236 EXAMPLES.

25. Find the species and situation of the following

oy (1) 2y — 2+ y—2=0;
(R) 1 — Ray + dax = 0; .
(3) ¥* + ax + ay + *=0; :
(4) (z + 2y)* + (y — 2)* = ba¥;
(:)) P —a*— Rax =0,

(1) The two right linesz +1=0, y —2=0;

(2) Parabola, vertex (}a, a);

(3) Parabola, vertex (— fa, — lga); _ e

(4) Ellipse, lengths of the_ major and minor axes
= 2a and «, respectively.

(5) Rectangular hyperbola, centre (a, 0).

Amns.

26. Transform the following equations to parallel axes
through the centres of the curves :
(1) 822 — bay + 692 + 11l — 17y + 13 =05
(2) @y + Bax — 3ay = 0; !
(8) 32 — Yoy — 6y* + 3z — 9y +5=0.
(1) 32% — bay + 6y* — 1 =0, centre (— 1, 1);
Ans.< (2) @y + 9a® = 0, centre (3a, — 3a); ;
(3) 8a® — Yy — 6y? + 5 =0, centre (— ¥5, — )

27. Transform 2a% 4 4zy + 3y + 32+ y + £ =0 to
parallel axes through the centre of the curve.
Ans. 2? + dzy + 342 — § = 0; centre (—1%, 1).

28. Transform 2z* 4 day + 3y* — 3 =0 to its axes.

Ans. $3a® + #9* = 1, the axis of # coinciding with the
minor axis of the ellipse. In this case we turned the old
axes through § tan™' —4; had we turned theml throug]{
— 3 tan™! 4, and taken the minus value of the radical for a
in Art. 143, and positive value for ¢, we would have f0}111d :
for the transformed equation, #%2® + $492 =1, the axis cf
x coineiding with the major axis of the curve. (See Re-
mark, Ex, 8.)

CHAPTER TX
HIGHER PLANE CURVES.,

147. Higher Plane Curves are those whose equations
are above the second degree, or which involye transcendental
functions (Art. 17). Tt has been shown that every equation
of the first degree between two variables represents a right
line, and that every equation of the second degree between
two variables represents a conic section ; it follows that all
other loci in a plane ave Aigher plane curves.

An Algebraic Curve is one whose rectilinear equation
contains only algebraic functions of the co-ordinates. Thus,
Yy=ax + b,z cos a+ysina =p are algebraic curves. A

. Transcendental Curve is one whose rectilinear equation

contains transcendental functions of one or more co-ordinates.
Thus, y = sin z, y = tan~! 2 are transcendental curves.

Many of the higher plane curves possess historical interest, from the labor be-
stowed on them by ancient mathematicians. We shall consider only a few of them.

THE CISSOID OF DIOGLES.

148. This curve was invented by Diocles, a Greek
geometer who lived about the sixth century of the Christian
era; the purpose of its invention was the solution of the..
problem of finding two mean proportionals. Tt may be
defined as follows: If pairs of equal ordinates be drawn to)
the diameter of a circle, and through one extremity of this
diameter and the point of intersection of one of the ordinates
with the circumference a line be drawn, the locus of the
intersection of this line and the equal ordinate, produced
if necessary, is the Cissoid of Diocles.

The curve is constructed as follows: Let AB (Fig. 103)
be the diameter of a circle; draw two equal ordinates MR
and M'R'; join AR/, cutting MR in P; then is P a point
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of the locus. In the same way, any number of points may
be found. In like manner, draw through A and R a line
cutting M'R’ produced in P'; P’ will be a
point of the locus. In the same way, points y
can be found below AB.

A 149, 7o find the equation of the Cis-
soid of Diocles.

I. The rectandgular equation.

Let AX and AY be the axes ; AB = 2a; -
and let (z, y) be any point P of the locus.
Then we have

AM ne>
AM : PM ::-AM : R'M!, AW g'M
e === tal e (14 -4 A
y_VQRa—2)z AR e g b
T R e S R N =35 MM = ra-=x
¢ ' V2 —z Fig. 103
Squaring and reducing, we have

¥ = g

e g p?

which is the required equation.

Sca.—Solving (1) for ¥, we have

e \/ a8
y== % —

which shows that, for every value of # < 2, y has two real
values, numerically equal, with contrary signs; that is, the
curve is symmetrical with respect to the axis of 2. When
z = 20, y = o; hence the branches are infinite in length,
and BD is an asymptote to them. When & > 2a, or nega-
tive, y is imaginary ; therefore the locus is limited by
2 =0and 2z = 2a.

Sir Isaac Newton has given the following elegant con-
struction of this curve by continuous motion: A right angle

CONCHOID OF NICOM EDES.

has the side GF of fixed length,
= AB, the point F moves along
the fixed line CI, which is perpen-
dicular to AB at its middle point,
while the side GL always slides
through the fixed point E such
that AE = AC; a pencil at the
middle point P of GF will describe
the Cissoid.

Fig.103a

II. The polar equation.

Let A be the pole, and AB the initial line; let (», 6) be
any point P in the locus (see Fig. 103). Then, since
AM = BM', we have AP = DR’; therefore we have
r = AD — AR’ = ABsecd — ABcosf
= 2a (sec 0 — cos 0) Sebr ARl
1— cos?é sin%4d
= 2a (-2 W)::a =L
’ “cos 0’ gt Y

-1’:1,@“9

coa b
that is, » = 2atan@sin @, which is the required equation.

ScH.—When 6 = 0, » = 0; when 6 = 45°, rr — a4/2:
that is, H is the point in the curve.  When 6 = 90°, 7 = o :
when 6 > 90° and < 270°, r is negative; while 6 increases
from 90° to 270° the negative end of the radins-vector
traces the branch AS’ and the branch AS a second time ;
while 6 increases from 270° to 360°, r is positive, and AS' is
traced a second time ; thus, the curve is traced twice by one
revolution of the radius-vector. :

THE CONCHOID OF NICOMEDES.*

150. This curve was invented by Nicomedes, who lived
about the second century of our era, and was, like the pre-
ceding, first formed for the purpose of solving the problem

* See Gregory’s Examples, p, 180,
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of finding two mean proportionals, or the duplication of the
cube; but it is more readily applicable to another problem
not less celebrated among the ancients, that of the trisection
of an angle. The curve may be defined as the locus of a
point in a line which slides on and revolves about a fixed
point, while the distance between the generating point and
a fixed right line on either side of it is constant.

The curve is constructed as follows: Let O be the fixed
point, XX’ the fixed right line, and AB the constant Qis-
tance on the revolving line between the generating point
and the fixed line. Draw through O any line, as OP; on
OP, above XX, lay off RP equal to AB; then will P be a
point of the locus. In like manner, if we take AB’, below
XX', as a constant distance, and lay off RP' equal to AB',
P’ will be a point of the locus.

151. 7o find the equation of the Conchoid of Nico-
medes.

I. The rectangular equation.

Let XX’ and Y be the axes; OA =p; AB=m; and
(@, y) any point the locus. Then we have, from the

similar triangles] and PMO,
) : DR :: PM : MO,

EQUATION OF CONCHOILD.

or, y:vm—y oyt p: o
squaring and reducing, we have

Y = (p + yP (m*— o),
which is the equation required. '

Scr.—Solving (1) for 2, we get
Ti=i=E Bk :; 3,\/?}1_2_9,5’

which shows that for every value of y, positive or negative,
and numerically < m, « has two real values, numerically
equal, with contrary signs; hence the curve has two
branches, one above and one below the axis of z, both being
symmetrical with respect to the axis of . When y dimin-
-shes numerically,  increases and becomes o0 when y = 0;
hence the two branches are infinite in length, and the axis
of z is an asymptote to them.

When m > p, for y= —m or — p, z = 0; but for y
between —m and — p, = has two values, numerically
equal, with contrary signs; hence the locus between these
two limits is an oval symmetrical with respect to the axis
of y. For y negative and less numerically than p, the values
of z increase till they become + « at y = 0.

When m < p, it is easily seen that there is no oval. The
continuous line represents the case when m > p, and the
broken line when m < p.

1I. The polar equation.
Let O be the pole, OA the initial line, and (», #) any
point P in the curve. Then we have
r = 0P = OR 4+ RP = QA sec 8 4+ m;

thatis, = p sec 8 4 m, which is the required equation. -

Scn.—When 6 =0, » = p + m, and B is located ; when

60 =90°% r =mo; when # =180°% »= — p 4 m, and B'is

located; when @ > 90° and < 270°, sec 0 is negative, and
11
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the lower branch is traced by the negative end of the radius
vector; while 6 increases from 270° to 360°, r is positive
and the branch H'B is traced.

The fixed point O (Fig. 104) is called the Pole, the fixed
right line X AX' s called the Directrix, and the constant
distance AB is the Parameter.

THE WITCH OF AGNESL*

152. This curve was invented by Donna Maria Agnesi, an
Italian lady, who lived in the eighteenth century. It may
be defined as the locus of the extremity of an ordinate of a
circle, produced till the produced ordinate is to the diameter
of the circle as the ordinate itself is to one of the segments
into which it di-
vides the diameter.

To construct the
Witch, let OB be
the diameter of the
circle; draw the
ordinate ED; find
the point P in ED Fig.105
produced so that

PE : OB ':: ED:

and P will be a point of the locus. In the same way, any
number of points may be found.

153. 7o find the equation of the Witch of Adnesi.

Let XX’ and YY' be the axes of co-ordinates, and (z, ¥)
any point P in the locus. = Call the diameter 2z; then we
have, from the definition,

x:2 2 VRa—y)y:y;

therefore, 2%y = 442 (2a—y), which is the required equation.

* See Gregory's Examples, p. 181,
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ScH.—When y =0, & = w0 ; when Y =2Ra, 2=0; for
every positive value of y between 0 and 2a, @ -has two real -
values, numerically equal, with contrary signs, showing that
the locus is symmetrical with respect to the axis of ¢, and is
embraced between y — 0 and 2@, and has the axis of z for
an asymptote.

THE LEMNISCATE OF BERNOULLI.*

. 164. Tlhis curve was invented by James Bernoulli, who
lived in the seventeenth century. It may be defined as the
locus of the intersection of a tangent to an equilateral
hyperbola with the perpendicular on it from the centre.

To find the equation of the Lemmniscate.

L. The rectangular equation.

Let (2/, ¥') be any
point Q of the hyper-
bola at which the tan-
gent isdrawn ; and let
2 and y be the current
co-ordinates of the
lines QP and OP.
The equations of the
hyperbola and the tan- / Fig.106
gent are respectively

r

Z'— 't = g
and az' — yy' = &,
therefore the equation of OP is

r

) i
y_ xrz’ or 37'__5

Multiplying (2) and (3) together, we get
a*r a?
B R = P ?:/,

* See Price’s Calenlus, Vol. I, p. 814,




AL 1%
244 EQUATION OF THE LEMNISCATE.

therefore, ay

which in (1) gives,
P @y A
T T YRR I = a’
@E+y) @+9)
or, @+ p=a@—y), &
which is the required equation.
On transforming to polar co-ordinates, (4) becomes

rt = a®r? (cos* 6 — sin?0),

Y4

or 12 — a® cos 20. (5)
3’

ScH.—When 6 = 0, »r = 4 «; if we confine our atten-
tion to the positive values of r, we see that as 8 111(-:"{:_;15(?3
from 0 to 45° 7 diminishes from @ to 0, '.‘111(‘1 AI_ 0 is
traced ; while 8 increases from 45° to 135°, 7 is imaginary ;
when 0 = 185°, » = 0; while 6 incrr.jnses‘ 'frmn 135° to
225°, r is real, and OA'O is traced ; W}?l](} 6 increases i::'t)ilé
225° to 315°, » is imaginary ; while # increases from -)II-’_J
to 360°, 7 is real, and OPA is traee_d. The curve therefore
consists of two ovals meeting at O; the tangents to the
ovals at O coincide with the asymptotes of the Oqu.f]atera.ll
hyperbola, and form angles of 45° with the axis of z
(Art. 133, Sch.).

ScH. 2.—Take two points, F and F’, on opposite sides of
; ; g . iy . p L
0, at the distance a4/} from it, and take any point P’ in
) -
the curve; then we have

il 1/ (VE— 2P + 9 (6)

FP = 1/(_{-:%1; + 2)2 + 92 ()

THE CYCLOID.

Multiply (6) and (?), and we have

FP' X PP’ = 4/ (av/i—o)+ 97 K /(a3 Laf 17

RN IITE e TR ---.— _4 H
=\t - e @p s 8 |
a? ; \ i, N
=g by (4) ; that is,

: a?
FP'xF'P!' = _.
2

Hence we may define the Lemniscate as a curve such
that the product of the distances of any point in it from
two fixed points, called the foci, is constant, and equal to
the square of half the distance between the foei. (See
Gregory’s Examples, p. 132.)

[Let the student find the equation of the curve from this
definition. ]

We may construct the curve, from this latter definition,
by points. Let F and F’ be the foci. With F as a centre,
and any convenient radius, as FP’, describe an arc; with
F" as a centre, and a third proportional to FP’ and F'0, as
F'P’, describe a second arc cutting the former at P’; then
will P’ be a point in the locus. In the same Way any num-
ber of points may be found.

THE CYCLOID.

155. The invention of this curve is usually ascribed to
Galileo; it is generated by the motion of a point in the
circumference of a circle which rolls along a fixed right
line. Thus, if the circle NP2 (Fig. 107) be rolled along
the line OX, any point P in the ccumference will describe
a cyeloid. The circle NPB is «lled the Generating
Circle or Generatrix. and the poiit P the Grenerating
Point. OK is called the Base, anc .is equal to the cir-
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H 'S K
Fig.107

cumference of the generating circle. HI, perpendicular
to the base at its centre, is the Axis, and is equal to the
diameter of the generating circle, and L is the Highest
Point of the cycloid.

T 156. To find the equation of the cycloid referred to
its buse and a perpendicular at its left hand vertex.

Let (z, y) be any point P in the cycloid OPLK, referred
to the axis OX and OY ; suppose that P has described the
arc OP, while the generatrix has rolled from O to N, then
ON = arc PN. Call the radius of the generatrix ». Then
we have

z = OM = ON — MN = arc PN — PD
r arc ab — A/ND x DB;
thatis, @ = rvers ¥ — /2y —gp; L )
which is the required equation of the eycloid, the arc ab
being taken in the circle whose radins = 1.

Sca.—When y is negative, 4/2ry — #* is imaginary;
therefore the curve lies only on the positive side of the
base; when y = 0, z = 0, 2rn, 4rr, ete.; hence there is
an infinite number of branches similar and equal to OLK,
which is also evident from the mode of generation of the
curve ; when y = 2r, z = r vers™ 2 = nr, 3nr, ete. For

hele, ¢5744
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any one value of y, = has an infinite number of values,
oM, OM/, ete.

It is frequently convenient to refer the cycloid to its
highest point as origin, and to its azis as the axis of 2.

T 157. Tofind the equation of the cycloid referred toits
highest point as its origin and to its axis as the axis

of a.

H

X
Fig.108

Let (z, y) be any point P in the locus referred to the
axes OX and OY ; then we have
= PF =PD + DF — PD + CH
= PD + AH — AC = PD + arcCPB — arc CP
= PD + arc PB = 4/CD x BD + vers—! BD;
that is,
y=r vers"j—f + V2rz — 2* (see Art. 156),
which is the required equation.

SoH—When 2 =0, y = 0; when z = 2, Y =rvers—2
= 7, 37r, ete.; when z is negative, y is imaginary; for
any one value of #,  has an infinite number of values.

After the conic sections there is no curve in geometry
which has more exercised the ingenuity of mpthematicians
than the cycloid ; and their labors have been rewarded by
the diccovery of a multitude of interesting properties,
important both in geometry and in dynamics. [See

Gregory’s Examples, p. 136.]
EE




SPIRAL OF ARCHIMEDES.

SPIRALS.

158. We shall conclude this chapter with a brief account
of spirals, many of which have been treated at length by
old geometers, A Spiral is the locus of a point revolving
about a fixed point, and constantly receding from it in
accordance with some law. A right line then meets the
curve in an infinity of points, and the curve is trans-
cendental.

A Spire is the portion of the spiral generated in one
revolution of the generating point.

The Measuring Circle is the circle whose radius is the
radius-vector at the end of the first revolution of the
generating point in the positive direction.

THE SPIRAL OF ARCHIMEDES.

159. This spiral was invented by Conon, but its prin-
cipal properties were discovered by the geometer \\'1]05.0
name it bears; it is the locus of a point revolving uni-
formly about a fixed point, and at the same time receding
uniformly from it.

To construct the spiral of Archimedes.

Let O be the fixed point

and OX the initial line; 3
with O as a centre and any
radius as OH, describe the
circumference HADG ;
divide this circumference
into any number of equal
parts; for example, eight.
On the radius OA lay off  Fig,109 =
Oz = 40H; on OB lay

oft 06 = $0H; on OC lay off Oc = § OH, ete. ; the curve

SPIRAL OF ARCHIMEDES. 249

}'ssing through these points, a, b, e, d, 6, f,0.H, 4. . p,
¢, efe., will be the spiral of Archimedes, since the radius-
vectors Oa, 08, ete., increase uniformly, while the variable
angle, estimated from OX, increases uniformly.

The circumference HADG is the measuring circle, O is
the pole, OabedefyH is the first spire, Hijklmnop is the
second spire, etc. The distance between any two consecu-
tive spires measured on the radins-vector is equal at all
points to OH, the radius of the measuring circle.

160. 7o find the equation of the spiral of Archi-
medes.

Let O be the pole (Fig. 109) and OX the initial line, and
let (7, 0) be any point P in the spiral; then we have, from
the definition, r = a6, as the required equation, when « is
the ratio of » to 6.

Otherwise, we have from the figure,

o OF: OH :: #: 2m:

or, calling the radius of the measuring circle &, we have

therefore

!
S : o i

or writing @ instead of 2’
m

o= an,

is the required equation.

When 6=0, »=0; when 8 =27, r—=a': when
0 = 4m, r = 2a' ; when 0 = 6m, r = 3a’, ete. The curve,
therefore, starts at the pole, and the radius-vector, which
is 0 at the beginning, becomes equal to OH (= «'), when
it has mude cne revolution; and this is the distance
between the points at which any radius-vector is cut by
two successive spires.
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THE RECIPROCAL OR HYPERBOLIC
SPIRAL.

161. This spiral may be defined as the locus of a point
revolving uniformly about a fixed point, and continually
approaching it so that the radius-vector varies inversely as
the variable angle.

To construct the Hyperbolic Spiral.

Let O be the pole and

OX the initial line. Draw
through O the lines Oa, 02,
O¢, ete., making equal
angles with each other.
Take a for a point of the 7 Fig. 110.
spiral; lay off 06 = $0a;
Oc = }0a, ete. ; the curve passing through the points a, &,
¢, d, ¢, f, g, I, ete., will be the hyperbolic spiral, since the
radius-vector, Oa, 08, etc., vary inversr:.ly as the variable
angle estimated from OA.

The equation of the hyperbolic spiral follows directly
from the definition, and is

a
r=g, Or rf = a.

When 8 = 0, » = w0 that is, the carve approaches the
initial line and touches it at infinity; when 6 = 2=,
r = Oh = a', which is the radius of the measuring circle ;

'

when 0 = 4w, r = %, ete.; when @ =w, r = 0; there-

fore, the curve continually approaches the pole as the
radius-vector revolves, and reaches it after an infinite
ot
8’ 1t 18
evident that the arc Aa of the circle deseribed with the
radius Oa to any point of the curve, is constant and equal
to a. [See Salmon’s Higher Plane Curves, p. 280. ]

number of revolutions. From the equation r =

THE CHORDEL.

THE LITUUS.

162. Another spiral worth mentioning is the Lituus,
which may be defined as the locus of a point revolving
uniformly about a fixed point, and continually approaching
it so that the radius-vector varies inversely as the square
root of the variable angle. Its equation therefore is

- a
6%

Scr.—These spirals belong to one family, included in
the general equation » = af”. When n = 1, we have

» = ab, which is the spiral of Archimedes. When

n= —1, we have r = g, which is the hyperbolic spiral.

When # = — §, we have r = 0% , Which is the Lituus.

THE CHORDEL.

162a. The Chordel is a plane curve, every point of
which terminates an arc which originates in a fixed line, is
described with a fixed point as a centre, and subtends a
given length the same number of times as a chord.

The fixed line is called the Directrix, the fixed point
the Focus, and the given length the Element.

A chordel in which the element is subtended 7 times as
a chord, whose directrix is a right line, and whose focus is
on the directrix, is called

A chordel of m elements, and rectilinear and focal
directrix.*

* This curve was invented by Mr. J. Bruen Miller; for an account of it see
Van Nostrand's Enginecring Magazine forMarch, 1880, pp. 206-209, which contains
Mr. Miller’s investigation of the chordel given geometrically, including the
construction of the curve and its application to the division of an angle into
n equal parts,
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To find its equation,

Let the focus O be the pole, and the directrix OX be the
initial line. Let (r, 6) be any point P of the curve, and

P

YANGE

Flg M0ia”

2¢ = an element AB = BC = etc. = EP, draw OH per-
dicular to EP. Then we have
HP
1 1 Lo S
sin HOP = op’
7]

n

~

or T = @ COSeC (

which 18 the equation required.

(]
Let # = 5 and ¢ = 1; then (1) becomes » = cosec (iﬁ)

Letting 6 = }m, m, §n, 2m, §m, 3m, Jm, 4m, §m, bm, suc-
cessively we get » = 6.39, 3.24, 2.20, 1.70, 1.41, 1.24, 1.12,
1.05, 1.01, and 1.00. Locating these values we have the
points b, ¢, d, e, 1, g, h, i, J. k3 wh(an‘ 8 =0, 7'1= w.
Now letting 0 continue to increase, becoming im, 67, and
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8o on to 10w, we get r = 1.01, 1.05, 1.12, and so on to
infinity, the values being the same as those given above,
when @ is increasing from 0 to 5, except the order is
inverted. Locating the second series of values we have the
curve represented by the dotted line, which is the continu-
ation of the part given in the full line, the two parts being
symmetrical wjth respect to the line OX. While 0 is
increasing from 107 to 20w, r is negative and a second
branch is traced by the negative end of the radius-vector,
the two branches being symmetrically equal.

The essential merits of Mr. Miller’s curve appear to be
its mechanical construction, affording a mechanical multi-
section of any angle; and its very general definition, which
will probably make the investigation of its properties
rather fruitful. But such investigation would be out of
place here.

THE LOGARITHMIC SPIRAL.,

163. This spiral was invented by Descartes, and is the
locus of a point so moving that the radius-vector increases
In a geometric, while the variable angle increases in an
arithmetic ratio. Its equation is therefore usually written

ri—

To construet the Logarithmic Spiral.

Suppose ¢ = 2, then » = 2¢; when 6 = b
which gives the point « on the initial line OX, Fig. II1.
When 6 =1, r =21 = 2; lay off the angle X06 =1 = arc
of 57°.3, and take Ob.— 2; & will be a point of the curve.
When 0 =2, r = 22 = 4; lay off XO¢c = 2 = arc of
114°.6, and take Oc = 4; ¢ will be a point of the curve.
The curve passing through a, 3, ¢, ete., will be the loga-
rithmic spiral.

When 6 = —1 = X00, r = 9 = 1; lay off
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X0b=—1=—57°3;
and take 08’ = 1; ¥
will be a point of the
curve, When 6=—2,
= 272 = }; lay off
Qeli === % =
— 114°.6, and take
O¢' = %; ¢ will be a
point of the curve;
and so on for any
number of points.
When 8=w,r=w,
hence the radius-vec- a/

tor will become infi- /
Fig. 11

nite when it has made
an infinite number of

revolutions, When # = — o, # = 0; and therefore the
spiral runs into its pole after an infinite number of revolu-
tions in the negative direction.

The present chapter is but a brief sketch of Higher
Plane Curves. The student who wishes to pursue the
subject further, is referred to Salmon’s Higher Plane
Curves, Gregory’s Examples, Price’s Infinitesimal Caleulus,
and Cramer’s Introduction to the Analysis of Curves.

X

EXAMPLES.

rOI. In Fig. 103 prove that M'R’ and AM' are two mean
proportionals between AM and M'P’; that is, prove that

AM : MR :: M'R': AM/,
and MR : AM' :: AM' : M'P';
456, AM MR AME s MEPE

MR'? = AM.AM' ; and the similar
As M'AR' and M'P'A give M'R’ : AM :: AM/ : M'P’; .~ ete.

2. In Fig. 103a find the equation of the locus of P.
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Let AB be the axis of z, A the origin, AB = 24, and (&, ¥) any point P of the locus.
Draw GH and PD perpendicular to AB, and GK perpendicular to CI.

Then GK =2 —a, EH = 22, KP = V%5 — 25
and GH = y — V2az —2*; from which we soon obtain

hence, the locus is a cissoid.

3. Find the edge of a cube whose volume shall be double
that of a given cube.*
In Fig. 108, take OC = AB, draw BC cutting the cissoid in Q, and draw QK L to
AB: then find QK*= 2AK3. Let a be the edge of any given cube, find b so that
AK : KQ ::a: b .. 0°=2p"
e ;
4. Find the edge of a cube whose volume is three times,
four times, or » times that of a given
cube,

5. Show that K8 = 2KB?; also that
AKS = 2]Ks,

6. Trisect the angle AOB by means
of the conchoid.

Through B draw BC 1 to 0B, and take BP = 20C.
With O as pole, BC as directrix, and BP as parameter,
construct a conchoid. Draw CD 1 to BC cutting the Flﬂ. ["%
conchoid in D, and join DO. Then DOB = JAOB. For,
bisect DH at K ; then OK = C0." ., ete.

* This is called the duplication of the cube,




