cdot 27$ $4 \cdot 27$	073110 072858	${ }_{4}^{48}$
14	810017 810167	$\begin{array}{r} 2.49 \\ 2 \cdot 49 \end{array}$	882871	1.78	927147	$4 \cdot 27$ $4 \cdot 27$	072858 072597	47 46
15	810316	2.48	882657	1.78	927659	4-27	072341	45
16	810465	2.48	882550	1.78	927915	4-27	072085	44
17	810614	2.48	882443	$1 \cdot 78$	928171	4-27	071829	43
18	810763	${ }_{2}^{2} \cdot 48$	882336	1.79	928427	4.27	071573	42
19	810912	$2 \cdot 48$	882229 882121	1.79	928683	4.27	071317	41
20	811061	2-48	882121	1.79	928940	$4 \cdot 27$	071060	
21	$9 \cdot 811210$	$2 \cdot 48$	a-882014	1.79	9-929196	$4 \cdot 27$	10.070804	39
23	811507	$2 \cdot 47$	881799	1-79	929708	4-27	070292	${ }_{37}^{38}$
24	811655	$2 \cdot 47$	881692	1-79	929984	4-26	070036	36
25	811804	$2 \cdot 47$	881584	1.79	930220	4-26	089780	35
26	811952	$2 \cdot 47$	881477	1-79	930475	4-26	069525	34
27	812100	$2 \cdot 47$	881369	179	930781	$4 \cdot 26$	069269	38
	812248 812396	2.47 $2 \cdot 46$	881261 881153	1-80	${ }^{930987}$	$4 \cdot 26$ $4-26$	${ }_{0}^{0689757}$	82 81
30	812544	$2 \cdot 46$	881046	1.80	931499	$4 \cdot 26$	068501	30
31	9-812692	2.46	$9 \cdot 880938$	1.80	9-981755	$4 \cdot 26$	10.068245	
32	812840	$2 \cdot 46$	880830	1. 80	${ }^{982010}$	$4 \cdot 26$	067990	${ }_{27}^{28}$
${ }_{34}$	812988	$2 \cdot 46$ $2 \cdot 46$	880722 880818	1.80 1.80	932268 932522	$4 \cdot 26$ $4 \cdot 28$	067784 067478	${ }_{27}^{27}$
35	818988	2.43	880505	1-80	932778	$4 \cdot 26$	067222	25
36	813430	$2 \cdot 45$	880897	1.80	933038	4.26	066977	24
37 88	818578	${ }^{2} \cdot 45$	880289 880180	1.81	${ }_{933545}^{98389}$	4-26 4.26	066711	$\frac{23}{23}$
${ }_{89}$	813872	2.45	880180 880072	${ }_{1}^{1.81}$	983645 93800	$4 \cdot 26$	068200	21
40	814019	${ }_{2} \cdot 45$	879983	1-81	984056	4-26	065944	20
41	9.814166	$2 \cdot 45$	9.87885	1.81	9.084817	$4 \cdot 26$	10.065889	
$\begin{aligned} & 42 \\ & 43 \end{aligned}$	814313 814480	$2 \cdot 45$ $2 \cdot 14$	879748 879687	1.81 1.81	984507 934823	$4 \cdot 26$ $4-26$	065433 065177	18
44	81460%	$2 \cdot 41$	879529	1.81	985078	$4 \cdot 26$	064982	16
45	814753	$2 \cdot 44$	879420	1-81	935333	$4 \cdot 26$	084687	15
46	814900	$2 \cdot 44$	879311	1.81	935589	4-28	064411	
47	815046	$2 \cdot 44$	879202	1.82	935844	$4 \cdot 26$	064156	${ }^{13}$
48 49	815193 815339	$2 \cdot 44$ $2 \cdot 44$	879093 878984	1.82	${ }_{986100}^{93855}$	4.26 4.26	063900	${ }_{11}^{12}$
50	815485	2*43	878875	1.82	936610	4-26	063890	10
51	9.815631	2-43	9.878766	1-82	9.93686		-068184	
52	815778	$2 \cdot 43$	878856	1.82	937121	$4 \cdot 25$	062879	
53	815924	$2 \cdot 48$	87854	1.82	937376	$4 \cdot 25$	062624	
${ }_{54}^{54}$	816009 816215	2.43	878438 878928	1.82	${ }_{9378887}$	4.25	O623113	5
56	816361	$2 \cdot 48$	878219	1.83	938142	$4 \cdot 25$	61858	4
57	816507	2-42	878109	1.83	93889	$4-25$	061602	8
58	816852	2.48	877999	1.83	938653	4.25	061847 061098	${ }_{1}^{2}$
69 60	816798 816943	2-42	877890 877880	1-83	${ }_{9}^{9389908}$	$4 \cdot 25$ $4 \cdot 25$	${ }_{0}^{061098}$	1
	Cosine.	D.	Sine.	D.	Cotang.	D.	Taug.	M.

(49 DEGREES.)
D. Cosine D. Tange D.

M.	Sine.	D.	Cosine.	D.	Tang.	D.	Cotang.	
0	9-816943	$2 \cdot 42$	877	$1 \cdot 83$	9-939168	$4 \cdot 25$	10.060837	60
1	817088	$2 \cdot 42$	877670	1-83	939418	$4 \cdot 25$	060582	59
2	817238	$2 \cdot 42$	877580	1.83	939678	$4 \cdot 25$	0327	58
3	817379	$2 \cdot 42$	877450	1.83	939928	4-25	30072	57
4	817524	$2 \cdot 41$	877340	1.83	940183	$4 \cdot 25$	059817	56
5	817668	$2 \cdot 41$	877230	1.84	940438	$4 \cdot 25$	059562	65
6	817818	$2 \cdot 41$	877120	1-84	940694	$4 \cdot 25$	059306	54
7	817958	2.41	877010	1.84	940949	4.25	059051	53
8	818103	$2 \cdot 41$	878899	${ }_{1} 1.84$	941204	4.25	058796	52
9	818247	2.41	878789	1.84	$\begin{aligned} & 941458 \\ & 041714 \end{aligned}$	$4 \cdot 25$	$\begin{aligned} & 058542 \\ & 058286 \end{aligned}$	51 50
10	818392	$2 \cdot 41$	876678	1.84	941714			
11	9.818586	2.40	9.876568	1.84	9-941968	4.25	10.058032	
13	818681	$2 \cdot 40$	876457	1.84	942223	4.25		
18	818825	$2 \cdot 40$	876347	1-84	942478 942783	4.25	057522 057267	$\begin{aligned} & 47 \\ & 46 \end{aligned}$
14 15	818969 819113	$2 \cdot 40$ $2 \cdot 40$	876236 876125	1.85	-942733	${ }_{4}^{4} \cdot 25$	057267	46 45
16	819257	$2 \cdot 40$	876014	1.85	943243	$4 \cdot 25$	056757	44
17	819401	2.40	875904	1.85	943498	$4 \cdot 25$	058502	43
18	819545	$2 \cdot 89$	875793	1-85	943752	4-25	56248	42
19	819689	2-89	875682	1.85	944007	4.25	055993	41
20	819832	2-89	875571	1.85	944262	4.25	055738	40
	9-819976	2	9.875459	$1 \cdot 85$	9.944517	$4 \cdot 25$	10.055483	39
22	82012		8758		944		055229	38
23	820263	2.39	875237	$1 \cdot 85$	945026	4.24	054974	37
24	820406	2.89	875126	1.86	945281	$4 \cdot 24$	54719	36
${ }^{26}$	820550		875014 874908	$1 \cdot 86$ 1.86	${ }^{9455790}$	4-24	O544210	34
27	820836	2.38	874791	1-86	946045	4.24	053955	33
28	20979	2.38	874680	1.86	946299	$4 \cdot 24$	053701	32
	82112	$2 \cdot 88$	874588	1.86	946554	4-24	058446	${ }^{31}$
30	821266	2-38	874	1.86	946	4-2	058	80
31	9.82140	$2 \cdot 8$	9.8748	$1 \cdot 8$	9-9470	$4 \cdot 24$	10.052	29
32 83	82168	2.38	874232	1.87 1.87	947678	4.24	052428	28
34	821835	2-37	874009	$1 \cdot 87$	947826	4-24	058174	26
85	82197	2.87	873896	1.87	948081	$4 \cdot 24$	051919	25
36	822120	$2 \cdot 37$	873784	1-87	948336	$4 \cdot 24$	051664	24
87	82	2.87	878672	1.87	948590	4.24	051410	23
38	882245	$2 \cdot$	8785	1.87	9188	4.	0511	21
39 40 40	82254	2	878388	${ }_{1}^{1.87}$	9490	4.	${ }_{0}^{050901}$	$2{ }^{21}$
	82	$2 \cdot 86$	-8732	1.87	949	4-24	0.050	
42	20,		8731			$4 \cdot 24$	O50	
43	828114	2-36	872998	1.88	950116	$4 \cdot 24$	048884	17
44	823255	2.36	872985	1.88	950870	4-24	04868	16
45	823397	2.	72	1-88	950625	4.24	048	
46	82	2.36	878	1.88	${ }_{951133}^{950879}$	4.24	488	18
48	¢		872434	1.88	${ }_{9} 9511388$	$4 \cdot 24$ $4 \cdot 24$	04886	
49	823968	$2 \cdot 35$	872321	1.88	951642	$4 \cdot 24$	048358	11
50	824104	$2 \cdot 85$	872208	1-88	951896	4-24	048104	10
51	9.8		9.872	1	9-952150		10-047	
			871981	1-89		4-24		
	452	$2 \cdot 85$	18	1-89	9520	4.24	047841	
			8717	1.89	508	4.24	947087	
			8716	1.89 1.89	9581	4-238	046883	
57		2-34	8714	1.8	95867	4	-	
			87	1.	9539	4.23	046071	
	826371	34	87118	1.8	9541	4-23	045817	
60	825511	2-34	871078	$1 \cdot 90$	954437	4.23	045563	0
	Co	D.	Sine.	D.	Cotan	D.	an	M.

(48 DEGREES.)

(47 DEGREES.)
D. Cosine.

M.	Sine.	D.	Cosine.	D.	Tang.	D.	Cotaug.	
0	9.833783	$2 \cdot 26$	9.884127	1.	9-969656	$4 \cdot 32$	10.030344	60
1	838919	$2 \cdot 25$	864010	$1 \cdot 96$	96990		0300	59
2	834054	$2 \cdot 25$	868892	1. 97	970162	$4 \cdot 22$	9584	58
3	834189	2.25	863774	$1 \cdot 97$	970416	$4 \cdot 22$	029584	57 56
4	884825	2.25	8883656	1-97	970669	$4 \cdot 22$ 4.22	029831	55
5	884460 834595	$2 \cdot 25$ $2 \cdot 25$	863588 868419	1-97	${ }_{971175}$	4-22	028825	54
7	884730	$2 \cdot 25$	868301	1.97	971429	4.22	028571	53
8	884865	$2 \cdot 25$	868183	$1 \cdot 97$	971882	$4 \cdot 22$	28318	52
9	,	2.24	863064 889946	1.97 1.98	${ }_{9}^{971935}$	$4 \cdot 22$ $4 \cdot 22$	028065 027812	$\begin{aligned} & 51 \\ & 50 \\ & 50 \end{aligned}$
10	518		862946		972188			
11	$9 \cdot 835269$	$\frac{2 \cdot 24}{2 \cdot 2 t}$	9.862827 862709	$\begin{aligned} & 1 \cdot 98 \\ & 1 \cdot 98 \end{aligned}$	9.972441 972694	$\begin{aligned} & 4 \cdot 22 \\ & 4 \cdot 22 \end{aligned}$	$\begin{array}{r}10.027559 \\ 027306 \\ \hline\end{array}$	$\begin{array}{r}49 \\ 48 \\ \hline 8\end{array}$
13	35538	2.24	862590	1-98	972948	4.22	097059	47
14	885672	${ }^{2} \cdot 24$	862471	1-98	${ }^{973201}$	4.22	6799	${ }^{46}$
15	55807		29	1.98 1.98 1	973454 973707	$4 \cdot 22$ $4 \cdot 22$	6298	44
16 17	${ }_{886075}^{885941}$	${ }_{2}$	8622115	1.98	973	$4 \cdot 22$	¢0	43
18	83620	2-23	881996	1-98	974213	422	5787	42
18	836343		8618	1.	974460	4.22	025584	41
20	886477	2.23	8617	1.99	974719	-2		
21	9.836611	23	9.8618	1.99	9.9748	$4 \cdot 28$ 4.22	10.0	
22	17		8615	1.99 1.99	9762	4.23		$\begin{aligned} & 38 \\ & 37 \end{aligned}$
24	7012	${ }_{2}^{2} \cdot 23$	8861280	1.99	975782	4-22	024268	36
24	837146	2-22	861161	1.99	9758	$4 \cdot 22$	24015	35
	83727	$2 \cdot$	861041	1. 89	9762	4.22 4.22	33	34
27	887412		8608	$1 \cdot 99$ $1 \cdot 99$	97648	+	23256	32
29	8837679	$2 \cdot 22$	860682	$2 \cdot 00$	97699	4-22	2300	81
30	837812	$2 \cdot 22$	86056	$2 \cdot 00$	97725	4.22	0	
81	9-837945	2-32	9.88044	2.00	9-977	92	10.022497	
32	838078					4.22		
33	8888211	$2 \cdot 21$ $2 \cdot 21$	860202 880082	$2 \cdot 00$ $2 \cdot 00$	978	4.22	$\begin{aligned} & 021991 \\ & 021788 \end{aligned}$	26
34 35	8888844	2.21	859962	2:00	978515	$4 \cdot 22$	21485	25
36	888610	$2 \cdot 21$	859849	$2 \cdot 00$	97876	4-22		24
37	888742	2-21	859721 859601	2.01 2.01	9790	${ }_{4}^{4.22}$	020979 020726	${ }_{22}^{23}$
88 89	${ }_{83900} 838$		859601 859480	${ }_{2.01}^{2.01}$	979527	4-22	20473	21
40	889140	2-20	85936	2.01	979780	4.22	020220	20
	8		9.8592	2.	9-2800	4-22	10.019987	
	839404	$2 \cdot 20$	859119	2.01	98088	$4 \cdot 82$	019714	17
48	839586	2:20	858998	2.01	980538 980791	$4-22$ $4-21$	019462 019209	18
44	839668 839800	$2 \cdot 20$ $2 \cdot 20$	858877	${ }_{8}^{2.02}$	${ }_{981044} 9807$	4.21	018956	15
46	839932	2-20	858685	2.08	981297	$4 \cdot 21$	018.83	14
47	840084	$2 \cdot 19$	858514	$2 \cdot 02$	981550	$4 \cdot 21$	018450	13
48	840196	2-19	858393	${ }^{2 \cdot 02}$	981	4.21	8197	12
49	840328	19	858272 858151	2.02	${ }_{98230} 9820$		017691	
50	840459							
51	9.840591	2.19	9.858029		9.988562	$\begin{aligned} & 4 \cdot 21 \\ & 4 \cdot 21 \end{aligned}$	$10 \cdot 017438$ 017186	9 8 8
52 58 58	$\begin{aligned} & 840722 \\ & 840854 \end{aligned}$	$2 \cdot 19$ $8 \cdot 19$	$\begin{aligned} & 857908 \\ & 857786 \end{aligned}$	2.02	982814 983067	4.21	O16933	8
54	840985	2.19	857665	2.08	98382	1	0	
55	841116	2.18	857543	2.03	983573	4-21	16427	
56	841247	$2 \cdot 18$	857422	$2 \cdot 03$	${ }_{083826}^{988}$	4.21	15174	-4 3
57	84	2.	857300 857178		${ }^{984079} 9$	4-21	015669	a
58 59	841509 $8+1640$	$\stackrel{2}{2 \cdot 18}$	857056	$2 \cdot 03$	9845	1.21	015116	1
60	841771	$2 \cdot 18$	856984	2-08	7	4-21	5163	0
	Cosine.	D.	Sine.	D.	Cotang.	D.	Tang	M.

(46 DEGREES.)

M.	Sine.	D.	Cosine.	D.	Tang.	D.	Cotang.	
0	9-841771	$2 \cdot 18$	9-856934	2.08	9.984887	4-21	$10 \cdot 015163$	
1	841902	$2 \cdot 18$	856812	$2 \cdot 03$	985090	4-21	10.015163 014910	60 59
2	842033	2.18	856690	2.04	985343	$4 \cdot 21$	014657	58
3	848163	2.17	858568	${ }^{2} 2.04$	985596 985848	$4 \cdot 21$	014404	57
4 5 5	842294	${ }^{2 \cdot 17}$	856446 856823	2.04 2.04	$\begin{aligned} & 985848 \\ & 986101 \end{aligned}$	$4-21$ 4.21	014152 018899	$\begin{aligned} & 56 \\ & 55 \end{aligned}$
6	842555	$2 \cdot 17$	856201	${ }^{2} .04$	986855	$4 \cdot 21$	013899 018646	54
7 8	842685 842815	2.17	856078 855956	${ }^{2.04}$	${ }^{986607}$	$4 \cdot 21$	013393	. 53
9	842946	${ }_{2} 2 \cdot 17$	8550588	2.04 2.04	988860 987112	$4 \cdot 21$ 4.21	013140 012888	${ }_{51}^{52}$
10	848078	$2 \cdot 17$	856711	$2 \cdot 05$	987385	4.21	0112685	
11	9-848206	2-16	9.855588	2.05	9-987618	$4 \cdot 21$	10.012382	
12	843386	$2 \cdot 16$	855465	2.05	987871	4.21	012129	48
13	843468	$\stackrel{2}{ } \cdot 16$	855342	2.05	988123	4.91	011877	47
15	843595 843725	$2 \cdot 16$	855219	${ }^{2} \cdot 05$	988376	$4 \cdot 21$	011624	46
16	843855	${ }_{2 \cdot 16}$	8851978	2.05	988629	1	011371	45
17	843984	$2 \cdot 16$	854850	2.05	989134	4.21	010860	48
18	844114	$2 \cdot 15$	854727	$2 \cdot 06$	989387	$4 \cdot 21$	010813	42
19	844243	$2 \cdot 15$	854603	$2 \cdot 06$	989640	4-21	010360	41
20	844372	$2 \cdot 15$	854480	$2 \cdot \theta$ B	989893	$4 \cdot 21$	010107	40
$\begin{aligned} & 21 \\ & 22 \end{aligned}$	9.844502	$\begin{aligned} & 2 \cdot 15 \\ & 2 \cdot 15 \end{aligned}$	9-854356	$\begin{aligned} & 2 \cdot 06 \\ & 2.06 \end{aligned}$	9-990145	$4-21$	$10 \cdot 009855$	39
23	844760	$2 \cdot 15$	854109	${ }_{2} \cdot 08$	290651	+-21	009849	87
24	844889	$2 \cdot 15$	853986	2108	990903	$4 \cdot 21$	009097	36
25	845018	$2 \cdot 15$	853863	2.06	991156	$4 \cdot 21$	008844	85
27	845276	2.14	853614	2.06	991409	4.21	008591	34
28	845405	$2 \cdot 14$	858490	$2 \cdot 07$	991914	$4 \cdot 21$	008086	${ }^{33}$
29	845533	2.14	858868	2.07	992167	$4 \cdot 21$	007833	31
80	845682	$2 \cdot 14$	853242	$2 \cdot 07$	992420	4-21	007580	30
81	9.845790 845919	$2 \cdot 14$	9.858118	$\stackrel{2.07}{2.07}$	9.992672	$4 \cdot 21$	$10 \cdot 007838$	
$\begin{aligned} & 82 \\ & 38 \end{aligned}$	845919 846047	$2 \cdot 14$ $2 \cdot 14$	852984 8589	$\stackrel{2.07}{2.07}$	${ }_{993178}^{99295}$	${ }_{4}^{4 \cdot 21}$	007975	28
34	846175	$2 \cdot 14$	852745	2.07	998430	4-21	008570	26
85	846301	${ }^{2} 114$	852620	$2 \cdot 07$	993683	$4 \cdot 21$	006317	25
36	846482 846560	$2 \cdot 13$ $2 \cdot 13$	852496 85971	${ }^{2.08}$	998986 994189	$4 \cdot 21$	006084	24
88	846688	2-18	852247	2.08 2.08	${ }_{994441} 9948$	$4 \cdot 21$ $4 \cdot 21$	0	28 22
39	846816	$2 \cdot 13$	852122	$2 \cdot 08$	994694	$4 \cdot 21$	005808	21
40	846944	$2 \cdot 13$	851997	$2 \cdot 08$	994947	$4 \cdot 21$	005053	20
$\begin{aligned} & 41 \\ & 42 \end{aligned}$	9.847071	$\frac{2 \cdot 13}{2 \cdot 18}$	9.851872	$\begin{aligned} & 2.08 \\ & 2.08 \end{aligned}$	$9 \cdot 995199$ 995452	$4 \cdot 21$	10.004801	19
43	847327	2-18		2.08	${ }^{995452}$	$4 \cdot 21$ $4 \cdot 21$	-004548	18
44	847454	$2 \cdot 12$	851497	2.09	995957	$4 \cdot 21$	004048	16
45	847582 847709	${ }_{2}^{2 \cdot 13}$	851372 851246	2.09 2.09	996210 99846	$4 \cdot 21$	003760 005587	15
47	847886	$2 \cdot 12$	851121	2.09	990715	$4 \cdot 21$	003285	13
48	847964	$2 \cdot 12$	850996	${ }_{2} \cdot 09$	998968	$4 \cdot 21$	003032	12
49	848091	$2 \cdot 12$	850870	2.09	997281	$4 \cdot 21$	002779	11
50	848218	$2 \cdot 12$	850745	$2 \cdot 09$	997478	$4 \cdot 21$	002527	10
51	9.848345	2.12	9.850619	$2 \cdot 09$	9.897796	4.21	10.002274	
${ }_{53}^{52}$	848472 848599	${ }_{2}$	$\begin{array}{r} 850498 \\ 850368 \end{array}$	$2 \cdot 10$ $2 \cdot 10$	997979 898281	$4 \cdot 21$ $4 \cdot 21$	002021 001769	${ }_{7}^{8}$
54	848726	$2 \cdot 11$	850242	$2 \cdot 10$	998484	4.91	001516	6
55	848852	2-11	850116	2-10	998737	4.21	001263 :	5
56	848979 849108	$2 \cdot 11$	849890	2.10	998989	$4 \cdot 21$	001011	4
57 58	849106 849232	${ }_{2}^{2 \cdot 11}$	849864 849788	$2 \cdot 10$ $2 \cdot 10$ $2 \cdot 10$	${ }^{99924245}$	4.21 4.21	000758 000505	3 2 2
59	849859	${ }_{2 \cdot 11}$	849611	2-10	899748	4-21	000253	1
60	849485	2•11	849485	2-10	10.000000	4.21	10.000000	${ }_{0}$
	Cosine.	D.	Sine.	D.	Cotang.	D.	Tang.	M.
(45 DEGREES.)								

 \square
2)

[^0]: $\log \cot a\left(105^{\circ} 17^{\prime} 29^{\prime \prime}\right) \quad 9.436811$
 $\log \tan b \quad\left(38^{\circ} 47^{\prime} 11^{\prime \prime}\right) \quad 9.905055$

 $$
 \log \cos C \quad . \quad 9.341866 \quad \therefore C=102^{\circ} 41^{\prime} 33^{\prime \prime} .
 $$

