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PREFACE TO PART IIL

THE curved lines of arches are pleasing to the eye, and may
often be introduced with advantage in constructions. An arch
may furnish, under some circumstances, a very economical way
of spanning an opening; and arched ribs are employed in
other cases, at conspicuous locations, where beauty of design
is regarded, or where ample and uninterrupted space beneath a
roof is desired. Stone arches have been built for many centu-
ries; at the present time, wood, iron, and steel are also used as
materials. If the principles which enable one to ascertain the
forces acting in all parts of an arched structure are elearly
understood, designs of this type will be more common than
they now are; and it is with the desire to do what he can to-
ward shedding some light upon this subject, as well as to give
the ability to intelligently design an arch to those who are not
familiar with the higher mathematics, that the-author submits'
the following pages to the public.

Most persons experience difficulty in mastering the principles
which-govern the action of an arch, as they have hitherto been
presented. Even one who has successfully worked through
the mathematical theory, as he finds it in the text-books, may

sometimes lose sight of the actual meaning of each step in the
3




4 PREFACE TO PART IIIL

process ; so that there is a certain mystery about the applica-

tion of the formul® to a specific example, although one may
feel confident that the results are reliable. To many con-
structors a treatise on the arch, as usually written, is a sealed
book; and the whole subject is veiled in obscurity. Empirical

rules, copying of existing examples, and guesswork have been
the refuge of many. While such practice may answer for
masonry structures, where the factor of safety as regards
strength is very large, the introduction of iron skeleton struc-
tures, where the pieces occupy definite lines of force, and the
sharp rivalry for economical disposition of the material, render
a better practice desirable. It is hoped that the graphical
method developed in the following pages will enable the reader
to understand as clearly the effect of applied forces on an arch,
as it has, through the explanations of Parts I. and II., enabled
him to analyze trussed roofs and bridges. :
From the bending moment, direct thrust, and shear, here
obtained at successive sections of the arched rib, the stresses
in the chords or flanges, and bracing or web, are derived as if
the structure were a simple truss. In finding the resultant
stresses in the pieces, the method of Part I. will sometimes be
preferred to that of Part II. So far as possible, the formulae
of the text have been obtained by direct and easy ways; and,
while it has been convenient to arrive at some of the definite
‘results by the use of the calculus, such results have been
obtained from the diagrams, and can in all cases be verified by
the reader, for any specific example, by the most simple means.
After the subject is once mastered, the resulting formula
and applications will, naturally, alone be referred to in working
out designs: the author has therefore thought it best to place
the results, &c., in direct connection with the explanatory
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statements, and to have the analytical or mathematical demon-
strations follow in smaller type. One who simply desires
working-material may omit the matter printed in small type,
without losing any of the facts, but must then take some state-
ments for granted.

A distinctive notation for the figures, introduced in Parts L
and II., — capitals for structures and moment diagrams, small
letters for the shear diagrams, and numerals for the stress dia-
grams, — has been generally adhered to. While an acquaint-
ance with Parts I. and II. will aid the reader in understanding
more readily the graphical constructions here given, it has been
the aim of the author to enter sufficiently into detail to make
this part intelligible by itself: hence a few explanations are
repeated here.

It is believed that many things offered in these pages will be
new to most readers. The work is almost entirely the result of
independent investigation. A portion of the material was once
printed in the “ Engineering News,” but it has been entirely
revised since that time: over one-half of this part is now in
type for the first time. The device of increasing the breadth
of the parabolic rib, or the thickness of the flanges, from the
crown to the springing, while the depth remains constant, —
which device will be found in Rankine’s ¢ Civil Engineering,”
—enables the summation of ordinates to be made across the
span, as for a beam, rendering the treatment simple. On the
other hand, the depth and breadth of the circular rib are sup-
posed to be constant, and the summation is made along the
curve. Herein the treatment differs from that of some authors.
It is shown that the direct thrust on a right section is not equal
to the product of the horizontal thrust by the secant of the
inclination of the rib at the section to the horizon, as some
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writers assume, unless the equilibrium curve is paralle} to the

axis of the rib. Other points of difference in treatment and
result will be found by readers who are familiar with the litera-
ture on this subject. The discussion, in Chapter VIIL., of the
action of the wind on an arched roof, will, it is hoped, be found
timely and serviceable; the effect of change of temperature,
and the change of form under stress (Chapter XI1.), are often
ignored by writers; an example of a stone arch of considerable
magnitude is worked out in detail; the methods of stiffening
suspension bridges are discussed and compared: on some of
these points very little has heretofore been given.

C. E. G.

ANN ARBOR, MicH., July, 1879,
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ARCHES.

CHAPTER L

GENERAL PRINCIPLES.

1. Arches.— An arch may be considered to be any structure
which, under the action of vertical forces, exerts horizontal or
inclined forces against its supports or abutments. Such a defi-
nition will include not only the roof of two simple rafters, but.
also the suspension bridge; and we see no objection to so
including them. The case of two rafters we need not touch
upon : the suspension bridge only comes incidentally within the
scope of this part, until we take up the means of stiffening such
a structure under a moving and partial load.

2. Funicular Polygon applied to a Curved Rib. — Suppose
that a curved rib A C E B, Fig. 1, of any material which pos-
sesses stiffness, for instance iron, is attached by a pin, on which
it can turn freely, to each of the points of support A and B,
and has suspended from it certain known weights, represented
by W,, W,, &c., at known points. The weight of the curved
rib itself is not at present considered. The rib, if flexible, as a
cord or chain is flexible, will tend to assume the shape of the
funicular, ‘or equilibrium polygon, proper to these weights in
their respective positions. If we lay off the load line 2-1, to
any scale, space off on it the weights in succession, assume any
convenient point 0, draw radiating lines from that point to the

15




16 ARCHES.

points of division and to the extremities of the load line, and
then, starting from A, or any other point in the vertical through
that point of support, draw lines, successively parallel to the
lines radiating from 0, and limited by the verticals through the
weights, one such equilibrium polygon will be found.

This polygon was discussed in Part II., « Bridges,” § 2. By
moving the point 0 of the stress diagram, the place where the
equilibrium polygon strikes the vertical drawn through B will
be changed ; and, if 0 is horizontally opposite the point which
divides the load line into the two supporting forces, the poly-
gon, drawn from A as a point of beginning, will strike B. But
0 may move on a horizontal line, and H will then have any
value we please. H is therefore, at present, an unknown quan-
tity ; but we will suppose that A K I B is the desired equilib-
rium polygon for this given case, —an imaginary line, the
weights being attached to the arch.

3. Relation between Equilibrium Polygon and Bending
Moments. — If the rib is made of a rigid material, the tend-
ency to take a shape other than the one to which it was first
formed will cause a bending action or moment at different
points. Thus, between A and C the rib will flatten somewhat,
moving towards the straight line A C, and from C to B it will
become slightly more convex. At C, where the rib coineides
with the equilibrium polygon, there will be no tendency to
bend. The bending moments on'either side of a point where
the equilibrium polygon crosses the rib will therefore be of con-
trary kinds or signs. It is necessary to know the value of the
bending moments at all points, in order to so design the cross-
section of the rib that it shall be able to resist them. The
point C is not necessarily the crown of the arch : it happens to
come near it in our figure. If the arched rib is free to turn at
its supporting points, no bending moments can exist there ; if it
is jointed or hinged at any place, as, for example, the middle or
crown, no bending moment will be found there: the equilib-
rium polygon must therefore pass through all such points.
The rib may be so fastened at A and B that it cannot turn in a
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vertical plane ; and there will then be bending moments at those
points, as in the analogous case of a beam fixed at both ends,
except for such a distribution of the load as makes the equilib-
rium polygon coincide with the arch at its ends.

If the rib is hinged at three points, that is, at the ends and
middle, the equilibrium polygon is immediately fixed in position
by the necessity of passing through these three points, and the
problem of finding the stresses in the rib becomes very simple,
as will be seen later.

4. Value of Bending Moment. — Let us suppose, at first,
that the rib of Fig. 1 is jointed, and free to turn at its ends
only. The stress diagram, 01 2, and the imaginary equili‘brium
polygon, having been constructed, and the horizontal line H
from 0 drawn, it will be seen that this line will divide the load
line into two forces, the vertical components of the abutment
reactions, as provedin Part II., § 6. The arrows in the figure
denote these components; and we will call the vertical ones,
analogous to the supporting forces of a beam, P; and P,, as
marked. We have here the usual closed polygon of external
forces.

Let an imaginary vertical section be made at D F': from the
theorem of moments, as-equilibrium exists in this loaded arch,
the moments of all the external forces must balance around any
point, for instance the point E, where the plane of section cuts
the rib. If the sum of the moments around E equals zero, the
moments on one side of the plane of section must equal those
on the other; and, as E is in the section of the rib, these mo-
ments ¢an only neutralize one another through the moment of
resistance of the section : consequently, the sum of the moments
on either side must equal the bending moment at E. Then at
E, if P, and H are the rectangular components of the reaction
at B, and 2 W. L denotes the sum of the products of each
weight by its horizontal distance L from E, the bending moment
will be

M=P,.DB—ZW.L—H.DE. (1)

If the weights had been attached to the cord, or equilibrium
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polygon, we should have had, for moments on the right of and
about F,
P,.DB—XIW.L—H.DF. (2)

But a cord, being flexible, can resist no bending moment. As
this cord is the equilibrium polygon, there can be no tendency
to move or no bending moment at any point of it, and expres-
sion (2.) must reduce to zero, or
P;.DB—ZW.L=H.DF.
Substitute this value in (1.), and it becomes
M—=H.DF— H.DE — H.EF; 3.

which signifies that the bending moment at any point of an
arched rib, under any vertical load, is equal to the product
of the vertical ordinate from that point to the proper equilibrium
polygon, multiplied by H from the stress diagram.

5. Remarks. — Tt will be noticed that, to the left of s
DF — D E will change sign, becoming negative, and therefore
that the bending moment will change in direction, as stated
before. If the rib becomes straight and horizontal, the point E
moves up to D, and the bending moment becomes equal to
H.DF, which is its value for a beam supported at both ends.

The relation of the equilibrium polygon to the arch, or the
fact that the bending moment equals H.E F, as just proved,
may be readily explained in another way. Suppose that the
arch A’ B’ of Fig. 14 has a single weight placed upon it in a cer-
tain position: it will thrust horizontally against the abutments
an amount H. Let the equilibrium polygon for this weight,
and having the same H, be AF B. The ordinates to this
equilibrium polygon will be proportional to the bending mo-
ments due to the weight on a beam or truss of span A B;
the moments will all be positive, and equal to H.DF. But
the thrust H of the arch, which actually carries the weight,
acting in the line A’B’, will exert negative bending moments
equal to H.DE at all sections of the arch. The resultant
bending moment at any point, when the equilibrium polygon
is superimposed on the arch, will be the product of H by the
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difference of these two ordinates,or H(DF —DE) = H.EF,
at some places negative, and at others positive._ Thus we see
that, while we have for a given system of welgh.ts an equi-
librium polygon exactly similar to those treated in Part ?I.,
«Bridges,” the arch, by reason of its horizontal thrust which
causes negative bending moments as above, annuls or cuts oi.f a
portion of the area of the equilibrium polygon, and the portion
of the ordinate in excess or deficient at any point measures the
existing bending moment. It is only necessary that the ar<?h
and polygon should have the same value of H. 'The arch, in
its eapacity of frame, as it were, carries a portion, more Or
less, of the forces which would otherwise cause bending mo-
ments and shears. . g .

Such an arrangement of weights might be devised, continu-
ously distributed along the rib, that there would be no te.zn.de.ncy
to change the shape of the arch at any 'point. The equilibrium
polygon, becqmingj.ha"cu.rve for a continuous load, would then
coincide witlitthe ecentre line- of the arch, and we should have
what is termed an equilibrated rib. And, on the other hand, a
rib can be designed for any given distribution of load, (.)f such
a shape as to be in equilibrium. This fact can sometimes be
made use of when the load is definite, that is, not a moving
load, and we shall refer to it again in the sequel.

6. Condition to determine H; Invariability of Span. — It
may be noticed that in § 4 we used the term proper equilibrium
polygon. It has been stated that it is easy to draw, bet.wee.n
A and B, any number of funicular polygons, which have their
angles on the verticals let fall from the we‘ights, by simply
moving the point 0 horizontally in the stress:diagram, and thus
altering the value of H, the horizontal component of t;lu? ten-
sion. But the actual rib, under a given system of weights,
must have a fixed value of I, and definite bending moments
at all points: there is therefore but one funicular polq'g'on
which will be the proper equilibrium polygon. Some co.ndmon
must be imposed; and a sufficient one is, that, supposing the
points A and B to be fixed in position relatively to one
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another, the distance A B, or the span of the rib, shall be
unchanged. An arch between two unyielding abutments satis-
fies this condition. If the curve A C is flattened by the pull
upon it, or by the bending moments by which it is urged
towards the straight line A C, the point C will move a little
to the right, while the portion between C and B will become
slightly more convex. The movement of the point B, how-
ever, with reference to A, must be zero.

7. Formula for this Condition. — Consider the arched rib
as disconnected from its fixed points of support, but suspended
in the air by the forces which were but now the reactions at
those points. Equilibrium will still exist. The bending mo-
ment H.EF at E, from its effect on the particles af that
section, causing an elongation of the fibres on one side and a
compression of the fibres on the other side, produces what may
be called an exceedingly small angle in the rib, or, better, a
change of inclination, at E, moving the free end B, so far as
this change alone is concerned, a very small distance in a direc-
tion perpendicular to a straight line from E to B. The amount
of this displacement will depend upon the distance E B, and
upon the change of inclination at E, which change has just
been shown to depend upon the bending moment H.EF. The
amount, B R, of this movement, is greatly exaggerated in the
figure. But the horizontal component, or projection, B S, of
the displacement, which alone affects the horizontal distance
of B from A, will manifestly, from the proportionality of the
sides of the two right-angled triangles BR S and E B D, be to
BR as D Eis to E B, or B'S will be proportional to D E.

Perhaps this point may be brought out more plainly if stated
algebraically, thus: —

BR variesas EB. H. E F;

DE
BS=BR.-%¢
5B therefore,

EB.H.EF.DE
EB

B S varies as ,oras H.EF.DE.

Taking all the points in the rib into consideration, we see
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that the total horizontal displacement of B from A will be pro-
portional to H. S E F . D E, if 3 is the sign of summation of all
of the products EF . D E. ~ As the span A B is to be unchanged,
the above quantity must equal zero, and therefore, as H cannot
be zero, we have the desired condition reduced to

sEF.DE=0. (L)

8. The Equilibrium Polygon determinate. — As E F
changes sign when the equilibrium polygon crosses the rib,
as at C, we arrive at this result for a rib free to turn, or
hinged, at its ends, that the summation of the products E F.DE
for every point where the equilibrium polygon lies on one side of
the rib must equal the suinmation of the similar products for every
point where the polygon lies on the other side. Only one polygon,
manifestly, will satisfy this conditions for, if we draw a new
polygon between A and B, we immediately increase one set
of B F's and diminish the other. An equilibrium polygon may
first be drawn tentatively, ordinates be measured at intervals,
and the above products computed. It will then be readily seen
whether the polygon should be moved up or down; to move it,
change H, and draw again. We can deal thus with a rib of
any outline; but, for the regular forms of arches commonly in
use, we will show presently how to determine the exact equi-
librium polygon without experimental trial.

9. Deflection of the Rib.— The vertical component R S, of
the displacement B R, manifests itgelf, since B cannot move, by
a slight movement of the rib at E vertically, corresponding to
the deflection of a beam under transverse forces.

10. Another Value for Bending Moment.—It has been
shown that the bending moment at E equals H.EF. If we
draw from E a perpendicular, E N, to that side of the equilib-
rium polygon which passes through F, the side being prolonged
if necessary, we shall form a right-angled triangle, similar to
one formed in the stress diagram by H, the line parallel to the
side of the polygon, and the vertical line. Thus, in Fig. 1,
the triangle E F N will be similar to 025, and we may write
the proportion
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0-2:0-5=EF:EN;
or, if T denotes the tension 0-2 in the part of the cord which
passes though F, we get, upon multiplying extremes and means,

H.EF=T.EN; (1)

so that the bending moment at each point is also equal to the
product of the tension in the cord by the perpendicular let fall
on the cord from the given point; and this is the measure of a
moment, as shown in mechanics. The discussion of the bend-
ing moment might have been approached in this way.

11. Combined Effect of Bending Moment and Direct
Force.—If a force T acts in the line A K, which, when we con-
sider the curved rib, is an imaginary line, its moment with
respect to the rib at E is, then, T.EN. Now, from mechanies,
if we analyze the effect of a force T, Fig. 2, at any distance lat-
erally from a point E, we may apply two equal and opposite
forces, +T and —T, at this point, which is here the middle of
the rib, or what would be, for flexure only, the neutral axis,
without destroying the equilibrium. Hence we have at B the
direct force 4-T, producing tension, and the couple T.E N,
producing flexure. The enlarged sketches will represent the
condition of the rib. The small arrows at E’ denote the mag-
nitude or intensities of the stresses which form the moment of
resistance to balance the bending moment, these intensities
being taken as uniformly varying, a supposition which is satis-
fied within the elastic limit; at E” are shown the stresses on
the particles of the section from the direct force ; and the com-
bination of the moment and force is represented at B, it being
understood that these several views represent one and the same
section E.

The point of no stress, or the position of the neutral axis, is
seen to be shifted from the middle of the section at E’ to one
side at E™; and it will disappear altogether when the arm of
the couple or moment becomes sufficiently small, so that the
entire section may be under one kind of stress of varying in-
tensity. If we know the form of cross-section of the rib, we
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can tell from the location of the equilibrium. polygon, by sim-
ple inspection, where we shall find both tension and compres-
sion, and where only one kind of stress. This matter will be
d upon later: §§ 106-108. '
tOli(f‘Z].leRefersal of Pbignre; Movement of Rib from Equilib-
rium Polygon.— When an arch is under analysis, the figures
thus far given will be inverted. Imagine them to be 0. All
of the forces will then be reversed. The polygon. which was
under tension will be compressed, and its sides will rgp}'esent
struts. It will be in unstable equilibrium, and its relation to
vertical forces is not, perhaps, so readily apprehended, b:y one
not acquainted with this subject, as is that of the fumcul.ar
polygon. For this reason it was thought pest to take an in-
verted arch first. Hereafter the arches will be drawln aboYe
the springing line ; H becomes the %orizontal thrust of the rib
ainst its abutments.

agThe curved rib, between the points A and C, Fig. 1, so long
as there is tension along the straight line A C, tends to move
towards that line, just as the cord, if drawn towards tl‘le arcl.l,
returns to its former position; but as soon as the figure is
inverted, and C is forced by eompression towards A,-the arc.h
tends to move away from the equilibrium polygon. . Th1§ fact is
true of all points of the rib, and, being borne in mind, “.'111
enable one to tell at a glance the kind of moment at each point
of the rib. All the bending moments are therefore reversed.
Those bending moments which tend to make the 'fu:eh flatter,
or of less curvature, at any point, are called posm\./e; those
which tend to make it more convex are called negatlve.

It may aid in fixing the ideas, to take a pieFe of small stegi
wire, bend it into the arc of a circle, and, placing the two enc
in two notches upon a board, notice the change of Sbape aris-
ing from a pressure or load imposed on any portion. The
movement of the wire will indicate, in a genere'tl way, where
the equilibrium curve lies in reference to the rib. .

13. Equilibrium Polygon for a Single Load..—It is now
readily seen that the equilibrium polygon for a single, concen-
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trated load on an arch is composed of two straight lines which
meet on the vertical drawn through the point where the load
is imposed. In the case just treated, these lines will start from
the two springing points of the arch. The only quantity need-
ful to fix their position will be the distance of their point of
interseetion vertically from the rib; and the single condition
of (1.) § 7, that TEF.D E = 0, will determine the unknown
quantity. It will be easier to find the effect of a single load
at-successive points on the arch, and to combine these effects
for any possible arrangements and intensities of load, than to
treat at once several loads. We shall pursue this method.

14. Direct Force and Shear at a Right Section. — Since
an arched rib is often composed of two flanges, and a web or
connecting bracing, similar to a girder or truss, we desire, after
we have found the bending moments at all points, to find that
portion of the vertical foree or the shear at each section which
must be resisted by the web members. Shear was explained
in Part I1., « Bridges,” § 4. In a horizontal beam, carried on
two supports, we should have, in Fig. 1, P, for the supporting
force, and sheav on the right of any section between B and W3
P, — W,, or (1-5) — (8-1), for the shear anywhere between
W, and W5 P, — W, — W, or (3-5) — (4-8), that is — (5-4),
between W, and W;; and so on, subtracting each weight from
the previous shear or resultant. But in a beam, or a truss with
horizontal chords, the other forces, those which oppose the
bending moment, are horizontal : here they are not. Supposing
the rib to be inverted, the direct thrust, being in the direction
of a tangent at the centre line of the rib, has a vertieal com-
ponent which affects the amount of shear to be resisted by the
web. In short, the inclined flanges or chords act as braces ; and
we have, at any scction, these chords as well as the web mem-
bers, among which to distribute the shearing force. The
action corresponds with that of the bow in a bowstring girder.

It is not probable that the thrust in the side of the equilib-
rium polygon will be parallel to the tangent to the curve of
the centre line of the rib at a particular section, but this thrust

\Q_
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will be the resultant force at the section. It may then prop-
erly be resolved into two rectangular components, one perpen-
dicular to the section, representing the direct force, and the
other parallel to the plane of the section, representing the
shear. The direct stress, combined with the tension and com-
pression due to bending moment, will be resisted by the flanges
or chords, and the shear by the web members, if the rib is so
constructed. If the rib is of solid section, like a beam, the
separate consideration of shear is generally unnecessary. It
will at once be seen that the direct stress at any point of the
rib is obtained by projecting the force in that side of the
equilibrium polygon which passes near the point upon th.e tan-
gent to the rib. Thus; in Fig. 1, 0-3 is the tensile force in the
side I G of the equilibrium polygon, and 0-6 is drawn parallel
to the tangent at U: if a perpendicular were drawn from 3
upon 0-6 prolonged, the distance from 0 to the foot qf the
perpendicular would be the direct stress, and the perpendicular
itself would be the shear on a right section at U. Or, again,
if 0-2 is the force in A K, and 0-T is parallel to the tangent at
Q, a perpendicular from 2 on 0-7 will cut off the direct stress,
and be itself the shear at Q.

15. Sign of Shear; Maximum Bending Moment at Point
of Zero Shear.— The above points may be made more clear,
if necessary, by reference to the sketch above and on the left
of Fig. 8. Let A C represent a portion of an arch, and A R’
a portion of the equilibrium polygon which exerts a thrust R
at A. The components of the abutment reaction will be H,
the horizontal thrust, and P,, the vertical force. But R may
also be decomposed, on a right section of the rib near A, into
T direct thrust and F shear at the section. The little sketch
adjoining shows, that, as these components act on the left of
the section, we must have the opposite shear on the right of the
section, giving what we have been accustomed to call nega-
tive shear (see Part IL, «Bridges™). When, at any right
section, a line parallel to the side of the equilibrium polygon
lies above the tangent to the rib, the forces being taken on the

- 30/ -
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left of the section, as is the case at C, where T' and F’ are the
components of R/, the shear will be positive. Where the side
of the equilibrium polygon is parallel to the tangent to the
rib, as for instance near d, at that point there will be no shear,
and the shear will be of opposite signs on each side of such
point. The direct stress there will be H multiplied by the
secant of the inclination of the tangent to the horizon.

As the maximum ordinate between the side of the equilib-
rium polygon and the arch oceurs where the side of the polygon
1s parallel to the rib, the maximum bending moments in the
arch, as in a beam or truss, are found at points of no shear.

16. Treatment of Arch with Fixed Ends requires Three
Conditions. —If the arched rib is fixed in direction at the
ends (in place of being free to turn as previously supposed),
by being firmly bolted to the abutments, or by having square
ends accurately bedded upon the skewbacks, a bending mo-
ment will generally exist at the points of support when the
arch is loaded. By taking the piece of easily flexible wire
before mentioned, clamping the ends firmly, so as to fix the
wire in the position of an arch, and then applying a load or
the pressure of the finger, one can easily verify this statement
for himself; and he will see that, for many positions of the
load, the bending moment at one abutment is of the opposite
kind to that at the other. The points at which the equilibrium
polygon begins and ends will no longer be A and B of Fig. 1,
and some new conditions must be imposed in order to deter-
mine these points.

Consider the effect of a single load upon the arched rib A G B
of Fig. 8, which rib is fixed in direction at its ends. The equi-
librium polygon will be two straight lines, such as IN and N L
and, as there may be bending at both points of support, it will

be necessary to find the magnitudes of A I and B L, as well as
of N G, three unknown quantities. Three conditions must
therefore be satisfied. Such writers as, in treating the arch
either graphically or mathematically, require but two ‘condi-
tions to be fulfilled for an arch with fixed ends, err in their
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assumptions, and hence in their results. If two conditi‘onf inl)y
are imposed, where three are necessary, many polygons can be
drawn, and the problem is left undetermined. :

17. First Condition. — One condition which must be satlsﬁeci
is plainly the one already used, §§ 6 and T, that the change o
span A B shall equal zero, or that

s EF.DE=0.

18. Second Condition: Change of Inclin:at:xon-be?:ween
Abutments equals Zero.— As the change of mclm:‘ztwn b.e—
tween any two contiguous points is directly prol?ortlonal, in
direction and magnitude, to the bending moment ('to‘r the elon-
gation and compression of the fibres on the.two sides, uppe:]:
and lower, of the rib, result from thi§ be'ndn.lg momel.m, an
cause whatever change of direction or inclination the 1(‘;1) m:;y
take on), and as the bending moment has been provs : t(i'n :-
proportional simply to the ordinate E F, th.e change{ (} ‘ inc tlhat
tion at any point is proportio]nal to th;’, ordinate E F from ‘

i he rib to the equilibrium pelygon. Y
po?lieof‘e:clleer must disti?lguish between tl}e c'hzm'ge of m}fhlﬁ;
tion produced by flexure, and the original mchnatlon. of t} e 1%b
to the horizon at each point due to the eurve to which t .101 3
is constructed. If an arch is loaded, it assumes a form slightly
different from its shape when unloaded. The :mgle', zxt-f :11}11y
particular point, between the two tangents to the curve of & (;
rib. before and after it is loaded, is the change of inclination a
th;ttfxgzlilxll; from A, Fig. 3, the total change OF inclingtion at X
will be prbporl-ional to the sum of all the 01-L1111:at;es 1.>et.wef311"
and C. On the other side of C, where the st.rzught_: hue‘ clobsss
the rib, the bending moment being of thff opposm'e klud,dt.e
changes of inclination will be iu‘ the opposite du'ecmgn, an t, l1)1:;
any summation of ordinates, for instance from A to s ml‘x.s i
subtracted. Then, as both A and B are fixed in their ougm]z;
directions, if we sum up all of the ordinates E F, fr'om A to (i

the total change of inclination between abutments is zero, an
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this sum must be zero. Therefore the second condition to be
realized is that
2EF=0;

or that the sum of all the ordinates between the arch and the equi-
librium polygon on the inside of the arch must equal the similar
sum outside.

19. Third Condition: Deflection between Abutments
equals Zero. — Fig. 3 shows that, since the displacement B R
of B, relatively to the point E, in case B could move, has been
proved, by § 7, to be proportional to H.E F . E B, the vertical
component of this displacement varies as H. E F .D B; for, by
a similar proportion to the one used in that section,

SRFHROL Ahbretdre

EB
EB.H.EF.DB
EB

If the products E F . D B should be summed up for all points
from A to Q, for example, we should get a quantity proportional
to the vertical displacement of Q, arising from the separate
minute displacements between A and Q. If we pass beyond C,
we have products of an opposite sign; and it then appears, that,
since the ends at A and B are fixed both in position and direc-
tion, the sum of all the products between A and B must equal
zero, or, since H cannot equal zero,

SEF.DB=0. (1)

S R varies as ,oras H. EF.DB.

Therefore the third and last condition is, that the sum of the
products of each ordinate, between the arch and the equilibrium
polygon on the inside of the arch, by its distance from one spring-
ing point, must equal the similar sum on the outside. It is imma-
terial which springing is chosen, but all the D B’s must be
measured to the same abutment.

20. This Condition not applicable to Hinged Rib.— It
may be expedient to dwell upon this equation a little longer;
for the question will apparently arise, why this condition is not
also properly applicable to an arch which is jointed or hinged at
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the ends. Let a tangent A K be drawn to the rib at the point
A, and a vertical line be dropped from it to the point Q. If
the arch is now bent at the point E’, by a bending moment
which is proportional to E’F, the point Q is moved a distance
proportional to E'F multiplied by the distance from E’to Q3
but the distance which Q moves in the vertical line Q K will be
proportional to E’ F multiplied by the horizontal projection of
E’ Q, or D T, and similarly for moments at all other points be-
tween A and Q. As the tangent at A is fixed in direction in
this case, the movement of Q away from the extremity of K Q,
or its movement in relation to the tangent at A, will be propor-
tional to the summation of the E F’s multiplied by the D T’s;
and as the abutment B is fixed, the distance of B from a tan-
gent at A must be unchanged by any load, or its displacement
must be zero, as above. In the case of the rib hinged at the
ends, while the above area moments give the deflection from
the tangent at A, this tangent is not fixed, but changes in
direction upon the imposition of a load, and this condition can-
not be applied. If, however, one should treat an arch which
was fixed at A and hinged at B, this condition would be neces-
sary, and all the distances D B would be measured to the hinged
end ; while the second condition would not apply, and would
not be needed.

This third condition was first applied to the determination of
the bending moments in continuous bridges and pivot draw
spans, in the first edition of Part IL of this work.

91. Remarks: Abutment Reactions; Shear, &c.—The
arch of Fig. 8 is cut by the equilibrium polygon in three places,
and it may be cut in four points, giving as many places of con-
traflexure. The areas on opposite sides of the rib represent
bending moments of opposite kinds, and of which kind is readily
known if one remembers that the arch under thrust always
moves from the equilibrium polygon. The amount of the
weight, not being contained in any of the equations of condi-
tion, does not affect the diagram; for H is constant for all
points of the arch for any given vertical load, and, not being
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equal to zero, is thrown out of the equations. But the weight
W does affect the value of H.

If 1-2 represents W in the stress diagram of Fig. 3, and 1-0
and 2-0 are drawn parallel to NI and N L, 0-8 drawn horizon-
tally will determine the horizontal thrust H, while the load-line
will be divided at 8 into the two vertical components P, and P,
of the reactions as marked. These vertical forces are not the
same as would be obtained for the case previously considered,
nor for a beam only supported at the ends. Such forces would
be equal to the divisions of 1-2 made by a line drawn through
0, parallel to a line from I to L. If we notice the arrows drawn
at the abutment A, we see that, supposing P, were at first the
fraction of W due to the position of G, or ﬁ_lé W, we have also
at A, besides the horizontal thrust H, a couple H . A I. There
is another couple at the other abutment, which may be of the
same or opposite kind ; their algebraic sum can only be balanced
by vertical forces at the two abutments acting with a lever arm
of the span; and these vertical forces must be added to one
reaction, and subtracted from the other, bringing P, and P, to
the amounts found by the stress diagram. The effect of the
couple is the same as if P; had been calculated for the point
where NI would meet the horizontal line. This is another
example of the principle in mechanics cited in § 11.

The remarks on shear in §§ 14, 15, apply equally well here.
The direct compression in the rib at any point is obtained, as
before, by drawing a line through 0 parallel to the tangent to
the rib at the point in question, and dropping a perpendicular
upon it from the extremity of the line which represents the
stress in the adjacent side of the equilibrium polygon. Thus
the compression at E will be the distance from 0 along 0—4 pro-
duced to the foot of a perpendicular from 2. Recalling the
three conditions just stated, it will be evident, that, while it will
be possible to adjust the two lines of the equilibrium polygon to
their proper position by successive trials, it will not, as in the
former case, be easy. The three ordinates, AI, GN, and BL,

ARCHES. 31

can, however, be computed quite readily, and the remainder of
the process is very simple. The statements so far made apply to
a structure of any outline, so long as it acts as an arch, although
some modification will be called for when the cross-section and
the depth vary very much, or when what is known as the mo-
ment of inertia is not practically constant; but, for forms other
than regular curves, the application of these conditions must
probably be made by trial.

21a. Shear at a Vertical Section.—The relation of the
equilibrium polygon to the arch which was pointed out in § 5,
Fig. 14, shows how the shear at any vertical section of a loaded
rib is affected by the curvature of the arch. In the same way
that the ordinates of the rib may be superimposed on those of the
triangle which represents the equilibrium polygon for a single
load, the two shear diagrams may be placed on one another. One
will have the form of aimnl, Fig. 8, conforming to the load
which gives the curve of Fig. 14, and found from the amount of
vertical reaction which, combined with I, will give a direet thrust
at the springing ; the other will resemble adefgl, Fig. 8, the
usual shear diagram for a single load, which load produces the
triangle of Fig. 14. The flanges of the arch take up at each point
an amonnt equal to the ordinates from a7 to in, and the web or
bracing carries the remainder, which will be positive at some
points and negative at others, as marked in the Figure. Thus
we see that, through the direct thrust, the arch is relieved of a
portion of the truss stresses due to both bending moment and
shear.




CHAPTER Il
ARCH HINGED AT THREE POINTS.

¥ 99. Three-hinged Arch.— Before taking up for treatment
any arches of special curves, we will notice the simple case of
a rib, of any form, hinged at both ends and the middle, or, as it
is sometimes called, the “three-hinged arch.” The three hinges
or joints may be located anywhere, and two of them may be
placed near together at one abutment, reducing the portion of
arch between them to a short link or strut, which necessarily
lies in the direction of the thrust at that abutment. For the
ribs of this chapter it has been stated that the equilibrium
polygon or curve is at once definitely located. If a single load
is placed at K, on the arch A D B of Fig. 4, hinged at A, D,and
B, one of the two straight lines composing the polygon must,
starting from A, pass through D, while the other, starting from
B, must meet the former on the vertical line drawn through K,
as required. by the principle of the funicular polygon: A C B,
therefore, is the polygon. If 2-1 represents the weight at K,
and 2-0 and 1-0 are drawn parallel to C B and A C, 0-3, drawn
horizontally, will give the horizontal thrust, while 1-3 and '8-2
will be the vertical components of the reactions at A and B.
Let it be remembered that the total reaction of the abutment
at A is, and is in the direction of, 1-0, although it is often con-
venient to decompose it into P, and H.

A load wvertically below E will, similarly, have for its equi-

librium polygon A E B. For different positions of the weight
32
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between D and B, all of the vertices of the polygons will be
found on the straight line D L, and the portion A D does not
change for any movement of the weight on the right half of the
arch. A weight on the left half will simply reverse the dia-
gram. The dotted lines show the equilibrium polygons for a
weight at such successive points as divide the half-span into
five equal horizontal parts, and the corresponding changes in
the value of H will be seen in the stress diagram on the left.
93. Formula for H.—If F D, the height or rise of the arch,
is denoted by %, the half-span A F, =F B, by ¢, and the hori-
zontal distance F G, from the weight to the middle of the span,
by b, we shall have A G =c¢--5b, and GB=¢—b. From the
similarity of triangles A D F and 01 8, we may write,
30:3-1=c:k or H:P=c:F
By the usual rule,

- _e—b
— W'
P 2¢ ;

therefore
c—b
'+ e L

The quantity ¢ — b is to be understood to mean the horizontal
distance from the weight to the nearer abutment. H is seen to.
decrease regularly as the weight moves from the middle of the
span.

24. Stone Arches.— In the treatment of stone arches it has
often been assumed by writers that the equilibrium curve passed
through either the middle of the depth of the keystone or some
other arbitrary point within the middle third of its depth; and a
similar assumption would then be made for the springing-points.
Such a treatment immediately reduces the stone arch to this
case, and the equilibrium curve can at once be drawn. As such
an_assumption does not seem to be warranted, it is not thought
expedient to go into the case of the stone arch until later
(Chap. IX.); but the reader who desires to look up such a
mode of handling the problem is referred to a paper by William
Bell, in the Transactions of the Institute of Civil Engineers of
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Great Britain, vol. xxxiii., reprinted in Van Nostrand’s * Engi-
neering Magazine,” vol. viii., March to May, 1873.

25. BExample.— We will, as an example, show how to draw
an equilibrium-curye for an areh which is loaded uniformly
along its 1ib. Such a distribution will conform quite well to
that of the steady load on an arched roof. . For definiteness, let
the pointed arch of Fig. 5 be of 80 feet span, 40 feet rise, the
two arcs having a radius of 60 feet, and let it be loaded with
500 pounds per foot of the rib. We may, if we please, divide
the rib into a convenient number of equal portions, which
divisions will give us a number of equal weights to be laid off
on the load line. Otherwise we may space off a number of
equal horizontal distances. = In either case, the load of each
space will be considered as concentrated at its centre of gravity;
and, if the spaces are small enough, the centre of gravity may,
without sensible error, be taken as coinciding with the middle
of each space. For the sake of reducing the number of lines,
0 as to avoid confusion in a small figure, we have divided the
half-span into four parts, of ten feet each, measured horizon-
tally; and their centres of gravity will be assumed to be at five
feet, fifteen feet, &c., from the point of support. Draw verti-
cals through these centres of gravity, D, E, F, and G.

To find the weight on each division: The lengths of the
several portions of arc may, with sufficient exactness, be con-
sidered the same as the lengths of their chords, which chords
are perpendicular to the radii which pass through D, E, &e.
If, then, the load on ten feet is 5,000 1bs., draw @& horizontally
and equal, by any scale, to this amount ; then will &g, b1, be,
and b d, drawn parallel to the respective chords, give the amount
of load on each division, at the successive points G, F, E, &e.
Upon scaling these amounts we will lay them off upon a verti-
cal line, from 1 to 5. In order to cause the equilibrium poly-
gon to separate from the rib sufficiently to be easily seen in this
small figure, we have taken the liberty of doubling the load on
D, thus making it 4-6, in place of 4-5. The loads will there-
fore be, successively, about 5,400 lbs., 5,900 lbs., 7,000 1bs., and
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2 % 10,000 1bs., or 20,000 1bs., from G to D, and from 1 to 6.
e—2b

Since H = = = W, we have for its value

35 X 5,400 4 25 X 5,900 5 X 7,00 5 X 20,
FH DX D, -+ 25 X 5 ;;loxt_ )0 45 X 0000:6,7691bs.

If the given load were unsymmetrical with regard to a verti-
cal through C, it would be necessary to calculate the two verti-
cal components of the reactions at A and B, or P, and P, the
reaction at B being laid off from that end of the load line from
which was measured the load nearest to B, and then to draw a
horizontal line from the point of division between P; and P,, on
which to lay off the value of H. But, if both sides of the roof
are loaded alike, half a diagram and half an equilibrium poly-
gon will be-sufficient. The load on the half-arch being 1-6,
6-1 will be the vertical component of the reaction at B, and H
will be laid off in the direction 1-0. Since we have caleunlated
H for only one-half of the entire load, the above quantity must
be doubled, and the total horizontal thrust will be 13,538 lbs.,
— 1-0. The reaction at B is therefore 6-0.

Nothing remains but to draw, first a line from B to the verti-
cal through D, parallel to 6-0, then one, parallel to 4-0, from
the end of the last line to the vertical through E, and so on,
the last line, parallel to 1-0, passing through the hinge at C, as
required. The polygon on the side C A will be exactly similar.
It is well to have the points of division quite numerous. The
maximum ordinate between the rib and the equilibrium pelygon,
multiplied by H, gives the maximum bending moment.

26. Caution.— As this is the first example, it may be well to
pause here, and renew the caution to the draughtsman to lay off
the polygon of external forces in the order in which the forces
are found in going round the arch or truss; otherwise he will
fail to make his equilibrium polygon close on the desired point.
Thus, beginning at G, he should have the weights at G, F, E,
&e., ‘or 1-2, 2-3, 34, &c., plotted, one after the other, down the
vertical load line in the direction of their action, until the point
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B is reached, for which he draws 6-0, from 6 to 0. Then the
point A gives a similar line from 0, slanting upwards toward
the right; and the remaining loads on the left half of the arch
come down a vertical line, and eclose on 1, the starting-point.
The decomposition of 6-0 into 6-1 and 1-0 does not alter the
case. ~If 'we had gone round the arch in the opposite direction,
this stress diagram would have been reversed, or turned 180°.

97. Relation between Equilibrium Polygon and Curve.
— The true equilibrium curve, for the load uniformly distrib-
uted along the rib, is a curve which will be tangent to the sides
of the funicular or equilibrium polygon just drawn. The
closer together the points D, E, &ec., are taken, the nearer the
two will come together. If the points at which the loads are
concentrated divide the span into equal portions, that is, if the
end distances are the same as the others, so that the portions of
load near B and C are concentrated on those points, or, even
with unequal spacing, when the load between each two assumed
points is carried by those points as required by the principle of
the lever, the true equilibrium curve will pass through the ver-
tices of the equilibrium polygon. Such a distribution of load
is made in roofs and bridge trusses, when a half panel weight
is thrown on each abutment. Compare Part IL, ¢ Bridges,”
§ 58.

The curve assumed by a rope or chain, of uniform weight per
foot, when suspended between two points, is called a ecatenary.
Since the equilibrium curve in Fig. 5, if we had not placed the
extra weight on D, would have come quite near to the rib, it
would have been a close approximation to a catenary. ~As we
expect to make some use of this curve later, we will show how
to draw one at that time.

98. The Parabola the Equilibrium Curve for a Load
Uniform horizontally. — If the load on this arch were distrib-
uted uniformly horizontally, the curve of equilibrium would be
a parabola. In case the whole arch were a parabola, with the
vertex at the érown, and the load extended over the entire span,
the two curves, coinciding at the springing-points and crown,
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would be identical throughout, and the rib itself would be in
perfect equilibrium. This same point was brought out in refer-
ence to the parabolic girder, Part II., « Bridges,” § 73. That
the parabola is the equilibrium curve for a continuous load, dis-
tributed uniformly horizontally, may be shown as follows: —

Let A B, Fig. 6, be a portion of a cord, horizontal at A,
which is in equilibrium under such a uniform load, represented
by A C, suspended from the cord. The tension at A will be in
the line of the tangent A C; the resultant of the load A C will
be vertical, and must pass through its middle point - D. As the
cord A B is in equilibrium under its load and the reactions or
tensions of the other portions of the cord at A and B, the ten-
sion along the tangent. ab B must, by the principle of the tri-
angle of forces, also pass through D. As B C, drawn vertically,
is parallel to the resultant of the load, the sides of the triangle
B C D will be proportional to the three external forces; and, if
AC=2 BC=y W =total load on A B, =wz (where w=
load per unit of length), and H = tension at A, we have

W:H=BC:DC=y:ixz
or
Wz w
3/ = ﬁ —_ m X y
the equation of a parabola with vertex at A.

Therefore an arched rib of parabolic form, when loaded uni-
formly horizontally, has no tendency to change its shape, that
is, experiences no bending moment, at any point.

29. Suspension Bridge.— A B of Fig. 6 may represent a
suspension bridge cable, A C being the half-span, and C B the
height of the tower: hence, if A C=cand CB=F%, we have
for the tension in the cable at the mid-span, § 28,

wa __ we
H=3% =0

The tension T at the tower will then be proportioned to H, as

BD to DG, or as /% + :¢* to % ¢; therefore

T='2‘;I:V4k2+c2.
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Each suspending rod must carry the greatest weight that can
come at.its foot. The. pressure on the top of the tower from
the half-span will be the weight of the half-span, or we; to this
must be added the vertical component of the tension on the
anchorage side of the tower. If the cable has the same inclina-
tion both ways, at the top of the tower, the pressure is 2 w ¢.

The manner of stiffening a suspension bridge to resist the
tendency to distortion under a partial load is treated in Chap. X.

30. Equilibrium Curve for Partial Load. — If the load
extends overa portion only of the span of the arch, and is uni-
formly distributed horizontally, the curve for the loaded portion
is parabolic, while that for an unloaded portion is a straight
line: thus,if the load extends from one abutment to the middle,
we shall have, on the unloaded half, a straight line from the
abutment to the erown, and, on the loaded half;-a parabola from
the crown to the springing. As it was proved in Part II.,
“ Bridges,” § 10, that any two sides of the funicular polygon,
when prolonged, meet on the vertical drawn through the centre
of gravity of so much of the weight as is included between
these sides, the equilibrium curves for any cases where the rib
is hinged at three points can be drawn without previously deter-
mining the value of H. Thus, in the case just supposed, of a
load over the halfspan, from B to F in Fig. 4, the centre of
gravity will be at G. Then, if G C is the vertical drawn from
G, the side of the funicular polygon, or, more properly, the
tangent to the equilibrium curve, at B, must pass through C,
where C G meets A D, and the required parabola will be drawn
from D to B on D C and B C as tangents. As one point of the
curve we have the middle point of a line from C to the middle
of the chord D B. We can then find H by drawing 1-0 and
2-0, parallel to A C and CB. Henck’s “ Field Book for Rail-
road Engineers” gives methods for construeting parabolas ; two
constructions are given in Part IL, ¢ Bridges,” §§ 20'and 28,
one of them applying when two tangents are given.

31. Suggested Examples. — We would suggest the follow-
ing examples for practice: 1st, Given a semicircular rib, loaded
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uniformly horizontally over the whole span, and pivoted at the
crown and springings: find that the maximum bending moment
occurs at 30° from the springing, and is equal to one-sixteenth
of the total load multiplied by the radius of the arch, while H
is equal to one-fourth of the total load. 2d, Given a para-
bolic arch similarly pivoted, and in equilibrium under a steady
load distributed as above; add a similar travelling load from
one abutment to the middle of the span: prove that the maxi-
mum bending moment is found at one-fourth of the span from
either abutment, is of opposite signs at these two places, and
is equal to one thirty-second of the travelling load then on the
arch multiplied by the span, while H for the travelling load
equals the same product divided by one-fourth the rise of the
arch, and for the steady load is twice as much.

32. Extent of Load to produce Maximum Bending
Moment. — It may be desired, when designing an arch of this
type, to find the extent of load which will produce the maxi-
mum bending moment at each point, and the value of that
moment. Suppose the point N, Fig. 4, to be examined: pro-
long BN until it meets AD at E; it is then manifest that
any load in the vertical through E will cause no bending
moment at N ; that the equilibrium polygon for any load on the
right of E will pass outside of the arch at N, while the equilib-
rium polygon for any load to the left of E will pass inside of
N. Therefore the maximum bending moment at N of one kind
will be found when all possible loads are put on the arch from
B to the vertical through E, and the maximum moment of the
other kind occurs when the load extends from A to E. As the
arch tends to move away from the equilibrium polygon, the
kind of moment is easily distinguished: H can then be found,
the equilibrium curve drawn, the ordinate scaled and multiplied
by H.

33. Braced Arch.— For the reason that tlie equilibrium
curve is at once definitely located by introducing three hinges
or pivots, no matter what form the arch may have, that type
which used to be known as the braced arch, having a horizontal
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upper and a curved lower member, the spandrel being filled with
bracing, has usually been treated as free to turn at both crown
and springings ; in that case a diagram may be drawn by Clerk
Maxwell’s method, as set forth in Part I, « Roofs,” or the
stresses may be found from the equilibrium curve. A braced
arch, hinged at erown and springings, with an elliptical lower
and a straight upper member, carries a track of the Pennsyl-
vania Railroad over Thirtieth Street, Philadelphia. (See “ En-
gineering,” July 22, 1870.) While a diagram only gives the
stresses in the various members for one position of load at a
time, one can determine all the maximum stresses by two dia-
grams and a tabulation, not difficult to one familiar with such
methods. The way to be pursued will be found in Du Bois’
«Graphical Statics,” appendix, § 7, p. 350. We will explain
another treatment in Chap. XIL

34. Shear; Temperature. — Since it is not practicable to
draw a shear diagram until the form of the rib i§ defined, we
can only, at present, refer the reader to § 14. After we have
discussed the parabolic and circular ribs, the reader can doubt-
less work up any special design of the present class for himself.

One advantage possessed by this type of arch is that changes
of temperature have no straining effect, for the crown rises and
falls without affecting the two halves of the arch injuriously.
If the crown sinks a little, the value of H will be seen from
Fig. 4 to be very slightly increased, while the equilibrium
polygon will practically go with the arch. x

CHAPTER IIIL
INTRODUCTORY TO PARABOLIC ARCHES.

85. Parabolic Arch.— We propose to apply the facts which
have been developed thus far to the arch whose centre line is
a parabola. This curve is chosen as one form; because it is, as
proved in § 28, in perfect equilibrium under a load distributed
uniformly horizontally over the entire span. As in the case
of a suspension bridge, so in some arches of iron, most of the
steady load consists of a platform and such other parts as are
distributed in accordance with this requirement (the arch itself
and the vertical posts which carry the platform giving a some-
what greater intensity per horizontal foot as we approach the
springings), so that, for the former portion, as well as for the
travelling load over the whole span, the arch will be subjected
to no bending moments, and no shear; hence there will be no
stress in the bracing. Then, again, the parabola fora given rise
and span is easily plotted and designed; and, lastly, the deter-
mination of the equilibrium curves, for the cases taken up, will
be simpler than for circular ares, and will naturally prepare
the way by rendering the reader familiar with the steps of the
analysis. It may be well to add here that a circular segmental
rib, whose rise is not more than one-tenth of its span, is so
nearly coincident with a parabolic areh of the same span and
rise, that the investigations which follow will apply with suffi-
cient accuracy to such flat segmental ribs.

36. Vertical Deflection of an Inclined Beam.—Let us
41
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consider the two cases of a horizontal beam and of one inclined
to the horizon at an angle ¢; it is known from the usual for
mula for deflection, Part II., « Bridges,” Chap. V1., that, other
things being equal, the deflection of a beam is directly propor-
tional to the load and the cube of the length. If, then, the
inclined beam is of a length 7/, and the horizontal one of a
length 7 cos 4, as shown in Fig. 7, the deflection of each,
measured perpendicularly to the respective beams, will, as re-
gards length only, be in the ratio of 1% to 1% cos® i. But, if each
carries the same load W, the ¢transverse component of W, which
alone causes flexure of the inclined beam, the longitudinal
component producing direct compression, will be W cos 7;
whence the deflection perpendicular to each beam will, for
similar points, be proportioned as 1 to cos? 7. And, again, the
vertical component of the deflection of the inclined beam will
be to the perpendicular amount as cos 7 to 1; whence the ver-
tical deflection of the inclined beam will be to that of the
horizontal beam of the same cross-section as 1 to cos 7. As
the stiffness of a beam is directly proportioned to its breadth,
should the inclined beam be made broader in its horizontal
dimension than is the horizontal beam, in the ratio of 1 to cos 7,
the depth being unchanged, the vertical deflections of the two
beams for the same load would be exactly the same.

37. Application to Arches. — Any very small portion of
an arch, taken within such narrow limits as to be considered
straight, behaves like the inclined beam, as regards its flexure
under a load ; and therefore it follows, that if an arch has the
dimension perpendicular to its face increased, from the crown
to the springing, in the ratio of the secant of the inclination
to the horizon, it may be discussed as if it were a beam of
uniform cross-section, of the same span, similarly supported,
and carrying the same load which produces flexure. In the
arch some of the load does not produce flexure; in the para-
bolic rib, for instance, before cited, a uniform horizontal load
gives equilibrinm. We propose, in our analysis of the para-
bolic rib, to make this supposition, that the rib is broader at
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the abutments than at the crown in the ratio just mentioned,
and thus to simplify the work of investigation. ~ Iron arches
whose flanges or chords are thicker, as we approach the spring-
ing, in the above ratio, while the perpendicular depth between
the two flanges is constant, practically satisfy this case. In
this class of ribs the intensity of the direct thrust on the
square inch for a complete uniform load will be the same at all
cross-sections.

As we desire the reader to reproduce, on a much larger scale,
the figures and problems for himself, we remind him that points
on the curve of a parabolic rib are easily found by the construc-
tion of Fig. 8, Part II., ¢ Bridges.”

PARABOLIC RIB, HINGED AT ENDS.

38. Equilibrium Polygon for Single Load. — Taking up
the case of the parabolic rib, hinged at the ends only, let us
place a single weight at the point I, Fig. 8. If the lines AC B
fulfil the condition of § 7, that the sum of the products of the
ordinates D E and E F for all points of the arch equals zero or

SEF.DE=0,

A CB will be the required equilibrium polygon. From the
reasoning of § 37, it will be proper to divide the areas above
the springing line A B by equidistant vertical lines, moderately
near together, scale off the quantities corresponding to E F and
D E, and find the proper position of A C B by one or two trials.
It can thus be located with all desirable accuracy, as a slight
movement of the point C vertically alters the quantities to be
computed very materially. The reader who is not familiar with
the higher mathematics can thus verify the results we are about
to obtain.

Since C G may be considered the unknown quantity by which
to locate A C and B C, its value may be deduced from the
above equation. Let the halfspan AK,=KB,=¢; the
height or rise of the arch at the crown = %; the distance
K G, from mid-span to the position of the single weight, =& ;
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and the required maximum ordinate C G =g, Then will the
value of C G be

32, c?
w=7*sa—p

which becomes, if & = n ¢, where » — a fraction of the half-span,

32

0= s @)

a quantity independent of the span of the arch.

89. Proof of Formula. — Let A D, the distance from the abutment A to
any ordinate D E, between A and G,—2. AG=c-+b; GB=c—b.
Since the ordinates to a parabola from the line A B are proportional to the
product of the segments into which they divide the span, we have

DE:k=z@c—z2):c orDEzg(ch—aﬂ).
Also,

orDF=_%__4

DF:yy=z:¢c-4b i

The required condition is that
SEF.DE=0, r 3(DE—DF)DE =0;
therefore, :DE=DF.DE. (1)

(From the above expressions we see, that, if the area included between the
rib and A B is considered positive, the area of the triangle A C B, superim-
posed upon it, will be deemed negative as before explained in Fig. 14.)

Substituting the values of the lines from above in (1.), multiplying by
¢ z, and writing the sign of integration, we get for the left-hand member,

% g2 & k2 e
fo 8('203:— 2)2dr=—. fo (A2 —4cad4-a2t)da

c
k2 o 2‘ 2
Nz <gc-xs —czt+ gxﬁ)o =W¥re (2)
For the right-hand member, between A and G, we get

+b - -
Yo L 2 _ _ky
j‘: = br.c2(-cz x)dz_c'-‘(c )

Y BRRAA I CH A E R @ ¢
= e\ —i%) = e =1 +21-3)
For the portion between G and B, if we write ¢ — b for ¢ 4 %, and reckon

z from B to the left, D F will equal cﬁb 2, while D E will be unchanged;

c+b
Qeczt—ad)dz
0
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so that the integration for the right-hand member of (1.), between G and B,
and between the limits z =0 and z = ¢ — b, will give, simply by writing
— b for 4 &,

k
Hlie(c—b)r—3(c—b)] (*)
These two portions (3.) and (4.), for the right-hand member of (1.), being
added together, will produce, when the terms with the odd powers of b are
cancelled,

"c—’;’“(g 8 —3 ¢ b?).

Finally equate this value with (2.) to satisfy (1.), and

9 (50 —19) =3§k0c; or go=22k —S . (5
H(\)C— )—%% c; 013/0—32 502_1)11’ (') /

which is the desired value of C G in terms of the constant quantities, and
the variable distance K G. This expression is plainly applicable to points
on either side of K. ;

40. Formula for Horizontal Thrust.— For any position of
the weight, plot the value of y,, and draw the equilibrium
polygon. Then draw two lines from the extremities of the load
line W, parallel to the sides of the polygon, and thus determine
H, and the two vertical components of the reactions, which
vertical components will be the same as for a beam supported
at its ends. But, from the simple relations of the similar trian-
gles AG C and 031, Fig. 8, as also BG C and 0 3 2, we may
write a general formula for H, if desired. Thus we have

wie—b=P:H  ~okh=_% H

Yoic+b=W—P,: H, or W—Pg=c_3*/_°bn.
Eliminating P, in the second equation, by substituting its
value from the first one, we get

W__c_yo_bnzcibn, or (2—b) W=2¢cy H;
=, 1—n? 5(5—n%) ¢
H= Ton W="T2 2L W
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This value also will apply to a load on either side of the
centre.

It will be observed that, to obtain this value of H, we have
simply to divide 4 (1 — 2*) by the factor which multiplies k in
(1.), § 38, to obtain the variable factor here.

41. Computation of y, and H. — The numerical values of
these factors are worth obtaining, as, the computations once
made, the results apply to every parabolic rib with pivoted
ends. Let the span of the arch be divided into any convenient
number of equal parts, and, for illustration, suppose that the
number is ten, as shown in the figure ; let a weight W be placed
successively over each point of division, being supported by the
rib. The calculation may conveniently proceed in the following
manner : —

Find the different values of y, for different positions of W,
by equation (1.), § 38. Then compute H by § 40. The calcu-
lation and results are given below; the equilibrium polygons
and values of H for one-half of the arch are represented in
Fig. 8. As n’is positive, whether n is 4=-or —, the values of
¥, and H will be symmetrical on each side of the centre.

VALUES oF y, axp H.

0 0.2 0.4 k 0.8
5.00 4.96 4,84 ) 4,36

5 (5 —n?) = 25.00 2480 2420 2320 21.80

32

- | 9 2 99 :
5G—) = 1.280 12903 1.3223 13793 1.4679.

Multiply these factors by % to give y,.
3 (1—n?) = 030 048 042 032 0.18
392

—iy= TRT D b 3720 0. 2320 0.1226.
$A—n) -+ ep=p 0.3906 0.3720 0.3176 0.2320 0.1226

Multiply these factors by % W to give H.

For any other desired division of the span, proceed in a simi-
lar way.
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42. Remarks. —If every point of division were loaded with
W at the same time, the value of the horizontal thrust would
be equal to the sum of the H’s for each load, that is, the fac-
tor in column 0 plus twice each of the others, and the sum

multiplied by the factor]% W ; we thus obtain 2.479/% W =H.

If a truss were uniformly loaded horizontally, the bending mo-

ment at themiddle would be one-eighth of the total load multi-

plied by the span, or, for a truss of ten panels, with W = one

panel load,

_10W.2¢
8

M =2icW;

and the tension -in the lower chord, or the compression in the
upper chord, would be found by dividing this quantity by the
height of the truss, . If the span of the arch just treated had
been divided into twenty equal parts, the value of H, for loads

at all the points of division, would have been 4.990£W. The

20W.2¢

8%

We thus see that the equilibrium polygon, for a number
of equal loads, equidistant horizontally, on a parabolic rib, gives
a value of H approximating closely to that for a uniform load
on a truss of height %, coming nearer as the loads increase in
number, and agreeing when the load is continuous. Then the
equilibrium polygon becomes a curve, coinciding perfectly with
the parabolic rib, and gives the horizontal thrust to which we
are accustomed in the bowstring girder under a maximum
load.

truss, as before, would give

e
= SI?W'

43. Computation of Bending Moments. — While the ordinates can be
readily scaled from a diagram, one who wishes may compute values of the

" bending moment M for numerous points, when W is placed on any one

point. If y denotes the ordinate from A B to the inclined line, and =z the
ordinate of the parabola from auny point D), the bending moment may be
written, —

M=H (y—=2).
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If put in this form, it will be seen, that, in the neighborhood of #,, M will be
positive, coinciding with the moments for a beam supported at its two ends.
As this is the most familiar flexure of a beam or truss, we have chosen to
consider it as positive: § 12. The ordinates y and z can be readily calcu-
lated from the figure. Thus, if the weight is at 0.4 ¢ from the middle of
the span, we have found 7, to be 1.3223 k. If the span is divided into ten
parts, the number of divisions on one side of the weight being seven, y will
be successively 3, 2, 2, &e., of y,; on the other side y will be } and § of %.
The sum of the denominators always equals the number of divisions, and
the fractions increase from both ends up to unity. After finding the first
y ateach end, we get the others by simple addition, and the row is checked
by obtaining y, at the proper point. As stated in § 39, the ordinate z is
proportional to the product of the segments into which it divides the span;
or, if it is at a distance n ¢ from the middle, we have,

z=(1+n)c(1—n)c§=(1—n2)k.

The factors by which % is to be multiplied can therefore be at once obtained
by taking the decimals which are found in the second line of the table for
Yo § 41.

The computations may then be set down in the following shape, viz. : —

VALUES oF M.

Point Yo
of 1 2 3 4 5 6 7 8
Division.

Tyo = 1880 3778 | 5067 556 9445 11334 13223 8815
= .36 .68 84 96 100 96 .84 64 .36
= —1711 —.2622 —.2133 —.2048 —0555 1734 4828 +.2415 -+.0808
Multiply by H= 0.3176{- w.
= —.0343 —.0833 —.0868 —.0849 —.0176 +.0551 +.1532 +.0767 +.0257 ¢ W

With the explanation already given, this table will be understood. The
letter y, is placed over 7 as a convenience, to show that the value z, occurs
at this point of division. If the load is on the right of the centre, these
numbers run from the left abutment; if the load is on the left of the cen-
tre, they must be reckoned from the right abutment.

44. Table of Bending Moments.— We have carried out this compn-
tation for a load at each joint successively, the span being divided into ten
equal parts, and have prepared a table given on p. 53. A table for a span
divided into twenty parts may be found in « Engineering News,” Vol. IV.
p- 108. As a load on either side of the middle gives the same set of values
in the reverse order, it is necessary to calculate but one-half of the table.
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As many decimals may be taken as will give sufficiently accurate results.
By the use of logarithms the labor of preparing another table for a different
number of divisions is very little. Bach column belongs to the point of
division whose number stands at its top, the numbers commencing at the
left abutment. Each horizontal line contains the factor for bending moment
at each point of division for a load W on the point marked at the beginning
of the line. The values of H are placed for convenience in the last column.

It is worthy of notice, that, while the value of Yo 1s inde-
pendent of the span of the arch, M is independent of the height
of the arch. As it was proved, in § 28, that the parabola is the
equilibrium curve for a load distributed uniformly horizontally,
this arch ought to be very nearly in equilibrium when we place
at once on each one of the nine points aload W : by footing
up the vertical ¢columns of the table we shall find but a very
small residual moment at each joint.

45. Interpolation. — In the solution of a particular example,
it may happen that the points at which the weight will be
concentrated will not' coincide with the points of division which
we have taken. It will then be necessary to determine new
values of y, and H, which may be done by the original form-
ul® or by interpolation. A new table of M may then be calcu-
lated, values may be interpolated in the one given here, or, if
preferred, from the value of H, and the vertical components of
the reactions, we may draw an equilibrium curve for any com-
bination of loads. The table here given, if not directly appli-
cable in all cases, serves two purposes; one to show how a simi-
lar table can be made, and the other to indicate, by inspection,
what arrangement of loads on any arch will produce the maxi-
mum bending moments.

If the successive values of any quantity increase at a tolera-
bly uniform rate, any intermediate value between two given
ones may be found by simple proportion. Otherwise we may
use the formula for interpolation, —

Desired quantity =a 4 £ [D,— 4 (1—f) D],

in which « denotes the first given quantity, f the fraction of a
division from & to the desired quantity, and D, and D, the Jirst
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and second differences. To illustrate, take the values of H in
§ 41. If we place these in a column as below, find the amount

b. H. D,. D..

0 3906
—.0186

2¢ 8720
—.0544

% 8176
—.08b6

.Ge 2320
—.1094

.8e 1226

of inerease from quantity to quantity, and then subtract these
differences from one another, marking each + if it is an
increment, and vice wersa, we obtain the columns of first and
second differences as marked. Now suppose that we wish to
determine a value of H at 6 =.5¢; a will be .3176, f=1,
D, = —.0856, and D, for an average value between .0312 and
0238, = — .0275. If we substitute in the formula, it then
becomes
H (for .5¢) = 3176 4 3 [—.0856 — } . § (—.0275)]
= .3176 4 } (— .0856 4- .0069) = .2783.

The factor for %, at one-third of the interval between .4 ¢ and

.6 ¢, will, in the same way, be

1.3223 4~ 4 [.0570 — } . 3 (.0283)] = 1.3382.

\Careful heed must be paid to the signs.

46. Bxamples. — It will help to fix the ideas, if we draw
an equilibrium polygon for some combination of weights. We
shall take but a few loads, in order to have the diagram clear;
but the reader may vary the example by taking other amounts
in other places.  The values of the two vertical components of
the abutment reactions will be the sums of the components for
each load, and the amount of H for the whole load will be the
sum of the separate H’s. Multiply each numerical factor which
belongs to H by the number of units of weight which are

ARCHES. 51

placed on the point to which the factor refers, add up the
products, and plot the resulting value of H horizontally from
the point of division on the load line between the two vertical
components of the reactions.

For example: Let us draw the equilibrium polygon for an
arch of 100 feet span, 20 feet rise, whose weight is at present,
for simplicity’s sake, neglected, when it is loaded with weights of
3 tons, 2 tons, 4 tons, and 2 tons, at the end of the 3d, 6th, 8th,
and 9th division from the left, of ten equal horizontal divis-
ions, as shown in Fig. 9, where the numbers denote the weights
and the points of division above mentioned. The supporting
force on the left will be

PK:QX1+4X2$2x4+3x7:3.9t0ns.
P, =17.1 tons.

From the table for H,

H= (0.3176 X 84-0.372 X 2 4 0.232 X 4 + 0.1226 X 2) §3
=287 X -3—: 7.175 tons.

These quantities are plotted in the stress diagram, as seen in
the figure, and the equilibrium polygon is then drawn. The
reader who reproduces this figure, or draws another, can be
assured of the accuracy of the construction by the closing of
the equilibrium polygon on the point of support. The weight
of the arch itself may be accounted for by concentrating the
proper amount at each point of division. Such amounts will
increase towards the springing in proportion to the square of the
secant of inclination to the horizon ; for we recall the fact that
the parabolic rib is to increase in breadth from crown to spring-
ing, and the amount in length projected into a horizontal foot
increases in the same way. The weight of each division of the
arch can be obtained with sufficient accuracy from a moderately
large figure. .

Another good construction is the curve for a uniform load
over one-half of the span. The equilibrium curve for such a
load, on the left half of Fig. 8, is represented in that figure; the
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work may be carried out in detail by the reader, and compared

with the same curve for the three-hinged rib.

47. Numerical Value of M. — It will be seen that the poly-
gon and rib of Fig. 9 approach quite nearly at 8. We can
find the distance between them vertically, if we wish, from the
table of M. The bending moment will be, taking the column 38,

M=50(+}.153 X 3—.073 X 2—.075 X 4 —.043 X 2) = —3.650 ft.tons.

M, —3.65 A\
ﬁ = i) =—0.5 ft. =Y Z.

A similar operation may be performed at any other point.

48. Shear Diagram. — This investigation of shear is intend-
ed to apply to ribs of an I-section or to those framed with
open-work or skeleton webs, and not to those of solid section,
rectangular, circular, or otherwise, nor to stone arches: in these
latter classes the shearing forces need seldom be taken into
account.

Adhering still to the case of a single weight W, at a distance
b from the middle of the span, we found that the vertical com-
ponent, P,, of the reaction at the end nearest to the weight,
¢ c—b
2¢
Fig. 8, the diagram for shear on a beam will be, if we take the
shear on the left of any section, a d = P;, = 8-1, on the left of
the weight, and g = —P,, = 3-2, on the right of the weight,
giving the two rectangles included between a7 and the broken
line defg. As the parabola is in equilibrium under a load of
uniform intensity horizontally (§ 28), in which case there will
be no bracing required, — no shear for any bracing to resist, — it
is manifest that the diagram for that portion of the shear which
is here carried, at-each wertical section, by the flanges or chords,
must be similar to the shear diagram for a uniform load on a
beam supported at both ends; that is, to such a figure as atmnl.
If, then, we can determine the value of a7, or of the equal
ordinate 7 7, we can draw this portion of the figure.

It is a well-known property of the parabola, that a tangent at

would be W. Asseenin

5 cb W, and at the other end
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the springing of the arch will intersect the middle ordinate at a
distance % above the crown, equal to the rise of the arch. If,
then, we draw a line 0—4 in the stress diagram, parallel to the
tangent A L, drawn as just described, the distance 3-4, inter-
cepted on the vertical line, will be the amount of vertical force
necessarily combined with H to give a thrust coinciding with
the rib at the springing point. Lay off, therefore, 34 at a7,
and an equal amount at I ; then draw the straight line 7 , cut-

ting al at its middle point m : the ordinates to this line from a1,

Parasoric Ris, HingEp AT Exps.

§44. M —=mcW. Values of m.

3 4 5 6 7

—.038 +.002 | 4087
—.063 +.085
—.085 +.153
—.087 4047
+.025 —.028
4123 | —.073
-+.055 : —.087
+.a17 | —or5
+.002 —.043

A0 e oo 3 @

V=nW. Values of n.

5 8 9

—121 +.075 4228 | +:212 | —.678
—.218 +.153 +.432 | —475 | —.382
—.272 4236 |+ —.382 [ —.255 | —.128
—270 +.3%5 —228 [ —.079 |- +4-.060
—.204 +.422 —.100 | 4047 | 208
—.069 —475 [ —. —.028 | 4321 [ w0
+.128 —.364 +4.018 | +.145 | 4272
+-.382 ¥ —247 | —.15 R +.082 | 4125 | 4218
+.678 ) —125 +.023 | 4072 | 4121

Ll - - -

at all points, will represent the amount of vertical force to' be
combined with the horizontal thrust to put the rib in equilib-
rium. The remaining ordinates are drawn at the middle of
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each division ; and, where the amount subtracted is greater than
the original shear, the remainder will be of the opposite sign.
The signs are placed in the areas of this figure; and it will be
apparent that the ordinates are reckoned from the inelined line
¢ n, all above that line in our figure representing positive or
upward shear on the left of a vertical plane of section, while
those below @ n will be negative. ~See p. 31.

49, Shear on a Normal Section.— To obtain the shear on
a right or normal section, as at Q, we must draw a line g8
parallel to the normal section at Q, and project » ¢ upon it, thus
finding s¢ as the shear at Q. A similar construction will
determine the shear at any other point. ~The property of the
parabola before alluded to makes it easy to find the direction
of ¢s, which will be perpendicular to a tangent at Q; a tan-
gent at Q will strike K L at S, a distance above the erown
equal to that of the extremity R of the horizontal line Q R
below it. What has been done by the above steps may also
be easily seen from the sketch above Fig. 8. At A, P, will be
ad or 8-1, and the whole vertical force to be combined with
H will be @i or 3-4, which when subtracted from ad leaves
? d or 4-1 as the négative shear on a vertical plane, and F, ¢ d,
or 6-1, as the shear on a right section at A.

In treating any arched rib, we shall desire to find the maxi-
mum shear at any section produced by a combination of
weights at several points. It will be easier to find the sum of
the several shears on a vertical section from single weights, and

then find the normal component once for all, than to resolye .

each vertical shear separately; hence the shear diagram of Fig.
8 and of subsequent figures will simply show the shears on the
several vertical sections before they are projected on the nor-
mal sections.

50. Pormula for Vertical Shear.— A formula for this vertical shear

may be deduced without difficulty. If Y is the ordinate to in from any

point of e/, and Y, its value at the springing, we have from the statement
of the last section,

2k
Y.:H=2E:¢ or Y,:7H.
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The vertical shear V in the web, at the abutment on the left, will then
be,

c+ b 2k
V=P —Y, = T W— —= H. (1.)

For successive points, P, will remain the value of the original shear
until we pass the weight, when it will become P, — W or —P,. Y will
diminish at a constant rate; and, if we deduct at each point the ordinate
from a ! to the inclined line, we shall get the desired results.

51. Computation of Shear.— As an example we will find the vertical
shear midway between the points of division of the arch of Fig. 8 with the
load there shown.

P,=0.3W; P.=0.7W; H=—.3176 % W; Y,—.6352 W.

This value of Y; is applicable to any parabolic arch with hinged ends,
since it involves neither ¢ nor k. Y at the middle of the first space

— <635 — %3 W = .572 W for every succeeding ordinate it diminishes

985 w. A

9 JAN*®
Varues or V. /
Space. 1 2 3 4 5 6 \/ 8 9 10
P 3 3 3 3 3 3 3 -7 -0 T —P
Y H72 445 318 Jd01 4064 —.064 —191 —318 —d445 —.572
P—Y —2712 —145 —.018 +.100 +.236 +.364 +.401 —.382 —.255 —128 W.

Three decimal places here will be as exact as four in the values of M.
It will be seen by the ordinates in the shear diagram of Fig. 8, how the
signs change.

52. Remarks on Shear.— We repeat that, as P, was taken
as positive, the signs of the shears apply to the left side of each
vertical or each normal section. In Fig. 10 the sketch marked
R is an instance of positive shear, which acts up or outward
on the left of the imaginary section and inward on the right
of the same section. From the way in which the two parts of
the arch will tend to slide at the section, we see that at R a tie
will be required sloping down from the upper chord to the
right (or a strut in the opposite direction), while negative
shear, as represented in the sketch marked S, calls for a tie in
the reverse direction.
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53. Table of Shears.— A table has been computed by the preceding
process, for shears at the middle points of ten equal spaces, into which the
span is divided. It is intended to supplement the previous table of bend-
ing moments, and will serve as a guide for the calculation of any table
with a greater or less number of spaces. It will be found on p. 53. A
shear at a joint can be found, if desired; by taking the mean of two adja-
cent shears just obtained. It is easy to select from this table that combina-
tion of loads which will give on any parabolic arch, hinged at the ends
only, the maximum shear of either kind in any one division, one arrange-
ment being the complement of the other. These shears, as should be the
case, foot up very nearly to zero for an equal load on eyery joint. It is only
necessary to calculate one-half of the table; the other half will contain the
same numbers in the reverse order, with the opposite signs. A table for
an arch of twenty divisions was printed in ¢ Engineering News,”” vol. iv.,
p. 124.

54. Extent of Load to Produce Maximum Bending
Moments and Shears.—In single-span trusses the maximum
bending moments, and consequently the maximum stresses in
the chords, occur when the bridge is entirely covered with the
live load ; and the greatest shear at any section, or the greatest
stress in any brace, exists when the bridge is covered with
live load over one or the other, usually the longer, of the two
segments into which the section divides the span. A simple
inspection of the tables for M and V, lately given, will show
that such rules are not true for an arch. Why this is so, will
be seen, if we consider the fact that the portion of the arch,
Fig. 8, between B and the point where C A crosses the rib, is
under a bending moment of the positive kind, when there is
a single weight at I, while from that point to A  bending
moments of the negative kind exist; and that an addition of
another load near I will increase in amount most of the posi-
tive and negative moments, while one placed on the left half
of the arch will have an opposite effect. The shearing forces
for the braces, depending upon the change of stress in the
flanges, will also be affected in the same way.

While an inspection of Fig. 8 will show, as was pointed out
with regard to Fig. 4,in § 82, the extent of load to produce
the maximum bending moment at any one point, and while the
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load to produce maximum shear at the same point can also be
ascertained by inspection, § 15, an attempt has been made to
represent, by the horizontal lines in the diagram, Fig. 11, those
positions of the live load, or the extent of the loaded portion,
which will give the maximum moments of both kinds at each
of nineteen points of division represented in the figure, and
also that arrangement of the live load which gives the maxi-
mum shear of either kind at the middle of each division. The
full line denotes the loaded portion of the span when the
maximum positive moment occurs at that point whose number
is placed at the end of the line, positive being understood to
mean that kind of moment which would make a previously
straight beam concave on the upper side; and the remaining
portion of the span must alone be covered with the live load
to produce the maximum negative moment at the same point.
Thus the maximum positive bending moment at 2, and at
3 also, is found when the load is on all points from the left
to 7 inclusive. A load from 8 to the right abutment gives
the maximum —M. The maximum +M at 11 occurs when
the arch is loaded from 9 to 14 inclusive.

The extent of live load required to produce the greatest
upward, or positive, shear on the left of a section through the
web or brace in any division, is indicated: by the broken line
drawn in its proper space; and a load over the complementary
blank portion will give the maximum shear of the opposite
kind in the same division. Thus the maximum +F, at the
middle of 84, is found when the load extends from 4 to 9
inclusive ; and the maximum —F, at the same place, when
the load reaches from 1 to 8 and 10 to 19 inclusive. As a
partial load, not extending to either abutment, will give the
greatest M at some points, and as the same thing is true of the
values of F, those writers who determine the greatest stresses
by the usual test for maximum applied to an algebraic equa-
tion, which contains the expression for load as continuous from
one abutment, must err in their results.:

55. Resultant Maximum Stresses.— The steady or fixed
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load, unless distributed uniformly horizontally, gives some
definite bending moment and shear, of one sign or the other, at
each point; and these amounts must first be obtained from the
tables or by diagram. If,at a given point, the bending moment
from fixed weight is 4-, the arrangement of rolling load which
gives the maximum +4M at that point will conspire with the
steady load, and give an actual maximum +M; while that ar-
1':angement of rolling load which, in itself, gives a maximum — M,
will reduce the moment from steady load. If large enough to
prevail against the +4-M, the rolling load will produce an actual
maximum —M; but, if not, it will only cause a minimum M.
Similar remarks might be made concerning shear.

An absolute maximum M of either kind, for a uniform load,
will be found, if we sum up the quantities in the table, to oceur
at the middle of the halfspan. .The loads to produce these
values are seen in Fig. 11. The absolute maximum +F is
found at the abutments, while another value, nearly equal in
amount, oceurs at the crown. These absolute maxima are
found by comparing footings of the several columns, p. 53.

If Fig. 10 is supposed to represent a portion of the rib of
Fig. 8 or Fig. 12, the web system being of any type or a continu-
ous plate, we shall find that, when the chords or flanges lie on
the opposite sides of any equilibrium polygon, they will be in com-
pression from the weight which belongs to that polygon. When
they both lie on the same side, the nearer chord or flange will
be in compression and the farther one in tension. Hence the
extent and amount of load to produce maximum stress of either
kind in any chord piece can be found by inspection.

The actual stress is found by taking moments about the proper
joint in the opposite chord, as is done in bridge trusses, using
either H multiplied by the vertical ordinate, or the thrust in the
side of the equilibrium polygon multiplied by the length of the
perpendicular, drawn from the joint to that side, as may be pre-
ferred, and dividing by the length of the perpendicular from
the same joint to the chord piece in question, considered as
straight between its two joints. In this way the stress result-
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ing from the direct thrust combined with the bending moment
is at once determined.

Again, imagine a right section made in Fig. 8, through any
panel like Fig. 10, and arrow-heads placed on the equilibrium
polygons on the left of, and thrusting against the section. If
the forces represented by such arrows have components acting
up or outward along the section, they will cause positive shear
in the web at that section; if such components act inward,
they will cause negative shear. Hence the extent of load to
produce maximum shear of either sign in a particular panel can
also be found by inspection, and the amount of that shear can
then be determined. '

56. Example of Flange Stresses.—It may be instructive
to make a little numerical calculation for the rib of Fig. 9, 100
feet span and 20 feet rise, supposing it to be loaded with the
four weights only which are shown in the figure. The maxi-
mum positive moment is plainly at 8. If the rib is made of a
web and two flanges 24 feet from centre to centre, what will be,
with this load, the stress in each flange at 87 If our figure were
larger, we could scale the ordinate above 8, and get the bend-
ing moment directly ; but, as the sketch is small, we will refer
to the table. 'We thus find that

M=(082x 2+ .171 x4 + .002 x 2 —.083 x 3) 50 = 80.15 foot tons.

From the same table we find that

H=(123x2 4 .232 x4 + .372 x 2 + .318 x 3)§§ = 7.18 tons.
Then 30.15 = 7.18 = 4.2 feet, ordinate at 8. If we call the ver-
tical depth of the rib at 8, three feet, the whole ordinate to the
lower flange will be 4.2 + 1.5 = 5.7 feet, and to the upper flange
4.2 — 1.5 = 2.7 feet. The compression in the upper flange will
be 7.18 x 5.7 =+ 2.5 = 16.37 tons; and the tension in the lower
flange 7.18 x 2.7 + 2.5 = 7.75 tons.

Draw 0-5 parallel to the tangent at 8. Drop perpendiculars
3-6 and 4-7 on it from 3 and 4. On a right section close to,
but on the left of 8, there will be positive shear 4-7, equal to 2.1
tons. On the right of 8 will be found 3-6, or 1.5 tons negative
shear, to be resisted by the web.




CHAPTER IV.
PARABOLIC RIB WITH FIXED ENDS.

57. Values of Ordinates.— Passing next to the parabolic
arch, fixed at the ends, we recall, from § 16, that, to locate the
equilibrium polygon for a single load at any point, we need
three ordinates, one at each end, and the third passing through
the weight, and that the three conditions by which these must
be obtained are, 1st, that the change of span is zero; 2d, that
the change of inelination at the abutments is zero; and, 3d,
that the abutment deflection is zero. As expressed in the
notation used, the three equations of condition are

Z2EF.DE=0,
TEF=0,
SEF.DB=0.

If, in Fig. 12, I N L represents the desired equilibrium poly-
gon for a weight W, attached to the rib A Q B at a point dis-
tant T G, = &, horizontally from the middle of the span ; and if
the span A B=2c¢, the rise of the arch—=#, A I=y,, G N=
Yo and B L=gy,, we will prove that

Yo=4%k (1)
h=r+%- cj—__*_o;)k:&%k’ )

¢c—5b, ., 1—5
w=v k=% 1——hk (3)

when b=nec.
60
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58. Value of First Equation.— As before, the first condition may be
written,

:EF.DE=2(DE—DF)DE=0, r sDE?=:DF.DE. (L)

k
If AD:r,DE:C—._,(Qc—x) 7 a8 in §39, AG=c+b; GB=
¢—b. If y or y. becomes negative, it is to be laid off below A B, but
otherwise above: the figure represents 7. as negative; and, in the majority
of cases, 3 and y, have opposite signs. If a line be drawn horizontally from
I, DF, as long as it is on the left of ,, will be divided into a constant part

¥, and a remainder which varies with the distance from I. Hence we see
that

DF=y‘+yg%‘zlx.

For the r}ght-hand member of (1.), between A and G, we therefore get
c+b
— k
fo (yz+"!§+2" :r) 2@z —a)da=

r c+b k . +b

U fo @ez—at)dz+ . -ZCOTZJ f: (2c2?—a¥)dz =
k k
ahlec+0)'—=3c+0)+ 7 (—) [Fele40)*—3(c+0)*].  (2)

For the portion between G and B, if we write ¢ — b for ¢ -+ b, and reckon
z from B to the left, we get

DF =g+ L,

the sign of y, being contained in the symbol. Then the integration for the
right-hand member of (1.), between B and G, or between the limits 0 and
¢ — b, will give, when we substitute y, for y,, and ¢ — & for ¢ + b,

Rl == =014 & oW e =2 —F =0y @3)

The left-hand member of (1.) was shown to be, in § 39, (2.),

2‘"2 2
f A @ez—arde=1igkie. (L)
0

The two portions, (2.) and (8.), of the right-hand member, being added
together, when the coefficients of y,, 7, and y, are reduced, will be equated
with (4.), the left-hand member of (1.), producing
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6%{y°(503—052)+~}y, (c+5)2(3c—1b)
HhnE—0rGe+d) [ =jere,

or

2¢ (A= yo+ (c+02Be—b s+ (c—b)?* (Be+-b) go= 82k o, )
59. Values of Second and Third Equations. — It is not

necessary to integrate in order to obtain equations from the

other two conditions, although they may be derived quite

simply in that way. The second condition may be written,

ZEF=2(MDE—DF)=0, or S DE=3DF.

The first member is the summation of all the ordinates to the
arch, or the included area between the rib and the line A B.
The area of a parabolic segment being equal to two-thirds of
the rectangle of the same base and altitude, the area will be
§.2c.kor4ck The second member will be the summation
of all the ordinates to the two inclined lines, or the area of the
two trapezoids, giving

F@ot+u) (c+2) +% o+ 2) (¢ —b), or cyo—l—%(c-{—b)y,—f—w}(c-—b)yy

Equating the two values, we obtain the second equation,

2+ CHDntc—tp=4ck (1)

The condition that S EF . D B =0, or that 3 (DE-DF)

DB = 0, gives
:DE.DB=:DF.DB,

and this condition is satisfied by the equivalent step of multi-
plying each area, just obtained, by the horizontal distance of
its centre of gravity from one abutment, the right one for
example, and equating the produets. The left-hand member
will then plainly be 4 ¢%. ¢, or 4 c®k. As the second expression
above for the area of the trapezoids has three terms which cor-
respond to the three triangles formed by drawing lines from N
to A and B, we may multiply each triangle by the distance of
its centre of gravity from B, obtaining

Yo (c—30) + 4 +b) ple—b+§ (c+ 5]+ 3 (c— ) 3} (c—b),
’ FeroBe—b)+ 3+ pnGe—1b) +iu(c—b
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Equating the two members, and clearing of fractions, we find
that

2¢@Bec—10b)yy+ (c +b) Ge—by+ (c—b)y, =82k @)

60. Solution of Equations. — Equations (5.), § 58, and a.)
and (2.), § 59, contain the three unknown quantities. The
eliminations may be performed as follows : —

Multiply (1.) by ¢ — 3, obtaining
20— %+ 48 =) n+ (c—b)2yp=(—bc)j £
Subtract from (2.)
4y tdclc+Du=QC2+be)§k (a)
Multiply (2.) by 8 ¢ + 8,

2c(9c2=0) yo+ (e +-b) (52 4-2cb =) g+ (c—5)2 (Be+b) o=
(B4 bc?) Sk,

Subtract (5.), and divide the remainder by 2 ¢,
4ty 6elct+ ) n=>Gc2+be)dr. ()
Subtract (a.),

2¢0(c+b)p=(#&c2+4bec)k, or yr:iza-cc-:_ibk-

Substituting this value in (a.) or (3.), we get
Yo=1%k
and by analogy, or by substitution,

c—5b

— k.

Yo=1 -

61. Remarks. — The similarity between y, and g, is to be
expected ; for, when a load is moved from one side of the centre
to an equal distance on the other, y, and y, change places.
Therefore it must be remembered that g, is the value of the
ordinate at that springing which is nearer to the weight. If
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the load is in the mmddle, » =0, and y, = #,. It is worthy of
notice that g, is a constant quantity for all positions of the
weight. These ordinates can be easily computed for a weight
at different points, and it will be seen that a value of & greater
than e will make <y, negative, or to be plotted below the
springing line. - The original reasoning showed, and the above
equations will prove, that the third condition may be taken
about the other abutment, and will still give the same values
for the ordinates.

62. Computation of Ordinates y, and y, — If we propose
to work out data for use with this type of arch also, we must
first calculate the values of g and y, for all points. Let a rib
be divided into ten parts,equal horizontally as before; then, if
b = n ¢, the results of the following table will be obtained. It

VALUES OF 3 AND %

0 2 4

n=—

c

+5n__ 1 2.0

14n N 1 1.2

145n o
£ - TEh T 0.1333 0.2222

1—5n __ 1

1—n 1
& L=0n— g1sm

is so similar to previous ones as to call for no explanation. Only
remember that %, and g, change places for loads on the left of
the crown. .The equilibrium polygons for one half of the arch
are shown in Fig. 12. .

/.63, Formule for H, P, and P, — To obtain the value of
H for a particular position of the load, we lay off v, w, and
at A, G, and B, draw I N and N L, complete the stress diagram
below, and draw 0-8 for H. The vertical components of the
abutment reactions will be 2-3 and 3-1. If we draw the hori-
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zontal dotted lines from I and L, we shall have similar triangles
to those in the stress diagram, and may write

Yo—%h:c+b=(2-3): H, or
=(2- Vo=t _ ok k
B )= cFb 8 TFn)ic’
Yo+ (—p):ic—b=(3-1):H, or

P,=W —(24)—}1.1/0—1,1_1&g (1:73}

Substitute the value of (2-3) from the first equation, trans-
pose, and obtain
W
Yo— % Yo— ¥
et T o
64. Computation of Values.— The amount of H for a load
at any one point will then be found in the several columns of
the table below. The first three values will be seen to be

H= —-n2)“%W

Varues or H, P, Axp P..
n= 0 2 4 .6 .8

1—n? 1 .96 .84 .64 .36
1—n?? = 1 9216 .7056 4096  .1296
i — 4687  .4320 .3308  .1920  .0607

Yo—% 5
I(l Tn)e 0.5 I ) - 0.028

Hig _nf)°c = 05 0648 0784 0896 0.072 WJ

" 2 '

greater, and the llaet two to be smaller, than the correspondmg
H’s in §41. It will next be necessary to find the vertical
components of the reactions by multiplying H by the quantities
noted in the last section: the results will be found in the last
two lines. The larger value of P occurs at the nearer abut-
ment. It will be noted that these quantities differ in amount
from the two supporting forces of a single-span beam or truss.
If the H’s for an equal load at each of the nine points of

division are added together, we find that, for loads at all points,
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H= 2.49977i—W, which agrees more closely with the amount

for a truss or bowstring girder than did the value for a rib with
hinged ends, §42. It is due to the fact that the equilibrium
polygon for a single weight crosses the rib oftener in the present
case than in that of a rib with hinged ends; so that, when several
loads are combined, the polygon will deviate from the parabola
(the form of the rib, and the true equilibrium curve for a
uniform distributed load) very little.

65. Computation of Bending Moments. — If, in place of scaling, we
desire to compute the values of M in this case also, we may use the former

equation, §43,
M=H (y —2).

The values of the ordinates, z, to the parabola will be the same as before.
If = denotes the distance from A to the foot of the ordinate #, and 2’ = the
distance from B to the foot of the same ordinate, in which case z' =2¢ —z;
we shall have

y=u +"'°+b

Y=1 +J° y’x’ on the right of the weight,

z, on the left of the weight, and

the sign of ¥, being contained in the symbol.

Let us proceed to find the values of M, at both abutments and the nine
other points, for a weight on the third point of division from the middle,
towards the right. Asabove,

—0199°wW. Yo—Y%h__o=417%. Yo—¥__ -'
H=0.102 2 W; c+b‘_0.o414 —; —1=4.6667
z=.36k, .64 L, .84k, .96 k, L, .96 k, &c., §43.

VALUES or M.

T

g

z=| Oc \02(‘ 04c | 06¢ |0‘$
)(.5417; 0 1083 2168 3250

1 o B o . 0

ot
+n .3338| 4416 .oaOO 6583 1667 | 8750 . K i 2667(—.6667 |+ y2
F =‘ 0 .36 64 | ‘! .96 ‘ Ik
=+ 3.333}-;- osm:— osoof— 131.‘— 1933' 1050|+.o-233'l+.9517{+.5soo} 08¢ —.666751:
Mulupl,\' by H =0.192 —Z-W
_—.{+.oe4o:+.0157 —.0173}—.0341;!—.0371 —.0240;+.oo45i+.o483:+.1075| —.0179|—.1280/c W

V8=
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W is placed over the number of the point to which it is attached, and a
double line is drawn on one side of W to denote the end of each series,
running from the two ends of the table. The dividing line might just as
well have been drawn on the left of W, if preferred. More frequent values
of any of the preceding quantities may be obtained by interpolation, as
explained before.

66. Table of Bending Moments. — A table of values of M
has been prepared for this case of an arch with fixed ends, the
span being divided into ten equal parts, and is here presented,
p- T1. A table for twenty divisions may be found in * Engi-
neering News,” vol. iv., p. 178. At any one point, for a uniform
load at all of the points of division, M reduces nearly to zero,
as before. The greatest possible positive M, as well as the
greatest possible negative M, for any combination of weights,
occurs at each abutment; positive maximum when the span is
loaded from the other abutment to and beyond the centre one
point; negative when the other portion only of the span is
covered. The load on the first point from the middle produces
no M at the nearer abutment. There is another maximum at
the third or seventh point, with loads nearly the reverse of the
ones mentioned above. An inspection of the table will show
these facts.

67. Example. — As soon as H, P, %, and y, have been ob-
tained for all points, it is easy to draw an equilibrium polygon
for any desired arrangement of load. Let us suppose that one
must ‘be constructed for weights of 2 tons, 6 tons, 8 tons, and
1 ton, on the 2d, 4th, 5th, and 8th points respectively, from
the left abutment, of an arch of 100 feet span and 20 feet rise,
Fig. 18, divided into ten equal parts along the span, as previ-
ously described. We will proceed as follows: —

The vertical components of the reactions cannot be computed
for the load in the gross, as for a beam on two supports, but
must be summed up from the values lately given. Referring to
those data, we get




P.. H.
2d joint, 0.896 X 2 = 1.792 tons.  0.192 X 2 = 0.384%fons.

4th « 0.648 x 6 —=3.888 0.432 x 6 = 2.592 «
5th « 0.5 X 3=1.500 0.469 X 3 =1.407 «
8th ¢« 0.104 X 1=0.104 0.192 X 1 =10.192 «

P, —7.284 H=—4575 «
P, — 12 — 7.284 = 4.716 tons. H= 4.575 X 2.5 = 11.44 tons.

Since H », = moment at the springing A, Fig. 18; since each
of these loads has a separate H and a definite 413 and since the
H’s for the different loads all conspire to produce the total
thrust, —we must ealeculate the arm with which the latter acts at
one or both springings, that is, the ordinate y,” or %, of the
point whence the equilibrium polygon must start. We satisfy
the equation

wW.-EH=Z2H.y, or g/{=2 Izil.-lyl’

which simply requires that the resultant moment shall be equal
to the algebraic sum of the original moments. We therefore
multiply each H for a given weight by its g,, and divide the
sum of the produets by the total H. The calculation having
been made, as here set down, we find that y/is equal to
—.02 feet, a comparatively insignificant amount. It is well
to compute y,’ also, as a check on the accuracy of the subse-
quent drawing, and it will be found to be +38.34 feet.

% H. M.
— .667 X 0.384 — — 0.256 ¢ tons.
0X2592= 0
+ 133 X 1.407 = - 0.188
+ .333 X 0.192 = +4 0.064
4.575) — 0.004
— 0.0009 %.
20

%' = — 0.018 feet.
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While we may seem to have carried out this example in too
much detail, we are aware that inattention to apparently trivial
points will sometimes cause trouble, and we have therefore
given most of the work at full length. Now lay off the weights
in order on the load line, plot P, and P,, lay off H on the proper
side, draw the usual radiating lines to the extremity of H, start
below A, a distance — y,’, and draw the equilibrium polygon
with sides parallel to the inclined lines of the stress diagram,
checking the polygon by the fact that it strikes the extremity
of the calculated ordinate y;. Fig. 18 illustrates this example.
The diagram for vertical shear is also shown below, and needs
no explanation, as the construction is similar to previous cases.
The dotted lines in the stress diagram determine the value of
Y,. Itis quite noticeable in this figure, how the shear changes
sign wherever the bending moment becomes a maximum.

68. Table of Shear.— To find the numerical value of the vertical shear,
from which we may derive the normal components resisted by the braces of
an arch with fixed ends, we proceed as we did in the case of an arch with
hinged ends. The values of P, the vertical component of the abutment
reaction at the left, have been found. We then need only calculate the

value of Yl=2l—;I-I, and form a table, as was done in §51. It is not

necessary to repeat the operations here. A table of shears for an arch with
fixed ends, and for ten divisions, has been prepared, and is appended, p- 70.
The same remarks apply to it as to the previous similar table for the
parabolic arch with hinged ends. For a table for twenty divisions, see
“ Engineering News,” vol. iv., p. 193.

69. Extent of Load to produce Maximum M and F. —
A diagram is also presented, Fig. 15, showing, by the full lines,
the loads required to produce the maximum +M, from live
load, at the point whose number is attached to the line, and by
the remaining blank portion the load required for maximum
—M at the same point. The broken lines and the blank
portion in each space represent the way of distributing the load
for maximum +F and —F respectively. It is still more
apparent from this figure than from Fig. 11, that any investiga-
tion which considers the rolling load as continuous from one
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abutment over a portion of the span will not determine actual
maximum stresses. See § 54.

70. Comparison of Ribs; Fixed and Hinged at Abut-
ments. — A comparison of Fig.15 with Fig. 11 will be in-
structive, as showing the different loading, when hinges are
omitted, to produce maximum bending moments and shears.
There are four points near the ends of the rib with fixed ends,
which require that loads should be on both ends of the span
at once, to produce the maximum +M at those points; and
five points at the middle which have the maximum —M under
similar circumstances. In some structures such conditions can
be realized. If we foot up the plus and minus values of the
columns in the tables for M and V, we shall readily see that,
with the exception of the springing points, all the points in the
arch with fixed ends have less maximum bending moments of
either kind, for a load W at each loaded point, than in the case
of the arch with hinged ends, and, in most cases, the values are
materially less. A similar comparison of maximum shears will
show that the arch with fixed ends has to carry more shear over
its web or bracing for all the divisions of the first and last
quarters of the span, and less for the middle half of the span,
than an arch with hinged ends. These considerations alone
would indicate the superiority of the areh with fixed ends over
the other type, as requiring less material in the flanges or
chords, and throwing the heavier bracing towards the abut-
ments; the value of the direct thrust, however, as indicated by
the previously computed amounts of H, varies according to
the amount of load, and conspires with the compression from
bending moment, so that the sections of the two chords must
be designed for the maximum compression and tension at all
points ; the effect of rise or fall of temperature will be shown
to 'be greater on the rib with fixed ends, reqnring a greater
increase of section to provide for it. x




CHAPTER V.
CHANGE OF TEMPERATURE.

71. Action of Change of Temperature. — If the arch, when
either fixed or hinged at the ends, is exposed to a change of
temperature, it will tend to change its shape. If the rib were
perfectly free, its expansion or contraction would be uniform in
all directions, so that the new arch would be the old arch on a
slightly altered scale. In a bowstring girder, the tie expands
and contracts with the bow, so that the horizontal projection of
the change of length of the bow is the same as the elongation
or contraction of the horizontal member. But as the abutments
of the arch are considered as fixed, its span must remain
unchanged; and the alteration of the arch by a change of
temperature will be manifested by a rise or fall of the crown
of the arch, which movement, in the case of a metal rib, may
be a marked quantity.

It is manifest, that, if we imagine the rib at its normal tem-
perature to be placed upon its springing points or skewbacks, it
will have a horizontal thrust against the abutments due to its
form and weight. If the temperature changes, the structure
endeavors to expand or contract in equal proportion in all
directions; and hence, if possible, the span would be lengthened
just in proportion to the rise of temperature ¢, the coefficient of
expansion e, and the span 2¢, or the change of span would
equal 2¢ee¢. If ¢ expresses the number of degrees of fall in

temperature, it may be called minus, and the quantity 2¢eec
72
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will denote the shortening of the span. But this attempted
change of length, being resisted at the points of attachment,
cannot take place, but must cause a horizontal force, either
tension or compression, which keeps the span invariable. This
+H or —H must exert a bending moment upon all parts of the
rib, as well as a direct thrust, which moment is too important
to be neglected. It being recollected that the condition
ZEF.DE =0 denoted that the change of span equalled
zero, it will be sufficient in this case to still make it zero, when
we have added or subtracted a quantity proportional to 2¢ e ec.
T72. Change of Span influenced by Material and Cross-
section of Arch. — The bending moment M at any point has
been demonstrated, § 4, to be equal to the product of H from
the stress diagram multiplied by the vertical ordinate from that
point to the equilibrium polygon. Then it was shown, §18,
that, if all these ordinates were summed up, that is, if we took
2 E F between two points, this sum would be proportional to
the change of inclination between those two points; but it was
not stated that this quantity was equal to the change of inclina-
tion, for neither the material nor the form of cross-section of the
rib was taken into account. As the amount of flexure was
stated, in Part II., “ Bridges,” §§ 85 and 86, to vary inversely
as the modulus of elasticity and the moment of inertia, we
must write M or Bk
EI EI
equal the change of inclination. The same thing is true of the
expressions for deflection and change of span. When, however,
the summation is made from one abutment to the other, and
then put equal to zero, if E and I are constant, as well as H, it
must be true that = E F = 0, as heretofore stated; and likewise
of the other equations. Now E is constant, as the material of
the rib is the same throughout; and since the parabolic rib, of
cross-section varying with the secant of the inclination of the
rib to the horizon, has been demonstrated, § 36, to deflect
vertically like a straight beam of uniform section equal to that
of the rib at the crown, I is likewise constant in these formule,

to obtain a quantity which shall
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and represents the moment of inertia of the section at the
crown. In short, where one quantity is directly proportional to
another, if one is equal to zero, the other is also ; consequently
we can deal with areas, area moments, &ec., as if they were the
changes of inclination; deflections, &e., themselves.

78. Formula for H from Change of Temperature. — But
now we wish to introduce the distance 2tee, the change of
span which would occur from change of temperature, were it
unchecked. 'As this is an absolute and not a proportional
quantity, we must divide our original quantity for change of
span, § 7, by BI. = We shall, therefore, have for the new
condition,

H,.2EF.DE

B + 2lec =0,

where H, is used to signify the horizontal force (thrust or
tension) which is occasioned by the change of temperature ; or,
if we clear of fractions, we get the more convenient expression

H;.2EF.DE 4+ 2EIteec—0.

A rise of temperature will make H a thrust or positive, while
a fall of temperature will make H a tension or negative. = The
double sign is not needed in the above equation if the sign is
contained in the symbol ¢, that is, if ¢ is negative for a diminu-
tion of temperature below the one at which the rib is con-
structed or laid out.  The bending moments exerted on the
rib will be of the contrdry kind when H, is minus, while the
ordinates are unchanged.

74. Application to Parabolic Rib, Hinged at Ends. —
To take up first the case of the parabolic rib hinged at ends.
The amount of H, is to be determined. As there can be no
bending moment at either abutment, and H, at each abutment
is the only applied force, the equilibrium polygon or'line of
thrust, Fig. 16, must be in the line Joining the two springings.
The bending moment at any point will, therefore, be equal .to
the ordinate to the rib at that point, multiplied by the desired
value of H, The expression SEF.DE therefore becomes for
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this case = D E?; and we have, transposing the second term of
the equation of the previous section,

H,.ZDE*=2EZXi¢ec.

The value of =D E2? was shown in § 89 (2.), to be 1§ #2¢;
therefore, substituting and transposing, we see that

teEBI

H; = J~g5~ -

a value which is independent of the span. ;
The maximum bending moment, which occurs at the middle
of the span, where the ordinate will be £, is

teBI

M (max.) = & 3

The ordinates at all the usual points of division will be the
values of z, used repeatedly before; and, by multiplying Hf by
these several values of 2, the bending moments at all points
are obtained for a given change of temperature t. A.n
additional line can be placed below the table of M to contain
these quantities, so as to have them convenient for use. All of
these moments will be positive for a fall of temperature k')elow,
and negative for a rise above, that at which the rib was designed.
The worst effect of either change must be provided for.

75. FPormula for Change of Span deduced analytically.— If one
likes to prove this value for change of span analytically, he may proceE(.l as
follows: Let any ordinate to the arch be denoted by Y and the abs‘c%ssa.
measured horizontally from one abutment by z. The'n, p— ‘the ver t..lcal
deflection ordinate, that is, the deflection of any point from its original
position, we may write the usual equations for curvature, slopfe, and deﬂ.ec-
tion of beams, recollecting that this arch acts like a beam of uniformsection
in deflecting vertically,

.@_LL-Q= Ahid;c;andn:f £(11‘.
dz? T BI'dz BEI EI

NowM=Hy= Hzﬁ’ (2 ¢ z — 2?) ; therefore

H % __H k 3 28 :
%’:=ﬁ.?‘/'(‘.20:&—:::5’)d:z:__—:.TI.c2 cz 3+C)
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Z: 0, for z = ¢; therefore C = —%¢3. Then
dv H % s
Ezil.?(cx‘—{,xs—gc‘). (a.)

If u = horizontal displacement of any point, the infinitesimal horizontal
displacement d 4, due to the movement of the portion of arc ds, will give,
as may be seen to the right of Fig. 16,

du:dv=dy;:da.

Sincey:-(%(ch~—x‘-'), dy:i:.(‘.?c-—Qx)d:t, and we have

P
du=— f(c-—-a:)dv.

Substitute the value of d v from (a.), and it becomes

2
du:%. 26—1:(0’3:’—&0:53——'5’04—~|—§x4+§c"x)dz.

If this equation is integrated between the limits 0 and 2 ¢, we obtain

H

WA 13 % ¢, which will be seen to correspond with the value of

2tec in the preceding section.

76. Application to Fixed Parabolic Rib.— If we turn
next to the rib with fixed ends, it will be manifest, that, since
there will be bending moments at the springings, the line which
corresponds to the equilibrium polygon and limits the ordinates
for bending moments cannot now pass through those points.
As the resistance to expansion or contraction is the only cause
of those moments, the two abutment moments will be equal,
and the line will be horizontal. In order also to satisfy the
condition that the change of inclination at the abutments shall
equal zero, or, as expressed in §18, ZE F = 0, the horizontal
line must be so drawn as to make the areas within and without
the arch equal to one another, which will occur when the line
is drawn at a height of 3% above the springing, as seen in
Fig. 17. To prove the equality of areas it is only necessary to
recall the fact that the area of a parabolic segment equals two-
~ thirds of the enclosing rectangle. The area included within the
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whole arch will therefore be % .2¢=4%ec. The rectangle of
height %4 % has the same area. Therefore the portions of the
arch area and of the rectangle which do not coincide must
be equal to one another. The third condition, of § 19, that
SEF.DB =0, or the equality of area moments, is also
satisfied by this construction; for the rectangle multiplied by
the half span, which is the distance of its centre of gravity from
one abutment, is equal to the area included by the whole arch
multiplied by the same distance.
To deduce in this case the value of H,: as before,

H,.2EF.DE £+ 2EItec=0. (1)
From what has just been stated,
SEF.DE=*(DE—3*)DE=:DE'—}k.=2DE. (2)

The first term, as before, amounts to 1§ £ ¢; since XD E = area
enclosed by the arch, — 4% e, the second term is § #*¢; there-

fore
teBI

H;. £Fe=2BItec, or H =48 T

The bending moment at the crown will therefore be

teBI

M=H.} k=%

and at the springing,

teB

M:I‘I{.%k:‘.‘f"- E

or double the former amount, but of the opposite kind. Whether
the bending moment at either point is pesitive or negative,
depends upon whether H, is tension or compression. These
moments also can be conveniently added to the proper table for
M, as explained for the first case.

T77. Comparison of Arches under Change of Temper-
ature. — The bending moments for temperature, in both {:he
arch with hinged ends and that with fixed ends, will vary like
those of a beam uniformly loaded, and either simply supported
or fixed at the ends. Part IL., « Bridges,” §§ 95, 99.
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It may be well to notice the comparative straining effect of
the same change of temperature in the two classes of parabolic
arches, for ribs of the same rise. H, is six times as great when
the arch is fixed as when it is hinged at the ends, and the direct
stress in the ribs will therefore vary in the same proportion.
The maximum moment, at the springing, for the rib with fixed
ends, is four times as great as at the crown of the rib with hinged
ends, and of the opposite kind ; while the value of M at the two
crowns is as two to one against the rib with fixed ends.

78. Shear from Change of Temperature. — The shear on
a right section can be shown by the accompanying Fig. 18. . If
a b represents the amount of H caused by a change of temper-
ature, we may draw a d and b ¢ parallel to the upper and lower
flange ‘at any right section S of the rib, when ¢ a will be the
value of the direct stress at the section, one-half in each flange,
and be will be the shear.*  The bending moment will have any
magnitude, depending upon the length of the ordinate from the
equilibrium line to the point on the centre line of the arch where
this section is taken. As ae and gb are parallel, the perpen-
dicular distance b ¢, = ¢ d, between them is constant, so that £ d
may be taken, for our purpose, to represent the stress in one
chord, and g ¢ that in the other due to bending moment, the re-
sultant stresses being a d and ¢ 4, while the shear on the right of
a right section of the web will be d ¢. Since the resultant stress
at any section must be H, the directions of the forces, shown
by the arrows, in this closed polygon, are at once fixed. As the
inclination of the arch changes, the value of ed will change,
being zero at the erown and a maximum, at the springings.
The arrows denote the case where H is a thrust. The bending
moment will be negative, if the rib is hinged at the ends, the
bottom chord will be compressed, the top chord will have a
force exerted upon it amounting to the difference between the
direct thrust and the tension due to the moment, and conse:
quently ¢ b will be the stress exerted by the top chord against
the right side of the cross-section in the accompanying sketch.

79. Diagram for Vertical Shear. — Let us suppose a fall of

*In Fig 18, the point f should bisect ¢ a.
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temperature to take place; the rib will have a tendency to
come down at the crown. We recall the fact that a uniform
load has a parabola for its equilibrium curve, and a load of the
proper intensity on any parabolic arch will produce the value
of H which is now supposed to exist. It is evident, then, as is
also shown by the sign of M, that the rib may be imagined
to be loaded uniformly horizontally with a weight sufficient to
produce this deflection or these values of M. This imaginary
weight will be just sufficient at all points to balance the com
ponent of an opposite kind which is required in combination
with the value of H, (in this case a horizontal tension), in order
to give a resultant stress in the divection of the tangent to the
rib. And, further, if this weight were not just: sufficient to
balance the above component, a remainder, of one sign or the
other, would be found at the abutments, as a vertical component
of the reaction there; but we know that no such vertical com-
ponent exists. If a bent spring is pladed with its two ends on
a horizontal line, and compression or temsion is applied in that
line, no vertical force is needed for equilibrium. As the uniform
weight was entirely imaginary, the vertical components must
be supplied by the web and flanges, and hence we conclude that
the diagram for vertical shear in the arch affected by a change
of temperature, will be that of an ordinary.truss, supported or
fixed at its two ends, and carrying a complete uniform load,
and that the normal component will be carried by the web.
For a fall of temperature, therefore, the shear on a vertical
section will be of the same kind as, and, for a rise of temper-
ature, will be of the opposite kind to, that produced by a load
on a truss with horizontal chords.




CHAPTER VI
OIRCULAR RIB WITH HINGED ENDS.

80. Circular Rib to be of Uniform Section. — Passing
next to the consideration of the arch whose curve is the arc of
a circle, we shall assume that the rib is of uniform section, and
not, as before, of increasing breadth from the crown to the
springing. As the rib is of uniform section, it can no longer be
compared to a horizontal beam, as regards its change of inclina-
tion and deflection under bending moments, and the length
along the arch, instead of its projection on a horizontal line,
must be used in spacing off and in summing up the usual
quantities ; that is, the sum of the changes of inclination
between any two points will be made up from the change of
inclination at each successive point along the rib. We must
therefore use d s for d = in our integration, where s denotes the
length of an arc; and polar co-ordinates will, in the more com-
plex cases, be used in place of rectangular ones. In spacing
off the rib for equal divisions, or for summing the ordinates
arithmetically, the measurements will be made along the curve,
and each division will subtend the same angle at the centre of
the circle.

We stated, it will be remembered, that a segmental arch of
the circular type, if the rise did not exceed one-tenth of the
span, might, without serious error, be treated as if it were
parabolic. In discussing circular arches, there will be so many

points similar to those we have already explained, that we shall
80

R ——

L T ———

ARCHES. 81

not go into much detail on some points, but leave the reader to
make the extended application as examples come up in his own
practice.

81. Experimental Verification.— The values to be obtained
for yy, for a rib of uniform section, curved to the are-of a cirele,
and hinged or free to turn at the ends, can be readily verified
or illustrated experimentally as follows: — Take a piece of
moderately stiff iron wire, and bend it accurately into the
desired shape, A C B, Fig. 19; suspend the wire from a
horizontal bar E F by means of strings fastened at A and B,
and then attach a weight at any point C. It will be convenient
to stretch a thread from A to B, which, as the span is to be
unchanged, will not interfere with the reactions. If the point
E is now moved horizontally, the length of the string E A being
at the same time changed, the line A B ¢an be brought parallel
with E F, as can be readily ascertained with a scale. Then E A
and.F B prolonged will meet at D on C D, and D G will equal
Y- E A and F B will actually interseet on the vertical through
the centre of gravity of the wire and weight combined ; but if
the weight of the wire is as small as is consistent with stiffness,
while the weight at € is large in comparison, the centre of
gravity will practically be in CD. If A B becomes slack, it
shows that E and F are not sufficiently far apart. By fastening
two long threads independently to E and F, the lines E A and
F' B can be easily prolonged to an intersection. ’

82. Semicircular Arch with Hinged Ends; Value of Yo
— If the rib with hinged ends is first taken up for discussion,
the value of g, for a load at any point on a semicircular arch is
easily obtained by a simple device. Recurring again to the
usual formula in its modified form, we must satisfy the condi-
tion

EDE*=:2DE.DF.
If we let DE, Fig.20,=2; DF=y; AD=2z; and represent
a small portion of arc by d s, this equation becomes, for the

entire semicirele,
w w
f Z2ds :f yzds.
0 0
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If we draw a radius from any point E of the rib to the centre
0, and also draw the infinitesimal triangle whose sides are d s,
d zyand d z, we shall have, from similarity of triangles,

riz—1ds:dx, or zds=rdz;

substituting this value in the above equation, we get

2¢ 2e
rf zdx=r ydz.
0 0

The integral of zdz between the given limits is the area of
the semicircle, while that of y d z is the triangle A C B. Substi-
tute the value 17 7* for the former, and ry, for the latter, and
we obtain

%ﬁrs = )""yo; OF ¥y = -%1.‘7' = 1.5708 7.

The ordinate ¥, for a load at any point, on a semicircular
rib with hinged ends, is therefore a constant quantity, equal to
the length of the half rib. If we draw a horizontal line at this
height above the springing, it will contain the vertices of all
the equilibrium polygons for single loads.

< 83. Segmental Arch; Value of y,. — If the arch is cecr-
mentdl, that is, less than a semicircle, we shall use the follow-
ing notation: Let the angle N O B, Fig. 21, subtended at the
centre of the circle by the half arch, be denoted by #; the angle
N O, from the crown to the point where the weight is placed,
be denoted by «; and the angle N O E, from the crown to any
point where the ordinates D E and EF are measured, be . The
radius of the arch = . If, then, A C B is the desired curve of
equilibrium, C K =g,. The value of this ordinate will be proved
to be

sin 3
(sin? 3 — sin%a) - 2cos 3 (asin ¢ -+ cos @ — @ sin 3 — cos B)

D] a3
(sin® 8 — sin’a) <,; boj2eomdh .\ 19 ong ,9)
yo —4 2

If the arch is a semicircle, f = 90° = ] 7, and this value reduces
to gy, = Lmr, as previously obtained.

The wmk of computing y, for different values of « is not
great; as, for a given arch, g is constant, and the second factor
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of the numerator is a constant quantity. Since a segmental
arch may subtend any angle, it is not worth while to go into
the computation here of values of y, for a given value of g; but,
as examples of y,; we will give
If p=45° and e = 0°, then y, = .39 r nearly.
« 450« 3o, « A2r «
“« Bo° « 3o, o« Ty w
All that one needs for the calculation from this formula is
an ordinary table of natural sines and cosines. The angles or
arcs § and « are to be expressed in lengths of are, which subtend
the given number of degrees, to radius unity.” The are for one

degree being —- 180’ or 0.017453, any other arc will be obtained

by multiplying this quantity by the number of degrees which
the arc subtends, minutes being expressed as a decimal part of
a degree.

84. Proof. — From Fig. 21 we have D E = r(cos ¢ — cos ).
DF:CK=AD: AK_r(sinB-{—sinB):r(sinﬁ—}-sirm)
the left of K, |\ cin i din. 0
on the left o or DF em;}—}—sma!/
thokicht =S}nﬂ—sm0
on the right of K, DF GG —sn
Substituting these values in the usnal equation, §39, S DE*=3DE. DF,
we obtain for the first member of the equation, remembering to use

ds=rdg in place of dz, and considering angles to the left of ON as
negative,

+83 +8
r3f X (cos § — cos3)*d o = r3 [ (cos*@ — 2 cos B eos - cos®B) d g*
- o _B .

=13 (B - 2pcos’ 3 — 3sinBeos B). (a.)
For the integral of the second member between a and — g we have

29, L . . -
SnA T sina f_p(sm Bcos 6 - sin g cos ¢ — sin Bcos B — cos@sin 6) d gt

‘fcos20d0=f}(0+sin8cosl9); cos — B = cos 3; sin — = —sgin f.

Tfsin0c050¢10=—1}cos20.
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— L)
" sinf--sina
- cos acos 8 - sin®*p — % cos® 3 — @sin Bcos3).

(singsin 3 — } cos*e — asin Bcosp

Likewise for the integral of the second member between a and 4 8 we have

a
Y
sSing —sina

2N : ; .
f (sin 3 cos § — sin § cos # — sin Bcos 3 - cos3sin ) d o
a

Yy 2 . . s
= ——2_—— (sin*f — L cos"f — (Bsin Bcos § — Sinesin
sinf3 —sing ( =3 f A 8 B B

— }cos®a - asin Bcos B -}~ cosacos B).

These two quantities are to be reduced to a common denominator, added
together and equated with the first member (e.). Upon making simple
cancellations, dividing through by sin 8, and factoring, we get the form of
¥ given in the last section.

85. Formula for H; Value of Ordinates. — When the value,
of y, is computed, we can readily draw the stress diagram of
Fig. 21, and scale the value of H; or the formula proved before,
§ 40, may be applied here, and is easily converted into the third
form,

W -9 AK.KB _ r(sin*g —sin*a)

H= =W

TTifem, 2¢° _OKIAB  /y,.28n8 W. B

If calculations have already been made for g, the quantities
desired for this formula are at hand.

Then the ordinate at each point of division, by which H is to be mulfi-
plied to give M for that point, will be, from § 84, if ¢ is the angle between
the two radii from the crown and the point E,
sing + sing

EF:DF_DE:y“sinﬁ + sina

r(cosg —cosf). (2.)
The plus sign is to be used for points between the weight and the farther
abutment, and the minus sign between the weight and the nearer abutment.
‘We must remember, however, that, if ¢ is measured from the crown to the
right as the positive direction, all angles g on the left of the crown will be
negative, and their sines will be minus. If EF is plus, it gives a positive
bending moment, tending to make the arch less convex, and vice versa.

86. Numerical Computation of M. — In any practical case we should
much prefer, as more easy and sufficiently accurate, to scale all of these
quantities from a good-sized diagram; but it may be well to compute one set
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of values of M as an example, for fear the signs may give some readers
trouble. ~Taking the case of Fig. 22, let 3 =45° and a — 20°. Then
the arc g =.7854 and o« =.3491; sin B = cos § = 70715 sin a = .3420,
cos @ =.9397. These values, substituted in the equation of §‘83, give

5]

(.5 —.1170 (.7854 = —2.1213)
ot ) *./011 __.0384 —d .
0= " 5—.1170 4 1.4142 (.1194 -.9397 —.5664 —.7071) —.0054 " — 10375

(1.), § 85, will then become

_ (5—1170)r . .383 .
= 1.4142 % .403~ W= 570 W = .672W.

Sin 8+ sine = 1.0491; sing — sine — .3651;

Yo __ A403r

— g 1Y e . DS SO 403 » .
sinf --sina ~ 1.0491 — G Sing — sina __ .3651 1.104r.

VALUES oF M.

(4
gin B =

+ sin g

Mult. by 0843
584 =

— co8 § 7660

—. 7413 |—. 7995 [—. .7 X —. 6950
+ con 3 7071 7071

—.0842 |—.0704 —.0728 |—.0214 '4-.0605 |4-.1708 ||+-.0607 [4-.0121
X672 W |—.0230 |—.0584 0489 [—0144 1+'0407 41144 (14,0468 [4-.0081 | rW=M

87. Shear at any Right Section. — Suppose that the rib of
Fig. 22 carries a single weight under the point C, and that the
curve of equilibrium is ACB. If 012 is the stress diagram,
2-3 will be the vertical component of the reaction at A, and 3-1
that at B. To find the shear on a right section near A, as at
E, lay off 2-3, or P, in Fig. 23, and draw H so that the arrows
may follow one another; then from 0 draw a line 0—4 parallel
to the tangent at E; the perpendicular distance 4-2 will be the
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shear in the web. For we see by the direction of the arrows
that these forces last drawn balance P, and H, and, as in
Fig. 18, no matter how much the bending moment, and hence
the flange stress, may be, the perpendicular distance 4-2 is
unchanged. The line 0-4 will be the magnitude of the direct
thrust.  Both. of these forces are given on the right of the
section, and this shear is therefore negative. In the same way,
for the point E near B, draw 1-8=—P, and 8-0 = H; draw
0-8 parallel to the tangent at E; 8-1, perpendicular to it, will
be the shear on the right of the section, again negative, and 0-8
will be the direct thrust. It is noticeable that the normal shear
in the web near the left abutment is opposite in sign to P,
while near the right abutment it agrees in sign with P,.  For
the kind of brace needed, see Fig. 10. Tt is evident that these
figures may at once be drawn on the stress diagram, where 04
and 4-2 are already sketched. Such a way will answer well
for a few points on a large figure, especially if we have applied
such loads as give the maximum shear at any particular point.
If, however, we desire to see the variation of the shear across
the span, we may draw a different diagram.

88. Shear Diagram. — As the tangent is perpendicular to
the radius at the point of contact, we may at once see that the
angles marked 8 in Fig. 23 correspond with the angle # made
by the radius to the crown and that to the point E. Hence we
get a value for the normal shear, P cos # —Hsin 6. As the
point E is distant horizontally from the middle of the span an
amount 7sin 0, the last term of this expression for shear varies
directly as the distance from the centre; and if we draw 3-T, in
the stress diagram of Fig. 22, parallel to the radius at A, cutting
0-6 which is parallel to the tangent at A, 3-T will be H sin 6 for
A, and may be laid off at aw and br of Fig.23. The vertical
ordinate e d will then represent H sin § at any point. P, is laid
off at ¢/, and P, at em ; with ¢ as centre, and these two distances
as radii, draw the dotted arcs seen in the figure; lay off several
angles 0 at ¢, as, for instance, lcg and men for the points E;
project g and n horizontally to f under the respective points E;
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df will be P cos @, and from several similarly located points the
curves sl¢ and »fr are found. Then at any point the vertical
distance df—ed or e¢f will be the normal shear in the web on
the left of the section, positive if above the inclined line, neg-
ative if below it.

From the formula P cos § — H sin 6, a table of shears may be
easily computed for any given arch. P sin# 4 H cosg will give
the direct thrust.

89. Distribution of Load to produce Equilibrium. — A
series of lines drawn in the stress diagram from 0, parallel to
the tangents at a number of equidistant points in a circular rib,
will cut off such portions of the load line as represent the loads
necessary to make the successive sides of the equilibrium polygon
parallel to these tangents, or, in short, coincident with the rib.
But the lines radiating from 0 will successively intercept
increasing lengths of load line. Hence the load which will keep
a circular arch in equilibrium must increase in intensity per
horizontal foot from the crown to the springing, and must
become infinite at the springing of a semicircular arch. Hence
it follows that no amount and distribution of vertical load can
make a semicircular arch a true equilibrium curve, that is, one
which has no bending moment at any point. In fact, no curve
which starts vertically from the abutment can be an equilibrium
curve under vertical loads. This may be seen in a more simple
manner if we consider that no arrangement of weights will
cause a cord, attached at two points, to hang in a funicular
polygon whose first side is vertical.

90. Effect of Change of Temperature. — The horizontal
thrust or tension, due to a change of temperature, in a circular
rib hinged at the ends, is found by a similar method to that
pursued for the parabolic rib. Referring, to avoid repetition,
to what was said at that time, §§ 71-73, the equation may be
written, as given in § T4,

H,.3DE*= 4+ 2BI.tec.

Fig. 16 will answer for this case, if we imagine the arc to be
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circular. As we saw, in § 82, that =D E? for a semicircular
arch was 4 » 7%, a substitution in the above equation gives at
once
4EI.tec Elie

=2 C=t 120 =
for a semicircular rib. The bending moment at the crown,
where it is a maximum, will be
4EBIle

M (max.) = T

If the arch is less than a semicircle, (a.), § 84, gives

=D E2 =8 (34 2p8cos*3 — 3sinpcosp),
and ¢ = rsin §; therefore, substituting, we obtain

2EItesing
% (3 -+ 2 cos* 3 — 3 sin B cos 3)’

H==+

and the bending moment at the crown will be

2EItesin g (1 — cosp)
r (3 -+ 23 cos* 3 — 3 sin 3 cos 3)

M (max.) =

91. Shear from Change of Temperature. — If a load of
the proper amount and distribution were imposed on the rib to
place it entirely in equilibrium, and cause it to exert against
the abutments the desired value of H due to temperature, such
a load would supply the amount of shear needed at each section,
and, when the load is absent, the bracing must supply such
shear. The line wecer of the shear diagram of Fig. 23 will
therefore limit the ordinates for shear at right sections of the
web under changes of temperature, when 0-3 is the amount of
H,. A reference to § 78 and § 87 will aid the reader in recalling
these points.

CHAPTER VIL
CIRCULAR RIB WITH FIXED ENDS.

92. Values of Equations of Condition. — When the cir-
cular rib is fixed at the ends, we apply the three equations of
condition which were developed in §§ 17-19, summing up the
ordinates, however, along the arch, as has just been done in the
preceding case, in place of the horizontal line. When the arch
is a complete semicirele, or, as it is often called, a complete
arch, as distinguished from a segmental one, the value of y,, ¥,
and y, may be obtained by a device similar to the one employed
in §82. The equation to satisfy the first condition is easily
derived, but the two others present more difficulty ; it is there-
fore not expedient to take up the semicircle as a special case,
but rather to work out the general equations, and make the
necessary substitutions.

In the arch of Fig. 24, let AN =g, CK =y, and BR = y,;
MOB=MOA =§ MOI =4, and MOE, to any point E,
=6, angles to the right of M being positive. The notation
agrees with that just used. Then it may be proved that the
three equations of condition will reduce to y

sin By, -+ 4 (sin B 4-sine) 3, -+ 4 (sin B —sina) yo= (B —sinBeos B) r; (1.)

— sin B (cosa — cos B -} esina — Bsing) y,
~+ 4 (sin g — sina) (cos @ — cosB -+ asina 4 @sina)
-+ 3 (sin B -} sina) (cosa — cos B 4 asine — Bsina) ¥,
= (sin g — BeospP) (sin?@ —sin®a)7; (2.)
89
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[([3'— cosBs.sina) sine — (a - sinacosa — 2sin acosg) sin 8] y,
-+ é (sinp — sin a) (a 4 sinacos a 4 B — sin Bcos @ — 2sin acos )y
<-4 (8in 3 +4-sin @) (e sin acos ¢ —B3+-sin B cos 3 —2sin acos B) y,—=0. 3.)
It will be easier to solve the numerical equations after the
values of « and g, with their sines and cosines, are introduced,
than to deduceindependent values of ,, &c., at present. They
may be written more briefly, for convenience in substitution, if
sinf —sinag =a; sin 3+ sina==5; q ~+ sinacosa — 2sinacos g =¢;
B —sinfeosp=d; cosa— cos f + asine =e;
sinBy,+4by 4 daype=dr. (4.)
— (e —Bsing)sinpy, + 4a (e 4 3sin @)+ 3 b(e — 3sina) y,
=ab(sin g — 3eos@)r. (5.)
(dsina — csing) y, + 3a (c + d) z, +4b(c—d)y.=0. (6.)

93. Special Values for Semicircular Rib. — If the arch is
a semicircle, =3 n; sing =1; cos § =0; and the three equa-
tions of the last section reduce to
Yo+ 3 (1+sina)y+ 4 (1 —sina) o= 4nr; (L)
(37— cosa—asina)y, - 3 (1 — sina) (cosa -+ asing 4- 3 rsina)
~+ 4 (1 + sing) (cosa 4~ asina — } nsing) y, = a— sin*a%)r; g.?)g

(3nsina — ¢ —sinacosa) 7, 4 3 (1. — sin a) (esinacosa 4wy
+7}(1+sina)(a+sinacosa—{;n)g/,:O. 3.)

If equation (1.) is multiplied by e, equation (3.) may be
added to it, and then (2.) may be multiplied by sin «; and
subtracted from their sum, when there will result

(@+ir—irsind)y 4 (a—2r—Lnsine) o= (3ra—sine)r. (4.
.If (1.) is multiplied by 3 = — cos « — asin , and equation (2.)
is subtracted from it, we shall get, upon dividing by the com-
mon coefficient of ¥, and y,,

) — 3737 —cosa— asina) — cos?a
$Gnt 9 4w —2co8a— 2asina 4 }rsin’a

which, if the quantity in the parentheses be represented by g,
may be written,

7y

ot w=Arg—cose gy

2g—4mcos?a

ARCHES. 21

Upon multiplying this equation by 2 « — % zsin «, and subtract-
ing it from (4.), we obtain, by factoring the second member,

([é 7;) (acos? a— gsin a)

==
us

$(h—yp) = r. (6.)

2g — } meos?a
The sum of (5.) and (6.) will give y,; their difference will
give y,; and these values, inserted in (1.), will readily give
us Yo

94. First Equation of Condition. — Many of the following expressions
are similar to those of §84, and a remembrance of the relation between
7 and % will, in a measure, prevent the ensuing work from seeming so
involved as it otherwise may appear, Generally, coefficients of ¥, and ¥, will
differ only in the signs of the terms which contain « and sine.a. The firs§

condition is
:DE*=z2DF.DE.

From § 84, we have
2D E? =13 (3 + 2 3 cos?3 — 3sin 3 cos B).
It will be seen, from Fig. 24, that DF —=DL 4+ LF =1y (or %) + LF,

D L in the sketch being negative on the right of K, and that, therefore, in
place of the values of the section just referred to, we shall write

sin 3 4 sin ¢
sin 3 4 sina
sin3 — sin g
sin 3 — sina

DF =y + (yo — ), on the left of K;

DF =+ (¥, — ¥s), on the right of K.

For the value of the second member of the above equation of condition
between a and —3 we have then, since D E = r (cos 8§ — cos3),

r’fﬂﬁ[% (coso—cos,?)-i-gn‘y;gﬁfﬁl (sin B cosi6—}sin 0 cos 0 — sin 3 cos B

— cos 3 sin 0)]*d 9§ = 2 [y, (sin @ — a cos B -}~ sin 3 — Bcos B)

+s__ﬁ?%)_?s/;n_ (sin a sin @ — 3 cos® @ — a sin 3 cos B - cos'a cos 8
:F a

- sin?3 — } cos? 3 — @sin Fcos B) ]

Likewise, for the value of the second member between ¢ and +4- 3

* Compare § 84.
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- K2}
[y (cos 6 cosﬁ)-{-m (8in B cos ¢ — sin 6 cos @ — sin B cos 8

-+ cos 8 sin 6)1¥d 9 = r2 [y, (sin B — B cos B — sina 4 a cos f)

Y
+m’_—sma(sln2ﬂ 4 c0s? 3 —psin B cos f —sin asin f— } cos?a

- asin B cos 8 4 cos a cos B)].

Equating the sum of these two quantities which make up the second
member, with the first member, we obtain the first equation of condition,
which, when cleared of fractions, becomes

Yo (25in® 8 — sin B cos® g — 2Bsin% B cos B — cosasin B+ 2cosasin Bcosg
—2sin2asin,3+2asinasinﬂcosﬂ)+y, (3 sin B cos? g — sind ¢
-+ e sin® e cos 8 4 B sin? a cos 8 -+ 4 cos? a sin B — cos a sin B cos 8
— 4 sin q cos? ¢ — a 8in a sin 3 cos 8 -} sin acos acos 3 -} sin ¢ sin? B
— $ sin g cos? 8 — @ sin @ sin Beos B) + 7 (4 sin @ cos? B —+ sindq
— a 8in? a cos g 4+ B sin? ¢ cos 8 =+ 4 cos? asin B8 — cos « sin @ cos 8
~+ 4 sin a cos? ¢ — a sin ¢ sin g €08 3 — sin a cos a cos # — sin asin? 3
+ 4 sinacos? 3 f- 3 sin asinf cos B) = r (sin? 8 —sin?a) (842 B cos? 3
— 3 sin 3 cos B).

95. Second Equation of Condition. — The next condition to be satis-

fiedis *DE = = DT, or, introducing the values of these quantities from
the preceding section,

+8
r’f_ﬁ(coso—cosﬁ)dazr “ [y,-{—L-— (sin g+ sing)]d o

sin 3 }-sina
+ f e

T G sma (sin 8 — sin 6)] d 6.

Performing the indicated integration, and clearing of fractions, we obtain

yo(2ﬂsin“ﬂ—"COSasinB—{—‘)sinﬂCOSB—‘)asinasinB)+J,(~/351n2a
—asm'a—{—cos«;sm[j—smﬂcosﬁ—}-asmasm;3+ﬂsmasmﬂ
—smacos«z—{-smacosﬂ)—{—y (— B sin®* a + a sin* a - cos a sin 8
—smﬂcosﬂ-{-asmasmﬂ ﬁsmasmﬁ—}-smacOSa—smacosﬁ)
=2 r (sin’ B — sin® a) (sin 8 — 3 cos 3).

* Compare § 84.
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96. Third Equation of Condition.—The third condition, in the modified
from of §59,is ZDE. DB =2DF.DB. Since DB = 7 (sin 3 — sins),
this condition becomes, by multiplying the previous condition by D B,

+B. . . < s
7-3f3 (schoso—smﬂcost)—smﬁcosﬁ+cosﬁsm0)d8
—=

=7 f [_/.(91116—%1110)+W[Z'T(sin’ﬁ—sin’0)d0

+ r’f [¥2 (sin —sing) 4~ (sin’3 —2sin 8 sin 6 - 8inp)] d 9, *

sin ,’3 — %m a
which, when integrated and cleared of fractions, gives

Y% (28sin®B — asin B —sinacos asin 8 - 2sin*Bcos B — 2 asinasin? B
-} B sin a -}~ sin @ sin 3 cos B — 2 cos a sin® B) + y, (— § sin® B cos B
- cosasin®3 — @sin®esin 3 —asin® asin 3 + sin*acos 3 — } sin*acosa
+ 4asin— tsinacosasin 34 } Bsin B4 @ sin asin? 3 - asin asin®3
— 4 asine— 4 Bsina-} § sin e sin B cos 8) -+ 7 (— 4 sin® B cos B
- co0s a8in® 8 — 3 sin* a sin 3 - ¢ sin* ¢ 8in 8 — sin® e cos B -} 4 sin’ a cos a
+ 4 asin3|-§sinacosasinf —4Bsin B3 — B sinasin®3-4-asinasin® g
+4asine—4 Bsine— §sin a sin 3 cos §) =2 r sin B (sin® 3 — sin’ a)
(sin 8 — B cos 3).

97. Reduction of Equations.— If the second equation of condition is
multiplied by cos 3, and added to the first, there results an equation in which,
as soon as we write 1 — sin®q for cos® g, and 1 — sin® 3 for cos® 3, there will
be found a common factor (sin*3 — sin®q). This being cancelled out, there
results (1.), § 92. The second equation again may be divided by 2, and then
factored, by simple inspection, into (2.), § 92. Finally, the second equation
of condition may be multiplied by sin 3, and subtracted from the third, when,
upon factoring, we obtain (3.), § 92.

It will be seen that the solution of (4.), (5.), and (6.), § 92, for any given
arch, and for several values of @, will not involve much work, owing to the
recurrence of the known factors denoted by a, b, c, d, and e. As the arch
may subtend any angle, it will not be expedient to go into caleulations here
for any special values of 3. One case will be taken up later.

98. Values of H, &c.— When the desired ordinates for any
arch are computed, we have the option of obtaining the values

'fsinft?do = 4 (6 —sinfdcos f). See also note to § 84.
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of H, of the vertical components of the abutment reactions, and
of the ordinates for bending moment, either by graphical con-
struction, or by formule similar to those applied to the parabolic
rib. By noticing the expressions to be substituted for &, ¢, and
k in the case of the circular arch with hinged ends, one can
readily adapt the formule of § 63 and § 65 to the computations
for this case. The ordinates to the circular arch will be the
same as, in § 85.

99. Table of g, 7, and y, for Semicircle. — We may, how-
ever, obtain the ordinates y, &c., for a semicircle with com-
parative ease; and, as such a rib is sometimes used for large
roofs, these values may be convenient. Semicircular masonry
arches, having backing above the abutments, present a different
case.

If « is taken as 20° or .3491, sin e« = .3420, cos ¢ = .9397, and
$ 7 =1.5708; hence, in § 93, g = .5117, and (5.) and (6.) be-
come
—.0792
—.3646
—.2977 % .1333

—.3646

ri=.2172r;

Pt y) =

P h—p) = r=.10887;

whence g = .826 7, and y, = 108 ». By substitution in (1.),
§ 93, y, = (1.5708 — 2187 — .0357) r =1.316 .

If similar computations are carried out for other values
of «, we shall complete the following table for a semicircular
rib with fixed ends:

a h- Yo Yoo

0° 241 r 1.330 » 241 r
10 .288 1.326 .183
20 .326 1.316 .108
30 .360 1.298 .011
40 987 1.275 — .125
50 413 1.245 — .330
60 434 1.210 — .66
70 455 1.170 — 1.333
80 475 1.125 — 3.319

Other intermediate values can be obtained, if desired, by the
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formula for interpolation, § 45. The number of decimals it is
desirable to use in any particular case will depend upon the
value of ». The equilibrium polygons for these ordinates have
been drawn in Fig. 25, and from them we get the different
values of H, for a weight W at the several divisions, as shown
in the accompanying stress diagram.

100. Example. — As an application of these results, let us
draw the equilibrium curve for a semicircular arch of uniform
section carrying only its own weight. As this weight is sym-
metrically disposed, " =g,". By drawing the stress diagram
of Fig. 25 to a sufficiently large scale, we shall find by
measurement, that H, for a weight at the crown, 10°, 20°, &e.,
from the crown, will be .46, .44, .89, .31, .28, 14, .07, .02, and
.01 W respectively. If we double all of these values except
the one for a weight at the crown, and take the sum of the
whole, we shall obtain for the horizontal thrust, H’ = 3.68 W
for 17 loads, each equal to W, at the 17 points of division in
the whole arch.

To find gy, multiply each y, by its- H, remembering, that,
when the weights are on the left of the erown, the values of y,
in the table of § 99 become y;, and that we may, therefore,
before multiplying by H, add together g, and y, for each point
except the erown, and then divide the sum of these products
by H', just obtained. (Compare § 67.) For example, for a
load W on each of the two points distant 30° from the crown,
Hy + Hy, = .31 W (0860 4 .011) » = .115 » W, the value of
M at the abutments. Performing the operations, and taking the
algebraic sum of the products, we get .6225» W for the total
6225 » W
368W

To construect the equilibrium curve, we divide the semicirele
A CB, Fig. 26, into eighteen equal parts, each subtending 10°,
and draw verticals through the points of division. Assume the
weight of the arch to be represented by a vertical line of any
convenient length. Since the loads are supposed to be con-
centrated at the points of division, one-eighteenth of the gross

moment at either abutment, and =017 r =9 = %"
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weight of the arch will be found at each of these point‘s, and one-
thirty-sixth at A and B; for A and B will each carry directly one-
half of the adjacent division. Therefore, beginning .and closing
with one-thirty-sixth, space off the load-line into eighteenths;
from the middle of the load-line lay off H' = 3.68 W = 3-0,

, _3.68
where W = weight of one division, or H' = 18 = .204 of the

whole weight of the rib. One-half of this load-line 15 1-3. Lay
off ¥/ and y'= 177 at A and B, and dr:fw the'SIdes of the
equilibrium polygon parallel to the lines which radiate from the
extremity of H’ to the points of division of the load-line, thus
obtaining the curve E G D. The second half of the curve was
obtained by spacing off 0'-3 to the left.

101. Practical Application. — Having at hand a wooden
model of an arch-ring, representing the voussoirs, or stones, of
a semicircular arch, we tried some experiments as tests of the
accuracy of this method of analysis and of the correctness of
these results. The arch is represented by Fig. 26, and consisted
of forty-two independent voussoirs. The span, A B, 'of the
middle line of the ring, 18 inches, was 13.09 times tlxg thickness
of the ring, and the structure would appm‘ently. just stand
alone when left to itself: a slight additional weight at the
crown would cause that part to sink, the haunches to move
outwards, and the ring to fall in pieces. Considering that this
arch, so long as it rested squarely on the faces at A and B, was
fixed in direction, or not free to turn at the ends, we lmd. off
at AE and BD the value of y obtained in the 'last section,
and drew the equilibrium polygon, as just described, on the
centre line of the ring, beginning at D with a line parallel to
0-4. It will be noted that no line is used from 0 to 1; for t}le
weight represented by 1-4 is directly supported at B; wl_nle
the amount 4-5 is the weight concentrated on the first vertical
just above D. . -

As the arch is a continuous ring, the weights may properly be
concentrated at a greater number of points; so .that finally the
true equilibrium curve will pass through the vertices of the poly-
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gon we have just constructed: the difference between the
two is unimportant, however, and is only appreciable near
the crown. The bending moment at any point has been proved
to be equal to H multiplied by the vertical ordinate between the
centre line and the equilibrium curve, or, by § 10, also equal to
T, the thrust along the tangent to the equilibrium curve, multi-
plied by the perpendicular from a point on the centre line to
this tangent : therefore if we draw EF as this tangent, the
bending moment at A will equal either H. E A, or the thrust
along E F multiplied by the perpendicular from A. The direc-
tion of the thrust EF, if prolonged, cuts the springing joint
very close to the outside edge: it will also be noticed that the
equilibrium curve approaches quite near to the edge of the
voussoirs at the crown G. Now, as we reminded the reader in
§ 11 that the force T, or (/~1, at the distance F A from the cen-
tre line of the rib, is equal to the same force at the centre line
and the couple which produces bending moment, conversely,
the resultant of the pressure of this rib at the end A must cut
the base in the prolongation of the line E F': in short, the tan-
gent to the equilibrium curve at each point gives the direction
and point of application of the resultant thrust at that right
section of the rib to which it belongs, as ascertained by erecting
a vertical from the middle point of the section.

102. Limiting Position of Equilibrium Curve, — If, as s
usually the case, the intensity of the resisting force of the abut-
ment at A is assumed to vary uniformly from one edge to the
other, then, in case the resistance is zero at the inside edge and
a maximum at the outside edge, the intensity at all points can
be represented, as shown in the small sketch marked A’, by the
ordinates of a triangle whose base is the breadth of a VOussoir,
and whose longest ordinate is the intensity of the pressure at
the edge near F. The total pressure will be equal to the area
of the triangle, and the resultant will pass through the centre
of gravity of the triangle, cutting the base at one-third of its
length from the outer edge. If there existed any tension near
the inner edge, we should have two triangles, as shown in the
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other sketch, the inclined line cutting the base at the point
where the stress changed from tension to compression; and the
resultant of the two stresses must, since they are of opposite
kinds, lie outside of their separate resultants, and on the side
of the greater one. This fact as to the position of the re-
sultant of two opposite parallel forces was indicated in § 11,
Fig. 2, and is one of the well-known properties of the lever,
as proved, in Mechanics.

Since, then, the resultant force, or the thrust on a section of
the rib of Fig. 26, at A, B, and C, passes near the edge of the
section, or, as it is often stated, outside of the middle third of
the cross-section, we should expect to find tension at the
inside edge of the joint at these points. - As this model consists
simply of ‘wooden blocks placed in juxtaposition, a voussoir
cannot exert tension on its neighbor at any point.of contact,
and movement must immediately take place when the weight
of the rib is allowed to act freely, rotation being set up about
the outside edges at F, G, and Q. The crown will sink, the
haunches will move outwards, and the arch may be expected
to fall. The reader will remember that it was explained,
in § 12, that an arch tends to move away from the equilibrium
curve.

Since any material is compressible, it is probable that the
assumption of a uniform variation of intensity of stressat any
section will not be strictly true; that the stress may not be
exerted over the entire surface of the originally plave joint;
and that therefore the equilibrium eurve may pass somewhat
outside of the middle third of the joint without causing the
arch to fall, although the joint will then open slightly at the
edge where no pressure is exerted, by reason of the compression
causing the joint to be no longer plane. But such an assump-
tion gives an additional element of safety to a design, when. the
engineer so proportions his rib of rectangular section that
the equilibrium curve of the load at any time shall never

leave the limits of the middle third, and the tensile strength
of the cement will not then be relied upon to assure stability.
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‘103. Model as hinged at Three Points. — The arch of
Fig. ?6 stood when the string which at first passed around the
exterior was removed, although a slight change of shape was
ob.servable. A close inspection, however, showed that the vous:;
soirs at the crown and the two springings were then in contzu.:t
f)nly at the outer edges. The rotation at these joints, indicated
in the last section as probable, had commenced ; but, as soon as
t,h? rib became thus hinged at three points, it Was, in equiii—
brium. It is desirable, then, as a further test, to draw the
equilibrium curve for this rib hinged at the crown and spring-
ings. As the change of shape and curvature was very little
the supposition that the weight of the voussoirs is conceixtrated
along the arc K Q will be sufficiently near the truth for our
purpose.

The half-weight being represented by 1-8, the first step is to
find the value of H for this ease, when the load is concentrated
at intervals of ten degrees along the outer semicircle. We can
avail ourselves of the formula of § 28, finding the different
values of b by measurement, or from tables of sines, since

= rsin 6, and summing up the several amounts of H for the
\v}}ole semicircle ; or, as is done in this figure, we may use the
principle explained in § 30, that any two sides of the funicular
polygon, or two tangents to the equilibrium curve, will meet
when prolonged, on the vertical through the centre of wravity:
of the included weight. Since the arch is symmetrically zlaoaded
the thrust at the crown will be horizontal, and therefore lie in’
the line K L; the centre of gravity of the quadrant are KQ
will be on the vertical line P L, drawn at such a distance, K L
from the crown as to satisfy the value for the ordinate from thej
centre of a circle to the centre of gravity of a circular are, viz.
radius X chord ,
length of arc
lie in the line QL, drawn from Q to the intersection of the
other two forces. As 1-3 represents the weight of one-half the
arch, and the thrust at the crown is parallel to 8-0, a line from
1, parallel to QL, will complete the triangle of forces, an<

;, and therefore the thrust at the springing will
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cutting the horizontal line at 9, will determine 3-9 to be the
desired value of H. The equilibrium polygon can now be
drawn from Q to K, its sides being successively parallel to
lines radiating from 9, the first line being 94 and the last one
9-6. These lines are not drawn in the stress diagram. The
other half of the polygon may be added, if desired.

It will now be seen, that, excepting the hinged points, the
nearest approach of the equilibrium curve to the edge of a
voussoir is at P, where it is still well within the rib, and conse-
quently no further movement of the rib is to be expected.
Another model, somewhat thinner than the one here illustrated,
was experimented with, and would not stand. If the arch of
Fig. 26 is slightly weighted at K, the joint at P begins to open
on the outside, confirming the result, that the equilibrium curve
here passes nearest to the inner edge. If it be objected that
the change of outline previously referred to carries the portion
of the rib near P farther from the centre, so that the equilibrium
curye may run nearer the edge than we have plotted it, we
rejoin, that such a movement, carrying the centre of gravity,
and hence the line P L, in the same direction, will cause Q L
to make a slightly less angle with the vertical, diminishing the
value of H, and moving the equilibrium curve also a little away
from P.

104. Model as hinged at Abutments. — For the purpose
of making an additional test of our results, we finally placed a
small wire at A and B, thus hinging the rib on its centre line at
these points. The equilibrium curve for one-half of the arch is
A N K. The amount of H is determined by computation from
the formula of § 85, which becomes, for a semicircular rib,
Hi— 9%“ W; and the summation for the whole arch, carrying
~ W at intervals of ten degrees along tlhe centre line, is
H = 2.86 W, laid off at 8-8. Radiating lines between 8-4 and
8-6 will enable one to draw A N K. The arch, when released,
fell in ruins, and the first joint to open, on the outside at the
haunch, was near N, lower than P in the former case.
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We have dwelt on these curves at some length
50 good a confirmation of previous deductions an
as they will aid the reader in assuring himself ¢
stands the method of treatment.
accuracy, be drawn to quite a 1
then be very satisfactory.

105. Effect of Change of Temperature. — It remains to
find the effect of change of temperature on the circular rib with
fixed eflds. As was previously indicated in § 76, we must find
the height AG=BI = %, at which the equilibrium line shall
be? drawn in Fig. 27, by the condition that the change of in-
clination at the abutments, or SEF = 0. If the notation of
the angles subtended by portions of the arch is as before, and
as marked in the figure, we have EF =D E — Y, and ,

» a8 they give
d results, and
hat he under-
Such diagrams must, for
arge scale, and the results will

SEF — -H?rv 6~ S i
s E _f—-ﬂ (r cos 'rco»/i—y.)dO:2r(rsm/3—rﬁcos,6—yl/3)=0,

or

h=r (81; B €08 B),

which becomes, for a semicirele,

27

Hh= = = 0.632 7.

'I“he first term of (1.), § 76, therefore becomes SDE? — % -2DE.
From § 84, 3D E* = # (g + 2B cos® g — 3 sin B cos g), while

% - 2D E gives, as above, # <~S%ﬁ — o8 ﬁ) (2sinB —28cos p);

so that the first term reduces to (p’ + sin gcos g — - S;nlz ﬁ), and
(1.), § 76, takes the form of

a 2 gin®
H,.ﬂ(ﬁ-{-smﬁcosﬁ— Sg’ B)::t?BIte'rsinH.

2EIte
H;:Z‘t
B sin 3\
r"(m+cosﬁ—2T
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For a semicircle, the formula for horizontal thrust simplifies
“into

2B e
Iie il A 6-‘1‘32;[.:!8'

The bending moments at the crown and springing can now be
readily written, and compared with the values of § 90. The
horizontal thrust for the semicircular rib fixed at the ends is
five times as great as when the ends are hinged. The remarks
of § 91 in regard to shear will apply equally well here.

For the Elliptic Rib, see § 153.

106. Maximum Stress determined by Length of Ordi-
nate; Rib of Rectangular Section. — It may sometimes be
convenient to have the means of determining from a simple
inspection of a diagram, by noting the position of the equili-
brium_polygon, how much the maximum intensity of stress at
any section exceeds the mean intensity. As the mean intensity
F£=T =8 where T is the direct thrust and S is the area of
cross-section, and is obtained at any peint from the known
value of the thrust in the side of the equilibrium polygon, the
maximum intensity of stress will be readily found by multi-
plying by the proper ratio. The stress arising from bending
moment in a solid section is always taken as uniformly varying
(see-Fig. 2). The combination of direct stress with that from
bending moment will also give a uniformly varying stress.

Considering, first, the rib of rectangular cross-section, Fig. 28,
we see, that if we call the intensity, A C, of direct stress unity,
a bending moment which will produce a compression, D E, of
unity at the upper extreme fibre, and a tension, C A, of unity
at the lower extreme fibre, will bring the resultant stress at all
points to the amounts indicated in the left-hand sketch, twice
the mean intensity at one edge, and zero at the other. If the
cross-section is treated by the method of Part I, « Roofs,” p.
57, Fig. 24, in order to make an equivalent area of uniform
stress equal to the maximum, we get the shaded area of the
section on the left, which is evidently one-half of the whole

H‘Ii
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section. The centre of gravity of this area, lying at one-third
the height from the upper edge, will be the point of application
of the resultant force on the cross-section. If the bending
moment is reversed, the sketch will be inverted: hence, whe:
the line of thrust, or the side of the equilibrium polygon, passes
at one-sizth of the depth above or below the azis of the rib, the
intensity of stress at that edge of the rib which is nearer the
line of thrust will be twice the mean intensity.

If, again, the maximum intensity is to be thrice the mean,
the line F G, starting at a distance BF =38 B D, still cuts CD
at its middle point in order to make the total tension from
bending moment equal to the total compression from the same
cause. Noting where F G cuts A B, we have the point of no
stress at § & from the upper edge of the section: hence the
shaded areas are drawn as given in the section on the right,
the upper one for compression, the lower one for tension. The
area of the upper oneis 6.3k —=30bk: the lower one, being
similar, but of one-third the altitude, has one-ninth the area of
the other, or it 6 k. The difference is 1 b h, or one-third the area
of the cross-section, as required if the maximum intensity is to
be three times the mean. Letting these areas represent the
forces, and taking moments about the upper edge, each force
being applied at the centre of gravity of its triangle, we have
f(()ir the position of the resultant, measured from the upper
edge,

§oh.th—Jrbh. Yh_ ,,
Thh =Fh

If, therefore, the line of thrust passes at } A from the edge, or
one-third the depth from the axis, the intensity of compression
on the outside fibre nearer the line will be three times the mean
compression, and at the other edge there will be a tension equal
i magnitude to the mean stress.

In the same way it may be shown, that, when the line of
thrust cuts the edge, the compression there will be B I, four
times the mean, and the tension at the other edge will be A K,
twice the magnitude of the mean stress. Thus it will be seen,
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that, for every one-sixth % that the line of thrust is distant from
the axis, the compression on the square inch will be increased
by unity on the side to which the line deviates, and dimin-
ished by unity on the other side, the mean compression being
denoted by unity. This is indicated by the numerals marked
on the sketches of Fig. 29.

107. Rib of Two Flanges. — If the rib is composed of two
flanges and an open-work web, the stress in either flange is
easily determined. If the line of thrust is in the axis, each
flange will earry one-half of the direct stress. If the line of
thrust passes through one flange, Fig. 30, that flange may:be
considered to carry all of the compression uniformly 'dis-
tributed, and the other flange to be under no stress; for the
depth of the flange is so small, compared with the whole depth
of the rib, that no error of importance is involved in consider-
ing the stress as uniformly distributed over the section of one
flange. If the line of thrust passes without the rib a distance
equal to its depth, we get, by taking moments at A, Fig. 30,

Thrust at C X 2 A B — Compression at B X A B;
or, Compression at B =2 X direct stress.

If moments are taken at B, we find,

Tension at A — direct stress.

In the same way, if B'C'=2A’B/,

Compression at B' =3 X direct stress; Tension at A’ =2 X direct stress.

Hence we may draw a sketch for this rib similar to the one for
the rectangular rib. The numerals here denote that one flange
carries once, twice, &c., the entire direct stress. If the rib has
a plate web, or is an I beam, the above method will give a good
approximation to the true stresses. If the web is heavy, the
method of the next section may be applied.

108. Rib of Circular Section; General Construction.—
When the rib is of less simple section, we must return to the
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graphical construction first referred to. As an instance. sup-
pose the cross-section of the rib to be a circle. The variation of
stress on a diameter, in the direction of deviation, is indicated
by the left-hand sketch of Fig. 81, when the intensity of stress
is twice the mean at one edge, and zero at the other. By con-
structing, according to the principles already laid down, Part I.,
“ Roofs,” the equivalent area of maximum intensity, we obtain
the shaded area of the figure, and then we determine its centre
of gravity by cutting out the area, and balancing it over a knife-
edge. The deviation of the line of thrust from the centre of
the circle, to make the maximum intensity twice the mean,
and the minimum zero, is thus found, and proves to be one-
fourth the radius.

By the construction of the other sketch, taking moments as
in § 106, or reasoning by analogy, we find that the deviation, in
order that the maximum shall be thrice the mean intensity of
compression, and the tension at the other end of the diameter
shall equal the mean stress, must be one-half the radius from
the centre: hence, when the line of thrust cuts the edge, the
maximum compression equals five times the mean, and the
tension at the other extreme of the diameter is three times
the mean compression. Thus we get the numerals and their
positions, as given in the figure.

In a thin tube of circular, elliptical, or oval section, the
maximum compression is nearly three times the mean intensity
of direct stress where the equilibrium polygon cuts the surface
of the tube; and a tensile stress equal in magnitude to the mean
will then be found at the other end of the extremity of the
diameter : hence proportionate distances of the side of the
equilibrium polygon from the axis of the rib will give twice,
four times, &c., the mean stress.

R




CHAPTER VIIL
ARCHED RIBS UNDER WIND PRESSURE: HORIZONTAL FORCES.,

109. Wind Pressure on an Inclined Surface.— When
arched ribs are used, as is often the case, for the support of a
roof, the pressure of the wind, being normal to the surface, will
have a different effect upon the arch from that caused by a simple
weight or vertical force. While referring to Part I., “Roofs,”
p- 81, for some remarks about the action of wind on a roof, we
will repeat here, that, if P _equals the horizontal force of the
wind on a square foot of a vertical plane, the perpendicular
pressure on a square foot of a surface inclined at an angle 7 to
the horizon may be expressed by the empirical formula, —

<. s18tconi—1
P sinzteori=1,

If, .t.hen, the maximum force of the wind be taken as forty
pounds per square foot, which is an amount sufficiently great
for the purposes of a design, the perpendicular or normal press-
ure per square foot, on surfaces inclined at different angles to
the horizon, will be: —

Angle of Normal Angle of Normal
%:f? Pressure. Roof. Pressure,

59 5.2 1bs. 35° 30.1 1bs.
10 9.6 40 33.4
15 14.0 45 36.1
20 18.3 50 38.1
26 22.5 55 39.6
30 26.5 60 40.0
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For steeper pitches, the pressure may be taken as forty
pounds.

The resultant pressure at each of the joints in the rafter
which is on the side of the wind is then ascertained as in the
case of any roof. If the roof surface is curved, any short por-
tion between two points where braces abut, or purlins rest, may
be considered as straight, and the wind force will then be per-
pendicular to such portion; this pressure being the only force
exerted by the wind. If the resultant pressure at each joint
is then found, either graphically or otherwise, and is resolved
into vertical and horizontal components, we may include the
vertical component in the analysis already carried out in detail.

The effect of the horizontal component remains to be con-

sidered.

110. Form of the Equilibrium Polygon; Vertical Com-
ponent of Reaction.— The tendency of such a force to distort
the arch being resisted by the stiffness of the rib, the equili-
brium polygon for a single horizontal force H, applied at any
point I on the rib, Fig. 32, must, if the arch is hinged at the
ends, be two straight lines, which start from the two springing
points, and meet on the prolongation of the line of action of
H; for the rib must be in equilibrium under H and the two
forces at the abutments. In the case of the arch A C B of Fig.
32, the reactions at A and B must lie in the lines A G and B G,
the point G being found on the horizontal line I G, but its loca-
tion on that line being at present unknown. Itwill be evident,
when we conceive H to be applied to the equilibrium polygon
at G, that the side A G will be in tension, while G B is com-
pressed : therefore the reaction at B will be a thrust, as usual,
but that at A will be a tension ; and, if H were the only applied
force, the arch would tend to rise from the abutment A, and
would require fastening down.

As H acts at a vertical distance I L above the springing line,
the moment which tends to overturn the frame is H.IL. If
we take either abutment as the axis of moments, the condition
of equilibrium that the moments of exterior forces must balance
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gives H.IL=P. A B; and consequently the vertical component
of the reaction at either abutment is, —

IL
LSHaw
being tension at the side nearer to I, and compression on the
other side. H will be partially resisted at each abutment. The
stress diagram will be a figure like 1 2 3, in which 3-4 and 4-1
are — P and H, for A, while 24 and 4-8 are H, and -+ P for B,
1-2 being equal to H.

111. Rib hinged at Three Points. — As was the case with
arches under vertical forces only, so also with ribs under a wind
pressure: the hinging of the rib at three points makes the analy-
sis at once very simple. If the arch of Fig. 32 is pivoted or
jointed at A, C, and B, C being usually taken at the erown of
the rib, and the external horizontal force H is applied at I, the
line of thrust for the right-hand portion of the arch must be
B C. This will be plainly seen, if we consider that the part
B E C of the rib is supported by a reaction at B and the thrust
of the other half of the arch at C, while there is no other force
exerted upon it: for equilibrium, therefore, these two forces
must lie in one straight line, which can be no other than B C,
drawn through the two points of application. Then, as proved
before, the reaction at A must lie in A G, drawn to the inter-
section of H with B C. It may be noted that 1-4, or H,, is
always greater that one-half of H.

112. Value of Bending Moments. — If we make a section
at any point E on the right of C, the only force acting on the
right of the section is the inclined reaction at the abutment B.
The bending moment at E is, therefore, equal to (8-2) E N, or
to either of the equal products H,. EF and P.EK. The bending
moment at any point between C and I, for the same reason, will
still be expressed by H,. E For P.E K, but will be of the oppo-
site kind, since we passed a point of no bending moment at C,
and E F or E K is drawn in a reverse direction. For sections
between I and A it will be easier to take the force on the left
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of the plane of section, which will be the tension of the left
abutment, as this is the only force on that side : the bendin
moment will therefore be H,. EF or P. EK. Tt will be per-
ceived, on a little reflection, that these moments will agree in
kind with those between C and I; the reversal of the ordinate
EF from the outside to the inside of the rib offsetting the
change from H,, compression, to H,, tension. The application of
Hat I to a moderately flexible wire of the shape A C B would
flatten the left portion, and make the right portion more convex.
We may very simply consider the bending moment at any
point of the rib to be represented by the product P . E K, where
E K is the horizontal distance or abscissa from E to the equili-
brium polygon. We thus have an evident analogy between the
equilibrium polygons for horizontal and for vertical forces, if
the ordinate for bending moment is taken parallel to the applied

force, and is then multiplied by a constant, P in this case, H in ,

the other. The point of contraflexure is where the polygon
meets the rib, and one point of maximum flexure is at I, the
point of application of the external force.

The insertion of pivots at three points of the rib enables one
to draw the equilibrium polygon at once for one or all of the
forces to which the roof may be at one time subjected, and we
will therefore proceed, without further delay, to consider the
case of the parabolic rib hinged at the abutments only.

113. Parabolic Rib hinged at Abutments; Formula for
% — If Fig. 38 represents a parabolic rib hinged at A and B,
with a horizontal force H applied at I, the point of intersection
of AG and BN must be determined. Sinee it will lie upon
the horizontal line drawn through I, the distance of G horizon=
tally from the middle of the span will be denoted by positive
when measured from the middle away from I. The well-known
condition that change of span shall be zero may be put either

EH.:.EF.DE(frothoI)—{-EH,.EF.I)E(fromAtoI):O,

or

P.EK.DE=0, (1)

———
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in which latter expression P, being constant, may be omitted.
If &, as usual, denotes the horizontal distance of I, the point of
application of the force, from the middle of the span, and ¢
equals the half-span, we can find that

4

34 G =) =inG—nY)e, (2)

Ty =
T 4e

when & =ne. We shall see that 2, depending for its sign upon
that of 3, will always be laid off on the opposite side of the
centre from b, since it is so first taken in the figure, and hence
that H,, the horizontal tension, is always greater than one-half
of H. The value of 2, is independent of Z.

114. Proof of Formula. — Retaining the nsual notation, we have
AL=c—b, LB=¢-}b;and GQ:IL:;(CE—-b’). If z denotes

the horizontal distance, B D, to the abutment, from any ordinate, D E, on the
right of I we have

DE:;(ch—-x’),and DF:DB=GQ: QBor DF=% (o9 2
0
AsEK:EF:QB:GQ,andEF:DE—DF,Wehave
L (DE QB K. DE=(DE—DE.DF) 2B
EI\_(DE—-DF)“—Q,andE]\.DD_(DE DE.D )GQ'

Substituting the values of these quantities, we get

zEK.DE:fLE_. [Ges =y~ @ez—myzol] =m

c—x | E—1

as the expression which is applicable from B to I. From A to I the abscissa
EX will be limited by the line A G, which differs in inelination from B C.
If 2, however, is now reckoned from A to the right, and A Q, denoted by
¢ - @, is used in place of Q B, we have an expression for the space
from A to I. This expedient was used in previous sections. As A G isin
tension while B C is compressed, these two portions of (1.), § 118, will have
opposite signs, and, when integrated, must be equal : we may, therefore, in
equating, strike out the common constant quantities, obtaining

c o c+b i
(c—zo)fo“ eed—deata)dz— @@= Qe — a1 dz

=@+ @l —tcat 42 dz — @ =) " @err—at)da
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Performing the indicated integration, we get

(c=20) [$ & (c48)— (c+B) 4+ (c+D)¥1— (%) [§ ¢ (c4B)0—} (e By1]
= (420 [ (=)~ (c—b)*+ } (=) ]~ (1% [§ ¢ (c—B)P—} (c—)1],

which at once reduces to
HePzg=4c308 — g 05,

b3
Zo= gz (5c* — B

115. Another Proof.— We may, if we please, find the desired
distance 2, by another method. Imagine the roof of Fig. 34 to

‘have two equal but opposite forces, H, applied at the two points

Cand G in the same horizontal line. These forces, if acting
alone, will tend to diminish the span of the roof; there will be
no vertical forces; and as the bending moments  caused by
them, in case the rib did not rest upon abutments, would be
directly proportional to E F, the change of span would be
proportional to SEF.DE from C to G. When the rib is
retained by abutments, one H will give rise to H, at A, and H,
at B: the other H will cause H,at A, and H,at B. As H, is
always opposite in sign to H,, the resultant force at each abut-
ment will be H; — H,, and is manifestly a tension exerted by
the abutment on the rib. The change of span due to H, — H,
will be proportional to XD E? from A to B (compare § 74), and
this change of span must offset the one from H.

If D is at a distance 2 from the middle of the span, and C is

distant & from the same point, we have DE — ]C% (¢ — 2?), and

EF = C]?,_, (8* —2%). Since the rib is acted upon symmetrically,
we need only integrate from the middle to one side; and we

k
therefore have, when we drop the common factor ]

(B, —H) [ (¢ —a?dz =H f:(b’—- a?) (o2 — 2%) d z,




(H—H) fS=H@E®2— & 5). (a)
From the stress diagram of Fig. 33 we see that

H:H:H=c+tazy:c—2z:2c;
whence

A T = 1 S NN
“C c

Substituting this value in («.) we get, as before, § 114,

a0 I ()
10:42_4(00-—b).

116. Formule for H, and P.— The value of H, is seen to
be, from the above proportion,

¢+ z z b
H=H % § (5-;_.2'05 L H [:_&—}-g—c—s(.’)c?—b?)].
We also have, from Fig. 83,
PiH=GQ:AB=25(c—):2c;

k " Z k
P—= I-Ig—cg(c~—b~) — H:’_J_c(l — n?).

The reader may now calculate, if desirable, numerical values
of 2, H,, and P, for different values of &, as was previously done
for vertical forces. The several values of z, for four different
positions of H are plotted in Fig. 33.

117. Shear and Direct Stress.— The shear will undergo
some modification when the force applied to the arch acts
horizontally, instead of vertically. The stress diagram is, as we
have seen, a triangle, whose base is H, and whose altitude is P,
represented by 012 of Fig. 36. At A of the parabolic rib the
thrust is 1-0: if 1-4 is drawn parallel to the tangent at A, and
0-8 perpendicular to it, 1-8 will be the direct thrust, and 8-0
the negative shear, on a right section at A. This shear will
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diminish at successive sections until we reach a point where the
tangent to the rib is parallel to A G, when the shear will be
zero, and the direct thrust 1-0. Beyond this point the shear
will be positive until we pass I. At the abutment B, there is
a tension 2-0: if 2-T is drawn parallel to the tangent at B, 2-9
will be the direct tension, and 9-0 the shear, again negative, on
a right section at B. In the same way the shear just to the left
of I will be 10-0, positive, and to the right of I, 11-0, negative.
It will be remembered that positive shear acts upward on the
left of any section.

118. Shear Diagram. — A shear diagram may be drawn for
a rib under a horizontal force by a similar method to the one
previously explained, showing the wvertical shear which will be
projected on each right section. Lay off at a the quantity
P = 3-0 = af, which is the vertical component of the reaction
at A, and as P is constant across the entire span, being, in fact,
the only external vertical force, complete the rectangle afdb.
The vertical component which is required at A to produce 1-4
is 8—4, laid off at ae ; and at B is 3-7, laid off above the line at
b1, because 0-2 is a tension. A load of uniform intensity hori-
zontally being required to put a parabolic rib in equilibrium,

and H, being constant as far as I, draw e ¢g through ¢, the middle:
point of @b, and draw In so as to pass through ¢, if prolonged.
Then will the vertical ordinates between the inclined lines:

and fd represent the shear on a vertical section, and the projec-

tion of these ordinates on the respective normal sections will be-

the shear in the web. Thus ¢f is 4-0, which gives by projection
8-0, ig is 0-5, and inm is 0-6. As in previous diagrams, the
ordinates will be measured from the inclined lines, positive

above and negative below, as marked. The shear will change

sign at the point of maximum bending moment, and it will
plainly be equal to P at the crown of the arch.

If it is remembered that the abutment reaction at B is of the
opposite kind to that at A, or to the usual reaction for a
weight W, the rotation of the diagram on the right of ¢, from
the customary position below the line to its present place above

T R T e i 7
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ab, will be accounted for. The force H has been assumed on
the right in Fig. 36, in order that this shear diagram may be
compared with that of Fig.8. The vertical shear from a nor-
mal force may be found from an addition of these two figures.
Moment diagrams cannot be added together in the same way,
as the values of H and H, or H, will not be the same in the
two cases.

119. Circular Rib hinged at Ends. — The method of find-
ing ,, introduced in § 115, is easily applied to the circular rib
hinged at the ends; while the process of § 114 is considerably
more involved. Let the angle subtended, in Fig. 35, by the
half arch of radius 7 be denoted by g; the angle from the crown
to the point of application of the external horizontal force, H,
be «; and the variable angle from the crown to any point be 4.
Let H be applied at two opposite points at the same level,
as shown by the arrows in the figure, and let the abutment
reactions be H, — H,. Then, by parallel reasoning to that of
§ 115, we have, if y denotes any ordinate, and « the ordinate to
the point of application of H,

(H,—H,)ffy“ds: Hfs(y—a)yds.

y=r(cosd—cosB); a=r(cosa—cosB); -

(H,_.H,)rs[f(cosﬁu—2cosucos,3+cosﬁ,3)da

— H 2 [ (cos? § — cos § cos 3 — €0s 4 c08 a -} cos a ¢os B) d 4.
3 f

Performing the integration, we get

(H; — H,) (3 3 — §sin 3cos 3 - 3 cos? B)

— H (32— 4 sin a cos e — sin e cos 3 + a cos a ¢0s 3).
H,—H H-H
C =
H H

— sin a cos e — 2 cos B (sin a — a cos @) )
B — 3singcos 3 4 2 cos? B ; i

2y sin f: whence

Asin § 115, 2, =

. a
Xy =r8inf

L
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If the rib is a semicircle, p=3%#; cosg=0; sinf=1; and
(1.) becomes,
27
Zy=— (¢ —sinacosa). (2.)
120. Formulee for H, and P. — The value of H, will be, as
in § 116,
H,— I’IC—;}-CIOZH (3 Zo

27sin 3

=§H(l+a——siuacosa—Qcos,;‘(sina—acos:z)
3—3singcos3 | 23 cos? B !
and
__cosa— cosj3

2sin g H;

or, for a complete semicircle,

H __3m+4a—sinacosa
=
T

H; P—= j}cosaH.

121. Experimental Verification.— The values of z,, obtained
above, can be readily shown to be true by turning the model
previously referred to through an angle of ninety degrees. A
moderately stiff wire carefully bent to a curve A G B, Fig. 37,
symme.rical with regard to the point G (an arc of a circle being
probably the easiest one to fashion), is suspended from point:
C and D by strings from A to C, and from B to D. If the string
B D is doubled so as to pass on both sides of the wire above G,’
A G B will be prevented from swinging round. A thread from
A to B will hinder the span from enlarging, and will indicate
by its slackening when the span is narrowed. If, then, a
weight is attached at E, and, the string at C remaining station-
ary, that at D is moved until B is vertically below A, as proved
by plumbing the thread A B, C A, when prolonged, will be
found to intersect B D at T in the vertical line EF, giving the
desired value of 2;,. The point of intersection will be slightly
changed by the weight of the wire, as before suggested in § 81.
It is worthy of note that, H now being an external pull on the
rib, in place of the usual thrust, =, will, in Fig. 37, be found on
the same side of the centre with H.
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122. Parabolic Rib fixed at Ends; Formulee for z, 2,
and 2, — Referring to Fig. 38, we will suppose that the exter-
nal force H is applied at I, on the left of this parabolic rib with
fixed ends; that the desired equilibrium polygon is given by
the lines L G and N G C; and that the absciss®, at present
unknown, are, A L = z;, BN = z,,and O Q = %, the latter being
measured from the middle of the span, and all being considered
as positive when laid off as shown in this figure. The rest of
the notation agrees with that used before. It may be proved
that the absciss@ have the following easily computed values:

43 42 B
z'=§<c+c——b); Zg=1} c+m); z°=27,,

4n?

z,=§c<l+%>; x,:}c(l+l—+—n ; y=12nb¢.

Severatl of these values, for different positions of H, are plotted
in Fig. 38.

If b is given successive values from 0.1¢ to 0.9 ¢, these quan-
tities will be found to be

>

. Ty Lye

0.35¢ 0.002¢ 0.35¢
0.40 0.016 0.38
0.50 0.054 0.43
0.69 0.128 0.49
1.00 0.250 0.56
1.53 0.432 0.63
2.51 0.688 0.72
4.60 1.024 081
11.17 1.442 0.90

o

oo o o

If 5 exceeds 0.T¢, the point of intersection falls without the

rib.
123. First Equation of Condition.—If we remark that Q G, Fig. 38,

the ordinate to the line of action of H, will be equal to I8, or toc%(c’—b“),
and that R K = D E, we may find the value of EK as follows:
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EK=RN—DN; RN:RK=QN:QG,or RN— FK-QN,
QG '’
therefore
DE.QN
EK=—""122>—"__
QG DN.
These quantities, in the notation employed, may be written, if z is measured
from the right abutment,

k R
DE:C—,I(QCI—IQ); QN=c +2,—zy; DN=2,+}z; QG=§2(02_bQ)_

Ey 5
As P will be a common factor in the equations which follow, we &hall omit

it. Substituting these values, we shall get, as the expression to be summed
from B to I, for the first condition,

c+b ¢ t-zy— 1z 2
*EK. DE=f0 ;';4_1)2—0(4 22— 4 cadt24) — (2,4-7) (2cx—zz)]dx.

1f z is measured from the left abutment, L Q substituted for QN, and z,
written for z,, we get an expression which is applicable from A to I, or
.

¢ —b
EK.DE :fo [%‘bﬁ’“ (4c2a?—deaP4-a8) — (z,+2) (2cz—x2)]dx.

As in §114, these two expressions will be equated to make the change of
span zero, and upon performing the indicated integrations, and multiplying

through by ¢? — 72, we obtain
(eF2—ag) [§e(c+0)>—c (c+8)* + 3 (c+B)*T—(*—b%) [c 2 (c +-0)?
— 12, (c+0) 4§ e (c+-5) — 4 (4 D)= (e 2+ ) [§ c* (c— b)?
—c(c— By 4§ (c — 1)¥] — (*— %) [em (c —B)* —} = (c — B)?
+iclc—02—1(c—n)]

This equation, by reduction and factoring, may be written,

8¢5y — (5 —5c3 124 5c2 1 — ) 2, (P — B AP — 5B+ ) my
—=10¢® ¥ —2cb5 (L)

124. Second and Third Equations of Condition.— The second condi-

tion, that the change of inclination at the abutments shall equal zero, is
2 E K = 0, and the portion of this expression from B to I will be,

ZEK :f:H[L%—x_%% Qecz—2%) — (z+ :c)]d:t,
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while from A to I we may write, as just explained,
c—b
EEK:f [c_*c_gi_i_g—ro(f_’cz__z’)—(x,-{-x)]dz.
0

Equating, integrating, and reducing, we get

(€ 2— 29) [e (e B — 4 (40P ] — (& =) [22 (e + ) + 4 (¢ +8)']
=C+an+tz) [clc—b —3(—b)]
— (=) [ (e — ) + & € —B)'T;

43z, — (B—38cb*+2018) 2+ (62 —Be b —20%) m=4cb® (1.)

or

In writing the third condition, that the abutment deflection shall equal
zero, or = EK . DB =0, we must, if we use the values of EK already
adopted, make D B equal to z on the right of I, and equal to 2 ¢ — z on the
left of I. We then have, from B to I,

f+b[ +f-—_.’”°(°cx= ) a3z |d5
and from A to I,
fc b[ +I‘ o4 ¢t z—4cr+1’3)—("'l+x)(oc_z)]dz

Equating these two expressions and integrating, we find that

(c+z—2z0) [Fe ¢ +8)* — 1 (c+0)' ] — (" — ) 32 (c+B)'+ & (c+0)°]
=+ antz)[2¢ @ — b — feclc — b+ (c — b4
— (@—¥) Ren(c—b)+4Q@c—n) (c—b)—} (c—b)?],

which reduces fo

16 cA 7y — (T b —18 ' B -8 e 1848 h) 2y (¥ — 6 * 1A — Bc B8 — 3 b%) =
—205 —4 3P 162 b8 6cbt  (2.)
From (1.),§ 123, and (1.) and (2.) of the present section, we may readily

eliminate z,, obtaining

(B —b) 2, — (B 0¥)ay=2c 03
and

(2 —b2) 2, + (2 — b2) 2, = § e3 + 2¢ B9,
whence may be deduced the formule of § 122.
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125. Formulee for H, and P.— The values of H,, H,, and
P, can now be scaled from the stress diagram, which will also
give, if preferred, the proportion

H:H:H=ct+ondz:cta—2:2¢04 2,4 2,

or

H,_H‘)‘;ﬁ-ﬂ—{——l—r;_ﬂ[g-—{-(é 3b) ] $H[1+4 328 (5—3n%)].

H, will therefore always be greater than § H.
Likewise we have, for the vertical component of the abutment
reactions,

P:I—I:%(cﬁ-—()’):?c—i-:c,-}-zg,

P=H.3: C W _guka_mwy

The shear diagram for this case will follow the explanation
given in § 118.

126. Circular Arch fixed at Ends. — There remains to be
considered the circular rib, fixed at the ends, under the action
of an external horizontal force. The notation of the angles is
the same as that previously used for the circular arch. As H
is here applied at a point on the right side, z;, measured from
the middle of the span, will now lie on the left of the centre O.
Then we will prove that

l‘x=['£ ab—(le<f+smﬁ)]1,

2 = [f-l-ab_de([-{—smﬁ)]r, 2.)

in which equations

a = cos a — cos f3, d — B 8ina — asin f,
b=ap —sinasin g, e =1 — cosacosp,

¢ =f"— 2sin*p 4 @sin B cos B, f=P8—cosasing.
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It will be noticed that ¢ is constant for a given arch. The
value of 2, can then be obtained from the equation

2 (sin B — 3 cos ) z, — [sin S - sin @ — (3 + a) cos a] =, 4~ [sin f — sina

— (B —a)cosalz,=2rsing (sine —acosa). (3.)

The distance 2, and 2, will, in every case, be laid off outwards
from' the abutments, and 2, will be plotted away from the side

where the force is applied. In these formul®, z, is on the oppo--

site side of the arch from the applied foree, as is also H;. In
any case it is easy to distinguish between numerical values of
2, and 2y, or H, and H,, if we notice that the larger value belongs
to the abutment which is nearer to the point of application of
the external force.

Several of the equilibrium polygons have been drawn in
Fig. 89 for a horizontal force applied at different distances
from the crown. The angle g of this rib is 60°; and the com-
puted values of the abscisse, for H at points distant 10° suc-
cessively from one another, are

a. Zye Zge Zg.

3704 r .0186r 42127
20 4755 L0762 .5860
30 .5892 2547 1.0345
40 7201 .5950 2.1559
50 .8749 1.1339 5.9953

127. First Equation of Condition. — The processes to be followed
are akin to those already given: although the work is somewhat more
tedious, it presents no difficulty. As in § 123, we shall find that, Fig. 39,

DE. QN
= RN—DN ="—
EK R B\ QG

DE = r (cos 8§ — cos f3), QN =rsing 4 x4 7,
Q G =1 (cos a— cos 3), DN = rsin 3 + 23 — rsing.

— D N. In the usual notation

We therefore have

_rsinpg4 742 . — (rsi — rsi
EK = e (cos 6 — cos B) — (rsin B -z, — r 8in 6)

ARCHES. 121

on the right of I. Upon the left of I, since E'K now equals D'L — RL
this expression will change in sign; and, since we measure from I, we musl’:
substitute z, in place of z,, must subtract z, in place of adding it, and must
change the sign of »sin ¢: hence, on the left of I,

- rsing 4z —uz, . :
EK___cm (cos § — cos B) - (7 sin - z, -}~ r sin 0).

The first condition, invariability of span, will now give,

B 1w o a e
2 EXK.DE+ Z_ﬁEI\.DEzo,

or, multiplying by cos ¢ — cos 3,

3 7S 2
rfa[(r sin 8 + 2 + ) (cos®§ — 2 cos g cos B - cos? @)
— (cos a.— cos 3) (r sin 3@ 4= 2, — 7 8in §) (cos 8 — cos 3)] d #
a .. *
|- rf_}3 [(rsin 342, — 25) (— cos? 9 + 2 cos 6 cos 3 — cos? j3)
-+ (cos @ — cos 3) (rsin 3 + z, | rsin @) (eos 0 — cos 3)] d 6 = 0.
The integration is similar to that already given for the circular rib

in the earlier sections. There results, upon bringing together common
factors,

(B—3sinBcos B4 2pcos?B)xy,— (38+4+a—4sin3cos 3—isinacosa

— sin ¢ cos 3 — cos a sin 3 4 3 cos @ cos 3 -+ a cos a cos 3) z,

+ (383 —4a— §sinBcos 3 - 4sin acos a -}- sin a cos 3 — cos a sin 3

—+ Bcos acos B— a cos acos 3)z, = r8in 3 (e —sinacosa — 2sin a cos 3*
2acosacos8). (1.)

128, Second and Third Equations of Condition.— The second con-

g l3 :
* dition, that z, EXK 4 2:3 E K = 0, similarly gives,

ff [(rsin3 423+ x,) (cos 6 — cosB) — (cosa— cosB) (rsin 3z, — rsing)Jde
+f:8 [(rsin 3 4+ 2 — ) (— cos @ -} cos 3)
—+ (cosa — cos B) (rsin3 + z, 4= rsing)]do = 0.

From this equation we obtain, by integrating and factoring,

(2sin 3 — 23 cos3) z, — (sin 3 - sina— Bcose —'acosa) z;
+ (sin3 —sine — 3cosa | acosae) zy =rsin @ (2sine — 2qcosa). (1.)
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The third condition, that 25 EK. DB+ ZEB EK . DB =0, will give,

when we introduce the value of D B = 7 (sin 3 — sin 6),

er[(r sin B 4 z + z,) (cos 8 — cos 3) (sin B8 — sin §)
— (cosa — cos @) (rsin3 + 23 — rsing) (sin3 — sing)]de
+rij[(rsin,3 4z — z) (— cos ¢ 4 cos 3) (sin 3 — sin 8)
- (cos a — cos B) (r sin B+ z; -+ r sin ¢) (sin 3 —sin 6)]d 6 = 0.

Operating upon this equation also, we find that

(2sin? 3 — 2 Bsin 3 cos B) z; — (sin? B 4 sin asin 3 — § cos® B — } cos®a
-+ cosacos 3 — Bcosesin 8 — a cos a sin 3) 2, + (sin®3 — sinasin g
4 cos? B+ 4 cos?a — cos ¢ cos 3 — B ¢os a 8in 3 |- a cos a sin §) 7
—rsin 3 (2 sin « sin B — cos? @ - cos a cos 3 — 2 a cos a sin B)
+ rB(cosa—cosfB). (2.)

129. Reduction. — From (1.), § 127, and (1.) and (2.), § 128, we can
determine the desired quantities x,, 2, and 2, by any of the usual steps for
elimination. If the second equation of condition is multiplied by sin g,
and then subtracted from the third, there will result

(3 cos?3 — cosacos B - & cos?a) (2; + 1)
= rsin g (cosacos 3 — cos?a) + r 3 (cos a — cos @),
* which, upon being divided by 4 (cos @ — cos 3), becomes

(cosa — cosB) (z, + z:) =27 (8 — cosasing). (a.)

Again: the second equation may be multiplied by cos 3, and added to the
first, after which the values of 2, from the new equation and from the
second equation of condition may be equated. If we then clear of fractions,
and factor the resulting equation, it may be written

[a(b—c)—de]ag+[a(b+c) —de]zy=—2rsinp (ab—de), (b.)
while equation (a.) will be
a(z+z) =2fr; (e)

in which equations the literal coefficients stand for the quantities already
given in § 126.
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From (5.) and (c.) it is easy for one to obtain the half sum and the half
difference of the two unknown quantities, and thence equations (1.) and
(2.), §126. Equation (3.) is identical with (1.), § 128.

130. Formulee for H), &c.; Semicircular Arch. — To find
the values of H;, Hy, and P by formula, we make use of similar
expressions to those of §125. The figure gives us

Hy:Hy: H=rsin3 42 —x,: rsin g 4z 4 z,: 21sin g 4 2, + 243
or

H—H r sin  + 2, —
=

T rsing -+, —z,
2rsing 4z, 4 z,

a
— 27" 3—singcosp

P: H=1r (cos a —cosB) :‘2rsin(3+xl+x2=ar:Qrsiufa_*_?afr;

a‘l
P=} mpryH=1H

(cos @ — cos j3)2
B—singcos 3’

If the arch subtends a semicircle, § =3 7, sin g =1, cos g =0,
and the preceding values are much simplified. Without writing
them in detail, it will be sufficicnt to indicate that then

a = cosa,

% — 2, e=1,

s
b=14ra—sin g, d=4nsing—a, f=4%nr—cosa

131. Sign of Bending Moment. — In determining the sign
of the bending moment at any point when the arch is acted
upon by a horizontal force, it will be well for the reader to
recollect, that, when there is a thrust along any portion of the
equilibrium polygon, the arched rib tends to move away from
the polygon, but, when there is tension in any portion, the arch
moves towards the polygon. This tendency to move in one
direction or the other is easily fixed in the mind, if one thinks
of the alteration of curvature of a bent wire when a force is
applied at each end in the line joining the two ends. The same
thing was noticed in the suspended arch of Fig. 1 and in those
under vertical forces. Therefore, in Fig. 32 and the following
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ribs, the arch tends to approach the tension side of the equil-
brium polygon, and to recede from the compression side. If
then, as before, that moment which makes any portion of the
rib less curved, or which, if exerted on a beam supported at
both ends, would make it concave on the upper side, be called
positive, the areas of — M will occur between B and C in Figs.
32 and 33, and those of 4 M will be found between C and A.
Ribs fixed at the ends will be strained similarly. In Fig. 38,
for example, the area to the right of B will give + M ; from the
point where N G crosses the rib to C there will be — M, which
then changes to + M on the left of C, and to — M, when the
polygon crosses the rib above A. v

132. Example of Normal Forces. — As we have now ascer-
tained the values of the abutment reactions when a rib is acted
upon by a horizontal force, we will show, by an example, that
the various horizontal and vertical forces which are exerted at
one time at different points of the rib may be provided for in
one polygon, without the necessity for separate treatment of the
horizontal and vertical components into which thé normal or
oblique external forces can be decomposed. We will suppose
that a parabolic rib of 100 feet span and 50 feet rise is to be
used as a prinecipal to carry a roof, and that it is desired to
ascertain the bending moments arising from the action of the
wind upon one side. We will take the case where the rib is
fixed at the ends as being less simple. After this discussion,
the reader will have no difficulty in applying a similar treatment
to other ribs.

Let the rib be represented by A C B, Fig. 40, and let us sup-
pose that the normal wind pressure is directly resisted by the
flanges and bracing of the rib at points D, E, F, and G, at which
purlins rest, and which are distant 40 feet, 30 feet, 20 feet, and
10 feet horizontally from the middle of the span. The amount
of the pressure N, at E will be the total or resultant of the
distributed pressure on mn, the points m and » being taken
midway of the spaces on each side of E. There will be no error
of consequence in assuming that the wind pressure on m# is
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perpendicular to the straight line m n, or to the tangent of the
parabola at E.* To find this tangent, draw E E’ horizontally,
make C E’" = CE/, and E E’’ will be the desired tangent. The
tangents at the other points are found in the same way. The
angle E'E E’’ is very nearly 50°; the intensity of wind pres-
sure, by the table of § 109, is 88 pounds on the square foot of
roof ; and if the principals are 10 feet apart, and m » is 15% feet,
the total normal force N, at this point will be 838X 10x15% =
5,890 pounds. For the four points we therefore find in detail

N. V. H.
40 X 19 X 10 = 7,600 Ibs. 4,000 l1bs. 6,400 Ibs.

38 15¢ 10 5,890 3,800 4,500
32 13 10 4,160 3,200 2,600
20 11 10 2,200 2,000 900

These normal forces are plotted on the figure, and then
decomposed graphically into their vertical and horizontal com-

ponents, which, scaled to the nearest one hundred pounds, are
found above in the columns headed V and H. The figure and
diagrams are drawn to scales of forty feet and ten thousand
pounds equal one inch.

133. Finding the Reactions. — The next step will be to
find the values of H,, H,, P, and P,, for the above forces. First,
upon referring to § 64, we see that a vertical force at E,
Fig. 40, 0.6 ¢ from the middle of the span, will cause a vertical
reaction of 0.896 V at A, one of 0.104 V at B, and will give
ZV=0192V.
We also see, by the table of § 62, that the ordinate at A will
be — 0.667 %, and at B 4 0.383 %, for the same force at E; and
we can then obtain the values of M at the abutments arising
from V' by multiplying these ordinates by H=0.192V, just
ascertained. The computations for the four loaded points may
be grouped together as follows:

rise to H, at each abutment, of the amount 0.192

* If preferred, analyze the wind pressures as in Part L., Roofs, p. 44,
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V. P,. H.
4,000 X 0.972 — 3,888 1bs. V X .0607 = 243 lbs.

V = 13,000
3,800 0.896 3,405 .1920 730 P/= 11,098

P/= 1,902 lbs.
3,200 0.784 2,509 3308 1,059
2,000  0.645 1,296 4320 864
13,000 Py = 11,098 lbs. H' = 2,896 1bs.

H. % M,. Y- M..
243 X —2.000 & = —24,300 ft. Ibs. 0.8370 k& - 4,495 ft. lbs.

730 —0.667 — 24,333 0.333 12,167
1,059 —0.222 — 11,767 0.286 15,144
864 0.000 000 0.222 9,600

Totals . . . M/ = —60,400 ft. lbs. M. = 41,406 ft. 1bs.

It is to be understood that y,, P, and M, refer to the left
abutment, the others, to the right abutment.

From § 122 and § 125 we now compute the reactions from
the horizontal forces at the four loaded points, and the accom-
panying bending moments :

H. + P.
1 6,400 X .0486 — 3111bs. H X 0.894 — 5,722 1bs.
H = 14400
2 4,500 1536 691 0.712 3204 H/'= @72
Hy= -|-8,528 lbs.
3 2,600 .2646 688 0.572 1,487

4 900 .3456 311 0.510 459

14,400 !
Totals, P’ from H’s = 4 2,001 1bs. H/ = —10,872 1bs.

Pe 2. M,. L
311 X 4.600 ¢ = — 71,530 ft. lbs, 0.807 ¢ - 12,549 ft. 1bs.

691 1.533 — 52,976 0.633 21,870
688 0.689 —23.702 0.486 16,718

311  0.400 — 6220 0.878 5,878
Totals M, = — 154,428 ft. 1bs. M, = 457,015 {t. lbs.
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The final abutment moments will be
My = — 60,400 — 154,428 — — 214,898 ft, 1bs.

M.’ = 41,406 + 57,015 = - 98,421 ft. 1bs.

‘The components of the reaction at A are, if thrusts are con-
sidered positive,

P/ =P, — P = 11,098 — 2,001 -+ 9,097 1bs.
H) = H+4 H, = 2,806 — 10,872 — 7,976 1bs.

The components at B will be
P/ =P, 4 P = 1,902 -+ 2,001 = -} 3,908 1bs.
H/=H 4 H.= 2,896 -+ 3,528 — - 6,424 1bs.

The arrows at A and B show these reactions. If the rib con-
sists of chords and bracing, the stresses on the pieces can be
found by a diagram like Fig. 21, Part I, «Roofs,” care being
taken to have the stresses in the two flanges at the abutment
give the proper reaction (see § 195). If the equilibrium poly-
gon is to be drawn, from which to find bending moments and
chord stresses, we need the point of beginning for the polygon.

The abscissa, or ordinate to the equilibrium polygon at A, will
be found by dividing the total M at that point by P, or H/;
and similarly for the abutment B ; thus,

, 498421
T = 13,008

, 498421
"= e

= 4-25.2 ft.
= +415.3 ft.

As in previous examples, the ordinate at one abutment alone is
needed ; but the others are useful as a check on the accuracy of
the drawing.

134. Equilibrium Polygon; Bending Moments. — We may
now proceed to draw the stress diagram. Lay off 1-2, 2-3, 8-4
and 4-5, parallel successively to the external forces at G, F, E,
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and D, and equal to the calculated amounts by any desirable
scale ; make 5-6 = H/’, and 6-0 = P/, so that 5-0 shall repre-
sent the reaction at A in the proper direction as expressed by
the signs obtained above, P," being a compression, .an‘d H,’ a ten-
sion ; finally, lay off 0-T = P,, and 7-1 =H), giving 0-1 for
the reaction at B. The closing of 0—1 on the point’ 1 proves
that the diagram has been drawn with care. Havmg drawn
BQ =+, 0r BR = + %/, draw through Q or R a line par-
allel to 0-1, as far as O, where it meets the normal force at G.
Then draw O L parallel to 0-2, to cut the force N; at L. . Fol-
low with L K and K I, parallel to 0-8 and 0-4, closing with a
line through I, parallel to 0-5, which, if the polygon has been
accurately drawn, will make A W = y,’, as recently computed,
or AU=—z,.

As neither H nor P is constant for obligue forces on an arch,
the bending moment at any point will equal the product ({f ’?he
force acting along a side of the polygon jus't drawn multiplied
by the perpendicular from the point to the side: thus the bend-
ing moment at E is ES X (0-3), or E T X (0-4). If the exter-
nal forces had been considered as applied at a greater number
of points, or as distributed along the principal rafter itself, we
should have obtained a polygon which approached nearer to a
regular curve, and such a curve has been sketched through the
vertices of the polygon just drawn. -

135. Equilibrium Polygons for the Vertical and Hori-
zontal Components. — Since most of the needful data have
already been obtained, we have thought it expedient to draw the
equilibrium polygons for the vertical and horizontal components
separately, so that they may be compared with each other and
with the polygon for normal forces. If a horizontal and a
vertical line are drawn from 1 and 5, the components H and V
can be at once projected upon them. Upon laying fo H,, ar}d
plotting P, we shall locate the pole 0”; and 0”-2", 0.”— 3", &e., will
be parallel to the lines of the polygon for horizontal forces;.
In the same way, P, and H for vertical forces will determme'O ;
The value of g will be found, upon dividing the M, which
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comes from V by H, to be 14.3 feet, giving the starting-point
Just below Q. Upon drawing the polygon so that the angles are
made at the verticals through the loaded points, we obtain the
broken line which finally runs below A. This ordinate y, may
be verified. If M, from the H’s is divided by P, we have
z,=28.5 feet, an ordinate a little longer than B R. The poly-
gon, if now drawn, will be the broken line which passes near
E’, and extends to a considerable distance, 77.2 feet, to the left
of A. All the sides of this polygon except the first are in
tension. :

136. Shear and Direct Stress.— To complete this exam-
ple, the normal shear at the middle of each division is found,
and at the same time the direct stress. The small letters l, mym,
&c., mark the middle of each division. Draw 0-7 in the stress
diagram, parallel to the tangent at / in the rib, and 5-7 perpen-
dicular to it ; then will 5- be the normal shear at 7, and /-0 the
direct thrust. To satisfy ourselves in regard to the sign of this
shear, we note that 5-0 is the thrust in the side UT of the equi-
librium polygon, and will therefore be the resultant force on the
left of any section between A and D ; the forces 5-1 and -0, in
the directions named, will be its components, also on the left of
the section 7: hence we have positive shear and a direct thrust.
In the same way at m, since 4-0 is the thrust in I K, 4-m will
be the positive shear, and m-0 the direct thrust. Between m
and » the shear changes sign ; for at n we find 3z and n-0, the
former being drawn down, instead of up.  Passing on, we see
that the shear again changes between » and 8, because 1-r and
1-s run in opposite directions. As noted before, this change of
sign oceurs at points of maximum bending moment.

137. Vertical Shear Diagram.— We may draw a vertical shear diagram,
if desired, and from that obtain the normal components; but it is not so con-
veniently constructed in the case of several forces which are always applied
together as for a case of a single load. If ab represents the span, Py’ or
6-0 is laid off at a w, upwards as usual ; then the subtraction of V,at D, or
4'-5, brings us to the line d; thence a step is made to ¢, to £, and finally to

g, closing at b with 0-7, the reaction at B. The horizontal line below a b
cuts off P, or 0"-3", so that the vertical components shown in the line 5-1’
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might be considered as laid off from this lower line, and the constant quan-
tity P, due to the horizontal components, then subtracted. As thc? thrust at
B is 0-1, a line drawn through 0, parallel to the tangent at 1'3, will ‘cut qﬁ
from a vertical line drawn from 1 as much vertical force as is required, in
addition to 0-7, to give aresultant in the direction of the rib at B. 'The
amount so determined is laid off at ¢/ 7. Since it has been shown that fll]
inclined lines are drawn towards the middle of the span ¢, and are unin-
terrupted until an external force is encountered, we draw through c¢ the
line 7 e's. .

In a similar way, a line 0-10 from 0, parallel to the tange‘nt at A, will cut
the vertical through 5 at a distance 5-10, equal to wu; a lm-e from 0, par-
allel to the tangent at D, will cut off the distance from a vertical .through 4,
which is plotted from d to &; one parallel fo the tangent at E will c}lt o'ﬁ?
8-8, which is plotted at eo; and the tangent at F gives 9—9, so that 2-9islaid
off at fp. If ineclimed lines are drawn through the points thus found, run-
ning towards the point ¢, the diagram will be com}.)lebed_. Normal com-
ponents of the ordinates between the two sets of lines just construct.ed,
measured above I, m, n, &e., will agree with the values of the last section,
— positive when above the inclined lines, negative when below.

CHAPTER IX.

STONE ARCHES.

138. Location of Equilibrium Curve determines Thick-
ness of Voussoirs.— Stone arches may be treated as belonging
to the class of ribs with fixed ends, as the voussoirs have suffi-
cient breadth at the skew-backs to make a firm bearing. We
can, then, for a given rise, span, and distribution of steady and

travelling load, draw the equilibrium ceurve, and thence deter-
mine the required thickness of the arch-ring. To repeat what
was mentioned incidentally earlier: if no reliance is placed
upon the tenacity of the cement, and if the intensity of pressure
at a joint between '§ny two voussoirs or arch-stones is considered
to vary uniformly from the outside to the inside edge, the ex-
treme case of deviation of the resultant pressure from the middle
of the joint consistent with safety will oceur when the pressure
is zero at one edge. As the varying intensity of pressure will
be represented by the ordinates to an inclined line which passes
through the point where the pressure is zero, the total pressure
will be equal to the area of a triangle, and the resultant will
pass through the centre of gravity of the triangle, or at a dis-
tance of one-third the breadth of the ring from that edge where
the pressure is most intense. Since the equilibrium curve is the
locus of the resultant force at each joint, the condition that the
pressure shall never be less than zero at any point, or that there
shall be no tension, is equivalent to requiring that the equili-
brium curve shall never pass beyond the middle third of the
131
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might be considered as laid off from this lower line, and the constant quan-
tity P, due to the horizontal components, then subtracted. As thc? thrust at
B is 0-1, a line drawn through 0, parallel to the tangent at 1'3, will ‘cut qﬁ
from a vertical line drawn from 1 as much vertical force as is required, in
addition to 0-7, to give aresultant in the direction of the rib at B. 'The
amount so determined is laid off at ¢/ 7. Since it has been shown that fll]
inclined lines are drawn towards the middle of the span ¢, and are unin-
terrupted until an external force is encountered, we draw through c¢ the
line 7 e's. .

In a similar way, a line 0-10 from 0, parallel to the tange‘nt at A, will cut
the vertical through 5 at a distance 5-10, equal to wu; a lm-e from 0, par-
allel to the tangent at D, will cut off the distance from a vertical .through 4,
which is plotted from d to &; one parallel fo the tangent at E will c}lt o'ﬁ?
8-8, which is plotted at eo; and the tangent at F gives 9—9, so that 2-9islaid
off at fp. If ineclimed lines are drawn through the points thus found, run-
ning towards the point ¢, the diagram will be com}.)lebed_. Normal com-
ponents of the ordinates between the two sets of lines just construct.ed,
measured above I, m, n, &e., will agree with the values of the last section,
— positive when above the inclined lines, negative when below.

CHAPTER IX.

STONE ARCHES.

138. Location of Equilibrium Curve determines Thick-
ness of Voussoirs.— Stone arches may be treated as belonging
to the class of ribs with fixed ends, as the voussoirs have suffi-
cient breadth at the skew-backs to make a firm bearing. We
can, then, for a given rise, span, and distribution of steady and

travelling load, draw the equilibrium ceurve, and thence deter-
mine the required thickness of the arch-ring. To repeat what
was mentioned incidentally earlier: if no reliance is placed
upon the tenacity of the cement, and if the intensity of pressure
at a joint between '§ny two voussoirs or arch-stones is considered
to vary uniformly from the outside to the inside edge, the ex-
treme case of deviation of the resultant pressure from the middle
of the joint consistent with safety will oceur when the pressure
is zero at one edge. As the varying intensity of pressure will
be represented by the ordinates to an inclined line which passes
through the point where the pressure is zero, the total pressure
will be equal to the area of a triangle, and the resultant will
pass through the centre of gravity of the triangle, or at a dis-
tance of one-third the breadth of the ring from that edge where
the pressure is most intense. Since the equilibrium curve is the
locus of the resultant force at each joint, the condition that the
pressure shall never be less than zero at any point, or that there
shall be no tension, is equivalent to requiring that the equili-
brium curve shall never pass beyond the middle third of the
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arch-ring, however the distribution of the load may be varied :
hence, when the equilibrium curves are drawn, the thickness
of the voussoirs is readily determined. The tensile strength of
the cement after it has become firm, and any deviation from
the assumption  that the force between two stones must be
distributed over the whole joint, increase the safety of the
structure, and thus give what is akin to the factor of safety in
--other cases.

139. Intensity of Pressure. — When the stability of the
arch-ring is thus assured, it is an easy matter to find
the greatest intensity of pressure, and hence to see whether the
material proposed for the arch will have strength enough.
When the equilibrium curve passes through the centre of the
joint, the pressure on the square inch will be found by dividing
the thrust at that joint by the area of the bearing surface. If
the curve touches the extreme limit, the edge of the middle
third, the most intense pressure, at the edge of the joint nearest
to the curve, will be twice the mean pressure ; for the height of
the triangle whose ordinates represent the varying intensities
is twice its mean ordinate. In some rare cases, where the span
is large, and the stone is of a weak quality, we may have to
increase the depth of the arch-ring in order to provide sufficient
strength.

140. Circular Arch; Load for Equilibrium. — Although
the curve of the arch-ring may be any one of a number of forms,
the circular arch is the more common type, and we have there-
fore thought it best to take such an arch as an example of this
method : the steps will apply to any form. The Gothic arch
will be classed with the example of §194. If the load is en-
tirely, or almost entirely, steady, as in the aqueduct or canal
bridge, it will be advisable, on the score of economy, to find
that distribution of the load which shall cause the equilibrium
curve to coincide with the centre line of the archring. Then,
by arranging the filling and the empty spaces above the arch-
ring so as to conform to that distribution, the voussoirs can be
made of moderate depth.
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Thus, if B C, Fig. 45, be one-half of an arch which it is de-
sired to load in this way, divide it, by vertical lines, into quite
a large number of parts, equal horizoptally. If the divisions
are small, the areas of these portions between the soffit of the
arch and the upper line may be considered trapezoids, and the
middle ordinate of each division will be proportional to its
volume for unity of thickness, and to its weight, if homogene-
ous. It is then evident, that, if there is to be no bending
moment at any point, the equilibrium curve must coincide,
either with the tangents to the centre line of the ring at these
loaded points, or with the chords drawn between these points,
according as the first loaded point is taken at half a division’s
distance from the abutment, or at the abutment itself, See
Part II., “Bridges,” § 58. Let this weight be concentrated,
in imagination, on each middle ordinate.

Upon drawing, from any point 0, radiating lines parallel to
the tangents, or perpendicular to the radii, at the successive
points of division, and cutting them all by a vertical line-1-12
at any convenient distance, loads in each division, supposed to
be concentrated at the intersection of the above tangents,* and
proportional to the several portions of the vertical line inter-
cepted by the inclined lines, will be the ones required for equi-
librium ; and " the distributed loads spread over all of each
division, or, in other words, a continuous load over the whole
arch, will thus be found. If 1-2 is placed at such a distance
from 0 that it will represent, by a convenient scale, the mean
depth, as well as the weight of the load, in the first division on
the right of C, 2-3, 8-4, &ec., will represent the required depth
of loading in the succeeding divisions. As the angle made by
0-2 with the horizontal line is the same as that subtended at
the centre by the first division near ©, there is no difficulty in
finding, by calculation, the exact length of 0-1, when 1-2.is
given, in case the angle at 0 is too acute to give any accurate
result graphically. In our figure the depth of the load at the

* The tangents will not intersect exactly in the middle of each division.
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crown was assumed to be five feet, and the intercepted portions
of the vertical line were then plotted from the points where
verticals at the middle of each division would eut the centre
line of the arch. The curved line drawn through the upper
ends of these ordinates will then show the desired amount of
homogeneous load to be spread over the arch to produce equi-
librium.

141. Limiting Angle for Arch-Ring without Backing, —
It is now worthy of notice, that, while the required depth of
loading increases but slowly for some distance after we leave
the crown, when we reach the haunches, the ordinates rapidly
lengthen, and the curve through their upper ends will finally
become vertical, if the arch springs vertically from the abut-
ment.  This point was also referred to in § 89. It is appar-
ent, therefore, that it is not practicable to so load with vertical
forces a circular arch, beyond a certain distance from the
crown, that the line of thrust shall coincide with the centre line
of the arch-ring. As the roadway must mot deviate greatly
from a horizontal line, we see, that, for an arch extending 60°
each way from the crown, the amount of material as heavy as
masonry required over the springing will fill all of the available
space, and, when the spandrel filling is lighter, the limiting
angle will probably be in the neighborhood of 45°. In ordina.
ry cases of loading, the equilibrium curve will deviate so much
from the centre line in this portion of the rib as to require
very deep voussoirs to retain the curve within the middle third
when the attempt is' made to extend the unassisted arch-ring
much farther. It is customary, therefore, to carry the masonry
backing, in horizontal courses, up to the neighborhood of the
point where the arch-ring is inclined at an angle of 45°: below
this point any attempt of the arch-ring to move outwards under
the thrust of the upper portion is immediately resisted by the
backing, and the arch will be designed as if the springing
points were at the joints level with the top of this masonry
backing. The portion below really forms a part of the abut-
ment.
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142, Example; Data.—In accordance with the above state-
ments, and as an example of the application of preceding prin-
ciples, we propose to design a circular segmental arch of stone,
for a railroad bridge, which shall subtend 100°, with a radius,
for the centre line of the voussoirs, of 100 feet, making the
span, from centre to centre of skew-backs, about 153 feet, and
the rise about 36 feet. The rolling load will be 8,000 pounds
per running foot of track, and the width of the bridge over
which this load is distributed will be ten feet. The backing will
be carried up to the point where the rib is inclined at 45°, and
the remainder of the spandrel will be filled with such material,
or will have such an amount and distribution of empty spaces,
that it shall weigh, on the average, one-half as much per cubic
foot as does the masonry of the arch-ring. The equilibrium
curve for steady load will now first be found; then such possi-
ble combinations of rolling load will be discussed as will in-
crease the deviation of the steady load curve at those points
where it already deviates most from the eentre line of the arch-
ring ; and, finally, the necessary depth of the voussoirs will be
determined by the rule suggested in § 188. The depth of the
voussoirs at the crown is assumed, in our present ignorance of
the final dimensions, at five feet; two feet of filling, earth or
some other material, is added at that point, and the horizontal
line drawn seven feet above the soffit at the crown will be the
upper boundary of the spandrel filling. If, then, the arch-ring
is taken at a uniform thickness of five feet, as shown at A C,
on the left half of Fig. 45, the depth of a homogeneous load
equal to stone will be found by shortening each ordinate above
the arch ring one-half. Thus was obtained the curve D E. By
dividing the area between this curve and the soffit into small
portions by vertical lines, we may find the weight to be concen-
trated on the several assumed loaded points of the arch-ring.

143. Calculations for Steady Load.— From the equations
of § 92, after making g = 45° and giving to « the successive
values, 5°,10° 15° . . . 40° we have worked out the quantities
Y1 Yo and g, for a weight at such distances from the crown, and
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these quantities are given in the first portion of the following
table, it being understood that the weights are here placed on
the left of the crown to correspond with our figure: —

. a e Yo+ Wan H. Py j
(?—- 0° 0449r 35877  .0449r  1.126 W HW DWW

F s 0252 8585  .0607  1.005 596
S0 0001 ' .8578 | L0785 = 1.007 683
T 15 0841 . 0842 0.866 760
K 20 0817 855 .0930 0.690 .830
/ 25 1538 | 2012 0.498 80 .1
N80 —.2130 . 1078 0.311 939 .063
08  —s18r . 1142 0.150 972 021
P —rum . 1183 0.040 993 .007

These values of yy, ¥, and g, have been plotted on the arch
of Fig. 44, and the several stress diagrams have been drawn
on a vertical line which represents W. From this figure the
amounts of H and of the vertical components of the abutment
reactions for a load W at successive points can be scaled off,
and thus we obtain the last three columns of the above table.
H, P, and P,, can also be easily calculated by the formule
of § 63, if we make ¢ =7 sin g, and b = r sin «.

Having divided the centre line C A of the arch-ring of Fig.
45 at points C, F, G, &c., distant five degrees from one another,
the weight to be concentrated at each of these loaded points is
next computed, for an arch one foot thick, perpendicular to the
plane of the paper, by scaling the area between the dotted
ordinates, marked on the horizontal line, and placed midway
between the points of division, and multiplying this area by
the weight of a cubic foot of masonry, here assumed at 150
pounds. The weights at the several points, to the nearest
hundred pounds, will then be

C=7500, F=17,600, G=8400, I=9,600, K — 11,100,
L=12800, N=14600, O = 16,600, P = 19,300 lbs.;
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making the weight of the half-arch (when we take one-half of
the load at C, and add 9,800 pounds for the load at A), = 113,-
450 pounds.

Calculate H for steady load by multiplylng each co-efficient
of H in the table above by its W in pounds just ascertained,
and adding all the results for both halves of the arch. The
work in detail is below. As the two halves of the arch are
alike, we add up the column for H, add in again all but the
amount for the load at the crown, and have H’ for the entire
arch. Each vertical reaction will equal the weight of the half
arch. i

To find the ordinate y," = ., for the combined weights, mul-
tiply each H by its »;, add the products, and divide by H’. As,
for each weight on one half of the arch, there will be a corre-
sponding and equal weight on the other half, it will shorten
the process to add g, and y, together for each point on one-half
of the rib, ezcept the centre one at C.

Ww. H. N+ ya M,.
0° 1.126 X 7,500 =8,445 1bs.  .045 » -} 380.0  lbs.

C.
F. 5 1.09% 7,600 8322 B 715.7
G 1.007 8,400 8,459 074 626.0
15 0.866 9,600 8314 .050 415.7
K 0.690 11,100 7,659 011 84.2
L 0.498 12,800 6,374 —.053 —337.8 r 1bs.
N 0.311 14,600 4,541 —.165 749.2
0.150 16,600 2,490 — .400 996.0

0.040 19,300 772 —1.123 867.0
55,376 Ibs. —2,950.0
46,931
H' = 102,307 Ibs. ) —

144. Bquilibrium Curve for Steady Load. — Plot the
weights of the above table on a vertical line from 1’ to 10/, lay
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off H' from the middle of 1'-2’ to 0/, and, starting at 0.71 feet
below A, draw an equilibrium polygon with its sides succes-
sively parallel to the lines which would radiate from (', This
polygon will run quite close to the centre line, crossing it twice
between A and C, and passing 0.4 feet below it at the crown.
In any actual example the whole polygon should be drawn, as
its accuracy will be proved by its striking the ordinate from B
at the proper distance. If this arch were never to be subjected
to any other than a steady load, or should the travelling load
always be light, voussoirs of moderate depth would contain
this polygon within their middle third. —The true equilibrium
curve will pass through the angles of the polygon just drawn.

145. Calculations for Rolling Load.— But, as we stated
that a line of railroad was to be carried over this arch, let us
suppose that the rolling load of one ton and a half per foot of
track, or 8,000 pounds, is distributed over the ten feet of width
of the arch; the moving load will then amount to 300 pounds
per foot of span on the rib of our figure. The sleepers, the
filling over the rib, and the bond of the arch-stones, will dis-
tribute any concentrated load over a considerable area.

At the crown of the arch the curve already drawn falls some-
what below the centre line. Upon inspecting Fig. 44 we see
that six of the polygons there drawn pass below the crown of
the rib. If, therefore, we Place upon the stone arch a rolling
load which covers six points of division from each abutment,
that is, from Q to R on one side, and a corresponding distance
on the other half arch, this distribution of load, if a practicable
one under the usual method of running trains, will cause the
greatest deviation of the equilibrium curve at the erown C.

To draw the polygon for this rolling load alone: first multi-
ply each horizontal distance belonging to I, K, L, &c., by 300
pounds, to obtain the concentrated load on each point; then
multiply by the proper co-efficients of H already obtained ; sum
the products, and double the results for both halves of the
arch ; multiply each H by its », and %3 divide the algebraic
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sums of these products by H”. The operations are carried out

below.
w. H it
I. : 2,620 X .866 = 2,182 050 ~+109.1 # 1bs.

K. ; 2,460 690 1,697 011 18.7
.498 1,180 —.053 — 62.6 r 1bs.
311 700. —165 115.4
150 320. —400 127.8
.040 80 1.123 90.0

6,159 4127.8 —395.8
H" = 12,318 ) — 268.0 X 100 ( — 2.2 ft. — 3/".

Lay off the loads for one-half of the rib on a vertical line
from 4” to 10”; make 4”-0” = H"; and, laying off y,” = - 2.2
feet, at A, draw the polygon which passes horizontally below
C at a distance, by scale, of 2.3 feet.

146. Increase of Bending Moment at Crown; Required
Depth of Keystone.— We can now find how much this added
load increases the negative bending moment at the crown of
the rib, or how much it causes
the equilibrium curve to move
inwards. If we multiply H 12318 x 2.3 = 283314
and H” by the ordinates to their 114,625 )69,254.2
respective curves at the crown, Ordinate at C= .~ 0.60 £t
which ordinates are 0.4 feet and '
2.8 feet, as lately stated, and add the produets, we sl.la‘ll.obtam
the existing moment at the crown, and, upon dividing by
H’ 4+ H”, we get the ordinate from the centre line at C to.the
curve for the combined loads. It is worthy of note how little
effect the rolling load produces, owing to the great thrust of
the masonry itself.

In order that this deviation of 0.6 feet from the middle of
the joint shall not bring the equilibrium curve outside of the

102,307 X 0.4 = 40,922.8 ft. 1bs.
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middle third, the keystone and adjoining voussoirs must not be
less than 0.6 X 6 = 3.6 feet deep. The greatest intensity of
pressure, found at the inner edge, will then be twice the mean
intensity of pressure, or 2 [114,625 = (3.6 X 144)] = 442
pounds per square inch, giving a factor of safety against
crushing of about ten, for good limestone or sandstone.
If the depth of the joint be increased to four feet, the greatest
intensity of pressure at the inner edge will be reduced to

4436 114,62 .
-l:i "4x 144 878 Ibs. per square inch.

147. Increase of Bending Moment at Haunch.— The
steady load curve deviates outwardly from the centre line the
greatest distance, 0.5 feet, at L. Fig. 44 again shows that a
rolling load from Q to R of Fig. 45 will increase this devia-
tion to the greatest extent, The value of the horizontal thrust,
H", for this load, will be seen, from the table of § 145, to be
6,159 pounds. Multiplying the same values of H by the then
existing values of y;, and proceeding as usual, we shall obtain
9. If the total M, of this table is subtracted from

H. e M.. W. Py

I 2182 % —.034 =— 74.2  1bs. 2,520 X .244 — 614.9 1bs.
K 1,697 —. —139.2 2,460 .172 423.1
L 1,180 —. —181.8 2370 .111 263.1
N 700 —.2713 —191.0 2,250 .063 141.7
0O 320 —.514 —164.2 2,130 .027 57.5
P 80 —1.241 — 99.3 2,010 .007 14.1

6,159 lbs. ) —849.7 X 100 (—13.8 ft. — w". PJ"=1,514.4 lbs.

)+ 381.7 X 100 (4 9.4 ft. =y,

that of the table in § 145, we shall obtain the moment at B, and

thence find ,”. To obtain the vertical component of one re-

action, multiply each load by the proper co-efficient of P, or P,,

given in §143. Since P,”is 1,514.4 pounds, lay this amount
off from 4”, draw H” to 0", and plotting — #,” at A, and
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-+, at B, draw that equilibrium polygon which passes 7.1 feet
above L.

By the same process as before, we find that the equilibrium
curve for the steady load, combined with these six loads on the
left side of the arch, will be dis-
placed from the centre line ver-
tically at L 0.875 feet. The 6,159 X 71 = 437289
depth of the archring at this 7198466 )94,882.4
point should, therefore, not be T A
less, vertically, than 5.25, or,
measuring normally, than 5.25 x cos 25° = 5.25 x 0.9063 =
4.76 feet.

148. Influence of an Additional Load.— When it is no-
ticed that an additional load on the point G will cause the
greatest positive moment at K, it may be suspected that these
seven loads will cause a greater deviation at K than the one
just found at L. To ascertain the fact, we may dispense with
any new polygon by proceeding as follows: The new load G
will be 8.6 X 800 = 2,580 pounds. H for this point, being
1.007 W, will equal 2,580 x 1.007 = 2,598 pounds. By scale,
in Fig. 44, the ordinate from the proper polygon to the arch at
the point K is .017 » = 1.7 feet.
The ordinates to the curves
already drawn in Fig. 45 being 6,159 X 8.10 = 49,887.9
scaled at K, the annexed com- 9,598 X 1.70 — 4.416.6
putation is readily made, and
the quotient is seen to be less
than the amount at L. Kindred steps might be taken for any
point.

149. Increase of Bendiag Moment at Springing; Maxi-
mum H.— The remaining point of maximum deviation of the
curye for steady load is at the springing A, where we have
found it to be .71 feet. As the same six loads from Q to R will
be seen, from Fig. 44, to produce the maximum effect at A, the
polygons are already drawn to our hand, and the moments at
the springing point are seen in the respective tables. There-

102,307 X 0.5 = 51,153.5 ft. 1bs.

Ordinate at L —= 0.875 ft.

102,307 X 0.35 = 35,807.4 ft. 1bs.

111,064 90,111.9
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fore the ordinate at A is 1.45 feet, and the normal displacement
is 1.45 X cos 456° =1.45 X .T0T = 1.03 feet, The necessary
depth for this joint will be 6.2
feet. If the amount of P, from

6,159 X 13.8 — 84,970 rolling load, 12,226 pounds, is
108,466 )157,810 laid off below 10/, and H”,

Ondingte Gk e o ] 6,159 pounds, is plotted to the

right of 0, the line connecting
the two points thus found will be the thrust at A, and, from its
projection on a line inclined at 45°, we get 158,000 pounds for
the direct thrust at A. The maximum intensity of compression
on this joint will be at the inner edge, and will be 2 [158,000
=+ (6.2 X 144)] = 854 pounds per square inch.

The maximum value of H will occur when the rolling load
covers the whole bridge. If the amounts of H for the points
which have not yet been loaded are computed, the horizontal
thrust for a complete travelling load will be found to be 26,206
pounds. - The equilibrium eurve for such a load will be a para-
bola ; the ordinates y; and g, will be 1.19 feet, and the curve
will pass the crown at a distance of 4 0.5 feet vertically. As
this parabola, when drawn if desired, will be found to lie at
most. points on the opposite side of the centre line from the
curve for steady load, the effect of a complete rolling load will
be to bring the arch quite near to actual equilibrium. The de-
viation at the erown will be reduced to — 0.2 feet, and, as the
total thrust will then be 128,518 pounds, the greatest intensity
of compression at that section, for a four-foot voussoir, will be

13 2
¢ -I; 9 ; 1 S’ﬁi =290 Ibs. on the square inch. We have now

102,307 X .71 = 72,840

esamined in detail all of the critical points of this arch.

150. Final Dimensions of Arch.— The arch-ring was as-
sumed, at the start, to be five feet deep. Tt is apparent, from
our investigation and the conditions imposed, that this depth is
greater than is necessary for the larger part of the arch, but is
less than is required near the springings. For a travelling load
of somewhat less intensity, a ring having a uniform depth of
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five feet will be entirely satisfactory. Guided by these results,
we may redistribute the steady load in the spandrels so as to
bring the equilibrium curve for that load nearer the centre line
at the springings. Another trial will probably accomplish the
desired end, and the above curves for rolling load can be used
anew. Otherwise, the arch-ring may be made four feet deep
at the crown, and six feet and a half deep at the apparent
springings, as shown on the right half of Fig. 45, and in that
case the curves which have been discussed will lie within the
middle third of the rib. Although the formule for the circu-
lar arch were derived upon the assumption that the rib was of
constant thickness, the deviation which we suggest will hardly
be of serious consequence. The tenacity of the cement, and
the greater or less resisting power of the material immediately
in contact with the ring, will sufficiently provide for all contin-
gencies. We have therefore drawn this form as the final deter-
mined shape of the arch-ring, the centre line being undisturbed,
and the radii of the intrados and extrados being about 95 feet
and 104 feet respectively. One must remember, that, as the
ring has been altered from a uniform depth of five feet, care
must be taken to put a little more filling at the crown, and less
at the springing, in order that the distribution of the steady

- load may be unchanged.

151. General Remarks.—If the exterior spandrel wall is
massive, a separate equilibrium curve may be required for that
portion of the ring which carries the wall : such portion will be
subjected to a steady load equal to the weight of the wall, but
need not be considered as carrying any travelling load. It was
not our purpose to enter into the subject of the construction of
stone arches, but to show the method of finding the forces
which act on a given or assumed rib. Two or three matters,
however, will be briefly referred to. = If, at any point, the direc-
tion of the resultant pressure makes a considerable angle with
the tangent to the centre line of the ring, the two voussoirs
having a joint at that place might slip on one another if the
joint were radial. No joint should deviate very far from a
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plane perpendicular to the pressure. Generally this angle of
deviation is too small to be of practical importance, and the
joints are made radial or normal to the intrados.

In case several arches are built in a series, it is well to so
proportion the span and rise of each, that the horizontal thrusts
from. steady load may nearly balance one another, as we shall
then avoid a disturbance of one arch by the other, and can
carry the arches on reasonably slender piers. If one arch has
more thrust than the other, and the pier between the two
yields, we have a change of span, like that due to temperature,
so far as its treatment goes; and its effect upon the arches can
therefore be determined.

As we know the direction, amount, and point of application
of the thrust at the springing, we can easily construct the line of
thrust, or equilibrium curve for the abutment, by combining
the weight of the abutment and of the mass of masonry imme-
diately above it with this thrust at the springing, the weight of
the masonry just above this point being first compounded, and
then the weights of successive portions of the abutment.
Hence the required thickness of the abutment is ascertained.

152. Exaggeration of Vertical Scale.— Since some of the
equilibrium curves may run quite close to the centre line, espe-
cially the one for steady load, it may improve the accuracy of
measurement of the ordinates or displacements to exaggerate
the vertical scale of the drawing. In this case, since all verti-
cal lines will be increased in length, the load lines of the stress
diagrams must be laid off with the same proportion to those
which represent H. This suggestion immediately opens the
question of the. possibility of treating elliptic ribs.

W153. Elliptic Arch.—If we refer to the original equations
of condition for any rib, viz, SEF.DE=0, SEF =0, and
SEF.DB=0, it is apparent, that, if all the ordinates D E
and E F of a circular rib are multiplied or divided by any given
quantity, the summations indicated above will still equal zero,
and that the ordinates y,, yy, and y,, thus determined, will apply
to an elliptic rib whose semi-axes are obtained from the radius
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of a circular rib by the same multiplication or division. This
fact is easily seen by reference to Fig. 43. Here are drawn a
semicircular rib and two elliptic ribs, of the same span, but dif-
fering in height; one having one-half the rise, and the other one
and one-fourth the rise, of the semicircle. We will suggest,
that, to find points on an ellipse, a simple way is to draw from
the same centre two semicircles whose radii are the semi-axes of
the ellipse ; then prolong any radius; from the point where it
cuts one circle draw a horizontal line, and, from the point where
it cuts the second circle, draw a vertical line; the intersection
of the lines last drawn will be one of the desired points. This
construction is seen in the figure, and, as one of the circles is
needed subsequently, the method is convenient.

154. Example. — Taking a load at 80° from the crown of
the semicircular rib as an example, we find, by turning to the
table of § 99, that y, = .3607, y, = 1.298 », and y, =.011 »:
the polygon is plotted on the semicircle of the figure. In the
upper sketch every ordinate for the ellipse being one-half of
the corresponding ordinate for the cirele from which it is pro-
jected, we have simply to substitute the semi-axis a =% r for 7,
and we have gy, = .360 a, y, = 1.298 a, &c. The equilibrium
polygon may then be drawn, and it is apparent to the eye that
it satisfies the imposed conditions alluded to in the last section.
Similarly, for the other ellipse, we write a for r, in that way
multiplying the ordinates of the semicircle by 1.25.

It is evident that the points of contraflexure are unchanged
in horizontal position, as is also the horizontal distance of the
imposed load from the crown; but the symbol &« = 80° of the
example has no significance in the ellipse as denoting the angu-
lar distance of the load from the crown. We must, in place of
such notation, either draw the semicircle which has the span
for a diameter, and work from that, as has here been done, or
else for « read r sin @, where » equals horizontal semi-axis of the
ellipse, and lay off the distance from the centre on the diameter
to locate the foot of y,. A segment of a semi-ellipse can be
treated exactly as a segmental circular rib is treated : it will be
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necessary to draw the semicircle whose radius is the horizontal
semi-diameter of the ellipse, and then to determine, by pro-
jecting the springing of the elliptic rib vertically upon the semi-
circle, what is the value of g to be introduced in the equations
for 7, &e.

We see, also, from either the stress diagram, or a considera-
tion of the equation for H, that in proportion as the ordinates
are diminished so is H increased: thus, for the flat ellipse of
our figure, H is double the value of H for the semicircle; and,
for the ellipse of large rise, H is £ that of the semicircle. All
of these remarks apply equally well to the rib hinged at the
ends; and therefore the elliptic rib may be readily introduced
in bridges or roofs, where it is desirable to have either a low
arch rising rapidly from the springings, or a very high one.

155. Treatment for Horizontal Forces.— Horizontal forces
can be treated equally well by considering the elliptic roof as a
projection of a circular arc. In this case it will be necessary,
since @y, 7, and @y, are measured horizontally, to use the project-
ing circle which has the same rise, but different span; when
the abscissee will be changed with the span, and the point of
application of the horizontal force will continue on the, same
horizontal line.

156. Catenary.— There is one special case which it may be
well to take up. It not seldom occurs in construction that an
opening in a wall is to be spanned by an arch, and the masonry
at top is limited by a horizontal line, while the load is perma-
nent. If we can make the arch of the form of the equilibrium
curve for such a load, we may get a rib of good stability with
a very moderate depth. A method of constructing such a
curve will now be shown. We stated, in the early part of the
book, that the curve assumed by a cord or chain hanging
between two points of suspension, and under the action of its
own weight only, was called a catenary. The load is distributed
uniformly along the curve; that is, the intensity per foot of the
curve is constant. To draw a catenary, proceed. as follows:
Lay off on a vertical line, 1-11, Fig. 41, a convenient number
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of equal spaces, 1-2, 2-3, &c., the more the better; and let each
of these spaces represent the weight of a certain short length of
chain, as, for instance, in our figure, 6.4 feet. They may be of
the same length as the pieces of chain, if desired. As we do
not know the value of H at present, assume it; and draw 1-0
horizontally, equal to H; draw 11-0; consider the weight of
the first piece of chain to be concentrated at its middle, and
make A B equal to one-half piece of chain, say 3.2 feet; then
draw B C parallel to 10-0, C D parallel to 9-0, and so on, B C,
C D, &c., being successively laid off equal to one piece of chain,
here 6.4 feet. ~We shall close with N'O parallel to 1-0, and
equal in length to A B: A curve from A to O, tangent to this
broken line, will be a catenary. If 1-11 represents the weight
of the chain A O, 1-0 will represent the tension at O, and
hence the weight of a piece of chain, which, hanging over a
smooth peg at O, will keep the curve in equilibrium.  Let O P
represent the length of the piece which weighs H, or 0-l.
Then a horizontal line P Q, drawn through P, is known as the
directrix of the catenary. This curve has some peculiar attri-
butes, which may be deduced by mathematical analysis, and may
be verified, in any particular case, from the drawing. ~Any ver-
tical ordinate to the curve will represent the tension along the
curve at the point to which it is drawn. Further, this curve
will also be in equilibrium under a load which shall fill the en-
tire area included between P Q and O A with a uniform load
per square foot of the area. Since, however, when O P is given,
the entire curve is fixed, it is possible to make a catenary curve
of but one span and rise, if the depth of load at the crown is
fixed; and hence the catenary itself is not applicable to the
form of an arch where the three quantities just mentioned are
given. This arises from the fact that all catenaries are similar
figures: therefore, two of the above. quantities being given, as
for instance, span and rise, the third, the depth at crown, is
definitely determined from them.

157. Transformed Catenary; Example.— It is possible,
however, to find a curve which shall be in equilibrium undez
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such a load, when the span, rise, and depth are all given. In
the same way that an ellipse is derived by projection from a
circle, a curve, called a transformed catenary, can be projected
from a catenary, and will be in perfect equilibrium under the
desired or prescribed wall. = While some of the quantities used
are derived by mathematical analysis; which we will not insert
here, the accuracy of these quantities can be verified from the
diagram.

Let it be desired to find the form of the arch, of half span
P Q, which shall be in equilibrium under masonry whose depth
at the crown shall be SP, and at the springing R Q. It is
understood that the arch will be inverted from this figure, and
it will be seen that this type of arch may be applied to any span
and rise. Let PQ=1¢, PS =%, QR =4, P O = m, and
QA =y. The first step will be to find the value of P O, and
thus determine the original catenary. This will be done by
solving the equation

c

o ‘h hy? ;
2.30158 X log (+ +\] i 1)
0 0"

where log. denotes the common logarithm of the quantity in
the parenthesis. Let the half-span be 80 feet, the rise 8 feet,
and the depth of load at the crown 2 feet ; then is 4, 10 feet, and
the above expression becomes

Lk = 30 30
2.30158 X log (5 +V24)  2.20242

= 18.09 ft.

Then by proportion

hyim=mh: g, oOF y= ’jlﬁ —13.00 X 5 = 65.45 ft.
0
We next ebtain from the following formula, the length of the

catenary,

s = y/(%? — m?) = y/(65.45? — 13.092) = 64.1 ft.,
and
P,_ s 64.1

H = m—13.00 =&
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We may now proceed to draw the catenary between the
points A and O. Any length of load line may be laid off, and
H then drawn of the proper proportionate amount just found.
Buf, if preferred, P, may be made equal to the weight on the
catenary, which will be the area between the curve and the
directrix multiplied by the weight of a cubic foot of masonry.
The area can be proved equal to m s, or the product of P O by
the length of the curve just found. Divide the load line into
a certain number of  equal parts, and divide s by the same
number. Then proceed with the construction of § 156.

158. Construction.— The transformed catenary must be a
projection of the catenary so drawn, and the load and load
line will be reduced in the same proportion. To save the
trouble of redividing the load line, multiply 1-0 by the ratio
m = hy; that is, enlarge the scale of the stress diagram, and lay
off that distance from 1 to 0. Radiating lines from 0/ to the
old points of division will be parallel to those which might be
drawn from 0 to new points of division ; therefore, starting
from R, draw the curve R S by making its sides parallel to lines
radiating from 0', and bringing the points B, ¢V, I, &e., ver-
tically below B, C, D, &c. But it must be remembered that H
in the new curve is the same in amount as H in the old one,
while P,, the vertical component of the reaction, is reduced in
the ratio just referred to. The rib need only be deep enough
to have strength to resist the thrust. Fig. 42 shows the arch in
an erect position.

159. Many-centred Arch. — If it is wished to lay out an
approximation to the transformed catenary, composed of ares
of circles, draw normals at the middle points of the successive
sides of our construction, and, to get them accurately, make
them perpendicular to the radiating lines of the stress diagram.
Prolong them until they intersect one another, and, on or near
the curve which can .be sketched through those intersections,
select as many centres as may be desired for the circular arcs.
Thus arches of three, five, or seven centres may be drawn, which
will be good approximations to the transformed catenary.




CHAPTER X.

STIFFENED SUSPENSION-BRIDGES.

160. Necessity for Stiffening.— That the curve of equili-
“brium for the cable of a suspension-bridge, when the load is
supposed uniform per horizontal foot, and covers the entire span,
is a parabola; was proved in § 28, Fig. 6. The steady load will
always be carried by the cable. When, however, a moving load
is upon the structure, the cable will tend to become flatter in
curvature over the lightly-loaded portion, and more curved over
the heavily-loaded portion, thus throwing the roadway from its
proper line. Some means of stiffening the roadway or chain
against. distortion is therefore needed. Bridges subjected to
travelling loads of but moderate amount may be stiffened by
the longitudinal beams of the roadway ; but heavy loads neces-
sitate the employment of trusses or girders in some form.

161. Inverted Arch.—If the cable is divided into two par-
allel members, braced together as shown in Fig. 46, it beecomes
an inverted arch, and follows the treatment already given in
either Chap. IL, IIL, or IV., depending upon whether hinges
are or are not introduced at the piers and the middle. From
the fact that the cables are carried over the towers to anchor-
ages, and that movement over the top of the tower will take place
both from change of load and change of temperature, the span
cannot be assumed invariable: hence there is greater liability
to alteration of stressin the several members from unavoidable

causes ; and a larger factor of safety than is commonly employed
150 '
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in structures will be appropriate. The introduction of three
hinges will do away with these sources of error. This type of
stiffening truss will be discussed further in connection with the
one which follows.

162. Horizontal Girder.— It is much more common to em-
ploy a horizontal truss or girder, as shown in Fig. 47, to stiffen
the suspension-bridge. If we note that the office of the arch or
inverted arch is twofold, —first to resist the direct stress, and,
second, to resist the bending moments at successive sections,
— we see that the horizontal girder of this figure will be subject
to the same bending moments at similar sections as the inverted
arch or braced rib of Fig. 46, while the chain will here carry
the direct stress, which in the former case was also resisted by
the rib.

If the trussis hinged at the middle as well as at the abut-
ments, it comes under the class of Chap. IL.; and the effect of
one or more loads is easily determined. We may draw Fig. 48,
if desired, and find by inspection the extent of rolling load
required to produce the maximum bending moment of either
kind at any point. See §32. Thus, at one-fourth the span
from one abutment, the maximum bending moment of one kind
occurs when the rolling load covers four-tenths of the span on
the same side; and the maximum bending moment of the oppo-
site kind, when the rolling load covers the other six-tenths of
the span. The maximum moment at a point near the abut-
ment is found when the head of the load is at one-third the
span from that abutment. These values are easily deduced by
finding the horizontal distance of the point of intersection D,
in Fig. 48, on A F, of that line, which, starting from B, passes
through E, the extremity of a certain ordinate. Those authors
who make maximum bending moments at all points occur, for
a stiffening girder hinged at ends and middle, when the hali-
span is covered, are in error. The shear diagrams are con-
structed as explained in the earlier chapters. The construction
for normal shear will be applicable to Fig. 46, and the vertical
shear diagram to the stiffening truss of Fig. 47.
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163. Distribution of Rolling Load between Cable and
Truss.— It may be well to call more particular attention to
the distribution of the rolling load between the truss and cable
of Fig. 47, and the way in which bending moments are caused
in the unloaded portion of the horizontal girder. If the bridge
is unequally loaded, and no stiffening appliances are used, a
distortion is produced, as explained in the first section of this
chapter. When a weight W is applied on a suspension-bridge
of half-span ¢, at any point distant & from the middle hinge, we
know, in the first place, that the tofal reaction at A, Fig. 47, the
end farthest from the weight, is W f—;ﬁb, and at Bis W cj;b;
and, in the second place, as there can be no shear in the cable,
we see, from the equilibrium polygon of Fig. 48, and the lines
0-4 and 0-3, drawn in the stress diagram parallel to the tangents
to the cable at the tops of the towers, that 5-4 : H=29%: ¢,

2 2 — b
or 54 — ?C H. By$§ 23 H = (ZE)T W ; therefore the amount

of vertical force combined with H of the cable is W

e—b
¢
Hence at A and at B the cable itself produces a reaction of

c—b )
WS the balance of the reaction comes from the truss; the

c—b
-)c

. R =y 0
B will be W (‘-_j:— &= ) = W= This reaction also

will be negative when & is less than % ¢. Such is the case in
Fig. 48, for the polygon A D B; and we have a corroboration
in the negative bending moments near each end.

As the vertical force at A or B from the cable is the load on
the half-span of the cable, and this load must be uniformly dis-
tributed horizontally to keep the cable in its curve, the intensi-
ty of vertical pull exerted between the cable and the rods per
horizontal foot is found by dividing the above force by the half-

span: hence it is \Vc;b. This will be the upward pull on

reaction of the truss at A will therefore be — W ,and at
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the girder per horizontal foot at all points and the cause of the
bending moments. Of course at the point of application of W
the resultant force acts downward. The action of a continu-
ous load over a greater or less portion of the girder will follow
the same law; and we shall have downward forces on the loaded
portion of the girder equal to the difference between the im-
posed load and the pull of the vertical rods, and upward forces
on the unloaded portion.

It is convenient to notice that the amount of W carried by
either half of the cable is that portion which would be carried
by the middle hinge if the half-girder alone supported W. As
the girder reaction at the farther abutment is one-half of this
amount, and the half-girder on the unloaded side is subjected to
a uniform upward force, the shear on the middle hinge will also
be one-half of this amount, or W g-_;c—b. The shear diagram is

&

given in Fig. 48. For any extent of load it will now be easy
to find the amount carried by the cable; for we have only to
caleulate the portion which would come upon the middle hinge,
were that a point of support of a simple truss of span e and
this portion will be the load on the half-cable.

164. Comparison of Inverted Arch and Horizontal Gird-
er.— All statements in regard to the horizontal stiffening girder
are equally true of the two parallel chains with bracing.
While, in the bridge formed of cable and horizontal girder,
the girder resists bending moments, and the chain takes up the
direct stress, in the latter case the eables have to resist both
moment and direct stress. But the maximum direct stress at
any section, half of which is borne by each cable, occurs when
the bridge is fully loaded: the maximum bending moment is
found with a partial load, at which time the direct stress is less.
Hence less material is theoretically required for the cables and
truss of the type of Fig. 46 than for one like Fig. 47, — per-
haps three-fourths as much. The introduction of the middle
hinge in the axis of the rib of Fig. 46, with connections of suf-
ficient strength to transmit the cable stresses, is attended with
a little difficulty, which does not exist in the other case.
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The three-hinged girder or rib may have the third hinge re-
moved from the middle towards one end, as shown in Fig. 50,
where one portion of the girder takes the form of a short link,
extending to the first suspending rod. The same device may
be introduced in an arch. - The effect on the equilibrium poly-
gon and the derived quantities may at once be seen.

165. Horizontal Stiffening Girder hinged at Ends only.
—In case the middle hinge is omitted, the girder will be ex-
posed to bending moments, as explained in Chap. ITI. Here,
again, an inspection of Fig. 8 will show the extent of load
required to produce maximum M of either kind; and an exami-
nation of the table of bending moments in the chapter referred
to will show that an absolute maximum M oceurs at one-fourth
of the span from either abutment for a continuous load extend-
ing from one end to a point distant 0.48 of the span from the
end nearer to the point of maximum M. Tts amount is about

1 ] ;
75 OF 138 of the maximum moment at the middle of an un-

assisted girder of the entire span. ~The stretching of the cables
on both sides.of the towers impairs the accuracy of these de-
ductions. With a truss hinged at the middle, the sagging of
the main cable, as well as the change of temperature, is of little
consequence. - From the value of Y, § 50, it is evident that

e
3% (1 —#?) (56 — n*) W is carried by either half-chain, and this

quantity divided by ¢ will give the intensity of upward pull on
the truss from a load W at one point.  The above amount is
again that which would be carried to the point of contraflexure
of the truss, if that were the point of support of the unas-
sisted truss, and the truss were discontinuous over the support.
(Compare Rankine’s “ Applied Mechanics,” p. 875, note.)

If the ends of the girder are fixed in direction, we have the
case of Chap. IV. Enough has been said to plainly indicate
the treatment.

166. Stiffening Girder of Varying Depth. — Returning
anew to the case of the stiffening girder with three hinges, it is
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evident, that if the girder has a variable depth, greatest at the
points of maximum bending moment, the stresses in the flanges
or chords will be diminished proportionally, with -an economy
of material. If, at the same time, the girder is itself the sus-
pension cable, we can so adjust the depth, that the flange stress-
es for a partial load shall never exceed those arising from an
entire load. Modifications having this end more or less in view
have been suggested and carried out. Let us first draw, in
Fig. 49, the equilibrium curve for a rolling load alone over half
the span. While this curve will not give maximum bending
moments, it will not differ greatly from the curves of maximum
M, and .it offers a very convenient and sufficiently accurate
basis of comparison. Itsform will be a straight line over the
unloaded half of the span, and a parabola tangent to that line
for the remaining portion. As the tangent at the abutment end
of this parabola meets the tangent from the other end in the
vertical through the centre of gravity of the load, the tangent
AD is at once drawn. Draw the chord A C. The parabola
cuts the middle vertical ordinate E D from the chord A C at
its middle point F. If the height of the original parabola of
the eable is %, the ordinate at one-fourth the span is 24 G D
=3k; GE=1}%; therefore ED =%; EF = 3k; and F G
= k. Hence the remaining ordinate for bending moment at
one-fourth the span is 4 % on either side, and of opposite signs.

167. Bad’s Arch, or Lenticular Stiffening Girder.— If the
two half-ribs of the arch of Fig. 51, or of the stiffened suspen-
sion-bridge, are each made of two equal parabolas, the outer
ones being the continuous equilibrium curve for a complete
load, the vertical depth of the semi-girders at their middle sec-
tions E and F will be one-half the rise or height, 2. Let us
denote. the horizontal thrust or tension from steady load w by
H; that from a full rolling load ', by H. The horizontal
stress due to a rolling load extending from one abutment over
half the span will be ! H'; for a similar load over the other
half-span must give an equal stress, and both combined must
equal H. When the above bridge is fully covered with mov-
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ing load. the equilibrium curve will coincide with the continu-
ous curve, and the stress at each section of the main cable will
be that due to H+ H’. The auxiliary ribs and bracing will
experience no stress. ~ When the bridge is half loaded, say from
C to B, the equilibrium polygon for rolling load will be the
one sketched in our figure; it passes at I, £ below the main
cable at D, and through the middle or axis of the truss A C.
The horizontal component of the stress at D, due to 3 H’ at
I, is, from the equation of moments about E, $ H'; that is,
3 H'. 4 & = hor. comp. at D X } %. Taking moments about D,
3+ H'.% &k = —hor. comp. at £ X % &, or horizontal component;
at E is — 3 H. At F and G the horizontal component is, in
each member, 3 H’. The minussign denotes opposite stress,
here compression; in the arch, tension. We may therefore
write the following table of cases:

Horizontal component of stress at . E D F G
With steady load only. . . . . . 0 H 0 H,

5 “  and one-half rolling load —1H'" H+3H +1iH H+3iH,

& % “ complete ~ « 2 0 H+H 0 H+H.

Since F and G change places with E and D for a load on the
other half-span, we see that the lower member, or main cable,
experiences a horizontal component which fluctuates from H to
H + H', always tension; while the auxiliary rib has a stress
whose horizontal component ranges between % H’, tension, and
t H', compression. The bracing will undergo no stress from
a full load. ~ The stress in the bracing for partial loads may be
worked out by the method of the previous chapters for finding
the amount of shear remaining after subfracting the vertical
components for the two cables at a section, by the method of
Part IL, “ Bridges,” Chap. V., or by drawing stress diagrams as
given in Part L., “ Roofs.”

As the parabola through I is a projection of that through D,
the above deductions for the points D and E are true for the
other points of the girder. Although, as pointed out in § 162,
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the bending moments are a little greater for loads which cover
not quite half the span, it is evident that the horizontal compo-
nent of the stress in the main cable can never exceed H 4 H/,
and in the counter-rib will but slightly exceed 4~ 3 H. This
form of arch was designed and patented by James B. Eads:
a paper upon it by him may be found in the “Transactions of
the American Society of Civil Engineers,” vol. iii., No. 6,
October, 1874. ‘

168. Bowstring Stiffening Girder.— If the auxiliary mem-
bers connecting the hinges A, C, and B, Fig. 52, are straight,
we have a variation in the method of stiffening and a change
in the stresses. The equilibrium curve A F C 1B, for a rolling
load over one-half the span, is also drawn here, coinciding with
A C, and passing through I, } % below D. The steady load will
be entirely carried by the main cable as before, as will also
a complete rolling load. The half rolling load, being entirely
supported on the left by A F C, will cause in that member
a tension whose horizontal component is 3 H’; a horizontal
tension in D, of H', and a horizontal compression in E, of
% H', as is found by similar equations of moments to those in
the last section. There results, then, for this type the following
cases: —

Horizontal component of stress at . . E D F G,
With steady load only . . . . . . . 0 H 0 H,

4 = “ and one-half rolling load —} H' H+H' +4iH H,

g “ “ N “Ucompleie V¥« $ 0/ ‘H+H! 0 H+H.

The stress on the main cables will be very slightly increased
for some partial loads, as shown before. The increase will, how-
ever, be small, for the direct stress is decreased at the time the
bending moment is’ increased; so that the absolute maximum
may be called H +4 H’ without any error of importance. The
stress in the straight stiffening rib ranges from a tension of
3 H' to a compression of # H. While the member A C or C B
has to resist double the force of the preceding case, and that
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force also completely reversed for a moving load over one-half
of the bridge, the unbraced lengths are shorter than in F ig. 61,
the construction of a straight member is simpler, and the web
members are only one-half as long: the cost may therefore be
sufficiently influenced to cause this design to commend itself
more to the practical builder than does the former. A notable
example of this type is the Point Bridge at Pittsburgh, Penn.,
eight hundred feet span, built by the American Bridge Com-
pany of Chicago, in 1876.

169. Fidler's Stiffened Suspension-Bridge. — Again, let
us conceive of two cables, AFCD B and BECG A, Fig. 53,
each separately subject to, and in equilibrium under, a rolling
load over one-half the span, and then let their places be taken
by the two girders shown. A C and C B will be straight, as in
the last figure; A G C and CD B will be parabolas, each tan-
gent at C to the chord of the other; and the equilibrium curve
for a complete load will pass through the middle of each truss,
as: shown by the dotted line. These trusses are, therefore, of
the form of Fig. 52; but they have a depth equal to that of the
trusses of Fig. 51. The horizontal component H, of steady
load; and H', of complete rolling load, will be carried equally
by both members of each truss, # H and 3 H’ on each. A roll-
ing load on the right half of the span will cause a horizontal
tension of ¥ H'at D and at F. We may, then, write, for this
type,

Horizontal component of stressat E D
With steady load'only . . . .1H iH

“« “ “ and one-half roll-
ingloadicn s e o e o 3 H {H+31H JH+1 H' L H,

with steady load and complete roll-
ingload” . . " L .. L 3H4+IH o« “  3H+3H.

The stresses will, therefore, always be tension, and the hori-
zontal component will vary in each member from 3 H to 3
(H + H"), a most favorable showing for the structure. ~The
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remark of § 162 in regard to maximum bending moments
applies here also. The maximum stresses in the bracing can
be worked up in the way thought most convenient. This type
may also be analyzed as two inverted bowstring girders, a
weight on one causing simply a tension in the tie of the other
and an inclined reaction in its line at the middle hinge. Hence
the investigation of the bowstring girder in Part II. may be
applied here. A very interesting analytical discussion of the
types of bridges and arches of this chapter may be found in
¢ Engineering,” vol. xx. for 1875, from the pen of Mr. T. Clax-
ton Fidler, the inventor and patentee of the type discussed in
this section.

170. Ordish’s Suspension-Bridge.—Another stiffened sus-
pension-bridge, in which the problem of resisting distortion
from a partial load is solved in quite a different way, is what
is known as Ordish’s, shown in Fig. 55. The Albert Bridge
over the Thames, at Chelsea, Eng., is of ‘this type; and one of
moderate span has been erected over the Pennsylvania Rail-
road, at 40th Street, Philadelphia. Here a certain initial stiff-
ness is given to the platform itself, and it is then directly sup-
ported at several points from the tops of the towers. It is
intended that the weight shall be entirely carried by the
inclined ties. Asthese ties, from their length, would sag con-
siderably under their own weight, a passing load would cause
the roadway to move vertically ; for an increased pull on a tie
would tend to straighten it. They are, therefore, suspended,
at the joints in the several bars which make up the ties, from a
light cable, which is designed simply to carry the weight of the
ties; and the suspending rods are so adjusted, that the ties shall
be straight. No movement of the roadway of any importance
can then take place. -~ The analysis is very simple.

171. Erect and Inverted Arch combined —The bridge
over the Elbe, at Hamburg, one span of which is shown in Fig.
54, is a combination of the erect and inverted arch. This con-
struction dispenses with abutments to withstand a thrust, as
the thrust of the upper rib will at all times be balanced by the
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tension of the lower rib. If the ribs are of equal stiffness, any
load may be considered as divided equally between the two
systems: if the ribs, while having the same curvature, are not
alike in cross-section, the load will probably be distributed in
the ratio of their moments of inertia. As the erect arch
always tends to move away from its equilibrium curve, and the
inverted arch to approach the equilibrium curve, the tangents
at the abutment ends will move in the same direction, and
therefore the structure should be treated as hinged at the ends,
unless each flange is firmly bolted to the skew-back. If the
structure is carried on columns or a pier, it appears to us that
the ends cannot be rigid, and we judge that the two ribs will
begin to turn about the middle of the depth without the intro-
duction of a pivot or hinge.

The effect of temperature is annulled. Also the shortening
of the erect arch under the direct compression being opposite
to the extension of the inverted arch under the direct tension,
the span will tend to remain unaltered; but the ribs themselves
will be changed in form, one rib flattening as the other be-
comes more convex. If, in making such a design, the section
of the arch is found to differ much from the section of the in-
verted rib, it will be well to caleulate the relative deflections of
the two ribs at the middle. The amount of load each will
carry varies inversely as the deflection under equal loads, since
they must deflect equally; and hence, if the arch is first de-
signed of such shape, for the purpose of resisting compression,
that it is stiffer or has less deflection than the chain, when each
has ‘one-half the load, the cross-section of the arch must be in-
creased, and that of the chain may be diminished. This type
of structure must not be confounded with a lenticular girder:
the absence of bracing between the ribs makes them independ-
ent.

CHAPTER XI.
BENDING MOMENTS FROM CHANGE OF FORM.!

172. Displacement from Bending Moments. — It follows,
from the fact that the arched rib moves away from the equilib-
rium polygon or curve, that the bending moments and chord
stresses will have a slight tendency to inerease. When the rib
changes in shape, however, the equilibrium polygon must also
move enough to still satisfy for the new form the equations of
condition by which it was first established, and this movement
will in some measure counteract the former. Besides, the
equilibrium curve for steady load generally runs so close to the
axis of the rib, that the change of shape from bending moments
is very slight; and, even when the influence of rolling load is
added, the increments of the bending moment ordinates are too
small to be of material consequence.

The vertical displacement at any point E, Fig. 56, produced
by any load, will be found, for the parabolic rib, by taking area
moments, as explained in Part IL., < Bridges,” Chap. VI, or for
the circular rib by summing the ordinates as usual along the
rib. As was done in the treatment of beams, it will here be
necessary to find the point D where the tangent to the rib in its
new form is horizontal, which point will not be at the crown,

1 Many of the deductions in this chapter are only intended as guides in practi-
cal construction, to indicate where, and to show approximately how much, addi-
tional stress may be anticipated from change of form. Exact results are not
attempted.

161
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the circular rib by summing the ordinates as usual along the
rib. As was done in the treatment of beams, it will here be
necessary to find the point D where the tangent to the rib in its
new form is horizontal, which point will not be at the crown,

1 Many of the deductions in this chapter are only intended as guides in practi-
cal construction, to indicate where, and to show approximately how much, addi-
tional stress may be anticipated from change of form. Exact results are not
attempted.
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except for symmetrical loads. D is then to be assumed momen-
tarily as a fixed point, and the deflection or area moment of A
and E obtained with reference to it: the subtraction of the
latter from the former gives the displacement of E relatively
to the abutment A; that is, from the area moment between
D and A subtract the area moment between D and E; and
the remainder, when multiplied by H — B I, will be the vertical
displacement of E. As just stated, these displacements may be
neglected.

173. Displacement and Bending Moments from Com-
pression. —The thrust which exists at each section of the rib
must, by its compression of the particles, cause a shortening
of the rib, and, as the shorter rib must fit the same abutments,
it is necessarily lowered at the crown. The resulting bending
moments may be of consequence. So far as the rib retains
sensibly its old form, parabolic or the segment of a circle, the
equilibrium polygon is lowered proportionally to the sinking of
+ the rib, as indicated in Fig. 57, in order to still satisfy the
equations of condition; but, as the deflection » at the crown
is very small compared with %, the alteration of the bending
moment ordinates is very trifling. “On the other hand, this
lowering of the apex of the equilibrium polygon at once in-
creases the value of H, offsetting the change first pointed out.
This will be seen, also, from the values of M, § 44, into
which % does not enter. The bending moments from the exter-
nal load are therefore practically unaltered by the change of
form.

To produce this change of form, however, or to bring the
arch down to its new position, requires a change of inclination,
and consequently a bending moment, at most points of the rib.
The strains thus induced should be examined. Strictly accu-
rate theoretical investigations for the different ribs eannot
easily be made; but formulee may be deduced which will serve
all practical purposes.

174. Parabolic Rib hinged at Ends.— The parabolic rib
which we have treated varies in cross-section, from the crown
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to the springing, according to the secant of the inclination to
the horizon, § 87; and, as the magnitude of the direct thrust
for a complete uniform load varies in the same way, the inten-
sity of direct compression per unit of cross-section arising from
H will be constant, and every unit of length of are will be
shortened by that thrust the same amount, so that the arch will
be altered as if exposed to a change of temperature. We will
assume that the new form of the rib is still a parabola with a
rise £ in place of %, but with the original span 2 e.

By definition, Part II., « Bridges,” § 85, the modulus of elas-
ticity B equals the intensity of stress divided by the shortening
of a unit’s length. Let the constant intensity of thrust equal
the thrust at the crown H, divided by the cross-section at the
crown A ; let the compression of a unit’s length equal the dif-
ference, s—¢, between the lengths of arc before and after com-
pression divided by the original length s. Then

s—4§ = H—‘
AE

An approximate formula for the length of a parabolic arc is,

in our usual notation, s =2¢ +%§“. The value of ¢ will be

obtained by writing % for & ; then

s—¢ =g (2 —kn =0 = 2E ———
As v, the deflection at the crown and the difference between
k and ¥, is very small, we may write, without sensible error,
k—k =v, and k+k =2k; whence k2 — > =2kv, and we
have '

Sy, 2B Setor M saton

3¢ 3AE c { 4AB k

It was proved, in § 36, that this rib deflected vertically like a

horizontal beam of uniform section: hence to bring the arch
down to its new position will create bending moments at all
points such as would accompany the same deflection in a
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straight beam, supported at the ends, uniformly loaded, and of
a cross-section equal to that of the rib at the crown. In
Part II., « Bridges,” § 95, we found, for a beam supported and
loaded as above with w per foot,

wit Swet 5 M, c?

1= 2481 I2ET
if M, is the bending moment at the middle. Equating these
two values of », we obtain

5Myc? — H 324 2%
12ET — 4AE" B\ 2

S3IH(3c*4 272

iy = BHO 210

the additional positive bending moment at the crown of the
arch, caused by its compression under the thrust H.

The bending moments at other points may then be taken
to compare with those of the beam, that is, as the ordinates to
the parabola, being # M, at the quarter-span.

175. Remarks; Example.— It will be noticed that B has
disappeared from the expression for M;: hence the bending
moment will be the same, whether the material be iron, steel,
or wood. As I contains A, and may be written n A % Part IL.,
“ Bridges,” § 86, » being a numerical factor, it is seen that the
bending moment from deflection of the rib due to compression
inereases with the square of the depth of the rib, and, as M =%
equals the flange stress, this stress will increase directly as the
depth. To diminish the effect of change of form alone, employ
a shallow rib.

If H=20 tons, ¢ =100 feet or I = 200 feet, k¥ = 20 feet,
and A = 2% feet, for a rib with two plate flanges and thin or
open web, I =2{1 A . (}A)}=1A% and

X 20 X 30,800 _

N 828
0= 5 X 16 X 10,000 X 20 — -

>>: 9 ft. tons at crown,

giving 1.16 tons compression on upper flange, and an equal
tension on lower flance.
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176. Displacement from Change of Temperature.— The
deflection produced by a fall of temperature in the parabolic
rib hinged at the ends will be found by taking the area moment
of the half parabolic segment, Fig. 16, from the crown to the
springing about one abutment, and multiplying by H=—-EL
Hence, as in Part IL., « Bridges,” § 95,

H H
v‘.—_—l—::-‘[. %ck.-g-c—_—_jﬁg.r—::—‘[. 2k,

the deflection at the crown when the temperature falls, and the
rise of the crown when the temperature rises. One may prefer
to consider the rib in its new position as the proper curve from
which to obtain the area moment. If it is assumed to still be
a parabola with the rise %, we have

vzﬁ}%czk’, and ¥ =% + v.

Substitute this value of %, and » becomes

__ 5Hek
M U5 -5 =

This deflection is the result of the bending moments arising
from H,, and is not to be regarded in the light of the preceding
section. The moments were computed in § 74. These moments
will be slightly altered by the movement, as it shortens or
lengthens the ordinates; but H, will be changed in the opposite
direction, reducing the actual modification  of the moments.
Since

__ 25 tec?
%= g3 F 2

a quantity independent of the cross-section of the rib, and, so
far as the material is concerned, affected by the co-efficient of
expansion only.

The bending moments due to the direct thrust, whether arising from a
load or change of temperature, have been considered, as well as the result-
ing deflection. When the temperature rises, H; is thrust, and in itself tends
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to shorten the rib, and thus reduce the above amount of rise due to expan:
sion. The ratio of the two deflections will be

) H, 3¢24-2k2 , 5 H,

3 2
2 e Pt Th—=3 o R[> e
u AN NI E )\ oIET CEk=1nk (kﬁ‘*‘cﬂ '
In the example previously cited this ratio becomes
25 /3

) 2
> =08 X 75 (05 + m) — .0072,

a reduction of three-fourths of one per cent. When the temperature falls,
H, is a tension, and, in lengthening the rib, slightly reduces the deflection.

The deflection for a co-efficient of expansion of .000007 and a
range of temperature of 80° will be, in our example of § 175,
__ 25 X 30 X .000007 x 10,000

Ve 32 5 30 = .082 ft. = 1 inch.

[The expansion or contraction of a straight bar may be con-
veniently stated as 1 inch in one hundred feet for 30° F.] The
theoretical movement of the rib at the erown for a range of 30°
above and below the temperature at which it was constructed
will therefore be two inches. The actual movement is gener-
ally less than theory would indicate, owing to gradual transi-
tion from one extreme to another, protection of some portions
of the structure from extremes of temperature, as by shielding
from the direct rays of the sun, &c., and, finally, imperfect free-
dom of motion.

177. Initial Camber for Arch.—It may be expedient to
make the rib a little longer than the distance between the
springings to compensate for the amount of compression which
will arise from the steady load, or else to wedge up the spring-
ing points until the crown of the rib, when not under strain,
shall be a distance » above its normal position: the rib will
then, when in place and under its steady load, come down to
the curve for which it is designed, and will be free from that
portion of initial bending moment due to change of form from
steady load. This will be true, because, in forcing the rib up,
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we have introduced bending moments of the opposite kind to
an equal amount. An additional allowance may be made for
an ordinary travelling load. If the rib is to be made longer to
offset the compression, find », § 174, or H from steady load, and
make the parabolic rib of a span 2 ¢ 4+ u and a rise %, so that,
when sprung into place on a span 2 ¢, it would rise to a height
k -4 v, if it were not compressed at the same time.

Noticing, from § 174, that this compression acts like a fall of
temperature in shortening the rib, we have, from § T4,

_ 15 EI

e _15 BI

= —s.leC="F .=z 5
8 " ck? S "¢k 2

since » must equal 2tee. But H,= Rz

v, by § 176, and,

equating these two values, we get

If, in our preceding example, A is eight square inches, and E is
24,000,000, % becomes half an inch.

178. Parabolic Rib with Fixed Ends.— In this case the
deflection will naturally correspond with that of a beam of
uniform section, uniformly loaded, and fixed at the ends, as will
be seen by comparing the equilibrium curve of Fig. 17, where
H from temperature alone acts, with that of such a beam. In
Part IL, « Bridges,” § 99, and Fig. 47, we found that

if M, is the bending moment at the middle. Equating this
value of » with the one found in § 174, we obtain

IHBE428)
M= Ack
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The bending moment at the springings will be double this
amount, and of the opposite sign.

The deflection produced by a change of temperature will be
found by taking the area moment of the semi-segment of the
parabola already obtained in §176, and subtracting the area
moment of the rectangle whose height is % £ and base c.

N H‘(ﬁ,c b ek, gc)_ixg—cﬂk

Applying the data of the previous example of §175, we have

25 X 20 x 30,800

My =155 10,000 X 20

— 4.8 ft. tons at crown,

giving 1.92 tons, compression on upper flange and an equal
tension on lower flange at crown, and 3.85 tons, tension on
upper flange with an equal compression on lower flange, at
either springing.

To find such additional length of span for the parabolic rib
fixed at the ends, that, when compressed under steady load,
it may have no bending moments due to change of form, we
pursue again the method of § 177. From § 76,

45 5 BI u

Hg:T.C,,. .E—k‘ﬁ.—g.

As above,

therefore

a quantity five-sixths of that for the rib with hinged ends.

179. Circular Rib hinged at Ends.—It is more difficult to
obtain the amount of deflection from change of form produced
by the compression at each section of a circular rib, even
approximately. As the equilibrium polygon for steady load
will not deviate much from the axis of the rib, the thrust T
may be assumed to vary as secant 6, the inclination of the rib
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at successive points to the horizon : hence the shortening of a
small portion, d 8, of arc under the thrust will be
Tds Hds Hr do

= secant f =

ds—¢)=3xq AR AB Goso’

as the section is constant,

+8de 14+ sing Hr
_gooss — %8 T—smp am 1)

(The symbol log denotes the hyperbolic logarithm; to obtain
it, multiply the common logarithm by 2.30158.)

As, with a small deflection, the rib will vary but slightly
from its original form, let it be assumed to be an arc of a circle
after compression. We have then s —s' =278 — 2+ §, where
7’ is the new radius, and ' the new angle subtended by the half-
arch. Now

3| %2 2 ) S
rzcj;ck o -+ (k 'v)

el (o
=z — ,andsmﬂ_r,.

By assuming a value for », #" and §’ ean be obtained, and the
value of 2 (8 — ' §) caleulated: if it agrees with the value
s — & of equation (1.), the assumed » is sufficiently near the
truth ; if not, the process of approximation may be repeated.
We may adopt, as a value which will answer very well in many

— s/
The
7 n

8
cases, v =

Hr 14 sing
v_AEﬁIOg —sing’

This logarithmic expression may be written as a series,

\EB (sin 3 + 3} sin® 3 + } sin® 3, &e.).

It was shown in § 36 that the vertical deflections of two
beams of the same cross-section, and carrying the same gross
load uniformly distributed, —one inclined at an angle 7, and the
other the horizontal projection of the former, — were in the pro-
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portion of 1 : cos7. If, then, the load on the horizontal beam is
increased in intensity in the ratio sec ¢ : 1, the vertical deflec-
tions of the two beams will be the same. We desire to find the
amount and distribution of load on a straight beam of the same
span 4s the circular arch, Fig.58, and the same cross-section,
which shall produce the same deflection at the middle. By
what has just been stated, the load on any horizontal foot of a
straight beam must be to the intensity on an inclined beam as
wsec § to w. A small portion of the archd s =secfd z; hence
it follows, that, if the arch is carrying w per horizontal foot over
the whole span, a horizontal beam, as above, loaded with the

L . ds g
varying intensity wsecf=w 75 ber foot, will have the same

deflection. This load will be the projection of a load of uniform
intensity measured along the rib, or the load on the beam is
w 8, or 2w r P, in our usual notation.

In any particular case we may easily solve the problem
graphically. Lay off 1-2, Fig. 58, equal w . A B; divide A B
into a number of equal parts, and 1-2 into the same number,
with half-loads at 1 and 2 as usual. Make 2-0 equal to H for
this load, and, with 0 as a pole, draw the equilibrium polygon
A’ B’, which, for an arch of moderate rise, will be a close
approximation to a catenary. C’B’. (0-2) will be the desired
bending moment M,, for a deflection found by taking the area
moment of A” B’ C” about A’, multiplying by 0-2, and dividing
by BI. Use these values as we did those of § 174. In con-
structing, increase the length of the rib by (1.) if thought
desirable. The values of the following section may be taken
if preferred.

180. Analytical Discussion. — The exact values may be deduced by
the usual process for finding the deflection of a beam. If z is the dis-
tance of any point of the beam from one abutment (Fig. 59), 3, the angle
subtended at the centre by the half-arch, o, the angle from the crown to
any point whose projection is z, and w, the load per foot on the arch, and
also at the middle of the beam, then 2 =1 (sin 3 — sin9),d 2 —=-—rcosv d 4,
the load at any point = w sec ¢ per foot, and load on d z = wsecvdz

ARCHES. T7l

= —wrsecfcos§df =—uwrdp. The load on one-half of the span is
shown in the figure,

- :
Load on half-span :fo wsecﬂdz:wrffdﬁ:wrﬁ.

This expression is the reaction P, at the abutment. If 2/ is the distance
from the abutment to any section at which we desire the bending moment,
and the corresponding angle is ¢', we have the bending moment

M=P,z —f:' (' —z)wsecodz
=wr?pB (sin 3 — sin ¢') — wr* g (sing' —sing) da
=wr? (3sin 8 4 cos 3 — ¢ sin ' — cos ¢'),
which becomes at the middle
M (max) = wr? (3sin 3+ cos 3 — 1) = wr (¢ 3 — k).
Writing the usual expressions for inclination and deflection, vand dropping

the accents, we have

aaM wys Y f =
x,:fz Bidx:—E—I . (3sin 3 4 cos 3 — 0 sin 9 — cos ) cosH d o

wrd 5 . - «
=7 (3sinBsin § 4 cos 3sing — sinocoss — 29 |- 10 cos?g).*

The slope at the abutment, when ¢ =3, is — ifﬁ’ii (Bsin®3—p3cos?3+-sinBcosp),

which, if we remove B8 the area of the half equilibrium polygon A’B’ C’

of Fig.58. The deflection of the centre is

e, wrt (3 . g = :
v:fozdz: B I'j 5 (?sin 3siny+-cos 3sing— Fsin v cos y— 3§ 6+ 0 cos?¢) cosd 6

4
=1]‘;—71 (3 B8in® B+ g sin? 3 cos B—} @sin 3—§ cos B+ 4). ¥

* These expressions are reduced. To aid any who desire to prove them,
we give the following integrals: /6 cos®d 8 =0 sint |- cos8; [f0sinf cosddo
= —4} 0 cos?0 4 }cosOsintd+L6; fcos?0do=4sindcosd+46;
JUcost0d 0 =0cos?0 sint + §cos®d + § 0sind 0 + % sin? 0 cos 0.
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From this expression, by removing II:—II, we obfain the area moment of
A'B'C.

The quantities representing » and M will now be introduced in the
equation of §179: hence we get

H Tsksing || wrd oy ).l iR Lo b iling 4
AB lo YTy 181(1.,,33111 3 7sin?gcosB—93sinfB cos -+ 4).

Find the value of M for the special arch, and value of B, and also the A
value of v. Let v — M — Bs2%; then W CHAPTER XII.
M — Hr lo 1+ sing ]
T 2Br2AE3 ] 1 —sin 3’ BRACED ARCH WITH HORIZONTAL MEMBER; OTHER SPECIAL
FORMS ; CONCLUSION.

If the arch is a semicirele,

| . D, 0 S ]~ ™~ i 182. The Usual Analysis not Applicable.— The difficulty
M (max) = jwri(n —2); i= gi v=ggmy(ir+ % ' in the way of a successful application of the usual formula

1 2 2 EF.D E =0 for the change of span of the braced arch with

]8?- Circular Rlb_ nged gt Ends. — From the method'of horizontal member, of Fig. 60, or, as it is sometimes called, the
treating th? p?jmbth r_lb with fixed ends, as compared with rib with spandrel bracing, arises from the fact that the moment
the parabolic rib with 111.11ged ends, we would suggest thf% Fhe of inertia of successive cross-sections cannot be left out of the
deflection and the bending moments at crown and springing equation as a constant. In fact, it varies rapidly; and its amount
of the circular arch with fixed ends, due to the compression of

) § ; e Fio. 58 at any section is unknown until the sizes of the respective
the rib from H, may be obtained fl“?m 5 drawing like s pieces are determined. It was shown, in § 72, that I must be
when 2-0 is made equal to the H of this case, by plotting the

. ;i o o s heic] placed in the denominator of the above formula: and, if not
closing line of Fig. 27 on the arch of Fig. 58, at the height constantyit-must-come.within- the sign-of-summation;

above A of r (SH_”S — €08 p‘) (see § 105), projecting the points This arch is pivoted at the springings, but continuous at the

p crown. If it were hinged at the crown by the omission of a
piece in either the lower or the upper chord, the thrusts at the
abutments could at once be determined by the principles of
Chap. II.; and a diagram by the method of Part I., «“Roofs,”
would at once give the stresses in all the pieces for any given
load. For the treatment of the case represented in Fig. 60, the
following practicable method is offered. It was published in
“The Engineer,” Feb. 10, 1873, and will also be found in the
ninth edition of “The Cyclopadia Britannica,” art. * Bridges,”
where it is attributed to Professor Clerk-Maxwell.

{
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of contraflexure vertically on A’ B’, drawing the horizontal
closing line of this equilibrium polygon, and then finding M
and v for the beam fixed at the ends.

For circular arches of moderate rise, the treatment for para-
bolic arches will probably suffice.

RE—
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of contraflexure vertically on A’ B’, drawing the horizontal
closing line of this equilibrium polygon, and then finding M
and v for the beam fixed at the ends.

For circular arches of moderate rise, the treatment for para-
bolic arches will probably suffice.
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183. Change of Span from Stress in a Piece.— From
previous statements, we know that the modulus of elasticity
E is the measure of the extensibility or compressibility of the
kind of material to which it refers, so long as the stress does not
surpass the elastic limit, and is equal to the quotient of the in-
tensity of the stress on a cross-section divided by the extension
or compression of a unit's length of the piece in which the stress
is exerted. Thus, if 7 is the length of a piece in inches, A its
cross-section in square inches, T the thrust or tension in pounds
to which it is exposed, and 4 the change of length produced,

B=g. L o A/=E_sz. 1)

If the piece A of the frame of Fig. 61 is changed in length,
and every other piece is unchanged, while the portion of the
frame to the right is held firmly in place, the span L of the
frame will undergo an alteration 4 L. In this case the motion
takes place about the joint opposite to A, and we may write

AL:Al=ac:ab, (2.)

or the distance described by the point & for a small displace-
ment around the axis a will be to the horizontal movement of
d as the arm ab to the arm of d, or ac. A similar proportion
will be true, if one of the lower chord pieces is supposed to alter
in length. In case any diagonal is changed in length, as, for
instance, fg, the four-sided figure e f¢g must alter to ef7' ¢ of
the sketch below, the point ¢ turning about f as a centre, and
the point g about ¢ hence, for a small displacement, the centre
of motion is at the point of meeting, o, of 7 f and g e prolonged,
which, for this arch, will lie in the upper chord; and the perpen-
dicular p, dropped on the line of the piece, will take the place
of ab above.

184. Stress in a Piece from H and P.—Let ¢ be the
stress produced in a member by a horizontal force H acting
between the springing points. Then the principle of equality
of moments as necessary for equilibrium about the point around
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which motion would otherwise begin, and which is no other
than the point noticed at the close of the last section, will
determine the relation of the forces. A general rule for find-
ing the axis about which rotation will begin is, Make a section
which shall cut three pieces only; prolong the lines of two of
the pieces until they meet: the moment of the stress in the
third piece about that point of meeting will equal the moment:
of H about the same point. Hence we have, for the piece A

t.ab=H.ae, ort=2°H,
ab

Similarly, let ¢ be the stress produced in A by a vertical
force P applied at one springing, while the other end of the
frame is held rigidly so that it cannot turn. As the arm of P
will be d ¢, we may write

t'vab=Pidec, 0rl’=d—cP.
ab

The distances d ¢ and a ¢, being respectively horizontal and ver-
tical, may be denoted in general for any piece by z and y. In
order to make the symbol @b of the last section and of this
one general, so as to apply to a diagonal as well as a chord
piece, let us write for @ 5 the perpendicular p drawn from the
axis of rotation upon the action-line of the piece.

Any thrust at the springing having horizontal and vertical
components H and P will produce a stress T in the piece, equal
tot 4+ ¢, or

T — 26 H4de.P ) H;/—}-Pz.

= ab P a9

It is evident that heed must be paid to the kind of stress
produced by H and P; thus, in any piece of the top member,
H will produce tension and elongation, while P will produce
compression and shortening: the reverse will be true of the
lower member; how the diagonals are affected will be seen
when we come to our application. Appropriate signs, therefore,
must be given to the arithmetical values of the stress and alter-
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ation of length; thus compression and shrn"tening may be
called positive ; tension and lengthening, negative.

185. Formula for H. — From equations (1.) and (2.), § 183,
upon writing y and p, as indicated above, for ac and cfb, we get
the change of span for any stress, T, in a particular piece,

W SIS
P

or, upon inserting the value of T from equation (1.), last see:
tion, e

AL= —;,_.— “BA

This same quantity can be calculated for the extensibility

due to each member of the frame; and the result will not b.e

altered by the slight yielding of all the others, unless‘thls

yvielding produces. sensible deformation, making appreciable

changes in T and Z: hence the sum of all the changes of span,
P P

or the total change of span, will be

o 2y 1
HrL. gz +2P5 B
If the abutments do not yield, this expression is zero. If the span
changes, by a yielding of the abutments, so that e is the falonga-
tion of span for one ton of H, then the above expression for
change of span equalse H. P is the vertical component of th‘e
reaction at one abutment, found as for any frame loaded as this
arch may be: hence H may be found. If the abutments do
not yield, we then obtain :

spiy¥, _F

:P-%. 8
= CHACND

25 BA

186. Application of Method. — Let a single weight, W, be

applied at any one of the top joints of the braced arch, Fig. 60.
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Inclined reactions will be produced at each abutment, whose
components will be H and P, at the left, H and P, at the right.
The calculations for the resulting stresses in the pieces are then
best made as follows : Construct tables of the values =+ p and
y = p for each member of the frame; the method of sections
through the opposite joints, or of moments, will answer best for
the top and bottom members, and a diagram such as has been
drawn for a roof, for the diagonals; assume a cross-section for
each member for an assumed probable value of the abutment
thrust ; make tables of %(/ . BZ X and %, - ELA’ or, what is
equivalent when all the frame is of one material, so that E is

constant, make tables of ;2{ ; and py’—l& The summations indi-

cated in (1.), § 185, can then be made. Insumming P. ;—’jy—X, the
value P; must be used for all pieces to the left of the loaded
joint, and P, for all pieces to the right of the load. Equation
(1.), above, will now give the value of H for this single load.

The process of finding the numerator of (1.) must be re-
peated for each joint which is loaded. The abutment reactions
having thus been found, the stress in each piece will be com-
puted by (1.) § 184, or will be scaled from a diagram drawn as
in Part I., “Roofs.”, If, upon finding the maximum stresses in
the pieces, resulting from the steady load and such rolling loads
as will have the worst effect, the assumed sections are not
strong enough for these stresses, fresh cross-sections must be
assumed, and the whole calculation repeated. The change in
cross-sections will cause some change in the values of H; but
this tentative process need seldom be repeated but once.

187, Example; Stresses from H and P.— These processes
will probably be rendered more clear by an example. Let the
arched frame of Fig. 60 be 120 feet in span, 12 feet rise to the
curved member, and 17 feet rise to the straight member, making
the depth at mid-span 5 feet. Let the upper member be
divided into panels of 10 feet each, and the parabolic or circu-
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lar arc into portions of 10.263 feet each.! The radius of the
curved member will be 156 feet. Let it be desired to design
this arched structure to bear a steady load of ten tons per joint
of the top member and a travelling load of the same intensity.

If a horizontal line L O is drawn to represent a certain value
of H, we may construct Fig. 62 by the method used in Part I,
« Roofs,” and by scale determine the magnitude of the stress in
each piece due to this H, as the only foree, applied as a thrust at
each abutment; all of the stresses being measured as fractions of
H, and the kind of stress noted. One-half of the diagram is
sufficient, as it will be symmetrical. The magnitude of any
stress in a top or bottom piece can be readily proved by the
method of moments. We may now fill the columns of a table
with these ratios which represent y -~ p, being not only the
ratios of the stresses to H, but of the change of span to change
of length. Bow’s notation is used, and the stresses in one half
of the frame will correspond with those in the other half. The
sign + denotes compression, the sign — denotes tension.

g/
Varues oF
1)

B O 4 0.718
D O 4 1.872
F O 4 3.662
I 0+ 6.226
K O 4 9.819
N O +12.000
K'O +13.163
I' O 412,675
F'O +11.283
D'O + 9.698
B'O + 8.260
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VALUES OF =
p

AL — 0.35¢
CL— 1341
E L — 2.833
G L — 4.996
J L — 7.787
ML —10.655
ML —12.592
J'L —12.978
G'L —12.134
E' L —10.767
C'L — 9.387
A'L — 8.139

0 A 41178
B C +1.505
D E 41.872
F G 42214
I J 42341
KM +1.907
N M’ -+ 0.833
K’ J'—0.871
I ¢ —1.212
F' E' —1.657
D’ C’' —1.876
B’ A’ —1.367

A B —1.189
C D —1.780
E F —1.879
G I —2232
J K —2.353
MN —1.920
MK’ — (.827
J' T'4-0.309
G’ F' 4 1.202

 E'D 4-1.664

C’' B’ 4 1.880
A’ O fixed.

188. Computation of Tables.— We may now write-a table
2
zyl

1
for y;z—, and another for }),_, , for each piece of the frame. The

first table, involving squares, will be positive throughout. The
lengths of the horizontal and rib pieces will be multiplied by
the footing of their respective columns to save labor; but the

B 0O —0.272
DO —0.639
FO—1.117
I O0—1.678
KO—2.185
NO —2.400

A L 41203
¢ L 41520
E L +1.927
G L 42427
J L 42042
ML 43203

OA—0.444
B C—0.478
D E —0.500
F G—0.484
I J—0.384
KM —0.153

A B 40.450
C D 4-0.480
E F +0.502
G 140.488
J K +40.386
MN 4-0.154

lengths of the diagonals are carried in as indicated.

B 0 0.074
D O 0.408
F O 1.248
I O 23816

AL 147
C L 2310
EL 373
G L 5.890

I
VALUES OF ‘%-

0 A 0197 X 17.72
B C 0.228 X 14.33
D E 0.250 X 11.58
F G 0.234 X 0.67

= 3.401
3.267
2.895
2.263

A B 0.202 X 14.08 = 2.844

C D 0.230 X 11.17
E F 0252 X 9.15
G 10238 X 1.75

2.569
2.306
1.844

In the same way a diagram constructed upon a vertical line
which represents P,, Fig. 63, will give the stresses in the several
pieces caused by this vertical force only, applied in an upward
direction at the left abutment, while the right end is held rigidly
in place by fixing the end brace in position. This figure will
not be symmetrical, and therefore all the pieces must be entered
in the table. P, at the right abutment, in place of P at the
left, will reverse the table, B’ O taking the place of B O, &e.
The ratio of these stresses to P will give z = p.

1 If the arc is parabolic, the length of a piece will be 10.268 feet. The differ-
ence is not material for our example. $

KO4714 J L 8656 I J 0147 X 825 1.213 J K 0149 X Ta7 1.068
NO5760 MLI10844 EMO0023X 750 0172 MN 0.024 X 7.07 0.170

15.080 X 10 32.859 13.301 10.801
9.320 XX 10 2 2 2

244.000 65.718 XX 10.263 = 674.46 26.602 21,602

Summing these columns, and doubling for the whole arch, we

obtain 244.00 4 674.46 4~ 26.60 4 21.60 — 966.66 = . 7 If,

7
in the first trial, all the sections are supposed equal, A may be

omitted from (1.), § 185, and 966.66 becomes the denominator
of that expression.
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We next compute the following table, and multiply by the
length of each piece as we advance. It will be convenient to
add other columns, marked =, containing successive summations
of the factors for each set of pieces, as these numbers will be
used in turn. The summations are all negative, as will be
readily seen, and hence the sign — is omitted.

Varues or :”/l
P

z z 2z z

BO— 195 1.95 AL-— 437 437 OA — 927 921 AB-— 7153 753
DO — 11.96 13.91 C L — 2092 25.20 B C —1030 1957 C D — 0.54 17.07
F O — 40.90 54.81 E L — 56.05 81.34 DE —10.84 3041 E F — 863 2570
I O —10447 159.28 G L —124.44  205.78 FG-—1037T 4018 G I — 844 3414
KO —203.62 362.90 J L —23511 440.80 I J— 742 4820 J K — 651 40.65
N O —288.00 8650.90 M L —380.10 - 800.99 KM — 2,19 50.39  MN — 2.09 42.74
K0 —287.61 938.51 M'L —425.55 1226.54 NM+ 005 4944 M'E’ + 010 42.64
I’ 0 —212.69 1151.20 J’ L —301.85 1618.39 K’ J'— 1.17 50.61 J7 I' — 0.85 43.49
F/'O —126.03 1277.23 G’ L —302.23 1920.62 I" G- 568 5620 G'F’— 455 48.04
D'O — 81.97 1339.20 E'L —212.94 2133.56 F'E'— 959 6588 E'D/'— 7.64 55.68
BO — 2247 1361.67 0! L —14643 2280.00 D'C/=1285 78.73 C" B’ —10.07. 65.75

A'L —100.48 2380.48 B’A’—10.76 8949 A’ O fixed —

189. Values of H.— The calculations for H can now be
proceeded with, and they are given below. An explanation of
one computation will suffice for all. If a weight W is placed
on the third upper joint: from the left, the vertical component
of the left abutment reaction, P,, is 32 W. Then, for the twq

pieces of the upper chord to the left we have =P z—g 1=13.91P,;
p

for the two pieces of the rib to the left, we get 25.29 P,, and, for
the five web-members to the left, 30.41 4-17.07=47.48 P,. On
the right of the weight, the nine remaining pieces of the upper

chord give = Pz'%gl = 1277.23 P,, which will be found opposite

F’ O, as the vertical force is now applied at the right end; for
the ten pieces of the rib we find 2133.56 P,, and for the rest of
the web to E F we find opposite E' F and ¥’ G/, for the reason
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just stated, 65.88 + 48.04 =113.92 P,. As the piece E L, below
the weight, is acted upon by P; on one side, and P, on the other,
it makes no difference whether it is considered to lie to the left
or the right of the loaded point. Adding up the respective
numbers, multiplying one by 4§, and the other by 4, adding,

2
and dividing by = %g | = 966.66, we get H = 0.831 W for a load

on the third joint only. The divisor 966.66 x 24 = 23,200, is
used.
Vavrues or H.

W on 1st Joint. W on 2d Joint. W on 8d Joint.
0 1861.67 1.95 1339.20 13.91 1277.23
0 2380.48 4,37 2280.00 25.29 2133.56
9.27 89.49 19.57 78.73 30.41 65.88

9.27 65.75 7.53 55.68 17.07 48.04

23 3807.39 33.42  8753.61 86.68  8524.71
213.21 21 3 19

3897.39 701.82  11260.83 1646.92  17623.53
 41,1060+-232=.177 W 11260.88 17623.55

119.6265+-232=.516 W. 192.7047-+-232—831 W.
W on 4th Joint; W on 5th Joint, W on 6th Joint,

54.81  1151.20 159.28 938.51 362.90 650.90

81.84 192062 20578 1618.39 440.89 122654

40.78 56.29 48.20 50.61 50.39 40.44

43.49 34.14 42.64 40.65 42.74

3171.60 447,40 2650.15 -831_8—3. 1969.62
7 _ 15 9 13 11
844471  22201.20 6711.00 23851.35 11632.79 21665,82
22201.20 23851.35 216065.82
256.4591+-232=1.105 W. 305.6235+-232=1.317 W. 333.0861+232=1.436W.

Having completed the computations for six joints, we add the
H’s, and multiply by two, obtaining 10.764 W as the value of H
for an entire load of W on each upper joint.
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190. Diagrams and Table of Stresses for Equal Cross- STrRESSES IN PIECES, ALL CRross-SECTIONS EQUAL.
sections. — We may now draw a diagram for a single load W M BO. DO. FO. 10. KO. NO | AL CL EL GL
on any one joint, plotting the reactions, just obtained, and 186 +030 4030 +0.28 +0.24 +017 +0.09 | —013 —0.18 —010 —0.07
proceeding by the .method of Part I., “Roofs,” Fig. 21. Six . 4049 +089 4085 +0.74 +0.54 +0.29 | 40.30 —039 —0.85 —0.25
diagrams, four of which are drawn, the scale being too small to 3. 034 4096 +143 +126 +0.95 +0.53| 4090 001 —0.00 047
make the other two clear, Fig. 64, will give all the stresses, as, - HOZL 4062 +1.36 +1.85 143 +086 | +1.07 +0.72 4011 —0.89
by symmetry, loads on the right will cause stresses in pieces P TOM 4053 H0.8 L6 4205 H134| 1187 4135 HoT8 4o
marked with unaccented letters equal to those now found in _Z(:; 1‘3‘:): ‘*’0'3: +°'ji TIIE 008 +1~i'3 +148 +1.20 4073
pieces marked with accents. The stresses are scaled in tons, g B i'm “*_:'12 +:):; H;:: +§'°f e +1"“r’ i
tabulated, and marked with their proper signs, in the following R 10'31 j}-o.ss +1.:; +:; LA e
table. They might be caleulated by (1.), § 184, if preferred, . —0.07 —0.18 _0:16 _o.os +o.14 +o‘53 :o‘go :::og‘ +:2? i
and their sum might be checked by a diagram for complete S aiis. ors _0:07 44)'00 +0"2;’ _'_0'% %‘6; & z; “:2
load. The sums of the respective compressions and tensions are i 4 . —om Otoo +0'09 +019 _{_0'20 ::2'22 ::'21
written below, and in the next line are found the differences of : il ol ' :
these quantities, or the stresses from steady load, marked S. L.
Upon adding to these latter the tensions or compressions first
referred to, we obtain the maximum stresses in the pieces for a
moving 1021(1 Of the same illtensity- =j +2.48 45,79 49.82 414.39 4-18.62 +20.64 4-21.51 --18.44 -4-14.84 -+10.50

It will be seen that the horizontal member is always com- &
pressed ; the curved rib may have at times a little tension in its Iosd oA. AB. BC. ©D. DE EF Fa. JEK.
middle portion, but the larger part of it is always compressed ; Ist. 105 —0.01 +0.01 —0.03 +0.03 —0.04 +0.06
the web members are struts and ties alternately, until we reach A 107 4002 —0.07 +0.07 —0.09 +0.18
J K ; the pieces from there to the middle may be exposed to a u. T .81 —082: LR 00T —0.18 2 -+0.25
reversal of stress. T T —0i5t. 0.7 Mo.10. R +0.33

191. Sections proportioned to Stresses. — Guided by these T 083 —0.83 053 —05L 10176 0. +0.29
stresses, we will now assume sections of the different pieces, B0 p T L SN ] —0.74
which shall vary approximately as do the stresses just found. s: :‘;:6 +2'23 —hR H0db =030, 03 —0.55
Of the web members, those under compression are intended g _0'1; 5 i, VA o Bia
to be proportionately heavier than those in tension, as they = o e Il —

: > ‘ i 10th. —0.10 —0.07 --0.07 —0.02 .02 0.07 —0.18
will not safely resist so large a unit stress. The assumed ratio fi ToR |
: 11th. —0.07 —0.05 -+0.05 +40.08 +0.02 —0.00

: . e oy
of the sections is marked on the figure. The quantities Ziz — 12th. —0.02 —0.01 +40.01 0.00 +0.01 —0.02
P

T 4143 320 519 7T.30 931 1082| 1082 948 790 614
5 —038 061 056 021 000 000 018 052 114 178
8. L. +1.05 +2.59 44.68 -+7.00 -9.31 410.32 | 4+10.69 +8.96 -1-6.85 -+4.36

A

zy l I . Z 4292 o 2.90 = 027 0.24  3.03 X 1.19
and o A are now found anew by simply dividing the pre- S —051 190 025 187 185 027 2.0

vious similar quantities by the section ratios just referred to. SR 800 =0 it =18

+45.33 +5.55 +5.79 +40.16
—3.25

The results follow on p. 184. .‘.‘TL . i is now 161.18. 4
P A -
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Vairves or H.

W on 24 Joint. W on 3d Joint.
AL 0069 oA o 0.00 99.49 0.78 90.50 217 80.17

oL 0128 B C 0. | 0.00 474.84 0.21 470.06

137 = 461.93
i ) 1.54 19.85 3.26 15.77 5.07 12.56
G L 0535 F G o 3 -

1.54 16.24 2.51 14.56 4.89 13.29
J L 1236 IJ LT =Y
28 609.92 6. 3¢ =
ML 4338 KM o. 76 590.89 14.10 567.95

. l
VALUES OF =, . —. W on 1st Joint.

— ; ; 35.42 21 3 19 5
i 609.92 141.96 1772.67 267.90 2839.75
13108 X 10.263 | 645.84+-3868=.167 W. 1772.67 2839.75

1914.63+3868=.495 W. 3107.65+3868=.803 W,

VALUES

l
Ny W on 4th Joint, W on 5th Joint.

W on 6th Joint,

p 6.86 67.57 13.82 53.89 24.54 38.25
B O — 058 AL~ 021 0.21 —1.54 1. AB —251 :

DO — 100 CL— 116 137 —17 8 C D —238
F O — 400 EL~— 374 511 —181 E F —216 6.80 10.16 8.28 8.74 8.83 8.35
10 —698 G L —11.81 1642 —173 - 6. G I —211 7.05 12.53 9.16 12.36 11.88

5.11 447,78 16.42 420.25 50.01 364.27

12.38
KO —1072 24. J L—3359 5001 —148 8. J K —217 25.82 537.99 47.68 ; 94.71 423.25
NO —18.7 z M L —144.04 194.05 —0.55 y MN —105 o 17 7 15 13 11
K'0 —1514 53. ML —17022 864,27 +048 8 MK +0.02 43894 376505 — = o
"Q — " 1, — 55, y K/ 3’ —0.39 31 —04%
I'0 —14.18 I L — 55,98 420.25 - s >
F'0 —12,60 G'L — 2748 #4773 e -1.42 G’'F/ —046 L .- - — s
DO —10.33 E'L — 14.20 461.93 F'E —2.40 ED —1.27 4204.87+3868=1.084W. 5167.86+3868=1.336 W. 5886.98+-3868—=1.522 W.
B0 — 8.99 C'L — 813 470.06 D'C’ —3.21 C’'B’ —1.68 | 8 L ]
1, o PR S RoAL) dimensions of the pleces. A sample of the stresses obtained in
A'L — 478 47484  BrA’ 338 A%Q’ fixed. @ pi :
the upper chord is given below for comparison.

The above summations are negative.

. BO. DO. F O. 10. K 0. No.
Next follow, as before, the computations of H (p. 185).

z+4 145 3.18 5.10 7.08 9.23 10.20

It will be seen that the change in the sections of the pieces it O'G'f 0.51 0.07 0.00 0.00
has made but little change in the values of H; the thrust now S.L. 1.03 2.55 4.59 7.01 9.23 10.20
being 10.820 W for a steady load of W on each joint. “;e Max. +2.48 = 4573  49.60 41409 41846 +20.40

fore proceed to draw anew the diagrams for a single . . _
E:g %l;rzrf :njrf) one joint, or we may, by t%e use of linesgof fro?n cs}z;a:n alhz‘wzmce lf‘ section may be made for the stresses
another color, alter the figures already drawn. As H has been A %:c lf .empelatull)'e, or lt{he effect of the change of
changed so little, the new stresses will determine the final g piece may be worked out separately.
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192. Bracing with Vertical Struts. — The bracing of the
arch just described is of the Warren or triangular type. The
design of Fig. 65 has been used with success, is probably more
economical of material, and is, in our judgment, more pleasing
to the eye. The inclined braces are ties, and the introduction
of the counters at the crown obviates the reversal of stress in
the braces. When the upper member approaches the curved
member closely at the erown, the web may be made of a plate
for a distance of two panels: sometimes the two members are
brought into contact at the crown.

193. Cast-Iron Arch as a Breast-Summer. — Builders some-
times employ a cast-iron member, shaped like Fig. 66, for span-
ning openings of considerable size, and carrying the weight of a
brick wall.  Aside from the fact that cast-iron in large masses
is of very uncertain strength, by reason of internal stresses
produced by contraction in cooling, an additional element of
uncertainty is introduced by the method of constructing these
ribs. The thrust of the arch is resisted by a wrought-iron rod,
represented by a straight line in the figure, which, in place of
being fastened by bolts or nuts, is fitted into recesses in the
casting at its ends. In order to have the rod tight, it is made
shorter than the distance between bearings, then heated, and
shrunk into place. The rod is therefore under an initial ten-
sion, and the rib under initial compression, both of which are
likely to be of uncertain amount, and detrimental; for, when the
arch is loaded, its horizontal thrust will be added to the tension
in the bar, and the compression of the rib will be increased. As,
however, the bar elongates under the pull, it would be well,
were it possible, to have the bar so much shorter than the nor-
mal span of the arch, that the value of H proper to the arch
under the proposed load should elongate the rod to that normal
span; then the initial bending moments produced in the rib by
shrinking on the rod will be removed. It would seem possible,
by a careful measurement of the extension of the rod between
two marks some ten or twenty feet apart, especially if the
stretch has been previously tested, to determine the initial ten-
sion.
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If the arch is well built into the masonry at the ends, and if
the bearings are long, the rib may be considered as fixed at the
ends. If not so built, and in preliminary testing on two sup-
ports under an applied weight, the rib must be considered as
pivoted at the ends. From the small rise, such arches may be
‘assumed, in either case, to be parabolic. In testing, therefore,
under a single weight W applied at the middle, by § 40

¢ .
H=%} IEW' At that time temporary bearings ought to be

placed at A to prevent the arch from bearing at C when loaded.
Under the load of the wall, unless the latter is cut by large
openings, so that a pier concentrates the weight on a small por-
tion of the rib, there will be no beuding moments, as the load
is uniformly distributed.

194. Gothic Rib for Roofs.— The rib which supportsi the
roof of the Grand Central Depot in New-York City is proba-
bly circular, and will be analyzed readily by the principles
already laid down; but the Gothic rib requires some special
treatment. Fig, 67 is a sketch of the rib which sustains the
roof over the train-house of the Boston and Providence Rail-
road Depot in Boston, Mass. The span is 125 feet between
walls, and the height is 55 feet to the axis of the rib, As
height impresses one more than horizontal distance, it is evident
that this roof appears lofty when viewed from the inside. In
order to give height quickly near the walls, the half-rib is struck
with two radii, as indicated in the figure. The lower portion is
built with a solid web ; while most of the upper portion has a uni-
form depth of three feet. If the junction at the crown or apex
of the roof allows any movement, if the ribs can rock or turn
on castings at their bases, and if they are independent of the
side walls, they may be treated as hinged at three points, and
discussed like any three-hinged arch. If there is no opportuni-
ty for movement at the bases, and especially if the ribs abut
closely against the side walls and buttresses, while still a joint
is provided at the crown, the condition of invariability of span
must be applied, and also the condition that the deflection of

/
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the crown when measured by area moments from the tangent
at one abutment shall equal the deflection of the. crown from
the tangent at the other abutment. The integramon' will then
be between limits which will appear from the discussion of the
i osition.

th?‘(}l:url;llz may be fixed at the ends and crown, and will then
offer a troublesome case for treatment by reason o.f the great
depth at the haunches, unless we assume that it is well but-
tressed by the wall. ' In this case, the portion below the top 9f
the wall and the wall itself will act as an abutment; and, as'it
will only require a moderate tension:in the inside flange at ‘.che
springing to resist the overturning moment, such an assumption
seems entirely warrantable. Above the wall, then, some 25 feet
high, where the horizontal mark is made on the left-ha.nd side,
we assume the springing line of the arch, and consider the
remainder as a rib fixed at the ends, and continuous at the
crown. - In applying the condftions for a rib with fized ends to
this case, we must change the derived equations, as the curve
is not continuous at the erown. A parabola drawn through 1fhe
middle of the depth of the rib at erown, springing, ‘and a third
point near the upper end of the straight portiox_l of the rafter,
will agree very closely with the axis of the rib throughout.
We must first determine % and ¢ for this parabola. In Fig. 68
let 2 be the height or rise of the arch at the apex, @ the hori-
zontal distance from % to the point where the parabola would
become horizontal ; then

& ) C
h=0(0—a); or k=h g0

For another ordinate %', distant ¢ — &’ from the springing, we
write

o

c*

=

In this case ¢ — a = 55.75 feet, h = 80.8 feet, ¢ — o’ = 22.5 feet,
and A’ =17 feet: hence we find that % = 81.68 feet, ¢ = 70.48
feet, and a = 14.73 feet.
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In place of performing the integrations of §§ 58-59 between
the limits there given, we must omit or subtract from the
equations the integrals between the limits +a and —a, as this

portion is cut out of the parabola. Thus the equation (1.) of
§ 58 will be written

fj“DEs—fc:DEf:f;“DF. DE-fi:DF. DE+f:_bDF. DE.

As limits ¢ 4-a and ¢ — o will yield terms similar to limits ¢ +b
and ¢ — b, the subtractive quantities above can be written from
inspection of (2.), § 58, and (2.),§89. A similar treatment
of the other equations of condition will be required. The
solution will then proceed as usual.

If the weight at the apex of the roof, arising from the venti-
lator, &e., is sufficiently great, it will take the place of the
omitted portion of breadth 2, so that the rib will be very
nearly in equilibrium under steady load.

195. Remarks on Designing. — The examples which have
been given in the preceding pages will indicate the steps to
be pursued in working out a specific design. The type of
structure having been determined upon, the moving load must
be taken of an intensity in harmony with the position of the
bridge, or we must decide upon the weight.of snow and pres-
sure of wind to which the roof will be liable, The dead weight
of the structure must then be assumed, of such an amount as
our judgment and experience dictate, to be afterwards verified
and corrected from the actual sections. The abutment reac-
tions and bending moments from the applied forces will then be
found, after which, stress diagrams may be constructed, or equi-
librium polygons drawn; from the first we obtain stresses direct.
ly, as in Part I.; from the second, bending moments, with shears
and direct thrusts, from which the stresses in the several pieces
will be found, as in Part II. = The first method is probably the
shorter for roofs, unless the rib is solid, or has a plate web, as all
of the load of one kind may be included at one operation: the
second method will be preferred where a moving load has to be
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considered. The stresses will then be tabulated, and the maxi-
mum compression and tension on each piece found.

A point which may call for a little explanation is illustrated
by Fig. 69. We desire to draw a stress diagram for an arched
rib, which is fixed at the end A B, the equilibrium curve begin-
ning with the line G D, and the bending moment at A B being
T . p, or its equivalent. The flanges at A and B will-transmit
direct force only: therefore decompose T into C, the compres-
sion parallel to the flanges, at the springing, and F, the shear
at right angles. Then, by moments about A, Thrust at
B.AB=C.AG, or Thrust at B = AT ('; by moments

AB

about B, Tension at A = %—(}— The shear F will be re-
gisted either at A or B, depending upon which of the braces is
designed to carry it: if the braces are ties, it must pass through
the one at A. Thus we obtain the forces with which to begin
the stress diagram. In case of a hinge at the abutment, the
point G is found midway between A and B, and there will be
} C, compression, at each flange. F will be found in the proper
brace as above.

The arched rib must be thoroughly stayed laterally ; for so
much of either flange as is compressed is in unstable equilib.
rium ; between lateral stays, the breadth of a compressed flange
must be determined from the formule for columns. For a few
formula and directions for detailing, see the closing chapter of
Part I.







ARcHES.

PraTe 1.

A:
s

a

-

A

|
|
|
|
|
B
|
|
|
1
nﬁ

Proro ENG.CONY,

P et~ (P



Ploke M.
=

-——— e e o .

Hamener o o8 3 &

B a2

(A8 5

ERR T E=E (L

Oa

L o
e

4

SR e e e i

— e e 1T e

Axcnes.




Plate L.

Axcaes.

RiEREe

0

et
19 2

10 31 12 43 34 15 16 47 13

3

L et i

8

-
v

Tig.15.




Tlako IV,

A~xchies.




| z
o
3
_ 2
¥

{

A vcdhas.




E\J ol bm :

Axvces.

\
e

&
1

20,000\bs, = A3w .

5. = 4.

4000\o

Fig. 45.




Axvtheas.

Ylale VI .

wen

Fen. A,

T o



SHORT-TITLE CATALOGUE

OF THE

PUBLICATIONS

JOHN WILEY & SONS,

NEW YORK.
Loxpon: CHAPMAN & HALL, LoviTep.

ARRANGED UNDER SUBJECTS.

Descriptive circulars sent on application.
Books marked with an asterisk are sold at net prices only.
All books are bound in cloth unless otherwise stated.

AGRICULTURE.

CarTLE FEEDING—DAIRY PRACTICE—DISEASES OF ANIMALS—
(GARDENING, ETC. '
Armsby’s Manual of Cattle Feeding.ove.ovvveniinasinss 12mo, &1 75
Downing’s Fruit and Fruit Trees 5 00
Grotenfelt’s The Principles of Modern Dairy Practice. (Woll.)
200

Kemp's Landscape Gardening 2 2150
Loudon’s Gardening for Ladies. 1
Maynard's Landscape Gardening
Steel's Treatise on the Diseases of the Dog

“ Treatise on the Diseases of the Ox
Stockbridge’s Rocks and Soils
‘Woll’s Handbook for Farmers and Dairymen

ARCHITECTURE.
BoinpiNe—CARPENTRY—STAIRS— VENTILATION—LAW, ETO.
Berg's Buildingsand Structures of American Railroads.. . ..4to,
Birkmire's:American Theatres—Planning and Construction.8vo,
¥ Architectural Iron and Steel..c.ovevvuvn iy .. 8v0,
£ Compound Riveted.Girders

L Skeleton Constructionin Buildings
1




SHORT-TITLE CATALOGUE

OF THE

PUBLICATIONS

JOHN WILEY & SONS,

NEW YORK.
Loxpon: CHAPMAN & HALL, LoviTep.

ARRANGED UNDER SUBJECTS.

Descriptive circulars sent on application.
Books marked with an asterisk are sold at net prices only.
All books are bound in cloth unless otherwise stated.

AGRICULTURE.

CarTLE FEEDING—DAIRY PRACTICE—DISEASES OF ANIMALS—
(GARDENING, ETC. '
Armsby’s Manual of Cattle Feeding.ove.ovvveniinasinss 12mo, &1 75
Downing’s Fruit and Fruit Trees 5 00
Grotenfelt’s The Principles of Modern Dairy Practice. (Woll.)
200

Kemp's Landscape Gardening 2 2150
Loudon’s Gardening for Ladies. 1
Maynard's Landscape Gardening
Steel's Treatise on the Diseases of the Dog

“ Treatise on the Diseases of the Ox
Stockbridge’s Rocks and Soils
‘Woll’s Handbook for Farmers and Dairymen

ARCHITECTURE.
BoinpiNe—CARPENTRY—STAIRS— VENTILATION—LAW, ETO.
Berg's Buildingsand Structures of American Railroads.. . ..4to,
Birkmire's:American Theatres—Planning and Construction.8vo,
¥ Architectural Iron and Steel..c.ovevvuvn iy .. 8v0,
£ Compound Riveted.Girders

L Skeleton Constructionin Buildings
1




Birkmire’s Planning and Constructionof High Office Buildings.
8vo,
Carpenter's Heating and Ventilating of Buildings
Freitag’s Architectural Engineering
Gerhard's Sanitary House Inspection
i Theatre Fires and Panics.....cceviverenscanns 12mo,
Hatfleld’s'American House Carpenter.........i....¢. A%
Holly’s Carpenter and Joiner 18mo,
Kidder's Architect and Builder's Poeket-book. . .16mo, morocco,
Merrill’s Stones for Building and Decoration
Monckton’s Stair Building—Wood, Iron, and Stone
Wait’s Engineering and Architectural Jurisprudence.......
Sheep,
Worcester's Small Hospitals—Establishment and Maintenance,
including “Atkinson’s Suggestions for, Hospital Archi-
RECLUTE YEN \oneraalo\o N o s waberslouwelbtolstara s s b ol loioed oo siaiole 12mo,
World’s Columbian Exposition of 1893 Large 4to,

ARMY, NAVY, Etc.
MILITARY ENGINEERING—ORDNANCE—LAW, Erc.

Bourne’s Serew Propellers

Bruiff's Ordoance and Guunery

Chase’s Screw Propellers

Cooke's Naval Ordnance

Cronkhite’s Gunnery for Non-com. Officers. . ...82mo, morocco,
Davis’s Treatise on Military Law

s6 Blements of LBW: s 5oy i one s ssssepssesoes «.8vo,
De Brack’s Cavalry Outpost Duties, (Carr.)...,32mo, morocco,
Dietz’s Soldier's First Aid 16mo, morocco,
* Dredge’s Modern French Artillery....Lagre 4to, half morocco,
AL Record of the Transportation Exhibits Building,
World's Columbian Exposition of 1893..4to, half morocco,
Durand’s Resistance and Propulsion of Ships.....coveiien.
Dyer’s Light ' Artillery. .. cvovvicy Vi s WG AT e e SN RS
Hoff's Naval Tactics. «.. e vesiswiasviids i 3 slentdtigiadans
Ingalls's Ballistic Tables....... Fasinin Sodn il Buaey pasis s

. Handbook of Problems in Direct Fire
2

$3 50
3 00
2 50
1 00
1 50
5 00

%
00
00
00
00
50

Mahan's Advanced Guard 18mo,
*“ Permanent Fortifications, (Mercur.).8vo, half moroceo,

Mercur’s Attack of Fortified Places. .. ........oooe.n.. ..12mo,
£ Elements of the Art of War

Metealfe’s Ordnance and Gunnery........... 12mo, with Atlas,

Murray’s A Manual for Courts-Martial

“

16mo, morocco,

Infantry Drill Regulations adapted to the Springtield
Rifle, Caliber .45: 15024 (o AT 32mo, paper,

Phelps’s Practical Marine Surveying: .. ... . ...uvivulsian .. 8vo,

Powell’s Army Officer’s EXAMINer: .« cvtvirsauinnennnn.. 12mo,

Sharpe’s Subsisting Armies

Very’s Navies of the World

Wheeler's Siege Operations

Winthrop’s Abridgment of Military Law

Woodhull’s Notes on Military Hygiene 16mo,

Young's Simple Elements of Navigation..16mo, morocco flaps,

t¢ i ¥ & & first edition

32mo, moroceco,
8vo, half morocco,

ASSAYING.

SMELTING—ORE DrEssING—ArLLOYS, Erc.

Fletcher’s Quant. Assaying with the Blowpipe..16mo, morocco,
Furman’s Practical Assaying
Kunhardt’s Ore Dressing

Ricketts and Miller's Notes on Assaying
Thurston’s Alloys, Brasses, and Bronzes
Wilson’s Cyanide Processes

ASTRONOMY.
PRACTICAL, THEORETICAL, AND DESCRIPTIVE.

Craig’s Azimuth

Doolittle's Practical Astronomy

Gore's Elements of Geodesy......... I L Ty, PR A S S 8vo,
Hayford’s Text-book of Geodetic Astronomy

Michie and Harlow’s Practical Astronomy .. .il.iv e ivisiny
White’s Theoretical and Descriptive Astronomy........,.12

$1 5

W =W W0 W = R

—




BOTANY.
(GGARDENING FOR LADIES, ETC.

Baldwin's Orchids of New England Small 8vo,
Loudon’s Gardening for Ladies. (Downing.)............ 12mo,
Thomé’s Structural Botany
‘Westermaier's General Botany. (Schneider.)............. 8vo,
BRIDGES, ROOFS, Etc.
CANTILEVER—DRAW—HIGHWAY—SUSPENSION.
(:See also ENGINEERING, p. 7.)
Boller's Highway Bridges: . . cos«ocoarines vigalisvausian va 1890,
# ¢« . TheThames River Bridge 4to, paper,
Burr's Stresses in Bridges
Crehore's Mechanics of the Girder
Dredge'’s Thames Bridges...... fioeaiiiiii, 7 parts, per part,
Du Bois’s Stresses in Framed Structures.. .. ..o.. ... Small 4to,
Foster’s Wooden Trestle Bridges
Greene’s Arches in Wood, ete
& Bridge ThEses. . 5000 85 s B lnk ol SoFedls v suaisian 8vo,
£ Roof TTUSSEs LA visprerendiviu b i agles O P s 8vo,
Howe’s Treatise on Arches «.......sve oes
Jolinson’s Modern Framed Structures
Merriman & Jacoby's Text-book of Roofs and Bridges.
Part 1., Stresses
Merriman, & Jacoby's Text-book of Roofs and Bridges,
Part IL., Graphic. Statics
Merriman & Jacoby’s Text-book of Roofs
Part II1., Bridge Design
Merriman & Jacoby's Text-book of Roofs and Bridges.
Part TV., Continuousy Draw, Cantilever, Suspensiou; and
Arched Bridges
* Morison’s The Memphis Bridge Oblong 4to,
‘Waddell’s Iron Highway Bridges 8vo,
“ . Ne Pontibus (a Pocket-book for Bridge Engineers).
16mo; moroeco,

‘Wood's‘Construction of Bridges and Roofs. ... ..u.. v+ 8V0,
Wright’s Designing of Draw Spans. - Parts I. and II..8vo, each

“ « € e Ll Complete vawn8vo,
4

10 00
4 00

800
200
2260
850

CHEMISTRY.

QL’ALITATIVE—QUA}:TITATl\'E—ORGANXC—INORGANIC, Erc.
$1 25

Adriance's Laboratory Calculations
Allen’s Tables for Iron ADBYYELN: L wtsstintrli At J e 8vo,
Austen’s Notes for Chemieal Students................... 12mo,
Bolton’s Student’s Guide in Quantitative Analysis. ..., 8vo,
Classen’s Analysis by Electrolysis. (Herrick and Boltwood.).8vo,
Crafts's Qualitative Analysis. (Schaeffer.)............. .12mo,
Drechsel’s Chemical Reactions. (Metrilly) st i 27 moms .+ -12mo,
Fresenius’s Quantitative Chiemical Analysis. (Allen.)....... 8vo,
e Qualitative £ £ (Johnson.)... .. 8vo,
“ ot & " (Wells.) Trans,
16th German Edition
Fuertes’s Water and Public Health. .. .... .ooeeerss... 12mo,
Gill’s Gasand Fuel Analysis. ....oeovennsouuns ooinns. 12mo,
Hammarsten’s Physiologieal Chemistry. (Mandel.)........ 8vo,
Helm's Principles of Mathematical Chemistry. (Morgan).12mo,
Kolbe’s Inorganic Chemistry

Landauer’s Spectrum Analysis.  (Tingle.).coeuhoinnsnnnnni 8vo,
Lob's Electrolysis and Electrosynthesis of Organic Compounds,
(Lioxen7: )88 1. NREIN 4. ST e O 12mo,
Mandel’s Bio-chemical Laboratory 12mo,
Mason's Water-supply.
“  Examination of Water. (In the Press.)
Miller's Ohemical PhYSICs. . . v v iue s s s sionn s e b 8vo
Mixter's Elementary Text-book of Chemistry..c.veiuun.e,
Morgan’s The Theory of Solutions and its Results
Nichols's Water-supply (Chemical and Sanitary)
O’Brine’s Laboratory Guide to Chemical Analysis
Perkins's Qualitative Analysis...\......o.00 . oviess
Pinner's Organic Chemistry. (Austen.).........ov.ns.s. 12mo,
Poole’s Calorific Power of Fuels
Ricketts and Russell’s Notes. on Inorganic Chemistry (Non-
metallic) Oblong 8vo, morocco,
Ruddiman’s Incompatibilities in Prescriptions: .. oo ... .. 8vo,
Schimpf’s Volumetric Analy

Spencer’s Sugar Manufacturer’s Handbook . 16mo, moroceo flaps,
5

3 00
150
150
3 00
150
125
6 00
3 00

O o= W W e e 0




Spencer’'s Handbook for Chemists of Beet Sugar Houses.
16mo, morocco,
Stockbridge’s Rocks and Soils
Van Deventer's Physical Chemistry for Beginuers. (Boltwood.)
12mo,
Wells's Inorganic Qualitative Analysis.......... ... + o0 12mo,
‘“ TLaboratory Guide in Qualitative Clemical Analysis,
8vo,
Whipple’s Microscopy of Drinking-water
Wiechmann’s Chemical Lecture Notes: ... ool
9 Sugar Avalysis
Walling’s Inorganic Phar. and Med. Chemistry... .......12mo,

DRAWING.

ELEMENTARY—GEOMETRICAL—MECHANICAL—TOPOGRAPHICAT.

Hill’s Shades and Shadows and Perspective...............8vo,

s

$ Mechanical Drawing
Mahan’s Industrial’ Drawing. (Thompson.)i......2 vols., 8vo,
Reed’s Topographical Drawing. (H. A.)v.cvsisowanesan i 4t0,
Reid's A Course in Mecbanical Drawing ..., oioviiiie. 8vo.
‘“~ Mechanical Drawing and Elementary Machine Design,
8vo. (In the press.)
Smith's Topographical Drawing: (Macmillan.)i........ .. .8vo,
Warren’s Descriptive Geometry 2 vols., 8vo,
b Drafting Instruments. . .cooiveviiii vininn o 12mo,
Free-hand Drawing 12mo,
Linear Perspective
Machine Construection 2 vols., 8vo,
Plane Problems....... 12mo,
Primary GEOmMetry. .o« vs s savs vide wlas s ois o 1210,
Problems and Theorems
Projection' Drawing.... ... iuveviavsvnnvns
Shades and Shadows
Btereotomy—Stone-cutting... .. v in il

Whelpley’s Letter Engraving

2 00
3 .00
500
4 00
3 50
5 00
200

e T = S = S~ SN UL B )
O or Ov.
4 ot O 9

W W W= w

ELECTRICITY AND MAGNETISM.
II.LL'MINATION—BAT’I‘ERIES—PHYSICS.

Anthony and Brackett's Text-book of Physies.  (Magie.). .8vo,
Anthony's Theory of Electrical Mesdsurements

Barker's Deep-sea Soundings,

Benjamin’s Voltaic Cell. .. ..

History of Electricity....,. GO SR VUL 8vo

Cosmic Law of Thermal Repulsion 12mo,

Crehore and Squier's Experiments with a New Polarizing Photo-
Chronograph. ....... O St SR ICRIRIRAT 1 B Y <. .8vo,
*Dredge's Electric Illuminations. . . .2 vols., 4to, half morocco,
§¢ < £ R 3 RS R iR B S N (S
Gilbert’s De maguoete. . (Mottelay:). . vl o s ol 8vo,

Holman's Precision of Measurements

Michie's Wave Motion Relating to Sound and Light,
Morgan’s The Theory of Solutions and its Results
Niaudet’s Electric' Batteries, (Fishback.)........
Pratt and Alden’s Street-railway Road-beds

Reagan’s Steam and Electric Locomotives... ... SRS T 12mo,

Thurston’s Stationary Steam Engines for Electric Lighting Pur-
posesuL vl . .21y
Tillman’s Heat. .

i

ENGINEERING.

ClVIL-—DIECH:\NIC.—\L-—SANITAR\', Erc.

(See also BRIDGES, p. 4; HYDRAULICS, p. 9;

$3 00
100
2 00
8 00
3 00

75

8 00
25 00
T 50
2 50
200
-5
400
100
2 50
2 00
2 00

MATERIALS OF EN-

GINEERING, p. 10; MECHANIC® AND MAcCHINERY, D. 12 ; SrEAM

ExgiNes axp BorLers; p, 14.)

Oblong 4to,
Brooks’s Street-railway Location.. . ...,

Byme's Highway Construction
" Inspection of Materials and Workmanship
Carpenter's Experimental Engineering

7

++s 2. ... 16mo, morocco,

16mo,
................... 8vo

)

5 00
3 00




Church’s Mechanics of Engineering—Solids and Fluids. .. .8vo,

¢ Notes and Examples in Mechanics. .. ..cvovievvne.
Crandall’s Earthwork Tables

. The Transition Curve 16mo, morocco,
* Dredge’s Penn. Railroad Construction, etc. . . Folio, half mor.,
* Drinker’s Tunnelling 4to, half moroeco,
Eissler’s Explosives—Nitroglycerine and Dynamite
Folwell’s Sewerage

o
2 8 8

(o]

Fowler's Coffer-dam Process for Piers

Gerhard’s Sanitary House Inspection

Godwin’s Railroad Engineer’s Field-book

Gore’s Elements of Geodesy

Howard’s Transition Curve Field-book.. . ..12mo, morocco flap,
Howe's Retaining Walls (New Edition.).. ..o e coaniosinn 12mo,
Hudson’s Excavation Tables. Vol, II

U = = = 30 0

Hutton's Mechanical Engineering of Power Plants
Johnson’s Materials of Construction.. .. .. .o 0 Large 8vo,

$ Stadia Reduction Diagram. .Sheet, 22% X 28} inches,

¢ Theory and Practice of Surveying Small 8vo,
Kent’s Mechanical Engineer's Pocket-book. . . ..16mo, morocco,
Kiersted’s Sewage Disposal.. s coivsividansiniaien.. . 12mo,
Mahan’s Civil. Engineering. (Wo00d.): v vaaawotscaicannsin 8vo,
Merriman and Brook's Handbook for Surveyors. . . .16mo, mor.,
Merriman’s Geodetic Surveying

2 Retaining Walls and Masonry Dams
4 Sanitary Engineering

Nagle’s Manual for Railroad Engineers....,...
Patton's Civil Engineering

¢ Foundations
Pratt and Alden’s Street-railway Road-beds
Rockwell’s Roads and Pavements in France
Ruffner’s Non-tidal Rivers. .. ..
Searles’s Field Engineering

‘  TRailroad Spiral
Siebert and Biggin’s Modern Stone Cutting and Masonry. . .8vo,

16mo, morocco flaps,
16mo, morocco flaps,

Smart's Engineering Laboratory Practice 12mo,
Smith's Wire Manufacture and Uses
Spalding’s Roads and Pavements

Spalding’s Hydraulic Cement .y /s aveitid et inensann. s !.12mo,

Taylor’s Prismoidal Formulas and Earthwork

Thurston’s Materials of Construction

*Trautwine’s Civil Engineer’s Pocket-book. .;16me, mor. flaps,

* & Cross-section Sheet,

Excavations and Embankments.............8vo,

Laying Out Curves 12mo, morocco,

Waddell's De Pontibus (A Pocket-book for Bridge Engineers).
16mo, morocco,

Wait’s Engineering and Architectural Jurisprudence

* €<
* «

‘o

Law of Field Operation in Engineering, ete
Warren’s Stereotomy—Stone-cutting

Webb's Engineering Instruments

Wegmann’s Construction of Masonry Dams
Wellington’s Location of Railways

Wheeler's Civil Engineering. .

‘Wolfl’s Windmill as a Prime )Iover

HYDRAULICS.

$2

o Ll &

oS >

O Ot St = W

WATER-WHEELS—WINDMILLS—SERVICE PIPE—DRAINAGE, ETC.

(Se¢ also ENGINEERING, p. 7.)

Bazin’s Experiments upon the Contraction of the Liquid Vein,
(Brautwille; ). . T . ) o o B o s e e 's SHERER L0 8vo,
Bovey’s Treatise on Hvdrauh(,s. SH - PIRUTRPTE - (R CER e 8vo,
Cofiin’s Graphical Solution of Hydraulic Problems. .. . ...
Ferrel's Treatise on the Winds, Cyelones, and Tornadoes. . .8vo,
Fuertes's Water and Public Healthe...o...vvennnnun... 12mo,
Ganguillet & Kutter's Flow of Water. (Hering & Trautwine.)
8vo,
Hazen’s Filtration of Public Water Supply
Herschel’s 115 Experiments
Kiersted's Sewage Disposal. <. ieeseiirsenecennesnanns.s 12mo,
Mason’s Water Supply
Merriman’s Treatise on Hydraulics
Nichols’s Water Supply (Chemical and Sanitary)
Ruffner’s Tmprovement for Non-tidal Rivers
Wegmann’s Water Supply of the City of New York ... ....
Weisbach's Hydraulics. (Dt BoiS.): v ueeesesaseenosvanes 8vo,
Wilson’s Irrigation Engineering
‘" Hydraulic and Placer Mining.......n. couin. .. 12mo,
Wolff’s Windmill as a Prime Mover
Wood's Theory of Turbines

Ll O CRNTS ]

-
CO W 1 © WO O 0 W

L)
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Warren’s Problems and Theorems
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MECHANICS—MACHINERY.
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(See also ENGINEERING, p. T.)

Baldwin’s Steam Heating for Buildings..................12mo,
Benjamin’s Wrinkles and Reeipes...vovet v iy vnnsans ., 12mo,
Chordal’s Letters t0 Mechanics. ... .veevers sonoeneseannn 12mo,
Church’s Mechanics of Engineering

% Notes and Examples in Mechanics
Crehore’s Mechanics of the Girder,
Cromwell's Belts and Pulleys. cuoeienunsunneinonseses 12mo,

¥ Toothed Gearing
Compton’s First Lessons in Metal Working..............
Compton and De Groodt’s' Speed Lathe 12mo,
Dana's Elementary Mechanics 12mo,
Dingey’s Machinery Pattern Making. ......u o i, .. 12mo,
Dredge’s Trans. Exhibits Building, World Exposition.
4to, half morocco,

Du Bois's Mechanics. Vol. I., Kinematics
Vol. II,, Statics
Vol. III., Kinetics
Fitzgerald's Boston Machinistai. .. euusavinninee vans 18mo,
Flather’s Dynamometers

e 1350 o0 DYy o ORGSR S R S e 12mo,
A5 F 5T 07T A IV 034 (11 10) 1 T3 80 R A P S T T S A S 12mo,
Holly’s Saw Filing 16mo,
Johnson’s Theoretical Mechanics. An Elementary Treatise.

(In the press.)

Jones's Machine Design.

o ‘@ e
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Machine Parts
Lanza's Applied Mechanics
30 (e B3 3 (2 i 1 TR (6 el et e oo e O e B < 8vo,
Merriman’s Mechanics of Materials :
Metcalfe’'s Cost of Manufactures. .. ....uvoeeorseneennoenns
Michie's Analytical Mechanics
Richards’s Compressed Adr.. ... i.ie i vne s cninnnnns 12mo,
Robinson’s Principles of Mechanism
Smith’s Press-working of Metals.. .. .ovvvrvevinsneenoren, 8vo,
Thurston’s Friction and Lost Work

or
=
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Thurston's The Animal as a Machine
Warren’s Machine Constraction 2 vols., 8vo,
Weisbach’s Hydraulics and Hydraulic Motors. (Du Bois.)..8vo,
5 Mechanics of Engineering, Vol. IIL, Part I,
BecZ eIl ety it o e R et S e Dot 8vo,
Weisbach’s Mechanics  of Engineering. Vol. III., Part 1.,
SeeHII IR ein. ) 8n L o R s B i bt 8vo,
Weisbach’s Steam Engines. (Du Boigi)i: At i. 8vo,
Wood's Analytical Mechanics. .. ... .uuuenssvuinninn.s 8vo,

‘“  Elementary Mechanics

‘e ‘e "

METALLURGY.
IRoON—GoLD—SILVER—ALLOYS, ETC,

Allen’s Tables for Iron Analysis

Egleston’s Gold and Meveury. .. ... .0iuilivhovs i, Large 8vo,
t Metallurgy of Silver Large 8vo,

* Kerl’s Metallurgy—Copper and Tron

I & Steel, Fuel, ete

Kunhardt’s Ore Dressing in Buropée.. ........ooevuun ...

Metcalf’s Steel—A Manual for Steel Users.. .. .ov.......

O'Driscoll’s Treatment of Gold Ores

Thurston’s Iron and Steel. .. .................

i

MINERALOGY AND MINING.

MINE ACCIDENTS—VENTILATION—ORE Dressineg, Ere.

Barringer’s Minerals of 'Commercial Value. . ..Oblong morocco,

Beard's Ventilation of Mines

Boyd’s Resources of South Western Virginia
“  Map of South Western Virginia

Brush and Penfield’s Determinative Mineralogy. New Ed. 8vo,

Chester’s Catalogue of Minerals

[ 6 ““

Pocket-book form,

...................... +«Paper,
Dictionary of the Names of Minerals
Dana’s American Localities of Minerals
‘“ Descriptive Mineralogy. (B.8.).«... 8vo, half morocco,
““ Mineralogy and Petrography . (JiD.). cess s ivsren 12mo,
'“ Minerals and How to Study Them. (E. 8.).2e 04 «.12mo,
“  Text-book of Mineralogy. ((E. 8.)...New Edition. 8vo,
¥ Drinker's Tunnelling, Explosives, Compounds, and Rock Drills,
4to, half morocco,

i
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Egleston's Catalogue of Minerals and Synonyms. ..........8v0, $2 50
Eissler's Explosives—Nitroglycerine and Dynamite 4 00
Hussak’s Rock-forming Minerals.  (Smith.)......... Small 8ve, 2 00
Thlseng’s Manual of Mining.. «cvoeamivaine i iiineinds 8vo, 4 00
Kunhardt’s Ore Dressing in Europe 1 50
O'Driscoll's Treatment of Gold Ores 2 .00
¥ Penfield’s Record of Mineral Tests Paper, 8vo, 50

Rosénbuseh’s Microscopical - Physiography of Minerals - and
ROCKS.| |- (TAQINES,) <& Fianeileisis e o wiitits i sadis Snis ¢ 8vo, 5 00
Sawyer's Accidents in Mines Large 8vo; 7 00
Stoekbridge’s Rocks and Soils uiewuiin i i iiiii o 8vo, 250
Walke's Lectures on Explosives 4 00
Williams's Tithologydl £ {5 Vi3a8 48 5 BT PG - st aiateias suanie 3 00
Wilson’s Mine Ventilation 125
= Hydraulicand Placer Mining 2 50

STEAM AND ELECTRICAL ENGINES, BOILERS, Etc.

SrarroNAry—MArINE—LocoMorivE—GAs Exgines, Erc.
(See also ENGINEERING, p. 7.)

Baldwin’s Steam Heating for Buildings..... Y e SAACR
Clerk's Gas Engine ..., couseevis oo biveeacsena s omall 8vo,
Ford’s Boiler Making for Boiler Makers.....ovviunnn.... 18mo,
Hemenway’s Indicator Practice........... ... i h.. .. 12mo,
Hoadley’s Warm-blast Furnace.......... ...
Kneass's Practice and Theory of the Injector
MacCord'’s Slide Valve
Meyer’s Modern Locomotive Construction
Peabody and Miller’s Steam-hoilers... cooocvviercvaniennnn.
Peabody’s Tables of Saturated Steam
14 Thermodynamics of the Stear Engine
A Valye Gears for the Steam-Engine.............
Pray's Twenty Years with the Indicator Large 8vo,
Pupin and Osterberg’s Thermodynamics. .. ..vveiviaie. 12mo,
Reagan’s Steam and Electric Locomotives
Rontgen’s Thermodynamies. (Du Bois.)...oi.ciaiineiin 8vo,
Sinclair’s Locomotive Running 12mo,
Snow’s Steam-boiler Practice . (In the press.)
Thurston’s Boiler Explosions
s Engine and Boiler Trials,
3 Manual of the Steam Engine.
and Theory
Manual of ‘the Steam Engine. Part I, Design,
Construction, and Operation 6 00
2 parts, 10 00

- ‘
PR =, B U - -~ S R e )
S2888833888883888388

Ot -
o o
oo

(-]
(=g
(=]

14

Thurston's Philosophy of the Steam Engine, .. ... i . . 12mo $
£¢ Reflection on the Motive Poyer of Heat. (Carnot,)
12mo,

113

. : 1
Stationary Steam Engines 1
it Steam-boiler Construction 5
Spangler's Valve Gears. .. .. iviviiit. i pnsins. 8vo :
Weishach’s Steam Engine. (Du Bois.)iiu. ... or... 2T Svo’ g
‘Whitham’s Constructive Steam Eum‘ueex'ing.. s sk o ' 10
£ Steam-engine Design. . v ................. “8vo b1
Wilson's Steam Boilers. (Flather.). .. oovnesoo b, s 1 , "
4

: 2mo,
Wood’s Thermodynamics, Heat Motors, etc 8

00

TABLES, WEIGHTS, AND MEASURES. .

For ACTUARIES, CHEMISTS, ENGINEERS,
TABLES, Erc.

Adriance’s Laboratory Caleulations
Allen’s Tables for Iron Afialysis aht 0alladl b 8v.
Bixby’s Graphical Computing Tables.................. &1 ’
Compton’s Logarithms, .. .. . . ...widid ves o sucscodesre., 12mo
Crandall’s Railway and Earthwork Tables n18v0,
Egleston's Weights and Measures
Risher’s Table of Ctibic Yards............... ... Cardboard
Hudson’s Excavation Tables, Vol. II :
Johnson's Stadia and Earthwork Tables, . ... .. S8

Ludlow’s Logarithmic and Othier Tables. (B 3
g : BESHR . L.l 2
Totten’s Metrology : s 1 2

MEecHANICS—METRIG

Dol AL Y e R 2
QIOQQIOCIOI

veetehe L RN LB L | L LR I S 8vo,

VENTILATION.

STEAM HeATING—HoUsE INsPECTION—MINE VENTILATION,
Baldwin’s Steam Heating
Beard's Ventilation of Mines
Carpenter's Heating and Ventilating of Buildings,.......
Gerhard’s Sanitary House Inspection 3 Square 'lémo
Mott’s The Air We Breathe, and Ventilation :
Reid’s Ventilation of American Diwellings
‘Wilson’s Mine Ventilation

= O e 29 20
W o >
"288888

MISCELLANEOUS PUBLICATIONS,

Alcott’s Gems, Sentiment, Lan i

BOt a s guage Gilt edges,
Bailey’s The New Tale of a Tubsd oheids AT .e ég:cf
Ballard’s Solution of the Pyramid Problem e

Barnard's The Metrological S 3 i
. ystem of the Great Py s
Davis's Elements of Law A




Emmon’s Geological Guide-book of the Rocky Mountains. .8vo,
Ferrel's Treatise on the Winds

Haines’s Addresses Delivered before the Am. Ry. Assn...12mo.

Mott's The Fallacy of the Present Theory of Sound..8q. 16mo,

Perkins's Cornell University Oblong 4to,

Ricketts's History of Rensselaer Polytechnic Institute 8vo,

Rotherham'’s The . New Testament Critically Emphasized.

12mo,

The Emphasized New Test.. A new translation.

Large 8vo,

Totten’s An Important Question in Metrology. . ... ... . .8¥0,

Whitehouse's Lake Mceris. Paper,

* Wiley’s Yosemite, Alaska, and Yellowstone.............4to,

HEBREW AND CHALDEE TEXT-BOOKS.
For ScHOOLE AND THEOLOGICAL SEMINARIES.

Geseniug’s Hebrew and Chaldee Lexicon to Old. Testament,
(Tregelles.), sawieasion ad o umnss Small 4to, half moroceo,
Green’s Elementary Hebrew Grammar 12mo,
¢« @rammar of the Hebrew Langnage (New Edition).8vo,
¢ Hebrew Chrestomathy
Letteris’s: Hebrew Bible (Massoretic Notes in.English).
8vo, arabesque,

MEDICAL.

Bull’s Maternal Management in Health and Disease:..... .12mo,

Hammarsten’s Physiological Chemistry. (Mandel.)........ 8vo,

Mott’s Gomposition, Digestibility, and Nutritive Value of Food.
Large mounted chart,

Ruddiman’s Incompatibilities in Prescriptions

Steel’s Treatise on the Diseases of the Ox

Treatise on the Diseases of tlie Dog
Woodhull's Military Hygiene
Worcester's Small Hospitals—Establishment and Maintenance,
including Atkinson’s Suggestions for Hospital Archi-
L7111 b S o dm su g e seannels
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