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r p I I E present work on Analytic Geometry is designed as 
a text-book for Colleges and Scientific Schools. The 

object has been to exhibit the subject in a clear and sim-
ple manner, especially for the use of beginners, and at the 
same time to include all that students usually require in 
the regular undergraduate course. 

It is thought that among the merits of this book are the 
presentations of the symmetrical and normal forms of the 
equations of the right line and of the plane, the equations 
of the ellipsoid and of the plane tangent to the ellipsoid, 
and the formulas for the distances of a point from a line and 
from a plane. These equations and formulas are not usually 
given in our American elementary text-books; and yet they 
are so important in their applications, they enable us to 
abridge and to simplify the solution of examples to so great 
an extent, that they should always be taught, even though' 
considerable else may have to be omitted. 

To make the student familiar with the principles of the 
subject, a large number of examples is given at the ends of 
the chapters, with hints for the solution of the more diffi-
cult ones. 

In preparing this book, I have consulted freely what works 
were available to me. In the geometry of two dimensions I 
am indebted chiefly to the works of Salmon, O'Brien, Tod-
hunter, Puckle, Howison, and Biot. In the geometry of 



three dimensions my chief indebtedness is to Gregory's 
Solid Geometry, Salmon's Analytic Geometry of Three 
Dimensions, and Howison's Analytic Geometry. The chap-
ter on Higher Plane Carves was taken substantially from 
Salmon's Higher Plane Curves and Gregory's Examples, 
with some aid from Price's Calculus. For the Chordel 1 
am indebted to Mr. J . Bruen Miller, of the Class of '79 of 
this College. 

I have to thank my friend and former pupil, Mr. R. W. 
Prentiss, B. S., of the Class of '78, now a Fellow in Mathe-
matics at the Johns Hopkins University, for his kind aid in 
reading the MS. and for valuable suggestions. 

E. A. B. 
R U T G E R S C O L L E G E , I 

N E W BRUNSWICK, N . J . , J a n . , 1 8 8 0 . ) 

P R E F A C E T O S E V E N T E E N T H E D I T I O N . 

As this book has passed through Sixteen Editions, it has 
been thought advisable to make a few changes suggested 
by its use in the class-room. Accordingly, some of the 
demonstrations have been shortened and simplified, a few 
propositions have been added, several diagrams have been 
inserted, and quite a number of notes and about two hun-
dred additional examples have been distributed throughout 
the book. It is hoped that these changes will commend 
themselves to those who use the work, and increase its 
value as a text-book. 

E. A. B. 
RUTGERS COLLEGE, ? 

NEW BRUNSWICK, N . J . , J a n . , 1893. > 
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P A R T I. 

A N A L Y T I C G E O M E T R Y OF T W O D I M E N S I O N S . 

C H A P T E R I . 

T H E P O I N T . 

1. Analyt ic Geometry is that branch of Mathematics 
iu which the magnitudes considered are represented by let-
ters, and the properties and relations of these magnitudes 
are investigated by the aid of Algebraic Analysis. 

2. All the points of the magnitudes to be considered are 
referred to fixed objects, by means of elements called co-
ordinates, and hence this method is sometimes known as 
Co-ordinate Geometry. I t was introduced by Descartes 
iu 1637, and hence is also called the Cartesian System. 

3. Analytic Geometry is divided into two parts: Ana-
lytic Geometry of t w o Dimensions, which treats of 
lines lying wholly in a single plane, and requires but two 
co-ordinates to determine the position of a point ; and 
Analyt ic Geometry of three Dimensions, which treats 
of lines and surfaces lying in any manner in space, and 
requires three co-ordinates to determine the position of a 
point. 

4. There are two systems of co-ordinates in common use 
for determining the position of a point in a plane. The 



first is bv means of its distances from any two given right 
lines of the plane which intersect each other. The second 
is by means of its distance and direction from a given 
point in the plane. The first is called the Rectil inear 
System, and the second is called the Polar System. 

5. Let us suppose that we have given the position of 
two fixed right lines XX', YY', intersecting in the point 0, 
and let the plane of the two lines 
be represented by the surface of / ^ 
the paper. Now, if through any N/ 7P 

point P we draw PM parallel to . / / 
OY, and PN parallel to OX, it is oj »»/ 
plain that the position of P is / 
known if the lengths of PM and / Flg" 
PN are known. For example, if J 
we have given PN = a, PM = b, 
we can determine the position of the point P with regard 
to the lines OX and OY : we need only measure OM ( = a) 
along OX, and ON ( = b) along OY, and draw the parallels 
PM, P N : P will be the point whose position we wished to 
determine. 

6. The line PM, or its equal ON, is usually denoted by 
the letter y, and is called the Ordinate of the point P. 
OM, or its equal NP, is denoted by the letter x, and is 
called the A b s c i s s a of the same point; and the two lines, 
when spoken of together, are called the Co-ordinates of P. 

The lines XX' and YY' are called the A x e s of Co-
ordinates, or the Co-ordinate Axes , and the point 0 in 
which they intersect is called the Origin The line XX' 
is called the A x i s of Abscissas , or the A x i s of •x. I t 
may have any direction, but it is usually assumed to be hori-
zontal. The line YY' is called the A x i s of Ordinates, 
or the A x i s of y. The axes are said to be rectangular 
or oblique, according as the angle at which they intersect is 
a right or an oblique angle. The rectangular axes are the 

DISTRIBUTION OF SIGNS. 3 

most simple, and, in this work, will always be employed 
unless otherwise specified. . ' 

The abscissa of any point is its distance from the axis of 
ordinates, measured on a line parallel to the axis of abscissas. 

The ordinate of any point is its distance from the axis 
of abscissas, measured on a line parallel to the axis of 
ordinates. 

The point P is said to be determined when the values of 
its co-ordinates, a; and y, are given, as by the two equations 
x a, y = b. For example, if we have given that x = 5 feet 
•y = 3 feet, we shall determine the position of the point of 
which x and y are the co-ordinates, by measuring, from the 
ongm 0, on the axis of ar, a distance OM equal to 5 feet • 
then through M draw a line parallel to the axis of y, and on' 
this line measure a distance MP equal to 3 feet. P will be 
the position of the point required. 

Hence, in order to determine the position of a point, it is 
sufficient to have the two equations, x = a,y = b, in which 
0 and b are given. These equations are the analytic repre-
sentatives of the point, and are called the Equations of a 
Point. 

It will easily be seen that the equations of the point M, in 
the preceding figure, a r e x = a, y = 0; that those of the 
point N are x = 0,y = b; and of the origin itself are 
z _ 0, y _ o. The point whose position is defined by the 
equations x = a, y=b, is commonly spoken of as the 
point (a, b). 

7. In order that the equations x = a,y = b, should be 
satisfied by only one point, it is necessary to pay attention, 
not only to the absolute values of the co-ordinates, but also 
to the signs of these quantities. 

If no attention were given to the si?nsof the co-ordinates 
we might measure OM = and 0 N = b (Fig. 2), on either 
side of the origin, and any of the four points, P, P', P", P'", 



would satisfy the equations x = a, y = h- T h i s ambiguity, 
however, may be avoided by distinguishing algebraically be-
tween the lines OM and OM', by 
giving them different signs. If lines ^ I p 

measured in one direction be con- j~~ W 
sidered as positive, lines measured ' / / j 
in the opposite direction must be x:—¿3 J Xf 
considered negative. I t is, of course, ; / / 
arbitrary in which direction we j I / 
measure positive lines; but it is P : T ^ ,p 

customary to regard OM measured 
towards the right, and ON mens- ( 
ured upwards, as positive; and hence, OM and ON , 
measured in the opposite directions, must be considered 
negative, as in Trigonometry. 

The four angles into which the plane is divided by the 
a x e s are distinguished thus! The angle YOX is called the 
Firs t A n g l e ; YOX', the S e c o n d A n g l e ; Y'OX', the 
Third Angle ; and Y'OX the Fourth Angle. If P, P', 
P", P '" be points situated in the four angles, they will be 
represented by the following equations: 

p ( x = a, p " i 
y = b. ~ \ y = - b -

M y = t>- \ y = - t -
Or, by (a, b), (-a, b), {-a, -b), (a, -b) respectively. 

8. To determine a point whose co-ordinates are 
given. 

Lay off from the origin, on the axis of x, a distance equal 
to the «nven abscissa, to the right if the abscissa is + , and 
to the left if it is - . Through the point thus found, draw 
a line parallel to the axis of y, and lay off on it a distance 
from the axis of x equal to the given ordinate, above if the 

E X A M P L E S . 

1. Find the distance from the point (— 8, — 2) to the 
point (3, 7). 

Ans. d = V ( 3 + B)2 + (7 + 2)a = VV2l + 81 = 14.21. 
-2. Find the distance between the two points (2, —3) 

and (•— 5, 6), the axes being inclined at an angle of 60°. 
Here x' - x" = 2 + 5 = 7 ; y' — y" = - 3 — 6 = — 9; 

and cos w = Hence, in (2) we get 

d = V 4 9 + 8 1 — 2 - 7 - H = V 4 9 + 8 1 — 63 = A/67. 

3. Find the lengths of the sides of a triangle, the co-ordi-
nates of whose vertices are (2, 3), (4, — 5), (— 3, — 6). 

Ans. A/68, A/5Ô, A/106. 
4. Find the lengths of the sides of a triangle, the co-ordi-

nates of whose vertices are the same as in the last example, 
the axes being inclined at an angle of 60°. 

Ans. A/52, A/57^ VÏ51. 
5. Find the lengths of the three sides of the triangle 

whose vertices are (2, 5), (—4, 1), (— 2, — 6). 
Ans. A/52, A/53, VÏ37. 

6. Express algebraically that the distance of the point 
(x, y) from the point (2, 3) is equal to 4. 

Ans. V(x - 2)2 + (y — 3)2~ = 4. 
7. Express algebraically that the point (x, y) is equidis-

tant from the points (2, 3) and (4, 5). 
Ans. (x - 2)2 + (y — 3)2 = (x - 4)2 + (y - 5)2, 

or x + y = 7. 
8. Find the point equidistant from the points (2, 3), 

(4, 5), (6, 1). 
Here we have two equations, formed as in Ex. 7, to 

determine the two unknown quantities. 
. 13 8 , v . • V/5CT Ans. x = —, y = -, and the common distance is —x— 



11. To find the co-ordinates of the ¡mitit which di-
vides in a given ratio, m : n, the right line joining 
two given points, (oc', y') and (oc", y" ). 

Let P and Q be the two given 
points, (x', y') and (x", y"), and R 
the required point, whose co-ordi-
nates we denote by x and y*. Then 
we have, 

PR : RQ :: m n. 

Draw the ordinates PM, RL, QN, 
and the line P E F parallel to OX ; then we have, 

PR 
RQ 

or, 

hence, 

PE 
E F 

m 
n 

m 
ñ' 

x = 

ML _ 
: LN " 

x' — x 

mx" + tix' 
m, + n 

Similarly we have, y = my" m _1_ a m -f n 
If the line were to be cut externally in the given ratio, 

we should have (Geom. Art; 302) 
Vi : n :: x — x' : x — x", 

x mx — nx 
y 

my ny 
m — n m _ n 

If m = », or PQ is bisected in R, we have, 
x" + x' 

X : 
2 ' 2 ' 

a result which is of frequent, use. In this article the axes 
may be oblique or rectangular, the result being the same. 

y + y 

* (». V) is generally used to denote an unknown point, while (x', y"j, (x", y"), etc., 
denote given (or known) points. 

POLAR CO-ORDINATES. 9 

E X A M P L E S . 

1. Find the co-ordinates of the middle points of the sides 
of the triangle whose vertices are (2, 3), (4, —5), (—3, —6). 

Ans. ( i , - V - ) , ( - * , - F ) , ( 3 , - 1 ) . 

- 2. The line joining the points (2, 3), (4, — 5), is tri-
sected ; to find the co-ordinates of the point of trisection 
nearest to the former point. Ans. x = f , y = 

3. The co-ordinates of P are (2, 3), and of Q (3, 4); find 
the co-ordinates of R, so that PR : RQ :: 3 : 4. 

Ans. x = 2$,y = 3$. 
4. The point (x, y) is midway between (3, 4) and 

(—5, —8); find its distance from the origin. Ans. V5. 

P O L A R C O - O R D I N A T E S . 

12. Let 0 be a given point, and OA a fixed line through 
i t ; it is evident that we shall know the 
position of any point P, if we know the 
length OP and the angle POA. The 
line OA is called the Initial Line (called 
also the Prime Radius and the Polar 
Axis) , the fixed point is called the 
Pole, the line OP is called the Radius 
Vector, and the variable angle AOP is Fig, 7i 

called the Direction Angle, or Vec-
tor ia l Angle*. This method is called the method of P o l a r 
Co-ordinates. The initial line may have any position in 
the plane, but it is usually drawn through 0 horizontally 
to the right. The angle AOP and the distance OP are the 
polar co-ordinates of P. 

If the direction angle of any point be denoted by 0, and 
its radius vector by p, the point may be called the point 
(p, 0). When the direction angle is estimated from A 
upwards towards P, as in Trigonometry, it is called + ; 

• I t may be expressed ei ther in degrees or in circular measure, but should never 
be expressed par t ly in one measure and pnrtlv in the other, as 2n + 40°. 



* Puckle's Conic Sections, p. 8. Alto, O'Brien'« Co-ordiuata Geometry, p. 3". 

when estimated in the opposite direction from A downwards 
towards Q, it is called —. The radius vector is -f when 
estimated from the pole in the direction of the extremity of 
the arc which measures the direction angle; and it is — 
when estimated in the opposite direction. 

The following example* will make this clear. Let a be 
any distance OP, measured from 0 towards P, 9 being the 
angle which OP makes with OA ; then 

6 = in, P = a, represents P in Fig. 8 
6 = P = — a, tt tt g 
9 = i:r, P = — a, te " 10 
9 = IT j P = — a, te " 11 
e = i " , P = a, te " 12 

We observe that the direction in which p is measured 
depends, not only on its sign, but also on the value of 0 ; 
thus, when 9 = frr, and p = — a, p must be measured 
from 0 to P, as in Fig. 10 ; and when 0 = j-n, p = a, 
p must be measured in exactly the same direction. 

13. To locate a point whose polar co-ordinates are 
given. 

Draw the initial line, and lay off, at any point taken for 
the pole, an angle equal to the given angle 0; then measure 
the distance p from the pole, in the direction of the extrem-
ity of the arc which measures the direction angle, or in the 
opposite direction, according as p is 4- or —, and the 
required point is obtained. 

E X A M P L E S . 

1. Locate the point p = 7, 9 = 
The radius of the measuring arc 

being 1, TT is the semi-circumference. 
Hence, J7r = 45°. Now draw the 
initial line OA, and, at the point 0 
taken for the pole, lay off AOP = 
45°, and measure OP = + 7 ; P is 
the point required. 

Fie. 13. 

2. Represent the points p = — 8, 9 = n, and p = 15, 
9 = irr. 

3. Represent the points p = 15, 9 = and p = — 6, 
9 = i?r. 

4. Represent the points p = — 6, 9 = — |-7t, and p = 10, 
9 = £tt. 

5. Represent the points p = 5, 9 = •§TT, and p = 6, 
0 = ln. 

14. To find the distance between two points in terms 
of their polar co-ordinates. 

Let P and Q be the two points ; 
represent the co-ordinates of P by 
p', 0', and of Q by p", 9", and the 
distance PQ by d. Then in the tri-
angle OPQ, OP = p', OQ = p", and FÌE. I4. 



the angle POQ = &' — Hence, from Trigonometry, 
d = Vp"a + p'* — 2p"p' co8~(0' — 6'). (1) 

COK.—If p" = 0, and d" = 0, we have, for the distance 
of any point (p', 6') from the origin, d = p'. 

E X A M P L E S . 

1. Find the distance between p = 3 , 6 = and p = 4, 
* ==!•«• Ans. 5. 
- 2. Find the distance (1) between p = 5,0 = 75°, and p = 4, 

0 = 15°; and (2) between (5, 30°) and (6, 225°). 
Ans. (1) y ^ T ; (2) 10.9. 

D E F I N I T I O N S . 

15. The E q u a t i o n of a L i n e is the equation which 
expresses the relation between the co-ordinates of every 
point of the line. 

The term Locus is nearly synonymous with G e o m e t r i c 
F i g u r e ; it is the series of positions to which a point or line 
is restricted by given conditions. 

The Locus of a P o i n t is the line generated by the 
point when moving according to some given law. 

The Locus of a L i n e is the surface generated by that 
line when moving according to a given law. 

The Locus of an E q u a t i o n is the line or surface, the 
co-ordinates of all of whose points are determined by the 
equation, while the equation is the analytic representative 
of the line or surface. In the equation, y — x + 4, we may 
assign to x any value we please, as 1, and from the equation 
determine the corresponding value of y equal to 5. A point 
x = 1 and y = 5 is thus determined. In like manner cor-
responding to the values 2. 3, 4, etc., for x, we have 0, 
7, 8, etc., for y, determining the points (2, 6), (3, 7), 
(4, 8), etc. The line passing through all the points that 
may be determined in this way is called the locus of tl <• 
equation, which may therefore be regarded as the geometric 
equivalent of the equation. 

Every equation between variables which denote the co-
ordinates of a point represents a locus, and every locus 
has an equation. 

When a point is on a locus its co-ordinates must satisfy 
the equation of the locus, that is, they must reduce the 
equation to an identity when they are substituted in it for 
x and y. Thus, 1 and 5 substituted for x and y respectively 
in-y = x + 4 give the identity 5 = 1 + 4 . The resulting 
equation is called the condition that the point may lie on 
the locus. Thus, the equation y' = «' + 4 is the condition 
that the point (x', y') may lie on the locus y = x + 4. 

There are two kinds of quantities used in Analytic 
Geometry : 1st, Constants , whose values do not change in 
the same discussion, and are represented by the leading let-
ters of the alphabet; and 2d, Var iables , which are 
susceptible of an infinite number of values within certain 
limits that are determined by the nature of the problem, 
and are represented by the final letters of the alphabet. 

C O N S T R U C T I N G E Q U A T I O N S . 

16. To construct an equation, or find its locus, is to 
trace, by means of determined points, the geometric figure 
which the equation represents. 

To construct any curve from its equation, we solve the 
equation for either of its variables, usually for y, whose 
value or values we find in terms of x and constants. Then 
substitute for x a series of arbitrary values, and find the 
corresponding values of y. Now draw the axes, and lay 
down the points corresponding to the co-ordinates thus 
found. A curve traced through these points will approxi-
mately represent the locus of the equation. The closer the 
points are to each other, the more exact is the locus, unless 
it be a right line, which needs but two points to determine it. 

Sen.—Although it is customary to solve the equation for 
y, yet if it is above the second degree with respect to either 



variable, it is expedient to solve it with respect to the varia-
ble which is least involved. Thus, to construct 

2z + y* = 3ys + 2y-8, 

we solve it with respect to x, and find 

Sy3 + 2y - 8 - y » 

Then substitute arbitrary values for y, and find the corre-
sponding values of x. 

17. The Independent Variable is the one to which 
arbitrary values are assigned, usually x. The other is 
called the Dependent Variable. This distinction is 
made for convenience ; either variable may be treated as the 
independent variable, and the other as the dependent varia-
ble ; the latter is said to be a Funct ion of the former. 

One quantity is a function of another when so connected 
with it that no change can take place in the latter, without 
producing a corresponding change in the former. Thus, 

y = ax + b, 

y is a function of x ; the ordinate of a curve is a function 
of the abscissa. 

Functions are divided into two classes, algebraic and 
transcendental. 

An Algebraic Function is one in which the relation 
between the function and its variable can be expressed by 
the ordinary operations of algebra, that is, addition, sub-
traction, multiplication, division, involution, and evolution, 
or the algebraic sum of many such functions. Thus, in 
each of the following expressions, 

y ='la? a?, y = 4x — Vx, y = (as3 — 2a?)i, 

y is an algebraic function of x. 

A Transcendental* Function is one in which the 
relation between the function and its variable cannot be 
expressed by the ordinary operations of algebra. 

19. A Branch is the continu-
ous part of a curve. In Figs. 16 
and 17 the curves have two 
branches. 

20. A curve is Symmetrical 
with respect to any line when it 
has the same form on both sides 
of the line; that is, when every 
point on one side of the line has a corresponding point on 
the other side of the line. The curves in Figs. 15 and 16 
are symmetrical with respect to the axis'of x. The curve in 
Fig. 17 is not symmetrical with respect to any line. 

* Transcendenta l func t ions are f u r t h e r subdivided, b u t this division is not 
necessary in the p resen t work . 

18. A curve is Continuous when it has no interruption 
in its extent, and no abrupt change in its curvature. A 
circle, an ellipse, and the curve in Fig. 15 are examples of 
continuous curves. The curve, Fig. 16, is discontinuous, 
having an interruption in extent. Fig. 17 is an example of 
a discontinuous curve, having an 
abrupt change in its curvature. \ 



D I S C U S S I O N O F E Q U A T I O N S . 

21. The Discussion of an equation consists in observing 
the peculiarities of the loci which appear from the form of 
the equation, by making different hypotheses on the quan-
tities that enter it. 

1st. To find where the locus cuts the axes o f x and y. 
When the points are on the axis of x their ordinates are 

0. Therefore put y = 0 in the equation, and find the cor-
responding values of x, which will be the intersections with 
the axis of x. When the points are on the axis of y their 
abscissas are 0. Therefore put x = 0, and find the corre-
sponding values of y, which will be the intersections with 
the axis of y. 

Thus, in the locus, y = x + 2, if x = 0, y = 2, and if 
y = 0, x = — 2. Therefore the locus cuts the axis of x at 
the distance 2 to the left of the origin, and the axis of y at 
the distance 2 above the origin. 

. The distances from the origin to the points where the 
locus cuts the axes are called the intercepts on the axes. 

2d. To find the limits between which the locus is 
situated, and to test for continuity in extent. 

The limits are discovered by determining the greatest and 
least values of the independent variable which give real 
values to the dependent one. If all values assigned to x 
between certain limits give rise to real values for y, the 
corresponding points will be real ; that is, the curve will be 
continuous iu extent between these limits. If, on the con-
trary, there are certaiu values of x which render y imaginary, 
the corresponding points will be imaginary; that is, the 
locus is interrupted at such points, and therefore is discon-
tinuous. If between any two values of either variable, the 
corresponding values of the other variable are all imaginary, 
the locus does not exist between the corresponding limits. 
And the limits of discontinuity are the limits between 
which the values of the dependent variable are imaginary. 

DISCUSSION OF EQUATIONS. 1 7 
I 

Thus, in the locus, 

* t - i 

by solving for y we obtain, 

(I 

so that y is real for every value of x that lies beyond the 
limits x — a and x = — a, but is imaginary for every 
value of x lying between them ; and the locus is interrupted 
in the latter region. 

3d. To test for symmetry with respect to an axis. 
Note whether, for each real value of one variable, the 

other has two values numerically equal, but with contrary 
signs; if so, there are points similarly situated on opposite 
sides of the axis from which the variable, having two values, 
is reckoned; and hence the locus is symmetrical with 
respect to that axis. 

Thus, in the locus last considered, we see that for any 
value of x beyond the limits + o .and — a, y has two 
values numerically equal, with contrary signs. Hence this 
locus is symmetrical with respect to the axis of x. 

E X A M P L E S . 

1. Construct and discuss the equation 

2y — Gx — 12 = 0. 

Solving the equation for y, we have, 

y = 3x + 6 . • 

Making successively x = O and y = 0, we obtain, 

y = 6, and x = — 2. 



1 8 DISCUSSION OF EQUATIONS. 
\ 

The locus, therefore, cuts the axis 
of x at a distance 2 to the left of the 
origin, aud the axis of y at a distance 
6 above the origin. Draw the axes 
XX' and YY', and lay down the cor-
responding points. 

Now, give x the following arbi- x 

trary values, and find the correspond-
ing values of y: / / 

When x = 1, y = 9, giving the point (1, 9). 
" x = 2, y = 12, " " (2, 12). 
" x = 3, y = 15, " « (3, 15). 

All positive values of x give positive, real, and single 
values to y. The equation being of the first degree, the 
locus has but one branch, which extends to the right of the 
axis of y indefinitely, and above the axis of x. 

Giving negative values to x, we have : 

When x = — 1, y = 3, giving the point (— 1, 3). 
" x = - 2, y = 0, " " ( - 2, 0). 
" x=-3, y = - 3 , " " ( _ 3 , - 3 ) . 

For all subsequent negative values of x, y has real, nega-
tive, and single values. Hence, the locus has a single 
branch extending indefinitely in the third angle. Laying 
down the points ( - 3, - 3), •(— 2, 0), ( - 1, 3), (1, 9), 
(2, 12), (3, 15), we find that they all come upon the right 
line drawn through (0, 6) and (— 2, 0), which is therefore 
the locus represented by the given equation. 

If any other values be assigned to x, either positive or 
negative, integral or fractional, and the corresponding 
values of y be deduced, the points so determined will all fall 
upon the same line. 

2. Construct and discuss the equation \y + x = 2. 
Result.— A straight line cutting the axis of x at (2, 0), 

and the axis of y at (0, 6). 

3. Construct and discuss the equation 

Sy — Gx — 5 = 0. 

Result.—A right line passing through the points (0, $) 
and ( - | , 0 ) . 

4. Construct and discuss the equation 

x2 + if = 16. 

Solving the equation for y, we get 

y=± Via — xX 

When x = 0, y = + 4 and — 4. 
Hence the locus cuts the axis of y at (0, 4) and (0, — 4). 
When y = 0, x = + 4 and — 4. 
Hence the locus cuts the axis of x at (4, 0) and (— 4, 0). 
As every value of x between -f 4 and — 4 gives two real 

values for y, numerically equal, with contrary signs, the 
locus is symmetrical with respect to the axis of x, and con-
tinuous between these limits. But when x > 4 or < — 4, 
y becomes imaginary, and therefore the locus has no point 
beyond its intersection with the axis of x. 

Similarly, x = ± V l 6 — if shows that the locus is 
symmetrical with respect to the axis of y, and continuous 
between y = 4 and — 4. When y is > 4 or < — 4, the 
values of x become imaginary ; and hence the locus has no 
point beyond its intersection with the axis of y. 

Now giving to x arbitrary values between + 4 and — 4, 
we find the following: 

When x = 1, y = ± 3.9 nearly, giving us the points 
(1, 3.9) and (1, - 3 . 9 ) . 

When x = 2, y = ± 3.5 nearly, giving us the points 
(2, 3.5) and (2, — 3.5). 

When x = 3, y = ± 2.6 nearly, giving us the points 
(3, 2.6) and (3, - 2.6). 
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The negative values oi' x give us the following points: 
( - 1 , 3 . 9 ) and ( - 1 , - 3 . 9 ) , 
(— 2, 3.5) and (— 2, — 3.5), 
(— 3, 2.6) and (— 3, — 2.6). 

Constructing the points thus 
found, we find the figure to be 
the circumference of a circle 
whose radius is 4, and which is 
symmetrical to both axes. If 
any fractional values be given to 
x between the limits + 4 and 
— 4, and the corresponding values of y be found, the points 
so determined will all fall upon the same circumference. 

The same result might have been reached by considering 
that a.-2 + y2 = 16 shows that the distance of any point 
(x, y) from the origin is constantly equal to 4. (Art. 9.) 

5. Construct and discuss the equation 

* + t = -L 
9 4 

Solving the equation for y, we get, 

y=± f V9 - a*. 
Making x = 0, we get y = ± 2; hence the curve, cuts 

the axis of y in two points, one at the distance 2 above the 
origin, and the other at the same distance below it. 

Making y = 0, we get x = ± 3 ; hence the curve cuts 
the axis of x in two points equally distant from the origin 
and on opposite sides of it. For each value of x between 
+ 3 and — 3. y is real, and has two values numerically 
equal, with contrary signs ; hence the curve is symmetrical 
with respect to the axis of x, and continuous between these 
limits. When x > 3 or < — 3, y becomes imaginary, and 
hence the curve has no point beyond its intersection with 
the axis of x. 

Similarly, from x = ± £ V4 — yl, we learn that the 
curve is continuous between y — 2 and y = — 2, and 
symmetrical with respect to the axis of y, but has no point 
beyoud its intersection with the axis of y. Since the curve 
is symmetrical with respect to the axis of y, we need con-
sider only positive values of x. 

Giving now to x the following values, we have the follow-
ing corresponding values for y : 

When x = 0, y = ± 2, giving the points (0, 2) and 
(0, - 2). 

When x = .5, y = ± 1.97, giving the points (.5, 1.97) 
and (.5 - 1.97). 

When x = 1, y = ± 1.89, giving the points (1, 1.89) 
and (1, — 1.89). 

When a; = 1.5, y = ± 1-73, giving the points (1.5, 1.73) 
and (1.5, - 1.73). 

When a; = 2, y = ± 1.49, giving the points (2, 1.49) 
and (2, - 1.49). 

When x = 2.5, y = ± 1.1, giving the points (2.5,1.1) 
and (2.5, - 1.1). 

When a; = 2.75, y = ± 0.8, 
giving the points (2.75, 0.8) and 
(2.75, - 0 . 8 ) . 

When x = 3, y = 0, giving 
the points (3, + 0) and (3, — 0). 

Laying down the points thus 
found, and a similar set on the 
left of the axis of y, we deter- Fis-20-
mine the figure to be an ellipse, whose axes are 6 and 4. 

6. Construct and discuss the equation y1 = 3x — 9. 

Ans. It cuts the axis of x at the distance 3 to the right 
of the origin, and lies entirely to the right of this point, 
extending indefinitely in two branches that are symmetrical 
with respect to the axis of x. The curve is a parabola. 
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7. Construct and discuss the equation 

x" —if — 16. 

Ans. The curve cuts the axis of x at two points; one at 
the distance 4 to the right of the origin, and the other at 
the same distance to the left of it. It has no point between 
these intersections, but extends to the right and left of 
these points indefinitely, and is symmetrical with respect 
to both axes, and is known as the hyperbola. 

8. Construct and discuss the following equations: 

f . + x2 — 6x + lOy + 9 = 0 , 
16 (y -(- 3)2 = 200 — 25 (x — 5)2; 

y2 = x4 — x3. 

9. Construct and discuss the equation 

x = log y or y = a'. 

Assuming a = 10, which is the 
base of the common system, and giv-
ing to x the series of values in the 
following table, the values of y can be 
found from a table of logarithms. 

When X 0, y =2 1. 
« X =1 .2, y = 1.58 nearly. 
tc X = y = 2.51 « 

« X = .6, y = 3.98 « 

« X = •8, y = 6.31 « 

X = 1, y = 10.00. 
« X = - .1, y = .8 n early. 
l( X — - -2, y .6 « 

<< X = - -4, y = .4 « 

C( X = T y .2 « 

it X = - 1 , y .1 « 

<< X = - 2 , y = .01. 

F i g . 21. 

M . 

Laying down the points thus found, we have the curve 
MN (Fig. 21), which is called the logarithmic curve. It 
lies entirely above the axis of x, since negative numbers 
have no logarithms, but extends on both sides of the axis 
of y indefinitely and cuts it at (0, 1), through which point 
all logarithmic curves pass, since log. 1 = 0 in any system. 
The curve is not symmetrical with respect to the axis of y ; 
as it continues to the left of the origin, the ordinates dimin-
ish more and more, but can never reduce to 0 while x is 
finite. When the ordinate becomes infinitely small, the 
abscissa becomes infinitely great, and negative. 

10. Construct and discuss x = log y or y = az. 

Assume a — 2.718, which is the 
base of the Naperian system, and 
we get y = (2.718)*. 

When x = 1, 
" x = 2, 
" x = 3, 
« x — — 1, 
« x = — 2, 

y = 2.718. 
y = 7.389. 
y = 20.085. 
y = 0.368. 
y — 0.135. 

Fig . 2 2 . 

Laying down the points thus 
found, we have the curve MN 
(Fig. 22), which is called the loga-
rithmic curve for the Naperian 
base. 

11. Construct and discuss the equation of the sinusoid 

y = sin x. 

The unit of angular measure is the angle at the centre, 
measured by an arc equal in length to the radius, as this 
angle is of an invariable magnitude, whatever be the length 
of the radius. The semi-circumference being 3.1416, when 



the radius is unity, the number of degrees in an arc equal 
180° 

to the length of the radius is equal to ^ = 57°.3 nearly. 

Hence'the following series of values: 
When X = 0° = 0, y 0. 

X = 10° = •17, y = .17. 
X = 20° = .35, y .34. 
X 30° = .52, y z=. .50. 
X 40° — .70, y = .64. 
X = 50° .87, y = .77. 
X = - 60° = 1.05, y = .87. 
X 70° = 1.22. y — .94. 
X = 80° = 1.40, y .98. 
X = 90° 1.57, y = 1.00. 
X = 180° = 3.14, y = 0. 
X 190° L- 3.31, y - .17. 
X — 200° = 3.49, y - .34. 
X = 210° = 3.6G, y - .50. 
X = 220° 3.84, y = — .64. 
X = 230° = 4.01, y = - .77. 
X — 240° 4.19, y — - .87. 
X = 250° = 4.36, y - .94. 
X 260° = 4.54, y = - .98. 
X = 270° = 4.71, y = — 1.00. 

Fig. 2 3 

Laying clown the points thus found, we have the curve 
MN, which is called the Sinusoid, or the curve of sines. 

Construct and discuss 
y = tan x ; 
y = cot x ; 
y =i cos x; 
y — vers x ; 
y = covers x ; 
y — sec x ; 
y = cosecz. 

These loci may be constructed with sufficient accuracy 
without computing their numerical values. Thus, in the 
example, 

y = sec x. 

Divide a quadrant MN into any number of equal parts, 
say nine, so small that for practical purposes the chord and 
arc may be considered equal Now measure the arcs from 

3 



M, and the secants of those arcs ; then lay off the arcs on 
the axis of x for abscissas, and draw perpendiculars equal to 
the corresponding secants for the ordinates. 

For example, measure 07 = the arc M7, and at 7 draw 
the perpendicular 7P = 0g. P will be a point of the curve. 

This example may be solved in the same way as Ex. 11; 
thus, 

= ± 0 , 
= ± .17, 

When « 
a 
« 

« ->- — 

« o. _ 
« 

« 

X = 

X = 

X = 

X = 

X 

X 

X 

X 

X 

X 

± 
± 
± 
± 
± 
± 
± 
± 
± 

o c 

10° 

2 0 ° 

30° 
40° 
50° 
60° 

70° 
80° 

.35, 
.52, 
.70, 
.87, 

= ± 90c 

= ± 

= ± 

= ± 

= ± 
= ± 1.05, 
= ± 1.22, 
= ± 1.40, 
= ± 1.57, 

y = 1.00. 
y = 1.02. 
y = 1.06. 
y = 1.16. 
y = 1.31. 
y = 1.56. 
y = 2.00. 
y = 2.92. 
y = 5.76. 
y = c o . 

Laying down the points thus found, we have the curve 
with more accuracy than by the preceding method. 

In the same way construct the equation, 

y = tan x. 

When x = 0° = o, y — 0. 
" X = ± 10° = ± .17. y = ± .18. 
" X = ± 20° = ± .35, y = ± .36. 
" X = ± 30° = ± .52, y = ± .58. 
" X ± 40° = ± .70, y = ± .84. 
" X = ± 45° = ± .79, y ± 1.00. 
u X = ± 50° = ± .87, y = ± 1.19. 
" X — ± 60° = ± 1.05, y = ± 1.73. 
" X ± 70° = ± 1.22, y 

• ± 2.75. 
" X ± 80° = ± 1.40, y = ± 5.67. 
(t X ± 90° = ± 1.57, V = 0«5 . 

Laying down the points thus found, we have the 
curve MN. 

It is clear that when we take the -f values of x we must 
take the -f values of y ; and when we take the — values of 
x we must take the — values of y, confining ourselves to 
the first quadrant. 

E X A M P L E S . ' 

1. Find the points (1, 2) and (— 3,— 1); and show that 
the distance between them is 5, 



2. Find the distance from the origin to each of the points 
(2, 3), ( - 2, 3), ( - 3 , - 2). Ans. Vl3, Vl3~, VÏ3. 

3. Show that the points (1, 3), (2, (2, — a / 6 ) «ire 
equidistant from the origin. 

4. Find the distances between the following pairs of 
points : (1) (1, 0) and (— 1, 0); (2) ( — 3, 4) and (5,— (5); 
(3) ( - 3, 7) and ( 6 , - 5 ) ; (4) (2, 0) and ( 0 , - 2 ) . 

Ans. (1) 2 ; (2) 2-^41 ; (3) 15 ; (4) 2-y/2. 
5. Find the sides of a triangle whose vertices are 

( _ 2), (1, 2), ( 2 , - 3 ) . Ans. V20, VÏÔ, a/26. 
<0 6. Show that the points (3, 0), (0, 3\/3), (6, 3^/3) form 
an equilateral triangle. 
C>7. Show that the points (1, 1), ( - 1 , - 1 ) , (— A/3, A/3) 
form an equilateral triangle. 
OS. Show that the four points (0,— 1), (— 2, 3), (6, 7), 
(8, 3) form a rectangle. 
«"9. Show that the points (0,— 1), (2, 1), (0, 3), ( — 2, 1) 

form a square. 
10. Show the same of the points (2, 1), (4, 3), (2, 5), 

(0, 3). 
11. Construct the triangle whose vertices are (0, 0), 

(2, 3), (3, 2), and find (1) the lengths of the sides, and (2) 
the cosine of the angle at the origin. 

Ans. (1) VÏ3, VÏS, A/2"; (2) 
b 12. Express by an equation that the distance of the point 
(x, y) from (—1, 2) is equal to 3. 

Ans. V{x + 1)* + (y — 2)2 = 3. 
13. Express by'an equation that the point (x, y) is equi-

distant from the points (— 1, 1) and (2, 3). 
A ns. 6x + 4y = 11. 

14. Express by an equation that the point (x, y) is equi-
distant from the points (3, 4) and (1,— 2). 

Ans. x -f 3?/ = 5. 
15. Show that the point equidistant from the points 

( - 1, 1), (1, 2), ( 1 , - 2) is the point (J, 0). 

16. Find the lengths of the sides of a triangle whose 
vertices are (0, 0), (3, 4), (— 3, 4). Ans. 5, 5, 6. 

17. Find the co-ordinates of the point midway between 
the points (— 6, 2) and ( 4 , - 2 ) . Ans. ( - 1, 0). 

18. The co-ordinates of P are (3,— 1), and of Q (10, 6); 
find the point R so that PR : RQ = 3 : 4. Ans. (6, 2). 

19. Find the distance between the points whose polar co-
ordinates are (2, 40°) and (4, 100°). Ans. Vl2. 

20. Find the distance between (4, 50°) and (3, 1 1 0 ^ 
Ans. A/13. 

21. Is the point (3, 9) on the line y = 2x + 3 ? 
22. Which of the following points are on the curve 

y = 3x2 + 5 a ; : ( 2 , 3), (1, 8), ( - 2, 2), ( - 3,10), ( - 3,12), 
(3, 3)? 

Find where the following loci cut the axes of x and y : 
23. y = x -f 2. 
24. y = (x — 2) (x — 3). 
25. y2— 2y = x2 — 3z. 
26. y = x2— 4. 
27. 2a;+ 3 y = 6. 

28. x2 + y2 = 4. 
29. 16a;2 + 9y2 = 144. 
30. y2 = x2 — îe8. 
31. 9a;2 + 6 x y + 9?/2 = 4. 
32. x2 + 6x + y2 — 4y = 3. 

Construct the following equations : 
33. x + y = 4. 
34. 3a;+ 2y = d. 
35. 2x-5y = 10. 
36. 3a; — 4y = — 12. 
37. 4x + 3y= — 10. 
38. 6a; — 4y = 12. 
39. x2 + y2 = 81. 
47. 

40. y2 = 4x2. 
41. y2 = 4. 
42. y = x2. 
43. x2 = xy. 
44. a;2 + 2a; + 10y—8 = 0. 
45. x2y = 4 (2 - y). 
46. {x2 + y2f = {x2 - y2). 

14a;2 — 4 xy + 11 y2 — 60 = 0. 
48. 3a;2 + 4xy + 5y2 — 2x — 7y — 4 = 0. 
49. 3a;2 + 8xy — 3y2 + 6a; — 10y + 5 = 0. 
50. 2a;2 4- xy —15y2 — x + 19y — 6 = 0. 
51. a;2 — 2xy + y2 - 6a; - 6// + 9 = 0. 
52. 0 = 0; 6 = 1; 9 = ¿ir ; 
53. r = 0 ; r = 4 ; r = 4 sin2 0. 
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C H A P T E R I I . 

T H E R I G H T L I N E . 

22. I. To find the equation of a right line, in 
terms of its angle with the axis of x, and its in-
tercept on the axis of y. 

Let AC be any right line re-
ferred to the axes XX' and YY', 
and cutting the axis of y at B. 
Let P be any point in the given 
line, and draw PM perpendicular 
and BQ parallel to XX' ; then will 
OM be the abscissa and MP the 
ordinate of the point P. 

Let OM = x, MP = y, OB = b, 
tan PAX = tan PBQ = a ; 

then y = PM = PQ -f QM = BQ tan PAX + BO = ax+b, 
that is, y = ax + b. 

But the point P is, by hypothesis, any point of the line 
AC; therefore this equation, y = ax + b, expresses the 
relation between the co-ordinates of every point of AC, and 
hence it is the equation of that line, by the definition in 
Art. 15. 

OB is called the Intercept on the axis of y ; if the line 
cuts the axis of y below the origin, b will be negative. 
a denotes the taugent of the angle which the line AC makes 
with the axis of x, and is positive or negative, according as 
the angle is < or > 90°. 

COR. 1.—If a is negative and b positive, the equation 
becomes y = — ax + b, 

and the line cuts the axis of y above the origin, and makes 
with the axis of x an angle greater than 90° ; it therefore 
cuts the latter at some point to the right of the origin, and 
so lies across thc first angle. 

If a and b are both positive, the equation becomes 
y = ax + b ; 

the line lies across the second angle. 

If a and b are both negative, the equation becomes 
y = — ax — b) 

the line lies across the third angle. 

If a is positive and b negative, the equation becomes 
y — ax — b; 

the line lies across the fourth angle. 

COR. 2.—If b = 0, the equation becomes 
y = ax; 

the line passes through the origin. 

If a = 0, the equation becomes y = b ; 

the line is parallel to the axis of x. 

If a = co, the line is parallel to the axis of y. 

[The student may draw diagrams and verify these state-
ments.] 

SCH.—In the equation of a right line, so long as we con-
sider the same line, a and b remain unchangeable ; they are 
therefore called constant quantities, or constants. But x 
and y may have an indefinite number of values, since we 
may assign to one of them, as x, any value we please, and 
find the corresponding value of y from the equation 

y = ax -f b. 
x and y are therefore called variable quantities or variables, 
as defined in Art. 15. < 

REM. This fo rm is of ten called the tanyentform of the equation t o a r ight line. 



II. To find the equation of a right line in terms 
of its intercepts on the two axes. 

Let A and B be the points where 
the right line cuts the axes of x 
and y respectively. Let OA = a, 
Oli = 6 be the intercepts on the 
axes of x and y, respectively ; repre-
sent by x and y the co-ordinates 
OM and MP of any point P on the 
line. Draw PM parallel to YY'. 
Then, by similar triangles, we have 

PM AM y _ a —x 
OB ~ AO' ° r b~ a ; 

CC 11 therefore, - 4- % = 1. X' 
a b 

COR.—By observing the signs of the arbitrary constants 
a and b in this equation, we can fix the position of the line 
with regard to the four angles, as in the preceding article. 

When a and b are both positive, the line lies in the first 
angle. 

When a is negative and b positive, the line lies in the 
second angle. 

When a and b are both negative, the line lies in the third 
angle. 

When a is positive and b negative, the line lies in the 
fourth angle. 

REMARK.—This f o r m is k n o w n as t h e symmetrical form of t h e 
equa t ion to a r i g h t l ine , a n d is f r e q u e n t l y used. I t h a s a close resem-
b lance to t h e a n a l o g o u s e q u a t i o n s of t h e conics ; and it i s app l i cab le , a s 
can be eas i ly seen f r o m t h e inves t iga t ion , to r e c t a n g u l a r and o b l i q u e 
axes a l ike . 

III. To find the equation of a right line in terms 
of the perpendicular on it from the origin, and the 
angle which the perpendicular makes with the 
axis of x. 

Let AB be the line, and OD 
the perpendicular on it from 0 ; 
let A O D = a , a n d O D = ; J . 
Let (x, y) be any point P on the 
line AB. Draw PM perpendic-
ular to OA, MR perpendicular 
to OD, and PK perpendicular 
to MR. 

Then p — OD = OR + RD 
= OR + K P 
= OM cos MOR + MP sin KMP 
= x cos a + y sin a ; 

or x cos a -f- y sin a = p, 

which is the equation required. 

SCH. 1.—The coefficients of x and y in (1) are called the 
Direction Cosines of the line, since they are the cosines 
of the angles which the perpendicular makes with the axes 
of x and y respectively. In using this form, it must be 
carefully remembered that « is the angle which the perpen-
dicular makes with the positive direction of the axis of x, 
and that « may have any value from 0 to 360°, while p is 
always positive, that is, measured from 0 so as to bound the 
angle «. 

SCH. 2.—This form is known as the normal form of the 
equation to a right line. 

E X A M P L E S ' . 

(1) 

1. Across which of the four angles does the line 
y = — + 5 lie ? The line y = 3x + i ? The line 
y= - x — 3? The line y = 2x — 3 ? 



2. Trace the line | + | = 1 ; _ | _ | = l . 

3. In which of the angles lie the lines s — 1 ? 

3 2 ? + * = l f 3 2 f + . = - » 
4. Construct the triangle, the equations of whose sides 

are y = \x + 3, y = — 1, y = — f x + 4. 
5. Construct the figure, the equations of whose sides are 

x+y y = x + 3, 2 = 2x-y-U, y + x = 3, x + y + 3 = 0. 

IV. To find the equation of a right line referred to 
oblique axes. 

Let A and B be the points where 
the right line cuts the axes of x and 
y respectively. Draw PM parallel to 
YY', and OE through the origin 
parallel to AB. Let x and y repre-
sent the co-ordinates OM and MP of 
any point P on the line. Denote the 
inclination of the axes by w; and let 
OB = b, and the angle BAX = «. Then we have, 

y = PM = PQ + QM = OB + QM. 
QM sin BAO siu « 

&J/ / 

x' Xo\/ X 

(1) 

But 

Therefore 

OM sin ABO sin (to 
sin « QM = sin (w — a ) 

which in equation (1) gives 
sin a 

OM, 

y = 

the required equation. 

If we put a for 

sin (to — a) x + b, 

sin a 
sin (a> — «) 

y = ax + b, 

, the equation becomes 

which is of the same form as the equation in Art. 22, I. 
The meaning of b is the same as before; a is the ratio of the 
sines of the angles which the line makes with the two axes 
respectively. If the axes become rectangular, w = 90°, 
and therefore 

s in« , a = -.—77\7\i> \ = tan «, sin (90 — «) 
which agrees with Art. 22, I. 

E X A M P L E S , 

1. Find the equation of a right line which makes an 
angle of 135° with the axis of x, and cuts off an intercept 
= — 3 on the axis of y, (1) if the axes are rectangular, and 
(2) if they are inclined at an angle of 45°. 

(1) Putting b = — 3 and a = tan 135° = — 1 in the 
equation of Art 22, I, 

y = ax + b, 

we have, for the required equation, 

y = - x - 3. 
(2) Putting « = 135°, to - « = 45° — 135° = - 90° in 

the equation of Art. 22, IV, 

sin a , , 
y = —t i x + o, 
3 sin (to — «) 

we have for the required equation, 

V 2 0 or y= 

2. Find the equation of a right line which makes an 
angle of 30° with the axis of x, and cuts off an intercept of 
4 on the axis of y, if the axes are inclined at an angle of 60°. 

Ans. y = x + 



36 EQUATION OF FIRST DEGREE. 

23. Every equation of the first degree between, two 
variables is the equation of a right line. 

The general equation of the first degree with two varia-
bles is of the form 

\ Ax + By + (7=0, (1) 
in which A and B are the collected coefficients of x and y, 
and 0 is the sum of the absolute terms. 

Solving this equation for y, we obtain, 
A r 

A 
which is the same as y = ax + b, if we take a = — -g and 

Ilence (2), and therefore also .(1), is the equation of a 
right line making with the axis of x an angle whose tangent 

A C 

is — —, and cutting the axis of y at a distance— ^ from the 

origin. If A — 0, then (1) becomes 
By + C= 0, 

C 
or y = — g> 

and, from Art. 22, I, this equation represents a right line 
parallel to the axis of x. 

If B = 0, then (1) becomes, 
Ax + (7=0, 

(7 
or X = ~ A > 

and, by Art. 22, I, this equation represents a right line 
parallel to the axis of y. 

If A and B have like signs, the line makes an obtuse 
angle with the axis of x ; and if they have unlike signs, it 
makes an acute angle. If B and C have like signs, the line 
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cuts the axis of y below the origin ; and if they have unlike 
signs, it cuts the axis of y above the origin. 

If ( 7 = 0 , then (1) becomes 

Ax + By = 0 , 

or 
A 

y = ~Bx> 

Hence the equa-and the line passes through the origin, 
tion 

Ax + By + C = 0 

always represents a right line. 
C O R . — T o reduce the equation Ax + By -F C= 0 

to the normal form x cos a + y sin a = p. 
Let UK denote the given line. 
The intercepts made by the 

line, Ax + By+ C'=0, 
on the axes are (Art. 21), 

Fig. 28a :.HK= ± VA^+JK 
cH-.-.ok-p AB 

¥>\\tIlK-p= OH- (wherep=the perpendicular OD). 

- 0 H • 0 K 9 — 

UK - ± VA* + B*' 
Now p is always positive (Art. 22, III , Sell. 1); therefore 

we must take the radical with the same sign as C. Thus, if 
O be itself a positive quantity, 

O 
p = 

cos a — — _ 

VA2 + B2' 
A 

sin a = — 
B 

OH VA2 + B2 ' ".' VA2 + B2 

Substituting these values in (2), we have 
A B C 

— x 
V'A2 + B*" VA2 + B2 V VA2 + B2' 

which is identical in form with x cos a + y sin a.=p. 



If C be negative, we must take the negative sign of the 
radical throughout, and (2) becomes 

A B —C 
VA*TB* x + VA*+ m y = VA> + B> 

Hence to reduce any equation of the form 
Ax + By + ( 7 = 0 , 

to the form x cos. a 4- y sin a = p, 
transpose the absolute term to the second member, make it 
positive by changing the signs of all the terms if necessary, 
and divide each term by V-42 + B2. 

REM .—This r eduo t ion is i m p o r t a n t in f ind ing the l e n g t h of t he p e r p e n d i c u l a r 
f r o m any p o i n t t o any l ine . 

A , B 
oCH. . and . . ^ are respectively 

VA2 + B2 VA2 + B2 V J 

the cosine and sine of the angle which the perpendicular 
from the origin on the line Ax -J- By + C = 0 makes with Q 
the axis of x, and , —= is the length of this perpen-

V A2 -f- Br 
dicular. 

E X A M P L E S . 

1. Reduce the equation 3x — 4y + 12 = 0 to the form 
x cos a 4- y sin a =p. 

Transposing the constant term 12, and making it positive, 
we have — 3x + 4y = 12. 

Dividing by V(— 3)2 -f 42 = 5, we obtain 

which is identical with x cos a 4- y sin a = p, where cos a 
= - b s i n a =b a n d P = 

2. Show that the equation x + y + 5 = 0 is equivalent to 
5JI . ore 5 x cos — -f y sin — = —¡=. 

Reduce the following equations to the normal form: 
3. 4x + 3y — 10 = 0. Ans. f x + f y = 2. 
4. 3x + 4y — 15 = 0. Ans. \x + \y = 3. 
5. 12« — by •+ 10 = 0. Ans. — \\x 4- Jty = {$. 
6. 3x + \/3y — 3 V3 = 0. Ans. \y/3x + \y = |. 

Fig. 28a X 

24. Tu find the length of the perpendicular from 
huj point (x', y') to the line x c o s « 4- // s i n « = p. 

Let (x1, y') be the given point P, v Py/ 
and AB the given line. 

From the given point P draw PR 
parallel, and PN perpendicular to 
the given line AB. PN will be the 
perpendicular required. 

From the figure we have 

PN = PD 4- DN 
= PD + CO - EO 
= PM sin DMP 4- OM cos COM - EO 
= x' cos « 4- y' sin « — p. 

We have taken P on the side of the line opposite the 
origin. If the point were taken on the same side as the 
origin, as at P', we would have, 

P'N = OE - OR' = OE - (OC 4- D'P') 
= p — «'cos ce — y' sin «. 

Hence, if the equation of a line is 
x cos a 4- y sin a — p = 0, 

where p is a positive quantity, the length of the perpendic-
ular on it from («', y') is 

± (x' cos « 4- y' sin « — p), 
according as the point and the origin lie on opposite sides, 
or the same side of the line ; that is, is equal to the result 
obtained by substituting in the left-hand member of the 
equation of the given line the co-ordinates of the 'given 
point, with the above restriction as to sign. 

If the point (x', y') is on the line, its perpendicular 
becomes 

x' cos a*\- y' sin « — p = 0 (Art. 22, III). 



If the equation of the line were given in the form 

Ax + By + 0 = 0, 

we have only to reduce it to the form 

x cos « + y sin « — p = 0 (Art. 23, Cor.), 

and the length of the perpendicular from any point (x', y') is 

Ax' + By'+_C _ .A,-

VA2 + B2 

Sen.—Comparing this expression for the perpendicular 
from (x', y') with that for the perpendicular from the 
origin (Art. 23, Sell.), we see that (x', y') lies on the same 
side of the line as the origin, or on the opposite side, accord-
ing as Ax' + By' -f C has the same sign as C, or the oppo-
site sign. 

E X A M P L E . 
Find the length of the perpendicular from the origin to 

a (x — a) + b (y — b) = 0. 

This equation, reduced to the form 
x cos a -f y sin « — p = 0, 

becomes (Art. 23, Cor.), 

ax — a2 + by — li2 _ ^ 
• v V + V ~ ' 

Ans. Va2 + V. 
25. To find the equation of a right line passing 

through a given point. 

Let (x', y') be the given point, and the equation of the 
line be 

y = ax + b. (1) 
Since the given point (x', y') is on the right line, its 

co-ordinates must satisfy the equation of the line; that i», 

I 

3 

the equation being true for every point on the line, must be 
true for the point (x', y'). Hence (1) becomes 

y' = ax' + b. (2) 
Eliminating b by subtracting (2) from (1), we obtain 

y-y' = a (x - x'), (3) 
which is the required equation. For it is the equation, by 
Art. 23, of some right line, since it is of the first degree 
between two variables; and it is the equation of a right 
line passing through the given point, because it is evidently 
satisfied when and y' are substituted' in it for z and y. 
The constant a is the tangent of the angle which the line 
makes with the axis of x, or the ratio of the sines of the 
angles which the line makes with the two axes respectively, 
according as the line is referred to rectangular or oblique 
axes. By giving a suitable value to a, we may make equa-
tion (3) represent any right line which passes through the 
given point. [ 

This equation (3) can easily be 
obtained geometrically. For let 
AB be any right line passing 
through the given point P', the co-
ordinates of which are x' and y'. 
Let P be any point on the line, 
x and y its co-ordinates. Draw 
the ordinates PM, P'N, and P'C 
parallel to the axis of x\ then we 
have 

PC 
= tan BAX 

p / 
Y 

F / 
Y / 

C 

'-Y O x 
/ N 

V 
Fig. 29 . 

P'C or = sin BAX 
sin ABO' 

according as the axes are rectangular "or oblique; that is, 

= tan BAX or = . f * x sin (a> — «) 
according as the axes are rectangular or oblique. 



Hence, y — y' = tan BAX (x —x) 
s in« , , 

o r = —— r (x — x), sin (<«J — «) 

or y— y'= a(x — x'), 

in which a is the tangent of the angle which the line makes 
with the axis of x, or the ratio of the sines of the angles 
which the line makes with the two axes respectively, accord-
ing as the line is referred to rectangular or oblique axes. 
This is the same as equation (3). 

26. To find the equation of the right line which 
passes through two given points. 

Let the two given points be («', y') and (x", y"), and the 
equation of the line be 

y m: ax -f b. (1) 

Since the two given points are on the right line, their 
co-ordinates must satisfy the equation of the line, giving 

y' = ax' + b, (2) 

y" = ax" + b. (3) 

Subtracting (2) from (1), we obtain 

y —y'= a (x — x'). (4) 

Subtracting (3) from (2), we obtain 

y' - y" = a (x- - x").a = 

V' — >/" 

which in (4) gives y - y'= j _x„ (» - «')> (5) 

which is the required equation. 
NOTE.—Equations (2) ami (3) are t h e condition3 t ha t t h e two p o i n t s ^ , ¡f) and 

{x " u") may lie on the l ine ;/ = ax + b. (Art. 15.) 
Observe t h a t the only variables in (5) Hie a and y, and Uiat x', y\ x", y" are 

uoiintauts. 

To obtain equation (5) geometrically, let P be any point 
(x, y) 011 the line AB, and P' 
and P" the two given points 
(«', y') and (x", y") ; then we 
have, from the figure, 

PD 
P'D 

P C 
P " C ' 

or y - y _ y - y 
x — x' x' — X" / N M 

Fig. 3 0 . 

—X 

Hence, 

which is the same as equation (5). 

V — V 
Zi Z7> = tan BAX = tan a , 2/ — 

if the axes are rectangular. 

y' - y" sin BAX 
~n — 

s i n a 
x — x sin ABO sin (to — a)' 

if the axes are oblique; which agrees with the results of 
Art. 25. 

COR. 1.—Suppose x" = ; then 

y ' - y ' _ y'-y" _ 
x' - x" - 0 = CO . 

which, being the tangent of 90°, shows that the line is 
parallel to the axis of y, which is as it clearly should be, 
since, if x" = x', the points P ' and P " are equally distant 
from the axis of y. 

y' — y" o 
If y" = y'> j f ^ r i * = x> _ ¿< = w,lich' heinsthe 

tangent of 0°, shows that the line is parallel to the axis of 
x, which is as it clearly should be, since if y" = y', the 
points P' and P" are equally distant from the axis of x. 



In the case of oblique axes, if x" = x', 

y' - y" __ y' - y" _ sip « 

x' — x" 0 sin (G> — «)' 

therefore, sin (w — «) = 0, 
and hence w = « ; that is, the line is parallel to the axis 
of y. . v' — y" 0 sin « ,, 

I f y" = y > ! r = i r = = s i ; there-
fore sin « = 0, and hence the line is parallel to the axis of x. 

COR. 2.—If P" coincides with P', we shall have, 
x" = x' and y" = y', 

and equation (5) becomes, 

y-y' = \{*-*X (6) 

which is the equation of a right line passing through a 
given point; and by representing the indeterminate expres-

sion - by a,-this equation becomes 

y — y' = a (x — x'), 

which agrees with equation (3), Art. 25. 

COR. 3.—If we make x' = 0 and y' = b, equation (6) 
becomes 

y — b = ax, 

or y = ax + b, 
which is the equation of a line passing through a point on 
the axis of y, at the distance of b from the origin. This 
equation agrees with the one found in Art. 22, I, as it 
clearly should. 

COR. 4.—If one of the points (x'} y') be the origin, equa-

tion (5) becomes y = which is therefore the equation 

of a line passing through the origin aud (x", y"). 

E X A M P L E S . 

1. Find the equation of the right line passing through 
the points (— 2, 3) and (3, — 2). 

Here x' = — 2, x" = 3, y' = 3, y" =—2. Now, sub-
stituting these values in equation (5), we get 

3 + 2 y - 3 = {x + 2), - 2 — 3 

and, reducing to the form y = ax + b, we get 

y = — x + 1, Ans. 

2. Find the equation of the line passing through the 
points (4, — 2), (— 3, — 5). Ans. 1y - 3x + 26 = 0. 

3. Find the equations of the sides of the triangle, the 
co-ordinates of whose vertices are (-2, 1), (3, — 2), and 
( - 4 , — 1). . ( x + 7 y + 1 1 = 0, 

Ans. < 3y — x — 1 = 0, 
( 3x + y — 7 = 0. 

4. Find the equations of the sides of the triangle, the 
co-ordinates of whose vertices are (2, 3), (4, — 5), and 
(—3, —6). Ans. Z — 7y = 39, 9x — oy = 3, 4 z + y = 11. 

5. Find the equation of the line passing through the 
origin and the point (3, — 2). Ans. 3y + 2x = 0. 

27. To find the angle between two right lines whose 
equations are given. 

Let AC and BC be the two 
right lines whose equations are 
respectively 

y = ax + b, 

and y = a'x + b', 

and call </> the angle between them. 

Y 

X O 

A Fig. 31. 
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Then, Art. 22, I, 
a = tan CAX and a' = tan CBX, 

and tan ACB = tan (CBX - CAX), 

by Trigonometry, = tan CBX - tan CAX' 
J ° 1 + tan CBX • tan CAX' 

, , a' — a or tan <p = 
1 + aa' 

SCH.—In applying this formula to examples, we may 
obtain two results numerically equal, with contrary signs. 
Thus, if the two lines are 

y = 3x + 2 and y = 4x — 7, 
and we let a' = 3 and a = 4, we have 

, . 3 - 4 1 tan^ = rr i2 = -i3-
But if we let a' = 4, and a = 3, we have 

tan <b = — — = —. v 1 + 12 13 
This ambiguity is as it should be, since the two lines 

form with each other two equal acute and two equal obtuse 
angles ; and as these angles are supplements of each other, 
their tangents are numerically equal, with contrary signs. 

COB. 1.—If the two lines are parallel, we have 

<£ = 0, and tan (p = 0 ; 

hence, = 0, 

vhich gives a' = a. 

Also, if the two lines are perpendicular to each other, we 
n a v e 

<\i = 90° and .\ tan (f> = co ; 

ANGLE BETWEEN TWO LINES. 

which gives, 1 + aa' = 0, 

or a 

Hence, y = - ±x + V 

represents a right line perpendicular to the right line 

y = ax + b. 

COR. 2.—We found, Art. 25, that the equation of a right 
line passing through a given point (x', y') is 

y — y' = a(x — x'); 

hence, by Cor. 1, y — y' = — - (x — x') 
a 

is the equation of a line passing through a given point 
(«', y') and perpendicular to the line y = ax + b. 

E X A M P L E S . 

1. Find the angle between the lines 

2y + x + 1 = 0, 
3y — x — 1=0. 

Solving both equations with respect to y, we have 
y = - \ x - \ . 
y= tz + l 

Here a' = — a = \ ; hence, 

tan 0 = = - 1. 
6 

<t> = 135°. 
2. Find the angle between the lines 

3x + 2y - 12 = 0, 
ix + y — 6 = 0. 

Ann. tan <p = •fa or <!> = 19° 



3. Find the äugle between the lines 
y = - X + 2, 
y = 3z — 6. 

Ans. tan <p = — 2. = 116° 34 

4. Find the equation of the line passing through the 
point (3, — 4) and perpendicular to the line 

5x — 4y — 52 = 0. 
Ans. by = — 4z — 8. 

5. Find the equation of the line passing through the 
point (4, 1) and perpendicular to the line 

4y = bx — 31. 
Ans. by = — 4x 4- 21. 

28. To find the equation of a right line which 
makes any given angle with a given line. 

Let <t> be the given angle, and let x Y F«g>32. 

tan <p = m ; let the equation of the 
given line AB be 

y = ax + b, (1) 

and the equation of the required 
line be 

y = a'x + b', (2) 
where a' is to be determined from the conditions of the 
problem. 

Now, it is evident that the required line may be either 
PC or PD, since each makes the same angle with the given 
line AB. Hence we have, by Art. 27, 

m = a1 — a 
1 + aa' or = a — a 

1 + aâ' 

Therefore, a = 
a ± m 
1 T am' 

LINE MAKING GIVEN ANGLE WIT1I GIVEN LINE. 4 9 

a ± m 
which in (2) gives y = •» + v, ( 3 ) 1 =F am 

where V is undetermined, as it should be, since there may 
be an infinite number of lines drawn fulfilling this condi-
tion, all having the same inclination to the axis of x. 

COR. 1.—If the required line is to pass through a given 
point (x', y'), the equation will be, Art. 25, 

y - y ' = a' ( x - x'), 
a ±m 

or y - y = (x-x'). (4) 1 T am 

COR. 2.—If the required line is to pass through a given 
point, and parallel to a given line, m = 0, and (4) becomes 

y — y' = a {x — x'). 

COR. 3.—If the required line is to pass through a given 
point and perpendicular to a given line, m = GO , and (4) 
becomes 

- ± 1 , a ± m . m . 
y - y = i T ( x - O = 1 — ( x ~ x ) 1 T am 

m T « 

00 
±1 

00 

(x-x') = ^± {x-x'), 

or y - y' = - - (» - *')> 

which agrees with Art. 27, Cor. 2. 

E X A M P L E S . 

1. Find the equations of the lines which pass through 
the point (1, 2), and make an angle of 45° with the line 

3x + iy + 7 = 0. 



Here a = — £, m = 1, and taking the upper sign in 
equation (4), we have 

or ly — x — 13 = 0, Ans. 

And taking the lower sign in (4), we have, 

or y -f 7® — 9 = 0, Ans. 

2. Find the equations of the lines which pass through 
the point (4, 4), and make an angle of 45° with the line 

y = 2x. 
Ans. y — 4 = — 3 (x — 4), and 

Y - 4 = H T - 4 ) . 

3. Find the equations of the lines which pass through 
the origin, and make an angle of 60° with the line 

x + yV% = 1. 

Ans. y>= -7=®, and » = 0. 
v 3 

4. Find the equations of the lines which pass through 
the point (0, 1), and make an angle of 30° with the line 

y + x = 2. 

y— 1 = (A/3 — 2)x, and 
y - 1 = -tVS + 2)x. 

Ans. 

5. Find the equation of the line which cuts the axis of y 
at a distance of 8 from the origin, and is perpendicular to 
the line 

8y + 5x — 3 = 0. 

Ans. 5y — 8x — 40 = 0. 

29. To jincl the. co-ordinates of the point of inter-
section of two right lines whose equations are given. 

Let the equations of the lines be, 

y = ax +b, (i) 
y = a'x + b'. (2) 

Each equation expresses a relation which must be satis-
fied by the co-ordinates of every point on that line; there-
fore, the co-ordinates of the point where the lines intersect 
must satisfy both equations; hence, we must make (1) and 
(2) simultaneous, and find the values of x and y from them 
Thus 

~ V. ba'-b'a 
¥ ~ ^ ~ A J ^ T Z T - ( 3 ) 

E X A M P L E S . » 

1. Find the co-ordinates of the intersection of the two 
lines 

3x -f 7 y = 47, 
8 x — y = 27. Ans. (4, 5). 

2. Find the intersection of the lines 

\x - \y = 1, 
y=— 2x + 4. Ans. (2, 0). 

3. Find the intersection of the two lines 

3y + 4x - 11 = 0, 
4y + 3x - 10 = 0. Ans. (2, 1). 

4. Find the vertices of the triangle, the equations of 
whose sides are 

x + y = 2, x - 3y = 4, 3x + 5y = — 7. 
Ans. (-tV, - ( i ^ , - K}), (|, -

n ( J i r L e X T P l e » r a a y b e , 8 0 l v e d e i t h e r ^ s u b s t i t u t i n g the values of a. 6, a ^ 
n (3), or l,y solving the equations directly for x and y. ' 



29a,. To find the equations of the two bisectors -
of the angle between the lines 

x cos a + y sin o.=p, x cos a' + y sin a ' = p'. 
It is clear that every point in either bisector is equally 

distant from the sides of the angle; hence if (x', y') be 
any point in either bisector, then 

x' cos a + y' sin a—p=± («' cos a + y sin a —p'); 
for this merely expresses that the perpendicular from (x' ,y') 
to the one line is equal to the perpendicular from the same 
point to the other line. Hence the point {x, ?/') is on one 
or other of the lines 
— x cos a + y sin a — p=±{x cos a ' + y sin a '—]>')> 
which are therefore the equations of the bisectors, the upper 
or lower signs being taken according as the angle bisected 
is toward the origin or the supplement of this angle (Art. 24). 

E X A M P L E S . 

1. Find the bisectors of the angles between the lines 
3x + y-7 = 0 (1), and x-3y + o = 0 (2). 
Let (x, y) be a point on one of the bisectors; then the 

lengths of the perpendiculars from (.?, y) to the lines (1) 
and (2) are (Art. 24), respectively, 

3 x + y - 7 x 3y + 5 
V i o ( 3 ) ' a n d VTo ( 4 ) 

without regard to signs. 
Since the perpendiculars are to be equal, (3) and (4) must 

be equal, or equal and of opposite signs. 
3x + y — 7 _ ± x — 3 y + 5 

A / I O ~~ V L O ' 
and the two bisectors are x + 2y — 6 = 0, 2x — y — 1 = 0. 

2. Find the bisectors of the angles between the lines 
2x + y = 1, and 3x + y = 2. 

Am. a / 2 + V ~ 1 ) = ± + ?/ - 2). 
3. Find the bisectors of the angles between the lines 

3x + 4 y = 12, and 4.r + 3y = 24. 
Ans. x — y= 12, 7x + 7y = 36. 

30. Given the equations of two right lines, to find 
the equation of a third line passing through their 
point of intersection. 

The method of solving this question, which would natu-
rally occur to the student, would be to obtain the co-ordi-
nates of the point of intersection, by Art. 29, and then to 
substitute the values of these co-ordinates for x' and y' in 
equation (3) of Art. 25, viz., y — y' = a (x — x'). 

The question, however, admits of an easier solution. 
Let the equations of two right lines be 

y — ax — b = 0, (1) 

y — a'x — V = 0. (2) 

Multiply either equation, (2) for instance, by an arbitrary 
constant, k, and add the result to (1). We have, 

(y - ax - b ) +k{y- a'x - V) = 0, (3) 
which is the required equation. 

For, equation (3) denotes some right line, since it is of 
the first degree (Art. 23); and it is clear that any co-ordi-
nates which satisfy (1) and (2) must also satisfy (3), for 
the left member of this equation must vanish whenever 
y — ax — b and y — a'x — V are each equal to zero. That 
is, equation (3) represents a line passing through a point 
whose co-ordinates satisfy equations (1) and (2) ; but this 
point is the intersection of the two lines, by Art. 29. Hence 
equation (3) denotes a line passing through the intersection 
of the given lines. 

Since k is an arbitrary quantity, equation (3) will repre-
sent an infinite number of liues fulfilling one condition 
only, viz., all passing through the intersection of (1) and 
(2). We can therefore impose a second-condition by giving 
the proper value to k ; • for example, we can make equation 
(3) represent a line passing through the point (x ', y') by 
substituting x' and y' for x and y in (3), finding the value 
of k, and substituting this value for k in (3). 



E X A M P L E S . 

1. Find the equation of the line passing through the 
intersection of 

2z + 3y + 1 = 0, (i) 
3z — \y - 5 = 0, (2) 

and the point (2, 3). 

The equation of a line through the intersection of (1) 
and (2), by Art. 30, is 

(2x + 3y + 1) + h (3x - 4y - 5) = 0. (3) 

As (3) is to pass through (2, 3), these co-ordinates, when 
substituted for x and y in (3), must satisfy it, giving us 

(4 + 9 + 1) + ¿(6 - 1 2 - 5 ) = 0 . 

which in (3) gives 

(2x + 3y + 1) + ft (3x - 4y - 5) = 0, 

or, 64z - 23y—59 = 0, Ans. 

( 2 y - x+ 6 = 0, (l) 
2. Given j y + ix + 8 = 0, (2) 

( 3y + 2x — 30 = 0, (3) 

to find the equation of the perpendicular from the intersec-
tion of (1) and (2) to (3). 

The line passing through the intersection of (1) and (2) is 

(2y - a; + 6) + k (y + 4z + 8) = 0. (4) 

Solving for y, we get 

1 _ 4k 6 + 8& 

As (5) is to be perpendicular to (3), we must have, 
Art. 27, Cor. 1, 

1 — 4 k „ or 2 + k ~~ 2 

which in (4) gives 

(2y _ a; + 6) - & (y + 4x + 8) = 0, 

or, 18 y — 27a; + 34 = 0, Ans. 
3. Find the equation of the right line passing through 

the point (a, b), and the intersection of the right lines, 

- + 2 - 1 
a+ b~L' 

and b a 
. x y 1 1 Ans. —. — Is- = •li 

4 -

a* F a b " 
4. Find the equation of the line passing through the 

origin and the intersection of 

7« + 3y + 2 = 0, and 4x — 5y — 7 = 0, 

Ans. 11 y + 57x = 0. 

31. To find the polar equation of a right line. 

Let AB be a right line, OQ the 
perpendicular on it from the pole 
0, OX the initial line, P any point 
in the line. Let OQ = p, and the 
angle QOX = «. Let (r, 0) be the 
polar co-ordinates of P ; then 

OQ = OP cos POQ; 

that is, p = r cos (8 — «). 

V .. r = — , cos (ft — rt) 
which is the required equation. 



COR. 1.—If the right line AB were perpendicular to the 
initial line, we would have « = 0, and the equation would 
become „ V a>\ 

which is the equation of a right line perpendicular to the 
initial line. 

COR. 2 .—When 0 = 0, (1) becomes, 
p OQ _ n A r = f ; = v7=ir» UA> cos (— «) cos AO14 

which is as it should be. 

COR. 3—When 6 = «, (1) becomes 

r = = v, as it should, 
cos 0 

COR. 4 .—When 6 = 90° + «, (1) becomes 

P r = ^ = oo, 

as it should, since in this case the radius-vector becomes 
parallel to the line, and hence co. 

C O R . 5 .—When 0 > 9 0 ° + « and < 2 7 0 ° + « , r is nega-
tive, as it should be, since, in order to reach the line AB, it 
must be produced backward from the pole, directly opposite 
the extremity of the arc 0 measured from the initial line 
from the right upward to the left. 

C O R . 6 .—When 6 > 2 7 0 ° + « and < 3 6 0 ° + « , r is posi-
tive ; when 0 = 3 6 0 ° + « , r = p, as it should ; when 

6 = 360°, r = f- r = OA. cos ( — « ) 

COR. 7.—When the line AB passes through the pole, 
0 

r - COS ( 0 - « ) ' 

which is 0 for every value of 6 except 90° + «, for which 

value r = or indeterminate, as it should. 

E X A M P L E S . 

1. Find the perpendicular distance from the point 
(10, 2.9) to the line 

5 y - 4« + 5 = 0. (1) 
ix — 5y — 5 = 0. 

Reducing to the normal form, we have, 

- 7 — ^ — = ~ - r = M = - - = J = , = 0. (2) 
V42 + ( - 5 ) 2 <y/42 + (— 5)2 \ /42 + ( — 5)2 

By Art. 24, the perpendicular is 

4(10) - 5 ( 2 . 9 ) - 5 _ 205 _ (20.5) Vil _ 5 ^ 
A / 4 1 ~ 4 1 

= .5(6.4) = 3.2, Ans. 

2. Find the intersection of the perpendicular from 
(— 3, 8) to the line y = \ x - 5. Ans. (1-fr, - 4 | ) . 

3. Find the angle between the lines x + y = 1 and 
y = x + 2; also find the co-ordinates of the point of inter-
section. Ans. 90°; (— f) . 

4. Find the angle between the lines x + yV3 = 0 and 

x — yV3 = 2. Ans. 60°. 
5. Find the length of the perpendicular from the point 

(2, 3) to the line 2x + y — 4 = 0. ^ 
V5 

6. Find the lengths of the perpendiculars from each 
vertex to the opposite sides of the triangle (2, 1), (3, — 2), 
and ( - 4, — 1). Ans. 2V%', VÏÔ, 2VÏÔ. 

7. Find the lengths of the perpendiculars from each ver-
tex to the opposite side of the triangle (0, 0), (1,— 1), 
(3, 2). 5 5 J> 

Ans'V^' VÏ3 ' VÏÏ 



8. Find the length of the perpendicular from the point 
( — 1, 2) to the line 5x—2y = 4. Ans. ¿ |V29 . 

9. Find the perpendicular distances of the point (2, 3) 
from the lines ix + 3*/ = 7, 5a; + 12y = 20. Ans. 2. 

10. Find the angle between the lines y = 2x + 5 and 
3a; + y = 7. Ans. 45°. 

11. Find the equation of the line through (4, 5) parallel 
to 2a; — 3y = 5. Ans. 2x — 3y + 7 = 0. 

12. Find the equation of the line through (2, 1) parallel 
to the line joining (2, 3) and (3,— 1). Ans. 4x + y = 9. 

13. Find the equations of the sides of the triangle whose 
vertices are (1, 2), (2, 3), (— 3, — 5). * 

Ans. 8a; — 5y = 1, 4y — Ix = 1, y — x = 1. 
14. Find the equations of the lines from the vertices to 

the middle points of the opposite sides of the triangle in 
Ex. 13. Ans. y — 2x, 2y = 3a;, 3y = 5a;. 

15. In what ratio is the line joining the points (1, 2) and 
(4, 3) divided by the line joining (2, 3) and (4, 1)? 

Ans. The line is bisected. 
16. Write the equations of the lines through the origin 

perpendicular to the lines 3x -f 2y = 5 and ix + 3y = 7. 
Find the co-ordinates of the points where these perpendic-
ulars meet the lines, and show that the equation of the line 
joining these points is 23a; + 11?/ = 35. 

17. Find the area of the triangle 
whose vertices are 

0*1. yi)> (xt> y i)> (*3> y aï-
Draw AD, BH, CK parallel to the 

axis of y. Then area ABC=ABHD 
- BCKII — A CKD= £ [(yt + y2) 
( x z — + (y 8 + y3) («s — x t ) + 
(ys + yt) —»»)]. 

.-.Area = £ [y1 (xs - x3) + y2 (x3 — xx) + y3 (xt-»,)]. 
18. Find the area of the triangle whose vertices are 

(0,0), (3, 5), (4, 3). Am. 51 
19. Find the area of the triangle formed by the lines x + 

2y = 5, 2x + y = 7 , y — x = 1. Ans. 

B ( * S F I ) 

Fig. 33a 

20. Find the area of the triangle formed by the lines y = 
x, y = — x, x = c. Ans. <?. 

21. Find the area of the triangle formed by the lines 
y = 2x, y = 3x, y = 5x + 4. Ans. 

22. Find the area of the triangle formed by the lines 
y = 2x + 4, 2y + 3x = 5, y + x + 1 = 0. Ans. 

23. Find the bisectors of the angles between the lines 
3a; + 4y = 7, and 8a; + 6y = 13. 

Ans. 2x — 2y + 1 = 0, 14a; + Uy = 27. 
24. Find the bisectors of the angles between the lines 

4a: + 3y = 3, and ox — 12y = 8. 
Ans. 77x — 21 y = 79, 27a; + 99# + 1 = 0. 

25. Find the equation of the line joining the point of in-
tersection of the lines 4a; — 5y -f 6 = 0, and 3a; — by + 12 
= 0 to the point (3, 4). Ans. 2x — 3y + 6 = 0. 

26. Find the equation of the line joining the point of 
intersection of the lines 3x + 2y = 5, and 4a; + 3y + 7 = 0 
to the point (3, 1). Ans. 21x + 13y = 76. 

27. Find the equation of the line joining the point of in-
tersection of the lines y = x + 1, and y = 2x + 2 to the 
point (0, 3). Ans. y = 3x + 3. 

28. Find the equation of the line joining the origin to 
the point of intersection of the lines x — 4y = 7 and y + 
2x = l. Ans. 13x + 11 y = 0. 

29. Find the equation of the line joining (1, 1) to the 
point of intersection of the lines 3x + 4y = 2 and x — 2y 
+ 5 = 0. Ans. 7x + 26y = 33. ' 

30. Find the equation of the line through the point of 
intersection of y — 4a; = 1 and 2x + 5y = 6, perpendicular 
to 3y + ix = 0. Ans. 88y — 66a; = 101. 
> 31. Find the equations of the two lines through the point 

(2, 3) which make an angle of 45° with x + 2y = 0. 
Ans. x — 3y + 7 = 0, 3a; + y = 9. 

32. Find the equation of the line through the intersection 
of x — 7y + 1 3 = 0, and 7a; + y = 9 and parallel to the 
line 3a; + 4y + 2 = 0. Ans. 3x + 4y = 11. 

33. Find the equation of the line in Ex. 32, which is 
perpendicular to 3a; + 4y + 2 = 0. Ans. ix + 3y = 2. 



34. Find the equation of the line that joins the points of 
intersection of the two pairs of lines, 

j 2x + 3y — 4a = 0, ) 
( 2z + y — a = 0, ) 

aiid j x + 6y — Ha = 0, I 
( 3x — 2y + 2a = 0. Î 

vlns. 4 (x + y) — 5a = 0. 
35. The co-ordinates of two points are (3, 5) and (4, 4), 

respectively; find the equation of the line which bisects the 
distance between them and makes an angle of 45° with the 
axis of x. Ans. y — x — 1 = 0. 

36. Fiud the perpendicular distance from the origin to 

the line 1 + 1 = 1. Ans. ^ 

37. An equilateral triangle whose sides = a, has its ver-
tex at the origin and its sides equally iuclined to the positive 
directions of the axes; find the co-ordinates of the other 
two vertices and of the point bisecting the base. 

l x = l(V6 + y S ) , y = \W6-V5); 

Ans. 

x = l V 6 , y = "V6. 

38. Find the equation of the lines which pass through 
the point (1, 3) and make an angle of 30° with the line 
2y — x + 1 = 0. 

Ans. lly - (8 ± 5y/3) a: — 5 (5 T = 
39. Find the cosine of the angle between the lines 

y — 4x + 8 = 0 and y — 6x + 9 = 0. ^ 25 
' -v/629* 

40. Find the equations of the diagonals of the four-sided 
figure, the equations of whose sides are 

x = 4, y = 5, y = x, y = 2x. 
Ans. 4y = 5x and 3y + 2x — 20 = 0. 

and also the angle between them. 
7T , Tt 

Ans. r = 2a, 0 = ^; angle = -x -

EXAMPLES. 

41. Find the points of intersection of the lines 
x + 2y—5 =• 0, 2x+y—7 = 0, and y—x—1=0, 

and find the area of the triangle which the lines form. 
Ans. Area = 

>42. The axes of co-ordinates being inclined to each other 
at an angle of 45°, a right line passes through the points 
(2, 3) and (3, 2). Find its equation and the -value of «. 

Ans. y=— x + 5, « = tan-1 — (1 4- V2). 

43. The axes of co-ordinates being inclined to each other 
at an angle of 60°, find the equation of a l ine parallel to the 
line (x 4- y = 3«), and at a distance from it equal to §aV3. 

Ans. x 4- y = 2a or x 4- y = 4a (according to the side 
on which the line is drawn). 

44. Find the polar equation of a line the nearest point 
in which is 8 from the pole, and the perpendicular to which 
makes an angle of 30° with the initial line: Where does 
the line cut the initial line ? What values of 0 make r 
infinite? 

Ans. r = , f l
8 QA°\ > r = ~ ; 0 = 120° and 300°. cos (0 — 30 ) ' -y/3 

45. Find the polar equation of the line perpendicular to 
the initial line, and which cuts it at 3 to the left of the pole. 
What is the value of r when 6 = 60° ? What is the value 
of r when 0 is 120°? g 

Ans. r = ; r = — 6 ; r = 4- 6. cos 0 

46. Find the polar co-ordinates of the intersection of the 
lines 

2a , a r = and r = ilUU. I , . ) 

( * - ! ) • « ( • • - S ) 



C H A P T E R I I I . 

T R A N S F O R M A T I O N O F C O - O R D I N A T E S . 

32. We saw in Art. 22 that the general equation of a 
right line is of the form y = ax + b, but that the equation 
takes simpler forms in particular cases. If the origin is on 
the line, the equation becomes y = ax\ if the axis of x 
coincides with the line, the equation becomes y = 0. In a 
similar manner, we shall see that the equation of a curve 
often assumes simpler forms,accord-
ing to the position of the origin and 
of the axes. For example, the cir-
cle, Fig. 33', when referred to the 
axes XX', YY', has for its equation 

F i g . 3 3 i 

7?+yz—2ax—%by+'a2+J2—c2 = 0, 
where (a, b) is the centre 0', and c 
is the radius; but when referred to 
the axes xx', yy, its equation is 

x2+ if = c2. 

I t becomes therefore desirable to be able to change the 
reference of any locus from one set of axes to another, or 
from one system of co-ordinates to another. The operation 
is called the Transformation of Co-ordinates, and may 
consist either in changing the origin without disturbing the 
directions of the axes, or changing the directions of the 
axes without disturbing the origin, or changing both the 
position of the origin and the directions of the atfes. 

The axes or system from which we pass is called the Old, 
or Primitive A x e s or S y s t e m ; the axes or system to 
which we pass is called the N e w A x e s or System. The 
transformation is effected by substituting for the old co-

Fig . 3 4 

ordi nates of any point their values in terms of the new 
co-ordinates of the same point and certain constants. 

33. To find the formula} for passing from one sys-
tem of co-orclinates to another, the new axes being 
-parallel to the old. 

Let OX, OY be the old axes; 
Q'x, O'y the new axes respectively 
parallel to the old'. Let m and n 
be the co-ordinates of the new 
origin referred to the old axes. 
Let P be any point; x, y its co-
ordinates referred to the old axes, 
and x', y' its co-ordinates referred 
to the new axes. Then 

OA = m; AO' = n ; 
x = OM = OA + AM = OA + O'N = m + x'; 
y = MP = MN + NP = AO' + N P = n + y'; 

that is, x = m + x, and y = n + y', 
which are the required formulae. 

These formulas are equally true whether the axes be rec-
tangular or oblique. 

34. To find the formula} for changing the direc-
tion of the axes without changing the origin, both 
systems being rectangular. 

Let OX, OY be the old axes; 
Ox, 0 y the new axes. Let the 
angle XO.r = «. Let P be any 
point; x, y its co-ordinates re-
ferred to the old axes; x', y' its 
co-ordinates referred to the new 
axes. Draw PM and PR paral-
lel to 0 Y and 0y respectively; 

* 



and KN and RS parallel to OY and OX respectively. 
Then 

x = OM = ON — SR = OR cos XOx - PR sin SPR 
= x' cos « — y' sin «, 

y = PM = RN + SP = OR sin RON + RP cos SPR 
= x' sin « + y' cos «, 

which are the required formula;. 
Hence, to find what the equation of any locus becomes 

when referred to the new axes, we must substitute in it 
x cos a — y sin a for x, 

and x sin a + y cos a for y, and reduce. 

35. To find the general formula} for passing from 
one rectilinear system to another. 

Let OX, OY be the old axes; 
O'x, O'y the new axes. Let 
the angle which the new axis of 
x makes with the old axis of x 
be «; the angle which the new 
axis of y makes with the old 
axis of x be 0 ; the angle in-
cluded between the old axes be 
w; and let the co-ordinates of 
the new origin be OH = m, HO' = n. Let P be any 
point, its co-ordinates referred to the old axes being OM = x, 
MP = y; its co-ordinates referred to the new axes being 
O'M' = x', M'P = y'; then we have, 

or 

x = OM = OH + O'B + M'N 
nr r • n -wSinO 'M'B , M , p 8 i n W P N = OH + 0 M s i n T ) , B M , + M 1J

 8 i n M'NP ' 

, sin (to — «) , , sin (w — 0) 
x = m + x \ 1- y oin t.\ sm to sin to (1) 

y = PM = HO' + BM' + NP 

= HO' + O M1"'" + M'F34-" N M P 
sin O'BM' sin M'NP' 

or 
,sm « y = n + x -. \- y •> CI T1 l.t 

, sin 0 
sm w " sin w 

which are the required formula;. 

(2) 

COR. 1.—If the old axes are rectangular, w = - , and (1) 

and (2) become 
x = m + x' cos « + y' cos 0, 
y = n + x' sin « + y' sin 0, 

which are the formula to pass from rectangular axes to 
oblique-. 

COR. 2.—If the new axes are rectangular, 0 = £ + «, 

and (1) and (2) become, 

, sin (to — «) , cos (w — a) 
x = m + x 4 — y h , sin w J sm to 

, sin « , cos « y = n + x - \- y — » 3 sm w ^ sin w 

which are the formula to pass from oblique axes to rectan-
gular. 

COR. 3.—If both axes are rectangular, 
7T 

W = 2 and P = fr+ *' 

and (1) and (2) become 
x = m + x' cos « — y' sin «, 

y = n -\- x' sin « + y' cos «, 

which are the formula to pass from one set of rectangular 
axes to another set of rectangular axes, not parallel to the old. 



k i ' ^ * 

O 36. To find the formula? for passing from a rec-
tangular to a polar system. 

Let OX, OY be the rectangular 
axes; 0 ' the pole, and O'A or 
O'A' the initial line. Let m, n, 
be the co-ordinates of 0 ' referred 
to the rectangular axes. Let P be 
any point in a locus, its co-ordi-
nates being OM = «, PM = y, 
when referred to the rectangular 
axes; r, 0 its polar co-ordinates. 
«O'A' = «. Then 

Y P 

— -
O ^ 

O B 
Fig. 37. 

Let the angle «O'A or 

( 1 ) 

(2) 

« = OM = OB + O'N = m + O'P cos PO'N 
= m + r cos (0 ± «), 

y = MP = BO' + N P = n + O'P sin PO'N 
= n + r sin (0 ± a), 

which are the required formulae. 

COR.—If the initial line is parallel to the old axis of «, 
a = 0, and (1) and (2) become, 

« = m + r cos 0. (3) 
y = n + r sin 0. (4) 

If the pole is at the origin, (3) and (4) become 
« = r cos 6. (5), y — r sin 6. (6) 

NOTE.— F o r m u l a (5) and (6) are t h e ones most geueral ly used, a n a should b« 
careful ly remembered . 

37. To find the formulae for passing from a polar 
to a rectangular system of co-ordinates. 

I t is easily seen from Fig. 37 that 

cos (0 ± «) = 

sin (0 ± «) = 

V(y — n)2 + (« -m)2. 
« — m 

V(y - n)2 + (« - my 
y — n 

V(y — n)2 + (« — my 

38. The student will bear in mind- that no change is 
niade in the locus by any of these transformations. The 
assemblage of points which the new equation represents is 
exactly the same as that represented by the old; but the 
new axes to which the locus is referred occupy a different 
position from that occupied by the old axes; and therefore 
the equation which expresses this relative position is not 
the same as before. 

E X A M P L E S . 

1. The equation of a right line is 

3« + by — 15 = 0 ; 
find the equation of the same line referred to parallel axes 
whose origin is at (1, 2). Ans. 3« + by = 2. 

2. The equation of a locus is 

x2 + y2 — 4« — 6y = 18 ; 

what will this equation become if the origin be moved to 
the point (2, 3)? Ans. x2 + y2 = 31. 

3. What does the equation «2 — y2 + 2« -(- 4y = 0 become 
when the origin is transformed to the point (— 1, 2), the 
new axes being parallel to the old ? A ns. x2 — y*+ 3 = 0. 

4. What does x2 + y2 — 2ax —2by+d2 + b2= r2 become 
when the new origin is at the point (a, b), the new axes 
being parallel to the old ? Ans. x2 + y2 = r2. 

b. What does the equation ax + by + c = 0 become 
when the new origin is at the point (— 0), the new axes 
being parallel to the old ? Ans. ax + by = 0. 

6. Show that 6x2 + bxy — 6y2— 17« + 7y + 5 = 0, when 
referred to axes through a certain point .parallel to the old 
axes will become 6«2 + bxy — 6y2 = 0. 

Find what the following eight equations become when 
the origin is transformed to the point (1, 1), the new axes 
being parallel to the old: 



7. x2 + xy — Zx — y 4- 2 = 0. x2 + a;?/ = 0. 
8 . xy — x — y + 1 = 0 . .¿4»«. xy = 0 . 

9. xy — _(/-' — a- -+- ?/ = 0. Ans. xy — if = 0. 
10. x2 — y2 — 2x + 2y = 0. Ana. x2 — y2 = 0. 
11. x2 + y2 = 2. Ans. x2 + y2 + 2x + 2y = 0. 
12. x2 + y2 — 2x — 2y = 0. Ans. x2 + y2 = 2. 
13. x2 + if — 2x = 0. Ans. x2 + y2 + 2y = 0, — 
14. x! + y2 — 2y = 0. Ans. x2 + y2 + 2x = 0. 
15. Transform the equations, 

xs + yi — 2 hx — 2ky = a2 — h2 — k2, 
and a;2 + f = c2 + h2 + k2 

to parallel axes through the point (h, k). 
Ans. x2 + if = a2, x2 + if + 2hx + 2ky = c2. 

16. Transform the equations, 
a? + f = a\ x'- + if + 2gx + 2fy + (? = 0, 

to parallel axes through the point ( — g,— / ) . 

J m t j ^ + - * f y + f + / 2 - « 2 = o , 
] f - f - f 2 + C2 = 0. 

17. Find what the following four equations become when 
the axes are turned through an angle of 45°: 

(1) xy = 0; (2)x + y=V2; (3)x-y = \V2) 
(4) x2 + y2 = 1. 
i ( l ) ^ - / = 0 ; (2) a; = 1 ; 
l ( 3 ) y = - i ; ( 4 ) ^ + ^ = 1 . 

18. What does the equation y2 — x2 = 4 become when 
the axes are turned through an angle of 45°? Ans. xy=2. 

19. What does the equation 4.^ + 2\/3 xy + 2y2= 1 be-
come when the axes are turned through an angle of 30° ? 

Ans. ox2 + y2 = i. 
20. Show that the equation 4xy — 3a:2 = a2 will become 

x2 — 4 i f = a2 when the axes are turned through the angle 
whose tangent is 2. 

21. Transform the equation x2 — 2xy + V2 + x — 3y = 0 
to axes through the point (—1. 0) parallel to the lines 
bisecting the angles between the old axes. 

Ans. A/2 y2 — x = 0. 

Ans. 

22. What does the equation 3-r1 + 2xy + 3y2—18a: — 
22y + 50 = 0 become when the origin is transformed to the 
point (2, 3), the new axes being turned through an angle 
of 45°? Ans. 4.v*+ 2y2=l. 

23. Transform the equation 2a;2 — 3xy -f 2y2 = 1 from a 
rectangular to an oblique system, the origin remaining the 
same, the new axis of x coinciding with the old, and the 
new axis of y bisecting the angle between the old axes. 

Ans. 4a:2 + \/2xy -+- y2 = 2. 
24. The equation of a locus is y2 — x2= 16; what will 

this equation become if transformed to axes bisecting the 
angles between the given axes? Ans. xy = 8. 

25. Transform the equation 2a;2 — 5xy -(- 2y2 = 4 from 
axes inclined to each other at an angle of 60°, to the axes 
which bisect the angles between the given axes. 

Ans. x3 — 27 i f + 12 = 0. 
26. Transform the equation y2 + 4ay cot a — 4ax = 0 

from a rectangular system to an oblique system inclined at 
an angle a, the origin remaining the same, and the new 
axis of x coinciding with the old. 

Ans. if sin2 a = 4aa;. 
27. The equation of a locus is x4 + if + 6x2if = 2; what 

will be the equation if the axes are turned through an 
angle of 45° ? Ans. x4 + if = 1. 

28. Transform xy = 0 and x2 — y2 = 0 to the point (2, 3), 
the new axes making an angle of 30° with the old, both sets 
of axes being rectangular. 

i y z ) V 3 + 2xy + (4 + 6 A/3) a; + (4 A/3 - 6) y 
Ans. / + 24 - o, and x2 — y2 — 2A/3xy + 2 A/3 (2 — A/3) x 

I—2 (2 -f 3a/3) IJ = 10. 
29. Transform y2 — 4ax = 0 to the point (ani2, 2am) as 

origin, the new axes making an angle cot -1?« with the old, 
both sets being rectangular. 

Ans. (x + my)2 + 4a (1 -f- m2)- y = 0. 



30. Transform a,-2 + >f = 7ax to polar co-ordinates, the \ 
pole being at the origin, and the initial line coincident with 
the axis of a. Ans. r = 7a cos 6. 

31. Change the equations r2 = a2cos 26 and ?>2cos 26 = a' L-
into equations between x and y. 

Ans. (x2 + y2)2 = a2 {x2 - y2) and x2 - y2 = a2. 
_ J l 

39. The following exercises are designed to give the stu-
dent an opportunity for making an effort to produce the i 
equations himself. The fundamental idea of Analytic | 
Geometry is that every geometric condition to be fulfilled I 
by a point leads to an equation which must be satisfied by I 
its co-ordinates. It is important that the student should 
become able to express by an equation any given geometric | 
condition; he should understand that ability to investigate, 
to reason for himself, is the chief object for the attainment | 
of which he should strive. For this purpose he should / 
diligently apply himself in working out examples, until he '-. 
has acquired readiness and accuracy in so doing. In t-
attempting to solve these examples, the student will find 
that very much depends upon a proper selection of the | 
origin and axes of co-ordinates, and the application of the ! 
proper equations and formula?. He should, in every case, I 
consider the problem well, and form a definite plan before j 
lie attempts the solution. He will often be unable to carry § 
out his original plan, and will have to abandon it, although r 
it may have seemed at first the most suitable. Such failures, I 
however, are not to be considered as waste of time ; for it is | 
only by thorough application that the student is enabled, I 
gradually, to become expert in obtaining solutions; and a 
failure will often suggest some method by which a problem 
may be solved. 

[The student need not necessarily tarry till he has mas- 1 
tered all the examples in any one article.] 

D B 

Fig. 38 . 

1. Prove that the perpendicu-
lars drawn from the vertices of a 
triangle to the opposite sides meet 
in a point. 

Let ABC be the triangle ; AF, 
BE, CD the perpendiculars. As- — 
sume AX and AY as the rectangu-
lar axes; and let the co-ordinates 
of B and C be x", 0, and x', ?/', 
respectively. Now, if it can be shown that x' is the abscissa 
of the point of intersection of the perpendiculars AF and 
BE, the proposition will be proved. We therefore have to 
find the equations of AF and BE, and then their inter-
section. 

Since AC passes through the origin and the point C, 
(x1, y'), its equation (Art. 26, Cor. 4) is 

y 
( i ) 

Since BC passes through B (x", 0) and C (x', y'), its 
equation (Art. 26) is 

(2) 

Since BE passes through B (x", 0) and is perpendicular 
to (1), its equation (Art. 28, Cor. 3) is 

( 3 ) 

Since AF passes through the origin (0, 0) and is perpen-
dicular to (2), its equation is 

*Xf / A \ 
y = r » — ( 4 ) 

y 

At the point P, where (3) and (4) intersect, their ordi-
nates must be identical; hence, equating their values, we 
have 



x- . 

y ' ( x *") = 

X •= X 

X — X 
X. 

That is, the abscissa of the point of intersection of AF 
and BE is the same as the abscissa of the point C ; there-
fore the perpendicular CD passes through the intersection 
P. [This solution is similar to the one given by Puckle in 
his Conic Sections, p. 77.] 

2. Given the base ( = 2m) of a triangle, and the difference 
between the squares of its sides 
( = n% to find the locus of its 
vertex. 

Take for axes the base and a per-
pendicular through its middle point, 
and let the co-ordinates of the ver-
tex C be x, y. Then 

AC2 = (m + z f + if-, 

BC2 = (m - xf + i f . 

AC2 - BC2 = 4mx = n\ 

Y 

\ \ 
Fig. 39 . 

D B 

or x = 
4 M ' 

the equation required. The locus is therefore a line 
n2 

perpendicular to the base, at the distance of ^ from the 

middle point. 
3. A line is drawn parallel to the base of a triangle, and 

its extremities are joined transversely to those of the base ; 
to find the locus of the point of intersection of the joining 
lines.* 

* This solut ion is from Sa lmon ' s Conic Sect ions, p . 44. 

Take for axes the sides of the 
triangle, AB and AC. Let AB = a, 
AC = b, and let the lengths of the 
proportional intercepts made by 
the parallel be ka, leb. Then the 
equations of the transversals will 
be as follows : 

Fig . 4 0 

Equation of BE (Art. 22) is - + = 1 
a kb 

Equation of CD (Art. 22) is ~ + i . 
ka b 

Subtract one from the other; divide by the constant, 

(* — 1)' a n d W e g e t f o r t h e e f l u a t i o n o f locus, 

x - - l = o, a b or b 
y=ax> 

a right line passing through the origin and the middle 
of BC. 

4. Given the base of a triangle = 2m, and the sum of 
the cotangents of the base angles = n, to find the locus of 
its vertex. 

From Fig. 39 we have, 

, . AD 
C O t A = DC 

m + x 
y 

cot B = m — x 

Hence the required equation is 

2 ? » 
— = n, 
y 

or 2 m 

2m a right line parallel to the base, at the distance — from it. 
n 



5. Given the base of a triangle = 2m, and the sum of the 
sides = let the perpendicular 
to the base be produced beyond 
the vertex until its whole length 
is equal to one of the sides; to 
find the locus of the extremity of 
the perpendicular. 

r 
p 
c 

A/ O \ B 

• 
Fig. 41. Take the origin at the middle 

of the base, axes rectangular, as in 
Fig. 41. The abscissa of P is 
OD = x, and the ordinate is DP = AC = y. 

BC = 9 — AC = a - y; 

BC2 = AC2 4- AB2 — 2AB x AD, 

(s — y)2 =• y2 + 4m2 — 4 (m + x) m, 

s2 — 2 sy = — 4mx; 

or 

or 

therefore, 2?« s 
y = Tx+2> 

which is the equation of the required locus, the equation of 
a right line. 

6. Prove that the three perpendiculars through the mid-
dle points of the sides of a triangle 
meet in a point. 

Suggestions.—1st, find equation of 
AC; 2d, find equation of BC; 3d, 
find equation of F P perpendicular 
to AC ; 4th, find equation of E P -
perpendicular to BC; 5th, find ab-
scissa of point of intersection of F P 
and E P ; /. etc. 

D 

Fig. 42. 

7. A point moves so that its distances from two points 
(3, 4) and (5, — 2) are equal to each other : find the equa-
tion of its locus. Ans. x — Zy = 1. 

8. A point moves so that the sum of the squares of its 
distances from the two fixed points (a, 0) and (—a, 0) is 
constant (2c2) : find the equation of its locus. 

Ans. x2 + y2 = c2— a2. 
9. A point moves so that the difference of the squares 

of its distances from the two fixed points (a, 0) and ( — a, 
01 is constant (c2): find the equation of its locus. 

Ans. 4ax = ± c2. 
10. A point moves so that its distance from the origin is 

twice its distance from the axis of x : find the equation of 
it« locus. Ans. 3y2 — x2 = 0. 

11. A point moves so that it is always equally distant 
from the axis of x and from the point (1, 1) : find the 
equation of its locus. Ans. x2 — 2x — 2y -f 2 = 0. 

12. A point moves so that the difference of its distances 
from two fixed lines perpendicular to each other is constant 
and = k\ find the equation of its locus. Ans. x — y = k. 

1J*. A point moves so that the sum of its distances from 
two fixed lines inclined to each other at an angle of 30° is 
constant = k : find the equation of its locus. 

Ans. x + y = 2k. 
14. A point moves so that the ratio of its distances from 

two fixed lines is constant and = k : find the locus. 
A ns. y = kx. 

15. A point moves so that the square of its distance from 
the origin is twice the square of its distance from the axis 
of x : find the equation of its locus. Ans. y2 — x2 = 0. 

16. A point moves so that its distance from the axis of 
x is three times its distance from the axis of y: find the 
equation of its locus. Ans. y = 3.r. 

17. A point moves so that the squares of its distances 
from the origin and the point (2, 0) are equal : find the 
equation of its locus. Ans. x=l. 



18. Find the locus of a point equidistant from the points 
(1, 1) and (— 1, — 1). Ans. x + y = 0. 

19. Find' the locus of a point which moves so that the 
sum of the squares of its distances from the axes is equal 
to 2. Ans. x* -f y2 = 2. 

20. Find the locus of a point the square of whose dis-
tance from the point (0, 1) is equal to unity. 

Ans. a* + if —2y = 0. 

21. Find the locus of a point such that the square of its 
distance from the point (4, 0) is four times the square of its 
distance from the point (1, 0). Ans. x2 + y2 = 4. 

22. Find the locus of a point which moves so that the 
difference of the squares of its distances from two given 
fixed points is always a constant = k. 

Let 2a lie the d is tance be tween the (riven p o i n t s ; take th i s l ine as axis of x and 
t h e pe rpend icu la r a t its mid point as axis of y. k Ans. x — —. 

4 a 

23. Find the equation of the line which is equidistant 
from the lines x + 1 = 0 and x = 3. Ans. x=l. 

24. Find the equation of the line which is equidistant 
from the lines y = b and y = b'. Ans. y = $(b + b'). 

25. Find (1) the equations of the lines through the point 
(0, 2) making angles and with the axis of x; and (2) 
the lines parallel to them cutting the axis of y at a distance 
2 below the origin. 

( (1) y = xV3 + 2, and y = — x\/3 4- 2 ; 
HS ' \ (2) y = x\/3 - 2, and y = - xV3 - 2. 

26. From a point P perpendiculars PM, P N are dropped 
on two fixed lines OX and OY: find the locus of P when 
OM -f ON = a constant k. 

Ans. Taking the fixed lines for axes, and 0 for the in-
cluded angle, the equation is (x 4- y) (1 4- cos 6) = k. 

27. Prove that the lines drawn 
from the vertices of a triangle to 
the middle points of the opposite 
sides pass through the same point. 

[Take for axes EB and EC in 
Fig. 43.] 

28. Given two fixed points A and 
13, one on each of the axes of co-
ordinates, at the respective distances a and b from the ori-
gin ; if A' and B' be taken on the axes so that OA' -f OB' 
= OA + OB, find the locus of the intersection of AB' and 
A'B. Ans. x -f y = a 4- b. 

29. PP' = a, and QQ' = b are any two parallels to the 
sides of a given parallelogram, to 
find the locus of the intersection 
of the lines PQ and P'Q'. 

Take AB, AC for the axes of 
co-ordinates; let AQ' = m, AP=w. 
Then, 1st, find the equation of the 
line joining P (0, n) to Q (in, b); 
2d, find the equation of the line 
joining P' (a, n) to Q' (m, 0); 3d, add these two equations 

together, and get for the locus, y = -x, the equation of 
d 

the diagonal of the parallelogram. 

30. On the two sides of a right-angled triangle, squares 
are constructed; from the acute angles, diagonals are 
drawn, crossing the triangle to the vertices of these squares; 
and from the right angle a perpendicular is let fall upon 
the hvpothenuse; prove that the diagonals and the perpen-
dicular meet in one point. [Take the two sides for axes, 
and call their lengths a and 

Fig. 44. 



C H A P T E R I V . 

T H E C I R C L E . 

^ 40. We shall now consider loci whose equations are of the 
second degree, beginning with the circle, which is the sim-
plest of these loci. 

A circle is a plane figure bounded by a line every point 
of which is equally distant from a point within called the 
centre. In Analytic Geometry, the term Circle is applied 
generally not to the area of the figure but to the bounding 
line, while in Plane Geometry the term is confined to the 
area, the bounding line being called the circumference. 

41. To find the equation of the circle whose centre 
and radius are given. 

Let C be the centre of the circle, T 

P any point on its circumference, 
and r the radius of the circle. Let 
a, b be the co-ordinates of C; x, y 
the co-ordinates of P. Draw CN, o 
PM parallel to OY, and CB parallel 
to OX. Theu we have 

CB2 + BP2 = CP2; 
or {x — a)2 + (y — b)2 = r2. (1) 

This equation is true for every position of P ; hence it 
expresses the relation between the co-ordinates of every 
point of the circle, and is therefore the required equation. 

If the axes are oblique, and inclined to each other at an 
angle = o>, the equation is 

(x — a)2 + (y — b)2 + 2 (x — a) (y — b) cos w = r2. (2) 

Con. 1.—If the origin be transferred to the centre of the 
circle, then a = 0, b = 0, and equation (1) becomes 

x2 + y2 = r2. (3) 
This equation may be written in the symmetric form 

f _ invt x* yi 
, + ^ = 1. (4) 

r2 r2 ' 
NOTE.—We see from (1), (2), (3), and (4), t h a t : 
(1). The equation of a circle is of the second degree. 
(2). The coefficients of x* and y2 are equal. 
(3). There is no term involving the product xy in (1) or (3). 
COR. 2.—If the origin be transferred to the circumference, 

and the diameter which passes through the origin be taken 
for the axis of x, then a = r, b = 0, and equation (1) 
becomes 

(x - r)2 + y2 = r2, V - fi' ~ -jC a 

or y2 = 2 rx — a?. (5) 
It may be observed here that, if the origin is on the curve, 

there will be no terra which does not involve either x or y; 
for the equation is satisfied by the co-ordinates of the ori-
gin, x = 0, y = 0. The same argument proves that if an 
equation of any degree wants the absolute term, the curve 
represented passes through the origin. 

In equation (5) we suppose the origin to be at the left-
hand vertex of the diameter. This convention is adopted 
by custom. 

COR. 3.—To find where (1) cuts the axis of«, Ave make 
y = 0, and have 

x = a± Vr2 — b2. 
If V2 < r2, the two values of x are real and unequal, 

showing that the curve cuts the axis of x in two points. 
If b2 = r2, the two values of x are real and equal, show-

ing that the curve touches the axis of x; that is, is tangeni 
to it. 



If b2 > r2, the two values of x are imaginary, showing 
that the curve does not cut the axis of x. 

Similarly, it may be shown that the curve cuts the axis 
of y in two points, is tangent to the axis of y, or does not 
cut the axis of y, according as a2 < r2, = r2, or > r2. 

COR. 4.—To iind where (3) cuts the axis of x, we make 
y = 0, and get x = ±_ r, showing that the curve cuts the 
axis of x in two points on different sides of the origin, at 
the distance r from it. 

To find where (3) cuts the axis of y, we make x= 0, and 
obtain y = ± r, showing that the curve cuts the axis of y 
at r above and r below the origin. 

Solving (3) with respect to y, we obtain, 

y=± V r 2 - ^ , 
which shows that, for every value of x between + r and 
— r, y has two real values, numerically equal, with con-
trary signs; hence the curve is symmetrically situated with 
respect to the axis of x. If x =. + r or — r, the two 
values of y are equal to 0, which shows that the ordinates at 
these two points are tangent to the curve. If x > + r or 
< — r, y becomes imaginary, which shows that the curve 
does not extend beyond the two tangents just described. 

Similarly it may be shown that the curve is symmetrical 
with respect to the axis of y, and that it does not extend 
beyond the two tangents drawn through the extremities of 
the vertical diameter. 

COR. 5.—To find where (5) cuts the axis of a;, we make 
y = 0,-and obtain 

x (2r — x) = 0. 

This equation is satisfied by supposing x = 0, or 
2r — x = 0 , 

from the last of which we get, 
x = Xr; 

hence the curve cuts the axis of x at the origin, and at the 
distance 2r to the right of it. 

To find where the curve cuts the axis of y, we make 
x = 0, and obtain y = ± 0, which shows that the curve 
touches the axis of y at the origin. 

V'L/ COR. 6.—If (x', y') and (x", y") be any two points on 
the curve, we shall have from (3), 

y'2=r2-x'2; y" 2 = ri — x"2. 
Hence, forming a proportion, we have, 

y'2 : y"2 :: (r - x') (r + x') : (r — x") (r + x"). 

That is, the squares of any two ordinates to any diameter 
are to each other as the rectangles of the segments into 
which they divide the diameter. 

E X A M P L E S . 

1. The equation of a circle is 

a? f 4- 4x — 8y — 5 = 0; 

find the co-ordinates of the centre, and the radius. 

Writing the equation in the form of (1), it becomes 

(x + 2)2 + ( y - 4)2 = 25 ; 

from which we see that the co-ordinates of the centre and 
the radius are (—2, 4) and 5. 

2. The equations of two circles are 

«? + y2 — 2x + ±y + 1 = 0; 

3-r2 + dif — 5x — 7y + 1 = 0 ; 

find the co-ordinates of the centre, and the radius in each 
circle. ^ ^ j (i? _ 2) and 2 in the first case ; 

n S ' 1 (h 1) a n d ¿ ^ 6 2 in the second. 

<t 

w i 4 



82 EQUATION OE TANGENT. 

3. Form the equation of the circle whose centre is (3,4), 
and whose radius = 2. 

Ans. x2 + y2 — 6x — 8y + 21 = 0. 

4. Form the equation of the circle whose centre is 
(5, — 3), and whose radius = V7, when w = 60°. 

Ans. x2 + y2 + xy-1x + y + 12 = 0. 

5. Find the equation of the circle which passes through 
the points ( - 6. - 1), (0, 0), (0, - 1); and also the co-
ordinates of the centre, and the radius. 

[These three sets of co-ordinates must each satisfy equa-
tion (1), giving three equations from which to obtain the 
values of a, b, and r . ] 

Ans. x2+y2 + §x+y = 0 ; and ( - 3 , - a n d £-v/37. 

6. Find the equation of a circle referred to its diameter 
and left-hand vertex that shall pass through the point (2,3). 

Ans. y2 = xi-x — x2. 

42. To find the equation of the tangent at any 
-point of a circle. 

The Tangent to any curve is the line joining two indefi-
nitely near points on that curve. 

Hence, its equation will be found by first forming the 
equation of the secant drawn through any two points 
(«', y'), (x", y") on the curve, and then allowing the first 
point to remain fixed while the second moves on the curve 
up to the first; the secant in its limiting position will 
become the tangent to the curve at the first point, and the 
equation of the secant will become the equation of the 
tangent. 

The equation of the circle, the origin at the centre, is 

x2 + y2 = r2. ( 1 ) 

EQUATION OE TANGENT. 8 3 

The equation of the secant through (x', y') and (x",y") is 

7» (® - »')• (2) 
> y — y 

Since (x', y') and {x", y") are botli on the circle,* they will 
satisfy equation (1); therefore, 

x'2 + y'2 = r®, (3) 
and x"2 + y"2 = r\ (4) 

Subtract (4) from (3), transpose and factor, and we have 
(y' - y") (!/' + y") = - ( * ' - x") (x' + x"); from which 

we obtain y , ~ y",r t- x ' + X" 
X — X 

(2), it becomes 

• ' , „• Hence, substituting in 
o ' J 

y — y = x' + z", n 
( 5 ) y' + y 

Now when the second point coincides with the first, we 
have x" = x', y" = y'; therefore (5) becomes J V , 

tC' 

y-y'= x')> (6) 

which is the equation of the tangent at the point {x', y'), 
x' 

— being the tangent of the angle which the tangent to 

the curve at the point (x', y') makes with the axis of x. 
Multiplying (6) by y', transposing, and remembering that 

x'2 + y'2 = r2, we get 
xx' + yy' = r2, (7) 

a form very similar to the equation of the circle. 
Equation (7) may be written in the symmetric form, 

(8) ™ a. y?L - i • f* 1- r2 ~ • 

' The ob jec t of t h i s t r ans format ion is to find t h e value of when the tw 
3! — z " points <«•, y \ (X', y") a re placed on t h e c i rc le and then made to coincide 



43. To find the equation of the normal at any 
point of a circle. 

The Normal at any point of a curve is the right line 
drawn through that point at right angles to the tangent to 
the curve at the same point. 

The equation of the tangent to a circle at the point 
(x', y'), Art. 42, is 

xx' + yxj = r2, 
x' r2 

or y = ~ y ' X + y ' ' 

therefore (Art 28, Cor. 3), the equation of a right line 
through [x'} y') perpendicular to the tangent at the same 
point, is i 

y-y' = or y = y-,x. 

Since this equation is satisfied by the values x = 0, 
y = 0, the normal at any point passes through the origin 
of co-ordinates, that is, through the centre of the circle. 

SCH. 1. The Subtangent is the distance from the point 
in -which the tangent intersects the axis of x to the foot of 
the ordinate from the point of tangency ; or it is the pro-
jection of the corresponding portion of the tangent upon 
the axis of x. 

SCH.—The Subnormal is the distance from the foot 
of the ordinate of the point in the curve to which the nor-
mal is drawn to the point of intersection of the normal with 
the axis of x ; or it is the projection of the corresponding 
portion of the normal upon the axis of x. 

In Fig. 40, T P is the tangent to the curve at the point P ; • 
MP is the ordinate of the point of tangency.; PN, the nor-
mal; MT, the subtangent; MN, the subnormal 

From the figure we have 

T M = V - M _ . tan M T P ' y / \ \ \ 

or, Subtangent (Art. 43) = — ^ - ^ C L A _ j 

Also, MN = MP tan MTP; „. „ A J 
Fig. 46 X ^ 

or, Subnormal = — x', 

which shows that the normal passes through the centre of 
the circle. (See Art. 43.) 

E X A M P L E S . 

1. Find the equation of the tangent to the circle 

x2 + y2 = 25, 

at the point whose abscissa is V7. 

Ans. V7x± VÏSy = 25. 
2. Find the subtangent in the last example. 

I B 
Ans. Subtangent = — — 

3. Find the equations of two right lines which touch the 
circle x2 + y2 = 10, at points the common abscissa of which 
isone- Ans. x±Sy= 10. 

44. If the equation of a circle be given in the form 

(x - a)2 + (y - b)2 = r2, (1) 
we may find the equation of the tangent at any point, in 
the same way as in Art. 42. 

Let (x', y') be the point on the circle at which the tan-
gent is drawn ; (x", y") a second point on the circle; then 
these points will satisfy (1), giving 

(x> _ a)2 + (y' - b)2 = 7-2, ( 2 ) 

(x" - a)2 + (y" - b)2 = r>. (3) 



Subtract (3) from (2), transpose and factor, and we have 

(x' - X") (x" + x'~ 2a) + (,/ - y") {y"r+ y' - 2b) = 0, 

from which we obtain, 
y'-y" - x" + x'-2a 
x ' - z " - y" + y' — 2b 

Substituting (4) in the equation of the secant through 
(x', y') and (x", y"), we have 

, x" + x' — 2a, 

When the second point coincides with the first, we have 
x" = x', y" = y', and (5) becomes 

, x' — a . 
y - y = ~ Y = b i - x - x ) -

Clearing of fractions, transposing, and factoring, we have 
(a; _ d) (x' - a) + {y-b) (y' - b) = r2, (6) 

which is the equation of the tangent required, a form easily 
remembered, from its similarity to the corresponding equa-
tion of the circle. 

E X A M P L E S . 

1. Find the equation of the tangent to the circle 
(x - 2)2 4- (y - 3)2 = 10, at the point (5, 4). 

Ans. 3x + y = 19. 
2. Find the equation of the tangent to the circle 

a? + y2 — 2y — 3x = 0, at the origin. 
Ans. 2y + 3x = 0. 

3. Find the equation of the right line passing through the 
origin, and tangent to the circle x2 + y2 — 3x + 4y = 0. 

A ns. 4y — 3x = 0. 
4. Find the equations of the tangents to the circles x2 4-

y2 — Gx— 2y = 0, and x2 + y2 — 5x 4- 6y = 0, at the Origin. 
Ans. 3x 4- y = 0, and ox + Gy = 0. 

45. To find the co-ordinates of the points in which 
a given right line y = ax + b intersects a given 
circle x2 -f y2 = r2. 

Equating to each other the two values of y found from 
the two equations, we have, for determining the abscissas of 
the points of intersection, the equation 

(1 4- a2) + 2abx = r2 - b2; (i) 

hence, x = A/(1 4- a2) r2 - b2 

1 + a2 

giving us two roots, real and unequal, equal or imaginary 
according as (1 4- a2) r2 is greater than, equal to, or less 
than b2. 

Hence, when the first of these conditions occurs, the 
right line will meet the circle in two real and different 
points; when the second, in two consecutive or coincident 
points, becoming a tangent (see Art. 42); when the third, 
in two imaginary points. 

By Consecutive Points is meant points whose distance 
apart is infinitely small; that is, so small that we cannot 
assign a value too small for i t We may assign the value 
0, and take the points as absolutely coincident, and hence 
they may be designated as Coincident Points, which is 
the language of pure Geometry; the term consecutive is 
peculiar to the Analytic method. 

COR.— If the two values of Z in equation (1) be equal, the 
two values of y in y = ax ± b must also be equal. There-
fore the two points in which the line cuts the circle will be 
coincident if b2 = r2 (1 -f a2). 

Hence the line y = ax ± WT+tf w m touch the circle 
x2 4- y2 = r2 for all values of a. 

" 3 i f V 1 6 d 0 W n a t 0 n c e t h c e « u a , i o n o f t h e !wigent3 to t h e c , r c l e ' w h l c h a r e " l c l " ie> l a t a given angle ( tan ' a ) to t h e axis of s . 



E X A M P L E S . 

1. Find the points of intersection of the circle a;2+ya=25, 
and the line y + z + 1 = 0. 

Ans. (—4, 3) and (3, —4). 
2. Find the points of intersection of the circle x2 + y2=25, 

and the line 3y + 4« +25 = 0. 
Ans. The line touches the circle at ( — 4, — 3). 

3. Find the intersections of xi+y2=Go and 3x + y=2o. 
Ans. (7, 4) and (8, 1). 

4. Find the intersections of a?+y2=25 and x+y=— 5. 
A?is. ( 0 , - 5 ) and ( - 5 , 0). 

5. Find the points in which the circle x2 + y2 = 9 inter-
sects the lines a; + y + 1 = 0, x + y — 1 = 0 . 

j (1.55, — 2.55) and ( — 2.55, 1.55); 
( (2.55, - 1.55) and ( - 1.55, 2.55). 

6. Show that the circle a? + y2 + 2x + 2y + 1 = 0 touches 
the axes of co-ordinates, and find the points of contact. 

Ans. ( - 1, 0), (0, - 1). 
7. Find the equations of the circles having their centres 

at the origin, and which touch the following three lines 
respectively: (1) y = 2« + 5 ; (2) 3y = a; + 10; (3) 3x + 4y = 10. 

.4ns. (1) x2 + y2 = 5 ; (2) a? + y 2 = 1 0 ; (3) a? + y 2 =4. 
8. Find the equations of the tangents to the circle 

x z y i - 2, which are inclined to the axis of x at the 
following angles: 

(1) 45° ; (2) 120° ; (3) - 30° ; (4) t a n " ^ . 
Ul)y = x+2; (2) y + \/3x = ± 2 V2 ; 

A n S " J (3) V'3y + a = ± 2V2 ; (4) 12y = 5x ± 13 V2. 
9. Show that the following lines and circles touch, and 

determine the points of contact in each case : 
(1) xt + y2 + x + y = 0 and x + y + 2 = 0 ; 
(2) y = x\/3 + 9 and x2 + y2 = 6y. 

Ans. (1) ( - 1, - 1) 5 (2) ( - | a / 3 , !)• 

10. Find the equations of the tangents from the origin 
to the circle x2 + y2 — 6x — 2y + 8 = 0. 

Ans. x — y = 0, and x + 7y = 0. 

46. To find the length of the tangent drawn from 
any point to the circle. 

{x-a)2+(y-b)2-r2 = 0. ( i) 
Let (x', y') be any point in the plane of the circle whose 

centre is («, b); then (Art. 9), for the distance between 
{x', y') and (a, b), we have 

V(x' - a)2 + {y^bf2-, 
and since this distance is the hypothenuse of a right-angled 
triangle whose two sides are the radius of the circle and 
the corresponding tangent, we have, calling the tangent t, 

t2 = (x' - a)2 + (/ _ b)2 - r2. (2) 

Iience, if the co-ordinates of any external point be substi-
tuted for x and y in the equation of a circle, in which the 
co-efficients of x2 and y2 are each unity, the result will be 
the square of the length of the tangent drawn from that 
point to the circle. 

46a . To find the locus of a point from which the 
tangents to two given circles are equal in length. 

Let ( x - a)2 + (y - b)2 — r2 = 0, 
and (x - a')2 + (y - b')2 - r'2 = 0, 
be the equations of the two circles. Then by Art. 46 the 
squares of the tangents from any point (x, y) to the two 
circles are 

(x - a)2 + (y - b)2 - r2, ( j ) 
( x - a ' ) 2 + (y-b')2-r'2. . { 2 ) 

Since these two tangents are to be of equal length, (1) 
must equal (2), from which we find, 

(x - a? + (y - b)2 - r2 = (x - a')2 + (,, _ b')2 - r'2 

or ( « - « ' ) x + {b-b')y + -1 (a,2-a2 + b'2-b2+r2-r'2) = 0, (3) 



which is the equation of the required locus ; this locus is a 
right line, and is called the Rad ica l A x i s of the two 
given circles. 

Hence, the Rad ica l A x i s of t w o Circles is a right 
line from any point of which the tangents drawn to the two 
circles are of equal lengths. 

COR. 1.—When the given circles intersect, the locus (3) 
passes through their points of intersection. 

Hence, when two circles intersect or are tangent their 
radical axis is their common chord or tangent. 

COR. 2.— The equation of the line through the centres 
of the given circles is 

y-b = (« - a), (Art. 26) 
d (I 4 

which is perpendicular to the line (3). (Art. 27, Cor. 1) 
Hence, the radical axis of two circles is perpendicular to 

the line which joins their centres. 
COR. 3.— Let the equations of three circles be 

(x-af + (y-l>y-i-* = 0, (4) 

( « - « , ) * + ( y - b . y - r ^ O , (5) 
(x-a,y+(y-b2y-r2> = 0. (6) 

Let the radical axis of (4) and (5) meet the radical axis 
of (4) and (6) in P. 

Then the tangents from P to (4) and (5) are equal, also 
the tangents from P to (4) and (6) are equal. 

Therefore the tangents from P to (5) and (6) are equal; 
that is, P is also on the radical axis of (5) and (6). 

Hence, the three radical axes of three circles taken in 
pairs pass through one common point. 

The point in which the three radical axes meet is called 
the Radical Centre . 

E X A M P L E S . 

1. Find the radical axis of the circles 
xi + f — 4« + 4y = 1, x2 + if + Gx — 3y = l. 

Ans. 1 0 « — 7 y = 0 . 

> 2. Find the radical axis of 

( « - 5 ) 2 + ( y - 4 ) 2 = 4 , 

( « - 2 ) 2 + ( y - l ) 2 = l . 

Ans. x + y = isi 
3. Find the radical axis of 

( « - 1 ) 2 + ^ - 2 ) 2 = 6, 
(« — 2)2 + (y — 3)2 = 8. 

Ans. x + y = 3. 
4. Find the radical centre of the three circles, 

( « ^ l ) 2 + ( y _ 2 ) 2 = 7 , (i) 
( * - 3 ) 2 + ^ = 5 , ( 2 ) 

( * + 4 ) 2 + ( y + l ) 2 = 9 . ( 3 ) 

Ans. - I I ) . 
5. Find the radical centre of (« — 5)2 + (y — 6)2 = 4 

( * - 3 ) 2 + ( y - l ) * = l , ( z + i ) 3 + ( y + 2 ) 2 = 9 . 
Ans- (~ib W)-

47. Tangents are drawn to a circle from a <siven 
external point; to find the equation of the chord 
joining the points of contact. 

Let «', y' be the co-ordinates of 
the external point P ' ; xv yx, the 
co-ordinates of the point P „ where 
one of the tangents from P' meets 
the circle, «„, y2 the co-ordinates 
of the point P 2 , where the other 
tangent from P' meets the circle. 
Then P, P2 will be the line whose 
equation is required. Fig. 47. 

The equations of the tangents at P, and P2 (Art. 42) are 
xxi + ?///, = r\ 
xx% + = r\ • 



92 INTERSECTION OF TANGENTS. 

Since these tangents pass through P' (x', y'), the co-ordi-
nates of P' must satisfy both equations. 

••• xzi + y'y i = r*> (3) 
x'x2 + y'y, = r2. ( 4 ) 

But we see that (3) and (4) are the conditions (Art. 15) 
that the two points ( « „ yt) and {x2, ys) may lie on the 
line whose equation is 

xx' + yy = R 2 . ( 5 ) 

Hence (5) is the equation of the right line through the 
two points (xlf y,) and (x2, y2). Therefore it is the re-
quired equation of the chord joining the two points of con-
tact. 

The chord 1 \ P 2 is called the Chord of Contact . 
Note t h a t t he co-ordinates of P , and P a do n o t appear in t h e final resul t . 

48. Through any fixed point a chord, is drawn to 
a circle, and tangents to the circle are drawn at the 
extremities of the chord; to find the equation of the 
locus of the intersection of these ta ngents when the 
chord is turned about the fixed point. 

Let (x', y') be the fixed point P' 
through which the chord passes ; and 
(x", y") the point P" in which the 
two tangents drawn at the extremi-
ties Q, R, of one position of the 
chord, intersect. It is required to 
find the locus of P" as the chord 
turns about P'. 

The equation of the chord of con-
tact (Art. 47) is 

+ yy" = >-2- (i) 
But since this chord passes through (x', ?/'), we have 

x'x" + y'y" = r2. (2) 

Fig. 48 
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Now (2) is the condition that the point P" (x", y") lies 
on the right line whose equation is 

xx' + yy' = r2, (3) 

and this is true for any position of the chord P' Q R passing 
through P ' ; thus, if P' Q R be turned about P' into any 
other position as P' Q' R', the point P" will move along the 
fixed line P " P U whose equation is (3). 

Therefore (3) is the equation required, and the locus is 
a right line. 

49. The line za;' + yy' = r2 is called the P o l a r of the 
point (x', y') with regard to the circle x2 + y2 =r2; and the 
point (x', y') is called the P o l e of the line." 

It will be seen (Art. 48) that if (x', y') be any point what-
ever, the equation xx' + yy' = r2 represents the locus of the 
intersection of the tangents at the extremities of the chord 
through (x', y'). 

If (x', ?/') be an external point, the equation xx' + y>/= r
2 

represents the chord of contact (Art. 47). 

If (x', y') be on the circle, the equation xx' + yy' = r
2 

represents the tangent at that point (Art. 42). 

That is, the three equations are identical; the position 
of the point (x', y') in Art. 48 is not subject to any limita-
tion ; hence, wherever the point (x', y') may be, the equation 
xx + yy' = r2 represents the locus of the intersection of 
tangents drawn at the extremities of chords which all pass 
through (x', y'). If the point be without the circle, this 
locus is identical (Art. 47) with the chord joining the points 
of contact of tangents drawn from (x', y'). If the point be 
on the circle, the locus is (Art. 42) the tangent at the point 
ix'> ?/)• • 

N o r a - T h e l imits of th is t reat ise forbid us from pursu ing this subject f u r t h e r 
The s tuden t who wishes to go on with it, is referred to more extended works on 
Come Sections, such as Salmon's, Todhunter 's , Puckle s, etc. 



49a . I f the polar of a point P' pass through P", 
then the polar of P" will pass through P'. 

Let (x'} y') be the point P', and (x", y") the point P", and 
let the equation of the circle, as before, be x2 + y2 = r2. 

The equations of the polars of P' and P" are 
xx' + yy' = r2, (1) 
xx" + yy" = r2. (2) 

If P" be on the polar of P', its co-ordinates must satisfy 
(1) ; x"x'+ y"y' = r2. '(3) 
But (3) is also the condition that P' may be on the line (2): 
that is, on the polar of P". Therefore the polar of P" 
passes through P'. 

E X A M P L E S . 

1. Let tangents be drawn from the point (3, 4) to the 
circle a? + y2 = 9. 

To find the equation of their 
chord of contact. 

Let (x', y ) and [x", y") be the 
points Q and R respectively.* 

The equation of Q P, the tan-
gent at (x\ y') is xx'+yy'=9, (1) 
and that of R P, the tangent at 
(x", y"), is xx" + yy" = 9. (2) 
Since the point (3, 4) is on both these tangents, 

3x' + 4 y' = 9, (3) 
3x" + 4 y" = 9. (4) 

But (3) and (4) are the conditions that the two points 
(x', y') and (x", y") are on the line whose equation is 

3x + 4y = 9, 
which is therefore the equation of the chord Q R. 

2. Given the circle x2 + y2 = 9, and the points P (3, 4) 
and P' (— 5, 6) ; to show that the polar Q' R' of P passes 
through P', and that the polar Q R of P' passes through P. 

» The values of these co-ordinates we do no t require. 
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PO.i) 

The equation of Q' R', the polar p'(-5,e> 
of (3, 4), is 3x + 4y = 9. (1) " 

This polar will pass through 
the point P' if ( - 5, 6) satisfy (1). 
But ( — 5, 6) does satisfy (1), since 
3 x — 5 + 4 x 6 = —15 + 24 = 9. 

Therefore the polar of (3, 4) 
passes through the point 

P' ( - 5, 6). 
Also the equation of Q R, the 

polar of (— 5, 6),is — 5x + 6y=9. 
This polar will pass through the point P if (3, 4) sat-

isfy (2). V ' 

But (3, 4) does satisfy (2), since 

— 5 x 3 + 6 X 4 = - 15 + 24 = 9. 

Therefore the polar of ( - 5, 6) passes through P (3, 4). 
3. Find the pole of the line 3x — by = 4, ( l ) 

with respect to the circle x2 y2 — 16. (2) 
Let (x', y') be the pole. Then the polar of (x\ y') is the 

line xx' + yy' = 16. ' ( 3 ) 
Comparing (3) with (1) in the form 12a; - 20y = 16, we 

have clearly 
x' = 12, y ' = - 20. 

Therefore the required pole is the point (12, — 20). 
4. Find the poles, with respect to x2 + y2 = 14 of' the 

lines (1) 2a;+ 3^ = 7; (2) 3x-y = 2 ; (3) a; - y = 14 : 
(4) 3a; = 7. * 

Ans. (1) (4, 6) ; (2) ( 2 1 , - 7) ; (3) ( 1 , - 1) ; (4) (6, 0). 
5. Find the polars with respect to x2 + y2 = 14, of the 

points (1) (6, 8) ; (2) (21, - 35) ; (3) ( - 3,' 1) ; (4) (0, 1). 
Ans. (1) 3a; +4y = 7 ; (2) 3x - 5y = 2 ; (3) y - 3x = 14 ; 

(4) y = 14. ' 



P O L A R E Q U A T I O N . 

50. To find the polar equation of the circle. 

Let 0 be the pole, C the centre of 
the circle, anil OX the initial line. 
Let the co-ordinates of the centre be 
the known quantities, r', 0', and the 
co-ordinates of any point P be r, 0, 
and R the radius of the circle. Then 
we have (Art. 14), Fig. 49. 

R = Vr2 + r'2 — 2rr' cos (0 — 6'J; 

or ,-2 _ 2rr' cos (6 - 0') + r'2 - R2 = 0, 

which is the equation required. 

COE. 1.—Solving (1) for r, we obtain 

(1) 

(2) r = r' cos (0 - 6') ±VR?- r'2 sin2 (0 - 0'). 
These two values of r in (2) are the two distances from 

the pole 0 to P and P', and are real and unequal, or real 
and equal, according as r'2 sin2 (0 - 0') < or = R2-, or 

]l2 
when sin2 (0 - 0') < or = ^ But when 

we have 

7?2 

sin2 ( 0 - 0 0 = 2 , 
R 

sin (0 - 0') = ± j , , 

showing that there are two positions in which r is tangent 
to the circle. The condition 

sin (0 - 0') = 4- y 

gives the upper point of tangency, for which 0 > 0'. The 
condition 

R sm (0 - 0 ) = - 7 

gives the lower point of tangency, for which 0 < 0', or 
6—6' is —, and hence sin (f> — 6') is —. From equa-
tion (2) we see that the two values of r have the same, or 
different signs, according as 

VR2 - r r W (0 _ 6') < or > r' cos (0 - 0'). 

In the former case, the pole is without the circle; in the 
latter it is within. 

COR. 2.—If 6'= 0, the diameter is the initial line, and 
(1) becomes 

r2 — 2rr' cos 0 + r'2 — R2 — 0. (3) 

If, in addition, the pole be on the circumference, r' — R, 
and (3) becomes 

r = 2R cos 0, (4) 
a result which we might have obtained at once geometrically 
from the property that the inscribed angle in a semicircle is 
a right angle. 

These polar equations may be deduced from the equations 
referred to rectangular axes (Art. 41) by putting rcosd 
and r sin 0 for x and .y respectively. The student should 
deduce these equations by this method. 

E X A M P L E S . 

1. Find the points where the axes are cut by 

z2 4- f — 5x — 7y -f 6 = 0. 
By making alternately y = 0, x = 0, in the given equa-

tion, we find that the points are determined by the quadratics 

x2 - ox + 6 = 0, f — 7y 4- 6 = 0, 
giving us the points, 

x = 3, x = 2; y= 6, y = 1. 



2. Find the centre and radius of the circle whose equa-
tion is x2 + y * - x - y = 0 ; 

Ans. Centre (£, £), radius IV2. 
3 Find the centres and radii of the circles whose equa-

tions are (1) * + f + 6s + Sy + 2 = 0 ; 
(2) x2 + y2 — X — y + i = o. _ 

I (1) centre ( - 3, — 4), radius ; 
A n s • "i (2) centre (1, *), radius 

4. Find the centre and radius of each of the circles 
(1) x2 + f - 4z - 2y - 31 = 0 ; 
( 2 ) z 2 + */ "- - 4 x + 2 y + 1 = 0 . 

Ans. (1) (2, 1), 6 ; (2) ( 2 , - 1 ) , 2. 
5. Find'the equation of the circle whose centre is (1, 2), 

and whose radius is 3. 
Ans. + y 2 - 2 z - 4 ? / - 4 = 0. 

6. Find the equation of the circle whose centre is (3, 0), 
and whose radius is 5. Ans. x2 + if - 6.r — 16 = 0. 

7 Find the equation of the circle passing through the 
origin and the point (x\ y'), and having its centre on the 
axis of x. Ans. (x> + tf) x ' - (x* + y*) x = 0 8. Find the equation of the circle which passes through 
the'points (0, 0), («, 0), (0, b). 

Ans. x2 + y2 — ax-by = 0. 
9. Find the equation of the circle which passes through 

the points (a, 0), ( - a, 0), (0, b). 
Ans. (x2 + y*)b + («2 — If2) y = a2b. 

10. Find the equation of the circle passing through the 
points (0, 1), (1, 0), (2, 1). , n 
1 Ans. x2 + y 2 - 2 x - 2 y + 1 = 0. 

11. Find the equation of the circle passing through the 
points (2,0), ( - 2 , 0 ) , (0,3). 
F Ans. x2+ if-%y-± = 0. 

- 5>12. If the equation z* + if + xy + 2z + 2y = 0 repre-
sent a circle, show that the axes are inclined at an angle 
of 60°, and find the centre and radius of the circle. 

. Ans. Centre ( - f , - f ) , radius f V 3 . 

• - V b 4 t y - I * b ^ i i 

13. Find the equation of the circle which touches the axes 
at the distance of 5 from the origin. 

Ans. a? + if — lOx - lOy + 25 = 0. 

14. Find the equation of the circle whose centre is at the 
origin, and whose radius = 3, the axes being inclined at an 
angle of 45°. Ans. x2 + y2 + XyV2 - 9 = 0. 

15. Find the equation of the circle whose centre is at 

(— b — i ) , and whose radius = the axes being in-
v 3 clined at an angle of 60°. 

Ans. x2 + y2 + xy + x + y - 1=0. 
16. Find the relation between a, b, r, in order that the line 

x y 
a + ~b = 1 (1) 

may touch the circle x2 + if = r2. ^ ) 

Comparing (1) with (8) in Art 42, we have 

W « ? - * - i-S-f-5-
Substituting these values of - and £ in (4) of Art. 41, 

we have 
j* -2 1 1 1 
a* F ~ ' or * = * + 

17. Find the equation of the circle whose centre is at the 
origin of co-ordinates, and which is touched by the line 
y = 2x + 3. Ans.x2 + y2 = i . 

18. On a circle whose radius = 6, a tangeut is drawn at 
the point whose ordinate is 4. Find-where the tangent cuts 
the two axes, and also determine the angle which it makes 
with the axis of x. 

Ans. It cuts the axes at ~ and 9; angle = tan"1 - ^ 5 . 



19 Show that the point (2, 3) lies on the circle 

and find the equation of the tangent to the circle at this 
point Ans. Equation of tangent is x + y = 

20 Find (1) where the circle x> + tf - Sx - 12y = 48 
cuts the axis of s ; and (2) find the equations of the tan-
gents at these points, and show that they are equally in-
clined to the axis of * 0 ) , ( - 4 , 0 ) ; 

A n s - 1 ( 2 ) 2 / = y=-\*-xi-
21. The circle x> + y2 - ax - by = 0 passes through the 

origin Find the equations of the tangent at the origin, 
and of the tangents at-the points in which it cuts he axes. 

Ans. ax + by = 0,ax-by = a2, ax - by + P = 0. 
22. Find the points where the line y = 2« + 1 cuts the 

circle x2 4- V2 = 2. A n s - (~~ ~~ V' 
23 Show that the line 3« -2y = 0 touches the circle 

^ + f - 3x + 2y = 0. 
24. Show that the circles a- + f - to - fy + 1 0 = 0 a n d 

2-2, v i = 2 touch each other at the point (1, 1). 
25. Show that the circle a;2 + f - 2 « * - 2 a y + a 2 = 0 

touches the axes of x and y. , 
26. Find the equation of the circle which touches the 

lines x = 0, y = 0, x = c. . 
¿n*. 4a;2 4" - + ^ + C2 = 0. 

27 Find the length of the tangent (1) from the point 
(2 51 to x2 + v2 - 2« - By-1 = 0, and (2) from the point 
4 ? to^+V-3 x - y = t. Ans. (1), 3; (2), 2 \ /3 . 

1 28. Find the radical axis of a;2 4- + 2* + 3y = 7 and 
a* + y*-Zx-y + 1 = 0. * + = 

29 Find the radical axis oi ^ + f + bx + by = c and 
ax2 4- «i/2 + ('2x + mJ = Ans. ax -by + = 0 . 

a — b 

30' Find the radical centre of the three circles 
a? + rft 4- 4a; 4- 7 = 0, 2.r2 4- 2 if 4- 3.x 4- 5y 4- 9 = 0, 
x* + f + y = 0. Ans. ( - 2 , - 1 ) . 

31. Find the pole of 3:e 4- Ay = 7 with regard to 

. x2 4- f = 14. Ans. (6, 8). 

32. Find the poles, with respect to a;2 4- y2 = 35, of 

(1) 4a; + 6y = 7 ; (2) 3a: — 2 y = 5 ; (3) ax + by = l. 

Ans. (1) (20, 30) ; (2) ( 2 1 , - 1 4 ) ; (3) (35«, 35b). 

33. Show that the polar of the point (x', y") with regard 
to the circle (x — a)2 4- (y — b)2 = r2 is 

(x - a) (x' - a) + { y - b ) (y' - b) = r*. 

34. Find the polar of (4, 4) with regard to 
(X - l)2 4- (y _ 2)2 = 13. 

Ans. 3x 4-2y = 20. 
35. Find the polar of (4, 5) with regard to 

x2 4- _ 3x — 4y = 8. 
Ans. ox 4- 6y = 48. 

36. Find the pole of 2a; + 3y = 6 with regard to 
(x - l)2

 + (y _ 2)2 = 12. 

Ans. (— 11, _ 16). 

37. Find the polar equation of the circle whose centre is 

at (s, and whose radius is 10 ; and determine where the 
circle cuts the initial line. 

Ans. Equation is r2 — 8-^2 (sin 0 4- cos 0) r = 36 ; cuts 
the initial line at r = (4 ± V3Ï) A/2. 

38. Find the polar equation of the circle whose centre is 

(l5, ^ j , and whose radius is 10 ; .and determine the values 

of 0 when the radius-vector is tangent to the circle. 

'Ans i E ( l u a t i o u i s r<i ~ 3 0 r s i " 0 = — 125; 
' 1 0 = cos"' ( ± I). 



EXAMPLES. 

'39. Determine what is represented by the equation 

.,-2 _ ra cos 20 sec 0 — 2a2 = 0. 

A circle whose equation is r = 2a cos 0, 
and a right line whose equation is r = — a sec 0. 

40. Determine the radius and the centre of the circle 

r2 — 2r (cos 0 + V 3 sin 0) = 5. 

[Compare with (1) in Art. 50.] 
Ans. Radius = 3 ; / = 2, 0' = 

41. A limited right line moves so that its extremities are 
always on the co-ordinate axes ; show that the locus of its 
middle point is a circle. 

42. Show what the equation of the circle becomes when 
the origin is on the circumference, and the axes are inclined 
at an angle of 120°, the parts of tliem intercepted by the 
circle being h and k. 

Since the origin is on the curve, the absolute term is zero 
(Art. 41, Cor. 2); therefore the equation of the circle re-
ferred to oblique axes (Art. 41), when expanded, becomes 

a^4-y2 + 2a;ycosa)—2(«-ficos6;).T—2(& + acosw)y=0. (1) 

Making alternately y = 0,x = 0, we have, for determin-
ing the intercepts on the two axes, 

sfi — 2 (a + b cos a;) a; = 0, 
y2 — 2 (b + a cos to) y = 0. 

x = 2 (a + 5 cos to) = li, 
y = 2 (b -(- a cos to) = k. 

When cj = 120°, cos to = — £ ; (1) becomes, 

+ y2 — xy — lix — ky = 0, Ans. 

EXAMPLES. 

43. Find the inclination of the axes in order that each 
of the equations (1) a? + if + xy - hx - hy = 0, 

(2) x1 + if — xy — hx — hy — 0, 
may represent a circle ; and find the centres and radii. 

[Compare with (2), Art. 41.] 

An, (1) 60°, (* J ^ j (2) 120°, (k, 'h),h. 

44. Two lines are drawn through the points (a, 0), 
(— a, 0) respectively, aud make an angle 0 with each other: 
find the locus of their intersection. 

Ans. x2 + y2 - a2 = ± 2ay cot 0. 
45. A circle touches one given straight line and cuts off 

a constant length (2 I) from another straight line perpen-
dicular to the former : find the locus of its centre. 

A ns. y2 — x2 = I2. 
46. Given the base of a triangle = 2m, and the sum of 

the squares on its sides = 2A-2, to find the locus of its vertex. 
[Take the base and a perpendicular through its centre for 

axes-] Ans. :t? + y2
 = s2 — m2. 

47. A point moves so that the sum of the squares of its 
distances from the four sides of a square is constant; show 
that the locus of the point is a circle. 

48. Find the locus of the vertex of a triangle, given the 
base = 2m and the vertical angle = «. [Take axes as in 
Ex- 4 6 - l Ans. x2 + y2 — m2 — 2my cot« = 0. 

49. Find the locus of the vertex of a triangle, given the 
base = 2m and the ratio of the two sides = a: b. [Take 
axes as before.] a i i 12 

Ans. x2 + y2- + m2 = 0. 

50. Given the base = 2m and vertical angle = «, to find 
the locus of the intersection of the perpendiculars from the 
extremities of the base to the opposite sides. [Take axes as 
before. ] Ans. x2 + y2 + 2m cot ay - = 0. 



C H A P T E R V . 

T H E P A R A B O L A . 

51. In the previous chapters we investigated various 
properties of right lines and circles. We shall now proceed 
to consider three curves, commonly called conic sections, 
which rank next in importance and interest to the right 
line and circle. 

A Conic Sect ion is the locus of a point moving in a 
plane so that its distance from a fixed point bears a constant 
ratio to its distance from a fixed right line. If this ratio is 
unity, the locus is a Parabola; if less than unity an 
Ell ipse ; if greater than unity, an Hyperbola. The fixed 
point is called the Focus, and the fixed right line is called 
the Directrix.* 

We might begin by producing the general equation of a 
conic section, and afterwards applying it to the parabola, 
ellipse, and hyperbola, in succession ; f but we prefer to find 
the equation of each conic section separately from its defi-
nition, beginning with the parabola, because it is the sim-
plest of the three. 

REMARK.—It wi l l be s h o w n h e r e a f t e r , t h a t if a r i g h t cone w i t h a 
c i r cu l a r ba se be cu t by a p l ane , t h e c u r v e of in te r sec t ion wi l l b e one 
of t h e f o l l o w i n g : a pa rabo la , a n e l l ipse , an h y p e r b o l a , n circle, o n e 
r i g h t l ine , t w o right l ines , or a po in t . Hence , t h e pa rabo la , el l ipse, 
and h y p e r b o l a a r e ca l led conic sect ions , w h i c h t e r m m a y also be ex-
t e n d e d t o i n c l u d e t h e circle, o n e r i g h t l ine , t w o right l ines , and t h e 
point . I t w a s f r o m t h i s p o i n t of v i e w t h a t t h e s e c u r v e s w e r e first 
e x a m i n e d b y geomete r s . I t wi l l be s h o w n h e r e a f t e r t h a t e v e r y equa -
t ion of t h e second d e g r e e b e t w e e n t w o va r i ab le s is t h e equa t ion of a 
conic sect ion. 

* Todhun te r ' 9 Conic Sect ions, p. 116. 
t See O'Brien 's Co-ord ina te Geomet ry , p. 62. 

Fig. 50 . 

52. A Parabola is the locus of a point moving in a plane 
so that its distance from a fixed point is equal to its distance 
from a fixed right line. The fixed point is called the 
F o c u s ; the fixed right line is called the Directrix- the 
right line through the focus perpendicular to the directrix 
is called the A x i s of the curve; the point in which the 
axis cuts the curve is called the Principal Vertex . 

From the definition, the parabola 
may readily be constructed by points, 
thus: Let F be the focus, CD the di-
rectrix, and OX through F perpen-
dicular to CD the axis. The point A, 
midway between 0 and F, is a point 
of the curve, and is the vertex. Take 
any point on the axis, sis M, arid erect 
MP perpendicular to it. With F as a 
centre and OM as a radius, describe 
an arc cutting MP at P. This will be a point of the curve, 
for we have F P = DP. I n the same way, any number of 
points may be constructed; drawing a line through them, 
it will be the required curve. 

The curve may also be described by 
a continuous movement. Let CD be 
the directrix and F the focus. Take 
a triangular ruler, IiDE, right-angled 
at D, and place one side DE 011 the 
directrix; take a string, equal in 
length to IID, and attach one end at 
K, and the other at F ; then press a 
pencil against the string, keeping it 
continually tight, with the point P 

ihe mih 'nf ;;H,e'-' U i S M e t h e n , I e r directrix; 
t oVnf P i e f r 1 W , U b e a P a r a b o l a > f o r "> every posi-tion of P we shall have 

PD = FP. 

Fig. 50. a 



Fig. 91. 

53. To find the equation of the parabola. 

Let F be the focus, YY ' the direc-
trix, OX the axis of the parabola. 
Take OX and OY for the co-ordinate 
axes. Let x, y be the co-ordinates of 
any point P in the locus, and put p = 
the constant distance OF. Draw PM 
and PD respectively perpendicular to 
the axes of x and y, and join FP. 
Then we have, from the definition, 

F P = P D ; 

therefore, FM2 + MP2 = PD2 ; 

that is, (x — j)f + if = x*, 

or f = 2p(x- ip), (1) 
which is true for every position of P ; hence it is the equa-
tion required. 

When y = 0. x = \p, which shows that the curve cuts 
the axis of x at the distance to the right of the origin, 
or midway between 0 and F. 

If we move the origin to A, and keep the new axes paral-
lel to the old, the equation will be simplified. The formulae 
for transformation (Art. 33) are x = \p + x', y = y'\ 
therefore (1) becomes 2 = 2px'; 
or removing the accents, since x and y are general variables, 
we have , x 

if = 2j)x, (2) 

which is the equation of the parabola referred to its axis and 
N the tangent at the principal vertex. 

COR. 1.—When y = 0 in (2), we have x = 0, which 
shows that the curve cuts the axis of x at the origin. When 
x = 0, y = ± 0. which shows that the axis of y is tangent 
to the curve at the origin. 

COR. 2.—Solving (2), for y, we get 

V = ± V2px, 
which shows that for positive values of z there are two real 
values of y, numerically equal, but with contrary signs. 
Hence, for every point P on one side of the axis of .r, there 
is a point P 'on the other side, at the same distance from i t ; 
and therefore the curve is symmetrical with respect to the 
axis of x. If we suppose p to be positive, which is the case 
when the focus is to the right of the origin, we see that 
negative values of a; do not give real values of y; hence, no 
point of the curve lies to the left of the axis of y. As z may 
have any positive value whatever, the curve extends to an 
infinite distance in the direction of positive abscissas. In 
the same way, if we suppose p to be negative, or the focus 
to be to the left of the origin, it may be shown that no part 
of the curve lies to the right of the origin, while it extends 
without limit to the left of i t 

COR. 3.—To find the value of the ordinate passing through 
the focus, make x = \p, and get, from (2), 

if = f , or 2 y = 2p. 

Hence, the double ordinate passing through the focus is 
equal to the constant quantity 2p. This double ordinate 
through the focus of a conic section is called the Principal 
Parameter, or Latus Rectum. 

COR. i.— From (2) we have the proportion, 

x : y :: y : 2p; 

that is, 2p, the latus rectum, is a third proportional to any 
abscissa and its corresponding ordinate. 

COR. 5.—If (x\ y') and (x", y") be any two points on the 
curve, we shall have, from equation (2), 

y'* = 2px'-, y"* = 2px". 
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Hence, forming a proportion, we have 
y'« : y•"» :: x' : x". 

That is, the squares of any two ordinates are to each othei 
as their corresponding abscissas. 

COR. 6.—A point is outside, on, or 
inside the parabola, according as 

if - 2px > , = , or < 0. 

Thus, if the point is on the curve, 
as at P, its co-ordinates satisfy the 
equation of the curve, giving 

f — 2px = Q. Fig. 62. 

X \ 

If the point is outside of the curve, as at B, its abscissa 
will be less than at P, while its ordinate will be the same, 
giving 

y1 — 2px > 0. 

If the point is inside of the curve, as at C, its abscissa will 
be greater than at P, while its ordinate will be the same, 
giving 

f - 2px < 0. 

54. To find the equation of the tangent at any 
point of a parabola (see Def., Art. 42). 

Let (x', y') and (x", y") be any two points on the curve. 
The equation of the secant through these points is (Art. 26) 

y - ^ = <*-*'>• a ) 

Since (x1, ?/') and (x", y") are on the parabola, they will 
satisfy its equation, giving us 

y'* = 2px', (2) 
y"* = 2px!'. (3) 
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Subtracting (3) from (2), factoring, and dividing, we have 
y ' ~ y " = 2p 

x'-x" y' + y'" 

which, in (1), gives y - y> = ( , _ ^ ^ 

becomes ^ ^ b 6 C ° m e C O n s e c u t i v e > hence (4) 

y - y ' = t . ( x - x ' ) . 

Clearing of fractions, and substituting for y* its value in 
(2), we have yy'=p{x + x'), ' (6) 

which is the required equation of the tangent at (x' v'\ 
COR. 1 TO find the point in which the tangent cuts 

the axis of make y = 0, in (6), and we have 
0 =p(x + x'); .•.x=~x'; 

that is, the suUangent is bisected at the vertex. 
SCH.—This result enables us to 

draw a tangent to the curve at a 
given point. Let P be the given 
point, and MP its ordinate. Lay 
off AT to the left of the origin 
equal to AM. Draw a line through 
T and P, and it will be the tangent 
required.^ 

COR. 2. From equation (6) we have 

(5) 

Kg. 53. 

y = T -J- -L 
y 2' 

P"t £ = a, and ,. | ! = a n d ( 7 ) b e c o m e s 
2a 

y = ax+-JL. 

(7) 

(8) 
J 6 m i ° h t h a v e fo«nd (8) by the method of Art. 45, 



OF NORMAL AND TANGENT. 

To find the equation of the normal at any 
point of a parabola. 

Let (x', y') be the point; the equation of the tangent at 
(x\ y'), (Art. 54), is 

y = l,{x + x'). (1) 

The equation of a right line through (x', y') perpendicu-
lar to (1) is, by Art. 27, Cor. 2, 

y-y' =-y-[x-x% (2) 

which is the required equation of the normal at the point 
(*', sO-

COB.—To find the point in which the normal at (x \ y') 
cuts the axis of x, we make y = 0 in (2), and get, after 
reduction, 

x = x' + p; or x — x'=p. 
That is, the subnormal is constant, and equal to half the 

la/us rectum. 
SCH. — This furnishes a second 

method of drawing a tangent to a 
parabola, at a given point. 

Let P be the given point, and PM 
its ordinate. From the foot of the 
ordinate lay off a distance MG on the 
axis, to the right, equal to half the 
latus rectum, and draw GP ; through 
P draw PT perpendicular to GP. 
PT will be the tangent required, and GP will be the normal 

56. To prove that a tangent to the parabola at any 
point makes equal angles with the axis of the curve 
and the focal line to the point of contact. 

A Foca l Line is a line drawn from the focus to a point 
of the curve. 

. " ( S e 

Let PT be the tangent at P, F P 
the focal line to the point of contact, 
MP the ordinate, GP the normal, 
and OD the directrix. Then (Art 
54, Cor.), 

AT = AM ; 

also, FT = AT + AF 
= AM + AF 
= AM + AO = OM ; 

that is, FT = F P (Art. 52) 
Hence the angle F T P = angle FPT. 

Fig. 55. 

/ 

57. To find the locus of the intersection of the 
tangent to a parabola with the perpendicular on 
it from the focus. 

The equation of any tangent to the parabola is (Art. 54 
Cor. 2), 

1J = a X + Ta (1) 
The equation of the line through the focus perpendicular 

to (1) is (Art. 27, Cor. 2), 

or x 
y=~a + JL 

2 a (2) 
Since the lines (1) and (2) have the same intercept on 

the axis of y they meet in that axis. Hence the axis of 
y, or the tangent to the curve at the vertex, is the required 
locus. 

COR.—r The result of this Art. can be easily obtained from 
geometric considerations. Thus, let FB, Fig. 55, be a per-
pendicular from the focus to the tangent PT. It will in-
tersect PT at its middle point B, because the triangle TFB 



is isosceles. The vertical tangent at A also intersects I P 
at its middle point 15, because it bisects MT and is parallel 
to MP. Therefore the point B. at which the perpendicular 
intersects the tangent, is on the axis of y, or the tangent to 
the.curve at the vertex. 

58. To find the co-ordinates of the point of contact 
of a tangent to a parabola from a fixed point. 

Let (x', y') be the required point of contact, and (x", y") 
be the fixed point through which the tangent passes. 

Since (»', y') is on the parabola, we have 
if* = 2px'. CO 

The equation of the tangent at (x', y') is 

yy' = P(X + *')• 

Since this tangent passes through (x", y"), we have 

y y =p(x" + x'). (2) 

Solving (1) aud (2) for x' and y', we have 
px' = y"2 - px" ± y" V f ^ ^ y 

y' = y" ± V f ^ t y r i 1 -
These values indicate that from any fixed point two tan-

gents can be drawn to a parabola, real, coincident, or imag-
inary, according as y"* - 2px" > 0, = 0, or < 0 ; that is, 
according as the point (x", y") is without, on, or wit/nn the 
curve (see Art. 53, Cor. 6). 

COR.—'The ordinate of the middle point of the chord 
joining the two real points of contact is equal to the half-
sum of the ordinates of the two points ; that is, it is equal to 
«" Hence, a line through the fixed point, parallel to the 
axis of the curve, bisects the chord joining the two points 
of contact. This chord is called the Chord of Contact. 

E X A M P L E S 

1. Are the p6ints (6, 6), (4, 6), (4, 3), (4, 4), ( 4 , - 5 ) 
outside, on, or inside the parabola if = 6s ? 

2. Are the points (0, 0), (0, 1), ( | _ 2), (b\ b V5) on the 
parabola if = ox ? 

3. The distance from the focus of a parabola to the 
directrix is 4: find its equation when the origin is (1) at 
the vertex, (2) at the focus, and (3) at the intersection of 
the axis and directrix. 

Ans. (1) if=8x; (2) y* = 8x + 16 ; (3) if = 8x - 16. 

4. At what point of the parabola y* = 16s is the ordinate 
equal to twice the abscissa? Ans. (4, 8.) 

5. If the distance of a point in the parabola y2 = 2px 
from the focus is equal to 2Jp, what is the abscissa of the 
P ° i n t ? Ans. 2p. 

6. The equation of a parabola is y2 = 9x: find the equa-
tion of the chord through the points whose ordinates are 
3 and 6- ' Ans. y = x + 2. 

7. Find the equations of the tangent and the normal to 
the parabola if = 4s at the point whose abscissa is 9 and 
ordinate positive. 

Ans. Tangent, s — 3y + 9 = 0 ; normal, y +3x = 33. 

8. Find the equations of the tangents and the normals to 
the parabola if = 8s at the ends of its latus rectum. 

| T a n g e n t S , D o r m a l s , 

9. Find the equations of the tangents and the normals 
to the parabola f = 4ax at the ends of its latus rectum. 

Ans. x =p y + a = 0; y ± x 3a = 0. 
10. Find the points where the line y = 3x—a cuts the 

parabola y* = Ux. Ans. (a, 2a), (¿«, - f a). 



59. Tangents are drawn to a parabola from a 
given external point; to find the equation of the 
chord of contact. 

Let (x', y') be the external point 
P ' ; y i ) a n d (*•» a 2 ) t h e t w o 

points P j and P 2 where the tan-
gents meet the parabola. Then 
P , P 2 will be the chord of contact 
whose equation is required. 

The equations of the tangents at 
P, and P 2 (Art. 54) are 

yy 1 =P.(X + xi) 

yy-i=p{x + x2)- (2) 

Since these tangents pass through P' (x', y'), the co-
ordinates of P' must satisfy both equations. 

•••y'yi = P(X' + Xi)> (3) 

y'y2=p(x' (4) 

But we see that (3) and (4) are the conditions that the 
two points (x1, yx), {x2, y2) may lie on the line whose 
equation is 

yy'=p{x + x'). (5) 

Hence (5) is the equation of the line through the two 
points (x1,y1) and (x2,y2). Therefore it is the required 
equation of the chord of contact PjPo. 

60. Through any fixed point a chord is drawn to 
a parabola, and tangents to the parabola are drawn 
at the extremities of the chord; to find the equation 
of the locus of the intersection of the tangents when 
the chord is turned about the fixed point. 

Let (x', y') be the fixed point P' 
through which the chord passes; and 
(x". y ') the point P" in which the two 
tangents drawn at the extremities Q 
and R of one position of the chord in-
tersect. It is required to find the locus 
oil as the chord turns about P'. 

The equation of the chord of contact 
(Art. 59) is 

yy"=p{x + x"). (1) 

Since this chord passes through P', we have 

y'y" =p{x' + z"). (2) 

Now, (2) is the condition that the point P " (x" v"\ lies 
on the right line whose equation is K ' V ) 

yy'~p (x + x'), (3) 
and this is true for any position of the chord P'QR p a s s i n £ r 
hroug 1 P'. Thus, if P'QR b e t u r n e d a b o u f c p ^ ^ t 

is a nght hue " W " ^ a n d t h e l o c » s 

M , ! C H ' T r f h e n n e + ^ called the Polar of 
he point (*, y') with regard to the parabola f = 2pxand 

the point (*', y') i s called the P o l e of the line. 
I t will be seen (Art. 60), that if (x1, y') be any point 

whatever, the equation ( , + , ' ) r ep i ien ts the C 

ä ; v h e t a ü g e ü t s a t t h e — t h e 8 

6 1 The statements in Art. 49 with respect to the circle 
may all be applied to the parabola. Thus we see that the 

ocuTTtfe T * o f fche chord of contact> * L 
h r d f t l \ T W,\ °f tan9mtS at the Unities of 

form 7 th\ou9h a fixed point, are all identical in 
h c h o r Z : T t h e fiMd P O i n t (*'> A the case of the chord of contact, is restricted to being without the 



curve, and in that of the tangent to being on the curve, 
while in the case of the locus just described it is any point 
whatever, it follows that the tangent and chord of contact 
in the parabola are particular cases of the locus, clue to 
bringing the point (x', y') on the curve, or outside of it. 

62. A Diameter of a curve is the locus of the middle 
points of parallel chords. 

To find the equation of any diameter. 

Let (x, y) be the middle point P 
of the chord P 'P" ; (»', y') the point 
P' or P " ; 0 the inclination of P'P" to 
the axis of z, the axis of the curve; 
r tbe length of PP', half the line 
P'P". Then 

x' = AM + MN = z + r cos 0; 
y' = NR + RP' = y + r sin 0. 

Now as P' is on the curve, its co-ordinates x', y' will sat-
isfy the equation of the curve if = 2px, giving 

(y + r sin 0)2 = 2p (x + r cos 0), 

or J-2 sin2 0 4- 2r (y sin 0 — p cos 0) + y2 — 2px = 0, (1) 

from which quadratic we can determine the two values of r. 
But as (z, y) is the middle point P of the chord, the two 
values of r are numerically equal with contrary signs; 
therefore (Alg, Art. 135), the coefficient of the first power 
of r vanishes, giving us 

y sin 0 — p cos 0 = 0, 

which represents the locus of the middle point P of the 
chord P'P". Hence the required equation of any diameter is 

y =p cot 0. (2) 

\ ' • 

Since p ,s fixed for any given parabola, and 0 is constant 
for any given system of parallel chords, the second member 
of (2) ,s constant; and therefore it is a right line parallel 
to the axis of * (Art. 22, I, Cor. 2). Hence, every diameter 
is a right line parallel to the axis of the parabola. By giving 
to 0 a suitable value, equation (2) may be made to represent 
any right line parallel to the axis. Hence it follows that 
every right line parallel to the axis of the parabola is a 
diameter ; that is, it bisects some system of parallel chords. 

S C H - T O draw a diameter of a parabola, draw any two 
parallel chords bisect them ; the line passing through the 
points of bisection is a diameter. 

- W l 
63. To find the equation of the parabola referred 

to any diameter and the tangent at its vertex. 
• Let (m, n) be any point A' on the 
parabola; take this point for the 
new origin, and draw through it 
the diameter A'X' and the tangent 
A'Y' for the new axes of co-ordi-
nates. Let X'A'Y' = (3 • then 
(Art. 54), 

tan ß = P - = l . 
y n Fig. 59." 

Let [x y) be any point P on the curve referred to the 
old axes AX and AY. Draw PM' parallel to A'Y' and 
draw PM, M'N, and A'L parallel to A Y ; then ' 

* = AM = AL + A'M' + M'R = m + x> + y C0Sjö . 

y = MP = L A ' + RP . -f y' sin ß. 

Substitute these values of z and y in the equation 

'' r. y2 = 2px, 
and obtain (n + y> sin ß)* = 2p (m + z'+ y' cos Ö). 

( 1 ) 

(2) 



or y'2 sin2/3+2y' (n sin/3—;; cos (3) + (n2—2pm) = 2px'. (3) 
p cos/3 

But n =istj3 = ? skT(}> 
n sin 0 — p cos (3 = 0; 

also, since A' is on the curve, its co-ordinates in, n will 
satisfy if = 2px, giving us, 

n2 = 2pm. 

Hence (3) becomes y'1 sin2 /3 = 2px', 

= 

Putting = 2p', and dropping the accents from 8111 P 
x and y, since they are general variables, we have 

f = 2p'x, ( 4 ) 

which is the required equation, and is of the same form as 
the corresponding equation referred to the axis of the curve 
and the tangent at the principal vertex. 

SCH.—We might have obtained equations (1) and (2) 
from the formulas to pass from rectangular axes to oblique 
(Art. 35, Cor. 1), by remembering that, since the new axis 
of x is parallel to the old, « = 0, and therefore sin « = 0, 
and cos « = 1. 

COR. 1.—Solving equation (4) for y, we have 
y = ± 

which shows that, for every positive value of x, there are 
two real values for y, numerically equal, but with contrary 
signs. These two values, taken together, make up a chord 
parallel to the axis of y, and which is bisected by the axis 
of x. Hence the axis of x bisects all chords of the curve 
parallel to the axis of y ; that is, the system of chords 
bisected by any diameter (Art. 62), is parallel to the tangeut 
at the vertex. 

P A R A M N OF ANT DTAMETER. NO 

The o r i t s e q u a ^ 

P a r a m e t e r of the diameter that i . tóken a s the azi8 „ , „ 

»"> ^ point, on the 

therefore, ^ ^ ^ 

to the foeuT f " Vertex of t h a t diameter 

By Art. 56 we have, in Pig. 
FA ' = AL + A F L + 

and by Art. 63, ' 
_ n? 

m~2~p~^P c°t2 /* (since n=p Cot(3); 

therefore « + i p = i p c o t 2 / 3 _ 
2 sin2/3 ~ 

hence, J p _ __ 
sin2 (3 ~ 4J?A-

But (Art. 63, Cor. 1) ;H fu 
s i n 2 ^ 18 t h e Parameter of the 

refe^el to ^ *> a parabola 
vertex ' the at Us 

The equation of a right line referred to oblique axes is of 
the same form (Art 00 f v \ „ 1 1 o f 

lar axes • J l . i T ' } 3 8 w h e n r e f e r r e d t o rectangu-
axes, also the equation of the parabola referred to any 



diameter and the tangent at its vertex is of the same form 
(Art 63) as when referred to the axis of the curve and tan-
gent at the principal vertex. Hence, the investigation of 
Art. 54 will apply without any change to the equation 

if = 2jo'x, 

giving us the required equation, 
yy' = P' (* + *')• 

COB.—Making y = 0 in this equation, we get x = — x', 
which shows that the taugeut cuts any diameter on the left 
of its vertex, at a distance equal to the abscissa of the point 
of contact. Hence, the subtangent to any diameter of a 
parabola is bisected at the vertex. 

66. To find th - polar equation of the -parabola, the 
focus being the pole. 

Let F P = r, X F P = 0; then we 
have, from the definition of Art. 52, 

F P = O M = O F + F M ; 

that is, r =2) + r cos 0 ; 

therefore, ( 1 

which is the required equation. 

COR.—When 0 = 0, r = = oo, which shows that 

the radius-vector which coincides with the axis does not 
meet the curve, or rather meets it at an infinite distance. 
For any value of 0 > 0, however small, r is finite, which 
shows that if a line be drawn from the focus making any 
angle, however small, with the axis of the curve, it will 
meet the curve at a finite distance. 
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When 0 = 90°, r = p , a s ifc s h o u i d . VVhen 0 = 180° 
r
0Z S±o&S !t Sh0uld' since AF= iP (Art. 53). When 

- 270 , r = p , as it should. The two values of cor-
responding t o 90° and 270°, taken together, make the 
parameter of the axis of the curve, which is again seen to 
oe equal to 2p, as it was shown to be in Art. 5 3 ^ . 3. 

H , 67;'; f t°nlp,aSSln(J thr°Ugh the f°cus °f a section %8 called a F o c a l Chord. 

I f tangents are drawn at the extremities of any 
focal chord of a parabola: 

I. The tangents will intersect on the directrix. 
it. Ihe tangents will meet at right angles 

111. The line drawn from the point of intersection 
of the tangents to the focus will be perpendicular to 
the focal chord. 

I. The tangents will intersect on the directrix. If the 

• P T b * ° ] a m e e t a t t h e l ' o i n t the equa-
tion of the chord of contact (Art. 59) is 

yy' =p(x + x'). 

If the chord pass through the focus, its co-ordinates 
« - tP> y= o, must satisfy this equation, giving 

°=p(ip + x'); ... = _ i p ; 

that is, the point of intersection of the tangents is on the 
directrix, 

II. The tangents will meet at right angles. The equa-
tion of the tangent to a parabola (Art. 54, Cor. 2) is 

V = aX + fa (1) 



If the tangents meet at (x', y'), we have 
P_, 
2 a-

or + & = ( 2 ) 

a quadratic for determining the two values of a, which are 
the tangents of the angles that the two tangent lines.th rough 
(x', y') make with the axis of the parabola. 

Call the two roots of (2), a1 and a 8 , and we have from 
Algebra, Art. 140, 

From (1) we have x' = — \p, which in (3) gives 

a1a2 = — 1, or 0, = — — ; 
a% 

that is, the two tangents are perpendicular to each other 
(Art. 27, Cor. 1). 

III. The line drawn f rom the point of intersection of 
the tangents to the focus loill le perpendicular to the focal 
chord. The equation of the right line passing through the 
focus and the point (s', y'), by Art. 26, is 

From (I), x' = — \p, which in (4) gives 

y = - f { * - i p ) - (5) 

The equation of the chord of contact (Art. 59) is 
yy' =p (* + A 

which becomes for the focal chord, 

y=V,{x-\p), (6) 

which is perpendicular to (5), by Art. 27, Cor. 1. 

E X A M P L E S . 

1. Find the intersections of the parabola f = 8s and 
the line 3y — 2x 8 = 0. (2, 4) L d (8, 8) 

F m d e q u a t i o n o f t h e "'ght line passing through 
the focus of the parabola f = 4s, and making an angle of 
4o with the axis of the curve. Ans. y=x~ l . J 

3. Find the points in which the focal chord, u = x - l 
intersects the parabola, %f = 4x. 

Ans. (.3 ± 2V2, 2 ± 2V2). 
,, 4 F l n d t h ° e <lu a f c i o n the right line passing through 
ordinate^ a n y p a r a b o l a a n d t h e extremity of the focal 

A ns. y = 2x. 
5 Find the equation of the circle which passes through 

the vertex of any parabola and the extremities of the double 
ordinate through the focus. Ans. f = y x _ ™ 

t h e ' v f r i f ^ 3 q U a t i ? D ° f t h e d r C l e w h i c h ' P ^ e s through 
the vertex of the parabola f = 12s and the extremities of 
the double ordinate through the focus. 

Ans. y* = 15a; _ 

ml 'hn l l f . t e q " f ° n S ° f t h e t a n g e n t a n d n o r m a l to any parabola at the extremity of the positive ordinate through 

the focus. Ans. y = x + and y + x = | / 

J a h l 1 1 * ^ ? U f T ° f t h G t a n S e n f c a n d n o r m a l to the Z t t \ t l ' ^ t h e G X t r e m i t y ° f t h G P° s i t i v e 
through the focus. Ans. y = * + l ; y + jB = 8 . 

9. Find the point where the normal in Ex. 7 meets the 
curve again, and the length of-the intercepted chord. 

Ans. (|p, 3p); length of chord = 4p^2. 

AO- Find the point where the normal in Ex. 8 meets the 
curve again, and the length of the intercepted chord. 

Ans. (9, - 6) ; length of chord = 8V2. 



11. Find the point in a parabola where the tangent is 
inclined at an angle of 30° to the axis of x. 

Ans. ($p,pV3). 

12. Prove that the normal at any point of a parabola 
bisects the angle between the focal line and the diameter 
massing through that point. [See Art. 56.] 

13. Prove that the quantity 2p', in equation (4) of Art. 63, 
which in the corollary of that article was called the parame-
ter, is equal to the double ordinate passing through the 
focus. [See Art. 64.] 

14. On a parabola whose latus rectum is 10, a tangent is 
drawn at the point whose ordinate is 6, the origin being at 
the principal vertex ; determine where the tangent cuts the 
two co-ordinate axes. Ans. (— 3.6, 0) and (0, 3). 

15. Determine where the normal in the preceding exam-
ple, at the same point, if produced, will cut the two axes. 

Ans. (8.6, 0) and (0, 10.3). 

16. Find the angle which the tangent in Ex. 14 makes 
with the axis of z. Ans. 39° 48' 20". 

17. In the parabola y2 = 12a;, find the length of the per-
pendicular from the focus to the tangent at the point whose 
abscissa is 9. Ans. 6. 

18. In the parabola y2 = Sx, find the length of the nor-
mal at the point whose abscissa is 6. Ans. 8. 

19. Prove that the circle described on a focal chord as a 
;.iameter is tangent to the directrix. 

20. Prove that the tangent at any point of a parabola will 
meet the directrix and latus rectum produced, at two points 
equally distant from the focus. 

21. Prove that a right line drawn from the point of the 
parabola of which the abscissa is 4p, and cutting the axis at 
the point x = 2p, will, if produced, meet the curve again at 

t £ 2 S " D B ° A « P * * * W N G 

—4«2\ 
W " —stY 

24. Show that the line y= 2x + ? cuts «2 , • 
incident points. 2 C U t s ^ = 4 a x ™ co-

p o f n i r t h a t ^ a l S ° ° U t S + = " in coincident 

J : ; T - ^ t T u ~t6y=13 is a *** to 

26 Tangents are drawn from the point ( - 2 5) to the 
parabolay2 = Gx: find the equation of the c h L of i l ^ 

9* 01 „ Ans- 3x~oy= 6. 
¿7. Show that the equation y 2 - 8 y - 6 r -4- y s _ n 

sents a parabola whose vertex is at the poin+t 2 4) X s t 
latus rectum is 6, and whose axis is parallel to ihe axis o f T 

28. Show that the equation a* + 4ax + 2ay = 0 repre 
sents a parabola whose vertex is at the point ( J / I I 
whoseflatus rectum is 2«, and whose axis is pariuel t i t t 

J £ I t V * 6 T ° r d r t e S ° f t h e f 0 C U S a n d t h * equation of the directrix of each of the following parabolas : 

(l)y2 = 5x+10; (2) x2 - 4x +2y = 0 ; 

(3) (y - 2 ) 2 = 5 ( x + 4). 

, f ( 1 ) ( - | - 0 ) , 4 . r + i 3 = 0 ; 
Ans.j (2) (2, |), 2y = 5 \ 

(3) ( - V , 2), 4x + 21 = 0. 

( 
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30. If perpendiculars be let fall on any tangent to a 
parabola from two given points on the axis equidistant from 
the focus, show that the difference of their squares will be 
constant. 

31. Show that two tangents to a parabola which make 
equal angles respectively with the axis and directrix, but 
are not at right angles, intersect on the latus rectum. 

32. From any point on the latus rectum of a parabola 
perpendiculars are drawn to the tangents at its extremities: 
show that the line joining the feet of these perpendiculars 
touches the parabola. 

33. Show that if tangents be drawn to the parabola 
y2 = 4ax from a point on the line x + 4« = 0, their chord 
of contact will subtend a right angle at the vertex. 

34. Show that the locus of the middle point of a chord 
of a parabola which passes through a fixed point is a para-
bola. 

35. The extremities of any chord of a parabola being 
(x', ij), (x", y"), and the abscissa of its intersection with 
the axis of the curve being x, to prove that 

x'x" = x% y'y" = - 2px. 

36. Two tangents of a parabola meet the curve in (x', y') 
and (x", y"), their point of intersection being (x, y)\ show 
that 

x = V ^ r , y = l-

37. The latus rectum of a parabola is 10, and the radius 
vector is 25 ; find the variable angle. Ans. 36° 52' 12". 

38. The latus rectum of a parabola is 10, and the variable 
angle is 144°, the pole being at the focus; determine the 
radius vector. Ans. 2.76. 

and draw OE and OE' produced 
indefinitely Draw parallels to EE', meeting the lines OG 
and OG'. With the half of any one of .these lines, as K H 
for a radius, aud the fixed point F for a centre, describe an 
arc cutting K H at P ; this is a point of the curve; for, 
joining P a n d F, and drawing PD perpendicular to DD' 
we have KH ( = FP) : KO { = PD) : : FE : FO. 

That is, by construction we have, F P : PD :: e • I 
In the same way any required number of points in the 

curve may be found. If A and A' be found so that 
AF : AO <: e 1, 

and A'F : A'O :: e : 1, 
then A and A ; are points of the curve. Connecting all 

* Todhnnter's Conic Sections, p. 143. 

cZ-wTW, 
f! 

C H A P T E R 

T H E 

68. The El l ipse is the locus of a 
plane, so that its distance from a 
stant ratio to its distance from a fixed 
being less than unity.* w , ^ 

Prom this definition the ellipse 
may be constructed by points, 
thus: 

Let F be the fixed point, DD' 
the fixed right line, and e the 
given ratio. Draw through F the 
line OA perpendicular and EE ' 
parallel to DD'. Take 

FE ( = FE') : FO :: e : 1, 
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cZ-wTW, 
f! 

C H A P T E R 

T H E 

68. The El l ipse is the locus of a 
plane, so that its distance from a 
stant ratio to its distance from a fixed 
being less than unity.* w , ^ 

From this definition the ellipse 
may be constructed by points, 
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parallel to DD'. Take 
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these points by a line, we haye the required ellipse. The 
fixed line DD' is called the D i r e c t r i x ; the fixed point -F 
is called the Focus; OG and. OG' are the F o c a l Tan-
gents; A and A' are the V e r t i c e s ; and C, the point 
midway between them, is the Centre . 

69 .To find the distances OC and FC, Fig. 61. 
In order to find the equation of the ellipse, we first obtain 

the distances from the centre to the directrix and the focus. 
Represent AA' by 2a, and the given ratio by e. Then 

we have (Art. G8) 
AF : AO : : A'F : A'O :: e : 1 (1) 

• AF : AO : : AF + A'F 

or 2a : 2 O C 

. O C = - . e 

: e : 1 
AO + A'O ; 

(Geom., Art. 296) 

(2) 

or 

Also from (1) we have 
AF : AO :: A'F - AF : A'O — AO 

: : AA' - 2AF : AA ' ; 
e : 1 : : 2FC : 2a; 

FC = ae. 
70. To find the equation of the ellipse. 
Let F be the focus, DD' the 

directrix, A and A', the vertices, 
and C the centre. Take AA' as 
the axis of x, and the perpen-
dicular through C as the axis 
of y. 

Let [x, y) be any point P on 
t'.ie locus; join F P ; draw PM 
and PD respectively perpendicular to AA' and DD'. 
resent AA' by 2a, and the given ratio by e. 

Then we have, from definition, 
F P = e- PD, 

FP2 = e2- PD2. 

( 3 ) 

or 
FM2 + MP2 = e2* OM2. 
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But FM = FC + CM = ae + z, (Art. 69) 

and OM = OC + CM == - + x 
e ' 

(ae + x)2 +y2 = e2(^ + x f . 
or . f = (1 - e2) (a2 - x% 
which is the required equation. 

COK.—When x = 0, equation (1) becomes 
f = ( l _ e2) a2 = V [by putting CB = b], 

(1) 

which in (1) gives 
or a2y2 -f b2 x2 = a2 b2, 
which may be written in the symmetric form 

t - i 
a2 b 2~ u 

(2) 

( 3 ) 

( 4 ) 

E X A M P L E S . 

Find a, b, and e in the following ellipses: 
1. 2by2+ 16^ = 400. Ans. 5 , 4 , 4 . 
2. 3s2 + i f = 12. Ans. 2, V3, 
71. Transform a

2y2 + b2x2 = a2b2 (l) 
to the vertex A'. The formulas for this transformation 
become 

x = x'-a, y = y', 
which in (1) give, after sup-
pressing accents, 

y2=b~(2ax-x2). ( 2 ) 

COR. 1.—We have (Art. 69) 

O ' C = and F ' C = ae. 
Fig. 63, 

a (1 — .-. A'F' = a( 1 - e ) , O'A' = a ( 1 ~ e ) 0 ' F ' = 
e « 

COR. 2.—When y = 0 in (1), x = ± a, which shows that 
the curve cuts the axis of x at two points, equally distant 



from the origin, and on opposite sides of it. When x = 0, 
y = ±b, which shows that the curve cuts the axis of y at 
two points equally distant from the origin, and on opposite 
sides of it. 

COR. 3.—Solving (1) for y, we get 
y= 

(V 

which shows that for every value of x between — a and + a 
there are two real values of y, numerically equal, but with 
contrary signs; hence, for every point P on one side of the 
axis of x there is a point P t on the other side of the axis, at 
the same distance from it, and therefore the curve is sym-
metrical with respect to the axis of x. When x is + «-or 
— a, y = ± 0 , and for every value of x > + a or < — a, 
the two values of y are imaginary; therefore the curve is 
limited in the direction of positive and negative abscissas by 
two tangents at A and A'. 

Similarly, solving (1) for x, we get 

which shows that for every value of y between — b and + b 
there are two values of x, numerically equal with contrary 
signs ; hence the curve is symmetrical with respect to the 
axis of y, and is limited in the direction of positive and 
negative ordinates by two tangents at B and B'. 

SCH.—Because the curve is symmetrical with respect to 
the line BB', Fig. 63, it follows that if we take CF = CF', 
and CO = CO', and draw K K ' perpendicular to 0 0 ' , the 
point F and the line K K ' will form respectively a second 
focus and directrix. 

AA' is called the Transverse or Major * A x i s of the 
ellipse, BB' is called the Conjugate or M i n o r * A x i s of 

»Called major and minor, because, from Art. 70, Cor., 6'=(1 —e*)a"; and 
.•. 6» < o* and 6 <0. 

the ellipse 1 he ratio which the distance of any point in 
th ellipse from the focus bears to the distance of "l ie same 
point from the corresponding directrix, is called the 
Eccentr i c i ty of the ellipse. 

A C e n t r e of a cur-e is a point which bisects every right 

t h : e t " ° U g h ^ to m e e t ^ " * * 

tt2^ b2~ l> 
~ X ' ' ~ y' w i l 1 a l s o ^ t y i t ; hence, if (x ' , y>) b e anv 

F on L ° n i r " e U r ' * ~ W i U b e a ^ p S P on the ellipse in the opposite quadrant, such that POP' 

;Shr an n \ p l iUeKbiSeCte,d a t „ C ; t h a t i s ' c h o r d passing 
through C is bisected at C, which is therefore the centre of 

£ tij^-ellipse. 

COR. 4.—To find the latus rectum (Art. 53, Cor 3) 
Make x = CF = (Cor. 1); denote the corresponding 

value of y by p ; we have from (1), & 

= | ( A r t . 70, Cor.); 

therefore, 2p = 2 l = i a t u s r e c t u m . 

Forming a proportion from this equation, we have 

2a : 2b :: 2b : 2p. 

That is, the. latus rectum is a third proportional to the 
major and minor axes. 

Since V = a \ 1 _ <*), (Art. 70, Cor.), we have 
b2 + a2e2 = a2; 



that is, 
Hence, 

CB2 + CF2 = a?. 
BF = a = BF'. 

COR. 5.—If (x', y') and (x", y") be any two points on the 
curve, we shall have, from equation (1), 

a n d 
b2 

— x"2 

Hence, forming a proportion, we have 
y'2 y"2 :: ( a - x') (a + x') : (a - x") (a + x"); 

that is, the squares of any ttvo ordinates totlielnajor axisof 
the ellipse are to each other as the rectangles of the segments 
into which they divide the major axis. 

It may be proved in a similar manner that the squares of 
ordinates to the minor axis are to each other as the products 
of the parts into which they divide the minor axis. 

Cor. 6.—A point is outside, on, or inside the ellipse, 
according as a2y2 + VW - aW > , = , or < 0. 

Thus, if the point is on the 
curve, as at P, its co-ordinates 
will satisfy the equation of the 
curve, giving 

a2f + b2x2 — a2b2 = 0. 

If the point is outside of the 
curve, as at B, its abscissa will 
be greater than at P, while its 
ordinate will be the same, giving 

ahf + Wx2 — a2W > 0. 

If the point is inside of the curve, as at D, its abscissa will 
be less than at P, while its ordinate will be the same, giving 

a2y2 + Vh? - aW < 0. 

Fig. 64 . 

Fig. 65 
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COR. 7 —If b = a, (1) becomes tf + y>-= * w h i e h ¡_ 
he eq t n o f a ^ ^ ^ ^ 

)je e q u a l t 0 c a c h o f c h e r-

from the d i f a n G e ° f a m j V°int ™ ellipse 
from the focus, m terms of the abscissa of the point. 

From the figure we have 

F P s = ( a e - x)2 + y2 
= (ae - x)2 + b2- ~x2 

a1 

(Art. 70, Eq. 2), 
= a2 — 2aex -f- eh? 

( s i n e + ^ = therefore, 
F P =(a~ ex). 

d i s t a n t of t l t h e * ° s i t i v e v a l u e ' si»<* it is the absolute 
^stance of P from F we are considering, and not the direc-

In like manner wefind, by writing - « f o r ^ 

F'P2 = (ae + x)2 + y* 

= a2 + 2 aex + eW; 
therefore, F ' P = « + e x . 

Hence F P + E'P = 2a • 

2 Z i Z f f r f t a n c e s of a n y ^ n t ™ ^ f r 0 m the foci is equal to the major axis. 

COR.—This result furnishes two 
other methods of constructing an 
ellipse, having given the axes. 

I- With B as a centre and CA 
as a radius, describe an arc cutting 
AA' at F and F ' ; these points are 
the foci. Now with F ' a s a centre Fig. 66. 

4 
e 

v \A 

I F " F / 
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and a radius greater than A'F' and less than AF', describe 
an arc; then with F as a centre and the remainder of the 
major axis as a radius, describe another arc cutting the first 
at the point P ; this will be a point of the curve, since 
F 'P + F P = 2a. In the same way, any number of points 
may be found; joining these points by a curve, it will be 
the required ellipse. 

II. Take a string equal in length to AA', and fix the two 
ends at F and F ' ; then press a pencil-point P against the 
string, and move it around F and F', keeping the string 
t ight; the pencil will describe an ellipse, since in every 
position of it we shall have F ' P + F P = 2a. 

73. I f a circle be described on the major axis as a 
diameter, then any ordinate of the ellipse is to the 
corresponding ordinate of the circumscribed circle as 
the semi-minor axis is to the semi-major axis. 

Produce the ordinate MP of the 
ellipse to meet the circumscribed 
circle at P'. The points P and 
P' are called Corresponding 
Points; the ordiriates MP and 
MP' are called Corresponding -
Ordinates. Denote the ordinate 
MP by y and MP' by y'. Then 
the equations of the ellipse and 
circle, referred to the centre C, Fig. 67. 
are respectively, 

= (1) 

y'*=a* - u*. (2) 

Making the x of (1) and (2) identical, the values of y and 
y' will represent corresponding ordinates. Divide (1) by 
(2), and extract the square root; and we have 
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y_ _b 
y'~a' (3. 

and forming a proportion, we have 

y • y' :: b : a. 
COR 1. In the same way it may be proved that, if a 

circle be described on the minor axis of an ellipse as a 
diameter, any abscissa of the ellipse is to the corresponding 
abscissa of the inscribed circle as the semi-major axis is to 
the semi-minor axis. [Let the student give the proof.] 

A i S R ; 2 - J ° i n P ' W i t h C ' t h e centre of the ellipse; denote 
A t P by <f>, and let (x, y) be the point P. Then we have, 
from Fig. 67, 

x = CM = CP' cos ACT' = a cos 0, (4) 

and y> = MP' = CP' sin ACP' = « sin (5) 

which in (3) gives, y = b sin 0. (6) 

These values of z and y enable us to express the position 
of any point on an ellipse in terms of a single variable. 

The angle ACP' is called the Eccentric Angle of the 
point P, and the circle described on the major axis of an 
ellipse as a diameter is sometimes called the Auxil iary 
Circle. • 3 

74. To find the equation of the tangent to an 
ellipse at any point. (See Def., Art. 42.) 

Let (*', y') and (x", y") be any two points on the curve. 
I he equation of the secant through these points (Art. 26) is 

= ( * - * ' ) • (1) 

Since (x', y') and (x", y") are on the ellipse, they will 
satisfy the equation of the ellipse, giving us 

« y * + a v * = aw. (2) 
a*y"2 + ¿V'2 = aW. (3) 
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Subtracting (3) from (2), factoring, and dividing, we 
have 

y' - y" _ (*' + A 
x' - x" ~ a2 \y' + y'T 

which in (1) gives 

When the points become consecutive, x"=x' and y"= yf; 
hence (4) becomes 

Clearing of fractions, transposing, and substituting for 
« Y 2 + W 2 its value, aW [see (2)], we have 

a?yy' + Pzx' = aW, (6) 

which is the required equation of the tangent. 
This equation may be written 

VhJ J2
 m 

in -which 5-, is the tangent of the angle which the dhj 
tangent line at the point ( x y ' ) makes with the axis of x. 

COR. 1.—We may write the equation of the tangent in 
terms of the tangent of the angle which the tangent makes 
with the major axis. 

Since the tangent is a right line, its equation may be 
written in the form 

y = mx 4- w. (8) 

Writing (6) and (8) in the form 
^ + = 1, (9) 
a2 IP ' K ' 

-™x+Y = i , ( io) n n 

« a ^ j w i s ? a e -
. o 

* = P = C T . 

The subtangent MT (Art. 43), 

= CT - CM = a2t _ j 
X 
a2 — x'2 

X ' Fig- 68. 

This principle enables us to draw a tangent to an ellipse 
at a given point. Let P be any point on the ellipse X f s 
On AA describe the circle; and at P', where he o r c W e 
of the elhpse at P, prolonged, meets the circle, draw the 
t a l e n t P 'T; join TP, and it will be the taugeit „ 

^ — - A 

TANGENT TO THE ELLIPSE. 

x '
 m J/' 1 

7* = ~ ~ and I ~ 1 . a n b2 ~ n' 
- d therefore, since g ) ' + ( | ' / = l ( A r , ^ ^ ^ ^ 

we have " ( f ) V 

which gives = a h n i + 

« = 4 - a / « 2 ? « 2 - f ¿ 2 -

which in (8) gives n * ± ( m 



75. To find the equation of the normal at any 
point of an ellipse. 

Let (x' , y') be the point ; the equation of the tangent at 

b2x , W- n \ 

The equation of a right lino through (x', y') perpendicu-
lar to (1) is, by A r t 27, Cor. 2, 

, « V , 
y-y' = w { x ~ x ) ' m 

which is the required equation of the normal at the point 
y'Y 

COR. 1.—To find the point in which the normal at (x1, y') 
cuts the axis of x, we make y = 0 in (2), and get, after 
reduction, 

a2 - S2 

x = • = C N 

= e V (Art. 70, Cor.) 

The subnormal NM (Art. 43), 
2 A2 

= C M — C N = x' — x' CI 

f ^ 
h / / 1 Ya\T 

I F ' C 
\ R 
\ / 

/ 
- " F M J 

Fig. 69. 

SCH.—The expression CN = EV enables us to draw a 
normal, either through a given point on the major axis or 
at a given point on the curve. For, in the former case, we 
have given CN to find CM = x', and in the latter case CM 
is given, to find CN = x. 

COR. 2.—By A r t 71, Cor. 1, we have 

F ' C = F C = ae; 

therefore, by Cor. 1 of the present Art., we have 

F ' N = e (a ex') 
and FN. = e (a — ex'). 

Hence,F 'N : F N :: : : : F p : F P ( A r t > 7 2 ) . 

That is, the normal of an ellipse cuts the distance between 

of cant a T ^ T n PrfP°rtional to th° ^jacent focal radii 
of contact ; and therefore it bisects the angle between these 
jocai radii. 

COR 3 . - S i n c e the tangent is perpendicular to the normal, 

contact S angUS Witk thef0Cal radii t0 thB P°int °f 
A/Vc 

SCH. 2.—This principle af-
fords a method of drawing a 
tangent to an ellipse at a given 
point. 

Let P be the given point, 
and F P and F ' P the focal 
radii to the point of contact. 
Produce F ' P to E, making 

T F l > f n d
L

d r a w F E - D ^ w P T perpendicular to F E , 
and it will be the tangent required. 

F'g. 70. 

öl6i+n0fin?ithe l0G™°Xthe intersection of the tan 
either focus perpendicular on it from 

c equation of any tangent to the ellipse is (Art. 74, 

y = mx + V ahn2 + Iß. 

The equation of the line through the focus F perpendic-
ular to (1) is (Art. 27, Cor. 2), 

X 

y=-~{x-ae). 

J 
m (2) 



(1) becomes y — nix = Vdhri1 + b2. (3) 

(2) becomes my + x = ae. (4) 

.(3)2 + (4)2 gives, after dividing by 1 + m2, 

»3 + tf = a2, 

as tbe equation of the required locus, which is therefore a 
circle described on the major axis as a diameter. 

f , * 
77. To find the co-ordinates of the point of contact 

of a tangent to an ellipse from a fixed point. 

Let {x', y') be the required point of contact, and (x", y") 
the fixed point through which the tangent passes. 

Since (x', y') is on the ellipse, we have 

ahj2 + W 2 = aW. (1) 

The equation of the tangent at (x1, y') is 

a2yy' + VvaS = aW, 

and since this tangent passes through (x", y"), we have 

a2y"y' + Wx' = a2V. (2) 

Solving (1) and (2) for x' and y', we find 
, nWx" ± g V W 2 + ^x"2 ~ 

x = tfy"2 + W 2 

aWy" T — 
y' = ~ a2y"2 + IPx"2 

These values indicate that from any fixed point two 
tangents can be drawn to an ellipse, real, coincident, or 
imaginary, according as ah/'2 + Wx"2 - aW >, =, < 0 ; 
•that is, according as the point (x", y") is without, on, or 
within the curve. (See Art. 71, Cor. 6.) 

The line joining these two real points of contact is called 
the Chord of Contact. 

E X A M P L E S . 

1. Find the equation of an ellipse, (1) if the distance 
from the focus to the vertex = 1, and the minor axis = 10 • 
and (2) if the minor axis = the distance between the foci' 
and the major axis = 20. 

Ans. I W 2 5 Z * + 1 6 % 2 = 4 2 2 5 ; 
1 ( 2 ) ^ + 2 ^ = 1 0 0 . 

2. Find (1) the eccentricity, (2) the co-ordinates of the. 
ioci; and (3) the length of the latus rectum of the ellipse 
2 x1 + 3y2 = 1. i 

3. Is the point (2, 1) within or without the ellipse 
2z2 + 3i/2 = 12? 1 

4. Find the intersection of the ellipse 2z2 + 3w2 = 14 a n d 
the parabola y2 = ix. Ans. (1, 2), (1 - 2). 

5. Show that the line y = x + }V3Ö touches the ellipse 
2X2 + 3 y2 = 1. 1 

6. Show that the line 3y = x - 3 cuts the curve 
4z — 3y2 = 2x m two points equidistant from the axis of y. 

7. Find (1) the equations of the tangents, and (2) the 
equations of the normals, to the ellipse 2x2 + 3y2 = 35 a t 
the points whose abscissa = 2. 

Ans. (1) 4x ± 9y = 35; (2) 9x q= 4y = 6. 

8. Find the equations of the tangents at the ends of each 
latus rectum of 2z2 + 3y2 = 6. Ans. ±x±V3y = 3. 

0. Find the equations of the tangents to a2y2 + b2x2 = a2b2 

which make an angle of 60° with the axis of x. 
• Ans. y = ± -v/3x ± ^a^+Ji 

10. Find the equations of the tangents to 3a:2 -f 5w2 — if, 
which are parallel to 3y — 4x + 1 = 0. 

Ans. 4x — 3y=t VloY — 0. 



11. Find the equations of the tangents to 
a2y2 + ¿2^2 = 

which make equal intercepts on the axes. 
Ans. x ± y ± Va? + b2 = 0. 

78. Tangents are drawn to an ellipse from a given 
external point; to find the equation of the chord of 
contact. 

Let (x', y') be the external 
point P ' ; («!, yt) and (xs, y2) 
the two points P t and P 2 where 
the tangents meet the ellipse. 
Then PjPg will be the chord of 
contact whose equation is re-
quired. Fie- 7 , 1 

The equations of the tangents at ? ! and P3 are (Art. 
74) 

a?yyx + Wxxx = aW ; (1) 
ahjy2 + b*xx2 = aW. (2) 

Since these tangents pass through P' (x'y y'), the co-ordi-
nates of P' must satisfy both equations ; 

ahj'y1 + b2x'xx = aW; (3) 
dhjy2 + b*x'x2 = aW. (4) 

But (3) and (4) show that the points ( x ^ y j and (x 2 , y2) 
are both on the line whose equation is 

a2yy' + V*xx' = aW. (5) 
Hence (5) is the required equation of the chord of con-
tact PjPo. 

79. Through any fixed point a chord is drawn to 
an ellipse, and tangents to the ellipse are drawn at 
the extremities of the chord; to find the equation of 
the locus of the inter section of the tangents, whenthe 
chord is turned about the fixed point. 

Let (a;', y') be the fixed point P ' through which the chord 
passes ; and (a", y") the point P" in which the two tangents, 

drawn at the extremities Q 
and R of one position of the 
chord, intersect. It is required 
to find the locus of P", as the 
chord turns about P'. 

The equation of the chord of 
contact (Art. 78) is 

F'g. 72. 

Since this chord passes through P' we have 

« W + bW = aW. (2) 
Now, if the chord turns about the fixed point (x' v'\ thP 

S n z r ^ f t h e C O r — « g t a n g e t ^ ^ ; 
^ u" of t l i°CUS 5 t h a t i s ' <*> t h e «»-ordinate* , V °f m y Pomt 1U t h e squired locus satisfy the equation 

a2yy' + b*xx = am, (3) 

r t h U i n e ! h e r e f 0 r e * * e q " a t i ° n a n d t h e l o c u s i s * 
SCH.-The line a>yy> + VXx' = aW is called the Polar 

of the pomt (x', y') with regard to the ellipse 
ay + ¿2 C2 _ 

and the point (x', y') i s called the P o l e of the line. 

equation ^ 866 ,1 ^ " V ' ] ^ m y P ° i n t w h a t e v e r > t h e 

ahjy' + Wxx = aW 
represents the locus of the intersection of the tangents a( 
the extremities of the chord through (x' y') 

The statements in Art. 49 with respect to the circle mav 

^ A r t V n P R ^ t h G G l I i p S e 0 8 t , 1 6 y W 6 r e t 0 t h e P-abola 
b ). Hy the same reasoning, then, as in Arts. 49 and 

: WC l c a r n t h a t t h e tangent and chord of contact in the 
ellipse are particular cases of the locus just described, due 
to bringing the point (x', y') on the curve, or outside of it 



80. To find the equation of any diameter. (See 
Def., Art. 62.) 

Let (x, y) be the middle 
point P of the chord P 'P" ; 
(x', y') the point P ' or P" ; 
0 the inclination of P 'P" to the _ 
axis of x ; r the length of PP', 
half the chord P'P". Then 

x'= CM — NM = x + r cos 0, 
y'= NR + RP' = y + r sin 0. 

Now, as P' is on the curve, its co-ordinates x', y' will 
satisfy the equation of the curve, ahf + Vh? = aW, giving 

a2 (y + r sin 6)2 + IP (x + r cos Of = dW, 

i (a2 sin2 0 + IP cos2 0) r2 j 
or, \ + 2 (a2y sin 0 -f IPx cos 0) r V = 0, (1) 

( + (ahf + Vx2 — aW) ) 

from which quadratic we can determine the two values of 
r. But as (x, y) is the middle point P of the chord, the two 
values of r are numerically equal, with contrary signs ; 
therefore (Alg. Art. 135), the coefficient of the first power 
of r vanishes, giving us, 

a2y sin 0 + Px cos 6 = 0, 

or y = — ^ cot 6 • x, (2) 

which represents the locus of the middle point P of the 
'jhord P 'P" ; and is therefore the required equation of any 
diameter. 

Since a2 and IP are fixed for any given ellipse, and 0 is 
constant for any given system of parallel chords, (2) is the 
equation of a right line passing through the origin (Art. 22, 
I, Cor. 2), that is, through the centre of the ellipse. Hence, 

every diameter of the ellipse passes through its centre. By 
giving to 6 a suitable value, equation (2) may be made to 
represent any right line passing through the centre. Hence 
it follows that every right line that passes through the cen-
tre of an ellipse is a diameter; that is, it bisects some 
system of parallel chords. 

COR.—Let 6' = the inclination to the major axis of the 
diameter that bisects all the chords inclined at an angle 6 ; 
then clearly we have 

tan 9' = V-, 
x 

b2 
which in (2) gives . tan 6' = cot 6; 

a 
IP therefore, tan 6 tan 6' = — 
d2 

Hence, if 6 and 6' be the angles which a system of paral-
lel chords and their diameter respectively make with the 
axis of x, we have the relation 

tan 6 tan 6' = _ - . 
a2 

SCH.—To draw a diameter to an ellipse, draw any two 
parallel chords, and bisect them; the liue passing through 
the points of bisection is a diameter. The intersection of 
two diameters will be the centre of the ellipse.-j-

81. If one diameter of an ellipse bisects all chords 
parallel to a second diameter, the second ivill bisect 
all chords parallel to the first. 

Let 6 and 6' be the respective inclinations of any two 
diameters to the major axis! Then the condition that th(-
first diameter shall bisect all chords parallel to the second 
diameter (Art. 80, Cor.) is 

' tan 6 tan 0' = — 
a2 



146 CONJUGATE DIAMETERS. 

But this is also the condition that the second diameter 
bisects all chords parallel to the first. 

SCH.—Two diameters are Conjugate when each "bisects 
all chords parallel to the other. 

Because the conjugate of any diameter is parallel to the 
chords which the diameter bisects, therefore the inclinations 
of two conjugates must be connected in the same way as 
those of a diameter and its bisected chords. Hence, if 6 and 
9' are the inclinations, the equation of condition for conju-
gate diameters is (Art. 80, Cor.), 

tan 0 tan 6' = — a? 
Since this condition shows that the tangents of inclina-

tion of any two conjugate diameters have opposite signs, it 
indicates that one of the two conjugates makes an acute 
angle with the major axis, and the other an obtuse angle. 
The minor axis makes a right angle with the major axis; 
therefore, conjugate diameters of an ellipse lie on opposit« 
sides of the minor axis. 

82. The tangent at either extremity of any diam-
eter is parallel to its conjugate diameter. 

Let (x', y') be either extremity of any diameter; 0 the 
inclination of its conjugate to the major axis. Since (x1, y') 
is on the diameter, its co-ordinates will satisfy its equation, 
giving us (Art. 80), 

b2 
y' = — - cote n CI 

J V 
therefore, tan 6 = (1) ct y 

But, Art. 74, Eq. (7), the equation of the tangent at 
lx', y') is Px' , P , o x 

y = ~ w x + f ( ) 

therefore, the tangent at the extremity of any diameter is 
parallel to its conjugate diameter. 

M -
LENGTH OE A I) I A METER. 

83. Given the co-ordinates x', y> of one extremity 
of a diameter, to find the co-ordinates x", y" of 
either extremity of the conjugate diameter. 

Since the conjugate diameter passes through the origin, 
and s parallel to the tangent at (x', y'), by Art. 82, there 
tore its equation (Art. 74) is 

b*x' 
y = . ( i ) 

Substitute this value of y in the equation of the ellipse, 
ay + Pz* = aw, 

and, after reducing, we obtain 

and from (1) we have y" = zp I x\ 
a m) 

The upper Sign in each of these values belongs to the 

E Z & L S * " o f t b e o r i g t a ' a n d t h e l o w e r s i g n t 0 

84 To express the lengths of a semi-diameter (a') 
and its conjugate (/>'), in terms of the abscissa of the 
extremity of the diameter. 

e t e r f i S ' i d E? ^ \ ^ extremities of the diam" eters (a) and (b); then we have 

«'2 = + y'2 = + » {a2 __ x > i ) ( A r t_ ? 1 ) 

= d2 + _ = _ _ i C ' 3 = J 8 + ^ . , S ( A r t 70> C o r } ( 1 ) 

Also, + y»* = + { A x t 8 3 ) 

= a* - + (Art. 71); 

hence, b'2 = a2 _ eV2. ^ 



COR.—Adding (1) and (2), we get 

«'3 + b'2 = «2 4- & ; 

that is, the sum of the squares of any pair of conjugate 
diameters is equal to the sum of the squares of the axes. 
[See Salmon's Conic Sections, p. 163.] 

85. To find the length of the perpendicular from 
the centre to the tangent at any point. 

Let (x', y') be the point, and p the perpendicular. The 
equation of the tangent at (x ', y') is (Art. 74), 

tfyy' + Pxx' = aW. 

Therefore (Art. 24), 

aW ab 
P = 

ab 

+ W i / « V 2 4-
Y «2 

= = = = %• (Art. 84.) 

86. To find the angle between any pair of conju-
gate diameters. 

Let <f> be the required angle 
= SCD in the figure. The 
angle between the two conju-
gate diameters is equal to the 
angle between either diameter 
and the tangent parallel to the 
other. 

From the figure, 

sin <p = sin SCD = sin CDR = — = | = ^ ¿ r (Art. 85.) 

That is, 
ab_ 

a'b' (1) 

COR.—Clearing (1) of fractions, we have 

a'b' sin <p = ab, (2) 
which shows that the parallelogram CDRS is equal to the 
rectangle CAQB. Hence, the area of the parallelogram 
•whose sides touch the ellipse at the ends of any pair of con-
jugate diameters is constant, and equal to the rectangle of the 
axes. 

SCH.—Since the sum of the squares of any pair of conju-
gate diameters, (a') and (b'), of an ellipse is constant 
(Art. 84, Cor.), the rectangle a'b' is the greatest when 
a' = b',* and therefore sin (ft is the least; or, the obtuse 
angle <P is the greatest when the conjugate diameters are of 
equal lengths. These diameters are called Equi-conjugate 
diameters. Their length is found by making a' = b' in 
the equation of Art. 84, Cor., giving 

a'* = i(d> + V>)=b'>; 

therefore, a' = V = $V2 • Va? + P. 

Therefore, by (1), sin <p = ~-, = ¿ r q r g s ' 

87. To prove that the eccentric angles of the vertices 
of two conjugate diameters differ from each other 
by 90°. 

Let <f> be the eccentric angle corresponding to the point 
D (xf, y'), and 0' the eccentric angle corresponding to the 
point S (x", y"), in Fig. 74. 

• L e t d-V = x. 

Squaring (1), a"1 - 2 a ' 6 ' + 6's = x* 

• a'' + V - x» ... a y = 

_ a' + b* -
2 

which is greatest when x = 0. 
from (1) a'b' is greatest when a' = V. 

U) 

(Art. 84, Cor.) 



Then (Art. 73, Cor. 2), we have 

x' = a cos 0, 

y' = b sin 0. 
(1) 

(2) 
Also (Art. 83), 

and 

or, 

and 

X" = ~ '̂=«cos0'(Art73,Cor.2) 

y" = - z ' = Z»sin0'; 

ct 
y' = — b cos 0', 

x' = a sin <p'. Divide (2) by (1), and get 
y' b , -, = - tan <b. x a r 

Divide (4) by (3), and get 
x « , y' = 

(3) 
(4) 

(5) 

(6) 

Multiply (5) by (6), and get 

tan 0 tan <p' = — 1, 
or, tan 0 tan <p' -f 1 = 0. 

Therefore (Art. 27, Cor. 1), the two angles 0 and 0 ' differ 
from each other by 90°. 

88. Two chords which join 
the extremities of any diameter 
to any point on the ellipse are 
called Supplemental Chords. 
If that diameter be the major 
axis, the chords are called Prin-
cipal supplemental chords. - ,B ... 

Thus,-DP and D'P are supple- Fig. 75, 
mental with respect to the diameter DD' ; AQ and A'Q 
with respect to the major axis. 

89. I f a chord and diameter of an ellipse are 
parallel, the supplemental chord and the conjugate 
diameter are parallel. 

Let DD' (Fig. 75) be a diameter of the ellipse; PD and 
PD' two supplemental chords, the first parallel to the 
diameter GH.. Let (x', y') be the point D, and therefore 
(— x'> ~y') will be the point D'. Let <p be the inclina-
tion of the chord DP to the major axis, and 0' the inclina-
tion of the supplemental chord D'P. Then the equation of 
DP (Art. 25) is 

y - y ' = tan 0 (x - x'), ( i) 
and the equation of D'P is 

y + y' = tan (x + x'). (2) 
Since these lines are to intersect at the point P (x, y), we 

combine (1) and (2), and get 

f — y'2 = tan <p tan 0' (x? — x' *). (3) 
And since (x, y) and (x', y') are points on the ellipse, their 
co-ordinates must satisfy the equation of the ellipse, giving 

ahf + bW = aW, 
and a y a + g^'a _ 

7 9 

from which we get y% — ?/'2 = __ (x2 x> . 
. . '... — ($" ' . 

7 0 

which in (3) gives tan 0 tan 0 ' = _ which is the con-
ae 

ditiou that two chords shall be supplemental. 
But (Art. 81, Sch.) the condition that two diameters are 

conjugate to each other is 

tan 0 tan 6' = — 
d 

therefore, if 0 = 0, we have <p' = 0'. But, as the chord 
PD and diameter GH are parallel, by hypothesis, 0 does 
equal « (if we call 9 the inclination of GH); therefore, 
0 ' = 0 ' ; or, the supplemental chord PD' and the conjugate 
diameter LM are parallel. 



E X A M P L E S . 

Find the equations of the tangents to the ellipse 
16s2 + 25y2 = 400 from the point (3, 4). 

Ans. y = 4 and 3s + 2y = 17. 

2. Find (1) the distance from the centre of the ellipse 
16s2 -f- 25y2 = 400 to the tangent making the angle of 30° 
with the major axis, and (2) the distance from the centre 
of the ellipse a2?/2 + Wx1 = a2b2 to the tangent making the 
angle <p with the major axis. 

Ans. (1) | V 7 3 ; (2) aVl — e2cos2<f>. 
3. Find the value of the eccentric angle at the end of 

the latus rectum in Ex. 2. 

Ans. (1) tan 0 = (2) tan<p = —. (16 
4. Find the distance from the centre of the ellipse 

s2 + 4y2 = 16 to the directrix. Ans. § VS. 

5. If tangents are drawn to the ellipse s2 + 4y2 = 4 from 
the point (2, 3), find the equation (1) of the chord of con-
tact, and (2) of the line through (2, 3) and the middle of 
the chord. Ans. (1) s + 6y = 2 ; (2) 2y = 3s. 

6. Show that the lines y = x, and 3s + 4y = 0 are conju-
gate diameters in the ellipse 3s2 + 4y2 = 1. 

7. Find the equation of a diameter parallel to the normal 
at the point (2, 3) in the ellipse 2s2 + 3y2 = 6. 

Ans. 9s = 4y. 
8. Find the eccentricity of the ellipse, the angle between 

the equi-conjugate diameters being 120°. Ans. £ \'(>. 

9. Find the equation of the ellipse when the co-ordinate 
axes are the major axis and right-hand latus rectum. 

s2 , y2 , 2 ex b2 

ELLIPSE REFERRED TO CONJUGATE DIAMETERS. 1 5 3 
I 

90. To find the equation of the ellipse referred to 
any pair of conjugate diameters. 

To do this we must transform the equation of the ellipse 
ahf + Vh? = aW, (l) 

from rectangular to oblique axes, having the same origin. 

Let DD' and SS' be two conju-
gate diameters. Take CD for 
the new axis of s, and CS for the 
new axis of y. Denote the angles 
ACD and ACS by 0 and 0' re-
spectively. Let x, y be the co-
ordinates of any point P of the 
ellipse referred to the old axes, 
and s', y' the co-ordinates of the same point referred to the 
new axes. 

The formulas for transformation (Art. 35, Cor. 1) are, 

s = x' cos 0 + y' cos 0', 

y = x' sin 0 + y' sin 0', 

since m and n are 0. 
Squaring, substituting in (1), and arranging, we have 

(a2 sin2 0 + ^cos 2 0 ) s ' 2 

+ (a2 sin2 0' + b2 cos2 0 
+ 2 (ÍI2 sin 0 sin 0' + b2 cos 0 cos 0 

<)s'2 J 
")y'2 [ = aW, 
" ) s y 5 

(2) 

which is the equation of the ellipse when the oblique axes 
make any angles 0 and 0' with the major axis. 

But since the new axes CD and CS are conjugate diam-
eters, we have (Art. 81, Sch.), 

tan 0 tan 0 ' = — - • 
a2 • 

or, a2 sin 0 sin 0' + V2 cos 0 cos 0' = 0 ; 

hence the coefficient of x'y' in (2) vanishes, and it becomes, 



8 == . « = a'2. (4) 

(a2 sin2 0 + ¿>2 cos8©) x'2-\- (a2sin20' + è2cos20') y'2 = aW, (3) 

which is the equation of the ellipse referred to any two 
conjugate diameters. 

In this equation, the coefficients are still in terms of the 
axes of the ellipse ; we may obtain the equation in terms of 
the conjugate diameters lying on the new axes; thus: 

If in (3) we make y' = 0, and represent CD by a', we 
have 

aW 
a2 sin8 0 + ô2 cos2 0 

Also, if in (3) we make x' = 0, and represent CS by b', 
we have 

a2£2 
y = a2 sin8 0' + b2 cos2 0' = ^ 

From (4) we get a2 sin2 0 + V2 cos2 0 = ~ . (6) (I 

From (5) we get a2 sin2 0 ' + Ô2 cos2 0' = (7) 

Substituting (6) and (7) in (3), dividing by aW, and 
omitting the accents from the variables, we have 

x 2 V2 _ 

or, a'2y2 + V*x2 = a'H'\ j[ (9) 

which is the required equation, and is of the same form as 
when referred to the major and minor axes (Art. 71). 

91. To find the equation of a tangent to the ellipse 
referred to any pair of conjugate diameters. 

The equation of a right line referred to oblique axes is of 
the same form (Art. 22, IV) as when referred to rectangular 
axes; also, the equation of the ellipse, referred to any pair 
of conjugate diameters, is of the same form (Art. 90), as 

when referred to the axes of the ellipse. Hence, the inves-
tigation of Art. 74 Will apply without any change to the 
equation a '2y2 + b'2^ = a'2b'% giving us the required equa-
tion» a'2yy' + b'2xx' = a'2b'2. (1) 

COR.—To find where the tangent cuts the axis of x 
make y = 0 in (1), and get 

7'2 
x = 

92. To prove that tangents at the extremities of 
any chord of an ellipse meet on the diameter which 
bisects that chord. 

Take the diameter CD, which 
bisects the chord PP', for the 
axis of x, and the conjugate 
diameter CS for the axis of y. 

Let (x', y') be the point P ; 
then (x', — y') will be the 
point P'. 

The equation of the tangent 
at P (Art. 91) is 

a'2yy' + b'2xx' = a'2b'2. 
The equation of the tangent at P' is 

— a'2yy' + b'2xx' = a'2b'2. (2) 
By Art. 91, Cor., both tangents cut the axis of x at the 

¡a'2 \ 
point y-^r, 0j, which proves the proposition. 

93. I f tangents are drawn at the extremities of 
any focal chord of an ellipse: 

I. The tangents will intersect on the corresponding 
directrix. 

II. The line drawn from the point of intersection 
of the tangents to the focus will be perpendicular to 
the focal chord. 



I. If the tangents to an ellipse meet «at the point (x1, y'), 
the equation of the chord of contact (Art. 78) is 

ahjy' + V*xx' = aW. 

If the chord passes through the right-hand focus, its co-
ordinates (x = ae, y = 0) must satisfy this equation, giving 

Paex' — a2b2; 

therefore x' = -; (1) c 

that is, the point of intersection of the tangents is on the 
corresponding directrix (Art. 71, Cor. 1), showing that the 
directrix is the polar of the focus. (Art. 79, Sch.) 

II . The equation of the right line passing through the 
right-hand focus and the point (x', y') is, by (Art. 26), 

y = , V' (x - ae). (2) J x — aex 

From (1), x' = which in (2) gives 

= ^ (x _ ae). (Art. 70, Cor.) (3) 

The equation of the chord of contact (Art. 78) is 
W , V2 

which becomes, for the focal chord [since x' = from (1)], 
6 

y = >«+->, (4 

•
 aey y 

which is perpendicular to (3), by Art. 27, Cor. 1. 

94. Find the locus of the point of intersection of 
two tangents at right angles to each other. 

The equation of any tangent to the ellipse, by Art. 74, 
Cor. 1, is 

y = mx + V ahn? + V1. (1) 
The equation of the tangent at right angles to (1) is 

y = - ~ x + \ / + (2) a m V m* v ' 
Clearing (2) of fractions, and transposing in both (1) and 

(2), we get, 

from (1), y — mx = Va*ni2 4- (3) 

and from (2), ym + x = Va? + Wm2. (4) 

Adding the squares of (3) and (4) together, and dividing 
by the factor (1 + to2), we get 

a? + y2 = a2 + V2, (5) 
which is the locus required. Hence, the locus is a circle 
with its centre at C, and Va2 + V2 for its radius. [See 
O'Brien's Co-ordinate Geometry, p. 118.] 

95. The rectangle of the focal perpendiculars upon 
any tangent is constant, and equal to the square of 
the semi-minor axis. 

Let p and p' be the perpendiculars, and b the semi-minor 
axis. 

The equation of the tangent at any point (x', y') is 
a2yy' + Pxx' = aW. 

By Art. 24, we have 
IJhiae — aW b(a — ex') 

p = — 
Va*y'2+b*x'2 /a2 V* 

= ^,(a- ex'). (Art. 84.) 



Similarly, p' = b-(a + ex'). 

Hence, 
J)2 

PP' = y2 (fl i ~ Ac'2) = & (since a2 - e V 2 = b'2, Art. 84). 

96. To find the polar equation of the ellipse, the 
focus being the pole. 

L e t F ' P = r ; A F ' P = 0; d p — 
then, by definition, Art. 68, 
we have, 

or 

F T = e • PD 

= e (OF' + F'M) 

= e • OF' + e • F'M F i g . 78> 

= a (1 — e2) + e • F ' P cos AF 'P 

[since OF' = , b y A r f c . 71> C o r . . • 

r = a ( 1 — e2) + er cos 0; 

therefore, 
1 — e cos 0 ' (1) 

which is the required equation, the pole being at the left-
hand focus. 

C o R . - W h e n 0 = 0, r = = a + ae; which 

makes F'A = a + ae, as it should do. (Art. 71, Cor. 1.) 

For the point B, at the extremity of the minor axis, 

— B - ? . 
which substituted for cos 0 in (1), gives 

~ 1 - — ' r 
therefore, r = a ; 

that is, F 'B = a, as it should (Art. 71, Cor. 4). 

When 0 = 90°, r = a ~ ^ = ^ (by Art. 70, Cor.), as 

¿2 
it should; that is, F'E, the semi latus rectum = — (which 

agrees with Art. 71, Cor. 4). 

When 0 = 180°, r = a F ~ ^ = a - ae, which is the l + e 
ralue of A'F', as it should be (Art. 71, Cor. 1). .... 

97. To find the polar equation of the ellipse when 
the pole is at the centre. 

The formulae for passing from a rectangular to a polar 
system (Art. 36), are 

x = r cos 0, y = r sin 0. 

Substituting these values of x and y in the equation 

aY + ¥x2 = aW, 

and solving for r2 we find 

aW V-
r2 = a2 sin2 0 + V2 cos2 0. ~ , a2-b2 ' 

1 s— cos2 0 

- " = 1 = 7 5 ( A r t 70, Co,) . (1) 

S R SCH.—Equation (1) shows that, for every value of 0, 
r has two values, numerically equal, with contrary signs. 
These two values of r, taken together, make the diameter; 
hence, every diameter of the ellipse is bisected at the centre 
(see Art. 71, Sch.). 



Also, it is evident from (1) that the value of r is the 
same for 0 and (77 — 0). 

It is equally evident, from (1), that equal diameters make 
supplemental angles with the major axis. 

Therefore, in the case of equi-conjugate diameters, 
0' = n — 6; and hence tan 0' = — tan 0; 

which, in the equation of condition for conjugate diameters 
(Art. 81, Sch.), gives 

b tan2 0 = -„ or tan 0 = ± ~ . 
a 

Hence, the equi-conjugate diameters of an ellipse are the 
diagonals of the rectangle constructed on its tivo axes. 

COR.—When 0 = 0 or 180°, r = ± a; when 0 = 90° 
or 270°, r= ±b. 

It is evident from equation (1) that r is the greatest possi-
ble when 0 = 0, giving r = ± a; and the least possible 
when 0 = 90°, giving r = ± b. Hence, in every ellipse 
the transverse axis is the greatest, and the conjugate axis is 
the least diameter. For this reason, the transverse and 
conjugate axes of an ellipse are called the major and minor 
axes respectively. (See Art. 71, Sch.) 

98. Any chord which passes through the focus of 
an ellipse is a third proportional to the major axis 
and the diameter parallel 
to the chord. 

Let PP ' be any chord of the 
ellipse passing through the fo-
cus F ; and DD' the diameter 
parallel to PP'. Put PF = r, 
P 'F = r', and AFP = 0. 

Then (Art. 96), 

r = = « i L = *L a n d 1 + e cos 0 l — e cos 0 

Therefore PP' = r + r' = f l 1 — e2 cos2 » 
2 A2 

(Art. 70, Cor.). (1) a (1 — (¿cos2©) 

From Art. 97, 0 1 ? = _ ( 2 ) 

Dividing (1) by (2), we get 

22^ = - , or PP ' • 2a = 4CD2 ; 
CD2 « 

therefore, 2a : 2CD :: 2CD : PP'. 

E X A M P L E S . 

1. Find the semi-axes of the ellipse 3y2 +2¡c2 = 6. 

Comparing this equation with '— + jx = 1, we find d v» 

a = V3, and b = V2, Ans 
2. Find the semi-axes of the ellipse 4y2 + 3x2 = 19. 

Ans. a = b = 
3. Find the points of intersection of the parabola y2 -= 4a: 

and the ellipse 3y2 + 2s2 = 14. Ans. (1, 2) and (1, — 2). 

4. Find the equation of a tangent to the ellipse 
3 y2 + 2x2 = 35, 

at the point whose abscissa is 2. Ans. 9y -f \x — 35. 

5. Find the eccentricity of the ellipse 2x2 + 3y2 = d2. 

Ans. Eccentricity = V\. 
6. Find the equation of the tangent to the ellipse at the 

end of the latus rectum ; also, find the lengths of the inter-
cepts of this tangent on the two axes. 

Ans. y + ex = a; the intercepts are ^ 011 the axis of x, 
and a on the axis of y. 



7. Write the equation of the normal at the end of the 
iatus rectum. % 

Ans. y + ae2 = 

8. Find the equation of the line through A'B, and also 
through OH (Fig. 78); and find the eccentricity of the 
ellipse if these two lines are parallel. 

• I 

y = -(z + a); y = Ans. i» ~ * ~ a2e 
the lines are parallel if 2e2 = 1. 

9. Find a point on the ellipse such that the tangent at 
the point is equally inclined to the two axes. 

. a2 V2 
Ans. x=-—== y = 

Va2 + b2' Va2 + IP 
10. Find a point on the ellipse such that the tangent at 

the point makes intercepts on the two axes that are propor-
tional to the axes. . a b 

Ans. x = —, y = ——. 
V2 V2 

11. Express the equation of the tangent at any point of 
an ellipse in terms of the eccentric angle at that point. 

cc y Ans. - cos é 4- f sin <p = 1. a b 
12. Find the angle (0) at which the focal radius F 'P 

(Fig. 78) is inclined to the major axis, when F 'P is a mean 
proportional between the semi-axes of the ellipse, when 
a = 50 and b = 30. - 3V3 

Ans. cos 0 — — • 
4a/5 

Show that the equations of the tangents to the ellipse 
3x2 y2 = 3, and inclined at an angle of 45° to the major 
axis, are y = x + 2, y = x — 2. 

14. If the semi-axes of an ellipse are 5 and 4, find the 
angle at which CP is inclined to the major axis, when it is 
an arithmetic mean between a and b. 

Ans. cos 0 = ± 2<y\/Ï7. 

15. Find the length of the normal NP, in Fig. 69, and 0* 
RP. [See Art. 75, Cor.] 

Ans. NP = —, and RP = y (where a and b are the 

semi-axes, and b' is the semi-diameter conjugate to the 
diameter passing through the point P). 

16. Prove that the equi-conjugate semi-diameter is to the 
semi-diagonal on the axes as 1 is to V2. 

17. In the ellipse, whose axes are 8 and 6, find the altitude 
of the circumscribed parallelogram whose sides are parallel 
to the equi-conjugate diameters. 

[Find a' by Art. 86, Sch.; then alt. = area 2a', Cor.j 
Ans. 6.79 nearly. 

y- 18. In an ellipse whose axes are 12 and 8, what is the 
length of the diameter from the point whose eccentric angle 
i s 6 0 ° ? 2V21. 

19. If from the vertex of any diameter right lines are 
drawn to the foci, prove that their product is equal to the 
square of half the conjugate diameter. 

[This follows immediately from Arts. 72 and 84.] 

20. Find the locus of the intersection of tangents at the-
extremities of conjugate diameters. cs2 y2 

A n S - a2+¥ = 2 ' 
[This is easily obtained by squaring and adding the equa-

tions of the two tangents, observing the relations of Art. 83. 
(See Salmon's Conic Sections, p. 198.)] 

21. Find the locus of the intersection of a tangent with a 
perpendicular on it frpm either focus. Ans. y2 = a2. 

[This is readily obtained by writing the equation of the 
tangent in the form of (11) in Art. 74, and adding the 
square of it to the square of the equation of the perpendicu-
lar on it from either focus.] 



22. Find the locus of the vertex of a triangle, having 
given the base = 2in, and the product of the tangents of the 

P 
base angles = 

[Take the base and a perpendicular to it at the middle 
point for the axes.] A ns. The locus is Px1 + n2y2 — Pm2. 

23. Find the polar of either focus of the ellipse ; also, of 
either vertex of the minor axis. A n g x _ ± a y __ ± b 

6 

S 24. Find the equations of the tangent and normal at the 
extremity of the latus rectum ; and determine the eccen-
tricity of the ellipse in which the normal mentioned passes 
through the extremity of the minor axis. 

Equation of tangent is ex + y = a; 
" " normal " x — ey = ; 

Ans. 

-Y/l 
25. The ordinate of any point P on an ellipse is produced 

to meet the circumscribed circle at P ' ; prove that the focal 
perpendicular upon the tangent at P' is equal to the focal 
distance of P. 

[Use Equation 7, Art. 42, for the tangent at P' ; then, 
Art. 24, p = (after a little reduction) a — ex = r. (Art. 72.)] 

26. In an ellipse, prove that the rectangle of the central 
perpendicular on any tangent, and the part of the cor-
responding normal intercepted between the axes, is constant, 
and equal to a2 — V2. 

[By Art. 85, p = % ; by Ex. 15, NK = 

etc.] 
27. Find the sum of the focal perpendiculars on the polar 

of (x',y'). 

By Arts. 78 and 24, 

2 aW 2 ab P -rp' = 
Va*y'2 + b*x'* /a2 „ 

if ix'< y') t>e on the ellipse, this value 

2ab %ab , , 
= -r>- (Art. 84); 

Va2- e V^ 
if lx>> y') be at the right focus, it equals 

2ab __-2a 
be ~ e ' 

(Compare with Art. 71, Cor. 1.)] 

28. Prove that the sum of the reciprocals of two focal 
chords at right angles to each other is constant. 

[Find the focal chord PP ' by Art. 98, and the one per-
pendicular to it by putting sine for cosine; adding the 

reciprocals, we get — ^ 2 ~ ^ = a constant.] 

29. If the axes of an ellipse be in the proportion of 
V2 : 1, any parabola described on the minor axis as axis, 
and having its vertex at the centre, will cut the ellipse at 
right angles. 

The equations of the ellipse and parabola are 

ay + Vh* = aW, (i) 
and a;2 _ 2py, (2) 

respectively. Call 6 and $ the angles which the tangents 
to the two curves at their point of intersection make with 
the axis of x ; and the angle which the tangent at (2) 
makes with the axis-of y. 

Then tan 0 = — Fx' 

tan tf>' = 4 = cot 
CO 



hence, tan (f> = ^ ; 

J)2X'2 2J8 

tan 0 tan 0 = - — = — — (since ^ = 2py'). (3) 

Now, as a : b :: : 1, we have «2 = 2S2, which in (3) 
gives 

tan 0 tan 0 = — 1 ; 

therefore the two tangents, and hence the two curves, at 
their point of intersection, cut each other at right angles. 
[See O'Brien's Co-ordinate Geometry, p. 128, where this 
example is incorrectly solved.] 

30. Putting p and p' to denote the focal radii of any 
point on an ellipse, and 0 for its eccentric angle, prove that 

p = a (1 — e cos <p), 
p' = a (1 + e cos 0). 

31. From the centre of an ellipse, two radii-vectores are 
drawn at right angles to each other, and tangents to the 
curve are formed at their extremities; prove that the tan-
gents intersect on the ellipse 

£ 4- t _ I 4. 1 
c4 ^ b* ~ a2• V2' 

32. Express the equation of the normal at any point of 
an ellipse in terms of the eccentric angle of the point. 

cc ?/ A?is. - cos 0 4- '4 sin 0 = 1 . a b 
33. Show that the equation of the locus of the poles of 

normal chords of an ellipse is 

xhf (a2 — b2)2 = (fly2 + b«z2. 
34. Show that the locus of the point of intersection of 

tangents to an ellipse at two points whose eccentric angles 
differ by the constant 2a is the ellipse 

x2 y2 

? + = • 

C H A P T E R V I I . 

1 
T H E H Y P E R B O L A . 

99. The H y p e r b o l a is the locus of a point moving in a 
plane so that its distance from a fixed point bears a constant 
ratio to its distance from a 
fixed right line, the ratio 
being greater than unity.* 

From this definition the 
hyperbola may be construct-
ed by points, thus: 

Let F be the fixed point, 
DD' the fixed right line, 
and e the given ratio. Draw 
through F the line OAF 
perpendicular and EE' par-
allel to DD'. Take 

FE ( = FE') : FO : : c : 1, Fig. 8 0 

and draw OE and OE' produced indefinitely. Draw paral-
lels to EE', meeting the lines OG and OG'. With the half 
of any oue of these parallels, as. KII, for a radius, and the 
fixed point F for a centre, describe an arc cutting KH at P ; 
this is a point of the curve. For, joining P and F, and 
drawing PD perpendicular to DD', we have 

K H ( = FP) : KO ( = PD) :: FE : FO; 

that is, by construction we have 
F P : PD :: e : 1. 

In the same way, any required number of points in the 
curve may be found. 

* See Todhunter's Conic Sections, p. 188. 



hence, tan (f> = ^ ; 

J)2X'2 2J2 

tan 0 tan 0 = - — = — — (since ** = 2py'). (3) 

Now, as a : b :: : 1, we have a2 = 2^, which in (3) 
gives 

tan 0 tan (p = — 1; 
therefore the two tangents, and hence the two curves, at 
their point of intersection, cut each other at right angles. 
[See O'Brien's Co-ordinate Geometry, p. 128, where this 
example is incorrectly solved.] 

30. Putting p and p' to denote the focal radii of ¡my 
point on an ellipse, and (p for its eccentric angle, prove that 

p = a (1 — e cos <p), 
p' = a (1 + e cos <p). 

31. From the centre of an ellipse, two radii-vectores are 
drawn at right angles to each other, and tangents to the 
curve are formed at their extremities; prove that the tan-
gents intersect on the ellipse 

£ 4- t _ I 4. 1 
c4

 ^ b* ~ a2• P* 

32. Express the equation of the normal at any point of 
an ellipse in terms of the eccentric angle of the point. 

cc ?/ A?is. - cos (h 4- '4 sin <b= 1. a b 
33. Show that the equation of the locus of the poles of 

normal chords of an ellipse is 

xhj2 {a2 — b2)2 = cfiy2 + b«x\ 
34. Show that the locus of the point of intersection of 

tangents to an ellipse at two points whose eccentric angles 
differ by the constant 2a is the ellipse 

%*• M2 

? + = • 

C H A P T E R V I I . 

1 
T H E H Y P E R B O L A . 

99. The H y p e r b o l a is the locus of a point moving in a 
plane so that its distance from a fixed point bears a constant 
ratio to its distance from a 
fixed right line, the ratio 
being greater than unity.* 

From this definition the 
hyperbola may be construct-
ed by points, thus: 

Let F be the fixed point, 
DD' the fixed right line, 
and e the given ratio. Draw 
through F the line OAF 
perpendicular and EE' par-
allel to DD'. Take 

FE ( = FE') : FO : : e : 1, Fig. 8 0 

and draw OE and OE' produced indefinitely. Draw paral-
lels to EE', meeting the lines OG and OG'. With the half 
of any oue of these parallels, as. KII, for a radius, and the 
fixed point F for a centre, describe an arc cutting KH at P ; 
this is a point of the curve. For, joining P and F, and 
drawing PD perpendicular to DD', we have 

K H ( = F P ) : KO ( = P D ) :: FE : FO; 

that is, by construction we have 
F P : PD :: e : 1. 

In the same way, any required number of points in the 
curve may be found. 

* See Tod hunt L-i'8 Conic Sections, p. 188. 



Since e > 1, the distance from F to any point in the 
curve is greater than the distance from the same point to 
the line DD'; therefore there are points in the curve on the 
opposite side of DD',which are found in the same way as 
those to the right of DD', thus: with the half of any of the 
parallels, to the left of DD', as MN, for a radius, and F for 
a centre, describe an arc cutting MN at P'; this is a point 
of the curve. For, joining P ' and F, and drawing P'L per-
pendicular to DD', we have 

M N ( = F P ' ) : MO ( = P ' L ) :: FE : F O ; 
that is, by construction we have FP' : P 'L :: e : 1. 

In the same way, any required number of points may be 
found. If A and A' be found so that 

AF : AO :: e : 1, and A'F : A'O :: e : 1, 
then A and A' are points of the curve. Connecting all these 
points by a line, we have the required hyperbola. 

The fixed line DD' is called the D i r e c t r i x ; the fixed 
point F is called the Focus; OG and OG' are called the 
Foca l Tangents ; A and A' are called the V e r t i c e s ; 
and C, the point midway between them, is the Centre. 

100 . To find the distances from the centime of the 
hyperbola to the focus and the directrix. 

Represent AA' by 2a, and the given ratio by e. 
Then we have, from definition, 

AF : AO :: A 'F : A'O :: e : 1. (1) 
AF : AO :: AF + A'F : AO + A'O, 

or e : 1 :: 2CF : 2a ; 
CF = ae. (2) 

Also from (1), we have 
AF : AO :: A'F - AF : A'O - AO 

:: AA' : A A ' - 2AO, 
or e : 1 :: 2a : 2CO ; 

CO = (3) 

101 . To find the equation of the hyperbola. 
Let F be the focus, DD' the 

directrix, A and A' the vertices, 
and C the centre. Take AA' 
as the axis of x, and the per-

\ • D P / 

> J A' C o A / 

• J I F 

/ V D' 

Fig. 81 

axis of y. 
Let (x, y) be any point P on 

the locus ; join F P ; draw PM 
and PD respectively perpendic-
ular to CX and CY. 

Represent AA' by 2a, and the given ratio by e. 
Then we have, from definition, 

F P = e PD, 
FP2 = e2 PD 2 ; 

FM2 -f- M P = e2 OM2. 
FM = CM — 0>F = x — ae; (Art. 100) 

or 

But 

and OM = CM — CO = x — - . 
e 

(x-ae)2 + y2 = <?(z-^; 

or y2= {!-<?) (a2 — x?), 
which is the required equation. 

COR.— When x = 0, equation (1) becomes 
y2 = (1 _ e2) a2 =-b2 [by putting (e2 - 1) a2 = F], 

(1) 

which in (1) gives y2 = hUx2-a2), a M . 
or • a2 y2 — b2xl= —d2 b2, 
which may be written in the symmetric form 

3!« 
" b2 J-

(2) 
(3) 

(4) 
NOTE.—Since 

above 
e>l, a* (1 — e5) is negative; and therefore we put it equal to — f 
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E X A M P L E S . 

Find a, b, and e in the following hyperbolas : 
1. 16^— 9y*= 144. Ans. 3, 4, 
2. - 1 6 f = 144. Ans. 4, 3, f 
3. Find the equation of an hyperbola (1) if a = 8 and 

b = 7 ; (2) if 2a = 5 and 2ae = 13 ; (3) if ae = 1 and 

102 . Transform, ahf — Vh? = — aW, (1) 
to the vertex A. The formulas for this transformation 
become x = x' a, y = y, 
which in (1) give, after suppressing accents, and solving 
for f , if =_ (2ax 

COR. 1.—We have from (2) and (3) of Art. 100, 
C F = ae, and C O = - . 

U r 
.-. AF = a (e— 1), OA = _ q (e — 1) 

O F = 
a(<?-l) 

e ' e 
COR. 2.—When y = 0 in (1), x = ± a, which shows that 

the curve cuts the axis of x at two points equally distant 
from the origin, and on oppo-
site sides of it. When x = 0, 
y = ± b V ~ — T j hence the 
curve cuts the axis of y in 
two imaginary points on op-
posite sides of the origin. We 
may, however, take two points 
B and B', on different sides of 
C, making CB = CB' = b, F'g- 82. 
as we shall have occasion to use them hereafter. 

COR. 3.—Solving (1) for y, we get 

which shows that for every value of x > -f- a or < — a 
there are two real values of y, numerically equal, with con-

1/ 3 
V IS 

J 

, . \ o'c 
B 

O /A F'J V 
yS B' V 

K 
/ 

trary signs; hence, for every point P on one side of the 
axis of x, there is a point P' on the other side of the axis, at 
the same distance from i t ; and therefore the curve is sym-
metrical with respect to the axis of x. When x is + a or 
— a,y = ± 0 ; and for every value of x between -f a and 
— a, the two values of y are imaginary; therefore the curve 
is limited towards the centre by two tangents at A and A'. 

Similarly, solving (1) for x, we get 

which shows that for every value of y from — oo to + oo 
there are two real values of x, numerically equal with con-
trary signs; hence the curve is symmetrical with respect to 
the axis of y, and is unlimited in the direction of this axis. 

SCH.—Because the curve is symmetrical with respect to 
the line BB', it follows that if we take CF' = CF (Fig. 82), 
and CO' = CO, and draw K K ' perpendicular to OO', the 
point F ' and the line K K ' will form respectively a second 
focus and directrix. 

AA' is called the Transverse axis of the hyperbola; BB' 
is called the Conjugate axis of the hyperbola. In the 
ellipse, the conjugate axis is always less than the transverse 
axis (see Art. 70, Cor.), and therefore the former was called 
the minor and the latter the major axis. In the hyperbola, 
the conjugate axis may be greater than the transverse, since 
IP = a2.(e2 — 1) (Art. 101, Cor.), and e is > 1; therefore 
we do not call the axes in the hyperbola the major and 
minor axes. 

The ratio e (Art. 99) is called the E c c e n t r i c i t y of the 
hyperbola. 

The point C is called the C e n t r e of the hyperbola, 
because it bisects every chord of the hyperbola which passes 
through it. This may be shown in the same way as in the 
case of the ellipse (Art. 71, Sch.), 



COR. 4.—To find- the latus rectum (Art. 53, Cor. 3). 

Make x = CF = ae (Cor. 1); denote the corresponding 
value of y by p; we have from Eq. (1) (Art. 102), 

f = |(«^ - a2) = b2(e>- 1) = | (Art. 101, Cor.). 

Therefore, 2p = — = ^ = latus rectum, a 2a 
Forming a proportion from this equation, we have 

2a : 2b ::2b: 2p. d-
That is, the latus rectum is a third proportional to the 

transverse axis and the conjugate. 

Since V2 = (e2 — 1) a2 (Art. 101, Cor.), we have 
a2 + = a2e2; 

that is, a2 + V2 = CF2 (Art. 102, Cor. 1). 

But a2 + ¿2 = AB2 (see Fig. 82). 
Therefore, AB = CF. 

Hence, the conjugate axis of the hyperbola is a perpendic-
ular to the transverse axis at its centre, and is limited by an 
arc described with the vertex of the transverse axis as a 
centre, and with a radius equal to the distance from the 
focus to the centre, j 

COR. 5.—Comparing equation (1), Art. 102, with (1) of 
Art. 71, we see that the equation of the hyperbola may be 
derived from that of the ellipse, by changing + & into — b2. 
Hence, we infer that any function of b, expressing a prop-
erty of the ellipse, will be converted into one expressing a 
corresponding property of the hyperbola, by changing b into 

1; therefore, in obtaining the properties of the hyper-
bola that are similar to those which have been proved for 
the ellipse, we shall, in most cases, either change the sign of 
V2, or else refer the student to the corresponding demonstra-
tion in the ellipse. 

By a process similar to that of Art. 71, Cor. 5, the details 
of which the student must supply, we obtain 

y'2 : y"2 :: (x' + a) (x'- a) : (x" + a) (x" - a); 

that is, the squares of any two ordinates to the transverse 
axis of an hyperbola are to each other as the rectangles of 
the segments into which they divide the transverse axis. 

COR. 6.—A point is outside, on, or inside the hyperbola, 
according as a2y2 - m + a2b2 > , or < 0. The proof 
is similar to that given in Art. 71, Cor. 6, for the ellipse. 

A point is said to be outside the hyperbola if it lies in the 
space between the branches, so that no right line can be 
drawn through it to a focus without cutting the curve. 

103. To find the distance of any point in the hy-
perbola from the focus, in terms of the abscissa of 
the point. 

From the figure we have 

FP2 = {x — ae)2 + y2 

= ( x - ae)2 + -^x2 — b2. 
• 

(Art. 102.) 
= a2— 2aex + eh? (since a2e* — V2 = d2); 

therefore, F P = ex — a. 

[We take only the positive value of the root, for the reason 
given in Art. 72.] 

In like manner we find, by writing — ae for + ae, 

F P 8 = (x + ae)2 + y2 = a2 + 2aex + e^2; 
therefore, F ' P = ex + a. 

Hence, F 'P — F P = 2 a ; 
or, the difference of the distances of any point in an hyper-
bola from the foci is equal to the transverse axis. 



COR.—This result furnishes two other methods of con-
structing an hyperbola, having given the axes. 

I. With C as a centre and 
BA as a radius, describe an arc 
cutting AA' produced at F and 
F ' ; these points are the foci 
(Art. 102, Cor. 4). Now, with 
F ' as a centre and a radius' 
greater than F'A, describe an 
arc; then with F as a centre, 
and a radius equal to that used before, diminished by the 
transverse axis AA', describe another arc cutting the first 
at the point P ; this will be a point of the curve, since 

Fig. 8 4 . 

or 
FP = F 'P - 2a, 

F 'P - F P = 2a. 

In the same way, any number of points maybe found; 
joining these points, it will be a branch of the required 
hyperbola. By using F for the first centre and F ' for the 
second, with the same distances as before, any number of 
points of the other branch may be found. 

II. Take a ruler, and fasten one end of it at F' so it can 
revolve about F' as a centre. 
Take a string whose length 
is less than that of the ruler 
by AA', and fasten one end 
of it at F and the other end 
at B, the end of the ruler; 
then press the string against 
the edge of the ruler with 
the point of a pencil P, and revolve the ruler about F', 
keeping the string tight; the pencil will describe one branch 
of an hyperbola, since, in every position.of it, we shall have 

F 'P — F P = AA'. 

104. A Conjugate Hyperbola is one having the con-
jugate axis of a given hyperbola for its transverse axis, and 
the transverse axis of the given 
hyperbola for its conjugate axis. 
Either of two hyperbolas thus re-
lated is conjugate to the other. 
Thus, the hyperbola whose trans-
verse axis is BB' (Fig. 86) is the 
conjugate of the hyperbola whose 
transverse axis is AA', and con-
versely, the latter is the conjugate 
of the former. They are often dis-
tinguished as the x Hyperbola 
and the y Hyperbola, each taking the name of the co-
ordinate axis upon which its transverse axis lies ; and when 
spoken of together are called Conjugate Hyperbolas. 

Fig.86 

\ 105- To Pld the equation of an hyperbola conju-
gate to a given hyperbola. 

By Art. 102, the equation of the given hyperbola is 

^ , „ 

or, Fig. 86, 
ppS 

= P). 
Hence, since P' is a point on.the conjugate hyperbola, hav-
ing BB' for its transverse axis and AA' for ' i ts conjugate 
axis, we have, 

or 

NP72 = (CN2 - OB8), 

( 1 ) 

which is the equation of the conjugate hyperbola, and is the 
same expression we would obtain from the equation of the 
given hyperbola by putting — for + P , and - a 2 for +a2 . 



Or, since the second hyperbola holds the same relation to 
the axis of y that the first does to the axis of x, we might 
have deduced the equation of the y hyperbola at once by 
changing a to b and b to a, x to y and y to x in the equation 
of the x hyperbola. 

The sides of the rectangle described on the axes are the 
tangents to the four branches at the vertices. 

Sen. 1.— In the x hyperbola we have (Art. 101, Cor.), 
(e2 - 1) «2 = b2; o2e2 = a? + ft2. 

Therefore, denoting the eccentricity of they hyperbola by e', 
we have (e'2 — 1) V = «2 ; W i = a* + &. 
Hence a V = ¿2 e'2 ; or CF2 = CF'2. 
(See Art. 102, Cor. 1.) Therefore the foci of the y hyper-
bola are at the same distance from the centre as the foci of 
the x hyperbola, but the eccentricity of the former has a 
different value from that of the latter. 

SCH. 2.—The equations of the diagonals CE and CG are 
respectively ^ ' ^ 

y = - x and y = x. 
9 a J a 

If in the equations of the two conjugate hyperbolas we 
make b = a, we have (Art. 102), 

tf-x> = - a \ (2) 

and (1) of the present Art. becomes f — x > = a2. (3) 

These hyperbolas are called Equilateral hyperbolas, 
from the equality of the axes. The equilateral hyperbola 
corresponds to the case in which the ellipse becomes a circle. 
(See Art. 71, Cor. 7.) The peculiarity in the figure of the 
equilateral hyperbola is that the curve is identical in form 
with its conjugate. From Art. 101, Cor., Ave have 

therefore, in the equilateral hyperbola we have e = V2. 

106. To construct a pair of conjugate hyperbolas 
whose axes are given. 

Draw the axes AA' and BB' 
at right angles to each other; 
construct the x hyperbola as in 
Art. 99. Now take CF' = 
which equals AB (Art. 105, 
Sch.), and F' is the focus of the 
y hyperbola. Take BE = BF', 
and B'H = B'F'; draw through 
E and H a right Hue; it is one 
of the focal tangents. Through 
0 ' draw a line perpendicular to BB'; this is the directrix 
corresponding to the focus F ' of the y hyperbola. The con-
struction is now the same as in Art. 99. 

107. To find the equation of the tangent at any 
point of an hyperbola. 

To obtain this equation for the hyperbola, we change V1 

into — I? in equations (6), (7), and (11) of Art. 74, and get 

ahjy' - Vkcx' = — a%\ (1) 
W V 

y = W X ~ R ( 2 ) 

y = mx± Vahn? — 1?. (3) 

Con.—To find the point in 
which the tangent cuts the axis 
of x, make y = 0 in (1), and 
get 

which is the same value we 
found for the abscissa of the 
point at which the tangent cuts the axis of x in the ellipse. 



(Art. 74, Cor. 2). This value of x has the same sign as x'; 
hence, for the right-hand branch, it is always positive; 
that is, the tangent to the right-hand branch cuts the axis 
of x to the right of the.centre. 

By Art. 102, Cor. 2, we have F'C = FC = ae; therefore 
we have 

FT = ae + ^ = ^ (ex'+ a), 
X X 

and F T = ae — = (ex' — a). % X 
Hence, F 'T : FT :: ex' + a : ex' — a :: F 'P : F P 

(by Art. 103) • That is, the tangent of an hyperbola cuts the 
distance between the foci in segments proportional to the 
adjacent focal radii of contact ; and therefore it bisects the 
internal angle between these focal radix. 

This principle affords a method of drawing a tangent to 
an hyperbola at a given point. 

Let P be the given point (see Fig. 88). Draw the focal 
radii F 'P and F P to the given point P. On the longer, 
F'P, lay off PD = PF, and join DF. Through P draw PT 
perpendicular to D F ; PT will be the tangent required, for 
it bisects the angle FPF' . 

a2 

The subtangent MT = CM — CT = x' — -r That is, 

x'*-a* 
the subtangent = -, 

X 

108. To fincl the equation of the normal at any 
-point of an hyperbola. 

We change b* into - ^ in (2) of Art. 75, and get 

y - y ' = W 

which is the required equation of the normal at (x', y'). 

COR. 1.—To find the point in which the normal cuts the 
axis of x, we make y = 0 in (1), and get, after reduction, 

g% r ¿2 

* = —¿j— = ON (Fig. 88) = eV (Art. 105, Sch. 1). 

The subnormal MN = ON — CM 
«2 + y , , b2 , 

= — z * ~ x ~ x = Zix-

SOH.—The expression CN = <?V enables us, as in the 
case of the ellipse (Art. 75, Sch.), to draw a normal at any 
point P of the hyperbola, or one from any point N of the 
transverse axis. 

COR. 2.—By Art. 102, Cor. 1, 

F'C = FC = ae; 
therefore we have 

F'N = e(ex' + a), 

and FN = e (ex' — a). 

Hence, F 'N : FN :: ex' + a : ex' — a :: F'P : F P 
(Art. 103). That is, the normal of an hyperbola cuts the 
distance between the foci in segments proportional to the 
adjacent focal radii of contact; and hence it bisects the 
external angle between the focal radii of contact. 

109. To find the locus of the intersection of the 
tangent at any point with the perpendicular on it 
from either focus. 

Changing the sign of V1 in (3) and (4) of Art. 76, and 
adding the squares of the resulting equations together, we 
get 

z2 + if = a2, 

for the required locus, which is therefore a circle described 
on the transverse axis. 



E X A M P L E S . 

1. Find the equation of an hyperbola if the distance be-
tween the foci = twice the transverse axis. 

Ans. y- - 3x2 + 3d2 = 0. 

2. Find the equation of the hyperbola conjugate to the 
hyperbola 9z2—4y2=36, the axes, and the distance between 
its foci. 

j 4y2 — 9a? = 36; transverse =^6, conjugate = 4 ; 
• ( distance between foci = 2 \ / l 3 . 

3. Find the equation of the hyperbola if the distance 
between the foci = 6 and the transverse axis = 4. 

Ans. bx2 — iy2 = 20. 

4. If the vertex of an hyperbola bisects the distance from 
the centre to the focus, and the transverse axis = 1 0 , find 
the equation of the hyperbola. Ans. 3x2 — y2 = 75. 

5. If the distance from the focus of an hyperbola to the 
nearest vertex is 1 and the eccentricity is I f , find (1) the 
equation of the hyperbola, and (2) its latus rectum. 

Ans. (1) 16.r2 - 9y2 = 36 ; (2) 5^. 

6. Find the equations of the tangent and the normal to 
the hyperbola 4a;2 — 9y2 = 36 at the point of contact 

(H, V5). 
Ans. 2x — V$y - 4 = 0; 4y + 2 V 5 x = 13 V5. 

7. Find the perpendicular distance from the origin to 
the tangent at the end of the latus rectum of the equi-
lateral hyperbola x2 — y2 = 9. Ans. A/3. 

8. Find the equations of the tangents to Ox2 — 4y2 = 36 
which are parallel to y = 3x — 4. Ans. y = 3x ± 3V3. 

9. Find the equations of the tangents to the equilateral 
hyperbola at the positive end of the latus rectum. 

Ans. y = ± xV% — «• 

110. To find the co-ordinates of the point of contact 
of a tangent to an hyperbola from, a fixed point. 

Let (x1, y') be the required point of contact, and (x", y") 
the fixed point through which the tangent passes. 

Changing + V2 to - b2 in the results of Art. 77, we get 

x, _ «W =F a2y" • 
ÔV'2 — d2y"2 > 

, = A W Y " =F WX" V W ^ - L W ^ C M 
y W 2 - a2y"2 

These values indicate that from any fixed point two tan-
gents can be drawn to an hyperbola, real, coincident, or 
imaginary, according as 

ay* - Vx"* + aw > ? = j o r < 0 . 

that is, according as the point (x", y") is outside, on, or 
inside the curve (Ar t 102, Cor. 6). 

COR.—It is clear that if any two real tangents be drawn 
from a given point to touch the same branch, their abscissas 
of contact will have like signs; and unlike, if they touch 
different branches. Hence, since the values of x in the 
former case must have the same signs, we have, regarding 
only their numerical values, 

FLW > a2y" Va 2 y" 2 - ¿ V ' 2 + d2b2; 
or squaring, transposing, and reducing, we have 

^ < I (1) 

But (Art. 105, Sch. z ) y = ^ x is the equation of the diag-
onal of the rectangle formed upon the axes of the hyperbola; 
therefore, the ordinate of the point from which two tangents 
can be drawn to the same branch of an hyperbola must be 
less than the corresponding ordinate of the diagonal; that 



is, the point itself must be somewhere between the diagonals 
(CE, CG) or (CH, CK) produced, and the adjacent branch 
of the curve (Fig. 86). These diagonals produced are called 
A s y m p t o t e s of the hyperbola, which we shall consider in 
Art. 113. Hence, generally, the two tangents which caii 
be drawn to an hyperbola from any external point, will both 
touch the same branch, if the external point be between that 
branch and the adjacent portions of the asymptotes ; but if 
the external point be so placed that we cannot pass from it 
to the curve without crossing an asymptote, the two tan-
gents touch different branches of the curve. 

111. Tangents are drawn to an hyperbola from a 
given external point; to find the equation of the 
chord of contact (Art. 77). 

Change V2 into — V in (5) of Art. 78, and get 
ahjy' - Pxx' = - aW, (1) 

which is the equation of the chord of contact. 

112. Through any fixed point a chord is drawn to 
an hyperbola, ancl tangents to the hyperbola are 
drawn at the extremities of the chord; to find the 
equation of the locus of the intersection of the tan-
gents, when the chord is turned about the fixed point. 

Change b2 into — V2 in (3) of Art. 79, and get 
a2yy> _ ¡fax' = — aW, (1) 

which is the equation required,and the locus is aright line. 

SCH.—The line (1) is called the Polar of the point (x', y') 
with regard to the hyperbola ahf - Vx2 = - aW, and the 
point (x', y') is called the Po le of the line. 

The statements in Art. 49 with respect to the circle may 
all be applied to the hyperbola as they were to the parabola 
(Art. 61), and the same conclusions arrived at that were 
reached in Arts. 49 and 61, and referred to in the ellipse 
(Art. 79, Sch.). 

113. An A s y m p t o t e of a curve is a line which continu-
ally approaches the curve, and becomes tangent to it only 
at an infinite distance, while it passes within a finite distance 
of the origin. We have called the diagonals produced of 
the rectangle on the axes (Art. 110, Cor.), the asymptotes of 
the hyperbola; we now proceed to show that they are such, 
tha t is, that they meet the curve only at infinity. 
T . iv 

114. To prove that the diagonals of the rectangle 
on the axes are asymptotes to both the given and 
conjugate hyperbolas. 

Produce the ordinate MP of any 
point P in the given hyperbola, to 
meet the diagonal CR and the 
conjugate hyperbola, in the points 
P ' and P" respectively. The dis-
tance of the point P from CR = 
PP' sin PP'C, and therefore it 
varies as PP'. Now, if CM, the 
common abscissa = x, PM = y, P'M = y', and P"M = y",4 
we have, from the equations of the given hyperbola, the 
diagonal, and the conjugate' hyperbola, 

Fig. 89. 

(1) 

V ~ 

Subtracting (1) from (2), we have 

y ' ^ f ^ V 2 , or y ' - y = 

Subtracting (2) from (3), we have 

y"*-y'*= H2, or y" - y' = 

b2 

y + y' 

V2 

y" + y'' 

(») 

(3) 



If now we suppose the abscissa CM to increase continually, 
and the line MP to move parallel to itself, the ordinates y, 
y', and y" will increase continually, and therefore, from (4) 
and (5), y' — y and y" — y' will diminish continually; 
and when x (CM), and therefore y, y', and y" become 
infinitely great, y' — y and y" — y' will become infinitely 
small; that is, as x increases indefinitely, the two curves 
continually approach the diagonal CR, and become tangent 
to it and to each other only at infinity. Heuce the diagonals 
are asymptotes to both curves. 

COR. 1.—The equations of CR and CR' are (Art. 105, 
Sch. 2), 

b x y A y= -x or f = 0; 9 a a b 
J) (C If 

and y = x or - + T = 0 ; 3 a a b 
x* y8 W 

therefore the equation - — ̂  = 0 includes both asymp-

totes. 

COR. 2.—Let ACR = 0, ACR' = 0'; then 
b b tan 0 = - , tan 0' = — - ; a . a 

b « 1 
sin 0 = — , cos 0 = = 7 , 

VA2 + Ä» V « 2 4- P e 

sin 0' = = L = , cos 0' = • . a = — 
Va 2 + & Va2 + V> e 

115. To find the equation of any diameter. (Def. 
of Art. 62.) 

Change 8» into — 5a in (2) of Art. 80, and get 

y = - cot 0 • x (1) d 
for the required equation. 

Since a~ and b2 are constant for any given hyperbola, and 
0 is constant for any given system of parallel chords, (1) is 
the equation of a right line passing through the origin, that 
is, through the centre of the hyperbola. Hence, every 
diameter of the hyperbola passes through the centre. By 
giving to 6 a suitable value, (1) may be made to represent 
any right line passing through the centre. Hence, every 
right line that passes through the centre of an hyperbola 
is a diameter; that is, it bisects some system of parallel 
chords. 

SCH.—To draw a diameter of an hyperbola, draw any two 
parallel chords, aud bisect them ; the line passing through 
the points of bisection is a diameter. The intersection of 
two diameters will be the centre of the hyperbola. 

COR. 1.—Let 6' = the inclination of the diameter itself to 
the transverse axis; then we have 

tan 0' = y-> 
x 

which in (1) gives 

tan 0 tan 6' = -
(I 

as the relation between 0 and 0' when they are the angles 
which a system of parallel chords and their diameter re-
spectively make with the axis of x. 

COR. 2.—Writing the equation of the diameter in the 
form 

y = tan 0 • x, ( i) 
and eliminating y between this equation and that of the 
given hyperbola, to find the abscissas of the points of inter-
section of (1) and the curve, we obtain 

ab 



Now, eliminating y between (1) and the equation of the 
conjugate hyperbola (Art, 105), to find the abscissas of the 
points of intersection of (1) and the conjugate curve, we 
obtain 

, - + a h (3) 
Va2 tan2 9 — V 

If a2 tan2 6 C IP, that is, if tan 6 < ± - , the values of x 
(t 

in (2) are real, showing that (1) intersects the given hyper-
bola at finite distances from the centre; while the values of 
x in (3) are imaginary, showing that (1) does not cut the 
y hyperbola. 

If a2 tan2 9 > ft2, that is, if tan 9 > ± - , the values of x 
& 

in (2) are imaginary, showing that (1) does not cut the 
given hyperbola; while the values of x in (3) are real, show-
ing that (1) cuts the «/hyperbola at finite distances from the 
centre. 

If a2 tan2 9 = IP, that is, if tan 0 = ± - , the values of x 
(t 

in (2) and (3) are infiuite, showing that (1) does not cut 
either" the x or the y hyperbola. In this case, (1) coincides 
with the'diagonals of the rectangle described on the axes of 
the two conjugate hyperbolas (Art. 105, Sch. 2), that is, 
with the asymptotes (Art. 113). 

We learn, then, that diameters 
which cut the given hyperbola in 
real points, must either make with 
the transverse axis an angle less than 
is made by the first of these diag-
onals, or greater than is made by the 
second, as DD' and HH'. If they Fig. 90. 
cut the conjugate hyperbola in real 
points, they must either make with the transverse axis an 
angle greater than is made by the first of these diagonals, or 
less than is made by the second, as EE' and KK'. If they 

coincide with these diagonals, as LL' and RR', they will 
intersect the hyperbolas at an infinite distance. Hence, 
every right line drawn through the centre of an hyperbola 
must meet the hyperbola or its conjugate, unless it coin-
cides with one of the asymptotes. 
y J - ^ ' - J 

116. I f one diameter of an hyperbola bisects all 
chords parallel to a second diameter, the second will 
bisect all chords parallel to the first. 

Let 0 and 9' be the respective inclinations of any two 
diameters to the transverse axis. Then the condition that 
the first diameter shall bisect all chords parallel to the 
second diameter (Art. 115, Cor. 1) is 

tan 6 tan 9' = (1) 
a2 v ' 

But this is also the condition that the second diameter 
bisects all chords parallel to the first. . 

Sen.—Two diameters are Conjugate when each bisects 
all chords parallel to the other. 

Because the conjugate of any diameter is parallel to the 
chords which that diameter bisects, therefore the inclinations 
of two conjugates must be connected in the same way as 
those of a diameter and its bisected chords. Hence, if 0 and 
8' are the inclinations, the equation of condition for conju-
gate diameters in the hyperbola (Art. 115, Cor. 1) is 

b2 
tan 9 tan 9' = (2) a2 v ' 

This condition shows that the ton gents of inclination of 
any two conjugate diameters have like signs; therefore it 
indicates that the angles made with the transverse axis by 
the two conjugates are either both acute or both obtuse. 
Therefore, conjugate diameters of an hyperbola lie on the 
same side of the coiijugate axis, as CD and CE, or CK and 
CH' (see Fig. 90). ' 
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COR.—From (2), if 

tan Q < \ , t a n 0 ' > ^ ; 

and if tan 0 > — - tan 6' < -a a 
Therefore (Art. 115, Cor. 2), if one of two conjugates, DD', 
meets an hyperbola, the other, EE' , meets the conjugate 
hyperbola. 

117. The tangent at either extremity of any diam-
eter is parallel to its conjugate diameter. 

[For demonstration, see Art. 82.] 

118. Given the co-ordinates x', y' of one extremity 
of a diameter, to find the co-ordinates x", y" of 
either extremity of the conjugate diameter. 

By the Ex tremi t i e s of the conjugate diameter, we mean 
the points in which the conjugate cuts the conjugate hyper-
bola. , • -

Let (x', y') be the point D (Fig. 90), and (x", y") the 
point E or E'.- Since the conjugate diameter E E ' is parallel 
to the tangent at (x', y') (Art. 117), and passes through the 
origin, therefore its equation (Art. 107) is 

W 
9 = 7?*'' 

which, combined with the equation of the conjugate hyper-
bola (Art. 105) gives 

•» = ± 5 , f , ? = ±\<t-

We see that the upper signs of the co-ordinates are both 
positive and the lower signs both negative, while in the 
ellipse (Art. 83), the upper signs are unlike and the lower 
also. This agrees with the properties of the two curves 
developed in Arts. 81 and 116, Sell. 

H W F F r* «J 

PERPENDICULAR TO TANGENT. 189 

119. To express the length of a semi-diameter (<?) 
and its conjugate (b'), in terms of the abscissa of the 
extremity of the diameter. 

Let (x\ y') and (x", y") be the extremities D and E of 
the diameters DD' and E E ' ; then we have 

a'2 = x'2+y'2 = x' 2 + | (x'2-a2) (Art. 102) 

_ a2 + y A2 
= s— x 2 — b2; a2 ' 

therefore a'2 = eke'2 - V (Art. 105, Sch. 1). ( i ) 

Also, b'* = x"2 + y"2=*y'2+*x>? (Art. 118) 

= x'2 - a2 + ^x'2 (Art. 102); 

therefore, b'2 = eix'2~ a2 (Art. 105, Sch. 1). (2) 

COR. (1) — (2) gives 

a'2 — b'2 = a2 - V2-, y-
that is, the difference of the squares of any two conjugate 
diameters of an hyperbola is equal to the difference of the 
squares of the axes. 

120. To find the length of the perpendicular from 
the centre to the tangent at any point. 

Let (x', y') be the point, and p the perpendicular. The 
equation of the tangent at (x', y') is (Art. 107), 

a2yy' — Pxx' = — a2b2. (i) 
Therefore (Art. 24), 

P = 
aW ab 

Vaty't + Vx'2 = (Art. 119.) 



E X A M P L E S . 

1. Find (1) the foci and (2) the asymptotes of the hy-
perbola 4a? - 9^2 = 36. 

Ans. (1) ( ± V l 3 , 0 ) ; (2) y = ± \x. 

2. Prove that in an equilateral hyperbola the length of 
a normal is equal to the distance of the point of, contact 
from the centre. 

3. Find the polar of the point (3, 4) with respect to the 
hyperbola 4a;2 — 9 i f = 36. Ans. 12a; — 36;/ = 36. 

4. Find the pole of the line 4a; + by —12 — 0 with re-
spect to the hyperbola 16a;2 - 9y2 = 144. Ans. ( 3 , - 6f). 

5. Find the equation of the diameter conjugate to the 
diameter 16y — 75a; = 0 in the hyperbola 25a;2 — 16y2 = 400. 

Ans. 3y = x. 

6. Find the equation of the chord of the hyperbola 
16a;2 — 9y2 = 144 which is bisected at the point (12, 3). 

Ans. 64a; — §y = 741. 

7. Find the equation of a chord of the hyperbola 
a2y2 - Fx2 + a2b2 = 0 

in terms of its middle point (a;,, y x ) . 
Ans. a2yy1 - b2xx1 = a2y2 - b2x2. 

8. Find the common tangents to the curves 
y2 = 4ax, and a;2 - 12y2 = 24a2. 

Make the tangent to the parabola (Art 64, Cor. 2) cut the hyperbola in two co-
incident points, Art. 45. , , ' . , . Ans. ± 2y = x + 4a. 

9. The line y—mx + £ touches the parabola y2 = 4px 
(Art. 54, Cor. 2) ; find the condition that this line shall 
also touch the hyperbola a2if — Vb? + a2b2 = 0. 

compare with (3) of Ar t 107. A US. m2 (a2Vl2 — A2) = f . 

SELF-CONJUGATE DIAMETERS. 1<J1 

\ 
121. To find the angle between any pair of conju-

gate diameters. 
Let 0 be the required angle ECD in Fig. 90. By the 

same process as in the ellipse (Art. 86), we find 

• , ab 
S l n * = w (!) 

COR.—Clearing (1) of fractions, we have 
a'b' sin <p = ab, ( 2 ) 

which shows that the area of the parallelogram whose sides 
touch the hyperbola at the ends of any pair of conjugate 
diameters is constant, and equal to the rectangle of the axes. 

SCH.—By Art 119, Cor., a '2 - b'2 = a constant; there-
fore, a' and b' increase or decrease together; hence, by 
causing D to move along the hyperbola from A, E also will 
move along from B (Fig. 90). But any diameter CD tends 
towards an infinite length, as its inclination tends towards 

the limit 0 = tan - 1 ^ (Art. 115, Cor. 2) ; .therefore its semi-

conjugate CE tends towards infinity; and, as a'b' sin <f> is 
constant, and a' and V tend towards infinity, sin 0 tends 
towards 0 ; or, the angle between two conjugates of an 
hyperbola diminishes without limit. When the two conju-
gates approach infinity in length, they tend to coincide with 
the diagonals of the rectangle constructed on the axes; but 
they are never equal, since a'2 - b'2 is always equal to 
a2 — b2 (Art. 119, Cor.), unless the curve is equilateral. 
Therefore, the infinite diameters which form the limit of 
the conjugates, are not equal infinites, and hence we do not, 
as in the ellipse, have equi-conjugates. We may, however, 
call these conjugates in their limit, when they coincide 
with each other and with either of the asymptotes, Sel f 
Conjugates,* since each is a diameter conjugate to itself. 

* See Howison's Analytic Geometry, p. 881. 



The inclinations of the self-conjugate diameters to the 
transverse axis are determined by 
the equation 

tan 0 = ± (Art. 115, Cor. 2.) ct 
The first value corresponds to the 

angle ACE, and the second value to 
the angle ACK (Fig. 91). 

The inclination of these self-con-
jugates to each other, as ECK or ECK', is determined by 

sin (p = 2 sin BCE cos BCE 
a b 

Fig. 91. 

= 2 
Va2 + b2 Va2 + b2' 

that is, 

where 

sin 0 = I 
at+V2' 

<p = ECK or ECK'. 

122. I f a chord and diameter of an hyperbola are 
parallel, the supplemental chord and the conjugate 
diameter are parallel. (See Def., Art. 88.) 

Let DD' be a diameter of the 
hyperbola; PD and PD' two sup-
plemental chords, the first paral-
lel to the diameter E E ' ; then 
will the supplemental chord PD' 
be parallel to the conjugate diam-
eter KK' . 

Let (%', y') be the point D, 
and therefore (— x', *f y') will 
be the point D'. Let (p and <p' be the inclinations of the 
two chords DP and D'P. Then, by the same process as In 
Art. 89, or simply by changing b2 into —b2 in that Art., 
we get 

Fig. 92. 

¿2 
tan <p tan (p' = -

CI 
as the condition that the two chords DP and D'P shall be 
supplemental. 

Now, from Art. 116, Sell., we have 

tan 6 tan 0' = - , 
(I 

as the condition that two diameters shall be conjugate to 
each other; the rest of the argument of Art. 89 applies 
directly to the hyperbola. Therefore, the supplemental 
chord PD' is parallel to the conjugate diameter KK'. 

123. To find the equation of the hyperbola referred 
to any pair of conjugate diameters. 

To do this we must transform the equation of the hyper-
bola 

ahf - Vh? = - aW, (i) 
from rectangular to oblique axes, having the same origin. 

Let DD' and SS' be two conju-
gate diameters. Take CD for 
the new axis of x, and CS for the 
new axis of y. Denote the angle 
ACD by 0 and ACS by 6'. Let 
x, y be the co-ordinates of any 
point P of the hyperbola referred 
to the old axes, and x', y' the co-
ordinates of the same point re-
ferred to the new axes. 

Now we may use the same process employed in Art. 90 ; 
or, we may simply change b2 into — b* in (3) of Art. 90 
(see Art. 102, Cor. 5), and get 

(a2 sin2 0—J2 cos2 6)x'2+ (a2 sin2 0'—52 cos20') y'2=—aW. (1) 



Let «' and b' denote the lengths of the semi-diameters 
CD and CS. If we make y' = 0 in (1), we get 

rfiifi 
X ' 2 = 2 • « 27. = «'*• (3) a2 sin2 0 — d2 cos2 0 x ' 

Also, if in (1) we make x' = 0, we get 

?/2 = H f ^ — _ v j / Q\ 
a2 sin2 0' — J2 cos2 0' ~ 0 ' w 

We put this latter equal to — b'2, because we have sup-
posed the new axis of x to meet the given hyperbola, as in 
Fig. 93 ; therefore we know (Art. 116, Cor.) that the new 
axis of y will not meet the given hyperbola; hence 

-

¿ W 0 ' - f t 2 cos2*' 18 a D e g a t l V e q U i m t l t y -

From (2) we get a2 sin2 0 — b2 cos2 0 = — (4) 
tx 

From (3) we get a2sin2 0' — J2 cos2 0' = (5) 

Substitute (4) and (5) in (1), divide by — aW, omit 
accents from the variables, and we get 

x2 y2 

~ ¿72 = 1, (6) 

or, a'2y2-b'2xi = — a'2b'2, (7) 

which is the equation required, and is of the same form as 
when referred to the axes of the curve (Art. 102). 

Similarly, the equation of the conjugate hyperbola referred 
to the same pair of conjugate diameters is 

* f - 1 (8) 

or a'2y2 - b"h? = a%'2. • I (9) 

[Let the student give the demonstration.] 

COR.—Comparing (7) with (9) of Art. 90, we see that the 
equation of the hyperbola may be derived from that of the 
ellipse by changing b'2 into — b'2. Hence, we infer that 
any function of b' expressing a property of the ellipse will be 
converted into one expressing a corresponding property of the 
hyperbola by changing V into b'V— 1. 

124. To find the equation of a tangent to the hy-
perbola referred to any pair of conjugate diameters. 

By reasoning exactly as in Art. 91, using the term " hy, 
perbola" for "ellipse," or, by changing b'2 into — b'2 in 
(1) of Art. 91, according to Art. 123, Cor., we get 

a'2yy' -b'2xx' = -a'2b'2, (l) 
which is the required equation. 

COR.—To find where the tangent cuts the axis of x, 
make y = 0 in (1), and get 

125, To prove that tangents at the extremities of 
any chord of an hyperbola meet on the diameter 
which bisects that chord. 

y " 

Take the diameter CD, which 
bisects the chord PP', for the 
axis of x, and the conjugate 
diameter CS for the axis of y. 

Now reason as in Art. 92, or 
change b'2 into — b'2 in (1) 
and (2) of Art. 92, according 
to Art, 123,- Cor., and get 

a'2yy' —b'2xx' = -a'2b'2, (l) 
and — a'2 yy' — b'2 xx' — — a'2 b'2, (2) 

which are the equations of the tangents at the extremities 



of the chord PP ' referred to the diameter CD which bisects 
PP', and the conjugate diameter CS. Now, by Art. 124, 
Cor., both of these tangents cut the axis of x at the 

la'2 \ point i — 0 ) , which proves the proposition. 

126. If tangents are drawn at the extremities of any 
focal chord of an hyperbola : 

I. The tangents will intersect on the corresponding 
directrix. 

II. The line drawn from, the point of intersection of 
the tangents to the focus will be perpendicular to the 
focal chord. 

I. Reasoning as in Art. 93, we find for the equation of 
the chord of contact (Art. I l l ) , 

a2yy' - b2xx' = - a2b2, (1) 
which, for the right-hand focus (ae, 0), becomes 

— b2aexJ = — a2b2; 

or x' = j ; (2) 

that is, the point of intersection of the tangents is on the 
corresponding directrix (Art. 102, Cor. 1), showing that 
the directrix is the polar of the focus. (Art. 79, Sch.) 

II. The equation of the line passing through the right-
hand focus and the point (x', y') is, by (Art. 26), 

y = -r^-l* ~ «0- (3) 3 x' — ueK 

From (2), x' = - , which in (3) gives v e 

y = y 6 2 ( x ~ 
J a — ae2^ 

- - ^.{x - ae). (Art. 101, Cor.) (4) 

The equation of the chord of contact [see (1) above] is 

Fx' b2 

y = *yx—j> 

which becomes, for the focal chord [since x' = - , from (2)], 

y = Vey'X~y" (5> 

which is perpendicular to (4), by Art, 27, Cor. 1. 

127. Find the locus of the point of intersection of 
two tangents to an hyperbola at right angles to 
each other. 

Reason as in Art. 94, or change V1 into — b2 in equation 
(5) of that Art., and get 

a? + y2 = a2 — & (l) 
as the required locus. Hence, the locus is a circle with 
its centre at C, and with Va2 — V2 for its radius, unless 
tr > a.2, in which case the locus is impossible; that is, two 
tangents cannot be drawn at right angles to each other 
when b2 is greater than a2. 

128. The rectangle of the focal perpendiculars 
upon any tangent is constant, and equal to the 
square of the semi-conjugate axis. 

Call p and p' the perpendiculars. The equation of the 
tangent at any point ( V , y') is 

a2yy' — tfxx' = — aW. 
By Art. 24, 

IKc'ae — aW b (ex' — a) p = 4 . = i 
V « y 2 4 - & V 2 

V l ^ F 
= \(ex' — a). (Art. 119.) 
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- tfx'ae - aW b (ex' + a) Also, p' = — 

= ^ (ex' + a). (Art. 119.) 

¿2 
Hence, pp' = (eV2 _ a2) — ¿2. (Art. 119.) 

- — , 

^ 129. To find the polar equation of the hyperbola, 
the left focus being the pole. 

Let F 'P = r ; AF 'P = 0 ; then 
(Def. of Art. 99) .we have, 

F 'P = e • PD 

= e (F'M - F'O) 

= e • MP' - e • F'O Rg 95. 

= e • F 'P cos AF 'P - a(e2-l) (Art. 102, Cor. 1), 

or r = er cos 0 — a (e? — 1); 

therefore, r = a ~~ / i \ 
e cos 0 — 1 ' W 

which is the equation required. 

COB.—When 0 = 0, r = ae + a = F ' C + CA = F 'A, 
as it should do. (Art. 102, Cor. 1.) 

When e cos 0 — 1 = 0, that is, when 0 = cos - 1- , 

r = > = «, 

But in this case r, or F'K, is parallel to the asymptote CR 
(See Art. 114, Cor. 2, and Fig. 89). That is, while 0 in-
creases from 0 to cos-1 - , r increases from ae + a to 00, 

6 
tracing the branch APP'. 

' S t e w p ' ! " ' * » 

When 0 passes the value cos - 1 - , e cos 0 — 1 becomes 

negative, and therefore r becomes negative, and the left-
hand branch is generated, the negative end of r tracing 
QQ'Q"; thus, when 0 = AF'H, r, being negative, is 
reckoned backwards to Q. 

When 0 = 90°, r=-a(e>-l) = - ^ (Ar t . 101, Cor.), 

which equals the semi lotus rectum, p, with a negative 
sign (Art. 102, Cor. 4), and Q' is located. 

When 0 = 180°, r = - a ( e - l ) = a - a e = - F'A', 
as it should. 

While 0 increases from 90° to 270°, the arc Q'Q"A'Q"' is 
traced with the negative end of r. 

When 0 = 270°, r=-a(e>- 1) = - £ = and 
Cb 

the point Q'" is located. 

While 0 increases from 270° to cos - 1 - , r remains nega-

tive, and increases numerically from p to a>, its negative 
end tracing Q'", Q'r. 

At 0 = cos - 1 i in the fourth quadrant, r = 00, and is 
parallel to the asymptote CR'. 

While 0 increases from cos - 1- to 360°, r is positive, and 
6 

diminishes from co to a + ae, and the arc P'", P", A is 
traced. 

130. To find the polar equation of the hyperbola 
when the. pole is at the centre. 

Changing ahf -Vh?= — a2b2 into a system of polar 
co-ordinates (as in Art. 97), we have 

. _ a2b2 b2 

r ~ Vscos2 6 — a2sin38 = ( A r t - 101> Cor.) (1) 

1 

Hi 

li 

m i 



Similarly, the polar equation of the conjugate hyperbola is 

= 1 — e2 cos2 er W 

COR.—Equation (1) shows that for every value of 0 be-
tween — cos-1 — and -f cos-1-1, r has two real values. 

e e 
numerically equal, with contrary signs. These two values 
of r, taken together, make the diameter; hence, every 
diameter of the hyperbola is bisected at the centre (Art. 
102, Sch.). 

When 0 = cos"1- , r = co; but in this case, r or CR, • 
€ 

Fig. 89, coincides with the asymptote. 

While 0 increases from cos _ 1 j to ^180° — cos - 1-) , r is 

imaginary, showing that it does not reach either branch of 
the given hyperbola. 

Equation (2) shows that for every value of 0 between 
cos -1^ and (l80° — c o s - 1 ^ , r has two real values, numer-
ically equal, with contrary signs. These two values of v, 
taken together, make the diameter of the conjugate hyper-
bola ; hence, every diameter of the conjugate hyperbola is 
bisected at the centre. 

When 0 = — cos - 1 - , r = qo; in this case, r coincides 
& 

with the asymptote. 

For every value of 0 between — cos - 1- and + cos - 1 -
e e 

r i s imaginary, showing that it does not reach either branch 
of the given hyperbola. 

In (1), r is least when 6 = 0, giving 

which equals « (Art. 101, Cor.). In (2), r is least when 
0 = 90°, giving r = b. Hence, in the hyperbola, each axis 
is the minimum diameter of its own curve. 

Also, it is evident from both (1) and (2) that the value of 
r is the same for 0 and _ Q). Therefore, diameters which 
make supplemental angles with the transverse axis of an 
Hyperbola are equal. 

131. The properties of the hyperbola hitherto established 
are similar to those of the ellipse. We have now to consider 
some properties peculiar to the hyperbola, arising from the 
presence of the asymptotes. (See Art. 113.) 

132. To prove that the asymptotes are the diagonals 
of every parallelogram formed on a pair of conju-
gate diameters. 

The equations of the hyperbola and its asymptotes, when 
referred to the axes of the curve, are respectively 

z2 V2 i 
a*-p = 1> (1) 

and - - ^ - 0 i 9 \ 
A2 b* ~ (2) 

When we transform the equation of the hyperbola to its 
conjugate diameters (Art. 123), equation (1) becomes 

^ _ _ i . 
a ' a b' * ~ ' 

therefore we may at once infer that 
(2) transformed to the same conju-
gate diameters, becomes 

_ I 2 _ o • 
a' 2 b'*~ > 

Fig. 96. 

that is, the equations of the asymptotes CR and CR', 
referred to any pair of conjugate diameters, are 



£ ' - ! < = °> (3 ) a b 

and X-, + i = 0. (4) a o 
Take CP = «', and CP' = b'. 

b' -Equation (3), or y = -,x, is the equation of a line pass-

iug through the origin and the point (a', b') (see A r t 26, 
Cor. 4), that is, through C and D ; and (4), or y = — x, 

is a line passing through the origin and (a', — b'), that is. 
through C and E. Hence, (3) and (4), which are the 
asymptotes, are also the diagonals of the parallelogram 
EDE'D' on the conjugate diameters PP" and P'P'". 

133. To find the equation of the hyperbola referred 
to its asymptotes as axes. 

To do this, we must transform the equation 
a y — bh?= - aW, (1) 

from rectangular to oblique axes, having the same origin. 
Let CX and CY be the old axes (Fig. 96). Take the 

lower asymptote CR' for the new axis of x, and the other, 
CR, for the new axis of y. 

Let x, y be the co-ordinates of any point P in the curve 
referred to the old axes, and x', y' the co-ordinates of the 
same point referred to the new axes. Denote the angles 
ACR and ACR' by 0 and 0' respectively. 

The formula; for transformation (Art. 35, Cor. 1) are 
x = x' cos 0' 4- y' cos 0, 
y = x' sin 0' + y' sin 0. 

Squaring, substituting in (1). and arranging, we have 
/ {a* sin2 0' — b' cos2 0') x*\ 

-i- («« sin2 9 - b* cos-' 0) y'~ = - aW. (2) 
( + 2 (a3 sin 9 sin 9' — V* cos 9 cos 9')x'y' J 

HYPERBOLA REFERRED TO ASYMPTOTES. 2 0 3 

From Ar t 114, Cor. 2, we have 

tan20 = - = tan 2 0 ' : a2 , ' 
from which we get 

a2sin20 — ^cos2© = 0, (3) 
and a

2 sin2 6' — b2 cos2 0' = 0. (4) 
Also, from Art. 114, Cor. 2, we have 

and cos 0 cos 0' = — • 
a? 

therefore, 

a2 sin 0 sin 0' — ¿2 cos 0 cos 9' = 2aW . ^ 

«2 + ¿2 

Substituting (3), (4), and (5) in (2), we get 

4a2£2 

or suppressing accents from the variables and reducing, we 
have 

and putting m2 for a ^ , we have, 4 
xy = m*, (7) 

which is the equation required. 

COR.—The equation of the conjugate hyperbola, referred 
to the same axes, is (Art. 105) 

xy = — m\ (8) 

If we solve (7) for x, we get 

m2 

x = —, 
y 



which shows that as y increases, x diminishes, and when 
y = co, x = 0 ; that is, the curve approaches the axis of y, 
and finally touches it at an infinite distance from the centre. 

Similarly, the curve approaches the axis of x, and finally 
touches it at an infinite distance from the centre. 

Sen.—The second member of (7) is essentially positive, 
and of (8) essentially negative; hence, both x and y have the 
same sign in (7) and contrary signs in (8); therefore one 
branch of the given hyperbola lies wholly in the first angle 
and the other in the third; while one branch of the conju-
gate hyperbola lies wholly in the second and the other in the 
fourth angle. (See Fig. 96.) 

In the case of equilateral hyperbolas (Art. 105, Sell. 2), 
the angle between the asymptotes, which (Art. 121, Sch.) is 
equal to sin-1 , , = sin"11, becomes a right angle; 
^ a2 + tr 

therefore, the equilateral hyperbola is also called the Rec-
tangular hyperbola. 

134. To find the equation of the tangent at any 
point of an hyperbola referred to the asymptotes as 
axes. 

Let (.?', y') and (x", y") be any two 
points, P and P', on the curve. The 
equation of the secant through these 
points (Art. 26), is 

Since (x', y') and (x", y") are on the Fig. 97. 
curve, we have (Art. 133), 

x'y' = m2=x"y", or y" = ^ , 

which in (1) gives y- y' = - ^ ( x - x'), (2) 

which is the equation of the sccant to the hyperbola. 

When the points become consecutive, we have x" = x' ; 
hence (2) becomes 

y-y' = -V-,(x-x'). (3) 

Clearing (3) of fractions, transposing, and uniting, we 
have 

x'y + y'x = 2 x'y', 

Xx' + f> = 2> (4) 

which is the equation of the tangent required. 
\ 

COR. 1.—Making y and x successively = 0 in (4) we get 

x = 2x' = C T , and y — 2y' = C T ' . 

Hence, P is the middle point of T T ' ; therefore, the portion 
of the tangent included between the asymptotes is bisected at 
the point of contact. 

COR. 2.—From Cor. 1, we have, 
CT x CT' = 4x'y' = a2 + b2 (Art. 133). 

That is, the rectangle of the intercepts cut off upon the 
asymptotes by any tangent is constant, and equal to the sum 
of the squares on the semi-axes. 

COR. 3.—The area of the triangle TCT', Fig. 97, is 

= | C T x CT' sin TCT' 

= M y ' x ^ q ^ (Cor. 1, and Art. 121, Sch.), 

= ab = constant. 

Therefore, the triangle included between any tangent and the 
asymptotes is constant, and equal to the rectangle of the semi-
axes. 



135. To prove that the intercepts of a secant be-
tween the hyperbola and its asymptotes are equal. 

In equation (2) of Art. 134, make y = 0, and get 

x = x" + x' 

= CN (Fig. 97). 

Hence, CN" — x' = x", 

or M'N = D ' P ' ; 

therefore, N P = N ' P ' ; 

that is, the intercepts of the secant are equal. 

SCH.—This proposition affords a convenient method of 
constructing the curve. If the axes are given, construct 
the rectangle on them, the diagonals of which are the 
asymptotes. Then through the extremity of the transverse 
axis, draw a right line intercepted by the asymptotes; lay 
off on this line from one asymptote a distance equal to the 
extremity of the axis from the other asymptote; the point 
thus found will be a point of the curve. In this manner, 
find any number of points, and draw a line through them ; 
this will be the required curve. 

136. To prove that the parallelogram formed by 
drawing lines from any point of an hyperbola paral-
lel to and terminating in the asymptotes, is equal to 
one-eighth the rectangle on the axes. 

Call <p the angle TCT' (Fig. 97) ; the area of CM'PD 

= x'y' sin <p 

= X - T T T i ( A r t - 133> a n d Arfc- 121> S c h - ) 
4 a1 4- b2 

= \ab = \ (2a • 2b), 

which proves the proposition. 

137. To find the equations of two conjugate diam-
eters of an hyperbola referred to its asymptotes. 

The diameter which passes through 
the origin and the point P (x1, y') is 
represented (see Art. 26, Cor. 4) by 

y' 
y = x-x> 

â\ /NÎ 

M 

or 
x V -, — -, = 0. x' y' ( 1 ) 

Fig. 98. 

The diameter conjugate to this one, CD, is parallel to the 
tangent at (x', y'), and therefore (Art. 134, Eq. 4) its equa-
tion is 

y 

or - + £ - 0 + v - (2) 
COR.—When the diameters PP ' and DD' become the axes, 

AA' and BB', we have, since the axes bisect the angle be-
tween the asymptotes, 

C M ' = M ' A , or x' = y'; 
therefore (1) and (2) become 

x — y = 0, and x + y = 0, 
which are the equations of the axes referred to the asymp-
totes. F 

138. Given the co-ordinates of the extremity of a 
diameter, to find those of the extremity of its con-
jugate. 

Let (x';y') be the point P (Fig. 98), and (x", y") the 
point D. 

The equation of DD' (Art. 137) is 



The equation of the conjugate hyperbola (Art. 133) is 
xy = — m2. (2) 

Eliminating between (1) and (2), we get 
x" = Tx', y".= ±y'. (3) 

COK. 1.—The equation of the tangent at P (x', y') (Art. 
134) is 

J + j H 1 (4) 

The equation of the tangent at D (x", y"), the extremity 
of the conjugate diameter (Art. 134) is 

* J . y - a 

or from (3), = (5) 

Adding (4) and (5), we get x = 0 as the locus of the 
intersection of the tangents (4) and (5), which is the equa-
tion of the axis of y, or the asymptote CR'. Therefore, 
tangents at the extremities of conjugate diameters meet on the 
asymptotes. 

COR. 2.—Since T' is a vertex of the parallelogram formed 
on the conjugate diameters PP ' and DD', we have 

PT' = C D ; 

therefore, TT ' = 2PT' = DD' ; 

that is, the portion of the tangent at any point of an hyper-
bola, included between the asymptotes, is equal to the diameter 
conjugate to that which passes through the point of contact. 

139. I f a chord be drawn parallel to any diameter, 
it irill be bisected by the conjugate diameter pro-
duced. 

Let QQ' he drawn parallel to DD' (Fig. 98); then will it 
be bisected at M" by CP produced. 

Since QQ' is parallel to DD', its equation will differ from 
that of DD' only by a constant term; therefore [Art. 138, (1)] 

x u 
x' + y' = C (D 

is the equation of QQ'. 

Combine (1) with the equation of PP ' (Art. 137), which is 

x 1/ 
x'~y' = °> & 

and we get x = $cx', y = \cy', 

as the co-ordinates of M". But from (1) we have 

CR = cx', and CR' = cy'; 

therefore M" is the middle point of RR'. But (Art. 135), 

RQ = R'Q'; , 

therefore, QM" = M"Q', which proves the proposition. 

E X A M P L E S . 

1. Find the axes of the hyperbola whose equation is 
3y1 — 2a;2 + 12 = 0; also the eccentricity of the given and 
the conjugate hyperbola, and the parameter. 

g 
Ans. a = Vo, b = 2; e = V f ; e' = V j ; 2p = —^' 

2. Find the intersection of the hyperbola 3y2—2a;2 -f 1 2 = 0 
and the circle a? + if = 16. A n s _ ( ± 2 a / 3 , ± 2). 

> 3. Find whether the line y = \x cuts the hyperbola 
5?/2 — 2a? = — 15, or its conjugate. 

Ans. I t cuts the conjugate. 

4. Find the equation of an hyperbola of given transverse 
axis, whose vertex bisects the distance between the centre 
and the focus. Ans. y2 — 3a? = — 3a2. 



5. If the ordinate MP (Fig. 95) of an hyperbola be pro-
duced to Q, so that MQ = F T , find the locus of Q. 

Ans. A right line. 

6. If an ellipse and an hyperbola have the same foci, 
prove that their tangents at the point of intersection are at 
right angles. (See Art. 75, Cor. 2, and Art. 107, Cor.) 

7. Find the condition that the line + f = l ) s h a 1 1 

/ Z 2 W2 A , A2 FT2 . 
touch the hyperbola — ^ = l j . Ans. —8 - = 

[To obtain this, compare ^ + | = 1 with equation of 

tangent (Art. 107), which is 
xx' yy[ _ 
T* ~ ¥ ~ ' 

3 , x' a , y' i 
and we have — = — and j = — - , a m o n 
which in the equation of curve gives the answer.} 

> 8. Find where the tangents from the foot of the directrix 
will meet the hyperbola, and what angle they will make 
with the transverse axis. 

Ans. The extremity of the latus rectum ; tan - 1 ± e. 
> 9. Find the angle included between the asymptotes of the 
hyperbola 16?/ — 9a? = — 25. Ans. 73° 44'. 

10. Find the perpendicular from the focus of any hyper-
bola to its asymptotes. Ans. The semi-conjugate axis. 

> 11. If 3AC = 2CF' (Fig. 95), find the inclination of the 
asymptotes to the transverse axis. t a n - i V 5 

> 12. If the asymptotes of the hyperbola are axes, show 
that the equation of one directrix is x + y — a = 0. 

[See Art. 137, Cor.] 

13. Prove that if a circle be described with the focus of 
an hyperbola for its centre and with a radius equal to the 
semi-conjugate axis, it will touch the asymptotes in the 
points where they are cut by the directrix. 

14. Prove that the radius of a circle which touches an 
hyperbola and its asymptotes is equal to that part of the 
latus rectum produced which is intercepted between the 
curve and the asymptote. 

15. Find the length of the normal N P and of RP (Fig 88) 
[See A r t 108, Cor. 1.] ^ „ = J r / 

a i 
16 Prove that the product of the two perpendiculars let 

fall from any point of an hyperbola upon the asymptotes is 
constant and equal to 

a? + IP 
17. Tangents to an hyperbola are drawn from any point 

on either branch of the conjugate curve ; prove that their 
chord of contact touches the opposite branch of the conju-
gate curve. 

[Take the diameter passing through the point for axis of 
y, and the conjugate diameter for axis of x-; equation of 
chord of contact is 

— _ ^ — i a' 2 ¿'2 ~ L> 
which soon reduces to y = ± V ; .% etc.] 

18 In any equilateral hyperbola, let <f> = the inclination 
of a diameter, passing through any point P, and <j>' = that 
of the polar of P, the transverse axis being the axis of x • 
prove that tan 0 tan <p' = 1. 

[Equation of diameter is y = y - , x
y ~ — tan <¡6; 

polar of P is xx' - yy' = a2; ... ^ = tan ^ . ^ ^ 



19. Prove that the middle points of a series of parallels 
intercepted between an hyperbola and its conjugate, lie on 
the curve whose equation is 

4W» bV y2 

[Take for axis of y the diameter parallel to the lines, and 
for axis of x the conjugate diameter.] 

20. Between the sides of a given angle 4>, a right line 
moves so as to enclose a triangle of constant area = k2; 
prove that the locus of the centre of gravity of the triangle 
is the hyperbola whose equation is 9xy sin <t> = 2k2. 

[Take the sides of the angle for the axes.] 
21. A tangent at the extremity of the latus rectum of an 

hyperbola meets any ordinary MP produced in R ; prove 
that F P = MR, where F is the focus through which the 
latus rectum passes. 

22. If from a point P in an hyperbola PK be drawn 
parallel to the transverse axis, cutting the asymptotes in I 
and K, prove that PK x PI = a2; or, if parallel to the con-
jugate, PK x P I = P. • 

[Combine equation of line through P (x, y') with equa-
tions of asymptotes, etc.] 

23. AOB, COD are two straight lines which bisect each 
other at right angles : show that the locus of a point which 
moves so that PA • PB = PC • PD is a rectangular hyper-
bola. Take OA and OC for axes of x and y respectively. 

24. A right line has its extremities on two fixed right 
lines, and passes through a fixed point: show that the locus 
of the middle point of the line is an hyperbola, and find its 
equation. Take the fixed right lines for axes. 

. 25. A right line has its extremities on two fixed right 
lines, and cuts off from them a triangle of constant area: 

show that the locus of the middle point of the line is an 
hyperbola, and find its equation. 

Take the fixed right lines for axes; and let the constant-area = c°. 

AnsJ&xy = c2. 
26. If e and e' be the eccentricities of an hyperbola and 

of the conjugate hyperbola, prove that 4 4- i = 1. 
C 

27. The distance of any point from the centre of a 
rectangular hyperbola varies inversely as the perpendicular 
distance of its polar from the centre. 

28. If a parallelogram be constructed with its sides par-
allel to the asymptotes of an hyperbola, and one of its dia-
gonals be a chord of the hyperbola ; show that the direction 
of the other will pass through the centre. 

29. PN is the ordinate of a point P on an hyperbola, PC 
is the normal meeting the axis in G : if N P be produced to 
meet the asymptote in Q, prove that QG is at right angles 
to the asymptote. 

30. A series of chords of the hyperbola a2y2—b2xl=— a2b2 

are tangents to the circle described on the right line joining 
the foci of the hyperbola as diameter: prove that the locus 
of their poles with respect to the hyperbola is 

r 



C H A P T E R V I I I . 

G E N E R A L E Q U A T I O N - O F T H E S E C O N D D E G R E E . 

140. I t has been shown (Art. 23) that every equation of 
the first degree between two variables is the equation of a 
right line. We have seen that the equations of the circle, 
parabola, ellipse, and hyperbola are all of the second degree. 
We shall now show that every equation of the second degree 
between two variables is the equation of a circle, a parabola, 
an ellipse, an hyperbola, or two right lines, intersecting, 
parallel or coincident, or a point. 

141. The most general form of the equation of the second 
degree is 

ax2 + bxy + cy2 + dx + ey + f = 0, (1) 

where a, b, c, d, e, f are all constants. 
Five relations between the coefficients are sufficient to 

determine a locus of the second degree, although (1) con-
tains six constants. The nature of the locus depends, not 
on the absolute magnitude of the coefficients, but on their 
mutual ratios, for if we multiply or divide (1) by any con-
stant, it will still clearly represent the same locus. We 
may, therefore, divide (1) b y / , so as to make the absolute 
term = 1, and there will then remain but five constants to 
be determined. 

If the locus passes through the o r i g i n , / = 0 (see Art. 41, 
Cor. 2), and (1) becomes 

ax1 4- bxy 4- cy2 + dx + ey = 0, (2) 

which is the equation of the locus when it passes through 
the origin. 

TRANSFORMATIONS OF THE EQUATION. 2lo 

If the origin of co-ordinates be taken at the centre of the 
locus (Art. 71, Sch.), for every point (x\ y') whose co-ordi-
nates satisfy the equation, there will be a corresponding 
point ( - x', — y') whose co-ordinates also will satisfy the 
equation; hence, when the centre is the origin, the equation 
will not be altered by writing - x, - y for x, y • therefore, 
the terms of the firsWlegree must vanish from it. In order 
then, to find the centre of the locus, we must transfer the' 
ongm to a point (x', y'), and then see what values of a;', y' 
will make the new coefficients of a: and y vanish. These 
values of a;' and y' will be the co-ordinates of the centre of 
theJocus referred to the original axes. In the following 
transformations, we shall suppose the co-ordinate axes rec-
tangular ; for if they were oblique, we might transform the 
equation to one in which the axes were rectangular, without 
affecting the degree or form of the equation. 

F I R S T . T R A N S F O R M A T I O N . 
A 

\f\ 142. The object of this transformation is to remove from 
ax2 + bxy + cy2 + dx + ey+f = 0 (1) 

the terms involving the first power of a; and y. To do this 
we transform (1) to parallel axes passing through a new 
origin (x', y'). 

The formulas for transformation to parallel axes through 
(x', y') are (Art. 33), x = x' + x, y = y' + y, where a:' and 
y' are put for m and n. Substituting these values.for a: and 
y in (1), and arranging the terms of the resulting equation, 
we have 

ax? + bxy -f- cy2 -f- 2 ax' x -f 2cy' y + ax'2 

+ by' + bx' + bx'y' 
+ d + e + cy'2 

+ dx' 
f + ey' 

• + f 



or ax* + bxy + cy2 + d'x + e'y + f = 0, (3) 

from which we see that the coefficients of a?, xy, and y2 are, 
as before, a, b, c; that 
the new d is d! = 2ax' -f- by' + d\ 
the new e is e' = 2cy' + bx' + e ; 
the n e w / i s / ' = ax'2 + bx'y' +vy'2 + dx' + ey' + f 

Hence, if the equation of a locus of the second degree be 
transformed to parallel axes through a new origin, the coef-
ficients of the highest powers of the variables will remain 
unchanged, while the new absolute term will be the result of 
substituting in the original equation the co-ordinates of the 
new origin. 

Putting the coefficients of z and y in (2) equal to 0, we 

2ax' + by' + <1 = 0, W p 1 ' ( 4 ) 

2 cy' + bx' + e =0, ( 5 ) 

which are the equations for the centre of (1). 
Equations (4) and (5) may thus be obtained : For (4) take 

only those terms of {1) which involve x; multiply each term 
by the exponent ofxin it, and diminish that exponent by 
unity. Equation (5) may be obtained similarly by substi-
tuting y for a; in the above rule. Thus, the equations for 
the centre of the locus represented by 

4a? + 3 xy + 2 y2 - 14# + 17 = 0 

are 8x + 3y = 0 and 3a; + \y — 14 = 0. 

SCH.—Solving (4) and (5) for x' and y', we find them to be 
_ 2cd - be (6) 

* - & _ 4ac' 
, 2 ae — bd ,«•> 

a n d y = ¥~—~iac' v ; 

which are the co-ordinates of the centre with reference to 
the old axes. 

I t is plain that these values of x' and y' will always be 
finite, except when b2 — iac = 0, in which case they will 
be infinite. Hence, loci of the second degree may be divided 
into two classes: I, those which have a centre; I I , those 
which in general have not a centre, or rather, whose centre 
is infinitely distant. The first are often called Central 
Curves, while the second are called Non-central Curves. 
We shall first consider the case of central loci. 

Substituting (4) and (0) in (2), and representing the 
absolute term b y / ' , for shortness, we have 

ax2 + bxy + cy2 + f = 0. (8) 

We see that if (8) is satisfied by any values, x' and y' for 
x and y, it is also satisfied by the values — x' and — y'. 
Hence, the origin of co-ordinates in (8) is the centre of the 
locus which (1) or (8) represents. 

S E C O N D T R A N S F O R M A T I O N . 

143. The object of this transformation is to remove from 
ax2 + bxy + cy2 + f ' = 0 (1) 

the term involving xy, and leave (1) in the form 
a'a* + c'y2 + f = 0, 

where if any value be given to one of the variables, the 
other will have two equal values, with contrary signs. 

To effect this transformation, we revolve the axes of co-
ordinates through the angle 0 till they coincide with the 
axes of the locus. The formulae for this transformation 
(Art. 35, Cor. 3), are 

x = x' cos A — y' sin 0, 

y = x' sin 6 + y' cqs 0. 
Substituting these values for a; and y in (1), and arranging 

the terms, we have 
10 



a cos2 6 
4-èsin0cos0 

+ 6-sill2 0 

x'2—2a sin 0 cos 0 
-f b cos2 0 
—6 sin2 0 

4-2csin0cos0 

x'y' 4-a sin2 0 
—Z»sin0cos0 

+ ccos20 

y'2+f'=0. 

(2) 

If we equate the new coefficient of x'y' to 0, we obtain 

2 (c — a) sin 0 cos 0 -J- b (cos2 0 — sin2 0) = 0, 

or (c — a) sin 20 + b cos 20 = 0; 

therefore, tan 20 = — — > (3) (I ~~~ c 
from which we may determine the angle 0 through which 
the co-ordinate axes must be turned to remove the term 
containing xy. 

As the tangent of an angle may have any value, positive 
or negative, from 0 to oo, it follows that (3) will always give 
real values for 2 0; that is, there are two real liues at right 
angles with each other to which when the locus is referred, 
the term involving xy vanishes. 

Substituting (3) in (2), we have, for the required trans-
formation of (1), 

i {a cos2 0 + b sin 0 cos 0 + c sin2 0) x'2 ) 
- + (a sin2 0 — b sin 0 cos 0 + c cos2 0) y'2 f = 0, (4) 

' ( +f ) 

or, omitting the accents from the variables, and writing a' 
and c' for the coefficients of x2 and y2, we have 

a'*2 4- c'y2 + / ' = 0, (o) 
which is the equation of the locus referred to its centre and 
axes. 

To find the values of a' and c' in (5), we have 
a' = acos20 4- ¿sin 0cos0 + csin20 [from (4)] 

= i \a cos20 4- « (1 — sin20) 4- csin20 4- c(l — cos20) 
4- 2b sin 0 cos 0] 

= i [a 4- c 4- (a — c) cos 20 4- 1> sin 20]. (4)' 

Similarly, c' = \ [a 4- c — (a — c) cos 26 —b sin 20]. (5)' 

From Trigonometry we have 

cos 20 = 1 = a ~ c 

Vl 4- tan2 20 VP + (a - c)2 

[from (3)]; also 
b sin 20 = Vl — cos2 20 = . = • 

VP-+ (a — c)2 

Substituting these values of cos 20 and sin 20 in (4)' and 
(5)', we get 

a ' 

also, c' = \ 

r , , ( « - * ) ' + P I 

= \ [ « 4- c 
r . ( a - c ) 2 + l /~ l 

a + c - V M T T a ^ J / 

(6) 

= i [ a 4- c -p/V2 4- (a - c) 2 \ \ (7) 
Hence, we see that the general equation of the second 

degree given in (1) of Art. 141 can always be transformed 
to the form given in (5), provided that it is not subject to 

_the condition b2 — 4ac = 0 (Art. 142, Sch.). 

COR. 1.—Multiplying (6) and (7) together, we have 

a'c' = i[{a 4- c)2 — b2 — (a — c)2] = J (4ac - b2). 

Hence, if a' and c' have like signs, 4ac — V2 will be positive, 
or V2 — 4ac will be negative ; but if a' and c' have unlike 
signs, Ô2 — 4ac will be positive. 

COR. 2.—When & — 4ac < 0, a' and c' have the same 
sign (Cor. 1) ; if f have a contrary sign from a' and c', 
(5) becomes 



which is the equation of an ellipse [Art. 71, (3)] whose axes 

are \ and \ '^r 
V A V C 

If c' = a', (8) becomes 

* + ? = (9) a 
. f f 

which is the equation of a circle whose radius is \ l 

I f / ' = 0, (8) becomes 

a'ap + c'y2 = 0, 
which is the equation of the two imaginary right lines 

xVa' + yV—c' = 0, and xVa' — yV— c' = 0, 

which meet in the real point x = 0, y = 0 ; or it is the 
equation of the origin, or the ellipse diminished indefinitely. 

If / ' have the same sign as a' and c', (5) becomes 

ji s2 + j; y2 = — 1» 

which cannot be satisfied by any real value of x and y; 
therefore the locus is imaginary. 

Hence, if IP — 4ac < 0, the general equation of the second 
degree between two variables represents an ellipse, a circle, a 
•point, or an imaginary locus. 

COR. 3 . — 0 , a' and c' have unlike signs 
(Cor. 1). S u p p o s ^ E ^ d / ' to ,be positive, and a' to be 
negative; (5) become« ' 

(10) 

which is the equation oflrn hyperbola [Art. 102, (3)] whose 

axes are 

If a' and / ' are positive, and c' negative, (5) becomes 
«' o c' 
j , x > - j y * = - l , ( 1 1 ) 

which is the equation of an hyperbola [Art. 105, (1)] conju-
gate to (10). 

If / ' = 0, (10) or (11) becomes 
ax- — c'y2 = 0, 

which is the equation of the two lines 

y = ± x \ f a i ' 
intersecting at the origin. 

If c' = a', (10) and (11) become 

x* — y2 = and x* — y2 = — £-„ 
a a 

which are equilateral hyperbolas [Art. 105, (2) and (3)]. 

Hence, if b2 — 4ac > 0, the general equation of the second 
degree between two variables represents an hyperbola or its 
conjugate, an equilateral hyperbola, or two right lines inter-

/ seeling each oilier. 

0 144. We have shown (Art, 142) that the coefficients of 
the first three terms of the general equation of the second 
degree between two variables are not altered by a transfer 
of the origin; we shall now show that when the axes are 
turned through an angle 6, and the new coefficients of the 
first three terms are denoted by a', b', c', we have the rela-
iions «' + c' = a + c and V2 — 4a'c' = IP — 4ac. ' 

From (2) of Art. 143, we have 

a' ' = a cos2 0 + b sin 6 cos d 4- c sin2 6 

= i O + c-M« — c) cos 20 + 6 sin 20] [from (4)']. (1) 
b' = 2 (c — a) sin 0 cos 0 + b (cos20 — sin20) 

= (c — a) sin 20 + b cos 20. (2) 



c' = a sin20 — ¿sin 0cos0 + ccos20 

= i \a + c— [ ( « - c ) cos204-¿sin20]} [from (5)']. (3) 

Adding (1) and (3), we get 
a' + c' = a + c. L (4) 

Also, from (1), (2), and (3), Ave liave 

¿'2 - ia'c' = i K® ~ sin 26 + h cos 26Y \ 
I — {(a + c)2— [(« — c) cos 204-¿sin 20]2} } 

_ ( (a — c)2 (sin2 20 4- cos2 20) ) 
( 4- ¿2 (cos2 20 4- sin2 20) — (a + c f \ 

= ( a - c ) 2 4 - ô 2 - ( « 4 - c ) 2 ; 
that is, ¿'2 — 4a'c' = ¿2 — 4ac. (5) 

Thus, the expression // — 4ac has the same value 
whether it be formed from the coefficients of the general 
equation of the second degree, as given in (1) of Art. 141, 
or after one or both transformations have been made, as in 
(8) of Art. 142, or (5) of Art, 143. 

145. To sum up briefly : 
1st. In order to reduce the equation of a central 

. locus to parallel axes through its centre, we have the 
following directions: 

1. The coefficients of the first three terms remain unal-
tered (Art. 142). 

2. The co-ordinates of the centre of the locus are given 
by (6) and (7) of Art. 142, Sch. 

3. The absolute term is replaced by a new one, which is 
the result of substituting in the original equation the co-
ordinates of the centre (Art. 142). 

The equation is now reduced to the form 

ax> 4- bxy + cy2 + f = 0 [Art. 142, (8)1 (1) 

where the origin is at the centre of the locus. 

2d. To reduce (1) to the form a'a? + c'y2 + f = 0 by 

turning the axes through the angle 0 = 4 tan"1—-
a — c 

(Art. 143.) 

4. The coefficients a' and c' are given in (6) and (7) of 
Art. 143. 

5. The absolute term,/ ' , remains unaltered [Art. 143, (2)]. 
The equation is now reduced to the form 

a'4- c'y2 +/' = 0 [Art. 143, (5)J. (2) 

146. We shall now consider the case in which 

Ô2 — 4AC = 0 . 

We saw (Art. 142, Sch.) that in this case the centre was 
infinitely distant, or, in other words, that there was no 
centre. We cannot, therefore, remove the terms dx and ey 
from the general equation by changing the origin to the 
centre, as we did in Art. 142 ; but we can remove the term 
xy from the equation by turning the axes through the 
angle 0, as we did in Art. 143, where 0 is obtained from (3) 
of Art, 143. 

Substituting x' cos 6 — y' sin 0 for x, and x' sin 0 4- y' cos 0 
for y in (1) of Art, 142, and arranging as in (2) of Art. 143. 
we have 

Î
(a cos20 4- ôsin 0cos0 4- csin20) x'2\ 

(—2a sin0 cos0 4- b costy—b sin20 + 2c sin0 cos0) x'y' ) 

(+ a sin2 0 — ¿sin 0 cos 0 -f. ccos20) y'2 ( _ 
(4- ¿cos0 4- esin 0) x' ' 
( 4- e cos 0 — d sin 0) y' I m 

+ / ' Now, for tan 20 = , the term containing x'y' in (I c 
(1) vanishes, by Art. 143, (2) ; and if we denote the coef-
ficients of z'2, y'2, x', y', by a', c', d', e', (1) becomes a'x'2 + c'y'2 4- d'x' 4- e'y' +f = 0, (2) 

= 0. 



where a' and c' have the values given in Art. 143, (G) and 
(7), and d' and e' have the values given in (1); that is, 

d' = dcosO + esin 0, e' = e cos 0 — rfsin 0. (2)' 

Now (Art. 143, Cor. 1), a'c' = i (4ac - IP), which, by 
the present hypothesis, is equal to 0 ; therefore, a'c' = 0, 
and hence either a' or c' must equal 0. We shall suppose 
that a' = 0, which reduces (2), by omitting accents, to 

e'y2 + d'x + e'y + f = 0. (3) 

REMARK.—If we were to suppose c' = 0, instead of a' = 0, the • 
equation would represent the same form of locus that (3) represents, 
excspt that the locus would be situated with respect to the axes of x 
and y just as that of (3) is situated with respect to the axes of y and 
x respectively. 

Now transform the origin to a point (x', y'), by putting 
x' + x for x, and y' + y for y in (3). and it becomes, 

c'y2+d'x + {2c'y' + e')y + (c'y'2 + d'x'+e'y' + / ) = 0. (4) 

Equating the coefficient of y and the absolute term to 0, 
in (4), we have 

e ' 
2c'y' + e'=0, or y' = - v (5) 

e'2 _ 4c'f 

c'y'2 + d'x' + e'y'+f= 0, or z ' = ^ ; (6) 

and (4) becomes ( 

c'y2 + d'x = 0 , or f = - ~ x , (7) 

which is the equation of a parabola [Art. 53, (2)], in which 
the axis of x is the axis of the curve, and the origin of co-
ordinates is at the vertex. If d' and c' have the same sign 
the curve is to the left of the origin; and if d' and c' have 
unlike signs, the curve is to the right of the origin (Art. 53, 
Cor. 2) . 

OOR.—If d' = 0 in (3) the equation becomes 

c'y2 + e'y+f = 0, (8) 

— e'± Ve'2 — 47f 
y = — - S ? — - > (9) 

which represents (Art. 23) two right lines parallel to the new 
axis of x, which are real and different, real and coincident, 
or imaginary, according as 

c'f>, =, <0. 

Hence, when IP — 4ac = 0, the general equation of the 
second degree between two variables represents a parabola, 
two parallel right lines, two coincident right lines, or two 
imaginary parallel right lines. 

Sen.—The results of the foregoing articles, as determin-
ing the species of the locus may be summed up as follows: 

The general equation of the second degree between 
two variables always represents a parabola, an ellipse, 
an hyperbola, or some one of their limiting cases. 

b2 — \ac = 0 represents the parabola. 
IP — 4ac < 0 " " ellipse. 
IP — 4OC > 0 " " hyperbola. 

E X A M P L E S . 

) 1. Determine the species and situation of the locus whose 
equation is 

ox2 + 2xy + by2 — I2x - 12y = 0, (1) 

and transform the equation (Arts. 142, 143) to its axes, and 
illustrate each transformation by a figure.. 

Since the absolute term is wanting, the locus passes 
through the origin (Art. 141). 

Here b = 2, a = 5, c = 5 ; hence, IP — 4ac = — 96, 
< 0. Therefore the locus is an ellipse. 



1st. By Art. 145, (2), the 
co-ordinates of the centre are 
x = y = 1. That is, the cen-
tre of the ellipse is at the point 
(1, 1). 

If then we transform the 
origin from 0 to C,the centre, 
so that OM = CM = 1, and 
the new axes of co-ordinates, 
Gx and Cy, are parallel to the 
old ones, OX and OY, the 
transformed equation is found 
to be 

5ar* 4- 2xy 4- bif — 12 = 0. 

2d. By Art. 145, (4), we have 

«' = 1 ( 5 4 5 4 V r + ~ D ) [Art. 143, (6)] = 6; 

(2) 

c' = i ( 5 4 5 - V 4 4 0) = 4. 

tan 29 = [Ar t 143, (3)] = | = » ; 

hence, 9 = 45°; that is, the new axis of x is inclined to 
the original axis of x at an angle of 45°. 

Hence, if the axes Cx and Cy are turned through 45°, 
(2) becomes 

Qx? 4- 4y1 — 12 = 0, 
or 4- W = 1, (3) 
which is the equation of an ellipse referred to its axes, the 
axis of x coinciding with the minor axis, and the axis of y 
with the major axis, the semi-axes being A/3 and V 2 ; 
therefore the major axis of the ellipse is inclined to the 
original axis of x at an angle of 135°. 

To construct the figure, let OX and 0"Y be the original 
axes; locate the new origin C at (1,1), and draw the second 
set of axes, Cx and Cy, parallel to the old; then, as 9 = 45°, 
draw Cx', making with Cx an angle of 45°, and Cy' perpen-

dicular to Cx'; lay off CD = A/2 and CH = A/3, as these 
are the semi-axes. The rest of the construction is as in 
Art. 72, giving us Fig. 99. 

To find where the locus cuts the original axis of x, make 
y = 0 in (1), and get, after dividing by 5, 

x*-i£x = 0, 
from which we have x = 0 and x = 2\ as the points 0 
and B. 

To find where the locus cuts the second axis of x, make 
y = 0 in (2) and get x* = from which we have 

* = ± v% 
as the points E and E'. 

To find where it cuts the new axis of x, make y = 0 in 
(3), and get & = 2, or x = ± A/2, as the points D and 0 . 

} 2. Find the species and situation of the locus 
2xy — x 4- 1 = 0, ( i ) 

and transform and construct as in Ex. 1. 
Here I = 2, a = 0, c = 0 ; & — 4ac = 4, > 0 ; hence 

the locus is an hyperbola. 
1st. By Art. 145, (2), the co-ordinates of the centre are 

x = 0,y = l . 
Now transform to parallel axes through the centre C 

(0, £), and (1) becomes 
2xy + 1 = 0. (2) 

2d. By Art. 145, (4), we have 

a! = | ( 0 4- A/4) = 1 5 

c' = - 1 [Art. 143, (6) and (7)] ; 

tan 29 = ? = co; 9 = 45°; 

that is, the new axis of x (Cz') is inclined to the old axis of 
x at an angle of 45°. 



Therefore, turning the axes Ca; and Gy through 45°, 
(2) becomes 

x* — y2 + 1 = 0, 

which is the equation of an equilateral hyperbola referred 
to its axes. The form of (3) shows that the axis of x coin-
cides with the conjugate axis, and the axis of y with the 
transverse axis (Art. 105, Sch. 2) ; therefore it is the conjugate 
or y hyperbola (Art. 105), the semi-axes being 1 ; and hence 
the transverse axis of the hyperbola is inclined to the origi-
nal axis of x at an angle of 135°. 

To construct the figure, 
let OX and OY be the old 
axes; locate the new origin 
0 at (0, £), and draw the 
second set of axes Ca; and CY 
parallel to the first; then, as 
0 = 45°, draw Gx' making 
with Gx an angle of 45°, and 
Gy' perpendicular to Gx'; 
lay off CA and CB = 1, as 
these are the semi-axes. The 

\ F / \ B / 

C 

Y 

f 

A \ ^ 

¥ XB' / 

Fig. 100. 

rest of the construction is like that in Art, 103, giving us 
Fig. 100. 

To find where the locus cuts the original axis of x, make 
y = 0 in (1), and get x = 1. 

* The form of (2) shows it to be the equation of the conju : 

gate hyperbola referred to its asymptotes (Art. 133), for (8) 
of Art. 133 is 

a2 + V 
xv = T-> 

which in the present example becomes 
12 + 1« 1 

xy= J = - 2 

3. Find the species and situation of the locus 
a? — 2xy + if — 8x + 16 = 0, 

and transform and construct. 
— 4«c = 0; 

therefore the locus is a 
parabola. 

The transformation is 
effected by Art. 146. 

b 

( 1 ) 

tan 20 = 
a — c 

= — c o ; 

0 = 45°. 

Hence the new axis 
of x (Oz) is inclined to the old at an angle of 45°. 

c' = | (1 + 1 + Vi) = 2 [Art. 143, (7)] ; 
[here we take the minus value of VP 4- (a — c)2 because 
we squared — 2 to get ¿2]. 

d' = i ( - 8-v/2 + 0) = — 4-y/2 [Art. 146, (2)']. 
e' = *V2(8) = W2 [Art. 146, (2)']. 

Therefore, turning the axes OX and OY through 45°, 
(1) becomes 

2tf — 4V2x + W2y + 16 = 0 [Art. 146, (3)], 

or if — 2V2x + 2 V2y + 8 = 0. (2) 

Now transform to parallel axes, OV and O'y'. From (5) . 
and (6) of Art. 146, we have 

y' = - A/2, x' = f V2, 
which in (4) of Art. 146 gives 

• 2if — W2x = 0, or if = 2V2x, 

which is the equation of a parabola referred to its vertex and 
axis. [See Puckle's Conic Sections, p. 156.] 



To construct the figure, let OX and OY represent the 
original axes; then, as 0 — 45°, draw Ox, making with OX 
an angle of 45°, and draw 0 y perpendicular to Ox-; Ox and 
0y will be the second set of axes. Locate the new origin 0 ' 
at (1V2, — V2), as referred to the second set of axes, and 
draw the axes O'x' and O'y' parallel to Ox and Oy; O'x' will 
be the axis of the parabola, and O'y' will be tangent to it at 
the principal vertex. From the parameter, 2-\/2, the curve 
may now be constructed as in Art. 52. 

REMARK 1.—The equation y1 — 2\/2x might have been obtained 
immediately from (7) of Art. 146, by simply finding the values of c' 
and d!. 

To find where the locus cuts the original axis of x, make 
y = 0 in (1), and get x = 4 ± 0; that is, the curve is tan-
gent to the axis of x at (4, 0). 

Solving (1) for y, we get 

y = x ± VSx — 16. (3) 

For every value of x < 2, y is imaginary; when x = 2, 
y = 2 ± 0, showing that the curve is tangent to the ordi-
nate at the point (2, 2). For every value of x > 2, there 
are two values of y, one equal to that value of x + the 
corresponding value of the radical, and the othei equal to 
that value of x— the corresponding value of the radical; 
that is, the line y = x is such that if from any point of it 
whose abscissa > 2 we lay off a distance upward and also 
downward equal to the corresponding value of the radical, 
we shall determine two points of the curve; hence the curve 
is symmetrical with respect to the line y = x, which is 
therefore a diameter of the parabola, since it bisects a system 
of parallel chords. The equation of this diameter, y = x, 
shows that it passes through the origin, and is inclined to 
the axis of x at an angle of 45°, and hence it coincides with 
the axis Ox. 

REMARK 2.—In the above solution, we supposed 20 to be in the 
second quadrant, where the tangent is minm, in which case when the 

/ 

tangent reached its limit, -co, 20 became 90°, and .-. H = 45°. We 
might have supposed 26 to be in the fourth quadrant, estimated in the 
negative, direction, where the tangent is minus, in which case when the 
tangent reached its limit, - co, 20 would become - 9 0 ° , and 
s = — 45°- If in this case we take the positive sign of the radical in 
•G) and (7) of Art. 143, we shall have a' =2, c'= 0; and turning the 
axes through —45°, the final equation becomes a.-5 = 2y/2y, which is 
1 he equation of a parabola whose axis coincides with the axis of y ; 
in this case, the final axis of x falls on O y", and the axis of y on O'x1. 

4. Find the species and situation of 
x* - 2xy + f - 2c* = 0, (1) 

and transform and construct. 

i2 — 4ac = 0; the locus is a parabola. 0 = — 45°. 
From Art. 143, (6) and (7), we have a' = 2, c' = 0. 
From Art. 146, (1), d' = 0, e' = 0, / = — 2c2. 

Therefore (2) of Art. 146 
becomes 

'lx*- 2c2 = 0, 

or x2 — c2 = 0, 

or ( x - c ) ( x + c) = 0,(2) 
which represents two lines 
parallel to the axis of y, 
one c to the right, and the 
other c to the left of it. 

This may be seen imme- / 1 Fig. 102 
diately by putting (1) in 
the form (x — y — cV2)(x — y + cV%) = 0, which gives 

y = x—cV2 and y = x + cV2, (3) 
which represents parallel lines making an angle of 45° with 
the axis of x. 

To construct the figure, let OX and OY represent the 
original axes; then, as 0 = — 45°, draw Ox making with 
OX an angle of — 45°, and draw Oy perpendicular to Ox. 



Ox and 0 y will-be the new axes. Now lay off OM and OM' 
each = c, and draw MN and M'N' parallel to 0 y ; they will 
be the required lines represented by (2) and also by (3), as 
is easily seen. 

5. Find the species and situation of 

5a? + 2 xy + bif — 12 cV2x — \2cs/2y = 0, (1) 

and transform. 

i2 — 4ac < 0; .\ the locus is an ellipse. 9 = 45°; by 
Art. 143, (6) and (7), we have a' = 6, c' = 4 ; by Art. 142, 
Sch., (6), (7), the centre is at (c\/2, cV2); by Art, 142, 
/ ' = — 24c2. Therefore, Art. 143, (5) becomes 

6a? + 4y2 — 24c2 = 0, 

a? M2 

which is the equation of an ellipse, the axis of x coinciding 
with the minor axis ; the semi-axes are c-y/6 and 2c. 

6. Find the species and situation of 

a? + 2 xy — y2 — 2 cx + 2cy — 4<? = 0. (1) 

V2 — 4ac > 0 ; / . an hyperbola. 9 = 22|-° ; a' = V2, 
c' = - V 2 (Art. 143); centre at (0, c) (Art. 142, Sch.); 
f = — 3c2 (Art. 142); therefore, Art. 143, (5) becomes 

a? — y2 = fv^c2, 

which is an equilateral hyperbola. 

7. Find the species and situation of 

x2 — 2 xy + y2 — 4cV2x = 0. (1) 

b2 — iac = 0; a parabola. 0 = — 45°; a' = 2, c' = 0 
(Art. 143); e' = - 4c [Art. 146, (2)']. 

Therefore [since c' vanishes instead of a' (see Remark of 
Art. 146)]. (7) of Art. 146 becomes 

a'x2 + e'y = 0, 
which in the present example becomes 

2a? — icy = 0, 
or a;2 = 2cy, 
which is the equation of a parabola whose axis coincides 
with the axis of y. (See Remark 2, Ex. 3.) 

8. Find the species and situation of the centre of the 
locus 

3a? + 4 xy + by2 — 2x — 7y — 4 = 0, 
and the inclination of its axis to the axis of x. 

Ans. Ellipse ; centre at (— -ft, ; d = 58° 17'. 

9. Find the species and situation of 
a? + 2xy - y2 + 8x + 4y — 8 = 0, 

and transform to parallel axes through the centre. 

Ans. i Hyperbola; 0 = 221°; centre, ( - 3 , - 1 ) ; 
( equation, a? + 2xy — y2 — 22 = 0. 

10. Find the species and situation of 

14a? — 4xy + l ly2 — 60 = 0, 

and transform it to the axes of the curve. 

A f U (Ellipse; 0 = £ t a n - ' ( - * ) ; 

( equation, 3a? + 2y2 — 12 = 0. 

11. Find the species and situation of 

3a? + 8 xy — 3 y2 + 6x — 10 y + 5 = 0, 

and transform to the axes of the curve. 

j Hyperbola; 9 = \ tan^'-f; 
Ans. -j centre, (.44, — 1.08); 5a? — by2 + 11.7 = 0; 

( therefore, equilateral conjugate hyperbola. 



12. Find the species and situation of 
2a.-2 4- xy — 15 y2 — x + 19y — 6 = 0, 

and transform to the axes of the curve. 

Ans. Hyperbola; 0 = -J- tan - 1 -fa ; centre, ( f a , fa)5 equa-
tion is 2.01a? — 15.01y2 = 0 ; therefore (Art. 143), the locus 
is two intersecting right lines, which form a limiting case 
of the hyperbola. 

13. Find the species and situation of 
3a? - 8xy — 3 if + a; 4- 17y — 10 = 0, 

and transform to its centre. 

Ans. Hyperbola; 0 = 4 tan"1 (— ; centre, (1.3, 1.1); 
equation x2 — y2 = 0; therefore the locus is an equilateral 
hyperbola in its limiting case; viz., two intersecting lines. 

14. Find the species and situation of 
Xs — 4xy + iy2 — 2 ax 4- 4ay = 0. 

[The equation may be written 

(x - 2y) (x - 2 y — 2a) = 0, 

and represents two parallel lines, which is one of the 
limiting cases of the parabola; the line parallel to them 
and midway between them is called a Line of Centres.] 
See Todhunter.'s Conic Sections, p. 240. 

15. Find the species and centre of the locus 

Ans. Ellipse; centre at U , 

16. Find the species and situation of (y — x)2 = ax, and 
transform to the axis and vertex of the curve. (See Ex. 3.) 

Ans. Parabola; 0 = 45°; equation is if = "-V2x. • 

17. In Fig. 101, find the lengths of OB and 0 0 ' , and the 
co-ordinates of 0 ' referred to the original axes ; also prove 
that B is the extremity of the latus rectum of the parabola. 

Ans. OB = 2A/2; 0 0 ' = FV/26; 0 N = 2 J , N 0 ' = | . 

> 18. Find the species of 1 + 2a; + 3 f = 0, and transform 
to its axis and vertex. Ans. Parabola; y2 = — fa;. 

lfl. Find the species of 3a? + 2y2 — 2x 4- y — 1 = 0, and 
transform to its axes. Ans. Ellipse ; 72a;2 4- 48y2 = 35. 

20. Find the species of 

a-2 — 10 xy + y2 + a ; 4 - 2 / 4 - l = 0, 
and transform to its axes. 

Ans. Hyperbola; 32a;2 — 48y2 = 9. 

21. Find the species of 

a* _ 2xy 4- y2 — Gx — 6y + 9 = 0, 
and transform to its axis and vertex. 

Ans. Parabola; y2 = 3\/2x. 
22. Show, by transformation, that 

5a? — 4xy 4- y2 — 4a; 4- 2y + 2 = 0 
represents an imaginary ellipse. 

[The transformed equation is 

( 3 -F 2V'2) A? 4- (3 — 2V2) y2 + 1=0; 
(Art. 143, Cor. 2), the locus is imaginary.] 

23. Find the species and situation of the centre of 
3a,-2 4- 4xy 4- y2 — hx — Gy — 3 = 0. 

Ans. Hyperbola; centre at (3£, — 4). 

24. Find the species'and situation of 
a? 4- 2xy — y2 + 8a; + 4y = 0. 

Ans. Hyperbola; 6 = 22}°; centre, (— 3, — 1). 



Ans. 

25. Find the species and situation of the following 
curves: (1) x y - 2a: + y - 2 = 0; 

(2) if - -lay + 4ax = 0; 
(3) if + ax + ay + a2 = 0; 
(4) (x + 2y)2 + (y - 2af = 5a2; 
(5) f — a? — 2arc = 0. 

'(1) The two right lines 3 + 1 = 0, y — 2 = 0 ; 
(2) Parabola, vertex (\a, a); 
(3) Parabola, vertex (— f a , — ia); 
(4) Ellipse, lengths of the major and minor axes 

= 2a and a, respectively. 
s(5) Rectangular hyperbola, centre (a, o). 

26. Transform the following equations to parallel axes 
through the centres of the curves : 

(1) 3a* - 5xy + 6y2 + 11a; - 17y + 13 = 0; 
(2) xy + 3aa; — 3ay = 0; 
(3) 3a? — 7xy — 6y* + 3a; — 9y + 5 = 0. 

i(l) 3a? — 5xy + Gy2 — 1 = 0 , centre (— 1, 1); 

(2) xy + 9a2 = 0, centre (3a, — 3a); 
(3) 3a? - 7xy — Gif + 5 = 0, centre ( - ft, - ft). 

27. Transform 2a? + 4xy + 3y2 + 3a; + y + | = 0 to 
parallel axes through the centre of the curve. 

Ans. 2a? + 4xy + 3 i f — 1 = 0; centre ( - I f , 1). 
28. Transform 2a? + 4xy + 3y8 — 3 = 0 to its axes. 
Ans. |^a? + fay- = 1, the axis of x coinciding with the 

minor axis of the ellipse. In this case we turned the old 
axes through J- tan - 1 — 4 ; had we turned them through 
— \ tan - 1 4, and taken the minus value of the radical for a' 
in Art. 143, and positive value for c', we would have found, 
for the transformed equation, ^ a ? + U 1 f = t , i e a x i s r f 

x coinciding with the major axis of the curve. (See Re-
mark, Ex. 3.) 

C H A P T E R I X . 

H I G H E R P L A N E C U R V E S . 

147. Higher Plane Curves are those whose equations 
are above the second degree, orwhich involve transcendental 
functions (Art. 17). It has been shown that everv equation 
of the first degree between two variables represents a right 
line, and that every equation of the second degree between 
two variables represents a conic section ; it follows that all 
other loci in a plane are Uglier plane curves. 

An A lgebra ic Curve is one whose rectilinear equation 
contains only algebraic functions of the co-ordinates. Thus, 
y = ax + b, x cos a + y sin a = p are algebraic curves. A 
Transcendental Curve is one whose rectilinear equation 
contains transcendental functions of one or more co-ordinates. 
Thus, y = sin x,y = tan"» a; are transcendental curves. 

Many of the higher plane curves possess historical interest, from the labor be-
stowed on then, by ancient mathematicians. We shall consider only a few of them. 

T H E C 1 S S O I D O F D I O C L E S . 

148. This curve was invented by Diodes, a Greek 
geometer who lived about the sixth century of the Christian 
era; the purpose of its invention was the solution of the 
problem of finding two mean proportionals. I t may be 
defined as follows: If pairs of equal ordinates be drawn toA 
the diameter of a circle, and through one extremity of this 
diameter and the point of intersection of one of the ordinates 
vyith the circumference a line be drawn, the locus of the 
intersection of this line and the equal ordinate, produced 
if necessary, is the Cissoid of Diocles. 

The curve is constructed as follows: Let AB (Fig. 103) 
be the diameter of a circle; draw two equal ordinates MR 
and M'IÌ'; join AR', .cutting MR in P ; then is P a point 



Ans. 

25. Find the species and situation of the following 
curves: (1) x y - 2.c + y - 2 = 0; 

(2) if - -lay + 4ax = 0; 
(3) y2 + ax + ay + a2 = 0; 
(4) (x + 2y)2 + (y - 2x)2 = 5a2; 
(5) y2 — a? — 2arc = 0. 

'(1) The two right lines 3 + 1 = 0, y — 2 = 0 ; 
(2) Parabola, vertex (\a, a); 
(3) Parabola, vertex (— f a , — ia); 
(4) Ellipse, lengths of the major and minor axes 

= 2a and a, respectively. 
s(5) Rectangular hyperbola, centre (a, o). 

26. Transform the following equations to parallel axes 
through the centres of the curves : 

(1) 3a? - 5xy + 6y2 + 11» - 17y + 13 = 0; 
(2) xy + 3ax — 3ay = 0; 
(3) 3a? — 7xy — 6y2 + 3a; — 9y + 5 = 0. 

i(l) 3a? — 5xy + 6y2 — 1 = 0 , centre (— 1, 1); 

(2) xy + 9a2 = 0, centre (3a, — 3a); 
(3) 3a? - 7xy — Gif + 5 = 0, centre ( - ft, - T \ ) . 

27. Transform 2a? + 4xy + 3y2 + 3a; + y + | = 0 to 
parallel axes through the centre of the curve. 

Ans. 2a? + 4xy + 3 i f — 1 = 0; centre ( - I f , 1). 
28. Transform 2a? + 4xy + 3y2 — 3 = 0 to its axes. 
Ans. + -foy- = 1, the axis of x coinciding with the 

minor axis of the ellipse. In this case we turned the old 
axes through A- tan - 1 — 4 ; had we turned them through 
— \ tan - 1 4, and taken the minus value of the radical for a' 
in Art. 143, and positive value for c', we would have found, 
for the transformed equation, ^ a ? + fj-y2 = 1, the axis of 
x coinciding with the major axis of the curve. (See Re-
mark, Ex. 3.) 

C H A P T E R I X . 

H I G H E R P L A N E C U R V E S . 

147. Higher Plane Curves are those whose equations 
are above the second degree, orwhich involve transcendental 
functions (Art. 17). It has been shown that everv equation 
of the first degree between two variables represents a right 
hue, and that every equation of the second degree between 
two variables represents a conic section ; it follows that all 
other loci in a plane are Uglier plane curves. 

An A lgebra ic Curve is one whose rectilinear equation 
contains only algebraic functions of the co-ordinates. Thus, 
y = ax + b, x cos a + y sin a = p are algebraic curves. A 
Transcendental Curve is one whose rectilinear equation 
contains transcendental functions of one or more co-ordinates. 
Thus, y = sin x, y = tan" ' a; are transcendental curves. 

Many of the higher plane curves possess historical interest, from the labor be-
stowed on them by ancient mathematicians. We shall consider only a few of them. 

T H E C 1 S S O I D O F D I O C L E S . 

148. This curve was invented by Diodes, a Greek 
geometer who lived about the sixth century of the Christian 
era; the purpose of its invention was the solution of the 
problem of finding two mean proportionals. I t may be 
defined as follows: If pairs of equal ordinates be drawn toA 
the diameter of a circle, and through one extremity of this 
diameter and the point of intersection of one of the ordinates 
vyith the circumference a line be drawn, the locus of the 
intersection of this line and the equal ordinate, produced 
if necessary, is the Cissoid of Diocles. 

The curve is constructed as follows: Let AB (Fig. 103) 
be the diameter of a circle; draw two equal ordinates MR 
and M'R' ; join AR', .cutting MR in P ; then is P a point 



of the locus. In the same way, any number of points may 
be found. In like manner, draw through A and R a line 
cutting M'R' produced in P ' ; P' will be a 
point of the locus. In the same way, points s 
can be found below AB. 

149. To find the equation of the Cis-
soid of Diocles. 

I. The rectangular equation. 

Let AX and AY be the axes ; AB = 2a; 
and let (x, y) be any point P of the locus. 
Then we have 

AM : PM :: AM' : R'M', fl'M' 
/t'm'WiA-*] 

or - = 
y _V{2a-x)x _ Vz 
~ — Ò-„ ~— — " 7 5 = ' « A / 2 * - - » F | G , 0 3 V2a — z 

Squaring and reducing, we have 

which is the required equation. 

SCH.—Solving (1) for y, we have 

(1) 

which shows that, for every value of z < 2a, y has two real 
values, numerically equal, with contrary signs; that is, the 
curve is symmetrical with respect to the axis of x. When 
x — 2a. y = oo; hence the branches are infinite in length, 
and BD is an asymptote to them. When x > 2a, or nega-
tive, y is imaginary; therefore the locus is limited by 
x = 0 and x = 2a. 

Sir Isaac Newton has given the following elegant con-
struction of this curve by continuous motion: A right angle 

has the side GF of fixed length, 
= AB, the point F moves along 
the fixed line CI, which is perpen-
dicular to AB at its middle point, 
while the side GL always slides 
through the fixed point E such 
that A E = AC ; a pencil at the 
middle point P of GF will describe 
the Cissoid. 

Fig. I03a 
II . The polar equation. 

Let A be the pole, and AB the initial line; let (r, 0) be 
any point P in the locus (see Fig. 103). Then, since 
AM = BM', we have A P = DR'; therefore we have 

r = AD — AR' = AB sec 0 — ABcos 0 
= 2a (sec 0 — cos 6) 

= 2a f 1 — ) = 2a Sin2° \ cos 0 Ì cos d ' 

p 
-yy x a a^-t*. P 

that is, r = 2a tan 0 sin 0, which is the required equation. 

SCH.—When 6 = 0, r = 0 ; when 6 = 45°, r = aV2; 
that is, H is the point in the curve. When 0 = 90°, r = cc ; 
when 0 > 90° and < 270°, r is negative; while 6 increases 
from 90° to 270°, the negative end of the radius-vector 
traces the branch AS' and the branch AS a second time ; 
while 6 increases from 270° to 360°, r is positive, and AS' is 
traced a second time ; thus, the curve is traced twice by one 
revolution of the radius-vector. 

T H E C O N C H O I D O F N I C O M E D E S . * ' 

150. This curve was invented by Nicomedes, who lived 
about the second century of our era, and was, like the pre-
ceding, first formed for the purpose of solving the problem 

* See Gregory'» Examples, p. 130, 



2 4 0 EQUATION OF CONCHOID. 

of finding two mean proportionals, or the duplication of the 
cube; but it is more readily applicable to another problem 
not less celebrated among the ancients, that of the trisection 
of an angle. The curve may be defined as the locus of a 
point in a line which slides on and revolves about a fixed 
point, while the distance between the generating point and 
a fixed right line on either side of it is constant. 

The curve is constructed as follows: Let 0 be the fixed 
point, XX' the fixed right line, and AB the constant dis-
tance on the revolving line between the generating point 
and the fixed line. Draw through 0 any line, as OP; on 
OP, above XX', lay off RP equal to AB ; then will P be a 
point of the locus." In like manner, if we take AB', below 
XX', as a constant distance, and lay off RP' equal to AB', 
P' will be a point of the locus. 

151. To find the equation of the Conchoid of Nico-
medes. 

I. The rectangular equation. 

Lot XX' and Y W b e the axes;. OA = j>; AB = in ; and 
(x, y) any point D A the locus. Then we have, from the 
similar triangles P u n and PMO, 

K ) ; DR ;; PM : MO, 

EQUATION OF CONCHOID. 2 4 1 

or, IJ : Vm2 — y2 :: y + p : a ; 
squaring and reducing, we have 

x2y2 = (p + y)2(m2-y2), I (1) 
which is the equation required. 

SCH.—Solving (1) for x, we get 

x = ± A/m* — f , 
y 

which shows that for every value of y, positive or negative, 
and numerically < m, x has two real values, numerically 
equal, with contrary signs; hence the curve has two 
branches, one above and one below the axis of x, both being 
symmetrical with respect to the axis of y. When y dimin-
ishes numerically, x increases and becomes cc when y = 0 ; 
iience the two branches are infinite in length, and the axis 
of x is an asymptote to them. 

When m > p, for y = — m or — p , x = 0 ; but for y 
between — m and — p, x has two values, numerically 
equal, with contrary signs; hence the locus between these 
two limits is an oval symmetrical with respect to the axis 
of y. For y negative and less numerically than p, the values 
of x increase till they become ± oo at y = 0. 

When m < p, it is easily seen that there is no oval. The 
continuous line represents the case when m > p , and the 
broken line when m < p. 

II. The polar equation. 

Let O be the pole, OA the initial line, and (r, 0) any 
point P in the curve. Then we have 

r = OP = OR 4- RP = OA sec 9 + m; 
that is, r = p sec 9 -f m, which is the required equation. £ 

Sen.—When 0 = 0, r = p 4- m, and B is located; when 
0 = 90°, r = a>; when 0 = 180°, r = — p + m, and B' is 
located; when 0 > 90° and < 270°, sec 0 is negative, and 

11 



the lower branch is traced by the negative end of the radius 
vector; while 0 increases from 270° to 360°, r is positive 
and the branch II 'B is traced. 

The fixed point 0 (Fig. 104) is called the Pole , the fixed 
right line XAX' is called the D irec tr ix , and the constant 
distance AB is the Parameter . 

T H E W I T C H O F A G N E S I . ' * 

152. This curve was invented by Donna Maria Agnesi, an 
Italian lady, who lived in the eighteenth century. It may 
be defined as the locus of the extremity of an ordinate of a 
circle, produced till the produced ordinate is to the diameter 
of the circle as the ordinate itself is to one of the segments 
into which it di-
vides the diameter. Y 

To construct the 
Witch, let OB be / ( 
the diameter of the ^ ^ ( g j p 
circle; draw the , 
ordinate ED; find X ° X 

the point P in ED Fig.105 
produced so that 

PE : OB :: ED : OE, 

and P will be a point of the locus. In the same way, any 
number of points may be found. 

153. To find the equation of the Witch of Agnesi. 
Let XX' and YY' be the axes of co-ordinates, and (x, y) 

any point P in the locus. Call the diameter 2a; then we 
have, from the definition, 

x : 2a :: V(2a.— y)y : y; 

therefore, a??/ = 4a2 (2a—y), which is the required equation. 

* See Gregory's Examples, p. 181. 

SCH. When y = 0, x = cc ; when y = 2a, x = 0; for 
every positive value of y between 0 and 2a, a;, has two real 
values, numerically equal, with contrary signs, showing that 
the locus is symmetrical with respect to the axis of y, and is 
embraced between y = 0 and 2a, and has the axis of a; for 
an asymptote. 

r T H E L E M N I S C A T E O F B E R N O U L L I . * 

154 . This curve was invented by James Bernoulli, who 
lived in the seventeenth century. It may be defined as the 
locus of the intersection of a tangent to an equilateral 
hyperbola with the perpendicular on it from the centre. 

To find the equation of the Lemniscate. 
I. The rectangular equation. 
Let (x\ y') be any 

point Q of the hyper-
bola at which the tan-
gent is drawn; and let 
x and y be the current 
co-ordinates of the 
lines QP and OP. 
The equations of the 
hyperbola and the tan-
gent are respectively 

Fig.106 

x'2-y'2 = a2, 
and xx' — yy' = a2, 
therefore the equation of OP is 

y y = ~x'X> or - , = — - , 

(1) 
(3) 

(3) 

Multiplying (2) and (3) together, we get 
ah: _ a2y _ 

a? 4-y2
 = ~ = -

y 
* See Price's Calculus, Vol. I , p. 814. 



therefore, 

x a n d y = 

which in (1) gives, 

a4*2 _ « Y = a2 

(a? + f f + iff 

or, L (4) 

which is the required equation. 

On transforming to polar co-ordinates, (4) becomes 

r* = « V (cos2 0 — sin2 0), 

or, r2 = a2 cos 20. ^ (5) 

SCH.—When 0 = 0, r = ± a ; if we confine our atten-
tion to the positive values of r. we see that as 0 increases 
from 0 to 45°, r diminishes from a to 0, and AP'O is 
traced; while 0 increases from 45° to 135°, r is imaginary ; 
when 0 = 135°, r = 0 ; while 0 increases from 135° to 
225°, r is real, and OA'O is traced ; while 0 increases from 
225° to 315°, r is imaginary; while 0 increases from 315° 
to 360°, r is real, and OPA is traced. The curve therefore 
consists of two ovals meeting at 0 ; the tangents to the 
ovals at O coincide with the asymptotes of the equilateral 
hyperbola, and form angles of 45° with the axis of x 
(Art. 133, Sch.). 

SCH. 2.—-Take two points, F and F' , on opposite sides of 
O, at the distance a V \ from it, and take any point P ' in 
the curve; then we have 

F P ' = 4 / {a VI-*)2 + y\ (6) 

AND F ' P ' = | / W I + * ) 2 + V1- (?) 

Multiply 

FP ' x F 'P ' = - . 
2 

Hence we may define the Lemniscate as a curve such 
that the product of the distances of any point in it from 
two fixed points, called the foci, is constant, and equal to 
the square of half the distance between the foci. (See 
Gregory's Examples, p. 132.) 

[Let the student find the equation of the curve from this 
definition.] 

We may construct the curve, from this latter definition, 
by points. Let F and F' be the foci. With F as a centre, 
and any convenient radius, as FP', describe an arc; with 
F^ as a centre, and a third proportional to FP ' and F'O, as 
F'P', describe a second arc cutting the former at P ' ; then 
will P ' be a point in the locus. In the same way any num-
ber of points may be found. 

T H E C Y C L O I D . 

155. The invention of this curve is usually ascribed to 
Galileo; it is generated by the motion of a point in the 
circumference of a circle which rolls along a fixed right 
line. Thus, if the circle N P P (Fig. 107) be rolled along 
the line OX, any point P in the c.'\xnimference will describe 
a cycloid. The circle NPB is c, lied the Generating 
Circle or Generatrix, and the poi t P the Generating 
Point. OK is called the Base, ano is equal to the cir-



cumference of the generating circle. HL, perpendicular 
to the base at its centre, is the A x i s , and is equal to the 
diameter of the generating circle, and L is the H i g h e s t 
Po int of the cycloid. 

^ 156. To find the equation of the cycloid referred to 
its base and a perpendicular at its left hand vertex. 

Let (x, y) be any point P in the cycloid OPLK, referred 
to the axis OX and OY ; suppose that P has described the 
arc OP, while the generatrix has rolled from 0 to N, then 
ON = arc PN. Call the radius of the generatrix r. Then 
we have 

x = OM = ON — MN = arc PN — PD 

= r arc ab — \ / N D x DB; 

that is, x = r vers -1 — V 2 r y — y2; (1) 

which is the required equation of the cycloid, the arc ab 
being taken in the circle whose radius = 1. 

SCH.—When y is negative, \/2j-y — y2 is imaginary; 
therefore the curve lies only on the positive side of the 
base; when y = 0, x = 0, 2r~, 4rn, e tc. ; hence there is 
an infinite number of branches similar and equal to OLE, 
which is also evident from the mode of generation of the 
curve; when y = 2r, x = r vers-1 2 = nr, 3nr, etc. For 

any one value of y, x has an infinite number of values, 
OM, OM', etc. 

I t is frequently convenient to refer the cycloid to its 
highest point as origin, and to its axis as the axis of re. 

T 1 5 7 . To find the equation of the cycloid referred to its 
highest point as its origin and to its axis as the axis 

Let (x, y) be any point P in the locus referred to the 
axes OX and OY ; then we have 

y = P F = PD + D F = PD + CH 

= PD -f AH — AC = PD -f arc CPB - arc CP 
= PD + arc PB = V C D x BD + vers"1 B D ; 

that is, 
/ x 

y = r vers-1 - + V2rx — x2 (see Art. 156), 

which is the required equation. 

SCH.—When x = 0, y = 0 ; when Z = 2r, y = rvers"12 
= 7Tr, 3rrr, etc.; when x is negative, y is imaginary: for 
any one value of x, y has an infinite number of values. 

After the conic sections there is no curve in geometry 
which has more exercised the ingenuity of mathematicians 
than the cycloid; and their labors have been rewarded by 
the discovery of a multitude of interesting properties, 
important both in geometry and in dynamics. [See 
Gregory's Examples, p. 136.] 



S P I R A L S . 

158. We shall conclude this chapter with a brief account 
of spirals, many of which have been treated at length by 
old geometers. A Spiral is the locus of a point revolving 
about a fixed point, and constantly receding from it in 
accordance with some law. A right line then meets the 
curve in an infinity of points, and the curve is trans-
cendental. 

A Spire is the portion of the spiral generated in one 
revolution of the generating point. 

The Measuring Circle is the circle whose radius is the 
radius-vector at the end of the first revolution of the 
generating point in the positive direction. 

T H E S P I R A L O F A R C H I M E D E S . 

159. This spiral was invented by Conon, but its prin-
cipal properties were discovered by the geometer whose 
name it bears; it is the locus of a point revolving uni-
formly about a fixed point, and at the same time receding 
uniformly from it. 

To consti-uct the spiral of Archimedes. 

Let 0 be the fixed point 
and OX the initial line; 
with 0 as a centre and any 
radius as OH, describe the 
circumference HADG ; 
divide this circumference 
into any number of equal 
parts ; for example, eight. 
On the radius OA lay off 
0« = -&0H ; on OB lay 
off Ob = f O H ; on OC lay off Oc = 4 OH, etc. ; the curve 

1 'ssing through these points, a, b, c, d, e, f , g, H, i,.. . p, 
q, t lc., will be the spiral of Archimedes, since the radius-
vectors 0«, Ob, etc., increase uniformly, while the variable 
angle, estimated from OX, increases uniformly. 

The circumference HADG is the measuring circle, 0 is 
the pole, Oabcdefgll is the first spire, H i jklmnop is the 
second spire, etc. The distance between any two consecu-
tive spires measured on the radius-vector is equal at all 
points to OH, the radius of the measuring circle. 

160. To find the equation of the spiral of Archi-
medes. 

Let 0 be the pole (Fig. 109) and OX the initial line, and 
let (r, 0) be any point P in the spiral; then we have, from 
the definition, r = ad, as the required equation, when a is 
the ratio of r to 0. 

Otherwise, we have from the figure, 

. OP : OH :: 0 : 2n; 

or, calling the radius of the measuring circle a', we have 

r : « ' :: 0 : 2n ; 

therefore r = — : 2rr 

or writing a instead of , 
6TT 
r = at), 

is the required equation. 
When 0 = 0, r = 0; when 0 = 2n, r = a': when 

0 = 47r, r = 2a! ; when 0 = 6n, r = 3a', etc. The curve, 
therefore, starts at the pole, and the radius-vector, which 
is o at the beginning, becomes equal to OH ( = a'), when 
it has made one revolution; and this is the distance 
between the points at which any radius-vector is cut by 
two successive spires. 



T H E R E C I P R O C A L . O R H Y P E R B O L I C 
S P I R A L . 

161. This spiral may be defined as the locus of a point 
revolving uniformly about a fixed point, and continually 
approaching it so that the radius-vector varies inversely as 
the variable angle. 

To construct the Hyperbolic Spiral. 

Let 0 be the pole and 
OX the initial line. Draw 
through 0 the liues Oa, Ob, 
0 c, etc., making equal 
angles with each other. 
Take a for a point of the ! > Fig_ 1J0< 

spiral; lay oil Ob = \Oa; 
0 c = \Oa, e tc. ; the curve passing through the points a, b, 
c, d, c,f, g, li, etc., will be the hyperbolic spiral, since the 
radius-vector, Oa, OA, etc., vary inversely as the variable 
angle estimated from OA. 

The equation of the hyperbolic spiral follows directly 
from the definition, and is 

V r = -¿, or rd = a. o 
When 6 = 0, r = oo; that is, the curve approaches the 

initial line and touches it at infinity; when 0 = 2~, 
r = Oh = a', which is the radius of the measuring circle ; 

when 0 = in, r = ~, e tc. ; when 0 = <x>, r = 0 ; there-
fore, the curve continually approaches the pole as the 
radius-vector revolves, and reaches it after an infinite 

number of revolutions. From the equation r = it is 

evident that the arc A a of the circle described with the 
radius Oa to any point of the curve, is constant and equal 
to a. [See Salmon's Higher Plane Curves, p. 280.] 

T H E L I T U U S . 

162. Another spiral worth mentioning is the Lituus, 
which may be defined as the locus of a point revolving 
uniformly about a fixed point, and continually approaching 
it so that the radius-vector varies inversely as the square 
root of the variable angle. Its equation therefore is 

a 

SCH.—These spirals belong to one family, included in 
the general equation r = adn. When n = 1, we have 
r = ad, which is the spiral of Archimedes. When 

n= —1, we have r = which is the hyperbolic spiral. 

When 11= — I, we have r = —, which is the Lituus. 

T H E C H O R D E L . 

> 162a. The Chordel is a plane curve, every point of 
which terminates an arc which originates in a fixed line, is 
described with a fixed point as a centre, and subtends a 
given length the same number of times as a chord. 

The fixed line is called the Directrix, the fixed point 
the Focus , and the given length the Element. 

A chordel in which the element is subtended n times as 
a chord, whose directrix is a right line, and whose focus is 
on the directrix, is called 

A chordel of n elements, and rectilinear and focal 
directrix* 

* Tbis curve was invented by Mr. J . Brncn Miller; for an account of it see 
Van Nostrand's Engineering Magazine for-March, 1880. pp. 206-209, which contains 
Mr. Miller's investigation of the chordel given geometrically, including the 
construction of the curve and its application to the division of an angle into 
n equal parts. / 



2a = an element AB = BC = etc. = EP, draw OH per-
dicular to EP. Then we have 

. „ n T , H P . (6\ a 
sin HOP = o p ; sm y = - ; 

( 0 \ I 

2 n ) ' (1) 
which is the equation required. 

Let n = 5 and a = 1; then (1) becomes r = cosec • 

Letting 9 = iT, |7T, 27T, -|rr, 3ir, -JTT, 4TT, £TT, 5n, suc-
cessively we get r = 6.39, 3.24, 2.20, 1.70, 1.41, 1.24, 1.12, 
1.05, 1.01, and 1.00. Locating these values we have the 
points h, c, d, e, f , g, h, i, j, k; when 9 = 0, r = oo. 
Now letting 6 continue to increase, becoming tyr, 6TT, and 

To find its equation, 

Let the focus O be the pole, and the directrix OX be the 
initial line. Let (r, 9) be any point P of the curve, and 

so on to lOrr, we get r = 1.01, 1.05, 1.12, and so on to 
infinity, the values being the same as those given above, 
when 0 is increasing from 0 to 5n, except the order i's 
inverted. Locating the second series of values we have the 
curve represented by the dotted line, which is the continu-
ation of the part given in the full line, the two parts bein-
symmetrical wjth respect to the line OX. While 9 is 
increasing from 10tt to 20ir, r is negative and a second 
branch is traced by tlie negative end of the radius-vector, 
the two branches being symmetrically equal. 

The essential merits of Mr. Miller's curve appear to be 
its mechanical construction, affording a mechanical multi-
section of any angle; and its very general definition, which 
will probably make the investigation of its properties 
rather fruitful. But such investigation would be out of 
place here. 

T H E L O G A R I T H M I C S P I R A L . 

163. This spiral was invented by Descartes, and is the 
locus of a point so moving that the radius-vector increases 
in a geometric, while the variable angle increases in an 
arithmetic ratio. Its equation is therefore usually written 

r = a9. 

To construct the Logarithmic Spiral. 

Suppose a = 2, then r = 2*; when 9 = 0, r = 2° = 1, 
which gives the point a on the initial line OX, Fig. I l l ' 
When ® = r = 21 = 2; lay off the angle XOd = 1 = arc 
of 57°.3, and take Ob-= 2; I will be a point of the curve 
When 9 = 2, r = 2* = 4; lay off XOc = 2 = arc of 
114°.6, and take Oc = 4; c will be a point of the curve. 
The curve passing through a, h, c, etc., will be the loga-
rithmic spiral. 

When 9 = - i = XO b', r = 2 = lay off 



2 5 4 LOGARITHMIC SPIRAL. 

XOi' = — 1 = — 5 7°.3, 
and take 05' = i ; b' 
will be a point of the 
curve. When 0=—2, 
r = = lay off 
XOc' = - 2 = 
— 114°.6, and take 
Oc' = i ; c' will be a 
point of the curve; 
and so on for any 
number of points. 

When d=co,r= oo, 
hence the radius-vec-
tor will become infi-
nite when it has made 
an infinite number of 
revolutions. When 0 = — oo, r = 0; and therefore the 
spiral runs into its pole after an infinite number of revolu-
tions in the negative direction. 

The present chapter is but a brief sketch of Higher 
Plane Curves. The student who wishes to pursue the 
subject further, is referred to Salmon's Higher Plane 
Curves, Gregory's Examples, Price's Infinitesimal Calculus, 
and Cramer's Introduction to the Analysis of Curves. 

Fig. 111. 

E X A M P L E S . 

f o i . In Pig. 103 prove that M'R' and AM' are two mean 
proportionals between AM and M'P' ; that is, prove that 

AM : M'R' : : M'R' : AM', 
and M'R' : AM' : : AM' : M'P ' ; 
i. e., AM : M'R' : AM' : M'P'. 

M B ' = AM-AM'; and the similar 
As M AR' and M'FA give M'R' : AM' : : AM' : M 'P ' ; .•. etc. 

2. In Fig. 103a find the equation of the locus of P. 

EXAMPLES. 255 
Let AB he the axis of x, A the origin, AB = 2a, and (x „) anv noint P „f . h . , 

Draw GH and PD perpendicular to AB, and GK p e r p e i i 7 t o CL l0CU8-
Then GK = x-a, EH = 2x, KP = Viax-as"»> 

and GH = y - Y'lax-x-; from which we soon obtain 

Xs 

hence, the locus is a cissoid. 

3. Find the edge of a cube whose volume shall be double 
that of a given cube.* 

t l n f 'g- teke o c = AB, draw BC cutting the cissoid in Q, and draw QK X to 
AB: then find QK3 = 2AK3. Let a be the edge of any given cube, find 0 so ¿hat 

AK : KQ : : a : b. .•. b3 = 2a3. 

4. Find the edge of a cube whose volume is three times, 
four times, or n times that of a given 
cube. \ 

5. Show that IKs = 2KB3; also that 
AK3 = 21K3. 

6. Trisect the angle AOB by means 
of the conchoid. 

Through B draw BC J. to OB, and take BP = 20C. 
Witt O as pole, BC as directrix, and BP as parameter, 
construct a conchoid. Draw CD J. to BC cuttiug the 
conchoid in D, and join DO. Then DOB = JAOB. For, 
bisect DH at K ; then CK = CO.' . - .etc. 

* This is called the duplication of the cube. 

Fig. M X 

i 
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P A R T II. 

ANALYTIC GEOMETRY OF THREE D IMENS IONS. 

C H A P T E R I. 

T H E P O I N T . 

164. We have seen (Art. 5) that the position of a point 
in a plane is determined by referring it to two co-ordinate 
axes, OX, OY, drawn in the plane. We shall now show 
that the position of a point in space may be determined by 
referring it to the three co-ordinate planes. 

Let XOY, YOZ, ZOX be three 
planes of indefinite extent, intersect-
ing each other in the three right 
lines OX, OY, OZ. Now, if through 
any point P in the surrounding-

N 
/ 
Y 
4 

: z 

Fié-111-« 

space we draw PA parallel to OX, 
PB parallel to OY, and PC parallel 
to OZ, it is plain that the position 
of P with reference to the three 
planes is known, if the lengths of PA, PB, and PC are 
known. For example, if we have given PA = a, PB = b, 
PC = c, we can determine the position of the point P with 
reference to the three planes ¡is follows: We measure OM 
( = a ) along OX, and ON (= b) along OY, and draw the 
parallels MC and NC; then at the intersection C measure 

CP ( = c) on a line parallel to OZ; P will be the point 
whose position we wished to determine. Otherwise thus : 
having measured OM, ON, OR, equal respectively to a, b, 
c, pass through M the plane PCBM parallel to the plane 
yz ; through N the plane PACN, parallel to zx; • and 
through R the plane PA BR, parallel to xy, the intersec-
tion of the three planes so drawn is the point P. 

165. The three planes XOY, YOZ, ZOX, are called the 
Co-ordinate Planes, and are designated as the planes xy, 
yz,zx, respectively. The three lines OX, OY, OZ, in which 
these planes intersect, are called the Co-ordinate A x e s ; 
OX is called the axis of x, OY the axis of y. and OZ the 
axis of z. The point 0 in which the three axes intersect, 
and which is therefore common to the three co-ordinate 
planes, is called the Origin. The distances PA, PB, PC, 
or their equals, OM, ON, OR, are called the Rectilinear 
Co-ordinates of P, and are respectively represented by 
x, y, z. The co-ordinate axes may be inclined to each 
other at any angle whatever; and they are said to be rec-
tangular or oblique, according as the angles at which they 
intersect are right or oblique angles. In this work we shall 
employ rectangular axes, as they are the most simple, and 
can always be secured by a proper transformation. 

The co-ordinates of a point are the distances of the point 
from the three co-ordinate planes yz, zx, xy, hence, if the 
co-ordinates of a point are respectively denoted by a, b, c, 
we have for the point, 

x = a, y — b, z = c, 

which are the Equations of the Point. When these' 
equations are given, the point is said to be given, and may 
be constructed as in Art. 1G4 ; the point whose position is 
defined by the above equation is commonly spoken of as 
the point (a, b, c). 



166. The plane xy is supposed to be horizontal, as the 
plane of the floor on which t)ie student is standing; the 
plane xz is perpendicular to the first, and in front of the 
student; the plane yz is perpendicular to both the others, 
and on the left of the student. 

These co-ordinate planes divide the surrounding space 
into eight solid angles, which are numbered as follows: 
The F irs t angle lies above the plane xy, in front of the 
plane xz, and to the right of the plane yz\ the Second is 
to the left of the first; the Third is behind the second; 
the Fourth is behind the first; the Fifth, Sixth, Seventh 
and Eighth are below the first, second, third, and fourth, 
respectively. 

167. In order that the equations x = a, y = b, z = c 
should be satisfied by only one point, it is necessary to con-
sider not only the absolute values of the co-ordinates, but 
also their signs. It is customary to consider lines measured 
upwards as positive, and hence those measured downwards 
must be considered negative; also those measured towards 
the right are considered positive, and hence those measured 
towards the left are negative; also those measured towards 
the front are considered positive, and hence those measured 
towards the rear are negative. Hence, by giving the co-
ordinates their proper signs, we may represent a point in 
either of the eight angles by one of the following sets of 
equations: 

I x = + a,) 
First Angle, <y = + b,r or by (a, b, c). 

(z = + c,) 
(x = — a, 1 

Second « j y = + b, V « (-a, b, c). 
(z = + c,) 
(x = — a, ) 

Third " \y = - b , \ « (— a, — b, c). 

Fourth Angle, 

Fifth 

Sixth 

Seventh « 

Eighth 

COR.—Any point in the plane xy evidently has its Z = 0 : 
hence, equations of a point in this plane are x = a, y = b 
z 0 or the point is (a, b, 0) ; and there are simiW equa'-

f o r P ° m t s 'n each of the other co-ordinate planes 
Any point on the axis of « has its y and * each = 0 ; 

hence the equations of a point on this axis are x = a,y= 0, 
z = 0, or the point is (a, 0, 0) ; and there are similar equa-
tions tor points on each of the other co-ordinate axes. 

At the origin we evidently have x = 0, y = 0, z = 0 
which are the three equations of the origin of co-ordinates.' 

168. The Orthogonal Projection of a point on a line 
or a plane is the foot of a perpendicular from the point to 
the line or plane. In the present work, when we use the 
term projection, we shall always mean an orthogonal projec-
tion, since the axes are rectangular. The points M, N, R, 
are the projections of the point P on the three co-ordinate 
axes, and the points A, B, C, are the projections of the 
point P on the three co-ordinate planes. 



The projection of a given right line upon another right 
line, or upon a plane, is the line which joins the projections 
of the extremities of the given line. Thus, OM, ON, OR, 
are the projections of OP upon the co-ordinate axes x, y, 
and z respectively; and the lines OA, OB, OC are the pro-
jections of OP upon the co-ordinate planes yz, ax, xy, 
respectively. 

The angle which any right line makes with a plane is the 
angle which the line makes with its projection on that 
plane; the angle which it makes with a given line is the 
angle which it makes with a line drawn through any point 
of it and parallel to the given line. 

It is clear that the projection of a finite right line upon 
another right line or upon a plane is equal to the first line 
multiplied by the cosine of the angle which it makes with 
the second line or with the plane. Hence, it is also evident 
that the projections of any area of a plane upon another 
plane is equal to the original area multiplied by the cosine 
of the angle between the planes. 

The line that determines the projection of a point upon 
a line or plane is called the Projecting Line of that point. 
The projection of any curve upon a plane is the curve 
formed by projecting all of its points. The projecting lines 
of the different points form a cylindrical surface which is 
called the Projecting Cylinder of the curve. When the 
curve projected is a right line, the projecting cylinder be-
comes a plane called the Projecting P lane of the line. 

'T 169. To find a formula for the z 
distance between two points in space 
whose co-orclinates are known. 

Let (x', y', z') and (x", y", z") be the 
two points P' and P". Let the projec-
tion of P 'P" on the plane xy be M'M"; 
draw P"Q parallel to M"M'; represent 

P X 

the distance P'P" by d. Then we have Fig. 112. 

P'P7'2 = F y 2 + Q F 2 . 
But P'Q = _ 

and QF72
 = f f ' ' 

= (x' - x"Y + (y' - y'J. (Art. 9.) 
Therefore, tf* = {x'—x")* + (y'-y")* + (z '-z")2 , 

or d = (y'-y'T+(7=7f. (1) 

The quantities (x' - x"), (y' - y"), (/ _ z") are equal 

to the projections of d on the co-ordinate axes s, y, and « 
respectively. Hence, the square of the length of any right 
line in space is equal to the sum of the squares of its projec-
tions on any three rectangular axes. 

COR.— If one of the points, as P", were the origin, we 
would have, from (1), 

d = Vz'2 + y"2 + z'2, (2) 
which is the distance of any point (x1, y', z') from the origin. 
Hence, the square of the radius-vector of any point is equal 
to the sum of the squares of the co-ordinates of the point. 

170. The position of a point is sometimes expressed bv 
its radius-vector and its Direction Cosines ; that is, the 
cosines of the three angles which the radius-vector makes 
with the three co-ordinate axes (see Art. 22, III , Scb. 1 ) ; 
the angles themselves are called the Di rec t ion 'Angles 
Let these three angles be /3, y ; then, since the co-ordi-
nates x, y, z of the point are the projections of its radius-
vector on the three axes (Art. 168), we have 

x = p cos «, y = p cos 0, z = p cos y. (1) 
Squaring and adding these equations, and remembering 

that p> = tf + f + z2 (Art. 169, Cor.), we get 

cos2« + cos2 ß + cos2 y = 1, 
(3) 



which expresses the relation between the direction-cosines 
of the radius-vector. That is, the sum of the squares of the 
direction-cosines of any line is = 1. 

171. The position of any point P (Fig. 111a), may be 
expressed by its polar co-ordinates; viz., the radius-vector 

( = P ) ; the angle POR ( = y), which the radius-vector 
makes with the axis of z; and the angle XOC ( = (p), which 
OC, the projection of the radius-vector on the plane xy, 
makes with the axis of x. These angles are called the 
Vectorial Angles, and 0 is called the Pole. 

From the figure we have 

x = p sin y cos <p, 
y = p sin y sin 

z = p cos y, 

which are the formulas for transforming from rectangular 
to polar co-ordinates. 

We easily obtain from the above 

Vx? + v2 v f,2 = z2 + y2 + z2; tan f = ; tan (f> = -i 
• z cc 

which are the formulas for transforming from polar to 
rectangular co-ordinates. 

E X A M P L E S . 

1. Find the distances between each pair of the points 
(1, 2, 3), (2, 3, 4), (3, 4, 5), respectively. 

Ans. V3, 2a/3, V3. 

2. Prove that the triangle formed by joining the three 
points (1, 2, 3), (2, 3, 1), (3, 1, 2) respectively is an equi-
lateral triangle. 

3. The direction-cosines of a right line are proportional 
to 2, 3, 6 : find their values. Ans. f , 

4. The direction-cosines of a right line are proportional 
to 1, 2, 3 : find their values. 

A n s _ L , _ J L , J L 
m' Vu Vu Vu 

5. Find (1) the length of the radius vector of (1, 2, 3), 
(7, — 3, — 5), and (2) the direction-cosines of the radius 
vector of each point. 

Ans. { M V 3 ( 2 ) À V l M v ! I -àVU; 

6. A right line makes an angle of 60° with one axis and 
30° with another : what angle does it make with the third 
axis? Ans. 90°. 

7. A, B, C are three points on the axes of x, y, z respec-
tively; if OA = a , OB = b, OC = c , find the co-ordinates 
of the middle points of AB, BC, and CA respectively. 

M l H ( ! ° 4 
8. The polar co-ordinates of a point are 

n ri 
P = V i = g, «¿ = 3 : 

find its rectangular co-ordinates. 
Ans. (1, V3, 2 \ /3) . 

9. The rectangular co-ordinates of a point are 
(a/3, 1, 2A/3): 

find its polar co-ordinates. 

(4, * I ) . 

10. Find the locus of points which are equidistant from 
the points (1, 2, 3) and (3, 2, — 1). 

Ans. x—2z = 0. 
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/ C H A P T E R I I . 

T H E R I G H T L I N E . 

172. To find the equation of a right line in space. 

Since a line in space is known when two of its projections 
are known (see Church's Desc. Geom., Art. 12), we need 
only find the equations of the projections of the line upon 
two of the co-ordinate planes. 

Let AB and A'B' be the projections 
of a right line on the co-ordinate 
planes xz and yz. Draw through the 
origin OC and 0 0 ' , parallel respec-
tively to AB and A'B'. Let (x, z) be 
any point in AB, and (y, z) be any 
point in A'B'; let a = tangent of 
COZ, and b = tangent of C'OZ ; and 
let « and j3 be the intercepts OA and OA' respectively. 
Then we have 

Fig. 113. 

and 

x = az + «, 

y =bz + 13, 
( 1 ) 

(2) 

for the equations of the projections of a right line on the 
co-ordinate planes xz and yz. 

Now, since the x and z of any point in the given line in 
space are equal and parallel to the x and z of the projection 
of the same point on the plane xz, it follows that (1) ex-
presses the relation between the x and z of every point of 
the given line. Also, since the y and z of any point in the 
given line in space are equal and parallel to the y and z of 
the projection of the same point on the plane yz, it follows 
that (2) expresses the relation between the y and z of every 

point of the given line. Hence, making (1) and (2) simul-
taneous, that is, making the co-ordinates the same in both 
eqnatmns, they together will express the relation between 
the co-ordmates * y, z 0f every point of the given line; 
therefore (1) and (2) are the equations required. 

obtain 1 - C ° m b i n i n e <*> a n d (*)> and eliminating z, we 
y - 0 = b

a ( X - a ) } ( 3 ) 

which expresses the relation between the « and y ofeverv 

iectiou f tl T D l i U e ; " e n C e * iS t h G of the pro-jection of the line on the plane xy. 

COE. 2.— If y = o, we get 

z = _ ?. _ ha - a[i 
b' * J~> 

hence the line pierces the plane zz in the point 

°> J ) -
Similarly, we find it pierces the plane yz in the point 

(o a ( i ' bte «\ 
1 ' « | "Tab 

and the plane xy is the point 

(«, d, 0). 

COR. 3.—-If the line passes through the origin, we have « 
and (3 equal to 0; therefore (1) and (2) become 

x = az, y = bz, (4) 

tet^Tn. t h° e , m t i 0 " S ° f a K n ' V™ *«#* 
12 



"f 173. To find the equations of a right line in space. 
I. Passing through a given point; 

II. Passing through two given points ; and 
III. Passing through a given point, and -making 

the angles «, 0, y with the co-ordinate axes. 

I. Let (x!, y', z') be a given point, and let the equations 
of the right line be 

x = az + a, (1) 
y = bz.+ P. (2) 

Since the point (x1, y', z') is to be on the line, it must 
satisfy its equations, giving us 

= az' + «, (3) 
y' = bz' + d., (4) 

Eliminating « and (3 by subtracting (3) from (1), and (4) 
from (2), we get ; t 

x - x = a(z — z'), (o) 
y - y ' = b(z- z'), (6) 

for the equations of a right line passing through a given point 
in space. 

II. Let (x", y", z") be the second given point. Since this 
point is to be on the line, it must satisfy its equations, 
giving us 
6 6 x" = az" + cc, (7) 

y" = bz" + P. (8) 
Eliminating « and 0 by subtracting (7) from (3) and (8) 

from (4), we get s x' — x" 
x' - x" = a (z' - z"), or a = ^ _ g„ ; (9) 

y' -y" = b(z' -z"), or b = (10) 

Substituting these values of a and b in (5) and (6), we get 

X — X = 
X' — X 

i ( s - s ' ) , z- — z a i ) 

(12) 

which are the equations of a right line passing through tioo 
given points in space; or, as they may be more symmetri-
cally written, 

_ y — y' _ z — z' 
x' - x" ~ y' - y" - z' — z"' 

III. Let (x, y, z) be any variable point on the line. By 
Art. 169, x — x', y — y', z — z' are the projections of the 
distance between the points (x', y', z') and (x, y, z) on the 
axes; and since this distance is equal to its projection on 
either of the axes divided by the corresponding direction-
cosine, we have 

= y-y' =
 z ~ x — x 

cos « cos ß cos y ' n (13) 

which are the equations required, and are known as the 
symmetrical equations of a right line in space. (See 
Art. 22, II). 

^ 174. To find the angle between two right lines in 
space in terms of the angles which they make with 
the co-ordinate axes. 

The angle between any two 
right lines in space is equal to 
the angle between two lines drawn 
through any given point, and 
parallel respectively to the given 
lines. Therefore, let OP' and OP" 
be drawn through the origin and 
parallel to the given lines; the 
angle between OP' and OP" will be equal to the required 
angle. 

Fig. 114. 



2 6 8 ANGLE BETWEEN TWO BIGHT LINES IN SPACE. 

Let (.?', y', z') and (x", y", z") be the points I" and P ' 
respectively, and OP' - r', OP" = r", P 'P" = A\ also, let 
the angles which OP' and OP" make with the co-ordinate 
axes be «, j3, y, and «', j3', y', respectively; and denote 
the angle P 'OP" by v. 

Then, by Trigonometry, we have 

cos v = 
r ' 2 + r»2_(P 

2 r'r" 
But (Art. 169) we have 

cP = (x' - x"Y + (y' - y"f + (z' - z")\ (2) 

Substituting (2) in (1), and remembering that 
z'2 + y'2 + z' 2 = r'2} x"2 + y«2 + ¿'2 = r»2} 

we get cos v — 
, x'x" + y'y" + 

But (Art. 170) we have 

x' = r cos «, y' = r' cos (3, z' = r' cos y ; (4) 

x" = r" cos «', y" = r" cos 0', z" = r" cos y', (5) 

which in (3) give 
cos v = cos «cos« ' + cos/3 cos/3' -f cosy cosy'. (6) 

That is, the cosine of the angle between two right lines in 
space is equal to the sum of the products of the cosines of the 
angles formed by these lines with the co-ordinate axes. 

175. To find the angle between two right lines in 
space in terms of the tangents of the angles which 
the projections of the lines on the planes xz and yz 
make with vhe axis of z. 

< 

The equations of OP' and OP" (Art. 172, Cor. 3) are, 

(OP'), x = az, y = bz, (1) 

and (OP"), x = a'z, y = b'z. (2) 

ANGLE BETWEEN TWO RIGHT LINES. 2 6 9 

Since (x', y', z') is on OP', it must satisfy (1), giving us 

x' = az', y' = bz'. (3) 

Since (x", y", z") is on OP", it must satisfy (2), giving 

x1' = a'z", y" = b'z". (4) 

Substituting these values of x' and y' given in (3) in 

x'* + y'a + 2'2 = r'2) 

we get «V2 + ¿2/2 + ¿2 — r ' 2 } 

o r 2' = 

which in (3) gives us 

x' = 

y' = 

V«2 + + 1 ' 

ar' 
Va* + b* + 1' 

br' 
V«2 + P + l 

Now these values ofx', y', z' in (4) of Art. 174 give us 

cos « = 

cos ß = 

Va* + ¿2 ' 
b 

Va2 + ¿2 + l ' 

cos y = —— * 
A / « 2 + W + 1 ' 

In like manner, Ave find 

COS «' 

(5) 

(6) 

(?) 

a• 

COS ß' = 

cos y = 

Va'i+J'T^n' 

b' 
Va'» + b'* + 1* 

1 
VÄ'« + ¿'2 + l ' 

1" 



Substituting tbese values of the cosines in (6) of Art. 174, 
we get 

_ a a ' + hh ' + 1 /g\ 
008 " " V ^ + P T l Va'* + b'* + 1 K ' 

COR. 1.—If the lines are parallel to each other, v = 0, 
and cos v = 1; hence, clearing (8) of fractions and squaring, 
it becomes 

( « 2 + ¿3 + 1 ) ( « ' 2 + ¿ ' 2 + 1 ) = (aa' + IV + l ) 2 ; 

transposing and uniting, we obtain 
(« _ a')2 + (b- V)2 + (aV - a'bf = 0. 

Each term being a square, and therefore positive, this 
equation can be satisfied only when the terms are separately 
equal to 0, giving us 

a = a', b.= V, ab' = a'b. 
But the third term follows directly from the other two' 

hence, 
a = a' and b = V (9) 

are the equations of condition that two lines in space shall 
be parallel to each other; that is, if two right lines in space 
are parallel, their projections on the co-ordinate planes are 
parallel. [Art. 172, Eqs. (1) (2), (3); also Art. 27, Cor. 1.] 

COR. 2.—If the lines are perpendicular to each other, 
cos v = 0, and hence (8) becomes 

aa' + bb' + 1 = 0, (10) 

which is the equation of condition that makes two right 
lines in space perpendicular to each other. 

176. To find the condition that two right lines 
in space may intersect, ancl the position of the point 
of intersection. 

, j x = az + «, (1) 
' \y = bz+P, (2) 

and lx = a'z + *', (3) 
( y = Vz + (3', (4) 

be the equations of two right lines in space which intersect. 
If these hues do intersect, the co-ordinates of the point of 
intersection must satisfy all the equations. But as there 
are four equations, containing only three unknown quanti-
ties, the equations cannot all be satisfied by the same set of 
values of x, y, z, if they are independent of each other. 
That is, there must be such a relation between the known 
quantities as to make one equation depend upon the other 
three ; and the equation expressing this relation will be the 
required condition of intersection. 

We form this condition, of course, by eliminating x, y, z 
from the four equations. Solving (1) and (3), and also (2) 
and (4) for z, we get 

a — a 

and 2 = & - P . 
b — V 

Equatiug the two values of z in (5) and (6), we get 
« ' - « ff'-ff 

which is the required condition that two lines in space 
shall intersect. 

Substituting (5) in (1), and (6) in (2), we get 

ad — a'a 

b& - va 
y = ~ r - T ' 

These values of x and y, with the value of z from either 
(o) or (6), will give the point of intersection when (7) is 
satisfied. 



E X A M P L E S . 

1. Find the distance between the points (3, 2, 1) and 
(4, 5, 3). Ans• d = Vl4. 

2. Find the distance between the points ( —5,5, —3) and 
(1 ,0 ,5) . Ans. d = 11.18. 

3. Find the equations of a right line passing through 
the point (2, 3, 4). 

Ans. x — 2 = a (z — 4) ; y — 3 = b (z — 4). 
4. Find the equations of the right line passing through 

the two points (3, 4, 2) and (4, 1, 5). 
Ans. 3x = z + 7 ; 3y = - 3z + 18. 

5. Find the points in which the line last found pierces 
the co-ordinate planes. 

Ans. (2^, 6, 0), (4J, 0, 6), and (0, 13, - 7). 
6. Find the equation of the projection of the line in 

Ex. 4, on the plane xy. Ans. 3x = — y + 13. 
7. The equations of the projections of a right line on zx, 

yz, are 
z = z-t-l, y = 

required its equation on the plane xy. 
Ans. 2y = x — 5. 

8. Find the equations of the three projections of a right 
line which passes through the two points (2, 1, 0) and 
( - 3, 0, - 1). 

Ans. x= 5« + 2; y = 2 + 1; 5y = x + 3. • 
9. Find the angle between the right lines 

x = 32 + 5, y = 5z + 3 ; 
a„d * = * + !, y = J n s U „ 5 8 , 

> 10. Find the equations of a right line through the origin 
and perpendicular to both the lines in Ex. 9. 

x = 3z; y = — 2z. 

4 11. Find the cosine of the angle between the lines 
x — 2z + 1, y = 22 + 2 ; 

and x = 2 + 5, y = 42 + 1. 

Ans. Cos v = 11 
9\/2 ' 

i 12. Find the point of intersection of the two lines 
x = — 22 + 3, y—e — 2; 

and « = 32—1, oy = — IO2 + 2; 
and the cosine of the angle between them. 

Ans. ({, - I £), cos v = + V^V 
13. Find whether the two lines 

x = 2« + 1, y = 3z + 4 ; 
and x = — 22 + 3, y = z — 2 ; 
are parallel or perpendicular to eacli other. 

Ans. Perpendicular. 
14. Find the equations of the line which passes through 

the point ( — 3, 2, — 1) and is parallel to the line 
x = — 3z — 1, y — 42 + 3; 

(see Art. 175, Cor. 1), also of the line through the same point 
and perpendicular to the same line. (See Art. 175, Cor 2 
and Art. 176.) 

Ans. To first, 3; = — 32 — 6, y = 42 + 6; 
" To second, 27.r = 492 — 32, 9y = 102 + 28. 

J 15. Find the direction-cosines of 
x = 4:z + 3, y = 32 — 2. 

Ans. Cos « = Cos/3 = • Cos 7 = —Î—. 
V 2 6 \ / 2 6 ' V 2 6 ' 

4 16. Find the equation of a right line through the point 
(4, 5, 7), its direction-cosines being f , -J, f . 

^ H i _ _ 1 [ x = z - 3) 
2 1 - 2 > o r \ 2 y = z + 3 \ -

Ans. 



J 17. A right line makes an angle of 00° with one axis 
and 45° with another. What angle does it make with the 
third axis? (Art. 170.) Ans. 60°. 

18. Find the angles which the line x = — 2z + 1, 
y = z + 3, makes with the co-ordinate axes. 

Ans. « = 144° 44' ; P = 65° 54' ; y= 65° 54'. 
(Art. 175.) 

^ 19. The equations of two lines are 

x = 2z+ 1, y = 2z + 2; 
and x = z + 5, y = 4z + P'; 
find the value of P' so that the lines shall intersect each 
other, and also the point of intersection, (Art. 176.) 

Ans. P' = — 6; the point of intersection is (9, 10, 4). 

20. Find the angle between the lines 

x = z V2, y = zV$; 
and % = y V3, z = 0. 

[Here V = c© and a'= co V3. See Art. 172.] 
Ans. 30°, 

21. Show that the lines 4x = 3y = — z, and 3x = — y 
= —4z are at right angles to each other. 

NOTE.— The equations are here writ ten in their symmetric form (Art. 173), 

<^22. Find the angle between the lines | = | = ^ , a n d 

Ans. cos - 1—. 
3 — 4 5' 10 

23. Find the acute angle between the lines whose 
direction-cosines are £ V3, ^ V ^ a n d } V3, — \ V3. 

Ans. 60°. 
24. Find the equation of the right line through the 

point (2, 3, 4), which is equally inclined to the axes. 
Ans. x — 2 = y — 3 = z — 4. 

C H A P T E R III . 

T H E P L A N E . 

177. The Equation of a Plane is the equation which 
expresses the relation between the co-ordinates of every 
point of the plane. J 

To find the equation of a -plane. 

A plane may be generated by revolving a right line about 
its intersection with another right line, to which it is 
perpendicular. The revolving line is called the Genera-
tor, and the line to which it is perpendicular is called the 
Director.* 

Let x = az+a, y = iz + (1) 

be the equation of a given line which we take for th 3 
director. If the director passes through the point (x', v' z') 
its equations will be J ' 

x~x' = a(z-z')-, (2) 
y - y' = b(z — z'). 

The equations of a line through the same point (x'} ?/', z') 
and perpendicular to the director are 

x-x' = a'(z-z'); (3) 

y — y' = b'(z- z'). 
The equation of condition that makes (3) perpendicular 

to (2) is (Art. 175, Cor. 2) 

aa' +bb' + 1 = 0 . (4) 

f e m ^ J t i f T W ° r d S 1 f ° " 0 W G r e g o r ^ a n d 8 a l m o " . instead of giving them a 
S • • h T c,aUingthcm",jeneraMr"and"direct«*'' 
^ e n t « S F ' . M N I F " Y B E E D U B C D I D A DIFFERENT A E N S E « * * Ar t . 51) f rom .he present, and it is well to distinguish between the two. 



J 17. A right line makes an angle of 00° with one axis 
and 45° with another. What angle does it make with the 
third axis? (Art. 170.) Ans. 60°. 

18. Find the angles which the line x = — + 1, 
y = z + 3, makes with the co-ordinate axes. 

Ans. a = 144° 44' ; (3_ = 65° 54' ; y= 65° 54'. 
(Art. 175.) 

^ 19. The equations of two lines are 
x = 2z+ 1, y = 2z + 2; 

and x = z + 5, y = 4z + /3'; 

find the value of [3' so that the lines shall intersect each 
other, and also the point of intersection, (Art. 176.) 

Ans. ¡3' = — 6; the point of intersection is (9, 10, 4). 

20. Find the angle between the lines 

x = z V2, y = zV$; 
and x = y V3, z = 0. 

[Here V = co and a ' = co V s . See Art. 172.] 
Ans. 30°, 

21. Show that the lines 4x = 3y = — z, and 3x = —y 
= — 4z are at right angles to each other. 

NOTE.— The equations are here written in their symmetric form (Art. 173), 

<^22. Find the angle between the lines | = | = ^ , a n d 

Ans. cos - 1—. 
3 — 4 5' 10 

23. Find the acute angle between the lines whose 
direction-cosines are £ b fcV^and} v % i , — i V3. 

Ans. 60°. 
24. Find the equation of the right line through the 

point (2, 3, 4), which is equally inclined to the axes. 
Ans. x — 2 = y — 3 = z — 4. 

C H A P T E R II I . 

T H E P L A N E . 

177. The Equation of a Plane is the equation which 
expresses the relation between the co-ordinates of every 
point of the plane. J 

To find the equation, of a -plane. 

A plane may be generated by revolving a right line about 
its intersection with another right line, to which it is 
perpend,cular. The revolving line is called the Genera-
tor, and the line to which it is perpendicular is called the 
Director.* 

Let x = az+a, y = iz + (1) 

be the equation of a given line which we take for th 3 
director. If the director passes through the point (x', v' z') 
its equations will be J ' 

x-x' = a{z-z')- (2) 
y - y' = b(z — z'). 

The equations of a line through the same point (x'} v', z') 
and perpendicular to the director are 

x-x' = a'(z~z'); (3) 

y — y' = b'(z- z'). 
The equation of condition that makes (3) perpendicular 

to (2) is (Art. 175, Cor. 2) 

aa' + IV + 1 = 0. (4) 

f e m ^ J t i f T W O r d S 1 f 0 l , 0 W G r e g o r ^ a n d 8 a l m o " . ¡ ^ t ead of giving them a 
S " d i r e c t T T C , a " i n g t h C m " ' J e n e r a M r " a n d " AIbo, the 
v £ * n t «Sf ' .M n I f " y b e e D U B C d i D a d i f f e r e n t a e n s e «** Art. 51) from .he present, and it is well to distinguish between the two. 



Substituting in (4) the values of a' and V found in (3), 
we have 

x — x' . t f - t f ' , , A 
A > 4- B * H + 1 = z — z z — z 

ax 4- by 4- z — («' 4- aaf 4- by') = 0. (5) or 

Now for only one set of values of a' and V in (3) that will 
satisfy (4), x, y, z, in (5) are the co-ordinates of every point 
of the generator in one position of i t ; likewise for a second 
set of values of a' and b' in (3) that would satisfy (4), x, y, 
z, in (5) are the co-ordinates of every point of the generator 
in this second position. Therefore for every set of values 
of a' and b' in (3) that will satisfy (4), x, y, z, in (5) are the 
co-ordinates of every point of the generator in every posi-. 
tiou of i t ; that is, they are the co-ordinates of the plane. 
Hence, (5) is the equation of the plane. 

Representing the constant term (z' 4- ax' + by') by c, 
it becomes 

ax + by + z — c = 0, (6) 

which is the equation required. 
178. The intersections of a plane with the co-ordinate 

planes are called the Traces of 
the Plane. 

For every point in the plane xz, 
y = 0; if then we substitute y = 0 
in (6) of Art. 177 and solve for x, 
we have 

1 , c 
X = 2 4 -

a a ( 1 ) 

which is the equation of the trace 
AC on the plane xz. 

1 
Similarly (2) 

is the equation of the trace BC on the plane yz. 

Also y = + (3) 

is the equation of the trace AB on the plane xy. 

Comparing the coefficients of z in the equations of the 
traces (1) and (2), with the coefficients of z in (1) of 
Art . 177, we see that the traces on the planes xz and yz are 
perpendicular to the projections of the director on the 
same planes; and the same may be shown for the third 
trace AB and the projection on the plane xy. Hence, if a 
line in space is perpendicular to a plane, its projections are 
perpendicular to the traces of the plane. 

COR.—If e = 0, (6) of Art. 177 becomes ax + by 4- z = 0, 
which is satisfied by x = 0, y = 0, z = 0, or the plane 
passes through the origin. 

179. Every equation, of the first degree between three 
variables is the equation of a plane. 

The general equation of the first degree between three 
variables is of the form 

Ax 4- By 4- Cz 4- D = 0 . (1 ) 

Dividing by C, we have 

A 'B D 0 
C x + C y + Z+C = 0 ' ^ (2) 

an equation of the same nature and form as (6) of Art. 177, 
and therefore is the equation of a plane. Hence, every 
equation of the first degree between three variables is the 
equation of a plane. 

SCH.—Comparing (2) of this Article with (6) of Art. 177, 
41 1. A i B we see that ^ and ^ are the tangents of the angles which 

the projections of the director on the planes xz and yz make 
with the axis of z. (Art. 172.) 



180. To find the equation of a plane in terms of its 
intercepts on the co-ordinate axes. 

Let the intercepts of the plane 

Ax + By + Cz •+ D = 0, (1) 

on the axes of x, y, and z, be a, b, and c, respectively. 
Making y and z both = 0, and therefore x = a, (1) 

becomes 

Aa + D = 0: A = ——• 
a 

Similarly making z and x = 0, and x and y = '0, we get 

Substituting these values of A, B, and C, in (1), dividing 
by — D and transposing, it becomes 

S + F + J = 1 ; » 

which is the equation required. 
This form is known as the symmetrical form of the 

equation of a plane. (See Art. 22, II.) 

REM.—Of course a, b, c, in (2), do not mean the same as a, b, c in 
(6) of Art. 177. 

181. To find the equation of a plane in terms of 
the perpendicular on it, from the origin and the 
direction-cosines of this perpendicular. 

Let p be the perpendicular from the origin to the plane, 
and «, ¡3, y, its direction-angles (Art. 170) ; then since 
each intercept is equal to this perpendicular divided by the 
corresponding direction-cosine, we have 

NORMAL FORM OF THE EQUATION OF A PLANE. 2 7 0 

which in (2) of Art. 180, give us 

» c o s « + ycos/3 + z c o s y =p-} (¿J 
which is the equation required. 

This form is known as the normal form of the equation 
of a plane. (See Art. 22, III.) 

SCH.—The general equation of the plane 
Ax + By + Cz + D = 0, (2) 

may be reduced to the form 
x cos « + y cos ß + z cos y = p, ( 3 ) 

thus: Comparing (6) of Art. 177 with (2) of Art. 179 
we have 

A , B 
a=C' a " d i = c ' 

Substituting these values of a and b in (5), (6), and (7) 
of Art. 175, we have % 

A 
COS A = 

COS ß 

cos y = 

VA* + B* +772' 

B 

c 
VA 2 + 

Substituting these values in (3), we get 

Ax + By + Cz_+_B _ 

VA2~+B2~TC2 ( 4 ) 

which is the required form. (See Art. 23, Cor.) 
.Comparing (4) witl* (3), we have for the perpendicular 

from the origin on the plane whose equation is (4), 

- D 



O T ^ - t i ' * 9 ' * 
2 8 0 LENGTH OF PERPENDICULAR FROM A GIVEN POINT. 

By giving to the square root the sign which will make 
this perpendicular positive, the resulting signs of the 
cosines will indicate whether the direction angles of the 
perpendicular are acute or obtuse. ^ j ^ / t j 

182. To find the length of the perpendicular from 
a given point (x', y', «') to a given plane, x cos a 
+ y cos (3 + z cos y = p. 

Pass a plane through the given point parallel to the 
given plane; its equation is (Art. 181) 

X cos « + y cos /3 + z cos y = p'. (1) 

Since (x', y', z') is on this plane, it must satisfy its equation, 
giving us 

x' cos « + y' cos (3 + z' cos y = p'. (2) 

The length of the required perpendicular will be equal to 
the perpendicular distance between these parallel planes. 
The first member of (2) is the length of the perpendicular 
from the origin to the parallel plane through (x', y', z'), 
and p is the length of the perpendicular from the origin to 
the given plane; therefore, 

x' cos « + y' cos (3 + z' cos y — p, 

is the perpendicular distance between the parallel planes, 
which is the length of the required perpendicular. Hence, 
the length of a perpendicular from a given point to a plane, 
is obtained by substituting the co-ordinates of that point in 
the normal equation of the plane. 

SCH.—If the point (x', y', z') and the origin are on 
opposite sides of the given plane, this expression is plus; if 
they are on the same side, the expression is minus ; there-
fore, the length of the perpendicular is 

± (x' cos « + y' cos (3 + z' cos y — p), 

according as the point and the origin lie on opposite sides, 
or the same side, of the plane. 

COK.—If the equation of the plane were given in the 
general form Ax + By + Cz + D = 0, we have only to 
reduce it to the form x cos « +, y cos [3 + z cos y — p = 0 
(Art. 181, Sch.), and the length'of the perpendicular on it 
from any point (x', y', z') is 

Ax' + By' + Cz' 4- D 
± 

VA2 + B2 + C2 

It is easily seen that (x', y', z') lies on the same side of 
the plane as the origin, or on the opjiosite side according as 
Ax' + By' + Cz + 1) has the same sign as D, or the 
opposite sign. (Art. 24, Sch.) 

183. To find phe angle included between two planes. 

Let Ax + By 4- Cz 4- D = 0, (1) 

and A'x 4- B'y 4- C'z 4- D' = 0, (2) 

be the equations of the two planes. The angle between 
two planes is the same as the angle between two lines drawn 
perpendicular to them. If the equations of these two 
perpendiculars are 

x = az 4- «, y = bz 4- (3; 

and x = a'z + «', y = b'z 4- (3'; 

the angle between them is given by equation (8) of 
Art. 175. 

Comparing (6) of Art. 177 with (2) of Art. 179, we have 

A i B 
a = c> b=c'> 

a' = J ' 
C5 

b' = E 
O" 



which in (8) of Art. 175, gives us 

cos v = AA' + BB' + CC' 
{¿) (3) VA'1 + B* + C* VA'* + B* + C'2 

which determines the angle between the two planes. 

COR. 1,—If the planes are parallel to each other, 
cos v = 1; hence, clearing (3) of fractions, squaring, 
transposing and uniting (see Art. 175, Cor. 1), it becomes 

{AB' - A'By + (BC - B'Cy + (OA' - C'Af = 0; 

an equation which can be satisfied only when each term is 
equal to 0, giving us 

AB' = A'JB; BO' = B'C-, OA' =• O'A ; 

or A 
B B'; 

B 
C 

R 
C'; 

A 
c.: Cr 

That is, if the planes are parallel to each other, the coeffi-
cients A, B, C, are proportional to A', B', C'. 

COR. 2.—If the planes are perpendicular to each other, 
cos v = 0, and (3) becomes 

AA' ^r BB' + CC' = 0, 

which is the equation of condition that makes two planes 
perpendicular to each other. 

COR. 3.—If we suppose the second plane to coincide with 
the co-ordinate plane xy, we have z = 0 in (2), and 
it becomes 

A'x + B'y = 0,-

(since D also = 0, Art. 178, Cor.) And since this is true 
for every value of x and y, we shall have 

Therefore, denoting the angle between the plane (1) and 
the co-ordinate plane xy by v , we have from (3) 

C 
COS V = 

VA* + B*+ C* 

Calling v" and v'" the angles which the plane (1) makes 
with the planes zx and yz, we obtain 

VA2 + BP + C«' 

A 
VA^+BP + c* 

SCH.—X = 0, y = 0, 2 = 0, are the equations of the 
co-ordinate planes yz, zx, xy, respectively. 

184. To find the angle between the plane Ax + By 
+ Cz + D = O and the line x = az + a,y = bz + (3. 

The angle between the line and the plane is the 
complement of the angle between the line and the perpen-
dicular on the plane. 

Let the equations of the perpendicular be 

x = a'z + «'; y = b'z + (3'. (1) 

(8) of Art. 175 gives the value of the cosine of the angle 
between the line and the perpendicular; therefore, the 
value of the sine of the required augle between the line 
and plane is 

+ IP + 1 Vfl'2 + V2 + 1 K ' 

Since the line (1) is perpendicular to the plane, we have 



which in (2) gives us, calling the required angle v', 

. , Aa + Bb + C ... sin v = — — (3) 
Va?+b2 + 1 V A2 + B2+ C2 

COR. 1.—If the line is parallel to the plane, we have 

Aa + Bb + C = 0. (4) 

COR. 2.—If the line is perpendicular to the plane, 
we have 

sin v' = 1 ; 

hence, clearing (3) of fractions, squaring, transposing, and 
uniting, we have 

(aC — A)2 + (bC — B)2 + (aB - bA)2 = 0, 

an equation which can be satisfied only when each term 
= 0, giving us 

aC = A, bO = B, aB = bA-, 

in which we see that the third term follows directly from 
the other two. Hence, 

A A j, B 
a = Q> a n d 0 = Q » 

are the conditions that the lines shall be perpendicular to 
the plane, which are the same as we get by comparing (6) 
of Art. 177 with (2) of Art. 179. . 

; 1 ( ^ / 7 ' 
E X A M P L E S . 

41. Find the equations of the traces of the plane 
z + 2x + 3y = 6, on each of the co-ordinate planes, and 
also the intercepts on each of the corordinate axes. 

Ans. 2x + 3y = 6, z -f- 2x = 6, z + 3y = 6; a = 3, 
1 = 2, c = 6. 

> 2. Find the z of the point in the same plane, whose 
projection on xy is (3, 4). Ans. z = — 12. 

3. Find the equation o f ' a line passing through the 
point (—2, 3, 5) and perpendicular to the plane 

2x + 8y — z — 4 = 0. 
Ans. x = — 2z + 8 ; y = — 8z + 43. 

4. Find the equation of a plane that shall pass through 
the points (1, - 2, 2), (0, 4, - 5) and ( - 2, 1, 0). 

Ans. 9x + 19y + loz — 1 = 0. 
> 5. Find the line of intersection of the two planes 

3x + 8 y — lOz + 6 = 0 ; 
4« — 8 y + z + 1 = 0. 

Ans. 1x—9z + 7 = 0-, 56y — 43z + 21 = 0. 

[The co-ordinates of the line of intersection of two planes 
will satisfy, at the same time, the equations of both planes; 
therefore, combining these two equations and eliminating 
y, we obtain the equation of the projection, on the plane 
xz, of the intersection of the two planes. 

In the same manner, by eliminating x we find the 
equation of the projection of the intersection on the 
plane yz. 

This method may also be applied for determining the 
intersection of any two surfaces whatever, or of any line 
with any surface.] 

6. Find the line of intersection of the two planes 
z+2x- y — 3, 
z + x + 2y = 5. 

Ans. x = - | z + V-; y = - + 
} 7. Mnd the angle between the planes 

5x - 7y -(- 3z + 1 = 0; 
2x + y — 3z =0. 

Ans. 79° 52'. 



> 8. Find the distance from the point (2, — 3, 0) to the 
plane 

z _ 8z — % — 2. = 0. (Art. 182.) 

Ans. — .75. 

> 9. Find the angle which the plane 

5x — 1y + 32 + 1 = 0, 
makes with each of the co-ordinate planes. (Art. 183, Cor. 3.) 

Ans. 70° 46' with xy ; 140° 12' with ; 56° 43' with yz. 

10. In Fig. 111a, calling OM, ON, and OR, a, b, and c, 
respectively, find the equation of the plane passing 

through A, B, C. Ans. - -f- \ + - = 2. a 0 c 

[The co-ordinates of the three points must satisfy (1) of 
Art. 179, giving us three equations from which to find the 
values of A, B, C; substituting these values of A, B, C, in 
(1), and dividing by D, we have the equation required.] 

11. In the same Fig. find the equation of the plane 
CC II % passing through P, M, N. Ans. - + f = 1. ( I O C 

12. Find the equation of the plane passing through P, 0,^ 
M; also the equation cf the plane passing through P, O, N. 

. y z , x z Ans. f = - ; and - = — b e a c 

13. Find the length of the perpendicular from the origin 
011 the plane in Ex. 10. 

Ans. 2abc - (See Art. 182, Cor.) 
VaW + Pc2 4- c2«2 

14. Find the length of the perpendicular from R on the 
plane in Ex. 11. , 2abc 

Ans. 
Vaw + m + c V 

15. Find the angle between the planes in Ex. 12. 

Ans. cos-1 — „ . 
Vc2 + c2 V&2 + c2 

> 16. Find the condition that the right line x = az -f «. 
y = bz + (3, shall lie wholly in the plane 

Ax + By + Cz+ D=0. 

Ans. Aa + Bb + C = Aa + B(3 + D = 0. 

17. Prove that the sum of the squares of the cosines of 
the three angles which a plane makes with the three co-
ordinate planes is equal to unity; also prove that the cosine 
of the angle between two planes is equal to the sum of the 
products of the cosines of the angles which the planes make 
with the co-ordinate planes. 

18. Find the equations of the line which passes through 
(1, 2, 3) and is perpendicular to the plane x 4- 2y 4 3z = 6. 

Aiis. 3x = z; 3y = 2z. 
19. Find the distance from ( 2 , - 3 , 0) to the plane 

2x - 3y + V3z = 4. Ans. 2\. 
20. Find (1) the equation of the plane which passes 

through the points (1, 2, 3), (3, 2, 1), 2, 3, 1); and (2) the 
length of the perpendicular 011 it from the origin. 

Ans. (1) x+y+ z = 6; (2) 2 -y/3. 
> 21. Find the direction -cosines of the line of intersection 

of the planes x +y— z -f 1 = 0, and 4x 4- y — 2z + 2 = 0. 

Ans. ^ V l i , }Vl4, ftVli. 
22. Find the angle between the planes x + y -f z = 4, 

and x — 2 y — z = 4. Ans. cos~' $ 
* 23. Find the equation of the plane through (2, 3 , - 1 ) 
parallel to 3x — 4y + 7z = 0. A ns. 3x — 4y 4 7z + 13 = 0. 

,> 24. Find the equation of the plane through (1, 4, 3) per-
pendicular to the line of intersection of the planes 
3x + 4y + 7z + 4 = 0, and x — y -f 2z 4- 3 = 0. 

Ans. 15a; 4- y — 7z 4- 2 = 0. 



C H A P T E R I V . 

S U R F A C E S O F R E V O L U T I O N . 

185. A Surface of Revolut ion is a surface that can 
be generated by revolving any line about a fixed right line. 
The revolving line is called the Generator, and the fixed 
line around which it revolves is called the Axis . A section 
of the surface made by a plane passing through the axis is 
called a Meridian Section, and the plane a Meridian 
Plane. • • ¿u 

From the definition it follows that every point in the 
generator describes the circumference of a circle whose cen-
tre is in the axis; hence the surface may be generated by. 
revolving any meridian section about the axis. 

^ j * 186. To find the general equation of a surface of 
revolution. 

Let AB be any curve in the co-
ordinate plane xz, and let it be 
revolved about the axis of z. Let 
(z, z) be any point P in the gener-
ator, and let (r, z) be the same p j ^ ^ 
point P in any position of the / lg" 
generator in its revolution about / 
the axis of z, rz being any plane Y 

through the axis of z perpendicular to the plane xy. Then 
the equation of the generator may be written in the form 

r = / ( « ) , W 
which is read, r equals a function of z ; that is, r equals an 
expression that involves z. 

Now, from the nature of the surface, any point P of the 
generator must describe a circle whose centre is in the axis 

of z, and whose plane is perpendicular to this axis, that is, 
parallel to the plane xy ; therefore we must have, in every 
position of the point P, 

+ y2 = r2. (2) 

Now, for any one value of r, we shall have one value of 
z from (1), and this value of z, with the corresponding 
values of x and y, are the co-ordinates of every point of one 
horizontal circle of the surface. Hence, if we suppose r to 
to have every value that it can have and satisfy (1), the cor-
responding values of z with those of x and y, will be the 
co-ordinates of every point of every horizontal circle, that is, 
of every pointof the surface. Therefore, combining (1) and 
(2), we have 

* + f = 7 W > (3) 
which is the equation required. , 

/vO»187 To find the equation of a right circular cone. 
A Right Cone is the surface that may be generated 

revolving a right line about another right liue which it 
intersects. The point of intersection is called the Vertex 
of the cone. If the axis is perpendicular to the base, the 
cone is called a Right Circular Cone; the different posi-
tions of the generator are called E lements of the Cone. 

Let the axis of the cone be the axis of z, and its basé the 
plane xy. Then the co-ordinates of the vertex are x' = 0, 
y' = 0, z' = c. By Art. 25, the equation of the generator 
in the plane xz is 

x = a (z — c). 
Hence, Art. 186, 

r = f ( z ) = a (z — c), 

which in (3) of Art. 186 gives 

a« + y2 = a2 (z - c)2, (l) 
where a is the tangent of the angle which the generator 

13 



makes with tiie axis of the cone. If we let <p = the incli-
nation of the generator to the base of the cone, we have 
a = cot <f>, which in (1) gives 

{cfi+tf) ten2<p = (z-c)\ (2) 

which is the equation required. 

COR.—If the vertex be placed at the origin of co-ordi-
nates, c = 0, and (1) becomes 

a* + y2 = a2z2. (3) 

z* 188. To find the equation of the right circular 
cylinder. 

A Right Circular Cylinder is a surface that may be 
generated by revolving a right line about another right line 
parallel to itself. 

Let the axis of the cylinder be the axis of z, and its base 
the plane xy, and let a be the distance of the generator 
from the axis. The equation of the generator in the plane 
xz is (Art. 22, Cor. 2.) 

x = a. 

Hence, Art. 186, r = f ( z ) = a, 

which in (3) of Art. 186 gives 

x1 + y2 = a2, 

which is the required equation. 

j 189. To find the equation of the sphere, 

A Sphere is a surface that may be generated by revolving 
a circle about one of its diameters. 

Let the plane of the generating circle begin in the plane 
xz, and let the axis of revolution be the axis of z. The 
equation of the generator in the plane xz is 

a? + z2 = i f ; 

and in any other position of its revolution, the equation is 

r2 + z2 = R8 (Art. 186), 

or r2 = R2 — z2, 

which in (3) of Art. 186 gives 

x2 + y2 = R2 — z2, 

or x2 + y2 + z2 = R2, (1) 

which is the equation required. 

> 190. To find the equation of a paraboloid of revo-
lution. 

A Paraboloid of Revo lu t ion is a surface that may be 
generated by revolving a parabola about its axis. 

Let the plane of the generating parabola begin in the 
plane xz, and let the axis of the parabola be the axis of 2. 
The equation of the generator in the plane xz is 

x2 = 2pz, 

and in any other position of its revolution the equation is 

r2 = 2pz, 

which in (3) of Art. 186 gives 

a* + y2 = 2pz, (1) 

which is the equation required. 

COR.—Make » = a constant = q, and (1) becomes 

x> + y2 = 2pq, 

which is the equation of a circle whose radius is V2pq. 
Therefore, all sections of the paraboloid of revolution paral-
lel to the plane xy are circles, real or imaginary, according 
as^? and q have like or unlike signs. 



If x = m, (1) becomes 

y2 = 2pz — m2; (2) 

and if y = n, (1) becomes 

x2 = 2pz — n2, ( 3 ) 

which are equations of parabolas. Therefore, all sections 
parallel to the planes yz and xz are parabolas. 

? 191. An El l ipsoid of Revolution is a surface that may 
be generated by revolving an ellipse about one of its axes; 
if the ellipse revolves about its major axis, the surface gen-
erated is called a Prolate Spheroid ; if it revolves about 
its minor axis, the surface is called an Oblate Spheroid. 

192. To find the equation of a prolate spheroid.* 
Let the plane of the generating ellipse begin in the plane 

xz, and let the major axis be the axis of z. The equation of 
the generator in the plane xz is 

ah? + Vz2 = a2P; 

* The equation of any ellipsoid may be found as follows : 
Let Ax' + By* + Cz' = D (1) 

be an equation of the second degree between three variables, containing only the 
squares of the variables and the absolute term, and let A. B, C, and D all be 
posilive. 

If x = m, y = n, and z = q successively, (1) becomes in succession, 
By' + Cz' = D - Am', (2) 
Ax' + Cz' = D - Bn', (3) 
Ax' + By' = D - Cq\ (<) 

which are equations of ellipses, real o r imaginary, according as the second members 
are positive or negat ive ; tha t is, (2) is a real ellipse if 

(S) is a real ellipse if n < ± y / ~ , 

and (4) is a real ellipse if q < ± ^ • 

and in any other position of its revolution the equation is 

ah* + Pz2 = a2&>, 

„ aW - Wz2 

or r* — . ' _9 > 

i f m = ± | / i ' 

(2). (8). and (4) are equations of points . Therefore all sections of the figure repre-
sented by (1), parallel to the planes ry, yz, zx, are ellipses, and the figure is limited 
by s i r parallel planes, 

two of them at the distances + and from the plane yz, 

two at the distances + - f / f a " d ~ | / 1 f r o m t h e P l a n e 

and two at the distances + y / ^ and - y / ? (rom the plane xy, 

and hence the surface is called an ellipsoid. 

Let the intercepts of the ellipsoid on the axes of x, y, and z be a, b, c, respec-
tively. Making z and y = 0, and therefore x = a, (1) becomes 

Aa' = D \ A = - • 
a' 

* 
Similarly, by making z and x = 0, and x and y = 0, we get 

b=£, O 
b* o2 

Substi tuting these values in (1) and dividing by D, w e get 

x' y~ z' 
¿ - , + ^ + ¿ 3 = 1. (5) 

which is the equation of the ellipsoid referred to its centre and axes. 

If c=b, (5) becomes a' (y'+z-)+b'x' = a'-b-, which is an ellipsoid of revolution 
round the axis of x. 

If c = a, (5) becomes i ' ( 3 ! < + i ' ) + a y = a-b\ which is an ellipsoid of revolution 
round the axis of?/. 

If b = a, (5) becomes c- (x-+y-)+a'z' = a'c', which is an ellipsoid of revolution 
ronnd the axis of z. 

If a = b = c = r, (5) becomes x'+y'+z' = r', which is a sphere. 



which in (3) of Art. 186 gives 
a W - V z 2 

* + y2 = — - 2 — ' 

or a2(x2 + i/2) + Wz2 = aW, (1) 

which is the equation required. 

COR. 1—If b = a, (1) becomes a? + + a2, which 
is the equation of a sphere whose radius is a. 

COR. 2.—If z = q, (1) becomes 

^ + f = - (2) 11 

which is the equation of a circle whose radius = ^ Va2—q2. 

Therefore all sections of the prolate spheroid parallel to the 
plane xy are circles, real or imaginary, according as cf < or 
> a2; if q2 = a2, the circle is a point. Hence, the surface 
is limited by two planes parallel to the plane xy, and at dis-
tances from it = + a and — a. 

If x = in, (1) becomes 

a2y2 + &z2 = a2 (V2 - m2); (8) 

and if y = n, (1) becomes 

a2xi+m = a2 (V2 — n2), (4) 

which are equations of ellipses. The ellipse whose equa-
tion is (3) is real or imaginary, according as in2 < or > V2; 
if m2 = V2, the ellipse is a point. 

Similarly, (4) is real or imaginary, or a point, according 
as n2 < b2, > or = b2. Therefore, all sections of the 
prolate spheroid parallel to the planes yz and zx are ellipses; 
and the surface is limited by four parallel planes, two of 
them at the distances + b and — b from the plane yz, and 
two of them at the same distances from the plane xz. 

295 

193. To find tlie equation of an oblate spheroid. 

Let the plane of the generating ellipse begin in the plane 
xz, and let the minor axis be the axis of z. The equation of 
the generator in the plane xz is 

a2z2 + Vh? = aW-, 
and in any other position of its revolution, the equation is 

a2z2 + Vr2 = aW, 
• aW-^l 

V2 

which in (3) of Art. 186 gives 
. , , aW — a2z2 

& + y* = , 

or v2 (¿2 + y2) + a2z2 = aW, ( l ) 
which is the equation required. 

SCH.—This equation is the same as (1) of Art. 192, except 
that a and b change places. Hence, by changing a to b and 
b to a in Cors. 1 and 2, Art. 192, the conclusions of that 
Art, may be applied to the oblate spheroid. 

A 
194. An Hyperbolo id of Revolut ion is a surface that 

may be generated by revolving an hyperbola about one of 
its axes. If the hyperbola revolves about its transverse axis, 
the surface generated is called an Hyperbo lo id of Revo -
lution of T w o N a p p e s ; each branch of the hyperbola 
generates a separate nappe, or branch of the surface. If 
the hyperbola revolves about its conjugate axis, the surface 
generated is called an Hyperbolo id of Revolut ion of 
One Nappe. 

195. To find the equation of an hyperboloid of 
revolution of two nappes. 

Changing b2 into — b2 in (1) of Art. 192, it becomes 
(see Art. 102, Cor. 5) 



a2 (x2 + f ) - m = - aW, (1) 
wliich is the equation required. 

COR.—If z = q, (1) becomes 

* + * = (») 

which is the equation of a circle whose radiu? ^ - V q2—a2. d 
Therefore, all sections of the hyperboloid ci revolution of 
two nappes, parallel to the plane xy, are circles, real or 
imaginary, according as > or < a2; if q2 = a2, the cir-
cle is a point. Hence, the surface is limited by two planes 
parallel to the plane xy, and at distances from it i= a and 
— a, no part of the surface beiug between the limiting 
planes. 

If x = m, (1) becomes 

a y -&z2 = - a2 (V2 + m% (3) 

and if y = n, (1) becomes 

« V - VW = — a2 (b2 + n2), (4) 

which are equations of hyperbolas, whose transverse axes are 
all parallel to the axis of z. Therefore, all sections of the 
hyperboloid of revolution of two nappes, parallel to the 
planes yz and xz, are hyperbolas. 

«196. To find the equation of an hyperboloid of 
revolution of one nappe. 

Changing ft2 into — V2 in (1) of Art. 193, it becomes 

¥(x2 + y2) - a2z2 = aW, (1) 

which is the required equation (Art. 102, Cor. 5). 

COR.—If z = q, (1) becomes 

* + ? = + 

which is the equation of a circle whose radius = ^ V P + q 2 , 

and this circle is real for every value of q. Therefore, all 
sections of the hyperboloid of revolution of one nappe, par-
allel to the plane xy are real circles, and the surface has no 
limit in the direction of the axis of 2. The smallest circle 
is that obtained by making z = 0 in (1), giving us 

x2 + y2 = a:2, (3) 

which is called the Circle of the G-orge. 

If x = in, (1) becomes 

Vtf — a2z2 = b2 (a2 — m2); (4) 
and if y = n, (1) becomes 

Wx2 - a2z2 = V2(a2- n2), (5) 
which are the equations of hyperbolas whose transverse axes 
are all parallel to the axis of z, if m2 and n2 are > a2; but 
if in2 < a2, the hyperbola represented by (4) has its axis 
parallel to the axis of y; and if n2 < a2, the one represented 
by (5) has its axis parallel to the axis of x. Therefore, all 
sections parallel to the planes yz and zx are hyperbolas. If 
in2 = a2, (4) becomes 

by = ±az; (6) 
and if 112 = a2, (5) becomes 

bx = ± az. (p 
Each of the equations (0) and (7) represents two right 

lines intersecting at the origin. The lines in (6) are the 
asymptotes of the hyperbolas parallel to the plane yz, and 
the lines in (7) are the asymptotes of the hyperbolas parallel 
to the plane xz (Art. 114). 

NOTE. The student should find the equations of the hyperboloids independently 
"sing the method» of Ai ts. 192 and 193. 

SCH.—In finding the equations of the ellipsoids and 
hyperboloids of revolution, we made in each case the axis of 



z the axis of revolution. If we wish to find the equations 
of these surfaces when the revolution is around some other 
axis, as, for example, the axis of a, we have only to inter-
change * and z in the above equations, and the resulting 
equation will be the required one; or, we may find the 
equations by the methods used in Arts. 187-193. 

S E C T I O N S O F A C O N E . 

/ l 9 7 We shall now show that if a right circular cone be 
cut by a plane, the curve of intersection will be one of the 
conic sections (see Art. 51, Rem.). 

To find the equation of the intersection of a right 
circular cone and a plane. 

Let the axis of the cone be the 
axis of z, and the base of the cone 
the plane xy; and denote the 
angle OAC by <p; then the equa-
tion of the cone [Art. 187, (2)] is 

(a?+y2) tan20 = (z—c)2. (1) 

Pass the plane YOB through 
the axis of y, intersecting the 
cone in the curve BEN. Let 
6 = the angle AOB which the in-
tersecting plane makes with the plane xy. Since the plane 
YOD is perpendicular to the plane zz, the lines OY and OD 
are perpendicular to each other; take OB and OY for the 
axes of x and y. 

Let P be any point of the curve of intersection. Its co-
ordinates referred to the old axes are 

x = OM, y= PD> z = D M ; 
aud referred to the new axes OB and OY are 

= OD, y' = FD. 

In the right-angled triangle OMD, we have 

OM = OD cos 6, or x.= x! cos 0 ; 

and DM = OD sin 0, or z = x' sin 0 ; 

and y = y'. 

Substituting these values of x, y, and z in (1), we have 

(a;'acos20 + y'2) tan24> = (x ' s in0 — c)2. 
Performing the operations indicated, transposing, and 

omitting accents, we have 

x>(cos20 tan20 — sin20) + y2 tan2<p + 2cx sin 0 — c2 = 0. (2) 

sin2 6 = cos2 6 tan2 0 ; 

which substituted in (2) gives 

a,-2 (tan2 0—tan2 0) cos2 0 + f tan2 <p + 2cx sin 0 = <?, (3) 

which is the equation of the intersection of a right circular 
cone and a plane referred to two rectangular axes in the 
plane. 

By giving to c every value from 0 to CO, the axis of the 
cone, and by giving to 0 every value from 0 to 90°, (3) will 
represent in succession every section that can be cut from a 
given right circular cone by a plane. 

COR.—Since (3) is of the second degree, every section of 
a right circular cone will belong to one of the three classes 
(Art. 146, Sell.), which are characterized as follows: 

J2 — 4ac = 0, the parabola, 
V2 — 4ac < 0, the ellipse, 
S2 — 4oc > 0, the hyperbola. 

Comparing (3) with the general equation of the second 
degree (Art. 141), we have 

a = (tan2<£ — tan20) cos50, 
,6 = 0, 

c = tan2 0. 



I. Let 6 = 0 ; we then have a = 0, or b1 — iac = 0 ; 
hence the conic section is a parabola. In this case the 
cutting plane is parallel to the side of the cone. 

1. If c = 0, the cutting plane passes through the vertex, 
and (3) becomes ? /2 tan20 = O, or y = 0, which is the 
equation of the axis of x, showing that the limiting case of 
the parabola is a right line (Art. 146, Cor.). 

2. If we suppose 0 = 0 = 90° and c = co, (3) becomes 
y2 = constant; showing that when the vertex of the cone 
recedes to infinity, the parabola breaks up into two parallels. 
Therefore, one right line and Uoo parallel right lines are 
the limiting cases of the parabola. (Art. 146, Cor.) 

II. Let 6 < <p; we then, have a > 0, or IP — 4ac < 0; 
hence the conic section is an ellipse. In this case the cut-
ting plane makes a less angle with the base than that made 
by the side of the cone. 

1. If 6 = 0, the cutting plane is parallel to the base of 
the cone, and (3) becomes 

x* + if = ^co t 2 0 , 

which is the equation of a circle. 

2. If c = 0, the cutting plane passes through the vertex, 
and (3) becomes 

x1 (tau2 <p — tan2 0) cos2 0 + y* tan2 0 = 0. 

Each term, in the first member of this equation, being a 
square, is essentially positive; and hence the equation is 
satisfied only for the values x = 0, y = 0, which are the 
equations of the origin. 

Therefore, a circle and point are the limiting cases of the 
ellipse. (Art. 143, Cor. 2.) 

III. Let 0 > 0 ; we then have a < 0, or IP — 4ac > 0 : 
hence, the conic section is an hyperbola. In this case the 

cutting plane makes a greater angle with the base than that 
made by the side of the cone. 

1. If 0 has such a value as that, 

(tan20 — tan2 0) cos2 0 + tan20 = 0, 

we shall have 
a + c = 0; 

and therefore (Art. 143, Cor. 3), the section is an equilateral 
hyperbola. 

2. If c = 0, the cutting plane passes through the vertex, 
and (3) becomes 

z2 (tan2 6 — tan2 0) cos2 6 — y* tan2 0 = 0 ; 

x cos 0 Vtan2 0 — tan2 <p or y = — ; J tan 0 

which is the equation of two right lines intersecting at the 
origin. 

Therefore, the equilateral hyperbola and two intersecting 
right lines, are the limiting cases of the hyperbola. 
(Art. 143, Cor. 3.) 

Thus, we have shown that if a right circular cone be cut 
by a plane, the curve of intersection is a parabola, an 
ellipse, an hyperbola, a circle, two right lines, intersecting, 
parallel or coincident, or a point. (See Art. 51, Remark.) 
The imaginary varieties cannot be obtained by any geo-
metric process, since they have no geometric meaning. / 

. n / ' t 1 1 ' 

' 1 9 8 . To find the equation of a plane tangent to 
an ellipsoid at a given point. 

A plane is tangent to a surface when it has at least one 
point in common with it, through which, if any number of 
planes be drawn, the sections made in the plane will be 
tangent to the sections made in the surface. 



•302 PLANE TANGENT TO AN ELLIPSOID. 

Let (x\ y', z') be any given point on the ellipsoid, 

a? f z-2 

# + & + * = ( l ) 

J X E T ; ^ I S 0 , 1 T H E E , , I P S O I D ' I F C W M ( 1 ) ; 

z* y* z'2 

(2) 

Subtracting (2) from (1) and factoring, we have 

i n S iS ÎM E R T I 0 N 0 f t h e e l l i p S O i d W i t h t h e «»d i t t o , introduced that the point y',z') shall be on the surface. 

J i l t m ™ 3 a rightline p a s s i n g t h r o ^ h y> *') 

x-x'=a'(z-z'); y-y' = V{z__zy (4) 

Substituting these values oix-x' and y - v'in (K if 
becomes 9 v ' ' 

%^-*')(x+x')+^(z-z!){y+y') + l^z-z-) (z+z')=0 • (5) 

which shows the relation between the co-ordinates s, y, z, 
of every point common to the surface (3) and the line (4). 
(See Art. 184, Ex. 5.) Because (5) is of the second degree, 
there are two points common to the line and surface 
Solving (o) we get 

z-z' = 0; (6} 

a»d £ ( * + * ' ) + 6 p ( y + y ' ) + ± ( z + z') = o. ( 7 ) 

Combining (4) and (6), we get 

* = y = y'v * = *'-, 

which are the co-ordinates of the given point, v !iile the 
x, y, z, in (?) are the co-ordinates of ihe second p e n t com-
mon to the line and surface. 

If we pass a plane through this line, it will cut from the 
surface a line which will contain both the given point and 
the second point. If the second point be moved along this 
line till it becomes consecutive with the giveu point, the 
right line will become tangent to the line cut ti'oai i 
surface, at the given point, and x, y, z, will -become i " 

which in (7) give B I B L I O T E C A 

(8) 

which is the equation of condition that makes (4) tangent 
to a line of the surface at the given point. 

Substituting in (8) the values of a' and b' found in (4), 
and clearing of fractions, we have 

c2 ( 9 ) 

Now, for one set of values of a' and b' in (4) that will 
satisfy (8), x, y, z, in (9) are the co-ordinates of every point 
of the tangent to one line of the surface, at the given point. 
Therefore, for every set of values of a' and V in (4) that 
will satisfy (8), x, y, z, in (9) are the co-ordinates of every 
point of the tangent to every line of the surface, at the 
given point; that is, they are the co-ordinates of the plane 
tangent to the surface at the given point. Hence, (9) 
is the equation of the tangent plane at the point 
(*', y\ z'). 

Performing the operations indicated in (9) and trans-
posing, we have 

xx' yy zz' _ x'2 y^ ^ 
+ V + c2" ~ a2 + « + 

<1 
¥ 



Substituting from (2), we have 

^ 4. y£ 4_ ?£.' - 1 . 
a2 + i ^ - 1 ' 

whicli is the equation required. 

If c = b, (10) becomes 

«2 (yy' + zz') + IPxx' = aW; 
which is the tangent plane to I he ellipsoid of revolution 
round the axis of x. 

If c = a, (10) becomes 

IP (xx' + zz') + a2yy' = aW: 

which is the tangent plane to the ellipsoid of revolution 
round the axis of y. 

If a = b = c = r, (10) becomes 

xx' + yy' + zz' = r2; 

which is the tangent plane to the sphere. 

E X A M P L E S . 

1. Find the equation of the cone generated by revolving 
about the axis of z, the line whose equation in the plane xz 
is 4x = 3z + 2 (Art. 187), and find the vertex of the cone. 

Ans. 16a? + 16?/2—9z2—122 = 4; vertex is at (0, 0, — | ) . 
2. Find the equation of the cone generated by revolving 

about the axis of z the line whose equation in the plane yz 
is 2y + z = 6, and find the vertex of the cone. 

z2 
Ans. x2 4- y2 - + 3z = 9 ; vertex at (0, 0, 6). 

Find the equation of a right circular cone, the equa-
tion of the base being Xs + y2 — 9,"and the altitude being 5. 

Ans. 25x2 + 25y2 — 9z2 + 90« = 225. 

4. Find the equation of the paraboloid of revolution 
generated by revolving the parabola 2x2 = 5z, about the 
axis of z. (Art. 190.) Ans. x2 + y2 = fz. 

> 5. Find the equation of the paraboloid of revolution 
generated by revolving the parabola y2= - 3x, about the 
axis of x. (Art. 196, Sch.) Ans. y2 + z2 + 3x = 0. 

[How is this paraboloid situated relative to the co-
ordinate axes ?] 
> 6. Find the equations of the spheroids generated by the 
ellipse ix2 + z2 = 4. (Arts. 192, 193.) 

( The prolate, éx2 + 4y2 + z2 = 4. 
A n s - ( The oblate, 4x2 + y2 + z2 = 4. 

7. Find the equations of the hyperboloids generated by 
the hyperbola 9z2 — 4x2 = — 36. (Arts. 195, 196.) 

j Of two nappes, 9y2 + 9z2 — ix2 + 36 = 0, 
A n s - j Of one nappe, 4a-2 + 4y2 — 9z2 - 36 = 0. 

^ 8. Find the equations of the spheroids generated by the 
ellipse 16y2 + 9s2 = 144. (Art. 196, Sch.) • 

( The prolate, 9.T2 + 1 6 / + 16z2 = 144, 
A n s • | The oblate, 9«2 + 16y2 + 9z2 = 144. 

/ " 9. Find the equations of the hyperboloids generated by 
the hyperbola 9?/2 — z2 = - 9. (Art. 196, Sch.) 

Of two nappes, 9y2 + 9z2 — x2 + 9 = 0, 
Ans. j Of one nappe, x1 — Vy2 4- z2 — 9 = 0. 

10. Find the equation of the surface generated by revolv-
ing the parabola 2y2 = x about the axis of y. 

Ans. x2 — 4y4 + z2 = 0. 
11. Find the equations of the surfaces generated by 

revolving y2 = 1 and if = 2 ^ about the axis of y. 

Ans. 



12. Find the eccentricity of the ellipse formed by the 
intersection of the ellipsoid 2.-C2 + 3y2 + 4za = 1 and the 
plane * = (Art. 184, Ex. 5.) g = ^ 

13. Intersect the cone in Ex. 3 by a plane passing througb 
the axis of y and making an angle of 45° with the base, and 
find the equation of the curve of intersection in its own 
plane (Art. 197); also find the axes of the curve of inter-
section (Art. 143, Cor. 2), and its eccentricity. 

point such that the intercepts cut off by the tangent plane 
are proportional to the axes. 

' m f
 x ' _ V' _ *' 1 

Am. 

J*/ 
c A x ' y' z' 1 
Second, - — — — —— • b c 3 a 

Ans. 

8x* + 25 f + 4:5 V2x = 225 ; C o r -

axes are 75 , 15 
—— and — ; 
8V2 4 ' 

eccentricity = 

14. Find the equations of the intersection of the sphere 

a* + yi + z2 — 16 

and the ellipsoid of revolution 

25 (z2 + f ) + 92« = 225, 
their centres being coincident. 

Ans. xl + if = and 2 = ± f V f . 

15. Find the length of the perpendicular from the origin 
to the plane tangent to the ellipsoid at the point (x', y', z'). 

Ans. p = — * 
x'2 y'2 Z ' 2 

[This easily follows from Art. 182, Cor.] • 
16. Find the length of the perpendicular from the origin 

to the plane tangent to the ellipsoid in Ex. 12 at the point 

(*' *VH). Ans. p = 4=. 
V57 

17. Find a point on an ellipsoid such that the tangent 
plane cuts off equal intercepts from the axes. Also find a 

18. Find the equation of the normal line to a tangent 
plane to the ellipsoid at the point of contact. (See Art. 184s 

Am. 




