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hence, tan ¢ = ‘f

pr’
b2" R . ;
tan 0 tan ¢ = — P (since 2”2 = 2py’). (3)
Now, as@ : b :: /2 : 1, we have a® = 20 which in (3)
gives
tan Otan ¢ = — 13
therefore the two tangents, and hence the two curves, at
their point of intersection, cut each other at right angles.
[See O’Brien’s Co-ordinate Geometry, p. 128, where this
example is incorrectly solved. |

30. Putting p and p’ to denote the focal radii of any
point on an ellipse, and ¢ for its eccentric angle, prove that

p = a(l —ecosg),
p'= a(l + ecos ¢).

31. From the centre of an ellipse, two radii-vectores are
drawn at right angles to each other, and tangents to the
curve are formed at their extremities; prove that the tan-
gents intersect on the ellipse

o T

dte=atm
32. Express the equation of the normal at any point of
an ellipse in terms of the eccentric angle of the point.

Ans. (—((h(f)—'— amqb—l

33. Show that the equation of the locus of the poles of
normal chords of an ellipse is
222 (@ — 192 = aby® + D622
34. Show that the locus of the point of intersection of
tangents to an ellipse at two points whose eccentric anrrl(s
differ by the constant 24 is the ellipse —

z? y* e
 + 5 = sk

CHAPTER VII.

THE HYPERBOLA.

99. The Hyperbola is the locus of a point moving in a
plane so that its distance from a fixed point bears a constant
ratio to its distance from a
fixed right line, the ratio ; G/
being greater than unity.* /

From this definition the 5 B
hyperbola may be construet-
ed by points, thus:

Let F be the fixed point,
DD’ the fixed right line,
and e the given ratio. Draw
throngh F the line OAF

perpendicular and EE' par- f
allel to DD'. Take |/ \.\

FH( =) :FO: :: n:1, Fig. 80

and draw OE and OE' produced indefinitely. Draw paral-
lels to EE', meeting the lines OG and OG'. With the half
of any one of these parallels, as. KH, for a radius, and the
fixed point F for a centre, describe an arc ('uttmg KH at P;

this is a point of the curve. For, joining P and F, and
drawing PD perpendicular to DD’, we have

KH (=FP) : KO (=PD) :: FE: ¥O;
that is, by construction we have
P PDssiein ]

In the same way, any required number of points in tho
curve may be f:mnd

* Bee Todhunter's Conic Sections, p. 188,
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Since ¢ > 1, the distance from F to any point in the
curve is greater than the distance from the same point to
the line DD’; therefore there are points in the curve on the
opposite side of DD’,which are found in the same way as
those to the right of DD, thus: with the half of any of the
parallels, to the left of DD’, as MN, for a radius, and F for
a centre, describe an arc cutting MN at P’; this is a point
of the curve. For, joining P’ and F, and drawing P'L per-
pendicular to DD’, we have

MN (=FP) : MO (=PL) :: FE : FQ;
that is, by construction we have FP’ : P'L :: e : 1.

In the same way, any required number of points may be

found, If A and A’ be found so that

AR AQ a1, and A'F : AOi i g 1,
then A and A’ are points of the curve. Connecting all these
points by a line, we have the required hyperbola.

The fixed line DD’ is called the Directrix; the fixed
point F is called the Focus; OG and OG’ are called the
Focal Tangents; A and A’ are called the Vertices;
and C, the-point midway between them, is the Centre.

100. 7o find the distances from the centre of the
lhyperbola to the focwus and the directrix.
Represent AA' by 2a, and the given ratio by e.
Then we have, from definition,
A AQ o AR AN s
AF : AO :: AF + A'F : AO + A'Q,
el 20K 2 24
CF = ae.
Also from (1), we have
AF : AO :: AF—AF : A'O— A0
:: AA' : AA'—2A0,
e 1 2z :200;
Co="=.
e

\ EQUATION OF THE HYPERBOLA.

101. 7o find the equation of the hyperbola.

Let F be the focus, DD’ the
directrix, A and A’ the vertices,
and C the centre. Take AA’
as the axis of #, and the per-
pendicular through C as the
axis of .

Let (z, ¥) be any point P on
the locus; join FP; draw PM
and PD respectively perpendic-
ular to CX and CY.

Represent AA’ by 24, and the given ratio by e.

Then we have, from definition,

FP =¢ PD,
F_PE = PT):;
P + M7 = ¢ OME.
But FM =CM — CF =2 — ae; (Art. 100)

and OM=0CM — Q0 =2—_"2 «
e

D B

’ D’
Fig. 81

2
(z— r&@)2+y"’=e2(;x— %) 3
or ¥=010—¢&) (a®* —2?), (1)
which is the required equation.
COorR.— When # = 0, equation (1) becomes
¥*= (1 —¢) a* = — B [by putting (& — 1) a? =],

which in (1) gives

or - a? ?/2— Pr= — a? 1’)2,
which may be written in the symmetric form
2 a
A T
Moy

ar =R

Nore.—Since e>1, a? (1 — e?) is negative ; and therefore we put it equal to—b?
above 3

-]




170 DISCUSSION OF EQUATION.

EXAMPLES.
Find @, 4, and ¢ in the following hyperbolas : ;
1 1622 — 9y2= 144. Ans. 3, 4, §.
2. 92 — 169° = 144. Ans. 4, 3, §.
3. Find the equation of an hyperbola (1) if « =8 and
b="1; (B) 1L 2a=>5and 2ee=13; (3) if ae—=1 and

P=V/z o2 2 412 P

Ans. (1) b—‘; — i’—ﬁ —=1; (2) %_% =1; (3) 222 — 22=1.
J 102. Transform a*y® — b = — b, (1)
' to the vertex A. The formule for this transformation
become 2=2'+a, y=v,
which in (1) give, after suppressing accents, and solving
for 22, i

\-"‘"'.._‘_

i = 2ax + a3). (2)

Cor. 1.— We have from (2) and (3) of Art. 100,
CF = ae, and CO = ;.
Hg Btesd)

AT =0 (s—1), 01\:”@, OF =

‘Cor. 2.—When y=01in (1), = £+ a, which shows that
the curve cuts the axis of # at two points equally distant
from the origin, and on oppo-
site sides of it. When z =0, i

Y=+ by —1; hence the
curve cuts the axis of # in i

e A
two wmaginary points on op- F
posite sides of the origin. We
may, however, take two points K

B and B’, on different sides of L%

C, making CB = CB' = &, Fig: 82,

a8 we shall have occasion to use them hereafter.
Cor. 3.—Solving (1) for y, we get

b BT

Y= i:”-\ﬁf"’—u*,
which shows. that for every value of > 4+ a or < —a
there are two real values of y, numerically equal, with con-
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trary signs; hence, for every point P on one side of the
axis of #, there is a point P’ on the other side of the axis, at
the same distance from it; and therefore the curve is sym-
metrical with respect to the axis of 2. When 2 is + @ or
—a, ¥ = 1 0; and for every value of z between + « and
— @, the two values of y are imaginary; therefore the curve
is limited towards the centre by two tangents at A and A’

Similarly, solving (1) for z, we get
z=% %v ¥+ 5

which shows that for every value of y from — » to + o
there are two real values of z, numerically equal with con-
trary signs; hence the curve is symmetrical with respect to
the axis of y, and is unlimited in the direction of this axis.

ScH.—Because the curve is symmetrical with respect to
the line BB', it follows that if we take CF’ = CF (Fig. 82),
and CO' = €O, and draw KK’ perpendicular to 00, the
point ¥’ and the line KK’ will form respectively a second
focus and directrix.

AA'is called the Transverse axis of the hyperbola; BB
is called the Conjugate axis of the hyperbola. In the
ellipse, the conjugate axis is always less than the transverse
axis (see Art. 70, Cor.), and therefore the former was called
the minor and the latter the major axis. In the hyperbola,
the conjugate axis may be greater than the transverse, since
P =a®(—1) (Art. 101, Cor.), and e is > 1; therefore
we do not call the ases in the hyperbola the major and
MINOT axes.

The ratio ¢ (Art. 99) is called the Eccentricity of the
hyperbola. :

The point € ig called the Centre of the hyperbola,
because it bisects every chord of the hyperbola which passes
through it. This may be shown-in the same way as in the
case of the ellipse (Art. 71, Sch.),
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Cor. 4—To find the latws rectum (Art. 53, Cor. 3).

Make # = CF = ae¢ (Cor. 1); denote the corresponding
value of y by p; we have from Eq. (1) (Art. 102),

: 4
P = f;(a?e? —A)=BE—1) = 2_2 (Art. 101, Cor.).

Therefore, 2p = = = 4/!2 = latus rectum.
a 2a
‘Forming a proportion from this equation, we have
Ra : 2 : 2W: 2.
That is, the latus rectum is a third proportional to the
transverse azis and the conjugale.

Since 5 = (¢*— 1) ¢* (Art. 101, Cor.), we have
@+ B = a*e?;
that is, @ + # = CF (Art. 102, Cor. 1).
But @ + b = AB® (see Fig. 82).
Therefore, AB = CF.

Hence, the conjugate axis of the hyperbola is a perpendic-
ular to the transverse axis at its centre, and is limited by an
are deseribed with (he vertex of the transverse azis as a
centre, and wilh a ridius equal to the distance from the
Sfocus to the centre..

Cor. 5.—Comparing equation (1), Art. 102, with (1) of
Art. 71, we see that the equation of the hyperbola may be
derived from that of the ellipse, by changing + 2 into — &2
Hence, we infer that any function of b, expressing a prop-
erty of the ellipse, will be converted inlo one expressing a
corresponding property of the hyperbola, by changing b into
b4/ —1; therefore, in obtaining the properties of the hyper-
bola that are similar to those which have been proved for
the ellipse, we shall, in most cases, either change the sign of
&, or else refer the student to the corresponding demonstra-
tion in the ellipse.
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By a process similar to that of Art. 71, Cor. 5, the details
of which the student must supply, we obtain

Yi:y" ¢ @ +a)@—a): (@ +a) (@ — a) ;
that is, the squares of any two ordinates to the transverse

azis of an hyperbola are to each other as the rectangles of
the segments into which they divide the transverse azis.

CoR. 6.—A point is outside, on, or inside the hyperbola,
according as a¥%?® — 6% + a2 >, —, or < 0. The proof
is similar to that given in Art. 71, Cor. 6, for the ellipse.

A point is said to be outside the hyperbola if it lies in the
space between the branches, so that no right line can be
drawn through it to a focus without cutting the curve.

103. 7o find the distance of any point in the hy-
perbola from the focus, in terms of the abscissa of
the point.

F
From the figure we have \ %]/
FP® — (.‘1" o (M)z + 9P F/"c £
M
=@—ap+la_p / ]
a Fig. 83,

(Art: 102.)
= @ — 2aez 4 ¢%2° (since @ — B = ¢¥);

therefore, FP=ex—a.

[We take only the positive value of the root, for the reason
given in Art. 72.]

In like manner we find, by writing — ae for + qe,

FP = (2 + ae) + 9 = a* + 2aex + 2t

therefore, P = ¢z + a.

Hence, F'P — FP = 2a;
or, the difference of the distances of any point in an hyper
bola from the foci is equal to the transverse azis.
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r

CUoR.—This result furnishes two other methods of con.
structing an hyperbola, having given the axes.

I. With € as a centre and
BA as a radius, describe an are
cutting AA’ produced at F and
F'; these points are the foci
(Art. 102, Cor, 4). Now, with
F" as a centre and a rading’
greater than F'A, describe an
arc; then with F as a centre,
and a radius equal to that used before, diminished by the
transverse axis AA’, describe another arc cuntting the first
at the point P; this will be a point of the curve, since

: FP = F'P — 2a,
or F'P — FP = 2a

In the same way, any number of points may be found ;
joining these points, it will be a branch of the required
hyperbola. By using F for the first centre and F' for the
gecond, with the same distances as before, any number of
points of the other branch may be found.

Figl 84.

II. Take a ruler, and fasten one end of it at ' so it can
revolve about F' as a centre.
Take a string whose length
is less than that of the ruler
by AA’, and fasten one end
of it at F and the other end
at B, the end of the ruler;
then press the string against
the edge of the ruler with
the point of a pencil P, and revolve the ruler about ¥,

keeping the string tight; the pencil will describe one branch
of an hyperbola, since, in every position of it, we shall have

FP— TP = AA".
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; 104. \ Conjugate Hyperbola is one having the con-
Jugate axis of a given hyperbola for its transverse axis, and
the transverse axis of the given

hyperbola for its conjugate axis.

Lither of two hyperbolas thus re- = P
lated is conjugate to the other. \F’f—j}f/
Thus, the hyperbola whose trans- \T\_\"E/'Fﬂ
verse axis is BB’ (Fig. 86) is the *° G2 F/M X
conjugate of the hyperbola whose /"(4 —RN
transverse axis is AA', and con- / \
versely, the latter is the conjugate Y
of the former. They are often dis- Fig.86
tinguished as the o Hyperbola

and the i Hyperbola, cach taking the name of the co-
ordinate axis upon which its transverse axis lies ; and when
spoken of together are called Conjugate Hyperbolas.

105. 7o find the equation of an hyperbola conju-
date to a given hyperbola.

By Art. 102, the equation of the given hyperbola is
2

; 7
[ Ti— = (z* — a?),

: L i
or, Fig. 86, PM® = % (CM* — CR).

I'[-, 1 ! g a ot 3 1 ) T

Hence, :s,n‘]ce.P I8 a point 011.Ifhc conjugate hyperbola, hav-
ing BB’ for its transverse axis and AA’ for its conjugate
axis, we have,

o _ O&

NP™ = = (O — OB,

A 0,
or R 7 (P — ), (1)

which is the equation of the conjugate hyperbola, and is the
same expression we would obtain from the equation of the
given hyperbola by putting —# for +&, and —a?2 for +
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Or, since the second hyperbola holds the same relation to
the axis of y that the first does to the axis of #, we might
have deduced the equation of the y hyperbola at once by
changing @ to 4 and & to @,z to y and y to @ in the equation
of the & hyperbola.

The sides of the rectangle described on the axes are the
tangents to the four branches at the vertices.

ScH. 1.—In the z hyperbola we have (Art. 101, Cor.),

@—1Dat=0; .. d¢=a*+0
Therefore, denoting the eccentricity of the y hyperbola by ¢,
we have (=D R=at; .. Ye*=a*+
Hence ae = B*e?; or CF2 = CF™
(See Art. 102, Cor. 1.) Therefore the foci of the y hyper-
bola are at the same distance from the centre as the foci of
the z hyperbola, but the ecceniricity of the former has a
different value from that of the latter.

Scm. 2.—The equations of the diagonals CE and CG are
respectively \

y=-= and y=— L z,
@ a

If in the equations of the two conjugate hyperbolas we
make b = a, we have (Art. 102),

P2 = —a @

and (1) of the pfesent Art. becomes :
P — = (3)

These hyperbolas are called Equilateral hyperbolas,
from the equality of the axes, The equilateral hyperbola
corresponds to the case in which the ellipse becomes a circle.

(See Art. 71, Cor. 7.) The peculiarity in the figure of the

equilateral hyperbola is that fhe curve is identical in form
with its conjugate. From Art. 101, Cor., we have

P a®

@’

therefore, in the equilateral hyperbola we have ¢ = /2.

CONSTRUCTION OF CONJUGATE HYPERBOLAS

106. 7o construct a pair of conjugate hyperbolas
whose axes are Siven.

Draw the axes AA’ and BB’
at rigcht angles to each other;
construct the z hyperbola as in
Art. 99. Now take CF' = CF,
which equals AB (Art. 105,
Seh.), and F' i the focus of the
y hyperbola. Take BE = BF',
and B'H = B'F'; draw through
E and H a right live; it is one
of the focal tangents. Through
O’ draw a line perpendicular to BB'; this is the directrix
corresponding to the focus F' of the % hyperbola. The con-
struction is now the same as in Art. 99.

107. To find the equation of the tandent at any
point of an hyperbola.

To obtain this equation for the hyperbola, we change #
into — &® in equations (6), (7), and (11) of Art. 74, and get

ayy' — Bar' = — a*?, (1) ————
bz’ »
P (2)

Yy = W T — %
y = mx + Va*m? — B 3

Cor.—To find the point in
which the tangent cuts the axis
of 2, make y = 0 in (1), and
get

2
as .
.’E:-—-,:CT,

@ F A TAIFM N
which is the same value we '

B
found for the abscissa of the Fig. 88,
point at which the tangent cuts the axis of z in the ellipse.
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(Art. 74, Cor. 2). 'This value of @ has the same gign as 2';
hence, for the right-hand branch, it is always positive;
that is, the tangent to the right-hand branch cuts the axis
of z to the right of the centre.
By Art. 102, Cor. 2, we have F'C = F(Q = ae; therefore
we have .
F'T = ae E] = 514, (ez' + a),

a9

and FT — ae — f 2 (ex' — a).
Hence, F'T : FT :: e2' 4+« : e2' —a :: F'P : FP

(by Art. 103). That is, the tangent of an hyperbola cuts the
distance between the foci in segments proportional to the
adjacent focal radii of contact ; and therefore it bisects the
internal angle between these focal radii.

This principle affords a method of drawing a tangent to
an hyperbola at a given point.

Let P be the given point (see Fig. 88). Draw the focal
radii F'P and FP to the given point P. On the longer,
F'P, lay oft PD = PF, and join DF. Through P draw PT
perpendicular to DF'; PT will be the tangent required, for
it bisects the angle FPF".

2
The subtangent MT = CM — CT = 2" — % That is,

2% a2

the subtangent = 74,’

108. 7o find the equation of the normal at any
point of an hyperbola.
We change 22 into — #* in (2) of Art. 75, and get

, >y
g—y=—galE 1) (1)

which is the required equation of the normal at (z, y).
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f}OR. 1.—To find the point in which the normal cuts the
axis of #, we make y = 0 in (1), and get, after reduction,
a4+ b?

== #' = CN (Fig. 88) = e%' (Art. 105, Sch. 1).

The subnormal MN = CN — OM

_ @+, AR
= ) w— = - T
a a
Sor.—The expression ON = ¢%’ enables us, as in the
case of the ellipse (Art. 75, Sch.), to draw a normal at any

point P of the hyperbola, or one from any point N of the
transverse axis,

Cor. 2.—By Art. 102, Cor. 1,
FO =F0 = ae,
therefore we have
F'N = ¢ (ez' + a),
and FN = ¢ (e’ — a).
Hence, F'N : FN :: e2' +a : e —a :: F'P : FP
(I'&rt. 103). That is, the normal of an hyperbola cuts the
distance between the foci in segments proportional to the

adjacent focal radii of contact; and hence it bisects the
external angle between the focal radii of contact.

109. 7o find the locus of the intersection of the
tangent at any point with the perpendicular on it
Jfrom either focus.

C‘hanging the sign of 72 in (3) and (4) of Art. 76, and
adding the squares of the resulting equations together, we
get

@ + 1 = o},

for the required locus, which is thercfore a circle described
on the transverse axis.
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1. Find the equation of an hyperbola if the distance be-
“tween the foci = twice the transverse axis.
Ans. y*— 32% 4 3a®> = 0.

2. Find the equation of the hyperbola conjugate to the
hyperbola 922—4>=36, the axes, and the distance between
its foci.

Ahs { 4y? — 92* = 36; tmn-sverse = 6, conjugate = 4;
- | distance between foci = 24/13.

3. Find the equation of the hyperbola if the distance

between the foci = 6 and the transverse axis = 4. 4
Ans. bz* — 4y* = 20.

4. If the vertex of an hyperbola bisects the distance from
the centre to the focus, and the transverse axis = 10, find
the equation of the hyperbola. Amns. 32 — y*=T5.

5. If the distance from the focus of an hyperbola to the
nearest vertex is 1 and the eccentricity is 1§, find (1) the
equation of the hyperbola, and (2) its latus rectum.

Ans. (1) 1622 — 9y* =36 (2) 5%

6. Find the equations of the tangent and the normal to
the hyperbola 422 — 932 = 36 at the point of contact
(43, V/3). 5 i

Ans. 22— /by — 4 =0; 4y + 24/52 = 134/5.

7. Find the perpendicular distance from the origin to
the tangent at the end of the latus rectum of the equi-
lateral hyperbola #* — 4* = 9. Ans. /3.

8. Find the equations of the tangents to 92° — 4y* = 36
which are parallel to y =8z — 4.  Ans. y =3z £ 34/3.

9. Find the equations of the tangents to the equilateral

hyperbola at the positive end of the latus rectum.
Ans. gy = + 2v/2 — a.
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/N

.110. To find the co-ordinates of the point of contact
of @ tandent to an hyperbola from a fixed point.

Let (2, _z;’) be the required point of contact, and (27, %)
the ﬁxcd.pomt through which the tangent passes. :
Changing + #? to — 2 in the results of Art. 17, we get

S 8" F oy’ Vet — Bt ; o
B2 _ gry2 2

) Y F B Aoy — 2 I gt
y =" T2 : :
Br'? — a2y

These values indicate that from any fixed point fwo tan-
gents. can be drawn to an hyperbola, real, coincident, or
umaginary, according as

0" — B2 + o >, =, or < 0;

t.hla,? is, according as the point (2", y") is outside, on, or
inside the curve (Art. 102, Cor. 6).

Cor.—It is clear that if any two real tangents be drawn
from a given point to touch the same branch, their abscissas
of contact will have ke signs; and wnlike, if they touch
different branches. Hence, since the values of z in the
former case must have the same signs, we have, regarding
only their numerical values,

9 r D
Pz > ay' Vay'"? —pa"? 1 o

or squaring, transposing, and reducing, we have

o ol
Yy <'a~$,. {1)

But (Art. 105, Sch. 2) y = g x is the equation of the diag-

onal of the rectangle formed upon the axes of the hyperbola ;
therefore, the ordinate of the point from which two tangénts
can be drawn to the same branch of an hyperbola must be
less than the corresponding ordinate of the diagonal ; that
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is, the point itself must be gomewhere between the diagonals
(CE, CG) or (CH, CK) produced, and the adjacent branch
of the curve (Fig. 86). These diagonals produced are called
Asymptotes of the hyperbola, which we shall consider in
Art. 113. Hence, generally, the two tangents which car
be drawn to an hyperbola from any external point, will both
touch the same branch, if the external point be between that
branch and the adjacent portions of the asymptotes ; but if
the external point be so placed that we cannot pass from it
to the curve without crossing an asymptote, the two tan-
gents touch different branches of the curve.

111. Tangdents are drawn to an hyperbola from a
given external point; to find the equation of the
chord of contact (Art. 7). g

Change 2 into — 2* in (5) of Art. 78, and get
ayy — Wz’ = — &, (1)
which is the equation of the chord of contact.

112. Through any fived point a chord is drawn to
an hyperbola, and tangents to the hyperbola are
drawn at the extremities of the chord ; to find the
equation of the locus of the intersection of the tan-
gents, when the chord is turned about the fixed poind.

Change #® into — & in (3) of Art. 79, and get
ayy — Par' = — @, 1)
which is the equation required, and the locus isa right line.

Scm.—The line (1) is called the Polar of the point (', ¥')
with regard to the hyperbola a*?® — P2 = — ab?, and the
point (', y') is called the Pole of the line.

The statements in Art. 49 with respect to the circle may
all be applied to the hyperbola as they were to the parabola
(Art. 61), and the same conclusions arrived at that were
reached in Arts. 49 and 61, and referred to in the ellipse
(Art. 79, Sch.).
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113. An Asymptote of a curve is a line which continu-
ally appf‘oachm the curve, and becomes tangent to it only
at an mhu_it'e distance, while it passes within ubfinite disluuci: :
of the origin. We have called the diagonals pmdnéed of
the rectangle on the axes (Art. 110, Cor.), the asymplotes of
the hyperbola ; we now proceed to show that they are éz]ch.

t i :
(¢ h/fal:.lxs, _th__at_thcy meet the curve only at infinity.

v/ 114. To prove that the diagonals of the rectandgle

on bt e . :
i&h(_: axes are asymptotes to both the siven and
conjudate hyperbolas.

Produce the ordinate MP of an
point P in the given hyperbola, tg \\\.
meet the diagonal CR and the W el
conjugate hyperbola, in the point P
P’ and P" respectively. T}I])e dl.: //
tance of the point P from CR =
PP’ sin PP'C, and therefore it Fig. 89,
varies as PP’. Now, if CM, the
common abscissa = z, PM = y, P'M = ¢/, and P"M = "
we have, from the equations of the given hyperbola t)]rlc
diagonal, and the conjugate hyperbola, :

b
¥ =L@ —a), (1)

Y ’ ®)

__a,2

, l7
yl'? —— &-2(2;2_'_ aﬁ)_

Subtracting (1) from (2), we have
YV =9=8 o y—y=
Subtracting (2) from (3), we have

YR —y2=p or y'—y =
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If now we suppose the abscissa CM to inerease continually,
and the line MP to move parallel to itself, the ordinates y,
y', and y" will increase continuull?f, am_d tl.h?rcfore, f-rom (4)
and (), ¥ —y and y" — y' will diminish con,j:mua]]y;
and when z (CM), and therefore y, y', and y" bec_ome
infinitely great, ' — y and y"” — y' will become infinitely
small ; that is, as 2 increases indefinitely, the two curves
continnally approach the diagonal CR, and become tangent
toitand to each other only atinfinity. Hence the diagonals
are asymptotes to hoth curves.

Cor. 1.—The equations of CR and CR’are (Art. 105,
Sch, 2),
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and y=—_2 or
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therefore the equation '-Z—;-%: = 0 includes both asymp-

totes.
Cor. 2.—Let ACR = 6, ACR' = @'; then

b e
tan 8 = —, tan 6 =
@ ;

b -
e —— 8l = ——=
e+ & Va +
B : a .
foa i s 0 = — =
V& + B s Va2 + B

sin 0
gin ' =

115. 7o find the equation of any diameter. (Def.
of Art. 62.)
Change 8% into — 8 in (2) of Art. 80, and get

y:%;cotﬂ-x (1)

for the required equation.
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Since a? and #* are constant for any given hyperbola, and
0 is constant for any given system of parallel chords, (1) is
the equation of a right line passing through the origin, that
is, through the centre of the hyperbola. Hence, every
diameter of the hyperbola passes through the centre. By
giving to 6 a suitable value, (1) may be made to represent
any right line passing through the centre. Hence, every
right line that passes through the centre of an hyperbola
is a diameter; that is, it bisects some system of parallel
chords.

SoH.—To draw a diameter of an hyperbola, draw any two
parallel chords, and bisect them ; the line passing throngh
the points of bisection is a diameter. The intersection of
two diameters will be the centre of the hyperbola.

Cor. 1.—Let ' = the inclination of the diameter itself to
the transverse axis; then we have
tan ' = g;
z
which in (1) gives
tan 6 tan 6’ = g:,
as the relation between 6 and 6’ when they are the angles

which a system of parallel chords and their diameter re-
spectively make with the axis of z.

Cor. 2.—Writing the equation of the diameter in the
form
Yy = tan 0 .z, (1)
and eliminating y between this equation and that of the
given hyperbola, to find the abscissas of the points of inter-
section of (1) and the curve, we obtain

ab

z = e 2
i\/b*-ai’tauzﬁ : (?)




