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PREFACE TO PART III. 

THE curved lines of arches are pleasing to the eye, and may 
often be introduced with advantage in constructions. An arch 
may furnish, under some circumstances, a very economical way 
of spanning an opening; and arched ribs are employed in 
other eases, at conspicuous locations, where beauty of design 
is regarded, or where ample and uninterrupted space beneath a 
roof is desired. Stone arches have been built for many centu-
ries ; at the present time, wood, iron, and steel are also used as 
materials. If the principles which enable one to ascertain the 
forces acting in all parts of an arched structure are clearly 
understood, designs of this type will be more common than 
they now are; and it is with the desire to do what he can to-
ward shedding some light upon this subject, as well as to give 
the ability to intelligently design an arch to those who are not 
familiar with the higher mathematics, that the -author submits* 
the following pages to the public. 

Most persons experience difficulty in mastering the principles 
which govern the action of an arch, as they have hitherto been 
presented. Even one who has successfully worked through 
the mathematical theory, as he finds it in the text-books, may 
sometimes lose sight of the actual meaning of each step in the 



process ; so that there is a certain mystery about the applica-
tion of the formulas to a specific example, although one may 
feel confident that the results are reliable. To many con-
structors a treatise on the arch, as usually written, is a sealed 
book, and the whole subject is veiled in obscurity. Empirical 
rules, copying of existing examples, and guesswork have been 
the refuge of many. While such practice may answer for 
masonry structures, where the factor of safety as regards 
strength is very large, the introduction of iron skeleton struc-
tures, where the pieces occupy definite lines of force, and the 
sharp rivalry for economical disposition of the material, render 
a better practice desirable. It is hoped that the graphical 
method developed in the following pages will enable the reader 
to understand as clearly the effect of applied forces on an arch, 
as it has, through the explanations of Parts I. and II., enabled 
him to analyze trussed roofs and bridges. 

From the bending moment, direct thrust, and shear, here 
obtained at successive sections of the arched rib, the stresses 
in the chords or flanges, and bracing or web, are derived as if 
the structure were a simple truss. In finding the resultant 
stresses in the pieces, the method of Par t I. will sometimes be 
preferred to that of Part II. So far as possible, thè formulai 
of the text have been obtained by direct and easy ways ; and, 
while it has been convenient to arrive at some of the definite 
results by the use of the calculus, such results have been 
obtained from the diagrams, and can in all cases be verified by 
the reader, for any specific example, by the most simple means. 

After the subject is once mastered, the resulting formula 
and applications will, naturally, alone be referred to in working 
out designs : the author has therefore thought it best to place 
the results, &c., in direct connection with the explanatory 

statements, and to have the analytical or mathematical demon-
strations follow in smaller type. One who simply desires 
working-material may omit the matter printed in small type, 
without losing any of the facts, but must then take some state-
ments for granted. 

A distinctive notation for the figures, introduced in Parts I. 
and II., — capitals for structures and moment diagrams, small 
letters for the shear diagrams, and numerals for the stress dia-
grams, — has been generally adhered to. While an acquaint-
ance with Parts I. and II. will aid the reader in understanding 
more readily the graphical constructions here given, it has been 
the aim of the author to enter sufficiently into detail to make 
this part intelligible by itself: hence a few explanations are 
repeated here. 

It is believed that many things offered in these pages will be 
new to most readers. The work is almost entirely the result of 
independent investigation. A portion of the material was once 
printed in the " Engineering News," but it has been entirely 
revised since that time: over one-half of this part is now in 
type for the first time. The device of increasing the breadth 
of the parabolic rib, or the thickness of the flanges, from the 
crown to the springing, while the depth remains constant,— 
which device will be found in Rankine's " Civil Engineering," 
— enables the summation of ordinates to be made across the 
span, as for a beam, rendering the treatment simple. On the 
other hand, the depth and breadth of the circular rib are sup-
posed to be constant, and the summation is made along the 
curve. Herein the treatment differs from that of some authors. 
It is shown that the direct thrust on a right section is not equal 
to the product of the horizontal thrust by the secant of the 
inclination of the rib at the section to the horizon, as some 



writers assume, unless the equilibrium curve is parallel1 to the 
axis of the rib. Other points of difference in treatment and 
result will be found by readers who are familiar with the litera-
ture on this subject. The discussion, in Chapter VIII. , of the 
action of the wind on an arched roof, will, it is hoped, be found 
timely and serviceable; the effect of change of temperature, 
and the change of form under stress (Chapter XI.), are often 
ignored by writers ; an example of a stone arch of considerable 
magnitude is worked out in detail; the methods of stiffening 
suspension bridges are discussed and compared: on some of 
these points very little has heretofore been given. 

C. E. G. 
A N N A R B O R , M I C H . , J u l y , 1879 . 
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A R C H E S . 

C H A P T E R I . 

G E N E R A L P R I N C I P L E S . 

1. Arches. — An arch may be considered to be any structure 
which, under the action of vertical forces, exerts horizontal or 
inclined forces against its supports or abutments. Such a defi-
nition will include not only the roof of two simple rafters, but. 
also the suspension bridge; and we see no objection to so 
including them. The case of two rafters we need not touch 
upon : the suspension bridge only comes incidentally within the 
scope of this part, until we take up the means of stiffening such 
a structure under a moving and partial load. 

2. Funicular Polygon applied to a Curved Rib. — Suppose 
that a curved rib A C E B, Fig. 1, of any material which pos-
sesses stiffness, for instance iron, is attached by a pin, on which 
it can turn freely, to each of the points of support A and B, 
and has suspended from it certain known weights, represented 
by W1? W2, &c., at known points. The weight of the curved 
rib itself is not at present considered. The rib, if flexible, as a 
cord or chain is flexible, will tend to assume the shape of the 
funicular, or equilibrium polygon, proper to these weights in 
their respective positions. If we lay off the load line 2-1, to 
any scale, space off on it the weights in succession, assume any 
convenient point 0, draw radiating lines from that point to the 
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points of division and to the extremities of the load line, and 
then, starting from A, or any other point in the vertical through 
that point of support, draw lines, successively parallel to the 
lines radiating from 0, and limited by the verticals through the 
weights, one such equilibrium polygon will be found. 

This polygon was discussed in Part II., " Bridges," § 2. By 
moving the point 0 of the stress diagram, the place where the 
equilibrium polygon strikes the vertical drawn through B will 
be changed; and, if 0 is horizontally opposite the point which 
divides the load line into the two supporting forces, the poly-
gon, drawn from A as a point of beginning, will strike B. But 
0 may move on a horizontal line, and H will then have any 
value we please. H is therefore, at present, an unknown quan-
tity ; but we will suppose that A K I B is the desired equilib-
rium polygon for this given case,—an imaginary line, the 
weights being attached to the arch. 

3. Relation between Equilibrium Polygon and Bending 
Moments. —I f the rib is made of a rigid material, the tend-
ency to take a shape other than the one to which it was first 
formed will cause a bending action or moment at different 
points. Thus, between A and C the rib will flatten somewhat, 
moving towards the straight line A C, and from C to B it will 
become slightly more convex. At C, where the rib coincides 
with the equilibrium polygon, there will be no tendency to 
bend. The bending moments on'either side of a point where 
the equilibrium polygon crosses the rib will therefore be of con-
trary kinds or signs. I t is necessary to know the value of the 
bending moments at all points, in order to so design the cross-
section of the rib that it shall be able to resist them. The 
point C is not necessarily the crown of the arch : it happens to 
come near it in our figure. If the arched rib is free to turn at 
its supporting points, no bending moments can exist there ; if it 
is jointed or hinged at any place, as, for example, the middle or 
crown, no bending moment will be found there: the equilib-
rium polygon must therefore pass through all such points. 
The rib may be so fastened at A and B that it cannot turn in a 

vertical plane; and there will then be bending moments at those 
points, as in the analogous case of a beam fixed at both ends, 
except for such a distribution of the load as makes the equilib-
rium polygon coincide with the arch at its ends. 

If the rib is hinged at three points, that is, at the ends and 
middle, the equilibrium polygon is immediately fixed in position 
by the necessity of passing through these three points, and the 
problem of finding the stresses in the rib becomes very simple, 
as will be seen later. 

4. Value of Bending Moment. — L e t us suppose, at first, 
that the rib of Fig. 1 is jointed, and free to turn at its ends 
only. The stress diagram, 0 1 2 , and the imaginary equilibrium 
polygon, having been constructed, and the horizontal line H 
from 0 drawn, it will be seen that this line will divide the load 
line into two forces, the vertical components of the abutment 
reactions, as proved in Part II., § 6. The arrows in the figure 
denote these components; and we will call the vertical ones, 
analogous to the supporting forces of a beam, P t and P2, as 
marked. We have here the usual closed polygon of external 
forces. 

Let an imaginary vertical section be made at D F : from the 
theorem of moments, as-equilibrium exists in this loaded arch, 
the moments of all the external forces must balance around any 
point, for instance the point E, where the plane of section cuts 
the rib. If the sum of the moments around E equals zero, the 
moments on one side of the plane of section must equal those 
on the other; and, as E is in the section of the rib, these mo-
ments can only neutralize one another through the moment of 
resistance of the section : consequently, the sum of the moments 
on either side must equal the bending moment at E. Then at 
E, if P2 and H are the rectangular components of the reaction 
at B, and 2 W. L denotes the sum of the products of each 
weight by its horizontal distance L from E, the bending moment 
will be 

M = P 2 . D B — S W . L — H . D E . (1.) 

If the weights had been attached to the cord, or equilibrium 



polygon, we should have had, for moments on the right of and 
about F, 

P , . D B — 2 W. L — H . D F. (2.) 

But a cord, being flexible, can resist no bending moment. As 
this cord is the equilibrium polygon, there can be no tendency 
to move or no bending moment at any point of it, and expres-
sion (2.) must reduce to zero, or 

P 2 . D B — 2 W . L = H . D F . 

Substitute this value in (1.), and it becomes 
M = H . D F — H . D E = H . E F ; (3.) 

which signifies that the bending moment at any point of an 
arched rib, under any vertical load, is equal to the product 
of the vertical ordinate from that point to the proper equilibrium 
polygon, multiplied by H from the stress diagram. 

5. Remarks. — I t will be noticed that, to the left of C, 
D F — D E will change sign, becoming negative, and therefore 
that the bending moment will change in direction, as stated 
before. If the rib becomes straight and horizontal, the point E 
moves up to D, and the bending moment becomes equal to 
H . D F, which is its value for a beam supported at both ends. 

The relation of the equilibrium polygon to the arch, or the 
fact that the bending moment equals H . E F , as just proved, 
may be readily explained in another way. Suppose that the 
arch A' B' of Fig. 14 has a single weight placed upon it in a cer-
tain position: it will thrust horizontally against the abutments 
an amount H. Let the equilibrium polygon for this weight, 
and having the same H, be A F B. The ordinates to this 
equilibrium polygon will be proportional to the bending mo-
ments due to the weight on a beam or truss of span A B , 
the moments will all be positive, and equal to H . D F. But 
the thrust H of the arch, which actually carries the weight, 
acting in the line A' B', will exert negative bending moments 
equal to H . D E at all sections of the arch. The resultant 
bending moment at any point, when the equilibrium polygon 
is superimposed on the arch, will be the product of H by the 

difference of these two ordinates, or H (D F — D E) = H . E F, 
at some places negative, and at others positive. Thus we see 
that, while we have for a given system of weights an equi-
librium polygon exactly similar to those treated in Par t II., 
" Bridges," the arch, by reason of its horizontal thrust which 
causes negative bending moments as above, annuls or cuts off a 
portion of the area of the equilibrium polygon, and the portion 
of the ordinate in excess or deficient at any point measures the 
existing bending ¿foment. I t is only necessary that the arch 
and polygon should have the same value of H. The arch, in 
its capacity of frame, as it were, carries a portion, more or 
less, of the forces which would otherwise cause bending mo-
ments and shears. 

Such an arrangement of weights might be devised, continu-
ously distributed along the rib, that there would be no tendency 
to change the shape of the arch at any point. The equilibrium 
polygon, becomingia^curve for a continuous load, would then 
coincide witliHhe "centre line of the arch, and we should have 
what is termed an equilibrated rib. And, on the other hand, a 
rib can be designed for any given distribution of load, of such 
a shape as to be in equilibrium. This fact can sometimes be 
made use of when the load is definite, that is, not a moving 
load, and we shall refer to it again in the sequel. 

6. Condition to determine H; Invariability of Span. — I t 
may be noticed that in § 4 wo used the term proper equilibrium 
polygon. It has been stated that it is easy to draw, between 
A and. B, any number of funicular polygons, which have their 
angles on the verticals let fall from the weights, by simply _ 
moving the point 0 horizontally in the stress* diagram, and thus 
altering the value of II, the horizontal component of the ten-
sion. But the actual rib*. under a given system of weights, 
must have a fixed value of II, and definite bending moments 
at all points: there is therefore but one funicular polygon 
which will be the proper equilibrium polygon. Some condition 
must be imposed; and a sufficient one is, that, supposing the 
points A and B to be fixed in position relatively to one 



another, the distance A B, or the span of the rib, shall be 
unchanged. An arch between two unyielding abutments satis-
fies this condition-. If the curve A 0 is flattened by the pull 
upon it, or by the bending moments by which it is urged 
towards the straight line A C, the point C will move a little 
to the right, while the portion between C and B will become 
slightly more convex. The movement of the point B, how-
ever, with reference to A, must be zero. 

7. Formula for this Condition. — Consider the arched rib 
as disconnected from its fixed points of support, but suspended 
in the air by the forces which were but now the reactions at 
those points. Equilibrium will still exist. The bending mo-
ment H . E F at E, from its effect on the particles at that 
section, causing an elongation of the fibres on one side and a 
compression of the fibres on the other side, produces what may 
be called an exceedingly small angle in the rib, or, better, a 
change of inclination, at E, moving the free end B, so far as 
this change alone is concerned, a very small distance in a direc-
tion perpendicular to a straight line from E to B. The amount 
of this displacement will depend upon the distance E B, and 
upon the change of inclination at E, which change has just 
been shown to depend upon the bending moment H . E F. The 
amount, B R, of this movement, is greatly exaggerated in the 
figure. But the horizontal component, or projection, B S, of 
the displacement, which alone affects the horizontal distance 
of B from A, will manifestly, from the proportionality of the 
sides of the two right-angled triangles B R S and E B D, be to 
B R as D E is to E B, or B S will be proportional to D E. 

Perhaps this point may be brought out more plainly if stated 
algebraically, thus: — 

B R varies as E B . H . E F; 

B S = B R . ? ^ ; therefore, 
iii D 

E B H E F T) F B S varies as — — : or as H . E F . D E. 
Hi a 

Taking all the points in the rib into consideration, we see 

that the total horizontal displacement of B from A will be pro-
portional t o H . 2 E F . D E , if ^ is the sign of summation of all 
of the products E F . D E. As the span A B is to be unchanged, 
the above quantity must equal zero, and therefore, as H cannot 
be zero, we have the desired condition reduced to 

2 E F . D E = 0. (1.) 

8. The Equilibrium Polygon determinate. — As E F 
changes sign when the equilibrium polygon crosses the rib, 
as at C, we arrive at this result for a rib free to turn, or 
hinged, at its ends, that the summation of the products E F . D E 
for every point where the equilibrium polygon lies on one side of 
the rib must equal the. summation of the similar products for every 
point where the polygon lies on the other side. Only one polygon, 
manifestly, will satisfy this condition; for, if we draw a new 
polygon between A and B, we immediately increase one set 
of E F's and diminish the other. An equilibrium polygon may 
first be drawn tentatively, ordinates be measured at intervals, 
and the above products computed. It will then be readily seen 
whether the polygon should be moved up or down; to move it, 
change H, and draw again. We can deal thus with a rib of 
any outline; but, for the regular forms of arches commonly in 
use, we will show presently how to determine the exact equi-
librium polygon without experimental trial. 

9. Deflection of the Rib. — The vertical component R S, of 
the displacement B R, manifests itself, since B cannot move, by 
a slight movement of the rib at E vertically, corresponding to 
the deflection of a beam under transverse forces. 

10. Another Value for Bending Moment. — I t has been 
shown that the bending moment at E equals H . E F. If we 
draw from E a perpendicular, E N, to that side of the equilib-
rium polygon which passes through F, the side being prolonged 
if necessary, we shall form a right-angled triangle, similar to 
one formed in the stress diagram by H, the line parallel to the 
side of the polygon, and the vertical line. Thus, in Fig. 1, 
the triangle E F N will be similar to 0 25, and we may write 
the proportion 



0-2 : 0 - 5 = E F : E N ; 

or, if T denotes the tension 0-2 in the part of the cord which 
passes though F, we get, upon multiplying extremes and means, 

H . E F = T . E N ; (1.) 

so that the bending moment at each point is also equal to the 
product of the tension in the cord by the perpendicular let fall 
on the cord from the given point; and this is the measure of a 
moment, as shown in mechanics. The discussion of the bend-
ing moment might have been approached in this way. 

11. Combined Effect of Bending Moment and Direct 
Force.—If a force T acts in the line A K, which, when we con-
sider the curved rib, is an imaginary line, its moment with 
respect to the rib at E is, then, T . E N . Now, from mechanics, 
if we analyze the effect of a force T, Fig. 2, at any distance lat-
erally from a point E, we may apply two equal and opposite 
forces, + T and — T, at this point, which is here the middle of 
the rib, or what would be, for flexure only, the neutral axis, 
without destroying the equilibrium. Hence we have at E the 
direct f o r c e + T , producing tension, and the couple T . E N , 
producing flexure. The enlarged sketches will represent the 
condition of the rib. The small arrows at E ' denote the mag-
nitude or intensities of the stresses which form the moment of 
resistance to balance the bending moment, these intensities 
being taken as uniformly varying, a supposition which is satis-
fied within the elastic limit; at E " are shown the stresses on 
the particles of the section from the direct force; and the com-
bination of the moment and force is represented at E"', it being 
understood, that these several views represent one and the same 
section E. 

The point of no stress, or the position of the neutral axis, is 
seen to be shifted from the middle of the section at E ' to one 
side at E ' " ; and it will disappear altogether when the arm of 
the couple or moment becomes sufficiently small, so that the 
entire section may be under one kind of stress of varying in-
tensity. If we know the form of cross-section of the rib, we 

can tell from the location of the equilibrium polygon, by sim-
ple inspection, where we shall find both tension and compres-
sion, and where only one kind of stress. This matter will be 
touched upon later: §§ 106-108. _ 

12. Reversal of Figure; Movement of Rib from Equilib-
rium Polygon. — When an arch is under analysis, the figures 
thus far given will be inverted. Imagine them to be so. All 
of the forces will then be reversed. The polygon which was 
under tension will be compressed, and its sides will represent 
struts. I t will be in unstable equilibrium, and its relation to 
vertical forces is not, perhaps, so readily apprehended, by one 
not acquainted with this subject, as is that of the funicular 
polygon. For this reason it was thought best to take an in-
verted arch first. Hereafter the arches will be drawn above 
the springing line; H becomes the horizontal thrust of the rib 
against its abutments. 

The curved rib, between the points A and C, Fig. 1, so long 
as there is tension along the straight line A C, tends to move 
towards that line, just as the cord, if drawn towards the arch, 
returns to its former position; but as soon as the figure is 
inverted, and C is forced by compression towards A, the arch 
tends to move away from the equilibrium polygon. This fact is 
true of all points of the rib, and, being borne in mind, will 
enable one to tell at a glance the kind of moment at each point 
of the rib. All the bending moments are therefore reversed. 
Those bending moments which tend to make the arch flatter, 
or of less curvature, at any point, are called positive; those 
which tend to make it more convex are called negative. 

It may aid in fixing the ideas, to take a piece of small steel 
wire, bend it into the arc of a circle, and, placing the two ends 
in two notches upon a board, notice the change of shape aris-
ing from a pressure or load imposed on any portion. The 
movement of the wire will indicate, in a general way, where 
the equilibrium curve lies in reference to the rib. 

13. Equilibrium Polygon for a Single Load. — I t is now 
readily seen that the equilibrium polygon for a single, concen-
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trated load on an arch is composed of two straight lines which 
meet on the vertical drawn through the point where the load 
is imposed. In the ease just treated, these lines will start from 
the two springing points of the arch. The only quantity need-
ful to fix their position will be the distance of their point of 
intersection vertically from the rib; and the single condition 
of (1.) § 7, that 2 E F . D E = 0, will determine the unknown 
quantity. I t will be easier to find the effect of a single load 
at successive points on the arch, and to combine these effects 
for any possible arrangements and intensities of load, than to 
treat at once several loads. We shall pursue this method. 

14. Direct Force and Shear at a Right Section. — Since 
an arched rib is often composed of two flanges, and a web or 
connecting bracing, similar to a girder or truss, we desire, after 
we have found the bending moments at all points, to find that 
portion of the vertical force or the shear at each section which 
must be resisted by the web members. Shear was explained 
in Part II., " Bridges," § 4. In a horizontal beam, carried on 
two supports, we should have, in Fig. 1, P, . for the supporting 
force, and shear on the right of any section between B and W, ; 
P2 — W„ or (1-5) — (3-1), for the shear anywhere between 
W, and W 2 ; P2 - W, - W2, or (3-5) - (4-3) , that is - (5-4), 
between W2 and W 3 ; and so on, subtracting each weight from 
the previous shear or resultant. But in a beam, or a truss with 
horizontal chords, the other forces, those which oppose the 
bending moment, are horizontal: here they are not. Supposing 
the rib to be inverted, the direct thrust, being in the direction 
of a tangent at the centre line of the rib, has a vertical com-
ponent which affects the amount of shear to be resisted by the 
web. In short, the inclined flanges or chords act as braces; and 
we have, at any scction, these chords as well as the web mem-
bers, among which to distribute the shearing force. The 
action corresponds with that of the bow in a bowstring girder. 

I t is not probable that the thrust in the side of the equilib-
rium polygon will be parallel to the tangent to the curve of 
the centre line of the rib at a particular section, but this thrust 

will be the resultant force at the section. I t may then prop-
erly be resolved into two rectangular components, one perpen-
dicular to the section, representing the direct force, and the 
other parallel to the plane of the section, representing the 
shear. The direct stress, combined with the tension and com-
pression due to bending moment, will be resisted by the flanges 
or chords, and the shear by the web members, if the rib is so 
constructed. If the rib is of solid section, like a beam, the 
separate consideration of shear is generally unnecessary. I t 
will at once be seen that the direct stress at any point of the 
rib is obtained by projecting the force in that side of the 
equilibrium polygon which passes near the point upon the tan-
gent to the rib. Thus; in Fig. 1, 0-3 is the tensile force in the 
side I G of the equilibrium polygon, and 0-6 is drawn parallel 
to the tangent at U : if a perpendicular were drawn from 3 
upon 0-6 prolonged, the distance from 0 to the foot of the 
perpendicular would be the direct stress, and the perpendicular 
itself would be the shear on a right section at U. Or, again, 
if 0-2 is the force in A K, and 0-7 is parallel to the tangent at 
Q, a perpendicular from 2 on 0-7 will cut off the direct stress, 
and be itself the shear at Q. 

15. Sign of Shear; Maximum Bending Moment at Point 
of Zero Shear. — The above points may be made more clear, 
if necessary, by reference to the sketch above and on the left 
of Fig. 8. Let A C represent a portion of an arch, and A R' 
a portion of the equilibrium polygon which exerts a thrust R 
at A. The components of the abutment reaction will be H, 
the horizontal thrust, and P„ the vertical force. But R may 
also be decomposed, on a right section of the rib near A, into 
T direct thrust and F shear at the section. The little sketch 
adjoining shows, that, as these components act on the left of 
the section, we must have the opposite shear 011 the right of the 
section, giving what we have been accustomed to call nega-
tive shear (see Part II., "Br idges" ) . When, at any right 
section, a line parallel to the side of the equilibrium polygon 
lies above the tangent to the rib, the forces being taken on the 
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left of the section, as is the case at C, where T and F ' are the 
components of IT, the shear will be positive. Where the side 
of the equilibrium polygon is parallel to the tangent to the 
rib, as for instance near d, at that point there will be no shear, 
and the shear will be of opposite signs on each side of such 
point. The direct stress there will be H multiplied by the 
secant of the inclination of the tangent to the horizon. 

As the maximum ordinate between the side of the equilib-
rium polygon and the arch occurs where the side of the polygon 
is parallel to the rib, the maximum bending moments in the 
arch, as in a beam or truss, are found at points of no shear. 

16. Treatment of Arch with Fixed Ends requires Three 
Conditions. —I f the arched rib is fixed in direction at the 
ends (in place of being free to turn as previously supposed), 
by being firmly bolted to the abutments, or by having square 
ends accurately bedded upon the skewbacks, a bending mo-
ment will generally exist at the points of support when the 
arch is loaded. By taking the piece of easily flexible wire 
before mentioned, clamping the ends firmly, so as to fix the 
wire in the position of an arch, and then applying a load or 
the pressure of the finger, one can easily verify this statement 
for himself; and he will see that, for many positions of the 
load, the bending moment at one abutment is of the opposite 
kind to that at the other. The points at which the equilibrium 
polygon begins and ends will no longer be A and B of Fig. 1, 
and some new conditions must be imposed in order to deter-
mine these points. 

Consider the effect of a single load upon the arched rib A C B 
of Fig. 3, which rib is fixed in direction at its ends. The equi-
librium polygon will be two straight lines, such as I N and N L ; 
and, as there may be bending at both points of support, it will 
be necessary to find the magnitudes of A I and B L, as well as 
of N G , three unknown quantities. Three conditions must 
therefore be satisfied. Such writers as, in treating the arch 
either graphically or mathematically, require but two condi-
tions to be fulfilled for an arch with fixed ends, err in their 

assumptions, and hence in their results. If two conditions only 
are imposed, where three are necessary, many polygons can be 
drawn, and the problem is left undetermined. 

17. First Condition. — One condition which must be satisfied 
is plainly the one already used, §§6 and 7, that the change of 
span A B shall equal zero, or that 

2 E F . D E = 0. 

18. Second Condition: Change of Inclination between 
Abutments equals Zero. — As the change of inclination be-
tween any two contiguous points is directly proportional, in 
direction and magnitude, to the bending moment (for the elon-
gation and compression of the fibres on the two sides, upper 
and lower, of the rib, result from this bending moment, and 
cause whatever change of direction or inclination the rib may 
take on), and as the bending moment has been proved to be 
proportional simply to the ordinate E F, the change of inclina-
tion at any point is proportional to the ordinate E F from that 
point of the rib to the equilibrium polygon. 

The reader must distinguish between the change of inclina-
tion produced by flexure, and the original inclination of the rib 
to the horizon at each point due to the curve to which the rib 
is constructed. If an arch is loaded, it assumes a form slightly 
different from its shape when unloaded. The angle, at any 
particular point, between the two tangents to the curve of the 
rib, before and after it is loaded, is the change of inclination at 
that point. 

Starting from A, Fig. 3, the total change of inclination at C 
will be proportional to the sum of all the ordinates between A 
and C. On the other side of C, where the straight line crosses 
the rib, the bending moment being of the opposite kind, the 
changes of inclination will be in the opposite direction, and, in 
any summation of ordinates, for instance from A to E, must be 
subtracted. Then, as both A and B are fixed in their original 
directions, if we sum up all of the ordinates E F, from A to B, 
the total change of inclination between abutments is zero, and 



this sum must be zero. Therefore the second condition to be 
realized is that 

2 E F = 0; 

or that the sum of all the ordinates between the arch and the equi-
librium polygon on the inside of the arch must equal the similar 
sum outside. 

19. Third Condition: Deflection between Abutments 
equals Zero. — Fig. 3 shows that, since the displacement B R 
of B, relatively to the point E, in case B could move, has been 
proved, by § 7, to be proportional to H . E F . E B, the vertical 
component of this displacement varies as I I . E F . D B ; for, by 
a similar proportion to the one used in that section, 

S R = B R ; therefore, 
hi 13 

S B varies as E B . H . E F . D B > o r a s g g p _ p g_ 
ii ii 

If the products E F . D B should be summed up for all points 
from A to Q, for example, we should get a quantity proportional 
to the vertical displacement of Q, arising from the separate 
minute displacements between A and Q. If we pass beyond C, 
we have products of an opposite sign; and it then appears, that, 
since the ends at A and B are fixed both in position and direc-
tion, the sum of all the products between A and B must equal 
zero, or, since H cannot equal zero, 

2 E F . D B = 0. (1.) 

Therefore the third and last condition is, that the sum of the 
products of each ordinate, between the arch and the equilibrium 
polygon on the inside of the arch, by its distance from one spring-
ing point, must equal the similar sum on the outside. I t is imma-
terial which springing is chosen, but all the D B's must be 
measured to the same abutment. 

20. This Condition not applicable to Hinged Rib. — I t 
may be expedient to dwell upon this equation a little longer; 
for the question will apparently arise, why this condition is not 
also properly applicable to an arch which is jointed or hinged at 

the ends. Let a tangent A K be drawn to the rib at the point 
A, and a vertical line be dropped from it to the point Q. If 
the arch is now bent at the point E', by a bending moment 
which is proportional to E ' F, the point Q is moved a distance 
proportional to E ' F multiplied by the distance from E' to Q ; 
but the distance which Q moves in the vertical line Q 'K will be 
proportional to E ' F multiplied by the horizontal projection of 
E ' Q, or D T, and similarly for moments at all other points be-
tween A and Q. As the tangent at A is fixed in direction in 
this case, the movement of Q away from the extremity of K Q, 
or its movement in relation to the tangent at A, will be propor-
tional to the summation of the E F's multiplied by the D T 's ; 
and as the abutment B is fixed, the distance of B from a tan-
gent at A must be unchanged by any load, or its displacement 
must be zero, as above. In the case of the rib hinged at the 
ends, while the above area moments give the deflection from 
the tangent at A, this tangent is not fixed, but changes in 
direction upon the imposition of a load, and this condition can-
not be applied. If, however, one should treat an arch which 
was fixed at A and hinged at B, this condition would be neces-
sary, and all the distances D B would be measured to the hinged 
end; while the second condition would not apply, and would 
not be needed. 

This third condition was first applied to the determination of 
the bending moments in continuous bridges and pivot draw 
spans, in the first edition of Part II. of this work. 

21. Remarks: Abutment Reactions; Shear, &c. — The 
arch of Fig. 3 is cut by the equilibrium polygon in three places, 
and it may be cut in four points, giving as many places of con-
traflexure. The areas on opposite sides of the rib represent 
bending moments of opposite kinds, and of which kind is readily 
known if one remembers that the arch under thrust always 
moves from the equilibrium polygon. The amount of the 
weight, not being contained in any of the equations of condi-
tion, does not affect the diagram; for H is constant for all 
points of the arch for any given vertical load, and, not being 



equal to zero, is thrown out of the equations. But the weight 
W does affect the value of H. 

If 1 -2 represents W in the stress diagram of Fig. 3, and 1-0 
and 2-0 are drawn parallel to N I and N L, 0-3 drawn horizon-
tally will determine the horizontal thrust H, while the load-line 
will be divided at 3 into the two vertical components Px and P , 
of the reactions as marked. These vertical forces are not the 
same as would be obtained for the case previously considered, 
nor for a beam only supported at the ends. Such forces would 
be equal to the divisions of 1 -2 made by a line drawn through 
0, parallel to a line from I to L. If we notice the arrows drawn 
at the abutment A, we see that, supposing P j were at first the 

G B fraction of W due to the position of G, or . „ W, we have also 
A 

at A, besides the horizontal thrust H, a couple H . A I. There 
is another couple at the other abutment, which may be of the 
same or opposite kind ; their algebraic sum can only be balanced 
by vertical forces at the two abutments acting with a lever arm 
of the span ; and these vertical forces must be added to one 
reaction, and subtracted from the other, bringing P t and P2 to 
the amounts found by the stress diagram. The effect of the 
couple is the same as if P! had been calculated for the point 
where N I would meet the horizontal line. This is another 
example of the principle in mechanics cited in § 11. 

The remarks on shear in §§ 14, 15, apply equally well here. 
The direct compression in the rib at any point is obtained, as 
before, by drawing a line through 0 parallel to the tangent to 
the rib at the point in question, and dropping a perpendicular 
upon it from the extremity of the line which represents the 
stress in the adjacent side of the equilibrium polygon. Thus 
the compression at E will be the distance from 0 along 0-4 pro-
duced to the foot of a perpendicular from 2. Recalling thé 
three conditions just stated, it will be evident, that, while it will 
be possible to adjust the two lines of the equilibrium polygon .to 
their proper position by successive trials, it will not, as in the 
former case, be easy. The three ordinates, A I , G N , and B L, 

can, however, be computed quite readily, and the remainder of 
the process is very simple. The statements so far made apply to 
a structure of any outline, so long as it acts as an arch, although 
some modification will be called for when the cross-section and 
the depth vary very much, or when what is known as the mo-
ment of inertia is not practically constant; but, for forms other 
than regular curves, the application of these conditions must 
probably be made by trial-

21a. Shear at a Vert ical Section.—The relation of the 
equilibrium polygon to the arch which was pointed out in § 5, 
Fig. 14, shows how the shear at any vertical section of a loaded 
rib is affected by the curvature of the arch. In the same way 
that the ordinates of the rib may be superimposed on those of the 
triangle which represents the equilibrium polygon for a single 
load, the two shear diagrams may be placed on one another. One 
will have the form of aimnl, Fig. 8, conforming to the load 
which gives the curve of Fig. 14, and found from the amount of 
vertical reaction which, combined with Ii , will give a direct thrust 
at the springing; the other will resemble a d e / g l , Fig. 8, the 
usual shear diagram for a single load, which load produces the 
triangle of Fig. 14. The flanges of the arch take up at each point 
an amount equal to the ordinates from a I to in, and the web or 
bracing carries the remainder, which will be positive at some 
points and negative at others, as marked in the Figure. Thus 
we see that, through the direct thrust, the arch is relieved of a 
portion of the truss stresses due to both bending moment and 
shear. 



CHAPTER 11. 

A L T C H H I N G E D A T T H R E E P O I N T S . 

^ 22. Three-hinged Arch. —Before taking up for treatment 
any arches of special curves, we will notice the simple case of 
a rib, of any form, hinged at both ends and the middle, or, as it 
is sometimes called, the " three-hinged arch." The three hinges 
or joints may be located anywhere, and two of them may be 
placed near together at one abutment, reducing the portion of 
arch between them to a short link or strut, which necessarily 
lies in the direction of the thrust at that abutment. For the 
ribs of this chapter it has been stated that the equilibrium 
polygon or curve is at once definitely located. If a single load 
is placed at K, on the arch A D B of Fig. 4, hinged at A, D, and 
B, one of the two straight lines composing the polygon must, 
starting from A, pass through D, while the other, starting from 
B, must meet the former on the vertical line drawn through K, 
as required by the principle of the funicular polygon: A C B, 
therefore, is the polygon. If 2-1 represents the weight at K, 
and 2-0 and 1-0 are drawn parallel to C B and A C, 0-3, drawn 
horizontally, will give the horizontal thrust, while 1 - 3 and 3-2 
will be the vertical components of the reactions at A and B. 
Let it be remembered that the total reaction of the abutment 
at A is, and is in the direction of, 1-0, although it is often con-
venient to decompose it into P! and H. 

A load vertically below E will, similarly, have for its equi-
librium polygon A E B. For different positions of the weight 
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between D and B, all of the vertices of the polygons will be 
found on the straight line D L, and the portion A D does not 
change for any movement of the weight on the right half of the 
arch. A weight on the left half will simply reverse the dia-
gram. The dotted lines show the equilibrium polygons for a 
weight at such successive points as divide the half-span into 
five equal horizontal parts, and the corresponding changes in 
the value of H will be seen in the stress diagram on the left. 

23. Formula for H.—'If F D, the height or rise of the arch, 
is denoted by k, the half-span A F, = F B, by e, and the hori-
zontal distance F G, from the weight to the middle of the span, 
by b, we shall have A G = c + b, and G B = o — b. From the 
similarity of triangles A D F and 0 1 3, we may write, 

3-0 : 3-1 = c : k, or H : P \ = c:k. 
By the usual rule, 

therefore 

The quantity c — b is to be understood to mean the horizontal 
distance from the weight to the nearer abutment. H is seen to. 
decrease regularly as the weight moves from the middle of the 
span. 

24. Stone Arches. — In the treatment of stone arches it has 
often been assumed by writers that the equilibrium curve passed 
through either the middle of the depth of the keystone or some 
other arbitrary point within the middle third of its depth; and a 
similar assumption would then be made for the springing-points. 
Such a treatment immediately reduces the stone arch to this 
case, and the equilibrium curve can at once be drawn. As such 
an assumption does not seem to be warranted, it is not thought 
expedient to go into the case of the stone arch until later 
(Chap. I X . ) ; but the reader who desires to look up such a 
mode of handling , the problem is referred to a paper by William 
Bell, in the Transactions of the Institute of Civil Engineers of 



Great Britain, vol. xxxiii., reprinted in Van Nostrand's " Engi-
neering Magazine," vol. viii., March to May, 1873. 

25. Example. — We will, as an example, show how to draw 
an equilibrium curve for an arch which is loaded uniformly 
along its rib. Such a distribution will conform quite well to 
that of the steady load on an arched roof. For definiteness, let 
the pointed arch of Fig. 5 be of 80 feet span, 40 feet rise, the 
two arcs having a radius of 60 feet, and let it be loaded with 
500 pounds per foot of the rib. We may, if we please, divide 
the rib into a convenient number of equal portions, which 
divisions will give us a number of equal weights to be laid off 
on the load line. Otherwise we may space off a number of 
equal horizontal distances. In either case, the load of each 
space will be considered as concentrated at its centre of gravity; 
and, if the spaces are small enough, the centre of gravity may, 
without sensible error, be taken as coinciding with the middle 
of each space. For the sake of reducing the number of lines, 
so as to avoid confusion in a small figure, we have divided the 
half-span into four parts, of ten feet each, measured horizon-
tally; and their centres of gravity will be assumed to be at five 
feet, fifteen feet, &c., from the point of support. Draw verti-
cals through these centres of gravity, D, E, F, and G. 

To find the weight on each division: The lengths of the 
several portions of arc may, with sufficient exactness, be con-
sidered the same as the lengths of their chords, which chords 
are perpendicular to the radii which pass through D, E, &c. 
If, then, the load on ten feet is 5,000 lbs., draw a b horizontally 
and equal, by any scale, to this amount; then will b g, b f , b e, 
and b <2, drawn parallel to the respective chords, give the amount 
of load on each division, at the successive points G, F, E, &c. 
Upon scaling these amounts we will lay them off upon a verti-
cal line, from 1 to 5. In order to cause the equilibrium poly-
gon to separate from the rib sufficiently to be easily seen in this 
small figure, we have taken the liberty of doubling the load on 
D, thus making it 4-6, in place of 4-5. The loads will there-
fore be, successively, about 5,400 lbs., 5,900 lbs., 7,000 lbs., and 

2 X 10,000 lbs., or 20,000 lbs., from G to D, and from 1 to 6, 

Since H = I c ^ , ^ W, we have for its value 
2 k 

_ 35 X 5,400 + 25 X 5,900 + 15 X 7,000 + 5 X 20,000 _ 6 J 6 g J b g 
80 

If the given load were unsymmetrical with regard to a verti-
cal through C, it would be necessary to calculate the two verti-
cal components of the reactions at A and B, or P, and P2, the 
reaction at B being laid off from that end of the load line from 
which was measured the load nearest to B, and then to draw a 
horizontal line from the point of division between P j and P2, on 
which to lay off the value of H. But, if both sides of the roof 
are loaded alike, half a diagram and half an equilibrium poly-
gon will be sufficient. The load on the half-arch being 1-6, 
6-1 will be the vertical component of the reaction at B, and H 
will be laid off in the direction 1-0. Since we have calculated 
H for only one-half of the entire load, the above quantity must 
be doubled, and the total horizontal thrust will be 13,538 lbs., 
= 1-0. The reaction at B is therefore 6-0. 

Nothing remains but to draw, first a line from B to the verti-
cal through D, parallel to 6-0, then one, parallel to 4-0, from 
the end of the last line to the vertical through E, and so on, 
the last line, parallel to 1-0, passing through the hinge at C, as 
required. The polygon on the side C A will be exactly similar. 
It is well to have the points of division quite numerous. The 
maximum ordinate between the rib and the equilibrium polygon, 
multiplied by H, gives the maximum bending moment. 

26. Caution. — As this is the first example, it may be well to 
pause here, and renew the caution to the draughtsman to lay off 
the polygon of external forces in the order in which the forces 
are found in going round the arch or truss; otherwise he will 
fail to make his equilibrium polygon close on the desired point. 
Thus, beginning at G, he should have the weights at G, F, E, 
&c., or 1-2, 2-3, 3-4, &c., plotted, one after the other, down the 
vertical load line in the direction of their action, until the point 



B is reached, for which he draws 6-0, from 6 to 0. Then the 
point A gives a similar line from 0, slanting upwards toward 
the right; and the remaining loads on the left half of the arch 
come down a vertical line, and close on 1, the starting-point. 
The decomposition of 6-0 into 6-1 and 1-0 does not alter the 
case. If we had gone round the arch in the opposite direction, 
this stress diagram would have been reversed, or turned 180°. 

27. Relation between Equilibrium Polygon and Curve. 
The true equilibrium curve, for the load uniformly distrib-

uted along the rib, is a curve which will be tangent to the sides 
of the funicular or equilibrium polygon just drawn. The 
closer together the points D, E, &c., are taken, the nearer the 
two will come together. If the points at which the loads are 
concentrated divide the span into equal portions, that is, if the 
end distances are the same as the others, so that the portions of 
load near B and C are concentrated on those points, or, even 
with unequal spacing, when the load between each two assumed 
points is carried by those points as required by the principle of 
the lever, the true equilibrium curve will pass through the ver-
tices of the equilibrium polygon. Such a distribution of load 
is made in roofs and bridge trusses, when a half panel weight 
is thrown on each abutment. Compare Par t II., " Bridges," 
§ 58. 

The curve assumed by a rope or chain, of uniform weight per 
foot, when suspended between two points, is called a catenary. 
Since the equilibrium curve in Fig. 5, if we had not placed the 
extra weight on D, would have come quite near to the rib, it 
would have been a close approximation to a catenary. As we 
expect to make some use of this curve later, we will show how 
to draw one at that time. 

28. The Parabola the Equilibrium Curve for a Load 
Uniform horizontally. — If the load on this arch were distrib-
uted uniformly horizontally, the curve of equilibrium would be 
a parabola. In case the whole arch were a parabola, with the 
vertex at the Crown, and the load extended over the entire span, 
the two curves, coinciding at the springing-points and crown, 

would be identical throughout, and the rib itself would be in 
perfect equilibrium. This same point was brought out in refer-
ence to the parabolic girder, Par t II., " Bridges," § 73. That 
the parabola is the equilibrium curve for a continuous load, dis-
tributed uniformly horizontally, may be shown as follows: — 

Let A B, Fig. 6, be a portion of a cord, horizontal at A, 
which is in equilibrium under such a uniform load, represented 
by A C, suspended from the cord. The tension at A will be in 
the line of the tangent A C ; the resultant of the load A C will 
be vertical, and must pass through its middle point D. As the 
cord A B is in equilibrium under its load and the reactions or 
tensions of the other portions of the cord at A and B, the ten-
sion along the tangent, at B must, by the principle of the tri-
angle of forces, also pass through D. As B C, drawn vertically, 
is parallel to the resultant of the load, the sides of the triangle 
B C D will be proportional to the three external forces; and, if 
A C = x, B C = y, "VV = total load on A B, = w x (where w = 
load per unit of length), and H = tension at A, we have 

W : H = B C : D C = J/:£X, 
or 

W X W 2 

Y ~ 2 H 2 H X ' 

the equation of a parabola with vertex at A. 
Therefore an arched rib of parabolic form, when loaded uni-

formly horizontally, has no tendency to change its shape, that 
is, experiences no bending moment, at any point. 

29. Suspension Bridge. — A B of Fig. 6 may represent a 
suspension bridge cable, A C being the half-span, and C B the 
height of the tower: hence, if A C = c and C B = k, we have 
for the tension in the cable at the mid-span, § 28, 

„ v' x1
 =

 w c2 

2j 2 k ' 

The tension T at the tower will then be proportioned to H, as 
B D to D C, or as V + I °2 to i c ; therefore 

T = | | V 4 + A 



Each suspending rod must carry the greatest weight that can 
come at . i ts foot. The.pressure on the top of the tower from 
the half-span will be the weight of the half-span, or wc; to this 
must be added the vertical component of the tension on the 
anchorage side of the tower. If the cable has the same inclina-
tion both ways, at the top of the tower, the pressure is 2 w c. 

The manner of stiffening a suspension bridge to resist the 
tendency to distortion under a partial load is treated in Chap. X. 

30. Equilibrium Curve for Partial Load. —I f the load 
extends over a portion only of the span of the arch, and is uni-
formly distributed horizontally, the curve for the loaded portion 
is parabolic, while that for an unloaded portion is a straight 
line: thus, if the load extends from one abutment to the middle, 
we shall have, on the unloaded half, a straight line from the 
abutment to the crown, and, on the loaded half, a parabola from 
the crown to the springing. As it was proved in Par t II., 
" Bridges," § 10, that any two sides of the funicular polygon, 
when prolonged, meet on the vertical drawn through the centre 
of gravity' of so much of the weight as is included between 
these sides, the equilibrium curves for any cases where the rib 
is hinged at three points can be drawn without previously deter-
mining the value of H. Thus, in the case just supposed, of a 
load over the half-span, from B to F in Fig. 4, the centre of 
gravity will be at G. Then, if G C is the vertical drawn from 
G, the side of the funicular polygon, or, more properly, the 
tangent to the equilibrium curve, at B, must pass through C, 
where C G meets A D, and the required parabola will be drawn 
from D to B on D C and B C as tangents. As one point of the 
curve we have the middle point of a line from C to the middle 
of the chord D B. We can then find H by drawing 1-0 and 
2-0, parallel to A C and C B. Henck's " Field Book for Rail-
road Engineers " gives methods for constructing, parabolas ; two 
constructions are given in Part II., "Bridges," §§ 20 and 28, 
one of them applying when two tangents are given. 

31. Suggested Examples. — W e would suggest the follow-
ing examples for practice: 1st, Given a semicircular rib, loaded 

uniformly horizontally over the whole span, and pivoted at the 
crown and springings: find that the maximum bending moment 
occurs at 30° from the springing, and is equal to one-sixteenth 
of the total load multiplied by the radius of the arch, while II 
is equal to one-fourth of the total load. 2d, Given a para-
bolic arch similarly pivoted, and in equilibrium under a steady 
load distributed as above; add a similar travelling load from 
one abutment to the middle of the span: prove that the maxi-
mum bending moment is found at one-fourth of the span from 
either abutment, is of opposite signs at these two places, and 
is equal to one thirty-second of the travelling load then on the 
arch multiplied by the span, while H for the travelling load 
equals the same product divided by one-fourth the rise of the 
arch, and for the steady load is twice as much. 

32. Extent of Load to produce Maximum Bending 
Moment. — I t may be desired, when designing an arch of this 
type, to find the extent of load which will produce the maxi-
mum bending moment at each point, and the value of that 
moment. Suppose the point N, Fig. 4, to be examined: pro-
long B N until it meets A D at E ; it is then manifest that 
any load in the vertical through E will cause no bending 
moment at N ; that the equilibrium polygon for any load on the 
right of E will pass outside of the arch at N, while the equilib-
rium polygon for any load to the left of E will pass inside of 
N. Therefore the maximum bending moment at N of one kind 
will be found when all possible loads are put on the arch from 
B to the vertical through E, and the maximum moment of the 
other kind occurs when the load extends from A to E. As the 
arch tends to move away from the equilibrium polygon, the 
kind of moment is easily distinguished. H can then be found, 
the equilibrium curve drawn, the ordinate scaled and multiplied 
by H. 

33. Braced Arch. — For the reason that the equilibrium 
curve is at once definitely located by introducing three hinges 
or pivots, no matter what form the arch may have, that type 
which used to be known as the braced arch, having a horizontal 



•upper and a curved lower member, the spandrel being filled with 
bracing, has usually been treated as free to turn at both crown 
and springings ; in that case a diagram may be drawn by Clerk 
Maxwell's method, as set forth in Part I., "Roofs," or the 
stresses may be found from the equilibrium curve. A braced 
arch, hinged at crown and springings, with an elliptical lower 
and a straight upper member, carries a track of the Pennsyl-
vania Railroad over Thirtieth Street, Philadelphia. (See " En-
gineering," July 22, 1870.) While a diagram only gives the 
stresses in the various members for one position of load at^ a 
time, one can determine all the maximum stresses by two dia-
grams and a tabulation, not difficult to one familiar with such 
methods. The way to be pursued will be found in Du Bois' 
» Graphical Statics," appendix, § 7, p. 850. We will explain 
another treatment in Chap. XII . 

34. Shear; Temperature. — Since it is not practicable to 
draw a shear diagram until the form of the rib is defined, we 
can only, at present, refer the reader to § 14. After we have 
discussed the parabolic and circular ribs, the reader can doubt-
less work up any special design of the present class for himself. 

One advantage possessed by this type of arch is that changes 
of temperature have no straining effect, for the crown rises and 
falls without affecting the two halves of the arch injuriously. 
If the crown sinks a little, the value of H will be seen from 
Fig. 4 to be very slightly increased, while the equilibrium 
polygon will practically go with the arch. * 

CHAPTER III. 

I N T R O D U C T O R Y T O P A R A B O L I C A R C H E S . 

35. Parabolic Arch. — We propose to apply the facts which 
have been developed thus far to the arch whose centre line is 
a parabola. This curve is chosen as one form; because it is, as 
proved in § 28, in perfect equilibrium under a load distributed 
uniformly horizontally over the entire span. As in the case 
of a suspension bridge, so in some arches of iron, most of the 
steady load consists of a platform and such other parts as are 
distributed in accordance with this requirement (the arch itself 
and the vertical posts which carry the platform giving a some-
what greater intensity per horizontal foot as we approach the 
springings), so that, for the former portion, as well as for the 
travelling load over the whole span, the arch will be subjected 
to no bending moments, and no shear; hence there will be no 
stress in the bracing. Then, again, the parabola for a given rise 
and span is easily plotted and designed; and, lastly, the deter-
mination of the equilibrium curves, for the cases taken up, will 
be simpler than for circular arcs, and will naturally prepare 
the way by rendering the reader familiar with the steps of the 
analysis. It may be well to add here that a circular segmental 
rib, whose rise is not more than one-tenth of its span, is so 
nearly coincident with a parabolic arch of the same span and 
rise, that the investigations which follow will apply with suffi-
cient accuracy to such flat segmental ribs. 

36. Vertical Deflection of an Inclined Beam. — Let us 
41 
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consider the two cases of a horizontal beam and of one inclined 
to the horizon at an angle i; it is known from the usual for-
mulae for deflection, Part II., « Bridges," Chap. VI., that, other 
things being equal, the deflection of a beam is directly propor-
tional to the load and the cube of the length. If, then, the 
inclined beam is of a length I, and the horizontal one of a 
length I cos i, as shown in Fig. 7, the deflection of each, 
measured perpendicularly to the respective beams, will, as re-
gards length only, be in the ratio of 1» to I3 cos3 i. But, if each 
carries the same load W, the transverse component of W, which 
alone causes flexure of the inclined beam, the longitudinal 
component producing direct compression, will be W cos i; 
whence the deflection perpendicular to each beam will, for 
similar points, be proportioned as 1 to cos2 i. And, again, the 
vertical component of the deflection of the inclined beam will 
be to the perpendicular amount as cos ¿ t o 1 ; whence the ver-
tical deflection of the inclined beam will be to that of the 
horizontal beam of the same cross-section as 1 to cos i. As 
the stiffness of a beam is directly proportioned to its breadth, 
should the inclined beam be made broader in its horizontal 
dimension than is the horizontal beam, in the ratio of 1 to cos i, 
the depth being unchanged, the vertical deflections of the two 
beams for the same load would be exactly the same. 

37. Application to Arches. — Any very small portion of 
an arch, taken within such narrow limits as to be considered 
straight, behaves like the inclined beam, as regards its flexure 
under a load; and therefore it follows, that if an arch has the 
dimension perpendicular to its face increased, from the crown 
to the springing, in the ratio of the secant of the inclination 
to the horizon, it may be discussed as if it were a beam of 
uniform cross-section, of the same span, similarly supported, 
and carrying the same load which produces flexure. In the 
arch some of the load does not produce flexure; in the para-
bolic rib, for instance, before cited, a uniform horizontal load 
gives equilibrium. We propose, in our analysis of the para-
bolic rib, to make this supposition, that the rib is broader at 

the abutments than at the crown in the ratio just mentioned, 
and thus to simplify the work of investigation. Iron arches 
whose flanges or chords are thicker, as we approach the spring-
ing, in the above ratio, while the perpendicular depth between 
the two flanges is constant, practically satisfy this case. In 
this class of ribs the intensity of the direct thrust on the 
square inch for a complete uniform load will be the same at all 
cross-sections. 

As we desire the reader to reproduce, on a much larger scale, 
the figures and problems for himself, we remind him that points 
on the curve of a parabolic rib are easily found by the construc-
tion of Fig. 8, Part II., " Bridges." 

P A R A B O L I C R I B , H I N G E D A T E N D S . 

38. Equilibrium Polygon for Single Load.— Taking up 
the case of the parabolic rib, hinged at the ends only, let us 
place a single weight at the point I, Fig. 8. . If the lines A C B 
fulfil the condition of § 7, that the sum of the products of the 
ordinates D E and E F for all points of the arch equals zero or 

2 E F . D E = 0, 

A C B will be the required equilibrium polygon. From the 
reasoning of § 37, it will be proper to divide the areas above 
the springing line A B by equidistant vertical lines, moderately 
near together, scale off the quantities corresponding to E F and 
D E, and find the proper position of A C B by one or two trials. 
It can thus be located with all desirable accuracy, as a slight 
movement of the point C vertically alters the quantities to be 
computed very materially. The reader who is not familiar with 
the higher mathematics can thus verify the results we are about 
to obtain. 

Since C G may be considered the unknown quantity by which 
to locate A C and B C, its value may be deduced from the 
above equation. Let the half-span A K , = K B , = c ; the 
height or rise of the arch at the crown = k ; the distance 
K G, from mid-span to the position of the single weight, = b ; 



and the required maximum ordinate C G = y0. Then will the 
value of C G be 

32 , y0 = lc/c 5 5 c2—b2 ' 

which becomes, if b = n c, where n = a fraction of the half-span, 

a quantity independent of the span of the arch. 
39. Proof of Formula. — Let A D, the distance f rom the abutment A to 

any ordinate D E, between A and G, = x. A G = c - f i ; G B = c — b. 
Since the ordinates to a parabola from the line A B are proportional to the 
product of the segments into which they divide the span, we have 

Also, 

D E : k = x (2 c — x) : c2, or D E = * (2 c x — x2). 
c 

D F : yn = x : c + b, or D F = 
c b 

The required condition is that 

2 E F . D E = 0, or 2 (D E — D F ) D E = 0; 
therefore, 2 D E2 = 2 D F . D E . (1.) 

(From the above expressions we see, that, if the area included between the 
rib and A B is considered positive, the area of the triangle A C B, superim-
posed upon it, will be deemed negative as before explained in Fig. 14.) 

Substituting the values of the lines from above in (1.), multiplying by 
f <{x, and writing the sign of integration, we get for the left-hand member, 

P2c 1A 7,2 /»2c 

J o - ( 2 c * — x y d x = K-i. J ^ ( 4 c 2 z 2 _ ±cx* + x*) dx 

= x * y ° = I f k2 c. (2.) 

For the right-hand member, between A and G, we get 

= - j - « ° + - + ( 3 - > 

For the portion between G and B, if we write c — b for c b, and reckon 

x from B to the left, D F will equal . x, while D E will be unchanged; 
C "" 0 

so tha t the integration for the right-hand member of (1.), between G and B, 
and between the l imits x = 0 and x — c — b, will give, simply by writing 
— b for + 6, 

^ [ § c ( c - 6 ) 2 - | ( c - & ) 8 ] . (4.) 

These two portions (3.) and (4.), for the right-hand member of (1.), being 
added together, will produce, when the terms with the odd powers of b are 
cancelled, 

Finally equate this value with (2.) to satisfy (1.), and 

which is the desired value of C G in terms of the constant quantities, and 
the variable distance K G. This expression is plainly applicable to points 
on either side of K. 

40. Formula for Horizontal Thrust. — For any position of 
the weight, plot the value of y0, and draw the equilibrium 
polygon. Then draw two lines from the extremities of the load 
line W, parallel to the sides of the polygon, and thus determine 
H, and the two vertical components of the reactions, which 
vertical components will be the same as for a beam supported 
at its ends. But, from the simple relations of the similar trian-
gles A G C and 0 3 1, Fig. 8, as also B G C and 0 3 2, we may 
write a general formula for H, if desired. Thus we have 

y0:c — b = P 2 : H , o r P 2 = - ^ . H ; 
c — b 

y0:c+b = W — P 2 : H , o r W — P2 = — f ^ H . 
C 0 

Eliminating P2 in the second equation, by substituting its 
value from the first one, we get 

W 11- H = or (c2 — 62) W = 2 c w 0 H ; 
c — b c -j- b 

H = W = —h— • • C
F W. . 

2cy0 2 32 k 



This value also will apply to a load on either side of the 
centre. 

I t will be observed that, to obtain this value of H, we have 
simply to divide \ (1 — ri2) by the factor which multiplies k in 
(1.), § 38, to obtain the variable factor here. 

41. Computation of ŷ  and H. — The numerical values of 
these factors are worth obtaining, as, the computations once 
made, the results apply to every parabolic rib with pivoted 
ends. Let the span of the arch be divided into any convenient 
number of equal parts, and, for illustration, suppose that the 
number is ten, as shown in the figure; let a weight W be placed 
successively over each point of division, being supported by the 
rib. The calculation may conveniently proceed in the following 
manner: — 

Find the different values of ya for different positions of W, 
by equation (1.), § 38. Then compute H by § 40. The calcu-
lation and results are given below; the equilibrium polygons 
and values of H for one-half of the arch are represented in 
Fig. 8. As n2 is positive, whether n is -+- or —, the values of 
y0 and H will be symmetrical on each side of the centre. 

V A L U E S O F y0 A N D H . 

= 0 0.2 0.4 0.6 0.8 

= 5.00 4.96 4.84 4.64 4.36 

== 25.00 24.80 24.20 23.20 21.80 

= 1.280 1 2903 1.3223 1 3793 1.4679. 

Multiply these factors by k to give y0. 

— 0.50 0.48 0.42 0.32 0.18 
59 
~~—ir = 0.3906 0.3720 0.3176 0.2320 0.1226. —n z ) •!. 

Multiply these factors by °r W to give H. fc 

For any other desired division of the span, proceed in a simi-
lar way. 

c 

5 — na 

5 (5 — na) 
32 

5 (5 — n2~) 

H i - " 2 ) 
1 (A „2\ • 

42. Remarks. — If every point of division were loaded with 
W at the same time, the value of the horizontal thrust would 
be equal to the sum of the H's for each load, that is, the fac-
tor in column 0 plus twice each of the others, and the sum 

• • 0 c multiplied by the factor W ; we thus obtain 2.479 ^ W = H. rC ft 
If a truss were uniformly loaded horizontally, the bending mo-
ment at the 'middle would be one-eighth of the total load multi-
plied by the span, or, for a truss of ten panels, with W = one 
panel load, 

M = 10W12_c = 2 ^ c W ; 

and the tension -in the lower chord, or the compression in the 
upper chord, would be found by dividing this quantity by the 
height of the truss, k. If the span of the arch just treated had 
been divided into twenty equal parts, the value of H, for loads 

at all the points of division, would have been 4.990-^ W. The 
/c 

+ w ,J . 20 W . 2 e , c „ r truss, as before, would give — = 5 r W. 
O tC K 

We thus see that the equilibrium polygon, for a number 
of equal loads, equidistant horizontally, on a parabolic rib, gives 
a value of H approximating closely to that for a uniform load 
on a truss of height k, coming nearer as the loads increase in 
number, and agreeing when the load is continuous. Then the 
equilibrium polygon becomes a curve, coinciding perfectly with 
the parabolic rib, and gives the horizontal thrust to which we 
are accustomed in the bowstring girder under a maximum 
load. 

43. Computation of Bending Moments. — While the ordinates can be 
readily scaled f rom a diagram, one who wishes may compute values of the 
bending moment M for numerous points, when W is placed on any one 
point. If y denotes the ordinate from A B to the inclined line, and z the 
ordinate of the parabola f rom any point D, the bending moment may be 
written,— 

M = H (y - z). 



If put in this form, i t will be seen, that, in the neighborhood of y0, M will be 
positive, coinciding with the moments for a beam supported at its two ends. 
As this is the most familiar flexure of a beam or truss, we have chosen to 
consider it as positive: § 12. T h e ordinates y and z can be readily calcu-
lated from the figure. Thus, if the weight is a t 0.4 c f rom the middle of 
the span, we have found y„ to be 1.3223 k. If the span is divided into ten 
parts, the number of divisions on one side of the weight being seven, y will 
be successively 4, i , 1-, &c., of ya\ on the other side y will be -J- and f- of y0. 
The sum of the denominators always equals the number of .divisions, and 
the fractions increase from both ends u p to unity. After finding the first 
y a t each end, we get the others by simple addition, and the row is checked 
by obtaining y„ at the proper point. As stated in § 39, the ordinate z is 
proportional to the product of the segments into which it divides the span; 
or, if i t is a t a distance n c f rom the middle, we have, 

2 = (1 + n) c (1 — n) c \ = (1 — n2) k. 

The factors by which k is to be multiplied can therefore be at once obtained 
by taking the decimals which are found in the second line of the table for 
2/o, § 41. 

The computations may then be set down in the following shape, viz . : — 

V A L U E S O F M . Poin t i/o 
of 

Division. 
n 
y 2/0 = 

1 

.1889 

2 

.3778 

3 

.5667 

4 

.7556 

5 

.9445 

6 

1.1334 

7 

1.3223 

8 

.8815 

9 

.4408 n 
= g2/0-

« = .36 .64 .84 .96 1.00 .96 .84 .64 .36 k 

y-z=- -.1711 —.2622 —.2733 —.2044 —.0555 +.1734 +.4823 +.2415 +.0808 k 

Multiply by H = 0.3176 £ W . 

M = —.0543 —.0833 —.0868 —.0649 —.0176 +.0551 +.1532 +.0767 +.0257 c W 

With the explanation already given, this table will be understood. The ' 
letter y0 is placed over 7 as a convenience, to show that the value ya occurs 
at this point of division. If the load is on the right of the centre, these 
numbers run f rom the left abutment; if the load is on the lef t of the cen-
tre, they must be reckoned from the r ight abutment. 

44. Table of Bending Moments. — "VVe have carried out this compu-
tation for a load at each joint successively, the span being divided into ten 
equal parts, and have prepared a table given on p. 53. A table for a span 
divided into twenty parts may be found in " Engineering News," Vol. I V . 
p. 108. As a load on either side of the middle gives the same set of values 
in the reverse order, it is necessary to calculate but one-half of the table. 

As many decimals may be taken as will give sufficiently accurate results. 
By the use of logarithms the labor of preparing another table for a different 
number of divisions is very little. Each column belongs to the point of 
division whose number stands a t its top, the numbers commencing at the 
lef t abutment. Each horizontal line contains the factor for bending moment 
a t each point of division for a load W on the point marked at the beginning 
of the line. The values of H are placed for convenience in the last column. 

I t is worthy of notice, that, while the value of y0 is inde-
pendent of the span of the arch, M is independent of the height 
of the arch. As it was proved, in § 28, that the parabola is the 
equilibrium curve for a load distributed uniformly horizontally, 
this arch ought to be very nearly in equilibrium when we place 
at once on each one of the nine points a load W : by footing 
up the vertical columns of the table we shall find but a very 
small residual moment at each joint. 

45. Interpolation. — In the solution of a particular example, 
it may happen that the points at which the weight will be 
concentrated will not coincide with the points of division which 
we have taken. I t will then be necessary to determine new 
values of y0 and H, which may be done by the original form-
ulae or by interpolation. A new table of M may then be calcu-
lated, values may be interpolated in the one given here, or, if 
preferred, from the value of H, and the vertical components of 
the reactions, we may draw an equilibrium curve for any com-
bination of loads. The table here given, if not directly appli-
cable in all cases, serves two purposes; one to show how a simi-
lar table can be made, and the other to indicate, by inspection, 
what arrangement of loads on any arch will produce the maxi-
mum bending moments. 

If the successive values of any quantity increase at a tolera-
bly uniform rate, any intermediate value between two given 
ones may be found by simple proportion. Otherwise we may 
use the formula for interpolation, — 

Desired quantity = a + / [D, — J ( 1 — / ) D J , 

in which a denotes the first given quantity, / the fraction of a 
division from a to the desired quantity, and and D2 the first 



and second differences. To illustrate, take the values of H in 
§ 41. If we place these in a column as below, find the amoxint 

6. H . A - D2. 

0 .3906 
—.0186 

.2c .3720 
—.0544 

—.0358 

Ac .3176 
—.0856 

—.0312 

.6c .2320 
—.1094 

—.0238 

.8c .1226 

of increase from quantity to quantity, and then subtract these 
differences from one another, marking each + if it is an 
increment, and vice versa, we obtain the columns of first and 
second differences as marked. Now suppose that we wish to 
determine a value of H at b = .5 c; a will be .3176, / = i , 
D, = — .0856, and D2 for an average value between .0312 and 
.0238, = — .0275. If we substitute in the formula, it then 
becomes 

H (for .5 c) = .3176 + J [— .0856 — } . $ (— .0275)] 
= .3176 + H — -O8 3 6 + - 0 0 6 9 ) = - 2 7 8 3 ' 

The factor for ?/0, at one-third of the interval between .4 c and 
.6 c, will, in the same way, be 

1.3223 + | [.0570 — £ . § (.0283)] = 1.3382. 

Careful heed must be paid to the signs. 
. 46. Examples. — I t will help to fix the ideas, if we draw 
an equilibrium polygon for some combination of weights. We 
shall take but a few loads, in order to have the diagram clear; 
but the reader may vary the example by taking other amounts 
in other places. The values of the two vertical components of 
the abutment reactions will be the sums of the components for 
each load, and the amount of H for the whole load will be the 
sum of the separate H's. Multiply each numerical factor which 
belongs to H by the number of units of weight which are 

placed on the point to which the factor refers, add up the 
products, and plot the resulting value of H horizontally from 
the point of division on the load line between the two vertical 
components of the reactions. 

For example: Let us draw the equilibrium polygon for an 
arch of 100 feet span, 20 feet rise, whose weight is at present, 
for simplicity's sake, neglected, when it is loaded with weights of 
3 tons, 2 tons, 4 tons, and 2 tons, at the end of the 3d, 6th, 8th, 
and 9th division from the left, of ten equal horizontal divis-
ions, as shown in Fig. 9, where the numbers denote the weights 
and the points of division above mentioned. The supporting 
force on the left will be 

P i = 2 X 1 + 4 X 2 + 2 X 4 + 3 X 7 = ^ ^ 

P2 = 7.1 tons. 
From the table for H, 

H = (0.3176 X 3 + 0.372 X 2 + 0.232 X 4 + 0.1226 X 2) 
= 2.87 X $ = 7.175 tons. 

These quantities are plotted in the stress diagram, as seen in 
the figure, and the equilibrium polygon is then drawn. The 
reader who reproduces this figure, or draws another, can be 
assured of the accuracy of the construction by the closing of 
the equilibrium polygon on the point of support. The weight 
of the arch itself may be accounted for by concentrating the 
proper amount at each point of division. Such amounts will 
increase towards the springing in proportion to the square of the 
secant of inclination to the horizon; for we recall the fact that 
the parabolic rib is to increase in breadth from crown to spring-
ing, and the amount in length projected into a horizontal foot 
increases in the same way. The weight of each division of the 
arch can be obtained with sufficient accuracy from a moderately 
large figure. 

Another good construction is the curve for a uniform load 
over one-half of the span. The equilibrium curve for such a 
load, on the left half of Fig. 8, is represented in that figure; the 



work may be carried out in detail by the reader, and compared 
with the same curve for the three-hinged rib. 

47. Numerical Value of M. — It will be seen that the poly-
gon and rib of Fig. 9 approach quite nearly at 3. We can 
find the distance between them vertically, if we wish, from the 
table of M. The bending moment will be, taking the column 3, 

M = 50 ( + .153 X 3 — .073 X 2 — .075 X 4 —.043 X 2) = — 3.650 ft. tons. 

M —3.65 
II — 7.2 

= — 0.5 f t . = y — : 

A similar operation may be performed at any other point. 
48. Shear Diagram. — This investigation of shear is intend-

ed to apply to ribs of an I-section or to those framed with 
open-work or skeleton webs, and not to those of solid section, 
rectangular, circular, or otherwise, nor to stone arches: in these 
latter classes the shearing forces need seldom be taken into 
account. 

Adhering still to the case of a single weight W, at a distance 
b from the middle of the span, we found that the vertical com-
ponent, P2, of the reaction at the end nearest to the weight, 

would be 0 "t" - W, and at the other end 0 T~ ^ W. As seen in ¿c 2 c 
Fig. 8, the diagram for shear on a beam will be, if we take the 
shear on the left of any section, a d = Px, = 3-1, on the left of 
the weight, and Ig = — P2, = 3-2, on the right of the weight, 
giving the two rectangles included between a I and the broken 
line d efg. As the parabola is in equilibrium under a load of 
uniform intensity horizontally (§ 28), in which case there will 
be no bracing required, — no shear for any bracing to resist, — it 
is manifest that the diagram for that portion of the shear which 
is here carried, at each vertical section, by the flanges or chords, 
must be similar to the shear diagram for a uniform load on a 
beam supported at both ends; that is, to such a figure as aimnl. 
If, then, we can determine the value of a i, or of the equal 
ordinate I n, we can draw this portion of the figure. 

I t is a well-known property of the parabola, that a tangent at 

the springing of the arch will intersect the middle ordinate at a 
distance k above the crown, equal to the rise of the arch. If, 
then, we draw a line 0-4 in the stress diagram, parallel to the 
tangent A L, drawn as just described, the distance 3-4, inter-
cepted on the vertical line, will be the amount of vertical force 
necessarily combined with H to give a thrust coinciding with 
the rib at the springing point. Lay off, therefore, 3-4 at a i, 
and an equal amount at In; then draw the straight line i n, cut-
ting a I at its middle point m : the ordinates to this line from a I, 

P A R A B O L I C R I B , H I N G E D A T E N D S . 

§44. M = mc W . Values of m. 

1 2 3 4 5 6 7 8 9 H 
W o n 9 —.024 —.039 —.043 —.038 —.023 +.002 +.037 +.082 +.136 . 123 - |w . 

" 8 —.044 —.068 —.075 —.063 —.032 +.017 + .085 +.171 +.076 .232 " 
« 7 —.054 —.083 - .087 , —.065 —.018 +.055 +.153 +.076 +.025 .318 " 
" 6 —.054 —.078 —.073 —.037 +.028 +.123 +.047- +.002 —.014 .372 « 
" 5 —.041 —.050 —.028 +.025 +.109 +.025 —.028 —.050 —.041 .391 " 
« 4 —.014 +.002 +.047 +.123 +.028 —.037 —.073 —.078 —.054 .372 " 
" 3 +.025 +.076 + .153 +.055 —.018 —.065 —.087 —.083 —.054 .318 " 
" 2 +.076 ' + .171 + .085 +•017 —.032 —.063 —.075 —.068 —.044 .232 " 
" 1 +.136 +.082 +.037 +.002 —.023 —.038 —.043 —.039 —.024 .123 " 

§53. V = n W . Values of n. 

5 7 -

W o n 9 —.121 —.072 —.023 +.026 +.075 +.125 + .173 + .223 +.272 —.678 
" 8 —.218 —.125 —.032 +.061 + .153 +.247 +.339 +.432 —.475 —.382 
" 7 —.272 —.145 —.018 +.109 +.236 +.364 +.491 —.382 —.255 —.128 
" 6 —.270 —.121 +.028 +.177 + .325 +.475 —.377 —.228 —.079 +.069 
" 5 —.204 —.047 +.109 +.265 +.422 —.422 —.265 —.109 +.047 +.204 
" 4 —.069 +.079 +.228 +.377 —.475 —.325 —.177 —.028 +.121 + .2 Ï0 
" 3 + .128 +.255 +.382 —.491 —.364 —.236 —.109 +.018 +.145 +.272 
" 2 +.382 +.475 —.432 —.339 —.247 —.153 —.061 +.032 +.125 +.218 
" 1 +.678 —.272 —.223 —.173 —.125 —.075 —.026 +.023 +.072 +.121 

at all points, will represent the amount of vertical force to be 
combined with the horizontal thrust to put the rib in equilib-
rium. The remaining ordinates are drawn at the middle of 



each division; and, where the amount subtracted is greater than 
the original shear, the remainder will be of the opposite sign. 
The signs are placed in the areas of this figure; and it will be 
apparent that the ordinates are reckoned from the inclined line 
i n, all above that line in our figure representing positive or 
upward shear on the left of a vertical plane of section, while 
those below i n will be negative. See p. 31. 

49. Shear on a Normal Section. — To obtain the shear on 
a right or normal section, as at Q, we must draw a line qs 
parallel to the normal section at Q, and project r q upon it, thus 
finding s q as the shear at Q. A similar construction will 
determine the shear at any other point. The property of the 
parabola before alluded to makes it easy to find the direction 
of q s, which will be perpendicular to a tangent at Q ; a tan-
gent at Q will strike Iv L at S, a distance above the crown 
equal to that of the extremity R of the horizontal line Q R 
below it. What has been done by the above steps may also 
be easily seen from the sketch above Fig. 8. At A, P j will be 
a d or 3-1, and the whole vertical force to be combined with 
H will be a i or 3—4, which when subtracted from a d leaves 
i d or 4-1 as the negative shear on a vertical plane, and F, t d, 
or 6-1, as the shear on a right section at A. 

In treating any arched rib, we shall desire to find the maxi-
mum shear at any section produced by a combination of 
weights at several points. I t will be easier to find the sum of 
the several shears on a vertical section from single weights, and 
then find the normal component once for all, .than to resolve 
each vertical shear separately; hence the shear diagram of Fig. 
8 and of subsequent figures will simply show the shears on the 
several vertical sections before they are projected on the nor-
mal sections. 

50. Formula for Vertical Shear .—A formula for this vertical shear 
may be deduced without difficulty. If Y is the ordinate to i n from any 
point of a I, and Y, its value a t the springing, we have f rom the statement 
of the last section, 

Y 1 : H = 2 * : c ) or Y, = — H. 

The vertical shear V in the web, a t the abutment on the left, will then 
be, 

V = P, — Y, = W — — H. (1.) 
M C C 

For successive points, P j will remain the value of the original shear 
until we pass the weight, when i t will become P, — W or —P2. Y will 
diminish at a constant ra te ; and, if we deduct a t each point the ordinate 
f rom a I to the inclined line, we shall get the desired results. 

51. Computation of Shear. — As an example we will find the vertical 
shear midway between the points of division of the arch of Fig. 8 with the 
load there shown. 

P J - = 0 . 3 W ; P 2 = 0 . 7 W ; H = . 3 1 7 6 ^ W ; Y 1 = = . 6 3 5 2 W . fC 
This value of Y, is applicable to any parabolic arch with hinged ends, 
since it involves neither c nor k. Y at the middle of the first space 

= ^.635 — W = -572 W ; for every succeeding ordinate i t diminishes 

V A L U E S OF V . I 

Space. 1 2 3 4 5 6 i 8 9 10 

PI .3 .3 .3 .3 .3 .3 .3 —.7 —.7 —.7 — P2 

Y .572,. .445 .318 .191 +.064 —.064 —.191 —.318 —.445 —.572 

P — Y —.272 —.145 —.018 +.109 +.236 +.364 +.491 —.382 —.255 —.128 W . 

Three decimal places here will be as exact as four in the values of M. 
I t will be seen by the ordinates in the shear diagram of Fig. 8, how the 
signs change. 

52. Remarks on Shear. — We repeat that, as Px was taken 
as positive, the signs of the shears apply to the left side of each 
vertical or each normal section. In Fig. 10 the sketch marked 
R is an instance of positive shear, which acts up or outward 
on the left of the imaginary section and inward on the right 
of the same section. From the way in which the two parts of 
the arch will tend to slide at the section, we see that at R a tie 
will be required sloping down from the upper chord to the 
right (or a strut in the opposite direction), while negative 
shear, as represented in the sketch marked S, calls for a tie in 
the reverse direction. 



5 6 ARCHES. 

53. Table of Shears. — A table has been computed by the preceding 
process, fo r shears a t the middle points of ten equal spaces, into which the 
span is divided. I t is in tended to supplement the previous table of bend-
ing moments, and will serve as a guide for the calculation of any tab le 
wi th a greater or less number of spaces. I t will be found on p. 53. A 
shear a t a jo int can be found, if desired, by t ak ing t h e mean of two ad ja -
cent shears ju s t obtained. I t is easy to select f r o m this tab le tha t combina-
t ion of loads which will give on any parabolic arch, hinged at the ends 
only, the m a x i m u m shear of ei ther k ind in any one division, one arrange-
ment being the complement of the other . These shears, as should be the 
case, foot up very nearly to zero for an equal load on every joint . I t is only 
necessary to calculate one-half of the t a b l e ; the other half will contain the 
same numbers in the reverse order, with the opposite signs. A tab le fo r 
an arch of twenty divisions was pr inted in " Engineer ing N e w s , " vol. iv. , 
p. 124. 

54. Extent of Load to Produce Maximum Bending 
Moments and Shears.—In single-span trusses the maximum 
bending moments, and consequently the maximum stresses in 
the chords, occur when the bridge is entirely covered with the 
live load ; and the greatest shear at any section, or the greatest 
stress in any brace, exists when the bridge is covered with 
live load over one or the other, usually the longer, of the two 
segments into which the section divides the span. A simple 
inspection of the tables for M and V, lately given, will show 
that such rules are not true for an arch. Why this is so, will 
be seen, if we consider the fact that the portion of the arch, 
Fig. 8, between B and the point where C A crosses the rib, is 
under a bending moment of the positive kind, when there is 
a single weight at I, while from that point to A bending 
moments of the negative kind exist; and that an addition of 
another load near I will increase in amount most of the posi-
tive and negative moments, while one placed on the left half 
of the arch will have an opposite effect. The shearing forces 
for the braces, depending upon the change of stress in the 
flanges, will also be affected in the same way. 

While an inspection of Fig. 8 will show, as was pointed out 
with regard to Fig. 4, in § 32, the extent of load to produce 
the maximum bending moment at any one point, and while the 

load to produce maximum shear at the same point can also be 
ascertained by inspection, § 15, an attempt has been made to 
represent, by the horizontal lines in the diagram, Fig. 11, those 
positions of the live load, or the extent of the loaded portion, 
which will give the maximum moments of both kinds at each 
of nineteen points of division represented in the figure, and 
also that arrangement of the live load which gives the maxi-
mum shear of either kind at the middle of each division. The 
full line denotes the loaded portion of the span when the 
maximum positive moment occurs at that point whose number 
is placed at the end of the line, positive being understood to 
mean that kind of moment which would make a previously 
straight beam concave on the upper side; and the remaining 
portion of the span must alone be covered with the live load 
to produce the maximum negative moment at the same point. 
Thus the maximum positive bending moment at 2, and at 
3 also, is found when the load is on all points from the left 
to 7 inclusive. A load from 8 to the right abutment gives 
the maximum —M. The maximum -f-M at 11 occurs when 
the arch is loaded from 9 to 14 inclusive. 

The extent of live load required to produce the greatest 
upward, or positive, shear on the left of a section through the 
web or brace in any division, is indicated by the broken line 
drawn in its proper space; and a load over the complementary 
blank portion will give the maximum shear of the opposite 
kind in the same division. Thus the maximum -|-F, at the 
middle of 3-4, is found when the load extends from 4 to 9 
inclusive; and the maximum — F, at the same place, when 
the load reaches from 1 to 3 and 10 to 19 inclusive. As a 
partial load, not extending to either abutment, will give the 
greatest M at some points, and as the same thing is true of the 
values of F, those writers who determine the greatest stresses 
by the usual test for maximum applied to an algebraic equa-
tion, which contains the expression for load as continuous from 
one abutment, must err in their results.1^ 

55. Resultant Maximum Stresses. — The steady or fixed 



load, unless distributed uniformly horizontally, gives some 
definite bending moment and shear, of one sign or the other, at 
each point; and these amounts must first be obtained from the 
tables or by diagram. I f ,a t a.given point, the bending moment 
from fixed weight is - f , the arrangement of rolling load which 
gives the maximum + M at that point will conspire with the 
steady load, and give an actual maximum -f M; while that ar-
rangement of rolling load which, in itself, gives a maximum — M, 
will reduce the moment from steady load. If large enough to 
prevail against the + M , the rolling load will produce an actual 
maximum — M ; but, if not, it will only cause a minimum - fM. 
Similar remarks might be made concerning shear. 

An absolute maximum M of either kind, for a uniform load, 
will be found, if we sum up the quantities in the table, to occur 
at the middle of the half-span. The loads to produce these 
values are seen in Fig. 11. The absolute maximum ± F is 
found at the abutments, while another value, nearly equal in 
amount, occurs at the crown. These absolute maxima are 
found by comparing footings of the several columns, p. 58. 

If Fig. 10 is supposed to represent a portion of the rib of 
Fig. 8 or Fig. 12, the web system being of any type or a continu-
ous plate, we shall find that, when the chords or flanges lie on 
the opposite sides of any equilibrium polygon, they will be in com-
pression from the weight which belongs to that polygon. When 
they both lie on the same side, the nearer chord or flange will 
be in compression and the farther one in tension. Hence the 
extent and amount of load to produce maximum stress of either 
kind in any chord piece can be found by inspection. 

The actual stress is found by taking moments about the proper 
joint in the opposite chord, as is done in bridge trusses, using 
either H multiplied by the vertical ordinate, or the thrust in the 
side of the equilibrium polygon multiplied by the length of the 
perpendicular, drawn from the joint to that side, as may be pre-
ferred, and dividing by the length of the perpendicular from 
the same joint to the chord piece in question, considered as 
straight between its two joints. In this way the stress result-

ing from the direct thrust combined with the bending moment 
is at once determined. 

Again, imagine a right section made in Fig. 8, through any 
panel like Fig. 10, and arrow-heads placed on the equilibrium 
polygons on the left of, and thrusting against the section. If 
the forces represented by such arrows have components acting 
up or outward along the section, they will cause positive shear 
in the web at that section; if such components act inward, 
they will cause negative shear. Hence the extent of load to 
produce maximum shear of either sign in a particular panel can 
also be found by inspection, and the amount of that shear can 
then be determined. 

56. Example of Flange Stresses.—It may be instructive 
to make a little numerical calculation for the rib of Fig. 9, 100 
feet span and 20 feet rise, supposing it to be loaded with the 
four weights only which are shown in the figure. The maxi-
mum positive moment is plainly at 8. If the rib is made of a 
web and two flanges feet from centre to centre, what will be, 
with this load, the stress in each flange at 8 ? If our figure were 
larger, we could scale the ordinate above 8, and get the bend-
ing moment directly; but, as the sketch is small, we will refer 
to the table. We thus find that 

M = (.082 x 2 + .171 x 4 + .002 x 2 - .083 x 3) 50 = 30.15 foot tons. 

From the same table we find that 
H = (.123 X 2 + .232 x 4 + .372 x 2 + .318 x 3)M = 7.18 tons. 

Then 30.15 Y.18 = 4.2 feet, ordinate at 8. If we call the ver-
tical depth of the rib at 8, three feet, the whole ordinate to the 
lower flange will be 4.2 + 1.5 = 5.7 feet, and to the upper flange 
4.2 — 1.5 = 2.7 feet. The compression in the upper flange will 
be 7.18 x 5.7 2.5 = 16.37 tons; and the tension in the lower 
flange 7.18 x 2.7 -f- 2.5 = 7.75 tons. 

Draw 0-5 parallel to the tangent at 8. Drop perpendiculars 
3-6 and 4 o n it from 3 and 4. On a right section close to, 
but on the left of 8, there will be positive shear 4-7, equal to 2.1 
tons. On the right of 8 will be found 3-6, or 1.5 tons negative 
shear, to be resisted by the web. 



C H A P T E R IV. 

P A R A B O L I C R I B W I T H F I X E D E N D S . 

57. Values of Ordinates. — Passing next to the parabolic 
arch, fixed at the ends, we recall, from § 16, that, to locate the 
equilibrium polygon for a single load at any point, we need 
three ordinates, one at each end, and the third passing through 
the weight, and that the three conditions by which these must 
be obtained are, 1st, that the change of span is zero; 2d, that 
the change of inclination at the abutments is zero ; and, 3d, 
that the abutment deflection is zero. As expressed in the 
notation used, the three equations of condition are 

2 E F . D E = 0, 
2 E F = 0, 

2 E F. DB = 0. 

If, in Fig. 1 2 , 1 N L represents the desired equilibrium poly-
gon for a weight W, attached to the rib A Q B at a point dis-
tant T G , = J, horizontally from the middle of the span; and if 
the span A B = 2 <?, the rise of the arch = Jc, A I = G r N = 
^o, and B L = y 2 , we will prove that 

y« = f * . ( 1 . ) 

when b = n c . 
60 

58. Value of First Equation. — As before, the first condition may be 
written, 

2 E F . D E = 2(DE —DF)DE = 0, or 2 D E2 = 2 D F . D E. (1.) 
k If A D = z , D E = ^ ( 2 c — x) x, as in § 39. A G = c + S; G B = 

c — b. If yx or yB becomes negative, i t is to be laid off below A B, but 
otherwise above: the figure represents y, as negative; and, in the majority 
of cases, yx and y2 have opposite signs. If a line be drawn horizontally from 
I, D F, as long as it is on the left of y0, will be divided into a constant part 
yt, and a remainder which varies with the distance from I. Hence we see 
that 

D F = * + 

For the right-hand member of (1.), between A and G, we therefore get 

K PC+B £ O/ FC+B 

J o ( 2 c x - x * y d x + i > - ^ J 0 < ? * * - * > * ' = 

12/. I>(c4-W - } (e- + rnyd [§ c ( c+by - j ( c + b y ] . (2.) 

For the portion between G and B, if we write c — b for c - f 6, and reckon 
x from B to the left, we get 

D F = y2 + 

the sign of y2 being contained in the symbol. Then the integration for the 
right-hand member of (1.), between B and G, or between the limits 0 and 
c — b, will give, when we substitute ya for y„ and c — b for c -f- b, 

% y, [c ( c — b y — \ { c — b y ] + k-2 (y0 - yj [f c (c - by - * o - by]. (3.) 

The left-hand member of (1.) was shown to be, in § 39, (2.), 

i-i 
±T(2cx—x*ydx=\%k*c. (4.) 

o c 

The two portions, (2.) and (3.), of the right-hand member, being added 
together, when the coefficients of y0, ?/„ and y2 are reduced, will be equated 
with (4.), the left-hand member of (1.), producing 



£ { ( 5 C 3 - c + (c + 5)2 ( 3 c - 6) 

or ' 

59. Values of Second and Third Equations. — I t is not 
necessary to integrate in order to obtain equations from the 
other two conditions, although they may be derived quite 
simply in that way. The second condition may be written, 

2 E F = 2 ( D E — D F ) = 0, or 2 D E = 2 D F. 

The first member is the summation of all the ordinates to the 
arch, or the included area between the rib and the line A B. 
The area of a parabolic segment being equal to two-thirds of 
the rectangle of the same base and altitude, the area will be 
§ . 2 c . k, or $ c k. The second member will be the summation 
of all the ordinates to the two inclined lines, or the area of the 
two trapezoids, giving 

Equating the two values, we obtain the second equation, 
Scyo+Cc + ^ + O — b)y2 = %ck (1.) 

The condition that 2 E F . D B = 0, or that 2 ( D E - D F ) 
D B = 0, gives 

2 D E . D B = 2 D F . D B , 
and this condition is satisfied by the equivalent step of multi-
plying each area, just obtained, by the horizontal distance of 
its centre of gravity from one abutment, the right one for 
example, and equating the products. The left-hand member 
will then plainly be f c k . c, or | c2 k. As the second expression 
above for the area of the trapezoids has three terms which cor-
respond to the three triangles formed by drawing lines from N 
to A and B, we may multiply each triangle by the distance of 
its centre of gravity from B, obtaining 

W o (3 c - b) + I (c + b)Vi (5c - b) + (c - by. 

Equating the two members, and clearing of fractions, we find 
that 

2 c (3 c — b) y0 + (c + 5) (5 c — b) y, + (c — b)*yt = 8 c*k. (2.) 

60. Solution of Equations. — Equations (5.), § 58, and (1.) 
and (2.), § 59, contain the three unknown quantities. The 
eliminations may be performed as follows: — 

Multiply (1.) by e — b, obtaining 

2 c (c — b) y0 + (c + b) (c — b) y, + (c — by yt = (c* — 6 c). | k. 

Subtract from (2.) 

4c2y0 + 4c(c-M)y1 = (2c2 + &c)!£. (a.) 

Multiply (2.) by 3 c + 5, 

2 c (9 c* - 6 2 ) y0 + (C + b) (15 + 2 c b - y , + ( c _ by (3 c + 6) y2 = 
(3 cs -\-b c2) SL 

Subtract (5.), and divide the remainder by 2 c, 

4c2y0-f 6c(c + 6)yi = (^c2-f bc)ik. (b.) 

Subtract (a.), 

2c(c + b)y1 = (J*sC2 + ibc)k, or = 
C - p 0 

Substituting this value in (a.) or (5.), we get 

and by analogy, or by substitution, 

61. Remarks. — The similarity between yx and y2 is to be 
expected; for, when a load is moved from one side of the centre 
to an equal distance on the other, y, and y2 change places. 
Therefore it must be remembered that y2 is the value of the 
ordinate at that springing which is nearer to the weight. If 



the load is in the middle, b — 0, and yx — y2. I t is worthy of 
notice that y0 is a constant quantity for all positions of the 
weight. These ordinates can be easily computed for a weight 
at different points, and it will be seen that a value of b greater 
than % c will make y2 negative, or to be plotted below the 
springing line. The original reasoning showed, and the above 
equations will prove, that the third condition may be taken 
about the other abutment, and will still give the same values 
for the ordinates. 

62. Computation of Ordinates and y2. — If we propose 
to work out data for use with this type of arch also, we must 
first calculate the values of yx and y2 for all points. Let a rib 
be divided into ten parts, equal horizontally as before; then, if 
b = nc, the results of the following table will be obtained. It 

1+5 n _ 
1 + n 

1 + 5 n _ 
l + n 

V A L U E S OF y, AND 

0 .2 .4 .6 .8 

1 2.0 3.0 4.0 5.0 
1 1.2 1.4 1.6 1.8 

0.1333 0.2222 0.2857 0.3333 0.3704 k 

1 — o n __ 1 0_ —1.0 —2.0 —3.0 
1 — n 1 0.8 0.6 "0 .4 0.2 

A . 1 ~ 6 n = 0.1333 0 —0.2222 —0.6667 —2.0 h — yv 15 1 — n 

is so similar to previous ones as to call for no explanation. Only 
remember that yy and y2 change places for loads on the left of 
the crown. . The equilibrium polygons for one half of the arch 
are shown in Fig. 12. 
>163. Formulae for H, Pj and P2. — To obtain the value of 
H for a particular position of the load, we lay off yh y0, and y2 

at A, G, and B, draw I N and N L, complete the stress diagram 
below, and draw 0-3 for H. The vertical components of the 
abutment reactions will be 2-3 and 3-1. If we draw the hori-

zontal dotted lines from I and L, we shall have similar triangles 
to those in the stress diagram, and may write 

Do—y\ : c + 6 = (2-3) : H, or 
T> — fO < n _ T T f f o — yi _ 8 2 + ™ k w 

y0 + ( - y * ) : c - & = ( 3 - l ) : H , or 

Substitute the value of (2-3) from the first equation, trans-
pose, and obtain 

" = 7 =H- g j j gg - w - H P - ^ j w -
c + 6 ~t~ c — b 

64". Computation of Values. — The amount of H for a load 
at any one point will then be found in the several columns of 
the table below. The first three values will be seen to be 

V A L U E S O F H , P „ A N D P 2 . 

n = 0 .2 .4 .6 .8 

l—rfi = 1 .96 .84 .64 .36 

( 1 — n 2 ) 2 = 1 .9216 .7056 .4096 .1296 

H = .4687 .4320 .3308 .1920 .0607 

H ( 1 + W)e = 0 , 5 °-352 ° '2 1 6 °-104 °-028 W 1 v V^"' 
\ = R 

H j 0 _ ^ s
c = 0.5 0.648. 0.784 0 .896 ' 0.972 W J p^ 

greater, and the last two to be smaller, than the corresponding 
H's in § 41. I t will next be necessary to find the vertical 
components of the reactions by multiplying H by the quantities 
noted in the last section: the results will be found in the last 
two lines. The larger value of P occurs at the nearer abut-
ment. I t will be noted that these quantities differ in amount 
from the two supporting forces of a single-span beam or truss. 

If the H's for an equal load at each of the nine points of 
division are added together, we find that, for loads at all points, 



H = 2.4997 W, which agrees more closely with the amount 

for a truss or bowstring girder than did the value for a rib with 
hinged ends, § 42. I t is due to the fact that the equilibrium 
polygon for a single weight crosses the rib oftener in the present 
case than in that of a rib with hinged ends; so that, when several 
loads are combined, the polygon will deviate from the parabola 
(the form of the rib, and the true equilibrium curve for a 
uniform distributed load) very little. 

65. Computation of Bending Moments. — If, in place of scaling, we 
desire to compute the values of M in this case also, we may use the former 
equation, § 43, 

M = H (y - z). 

The values of the ordinates, z, to the parabola will be the same as before. 
If x denotes the distance f rom A to the foot of the ordinate y, and x' — the 
distance from B to the foot of the same ordinate, in which case x' = 2 c — x, 
we shall have 

y = yx -f- x, on the left of the weight, and 
C —J— 0 

y = y,-\- y° ~ x', on the r ight of the weight, 

the sign of y2 being contained in the symbol. 
Let us proceed to find the values of M, a t both abutments and the nine 

other points, for a weight on the third point of division from the middle, 
towards the r ight . As above, 

,k H = 0.192 f W ; fc 
Vo k . f> = 0.5417-; =4.6667-; 
c-\-b c c — b c ' 

z = .36 k, .64 k, .84 k, .96 k, k, .96 k, &c., § 43. 

V A L U E S O F M . 
w 

X = 0 c 0.2 c 0.4 c 0.6 c 0.8 1.0 1.2 1.4 1.6 0.2 c 0 c = x' 
X-5417* 0 .1083 .2166 .3250 .4334 .5417 .6500 .7584 .8667 .9333 0 X4 .667 | 

+ yi .3333 .4416 .5500 .6583 .7667 .8750 .9833 1.0917 1.2000 .2667 —.6667 + ^2 

s = 0 .36 .64 .84 .96 1.00 .96 .84 .64 .36 0 k 

y — z = +.3333 +.0816 —.0900 —.1817 —.1933 —.1250 +.0233 +.2517 +.5600 —.0933 —.6667 k 

Multiply by H = 0.192-i-W. K 
I I I I 

M ='+.0640'+.0157 —.0173!—.0349 —.0371 —.0240!+.0045|+.0483 +.10751 —.01791—.1280|c W 

W is placed over the number of the point to which i t is attached, and a 
double line is drawn on one side of W to denote the end of each series, 
running from the two ends of the table. The dividing line might just as 
well have been drawn on the lef t of W, if preferred. More f requent values 
of any of the preceding quantities may be obtained by interpolation, as 
explained before. 

66. Table of Bending Moments. — A table of values of M 
has been prepared for this case of an arch with fixed ends, the 
span being divided into ten equal parts, and is here presented, 
p. 71. A table for twenty divisions may be found in " Engi-
neering News," vol. iv., p. 178. At any one point, for a uniform 
load at all of the points of division, M reduces nearly to zero, 
as before. The greatest possible positive M, as well as the 
greatest possible negative M, for any combination of weights, 
occurs at each abutment; positive maximum when the span is 
loaded from the other abutment to and beyond the centre one 
point; negative when the other portion only of the span is 
covered. The load on the first point from the middle produces 
no M at the nearer abutment. There is another maximum at 
the third or seventh point, with loads nearly the reverse of the 
ones mentioned above. An inspection of the table will show 
these facts. 

67. Example. — As soon as H, P, ?/„ and y2 have been ob-
tained for all points, it is easy to draw an equilibrium polygon 
for any desired arrangement of load. Let us suppose that one 
must be constructed for weights of 2 tons, 6 tons, 3 tons, and 
1 ton, on the 2d, 4th, 5th, and 8th points respectively, from 
the left abutment, of an arch of 100 feet span and 20 feet rise, 
Fig. 13, divided into ten equal parts along the span, as previ-
ously described. We will proceed as follows : — 

The vertical components of the reactions cannot be computed 
for the load in the gross, as for a beam on two supports, but 
must be summed up from the values lately given. Referring to 
those data, we get 



P>. H . 

2d joint, 0.896 X 2 = 1.792 tons. 0.192 X 2 = 0.384 £ tons. 
k 

4th " 0.648 X 6 = 3.888 « 0.432 X 6 = 2.592 « 

5th " 0.5 X 3 = 1.500 " 0.469 X 3 = 1.407 « 

8th " 0.104 X 1 = 0.104 « 0.192 X 1 = 0.192 " 

P , = 7.284 « H = 4.575 « 

P2 = 12 — 7.284 = 4.716 tons. H = 4.575 X 2.5 = 11.44 tons. 

Since Hj / , = moment at the springing A, Fig. 13; since each 
of these loads has a separate H and a definite yx; and since the 
H's for the different loads all conspire to produce the total 
thrust, —we must calculate the arm with which the latter acts at 
one or both springings, that is, the ordinate y{ or of the 
point whence the equilibrium polygon must start. We satisfy 
the equation 

y i ' . i H = 2 H . j „ or y{ = ^TT1' ¿4 1 1 

which simply requires that the resultant moment shall be equal 
to the algebraic sum of the original moments. We therefore 
multiply each H for a given weight by its and divide the 
sum of the products by the total H. The calculation having 
been made, as here set down, we find that y{ is equal to 
—.02 feet, a comparatively insignificant amount. I t is well 
to compute y2' also, as a check on the accuracy of the subse-
quent drawing, and it will be found to be -j-3.34 feet. 

jh. H . M. 
— .667 X 0.384 = — 0.256 c tons. 

0 X 2.592 = 0 
- f .133 X 1-407 = + 0.188 « 
+ .333 X 0.192 = - f 0.064 « 

4.575) — 0.004 " 

0.0009 k. 
20 

y i = — 0.018 feet. 

While we may seem to have carried out this example in too 
much detail, we are aware that inattention to apparently trivial 
points will sometimes cause trouble, and we have therefore 
given most of the work at full length. Now lay off the weights 
in order on the load line, plot Pj and P2, lay off H on the proper 
side, draw the usual radiating lines to the extremity of H, start 
below A, a distance — y{, and draw the equilibrium polygon 
with sides parallel to the inclined lines of the stress diagram, 
checking the polygon by the fact that it strikes the extremity 
of the calculated ordinate y<!. Fig. 13 illustrates this example. 
The diagram for vertical shear is also shown below, and needs 
no explanation, as the construction is similar to previous cases. 
The dotted lines in the stress diagram determine the value of 
Y,. I t is quite noticeable in this figure, how the shear changes 
sign wherever the bending moment becomes a maximum. 

68. Table of Shear. — To find the numerical value of the vertical shear, 
f rom which we may derive the normal components resisted by the braces of 
an arch with fixed ends, we proceed as we did in the case of an arch with 
hinged ends. The values of P„ the vertical component of the abutment 
reaction at the left, have been found. We then need only calculate the 

k value of Y, = 2 - H, and form a table, as was done in § 51. I t is not 
c 

necessary to repeat the operations here. A table of shears for an arch with 
fixed ends, and for ten divisions, has been prepared, and is appended, p. 70. 
The same remarks apply to it as to the previous similar table for the 
parabolic arch with hinged ends. For a table for twenty divisions, see 
" Engineering News," vol. iv., p. 193. 

69. Extent of Load to produce Maximum M and F. — 
A diagram is also presented, Fig. 15, showing, by the full lines, 
the loads required to produce the maximum + M , from live 
load, at the point whose number is attached to the line, and by 
the remaining blank portion the load required for maximum 
—M at the same point. The broken lines and the blank 
portion in each space represent the way of distributing the load 
for maximum -f F and — F respectively. I t is still more 
apparent from this figure than from Fig. 11, that any investiga-
tion which considers the rolling load as continuous from one 
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abutment over a portion of the span will not determine actual 
maximum stresses. See § 54. 

70. Comparison of Ribs; Fixed and Hinged at Abut-
ments. — A comparison of Fig. 15 with Fig. 11 will be in-
structive, as showing the different loading, when hinges are 
omitted, to produce maximum bending moments and shears. 
There are four points near the ends of the rib with fixed ends, 
which require that loads should be on both ends of the span 
at once, to produce the maximum + M at those points; and 
five points at the middle which have the maximum —M under 
similar circumstances. In some structures such conditions can 
be realized. If we foot up the plus and minus values of the 
columns in the tables for M and Y, we shall readily see that, 
with the exception of the springing points, all the points in the 
arch with fixed ends have less maximum bending moments of 
either kind, for a load W at each loaded point, than in the case 
of the arch with hinged ends, and, in most cases, the values are 
materially less. A similar comparison of maximum shears will 
show that the arch with fixed ends has to carry more shear over 
its web or bracing for all the divisions of the first and last 
quarters of the span, and less for the middle half of the span, 
than an arch with hinged ends. These considerations alone 
would indicate the superiority of the arch with fixed ends over 
the other type, as requiring less material in the flanges or 
chords, and throwing the heavier bracing towards the abut-
ments ; the value of the direct thrust, however, as indicated by 
the previously computed amounts of H, varies according to 
the amount of load, and conspires with the compression from 
bending moment, so that the sections of the two chords must 
be designed for the maximum compression and tension at all 
points; the effect of rise or fall of temperature will be shown 
to be greater on the rib with fixed ends, reqnring a greater 
increase of section to provide for it. y. 



CHAPTER V. 

C H A N G E O F T E M P E R A T U R E . 

71. Action of Change of Temperature. — If the arch, when 
either fixed or hinged at the ends, is exposed to a change of 
temperature, it will tend to change its shape. If the rib were 
perfectly free, its expansion or contraction would be uniform in 
all directions, so that the new arch would be the old arch on a 
slightly altered scale. In a bowstring girder, the tie expands 
and contracts with the bow, so that the horizontal projection of 
the change of length of the bow is the same as the elongation 
or contraction of the horizontal member. But as the abutments 
of the arch are considered as fixed, its span must remain 
unchanged; and the alteration of the arch by a change of 
temperature will be manifested by a rise or fall of the crown 
of the arch, which movement, in the case of a metal rib, may 
be a marked quantity. 

I t is manifest, that, if we imagine the rib at its normal tem-
perature to be placed upon its springing points or skewbacks, it 
will have a horizontal thrust against the abutments due to its 
form and weight. If the temperature changes, the structure 
endeavors to expand or contract in equal proportion in all 
directions; and hence, if possible, the span would be lengthened 
just in proportion to the rise of temperature t, the coefficient of 
expansion e, and the span 2 c, or the change of span would 
equal 21 e c. If t expresses the number of degrees of fall in 
temperature, it may be called minus, and the quantity 2 t e c 

72 
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will denote the shortening of the span. But this attempted 
change of length, being resisted at the points of attachment, 
cannot take place, but must cause a horizontal force, either 
tension or compression, which keeps the span invariable. This 
-j-H or —H must exert a bending moment upon all parts of the 
rib, as well as a direct thrust, which moment is too important 
to be neglected. I t being recollected that the condition 
I E F . D E = 0 denoted that the change of span equalled 
zero, it will be sufficient in this case to still make it zero, when 
we have added or subtracted a quantity proportional to 2 t ec . 

72. Change of Span influenced by Material and Cross-
section of Arch. — The bending moment M at any point has 
been demonstrated, § 4, to be equal to the product of II from 
the stress diagram multiplied by the vertical ordinate from that 
point to the equilibrium polygon. Then it was shown, § 18, 
that, if all these ordinates were summed up, that is, if we took 
2 E F between two points, this sum would be proportional to 
the change of inclination between those two points; but it was 
not stated that this quantity was equal to the change of inclina-
tion, for neither the material nor the form of cross-section of the 
rib was taken into account. As the amount of flexure was 
stated, in Part II., " Bridges," §§ 85 and 86, to vary inversely 
as the modulus of elasticity and the moment of inertia, we 

must write or ^ ^ to obtain a quantity which shall E I E I 
equal the change of inclination. The same thing is true of the 
expressions for deflection and change of span. When, however, 
the summation is made from one abutment to the other, and 
then put equal to zero, if E and I are constant, as well as H, it 
must be true that 1 E F = 0, as heretofore stated; and likewise 
of the other equations. Now E is constant, as the material of 
the rib is the same throughout; and since the parabolic rib, of 
cross-section varying with the secant of the inclination of the 
rib to the horizon, has been demonstrated, § 36, to deflect 
vertically like a straight beam of uniform section equal to that 
of the rib at the crown, I is likewise constant in these formulae, 



and represents the moment of inertia of the section at the 
crown. In short, where one quantity is directly proportional to 
another if one is equal to zero, the other is also; consequently 
we can deal with areas, area moments, &c., as if they were the 
changes of inclination, deflections, &c., themselves 

73. Formula for H from Change of Temperature. - But 
now we wish to introduce the distance 2 t e c , the change of 
span which would occur from change of temperature, were it 
unchecked. As this is an absolute and not a proportional 
quantity, we must divide our original quantity for chano-e of 
span § 7, by E I . We shall, therefore, have for the "new 
condition, 

H i . S E F . D E _ 
E I ± 21 e c = 0, 

where H, is used to signify the horizontal force (thrust or 
tension) which is occasioned by the change of temperature; or, 
it we clear of fractions, we get the more convenient expression 

H, . 2 E F . D E ± 2 E I i e c = 0. 

A rise of temperature will make H a thrust or positive, while 
a tall of temperature will make H a tension or negative The 
double sign is not needed in the above equation if the sign is 
contained in the symbol t, that is, if t is negative for a diminu-
tion ot temperature below the one at which the rib is con-
structed or laid out. The bending moments exerted on the 
rib will be of the contrary kind when H, is minus, while the 
ordinate» are unchanged. 

74. Application to Parabolic Rib, Hinged at Ends — 
To take up first the case of the parabolic rib hinged at ends. 
The amount of H, is to be determined. As there can be no 
bending moment at either abutment, and H, at each abutment 
is the only applied force, the equilibrium polygon or line of 

S T ? ' F!g" 1 6 ' m U S t b e i n t h e l i n e j ° i n i "g the two springings. 
I he bending moment at any point will, therefore, be equal.to 
the ordinate to the rib at that point, multiplied by the desired 
value of H t. The expression ¿ E F . D E therefore becomes for 

this case 2 D E 2 ; and we have, transposing the second term of 
the equation of the previous section, 

^ . 2 D E 2 = 2 E 1 1 e c. 

The value of I D E 2 was shown in § 39 (2.), to be 
therefore, substituting and transposing, we see that 

„ teEI 

a value which is independent of the span. 
The maximum bending moment, which occurs at the middle 

of the span, where the ordinate will be k, is 

M (max.) = ^ . —J—• 

The ordinates at all the usual points of division will be the 
values of z, used repeatedly before; and, by multiplying II( by 
these several values of z, the bending moments at all points 
are obtained for a given change of temperature t. An 
additional line can be placed below the table of M to contain 
these quantities, so as to have them convenient for use. All of 
these moments will be positive for a fall of temperature below, 
and negative for a rise above, that at which the rib was designed. 
The worst effect of either change must be provided for. 

75. Formula for Change of Span deduced analytically. — If one 
likes to prove this value for change of span analytically, he may proceed as 
follows: Let any ordinate to the arch be denoted by y, and the abscissa 
measured horizontally f rom one abutment by x. Then, if v = the vertical 
deflection ordinate, tha t is, the deflection of any point f rom its original 
position, we may write the usual equations for curvature, slope, and deflec-
tion of beams, recollecting that this arch acts like a beam of uniform section 
in deflecting vertically, 

<Pv . M d v r M ' , r r M , . 
->—5 = : I — d x; and v = I I —— d x*. d x 2 E I ' da: J E I J J E I 

Now M = H y = H - (2 c x — a:2) ; therefore 
c 



~ = 0, for x = c; therefore C = —§ c s . Then 

<*» H k , . 
= B i - ^ C ^ - i « 8 - ! « 8 ) - («•) 

If u = horizontal displacement of any point, the infinitesimal horizontal 
displacement d u, due to the movement of the portion of arc d s, will give, 

as may be seen to the right of Fig. 16, 

du : dv = dy : dx. 

Since y = A (2 c * — ar), d y = A (2 c - 2 x) d x, and we have 

, 2k, d U = —g- (c — x) dv. 

Substitute the value of d v from (a.), and it becomes 
II 2 k2 

If this equation is integrated between the limits 0 and 2 c, we obtain 
H 

" = W h i c h w m b e s e e n t 0 correspond with the value of 
21 e c in the preceding section. 

76. Application to Fixed Parabolic Rib. — If we turn 
next to the rib with fixed ends, it will be manifest, that, since 
there will be bending moments at the springings, the line which 
corresponds to the equilibrium polygon and limits the ordinates 
for bending moments cannot now pass through those points. 
As the resistance to expansion or contraction is the only cause 
of those moments, the two abutment moments will be equal, 
and the line will be horizontal. In order also to satisfy the 
condition that the change of inclination at the abutments, shall 
equal zero, or, as expressed in § 18,1, E F = 0, the horizontal 
line must be so drawn as to make the areas within and without 
the arch equal to one another, which will occur when the line 
is drawn at a height of f & above the springing, as seen in 
Fig. 17. To prove the equality of areas it is only necessary to 
recall the fact that the area of a parabolic segment equals two-
thirds of the enclosing rectangle. The area included within the 

whole arch will therefore be & . 2 c = & c. The rectangle of 
height f k has the same area. Therefore the portions of the 
arch area and of the rectangle which do not coincide must 
be equal to one another. The third condition, of § 19, that 
2 E F . D B = 0, or the equality of area moments, is also 
satisfied by this construction; for the rectangle multiplied by 
the half span, which is the distance of its centre of gravity from 
one abutment, is equal to the area included by the whole arch 
multiplied by the same distance. 

To deduce in this case the value of H,: as before, 
H*. S E F . D E ± 2 E I i e c = 0. (1.) 

From what has just been stated, 
S E F . D E = S ( D E — §£) D E = 2 D E2 — § fc . 2 D E. (2.) 

The first term, as before, amounts to k? c ; since 2 D E = area 
enclosed by the arch, = | -kc, the second term is | k? c ; there-
fore 

H t . ^ 4 s c = 2EI< e c , or = 

The bending moment at the crown will therefore be 

M = H«. = 

and at the springing, 

M = H t . f h = 

or double the former amount, but of the opposite kind. Whether 
the bending moment at either point is positive or negative, 
depends upon whether H, is tension or compression. These 
moments also can be conveniently added to the proper table for 
M, as explained for the first case. 

77. Comparison of Arches under Change of Temper-
ature. — The bending moments for temperature, in both the 
arch with hinged ends and that with fixed ends, will vary like 
those of a beam uniformly loaded, and either simply supported 
or fixed at the ends. Part II., " Bridges," §§ 95, 99. 



I t may be well to notice the comparative straining effect of 
the same change of temperature in the two classes of parabolic 
arches, for ribs of the same rise. H, is six times as great when 
the arch is fixed as when it is hinged at the ends, and the direct 
stress in the ribs will therefore vary in the same proportion. 
The maximum moment, at the springing, for the rib with fixed 
ends, is four times as great as at the crown of the rib with hinged 
ends, and of the opposite kind; while the value of M at the two 
crowns is as two to one against the rib with fixed ends. 

78. Shear from Change of Temperature. — The shear on 
a right section can be shown by the accompanying Fig. 18. • If 
a b represents the amount of H caused by a change of temper-
ature, we may draw a d and b c parallel to the upper and lower 
flange at any right section S of the rib, when e a will be the 
value of the direct stress at the section, one-half in each flange, 
and be will be the shear* The bending moment will have any 
magnitude, depending upon the length of the ordinate from the 
equilibrium line to the point on the centre line of the arch where 
this section is taken. As ae and gb are parallel, the perpen-
dicular distance be, = c d, between them is constant, so that f d 
may be taken, for our purpose, to represent the stress in one 
chord, and g c that in the other due to bending moment, the re-
sultant stresses being a d and e b, while the shear on the right of 
a right section of the web will be d c. Since the resultant stress 
at any section must be H, the directions of the forces, shown 
by the arrows, in this closed polygon, are at once fixed. As the 
inclination of the arch changes, the value of cd will change, 
being zero at the crown and a maximum, at the springings. 
The arrows denote the case where H is a thrust. The bending 
moment will be negative, if the rib is hinged at the ends, the 
bottom chord will be compressed, the top chord will have a 
force exerted upon it amounting to the difference between the 
direct thrust and the tension clue to the moment, and conse-
quently <? b will be the stress exerted by the top chord against 
the right side of the cross-section in the accompanying sketch. 

79. Diagram for Vertical Shear. — Let us suppose a fall of 

*In Fig 18, the point / s h o u l d bisect e a. 

temperature to take place; the rib will have a tendency to 
come down at the crown. We recall the fact that a uniform 
load has a parabola for its equilibrium curve, and a load of the 
proper intensity on any parabolic arch will produce the value 
of H which is now supposed to exist. I t is evident, then, as is 
also shown by the sign of M, that the rib may be imagined 
to be loaded uniformly horizontally with a weight sufficient to 
produce this deflection or these values of M. This imaginary 
weight will be just sufficient at all points to balance the com 
ponent of an opposite kind which is required in combination 
with the value of H, (in this case a horizontal tension), in order 
to give a resultant stress in the direction of the tangent to the 
rib. And, further, if this weight were not just sufficient to 
balance the above component, a remainder, of one sign or the 
other, would be found at the abutments, as a vertical component 
of the reaction there; but we know that no such vertical com-
ponent exists. If a bent spring is placed with its two ends on 
a horizontal line, and compression or tension is applied in that 
line, no vertical force is needed for equilibrium. As the uniform 
weight was entirely imaginary, the vertical components must 
be supplied by the web and flanges, and hence we conclude that 
the diagram for vertical shear in the arch affected by a change 
of temperature, will be that of an ordinary.truss, supported or 
fixed at its two ends, and carrying a complete uniform load, 
and that the normal component will be . carried by the web. 
For a fall of temperature, therefore, the shear on a vertical 
section will be of the same kind as, and, for a rise of temper-
ature, will be of the opposite kind to, that produced by a load 
on a truss with horizontal chords. 



CHAPTER VI. 

C I R C U L A R R I B W I T H H I N G E D E N D S , 

80. Circular Rib to be of Uniform Section. — Passing 
next to the consideration of the arch whose curve is the arc of 
a circle, we shall assume that the rib is of uniform section, and 
not, as before, of increasing breadth from the crown to the 
springing. As the rib is of uniform section, it can no longer be 
compared to a horizontal beam, as regards its change of inclina-
tion and deflection under bending moments, and the length 
along the arch, instead of its projection on a horizontal line, 
must be used in spacing off and in summing up the usual 
quantities; that is, the sum of the changes of inclination 
between any two points will be made up from the change of 
inclination at each successive point along the rib. We must 
therefore use d s for d x in our integration, where s denotes the 
length of an arc; and polar co-ordinates will, in the more com-
plex cases, be used in place of rectangular ones. In spacing 
off the rib for equal divisions, or for summing the ordinates 
arithmetically, the measurements will be made along the curve, 
and each division will subtend the same angle at the centre of 
the circle. 

We stated, it will be remembered, that a segmental arch of 
the circular type, if the rise did not exceed one-tenth of the 
span, might, without serious error, be treated as if it were 
parabolic. In discussing circular arches, there will be so many 
points similar to those we have already explained, that we shall 

80 
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not go into much detail on some points, but leave the reader to 
make the extended application as examples come up in his own 
practice. 

81. Experimental Verification. — The values to be obtained 
for y0, for a rib of uniform section, curved to the arc of a circle, 
and hinged or free to turn at the ends, can be readily verified 
or illustrated experimentally as follows: — Take a piece of 
moderately stiff iron wire, and bend it accurately into the 
desired shape, A C B, Fig. 19 ; suspend the wire from a 
horizontal bar E F by means of strings fastened at A and B, 
and then attach a weight at any point C. It will be convenient 
to stretch a thread from A to B, which, as the span is to be 
unchanged, will not interfere with the reactions. If the point 
E is now moved horizontally, the length of the string E A being 
at the same time changed, the line A B can be brought parallel 
with E F, as can be readily ascertained with a scale. Then E A 
and F B prolonged will meet at D on C D, and D G will equal 
g0- E A and F B will actually intersect on the vertical through 
the centre of gravity of the wire and weight combined; but if 
the weight of the wire is as small as is consistent with stiffness, 
while the weight at 0 is large in comparison, the centre of 
gravity will practically be in C D. If A B becomes slack, it 
shows that E and F are not sufficiently far apart. By fastening 
two long threads independently to E and F, the lines E A and 
F B can be easily prolonged to an intersection. 

82. Semicircular Arch with Hinged Ends; Value of y0. 
— If the rib with hinged ends is first taken up for discussion, 
the value of y0 for a load at any point on a semicircular arch is 
easily obtained by a simple device. Recurring again to the 
usual formula in its modified form, we must satisfy the condi-
tion 

I D E ! = S D E . D F . 
If we let D E, Fig. 20, = * ; D F = y ; A D = « ; and represent 
a small portion of arc by d s, this equation becomes, for the 
entire semicircle, 

/ T /» n 
^ z2ds=J yzds. 

y 



If we draw a radius from any point E of the rib to the centre 
O, and also draw the infinitesimal triangle whose sides are d s, 
d x, and d z, we shall have, from similarity of triangles, 

r: z = ds : dx, or zds = rdx; 

substituting this value in the above equation, we get 
/ 2 c /»2c 

zdx — r I y dx. 
o J 0 

The integral of zdx between the given limits is the area of 
the semicircle, while that of y d x is the triangle A C B. Substi-
tute the value for the former, and ry 0 for the latter, and 
we obtain 

t* = t*yti or y0 = ^nr = 1.5708r. 

The ordinate y0, for a load at any point, on a semicircular 
rib with hinged ends, is therefore a constant quantity, equal to 
the length of the half rib. If we draw a horizontal line at this 
height above the springing, it will contain the vertices of all 
the equilibrium polygons for single loads. 
-¿88. Segmental Arch; Value of y0. — If the arch is seg-
mental, that is, less than a semicircle, we shall use the follow-
ing notation: Let the angle N O B , Fig. 21, subtended at the 
centre of the circle by the half arch, be denoted by (5; the angle 
N 0 I, from the crown to the point where the weight is placed, 
be denoted by «; and the angle N O E, from the crown to any 
point where the ordinates D E and E F are measured, be 0. The 
radius of the arch = r. If, then, A C B is. the desired curve of 
equilibrium, C K = y0. The value of this ordinate will be proved 
to be 

(sin-,3 — sin2 a) i,3 1 — 3 cos fi) 
y —— y . j __ . 

(sin2 0 — sin2 a) + 2 cos 0 (a sin a + cos a — 0 sin 0 — cos 0) 

If the arch is a semicircle, § = 90° = } and this value reduces 
to y0 = % nr, as previously obtained. 

The work of computing y0 for different values of a is not 
great; as, for a given arch, (S is constant, and the second factor 

of the numerator is a constant quantity. Since a segmental 
arch may subtend any angle, it is not worth while to go into 
the computation here of values of y0 for a given value of but, 
as examples of y0, we will give 

If 0 — 45° and a = 0°, then ?/0 = .39 r nearly. 
" 45° " 30°, " .42 r " 
" 60° " 30°, " .71 r " 

All that one needs for the calculation from this formula is 
an ordinary table of natural sines and cosines. The angles or 
arcs (3 and a are to be expressed in lengths of arc, which subtend 
the given number of degrees, to radius unity. The arc for one 

7t degree being jg^, or 0.017453, any other arc will be obtained 

by multiplying this quantity by the number of degrees which 
the arc subtends, minutes being expressed as a decimal part of 
a degree. 

84. Proof. — From Fig. 21 we have D E = r (cos 0 — cos ,3). 
D F : C K = A D : A K = r (sin 0 -j- sin 6) : r (sin/? + sin a) 

on the lef t of K, or D F = ; 
sin 0 sin a 0 

,, . , , , T , „ „ s in0 — sin e on the right of K, D F = ^— ?/„. ° sin 8 — sin a 0 

Substituting these values in the usual equation, § 39, S D E2 = S D E . D F, 
ive obtain for the first member of the equation, remembering to use 
ds = rdg in place of dx, and considering angles to the lef t of O N as 
negative, 

„r+8 r+6 
rs (cos 0 — cos 0)" d 6 = r8 I (cos2 0 — 2 cos 8 cos 0 + cos2 0) d 8* J-0 J-Q 

= r 8 (0 + 2/3 cos2 0 — 3 sin 0 cos 0). (a.) 

For the integral of the second member between a and — 0 we have 

Vn C a 

• p . • I (sin 0 cos 0 + sin 0 cos 0 — sin 0 cos 0 — cos 0 sin 0) d 01 sin p — s i n Q. J 

* J cos2 0 d 0 = $ (0 + sin 0 cos 0); cos — 0 = cos0; sin — 0 = — sin 0. 

t j"sin0cos 6 dO — — icos20. 



= - — i — • — (sin a sin ¡3 — i cos2 a — a sin/3 cos 3 
sin ft sin a 2 

cos a cos ¡3 -}- sin2/? — \ cos2 ft — (3 sin/? cos ft). 

Likewise for the integral of the second member between a and -f- ft we h a r e 

—5— •— I (sin ft cos 9 — sin 9 cos 9 — sin ¡3 cos ft 4 - cos f3 sin 9) d 0 sin ft — sin A J A 

r2 v = —„ . — (sin2/? — A cos213 — ft sin 13 cos ft — sin a sin fl 
s in / ?—sin<z v ^ 2 

— £ cos2 a -(- a sin ft cos ¡3 -f- cos a cos ft). 

These two quanti t ies are to be reduced to a common denominator, added 
together and equated with the first member (a . ) . Upon making simple 
cancellations, dividing through by sin ft, and factoring, we get the form of 
y0 given in t h e last section. 

85. Formula for H ; Value of Ordinates.—When the value, 
of «/0 is computed, we can readily draw the stress diagram of 
Fig. 21, and scale the value of H ; or the formula proved before, 
§ 40, may be applied here, and is easily converted into the third 
form, 

W A K . K B _ r ( s i n 2 / ? - s i n 2 a) 
y0 2c C K . A B y0.2sinj3 K ' 

If calculations have already been made for ?/0, the quantities 
desired for this formula are at hand. 

Then the ordinate a t each point of division, by which H is to be multi-
plied to give M for tha t point, will be, from § 84, if 9 is the angle between 
the two radii f rom the crown and the point E, 

E F = D F — D E = y0
 s m ff * s m 6 — r (cos 9 — cos ft)• (2.) 0 sin ft ± sin a v ' y ' 

The plus sign is to be used for points between the weight and the fa r ther 
abutment , and the minus sign between the weight and the nearer abutment . 
W e must remember, however, that , if 9 is measured from the crown to the 
r ight as the positive direction, all angles 9 on the lef t of the crown will be 
negative, and their sines will be minus. If E F is plus, i t gives a positive 
bend ing moment, tending to make the arch less convex, and vice versa. 

86. Numerical Computation of M. — In any practical case we should 
much prefer, as more easy and sufficiently accurate, to scale all of these 
quantities from a good-sized diagram; but i t may be well to compute one set 

of values of M as an example, for fear the signs may give some readers 
trouble. Taking the case of F ig . 22, let ft = 45° and a = 20°. Then 
the arc ft = .7854 and a = .3491; sin ft = cos ft = .7071; sin a = .3420, 
cos a = .9397. These values, substi tuted in the equation of § 83, give 

( . 5 - . 1 1 7 0 ) ( . 7 8 5 4 - ^ - 2 . 1 2 1 3 ) ^ 
V o r .5 —.1170 + 1 . 4 1 4 2 (.1194 + . 9 3 9 7 —.5554 —.7071) = . 0 9 5 4 r = ' 4 0 3 r ' ' 

(1.) , §85, will then become 

H _ ( .5 — 1 1 7 0 ) r .383 _ 
1.4142 X .403 r ~ .570 W ~ ' b 7 2 

Sin ft - f sin a = 1.0491; sin ft — sin a = .3651; 

Vo = : i ° l L _ 3«, r • yo _ -403 r _ 
sin/3 + sin a 1.0491 — • ° ° * r ' sin ft — s i n a ~ M51 ~ 1 , 1 0 4 n 

V A L U E S O F M . 
w. 

e — 40° — 30° — 20° — 10° 0° 10° 20° 30° 40° 
sin ft = .7071 .7071 sill ft 
+ sin g —.6428 —.5 —.3420 —.1736 0 +.1736 +.3420 .5 .6428 — sin g 

Mult, by 
.384 = 

.0643 

.0247 

.2071 

.0795 

.3651 

.1402 

.5335 

.2049 

.7071 

.2715 

.8807 

.3382 

1.0491 

.4029 

.2071 

.2286 

.0643 

.0710 
Mult, by 

1.104 = 
— cos 9 .7660 .8660 .9397 .9848 1.0 .9848 .9397 .8660 .7660 — cos 0 

—.7413 —.7865 —.7995 —.7799 —.7285 —.6466 —.5368 —.6374 —.6950 

+ cos ft .7071 .7071 + CO 8 ft 

—.0342 —.0794 —.0924 —.0728 —.0214 +.0605 +.1703 + 0 6 9 7 +.0121 

X - 6 7 2 W —.0230 —.0534 —.0621 —.0489 —.0144 +.0407 +.1144 
• 

+.0468 +.0081 r W = M 

87. Shear at any Right Section. — Suppose that the rib of 
Fig. 22 carries a single weight under the point C, and that the 
curve of equilibrium is A C B. If 012 is the stress diagram, 
2-3 will be the vertical component of the reaction at A, and 3-1 
that at B. To find the shear on a right section near A, as at 
E, lay off 2-3, or Px in Fig. 23, and draw H so that the arrows 
may follow one another; then from 0 draw a line 0-4 parallel 
to the tangent at E ; the perpendicular distance 4-2 will be the 



shear in the web. For we see by the direction of the arrows 
that these forces last drawn balance Fx and H, and, as in 
Fig. 18, no matter how much the bending moment, and hence 
the flange stress, may be, the perpendicular distance 4-2 is 
unchanged. The line 0-4 will be the magnitude of the direct 
thrust. Both of these forces are given on the right of the 
section, and this shear is therefore negative. In the same way, 
for the point E near B, draw 1-8 = —P2 and 3-0 = H ; draw 
0-8 parallel to the tangent at E ; 8-1, perpendicular to it, will 
be the shear on the right of the section, again negative, and 0-8 
will be the direct thrust. I t is noticeable that the normal shear 
in the web near the left abutment is opposite in sign to P b 

while near the right abutment it agrees in sign with P2. For 
the kind of brace needed, see Fig. 10. I t is evident that these 
figures may at once be drawn on the stress diagram, where 0-4 
and 4-2 are already sketched. Such a way will answer well 
for a few points on a large figure, especially if we' have applied 
such loads as give the maximum shear at any particular point. 
If, however, we desire to see the variation of the shear across 
the span, we may draw a different diagram. 

88. Shear Diagram. — As the tangent is perpendicular to 
the radius at the point of contact, we may at once see that the 
angles marked 0 in Fig. 23 correspond with the angle 6 made 
by the radius to the crown and that to the point E. Hence we 
get a value for the normal shear, P cos 0 —H sin d. As the 
point E is distant horizontally from the middle of the span an 
amount r sin 0, the last term of this expression for shear varies 
directly as the distance from the centre; and if we draw 3-7, in 
the stress diagram of Fig. 22, parallel to the radius at A, cutting 
0-6 which is parallel to the tangent at A, 3-7 will be H sin d for 
A, and may be laid off at a w and b r of Fig. 23. The vertical 
ordinate e d will then represent H sin 6 at any point. P t is laid 
off at cI, and P2 at cm; with c as centre, and these two distances 
as radii, draw the dotted arcs seen in the figure; lay off several 
angles 0 at c, as, for instance, leg and men for the points E ; 
project g and n horizontally to / under the respective points E ; 

df will be P cos 0, and from several similarly located points the 
curves sit and v f r are found. Then at any point the vertical 
distance df— e d or ef will be the normal shear in the web on 
the left of the section, positive if above the inclined line, neg-
ative if below it. 

From the formula P cos 0 — H sin a table of shears may be 
easily computed for any given arch. P sin 0 + H cos 6 will give 
the direct thrust. 

89. Distribution of Load to produce Equilibrium. — A 
series of lines drawn in the stress diagram from 0, parallel to 
the tangents at a number of equidistant points in a circular rib, 
will cut off such portions of the load line as represent the loads 
necessary to make the successive sides of the equilibrium polygon 
parallel to these tangents, or, in short, coincident with the rib. 
But the lines radiating from 0 will successively intercept 
increasing lengths of load line. Hence the load which will keep 
a circular arch in equilibrium must increase in intensity per 
horizontal foot from the crown to the springing, and must 
become infinite at the springing of a semicircular arch. Hence 
it follows that no amount and distribution of vertical load can 
make a semicircular arch a true equilibrium curve, that is, one 
which has no bending moment at any point. In fact, no curve 
which starts vertically from the abutment can be an equilibrium 
curve under vertical loads. This may be seen in a more simple 
manner if we consider that no arrangement of weights will 
cause a cord, • attached at two points, to hang in a funicular 
polygon whose first side is vertical. 

90. Effect of Change of Temperature. — The horizontal 
thrust or tension, due to a change of temperature, in a circular 
rib hinged at the ends, is found by a similar method to that 
pursued for the parabolic rib. Referring, to avoid repetition, 
to what was said at that time, §§ 71-73, the equation may be 
written, as given in § 74, 

. 2 D E 2 = ± 2 E I . t e c. 

Fig. 16 will answer for this case, if we imagine the arc to be 



circular. As we saw, in § 82, that 2 D E 2 for a semicircular 
arch was i n r3, a substitution in the above equation gives at 
once 

for a semicircular rib. The bending moment at the crown, 
where it is a maximum, will be 

, , 4 E I te M (max. ) = ————. 

If the arch is less than a semicircle, (a.), § 84, gives 
2 D E 2 = rS (p + 2 p cos2 p — 3 sin p cos p), 

and c = r sin (3; therefore, substituting, we obtain 
„ 2 E 11 e sin p 

' — ± r2 (,3 + 2/3 cos213 — 3 sin p cos 3)' 

and the bending moment at the crown will be 
M ('max 1 — 2 E I < e sin /3 (1 cos p) 

K ' ~ r (¿3 + 2(3 cos2,3 — 3 sin ¡3 cos p)' 

91. Shear from Change of Temperature. — If a load of 
the proper amount and distribution were imposed on the rib to 
place it entirely in equilibrium, and cause it to exert against 
the abutments the desired value of H due to temperature, such 
a load would supply the amount of shear needed at each section, 
and, when the load is absent, the bracing must supply such 
shear. The line wecer of the shear diagram of Fig. 23 will 
therefore limit the ordinates for shear at right sections of the 
web under changes of temperature, when 0-3 is the amount of 
H4. A reference to § 78 and § 87 will aid the reader in recalling 
these points. 

CHAPTER VII . 

CIRCULAR R I B W I T H F I X E D ENDS. 

92. Values of Equations of Condition. — When the cir-
cular rib is fixed at the ends, we apply the three equations of 
condition which were developed in §§ 17-19, summing up the 
ordinates, however, along the arch, as has just been done in the 
preceding case, in place of the horizontal line. When the arch 
is a complete semicircle, or, as it is often called, a complete 
arch, as distinguished from a segmental one, the value of y„, yx, 
and y2 may be obtained by a device similar to the one employed 
in § 82. The equation to satisfy the first condition is easily 
derived, but the two others present more difficulty; it is there-
fore not expedient to take up the semicircle as a special case, 
but rather to work out the general equations, and make the 
necessary substitutions. 

In the arch of Fig. 24, let A N = y^ C K = y0, and B R = y2; 
M O B = M O A = p, M O I = «, and M O E, to any point E, 
= 0, angles to the right of M being positive. The notation 
agrees with that just used. Then it may be proved that the 
three equations of condition will reduce to 

sin p y0 + £ (sin /3 + sin a) y i + i (sin p — sin a) y!=(p — sin p cos p)r; (1 . ) 

— sin p (cos a — cos p + a sin a — p sin/3) y0 

+ J (sin p — sin a) (cos a — cos p + a sin a + p sin a) yx 

+ £ (sin p + sin a) (cos a — cos p + a sin a — p sin a) y3 

= (sin p — p cos p) (sin2 p — sin2 a) r; (2.) 



circular. As we saw, in § 82, that I D E 2 for a semicircular 
arch was i n r3, a substitution in the above equation gives at 
once 

for a semicircular rib. The bending moment at the crown, 
where it is a maximum, will be 

, , 4 E I te M (max. ) = ————. 

If the arch is less than a semicircle, (a.), § 84, gives 

2 D E 2 = rS (/? + 2 /3 cos2 ¡3 — 3 sin ¡3 cos /3), 

and c = r sin (3; therefore, substituting, we obtain 
„ 2 E 1 t e sin ¡3 

' — ± r2 (J3 + 2/3 cos213 — 3 sin /3 cos 3)' 

and the bending moment at the crown will be 

M ('max 1 — 2 E I < e sin /3 (1 cos /?) 
v ' ~ r 0? + 2 0 cos2,3 — 3 sin ¡3 cos ¡3)' 

91. Shear from Change of Temperature. — If a load of 
the proper amount and distribution were imposed on the rib to 
place it entirely in equilibrium, and cause it to exert against 
the abutments the desired value of H due to temperature, such 
a load would supply the amount of shear needed at each section, 
and, when the load is absent, the bracing must supply such 
shear. The line wecer of the shear diagram of Fig. 23 will 
therefore limit the ordinates for shear at right sections of the 
web under changes of temperature, when 0-3 is the amount of 
H4. A reference to § 78 and § 87 will aid the reader in recalling 
these points. 

CHAPTER VII . 

CIRCULAR R I B W I T H F I X E D ENDS. 

92. Values of Equations of Condition. — When the cir-
cular rib is fixed at the ends, we apply the three equations of 
condition which were developed in §§ 17-19, summing up the 
ordinates, however, along the arch, as has just been done in the 
preceding case, in place of the horizontal line. When the arch 
is a complete semicircle, or, as it is often called, a complete 
arch, as distinguished from a segmental one, the value of y„, yx, 
and y2 may be obtained by a device similar to the one employed 
in § 82. The equation to satisfy the first condition is easily 
derived, but the two others present more difficulty; it is there-
fore not expedient to take up the semicircle as a special case, 
but rather to work out the general equations, and make the 
necessary substitutions. 

In the arch of Fig. 24, let A N = yt, C K = y0, and B R = y2; 
M O B = M O A = ff, M O I = «, and M O E, to any point E, 
= 6, angles to the right of M being positive. The notation 
agrees with that just used. Then it may be proved that the 
three equations of condition will reduce to 

sin (3y„ + £ (sin /3 + sin a) y i + i (sin ¡3 — sin a) y2= {(3— sin ¡3cos ¡3) r; (1 . ) 

— sin 13 (cos a — cos ¡3 + a sin a — (3 sin/3) y0 

+ J (sin ¡3 — sin a) (cos a — cos ¡3 + a sin a + (3 sin a) yx 
+ £ (sin 13 + sin a) (cos a — cos /3 + a sin a — ¡3 sin a) y3 

= (sin ¡3 — 13 cos f)) (sin2 ¡3 — sin2 a) r; (2.) 



[(0 — cos 0 sin ¡3) sin a — (a + sin a cos a — 2 sin a cos (3) sin /3] y0 

+ 4 (sin ¡3 — sin a) (a -f- sin a cos a + 0 — sin 0cos,3 — 2 sin a cos /3) y, 
+ i (sin P + sin a) (a + sin a cos a — 3 + sin 0 cos .3 — 2 sin a cos 0) y 2 = 0. (3.) 

I t will be easier to solve the numerical equations after the 
values of a and fa with their sines and cosines, are introduced, 
than to deduce-independent values of ?/„ &c., at present. They 
may be written more briefly, for convenience in substitution, if 

sin/} — sin a = a; sin 0 + sin a = b; a + sin a cos a — 2 sin aeos0 = c; 
0 — sin 0 cos 0 = d; cos a — cos 0 -f- a sin a = e; 

sin 0y o + ii>l/i + i a y 2 = d r . (4.) 

— (e — 0sin0) s i n 0 y 0 + ja (e + ,3sin a) y,-j-}b(e —0sina)yl 

= ab (sin 0 — 0 c o s 0 ) r. (5.) 

(d sin a c sin 0) y0 +ia(c + d)yx + ( c — d)y2 = 0. (6.) 

93. Special Values for Semicircular Rib. — If the arch is 
a semicircle, § = i „; sin p = 1 ; cos |S = 0 ; and the three equa-
tions of the last section reduce to 

Vo + i (1 + sin a) yx - f | (1 — sin a) yt = J * r; (1.) 

(in—cos a — a s in a) y0 + i (1 — sin a) ( cos a + as in a + £ Trsin a) yx 

+ K 1 + sin a) (cos a as in a — ¿Trsin a) y2 = (1 — s i n 2 a ) r ; (2.) 

Q rr sin a — a — sin a cos a) y0 + $ (1 — sin a) (a + sin a cos a + |TT) yx 

+ i ( ! + sin a) (a + sin a cos a — I tt) y2 = 0. (3.) 

If equation (1.) is multiplied by «, equation (3.) may be 
added to it, and then (2.) may be multiplied by sin «, and 
subtracted from their sum, when there will result 

( «4 - i* — i«aina)jfr-t- (a — in — $nsma)ys=Qna — sma)r. (4.) 
If (1.) is multiplied by i n - cos« - «sin«, and equation (2.) 
is subtracted from it, we shall get, upon dividing by the com-
mon coefficient of yx and y2, 

I ( v , -L v 1 — — COS a — Q sin a) — cos2 a 
I W T W £ f — 2 cos a — 2 a sin a + £ 7r sin2 a r ' 

which, if the quantity in the parentheses be represented by g, 
may be written, 

Upon multiplying this equation by 2 a — in sin «, and subtract-
ing it from (4.), we obtain, by factoring the second member, 

( - — (a cos2 a — (/sin a) 

h(Vi—yi)=-- 2g — cos2a " <6-> 

The sum of (5.) and (6.) will give yx; their difference will 
give y2; and these values, inserted in (1.), will readily give 
us y0. 

94. First Equation of Condition. — Many of the following expressions 
are similar to those of §84, and a remembrance of the relation between 
y, and y% will, in a measure, prevent the ensuing work f rom seeming so 
involved as it otherwise may appear, Generally, coefficients of yx and y2 will 
differ only in the signs of the terms which contain a and sine a. The first 
condition is 

S D E 2 = S D F . D E . 

From § 84, we have 

2 D E 2 = 7-8 ( / ? + 2/3 cos2 0 — 3 sin 0 cos 0). 

I t will be seen, f rom Fig . 24, tha t D F = - D L + L F =.yt (or yt) + L F, 
D L in the sketch being negative on the r igh t of K, and that , therefore, in 
place of the values of the section just referred to, we shall write 

D F = », + s m > 3 + s m 0 ( y _ y ) on the le f t of K ; " 1 sin/3 + sin a " ' 1 

D F = y. + s m / 3 ~ s ine _ . , f K_ 
' sin 0 — sin a w o J 2 " s 

For the value of the second member of the above equation of condition 
between a and —0 we have then, since D E = r (cos8 — cos0), 

r2 f " [yx (cos 8 — cos 0) + • ^ T — (sin 0 cos 6 + sin 8 cos d — sin0 cos 0 
J ^ sin p sin ci 

— cos 0 sin 0)]* d 8 = r2 Qa (sin a — a cos ,3 + sin 0 — 0 cos 0) 

4 . ^ (sin a sin 0 — A cos2 a — a sin 0 cos 0 + cos a cos 0 
' sm 0 + sin a v 

+ sin2 0 — i cos2 0 —0 sin 0 cos /3)]. 

Likewise, for the value of the second member between a and + 0 

* Compare § 84. 



r 2 j i i 2 h ( C ° S * ~ C 0 8 + si '¡-Saa (sin ^ C0S » ~ s i n * 008 * ~ s i n *<»s 3 

+ cos 0 sin e)F d 8 = r* [>s (sin /3 - 0 cos 0 - sin a + a cos 0) 

+ sin g — sin a ( s i n 2 ~ * c o s 2 & ~ & s i n P c o s P ~ « sin 0 — J cos2 a 

+ a sin /3 cos 0 + cos a cos /3)]. 

Equating the sum of these two quantities which make up the second 
member, with the first member, we obtain the first equation of condition, 
which, when cleared of fractions, becomes 

y0 (2 sin8 ¡3 sin/3 cos2 0 — 2 0 sin2 (3 cos ¡3 — cos2 a sin 0 + 2 cos a sin 0 cos 0 
— 2 sin2 a sin 0 + 2 a sin a sin /3 cos 0) + y, (£ sin 0 cos2 3 — sin» a 
+ a sin3 a cos 3 + 0 sin2 a cos 0 + £ cos2 a sin /3 — cos a sin 0 cos 0 
— i sin a cos2 a — a sin a sin 0 cos 0 - f sin a cos a cos 0 + sin a sin2 ¿3 
— i sin a cos2 0 0 sin a sin 0 cos 0) + Q sin 0 cos2 3 + sin» a 

— a sin2 a cos 0 + /3 sin2 a cos 0 + J. cos2 a sin 0 — cos a sin 0 cos 0 
+ £ sin a cos2 a — a sin a sin 0 cos 0 — sin a cos a cos 0 — sin a sin2 0 
+ i sin a cos2 0 + 0 sin a sin 0 cos 0) = r (sin2 0 — sin2 a) (p + 2 0 cos2 0 
— 3 sin/3cos/3). 

95. Second Equation of Condition. - The next condition to be satis-
fied is 2 D E = 2 D F, or, introducing the values of these quantities from 
the preceding section, 

^ ( c o s . - c o s = 

+ i n • W c i i . 

Performing the indicated integration, and clearing of fractions, we obtain 

y0 (2 0 sin2 0 — 2 cos a sin 0 - f 2 sin 0 cos 0 — 2 a sin a sin 0) + yx ( _ 0 s i n
2

 a 

— a sin2 a + cos a sin 0 — sin 0 cos 0 + a sin a sin 0 - f 0 sin a sin 0 
— sin a cos a + sin a cos 0) + y, (— 0 s i„2

 a + 0 sin2 a + cos a sin 0 
— sin 0 cos 0+ a sin a sin 0 — 0 sin a sin 0 + sin a cos a — sin a cos 0) 
= 2 r (sin2 0 — sin2 a) (sin 0 — 0 cos 0). 

* Compare § 84. 

96. Third Equation of Condition. —The third condition, in the modified 
from of §59, is 2 D E . D B = S D F . D B . S inceDB = r (s in0 — sine), 
this condition becomes, by multiplying the previous condition by D B, 

, r+0 
r 3 I (sin 0 cos 9 — sin 9 cos 8 — sin 0 cos 0 + cos 0 sin 9) d 6 

J 0— 

= r 2 / ^ [y, (sin 0 - sin , ) + J g " ^ (sin2 p - s in 2 , ) d 9 

+ ^ f \ y * (sin/3 — sin 9) + s i n g ° Z s i a a ( s i n 3 — 2 sin /3 sin 0 + sin2 9)] d9* 

which, when integrated and cleared of fractions, gives 

y0 (2 0 sin8 0 — a sin 0 — sin a cos a sin ,3 + 2 sin2 0 cos 0 — 2 a sin a sin2 0 
+ 0 sin a + sin a sin 0 cos 0 — 2 cos a sin2 0) + y, (— f sin2 0 cos 0 
+ cos a sin2 0 — 0 sin2 a sin 0 — a sin2 a sin 0 + sin2 a cos 0 — $ sin2 a cos a 
+ £ a sin 0 — i sin a cos a sin 0 + £ 0 sin 0 + 0 sin a sin2 0 + a sin a sin2 0 
— £ a sin a — £ 0 sin a + £ sin a sin 0 cos 0) + y2 (— £ sin2 p cos 0 
+ cos a sin2 3 — 0 sin2 a sin 0 + a sin2 a sin 0 — sin2 a cos 0 + £ sin2 a cos a 
+ £ a sin 0 + 1 sin a cos a sin 0 — $0 sin 0 — 0 sin a sin2/3 + a sin a sin2 0 
+ £ a sin a — £ 0 sin a — f sin a sin 0 cos 0) == 2 r sin 0 (sin2 p — sin2 a) 
(sin 0 — 0 cos p). 

97. Reduction of Equations. — If the second equation of condition is 
multiplied by cos p, and added to the first, there results an equation in which, 
as soon as we write 1 — sin2 a for cos2 a, and 1 — sin2 3 for cos2 p, there will 
be found a common factor (sin2 p — sin2 a). This being cancelled out, there 
results (1.), § 92. The second equation again may be divided by 2, and then 
factored, by simple inspection, into (2.), § 92. Finally, the second equation 
of condition may be multiplied by sin 3, and subtracted from the third, when, 
upon factoring, we obtain (3.), § 92. 

It will be seen that the solution of (4.), (5.), and (6.), § 92, for any given 
arch, and for several values of a, will not involve much work, owing to the 
recurrence of the known factors denoted by a, b, c, d, and e. As the arch 
may subtend any angle, it will not be expedient to go into calculations here 
for any special values of 0. One case will be taken up later. 

98. Values of H, &c. — When the desired ordinates for any 
arch are computed, we have the option of obtaining the values 

* /'sin2 9 d 9 = J (9 — sin 9 cos 9). See also note to § 84 



of H, of the vertical components of the abutment reactions, and 
of the ordinates for bending moment, either by graphical con-
struction, or by formulae similar to those applied to the parabolic 
rib. By noticing the expressions to be substituted for b, c, and 
k in the case of the circular arch with hinged ends, one can 
readily adapt the formulae of § 63 and § 65 to the computations 
for this case. The orclinates to the circular arch will be the 
same as in § 85. 

99. Table of y0, yx, and y2 for Semicircle. — We may, how-
ever, obtain the ordinates y„, &c., for a semicircle with com-
parative ease, and, as such a rib is sometimes used for large 
roofs, these values may be convenient. Semicircular masonry 
arches, having backing above the abutments, present a different 
case. 

If « is taken as 20° or .3491, sin a = .3420, cos a = .9397, and 
i it —• 1.5708; hence, in §93, ^ = .5117, and (5.) and (6.) be-
come 

whence yx — .326 r, and y2 — (.108 r. By substitution in (1.), 
§ 93, y0 = (1.5708 - .2187 - .0357) r = 1.316 r. 

If similar computations are carried out for other values 
of a, we shall complete the following table for a semicircular 
rib with fixed ends: 

a yi- 'Jo-Vi-
0° .241 r 1.330 r .241 r 

10 .288 1.326 .183 
20 .326 1.316 .108 
30 .360 1.298 .011 
40 .387 1.275 — .125 
50 .413 1.245 — .330 
60 .434 1.210 — .665 
70 .455 1.170 — 1.333 
80 .475 1.125 — 3.319 

Other intermediate values can be obtained, if desired, by the 

formula for interpolation, § 45. The number of decimals it is 
desirable to use in any particular case will depend upon the 
value of r. The equilibrium polygons for these ordinates have 
been drawn in Fig. 25, and from them we get the different 
values of H, for a weight W at the several divisions, as shown 
in the accompanying stress diagram. 

100. Example .—As an application of these results, let us 
draw the equilibrium curve for a semicircular arch of uniform 
section carrying only its own weight. As this weight is sym-
metrically disposed, y{ = y2'. By drawing the stress diagram 
of Fig. 25 to a sufficiently large scale, we shall find by 
measurement, that H, for a weight at the crown, 10°, 20°, &c., 
from the crown, will be .46, .44, .39, .31, .23, .14, .07, .02, and 
.01 W respectively. If we double all of these values except 
the one for a weight at the crown, and take the sum of the 
whole, we shall obtain for the horizontal thrust, H ' = 3.68 W 
for 17 loads, each equal to W, at the 17 points of division in 
the whole arch. 

To find yx\ multiply each yx by its H, remembering, that, 
when the weights are on the left of the crown, the values of y2 

in the table of § 99 become yx, and that we may, therefore, 
before multiplying by H, add together yx and y2 for each point 
except the crown, and then divide the sum of these products 
by H', just obtained. (Compare § 67.) For example, for a 
load W on each of the two points distant 30° from the crown, 
H yx + H y2 = .31 W (.360 + .011) r = .115 r W, the value of 
M at the abutments. Performing the operations, and taking the 
algebraic sum of the products, we get .6225 r W for the total 

moment at either abutment, and = 0.17 r = ?/,' = v '. 
3.68 W 

To construct the equilibrium curve, we divide the semicircle 
A C B, Fig. 26, into eighteen equal parts, each subtending 10°, 
and draw verticals through the points of division. Assume the 
weight of the arch to be represented by a vertical line of any 
convenient length. Since the loads are supposed to be con-
centrated at the points of division, one-eighteenth of the gross 



weight of the arch will be found at each of these points, and one-
thirty-sixth at A and B; for A and B will each carry directly one-
half of the adjacent division. Therefore, beginning and closing 
with one-thirty-sixth, space off the load-line into eighteenths; 
from the middle of the load-line lay off H' = 3.68 W = 3-0, 

3 68 
where W — weight of one division, or H ' = = .204 of the 

whole weight of the rib. One-half of this load-line is 1-3. Lay 
off y( and y'_ = .17 r, at A and B, and draw the sides of the 
equilibrium polygon parallel to the lines which radiate from the 
extremity of H' to the points of division of the load-line, thus 
obtaining the curve E G D. The second half of the curve was 
obtained by spacing off 0'- 3 to the left. 

101. Practical Application. — Having at hand a wooden 
model of an arch-ring, representing the voussoirs, or stones, of 
a semicircular arch, we tried some experiments as tests of the 
accuracy of this method of analysis and of the correctness of 
these results. The arch is represented by Fig. 26, and consisted 
of forty-two independent voussoirs. The span, A B , of the 
middle line of the ring, 18 inches, was 13.09 times the thickness 
of the ring, and the structure would apparently just stand 
alone when left to itself: a slight additional weight at the 
crown would cause that part to sink, the haunches to move 
outwards, and the ring to fall in pieces. Considering that this 
arch, so long as it rested squarely on the faces at A and B, was 
fixed in direction, or not free to turn at the ends, we laid off 
at A E and B D the value of yx obtained in the last section, 
and drew the equilibrium polygon, as just described, on the 
centre line of the ring, beginning at D with a line parallel to 
0-4. I t will be noted that no line is used from 0 to 1; for the 
weight represented by 1-4 is directly supported at B ; while 
the amount 4-5 is the weight concentrated on the first vertical 
just above D. 

As the arch is a continuous ring, the weights may properly be 
concentrated at a greater number of points; so that finally the 
true equilibrium curve will pass through the vertices of the poly-

/ 
gon we have just constructed: the difference between the 
two is unimportant, however, and is only appreciable near 
the crown. The bending moment at any point has been proved 
to be equal to H multiplied by the vertical ordinate between the 
centre line and the equilibrium curve, or, by § 10, also equal to 
T, the thrust along the tangent to the equilibrium curve, multi-
plied by the perpendicular from a point on the centre line to 
this tangent: therefore if we draw E F as this tangent, the 
bending moment at A will equal either H. E A, or the thrust 
along E F multiplied by the perpendicular from A. The direc-
tion of the thrust E F, if prolonged, cuts the springing joint 
very close to the outside edge: it will also be noticed that the 
equilibrium curve approaches quite near to the edge of the 
voussoirs at the crown G. Now, as Ave reminded the reader in 
§ 11 that the force T, or O'-l, at the distance F A from the cen-
tre line of the rib, is equal to the same force at the centre line 
and the couple which produces bending moment, conversely, 
the resultant of the pressure of this rib at the end A must cut 
the base in the prolongation of the line E F : in short, the tan-
gent to the equilibrium curve at each point gives the direction 
and point of application of the resultant thrust at that right 
section of the rib to which it belongs, as ascertained by erecting 
a vertical from the middle point of the section. 

102. Limiting Position of Equilibrium Curve. — If, as is 
usually the case, the intensity of the resisting force of the abut-
ment at A is assumed to vary uniformly from one edge to the 
other, then, in case the resistance is zero at the inside edge and 
a maximum at the outside edge, the intensity at all points can 
be represented, as shown in the small sketch marked A', by the 
ordinates of a triangle whose base is the breadth of a voussoir, 
and whose longest ordinate is the intensity of the pressure at 
the edge near F. The total pressure will be equal to the area 
of the triangle, and the resultant will pass through the centre 
of gravity of the triangle, cutting the base at one-third of its 
length from the outer edge. If there existed any tension near 
the inner edge, we should have two triangles, as shown in the 



other sketch, the inclined line cutting the base at the point 
where the stress changed from tension to compression; and the 
resultant of the two stresses must, since they are of opposite 
kinds, lie outside of their separate resultants, and on the side 
of the greater one. This fact as to the position of the re-
sultant of two opposite parallel forces was indicated in § 11, 
Fig. 2, and is one of the well-known properties of the lever, 
as proved in Mechanics. 

Since, then, the resultant force, or the thrust on a section of 
the rib of Fig. 26, at A, B, and C, passes near the edge of the 
section, or, as it is often stated, outside of the middle third of 
the cross-section, we should expect to find tension at the 
inside edge of the joint at these points. As this model consists 
simply of wooden blocks placed in juxtaposition, a voussoir 
cannot exert tension on its neighbor at any point of contact, 
and movement must immediately take place when the weight 
of the rib is allowed to act freely, rotation being set up about 
the outside edges at F, G, and Q. The crown will sink, the 
haunches, will move outwards, and the arch may be expected 
to fall. The reader will remember that it was explained, 
in § 12, that an arch tends to move away from the equilibrium 
curve. 

Since any material is compressible, it is probable that the 
assumption of a uniform variation of intensity of stress at any 
section will not be strictly t rue ; that the stress may not be 
exerted'over the entire surface of the originally plane joint; 
and that therefore the equilibrium curve may pass somewhat 
outside of the middle third of the joint without causing the 
arch to fall, although the joint will then open slightly at the 
edge where no pressure is exerted, by reason of the compression 
causing the joint to be no longer plane. But such an assump-
tion gives an additional element of safety to a design, when the 
engineer so proportions his rib of rectangular section that 
the equilibrium curve of the load at any time shall never 
leave the limits of the middle third, and the tensile strength 
of the cement will not then be relied upon to assure stability. 

103. Model as hinged at Three Points. — T h e arch of 
Fig. 26 stood when the string which at first passed around the 
exterior was removed, although a slight change of shape was 
observable. A close inspection, however, showed that the vous-
soirs at the crown and the two springings were then in contact 
only at the outer edges. The rotation at these joints, indicated 
in the last section as probable, had commenced; but, as soon as 
the rib became thus hinged at three points, it was in equili-
brium. I t is desirable, then, as a further test, to draw the 
equilibrium curve for this rib hinged at the crown and spring-
ings. As the change of shape and curvature was very little, 
the supposition that the weight of the voussoirs is concentrated 
along the arc K Q will be sufficiently near the truth for our 
purpose. 

The half-weight being represented by 1-3, the first step is to 
find the value of H for this case, when the load is concentrated 
at intervals of ten degrees along the outer semicircle. We can 
avail ourselves of the formula of § 23, finding the different 
values of b by measurement, or from tables of sines, since 
b = r sin d, and summing up the several amounts of H for the 
whole semicircle; or, as is done in this figure, we may use the 
principle explained in § 30, that any two sides of the funicular 
polygon, or two tangents to the equilibrium curve, will meet, 
when prolonged, on the vertical through the centre of gravity 
of the included weight. Since the arch is symmetrically loaded, 
the thrust at the crown will be horizontal, and therefore lie in 
the line K L ; the centre of gravity of the quadrant arc K Q 
will be on the vertical line P L, drawn at such a distance, K L, 
from the crown as to satisfy the value for the ordinate from the 
centre of a circle to the centre of gravity of a circular arc, viz., 
radius X chord , , _ . ' a 
"length of arc ' a t t i e r e t o r e t h e thrust at the springing will 

lie in the line QL, drawn from Q to the intersection of the 
other two forces. As 1 - 3 represents the weight of one-half the 
arch, and the thrust at the crown is parallel to 3-0, a line from 
1, parallel to Q L, will complete the triangle of forces, an'" 



cutting the horizontal line at 9, will determine 3-9 to be the 
desired value of H. The equilibrium polygon can now be 
drawn from Q to K, its sides being successively parallel to 
lines radiating from 9, the first line being 9-4 and the last one 
9-6. These lines are not drawn in the stress diagram. The 
other half of the polygon may be added, if desired. 

I t will now be seen, that, excepting the hinged points, the 
nearest approach of the equilibrium curve to the edge of a 
voussoir is at P, where it is still well within the rib, and conse-
quently no further movement of the rib is to be expected. 
Another model, somewhat thinner than the one here illustrated, 
was experimented with, and would not stand. If the arch of 
Fig. 26 is slightly weighted at K, the joint at P begins to open 
on the outside, confirming the result, that the equilibrium curve 
here passes nearest to the inner edge. If it be objected that 
the change of outline previously referred to carries the portion 
of the rib near P farther from the centre, so that the equilibrium 
curve may run nearer the edge than we have plotted it, we 
rejoin, that such a movement, carrying the centre of gravity, 
and hence the line P L, in the same direction, will cause Q L 
to make a slightly less angle with the vertical, diminishing the 
value of H, and moving the equilibrium curve also a little away 
from P. 

104. Model as hinged at Abutments. — For the purpose 
of making an additional test of our results, we finally placed a 
small wire at A and B, thus hinging the rib on its centre line at 
these points. The equilibrium curve for one-half of the arch is 
A N K. The amount of H is determined by computation from 
the formula of § 85, which becomes, for a semicircular rib, 

COS2 ^ H — ^ W ; and the summation for the whole arch, carrying 

W at intervals of ten degrees along the centre line, is 
H = 2.86 W, laid off at 3-8. Radiating lines between 8-4 and 
8-6 will enable one to draw A N K. The arch, when released, 
fell in ruins, and the first joint to open, on the outside at the 
haunch, was near N, lower than P in the former case. 

We have dwelt on these curves at some length, as they give 
BO good a confirmation of previous deductions and results, and 
as they mil aid the reader in assuring himself that he under-
stands the method of treatment. Such diagrams must, fox-
accuracy, be drawn to quite a large scale, and the results will 
then be very satisfactory. 

, E * e C * o f T e m p e r a t u r e . - I t remains to 
find the effect of change of temperature on the circular rib with 
fixed ends As was previously indicated in § 76, we must find 
the height A G = B I = y „ at which the equilibrium line shall 
be drawn m Fig. 27, by the condition that the change of in-
clination at the abutments, o r l E F = 0 . If the notation of 
the angles subtended by portions of the arch is as before, and 
as marked in the figure, we have E F = D E - «,„ and 

/
+ P 

^ ^ r ( r e o s 6 — rcos / J y , ) d 6 = 2 r ( r s in /S — r f i c o s / 3 — / 8 ) = 0, 

or 
/s in 8 \ 

Vr = r ( - ^ - c o s 8 ) , 

which becomes, for a semicircle, 

= — = 0.632 r . 

The first term of (1.), § 76, therefore becomes 2 D E 2 — Vl ¿ D E 
From § 84, ^ D E2 = r> (/? + 2 £ cos2 p - 3 sin p cos £), while 

yi • 2D E gives, as above, ( ~ i - c o s p j ( 2 s i n p - 2 p c o s p ) ; 

so that the first term reduces to r3 ^ + sin p e o s p - 2 s i n ' A a n d 

(!•)> § 76, takes the form of 

H, . r« (¡3 + sin p cos 0 - = ± 2 E I i e r sin 0. 

llt= ± _ . 



For a semicircle, the formula for horizontal thrust simplifies 
i n to 

t r r 2 E I 

The bending moments at the crown and springing can now be 
readily written, and compared with the values of § 90. The 
horizontal thrust for the semicircular rib fixed at the ends is 
five times as great as when the ends are hinged. The remarks 
of § 91 in regard to shear will apply equally well here. 

For the Elliptic Rib, see § 153. 
106. Maximum Stress determined by Length of Ordi-

nate ; Rib of Rectangular Section. — It may sometimes be 
convenient to have the means of determining from a simple 
inspection of a diagram, by noting the position of the equili-
brium polygon, how much the maximum intensity of stress at 
any section exceeds the mean intensity. As the mean intensity 
f - T - f S where T is the direct thrust and S is the area of 
cross-section, and is obtained at any point from the known 
value of the thrust in the side of the equilibrium polygon, the 
maximum intensity of stress will be readily found by multi-
plying by the proper ratio. The stress arising from bending 
moment in a solid section is always taken as uniformly varying 
(see Fig. 2). The combination of direct stress with that from 
bending moment will also give a uniformly varying stress. 

Considering, first, the rib of rectangular cross-section, Fig. 28, 
we see, that if we call the intensity, A C, of direct stress unity, 
a bending moment which will produce a compression, D E, of 
unity at the upper extreme fibre, and a tension, C A, of unity 
at the lower extreme fibre, will bring the resultant stress at all 
points to the amounts indicated in the left-hand sketch, twice 
the mean intensity at one edge, and zero at the other. If the 
cross-section is treated by the method of Part I., " Roofs," p. 
57, Fig. 24, in order to make an equivalent area of uniform 
stress equal to the maximum, we get the shaded area of the 
section on the left, which is evidently one-half of the whole 

section. The centre of gravity of this area, lying at one-third 
the height from the upper edge, will be the point of application 
of the resultant force on the cross-section. If the bending 
moment is reversed, the sketch will be inverted: hence, when 
the line of thrust, or the side of the equilibrium polygon, passes 
at one-sixth of the depth above or below the axis of the rib, the 
intensity of stress at that edge of the rib which is nearer the 
line of thrust will be twice the mean intensity. 

If, again, the maximum intensity is to be thrice the mean, 
the line F G , starting at a distance B F = BBD, still cuts C D 
at its middle point in order to make the total tension from 
bending moment equal to the total compression from the same 
cause. Noting where F G cuts A B, we have the point of no 
stress at f h from the upper edge of the section: hence the 
shaded areas are drawn as given in the section on the right, 
the upper one for compression, the lower one for tension. The 
area of the upper one is \ b . f h = § b h: the lower one, being 
similar, but of one-third the altitude, has one-ninth the area of 
the other, or ^\bh. The difference is -J b h, or one-third the area 
of the cross-section, as required if the maximum intensity is to 
be three times the mean. Letting these areas represent the 
forces, and taking moments about the upper edge, each force 
being applied at the centre of gravity of its triangle, we have 
for the position of the resultant, measured from the upper 
edge, 

p i - * ' 1 -

If, therefore, the line of thrust passes at | h from the edge, or 
one-third the depth from the axis, the intensity of compression 
on the outside fibre nearer the line will be three times the mean 
compression, and at the other edge there will be a tension equal 
in magnitude to the mean stress. 

In the same way it may be shown, that, when the line of 
thrust cuts the edge, the compression there will be B I, four 
times the mean, and the tension at the other edge will be A K, 
twice the magnitude of the mean stress. Thus it will be seen, 



that, for every one-sixth h that the line of thrust is distant from 
the axis, the compression on the square inch will be increased 
by unity on the side to which the line deviates, and dimin-
ished by unity on the other side, the mean compression being 
denoted by unity. This is indicated by the numerals marked 
on the sketches of Fig. 29. 

107. Rib of Two Flanges. — If the rib is composed of two 
flanges and an open-work web, the stress in either flange is 
easily determined. If the line of thrust is in the axis, each 
flange will carry one-half of the direct stress. If the line of 
thrust passes through one flange, Fig. 30, that flange may be 
considered to carry all of the compression uniformly dis-
tributed, and the other flange to be under no stress; for the 
depth of the flange is so small, compared with the whole depth 
of the rib, that no error of importance is involved in consider-
ing the stress as uniformly distributed over the section of one 
flange. If the line of thrust passes without the rib a distance 
equal to its depth, we get, by taking moments at A, Fig. 30, 

Thrust at C X 2 A B = Compression at B X A B ; 
or, Compression at B = 2 X direct stress. 

If moments are taken at B, we find, 

Tension at A = direct stress. 

In the same way, if B' C' = 2 A' B', 

Compression at B' = 3 X direct stress; Tension at A' = 2 X direct stress. 

Hence we may draw a sketch for this rib similar to the one for 
the rectangular rib. The numerals here denote that one flange 
carries once, twice, &c., the entire direct stress. If the rib has 
a plate web, or is an I beam, the above method will give a good 
approximation to the true stresses. If the web is heavy, the 
method of the next section may be applied. 

108. Rib of Circular Section; General Construction.— 
When the rib is of less simple section, we must return to the 

graphical construction first referred to. As an instance, sup-
pose the cross-section of the rib to be a circle. The variation of 
stress on a diameter, in the direction of deviation, is indicated 
by the left-hand sketch of Fig. 31, when the intensity of stress 
is twice the mean at one edge, and zero at the other. By con-
structing, according to the principles already laid down, Part I., 
" Roofs," the equivalent area of maximum intensity, we obtain 
the shaded area of the figure, and then we determine its centre 
of gravity by cutting out the area, and balancing it over a knife-
edge. ̂  The deviation of the line of thrust from the centre of 
the circle, to make the maximum intensity twice the mean, 
and the minimum zero, is thus found, and proves to be one-
fourth the radius. 

• ^ By the construction of the other sketch, taking moments as 
in § 106, or reasoning by analogy, we find that the deviation, in 
order that the maximum shall be thrice the mean intensity of 
compression, and the tension at the other end of the diameter 
shall equal the mean stress, must be one-half the radius from 
the centre: hence, when the line of thrust cuts the edge, the 
maximum compression equals five times the mean, and the 
tension at the other extreme of the diameter is three times 
the mean compression. Thus we get the numerals and their 
positions, as given in the figure. 

In a thin tube of circular, elliptical, or oval section, the 
maximum compression is nearly three times the mean intensity 
of direct stress where the equilibrium polygon cuts the surface 
of the tube; and a tensile stress equal in magnitude to the mean 
will then be found at the other end of the extremity of the 
diameter: hence proportionate distances of the side of the 
equilibrium polygon from the axis of the rib will give twice, 
four times, &c., the mean stress. 



CHAPTER VIII . 

ARCHED RIBS UNDER WIND PRESSURE: HORIZONTAL FORCES. 

109. Wind Pressure on an Inclined Surface. — When 
arched ribs are used, as is often the case, for the support of a 
roof, the pressure of the wind, being normal to the surface, will 
have a different effect upon the arch from that caused by a simple 
weight or vertical force. While referring to Par t I., " Roofs," 
p. 31, for some remarks about the action of wind on a roof, we 
will repeat here, that, if P equals the horizontal force of the 
wind on a square foot of a vertical plane, the perpendicular 
pressure on a square foot of a surface inclined at an angle i to 
the horizon may be expressed by the empirical formula, — 

P sin i1Sicos<-

If, then, the maximum force of the wind be taken as forty 
pounds per square foot, which is an amount sufficiently great 
for the purposes of a design, the perpendicular or normal press-
ure per square foot, on surfaces inclined at different angles to 
the horizon, will be: — 

Angle of Normal Angle of Normal 
Roof. Pressure. Roof. Pressure. 

5° 5.2 lbs. 35° 30.1 lbs. 
10 9.6 40 33.4 
15 14.0 45 36.1 
20 18.3 50 38.1 
25 22.5 55 39.6 
30 26.5 60 40.0 

For steeper pitches, the pressure may be taken as forty 
pounds. 

The resultant pressure at each of the joints in the rafter 
which is on the side of the wind is then ascertained as in the 
case of any roof. If the roof surface is curved, any short por-
tion between two points where braces abut, or purlins rest, may 
be considered as straight, and the wind force will then be per-
pendicular to such portion ; this pressure being the only force 
exerted by the wind. If the resultant pressure at each joint 
is then found, either graphically or otherwise, and is resolved 
into vertical and horizontal components, we may include the 
vertical component in the analysis already carried out in detail. 
The effect of the horizontal component remains to be con-
sidered. 

110. Form of the Equilibrium Polygon; Vertical Com-
ponent of Reaction. —The tendency of such a force to distort 
the arch being resisted by the stiffness of the rib, the equili-
brium polygon for a single horizontal force H, applied at any 
point I on the rib, Fig. 32, must, if the arch is hinged at the 
ends, be two straight lines, which start from the two springing 
points, and meet on the prolongation of the line of action of 
H ; for the rib must be in equilibrium under H and the two 
forces at the abutments. In the case of the arch A C B of Fig. 
32, the reactions at A and B must lie in the lines A G and B G, 
the point G being found on the horizontal line I G, but its loca-
tion on that line being at present unknown. It will be evident, 
when we conceive H to be applied to the equilibrium polygon 
at G, that the side A G will be in tension, while G B is com-
pressed : therefore the reaction at B will be a thrust, as usual, 
but that at A will be a tension ; and, if H were the only applied 
force, the arch would tend to rise from the abutment A, and 
would require fastening down. 

As H acts at a vertical distance I L above the springing line, 
the moment which tends to overturn the frame is H . I L. If 
we take either abutment as the axis of moments, the condition 
of equilibrium .that the moments of exterior forces must balance 



gives H . I L = P . A B; and consequently the vertical component 
of the reaction at either abutment is, — 

being tension at the side nearer to I, and compression on the 
other side. H will be partially resisted at each abutment. The 
stress diagram will be a figure like 1 2 3, in which 3-4 and 4-1 
are — P and Hi for A, while 2-4 and 4-3 are H2 and + P for B, 
1 -2 being equal to H. 

111. Rib hinged at Three Points. — A s was the case with 
arches under vertical forces only, so also with ribs under a wind 
pressure: the hinging of the rib at three points makes the analy-
sis at once very simple. If the arch of Fig. 32 is pivoted or 
jointed at A, C, and B, C being usually taken at the crown of 
the rib, and the external horizontal force H is applied at I, the 
line of thrust for the right-hand portion of the arch must be 
B C. This will be plainly seen, if we consider that the part 
B E C of the rib is supported by a reaction at B and the thrust 
of the other half of the arch at C, while there is no other force 
exerted upon i t : for equilibrium, therefore, these two forces 
must lie in one straight line, which can be no other than B C, 
drawn through the two points of application. Then, as proved 
before, the reaction at A must lie in A G, drawn to the inter-
section of H with B C. I t may be noted that 1-4, or H„ is 
always greater that one-half of H. 

112. Value of Bending Moments. — If we make a section 
at any point E on the right of C, the only force acting on the 
right of the section is the inclined reaction at the abutment B. 
The bending moment at E is, therefore, equal to (3-2) E N, or 
to either of the equal products H 2 . E F and P . E K. The bending 
moment at any point between C and I, for the same reason, will 
still be expressed by H 2 . E F or P . E K, but will be of the oppo-
site kind, since we passed a point of no bending moment at C, 
and E F or E K is drawn in a reverse direction. For sections 
between I and A it will be easier to take the force on the left 

of the plane of section, which will be the tension of the left 
abutment, as this is the only force on that side : the bending 
moment will therefore be ^ . E F o r P . E K . I t will be per-
ceived, on a little reflection, that these moments will agree in 
kind with those between C and I ; the reversal of the ordinate 
E F from the outside to the inside of the rib offsetting the 
change from H2, compression, to H„ tension. The application of 
H at I to a moderately flexible wire of the shape A C B would 
flatten the left portion, and make the right portion more convex. 

We may very simply consider the bending moment at any 
point of the rib to be represented by the product P . E K, where 
E K is the horizontal distance or abscissa from E to the equili-
brium polygon. We thus have an evident analogy between the 
equilibrium polygons for horizontal and for vertical forces, if 
the ordinate for bending moment is taken parallel to the applied 
force, and is then multiplied by a constant, P in this case, H in . 
the other. The point of contraflexure is where the polygon 
meets the rib, and one point of maximum flexure is at I, the 
point of application of the external force. 

The insertion of pivots at three points of the rib enables one 
to draw the equilibrium polygon at once for one or all of the 
forces to which the roof may be at one time subjected, and we 
will therefore proceed, without further delay, to consider the 
case of the parabolic rib hinged at the abutments only. 

113. Parabolic Rib hinged at Abutments; Formula for 
a;0. — If Fig. 33 represents a parabolic rib hinged at A and B, 
with a horizontal force H applied at I, the point of intersection 
of A G and B N must be determined. Since it will lie upon 
the horizontal line drawn through I, the distance of G horizon-
tally from the middle of the span will be denoted by x0_ positive 
when measured from the middle away from I. The well-known 
condition that change of span shall be zero may be put either 

2 H 2 . E F . D E (from B to I) + 2 H, . E F . I) E (from A to I) = 0, 

or 
P . 2 E K . D E = 0, (1.) 



m which latter expression P, being constant, may be omitted. 
If 6, as usual, denotes the horizontal distance of I, the point of 
application of the force, from the middle of the span, and c 
equals the half-span, we can find that 

— j-^i (5 cs - = i (5 - O c, (2.) 

when b = nc. We shall see that z0, depending for its sign upon 
that of b, will always be laid off on the opposite side of the 
centre from b, since it is so first taken in the figure, and hence 
that H„ the horizontal tension, is always greater than one-half 
of H. The value of x0 is independent of k. 

114. Proof of Formula. — Retaining the usual notation, we have 

A L = e - b , L B = c + b; and G Q = I L = ^ (c2 — 52). If x denotes 
the horizontal distance, B D, to the abutment, from any ordinate, D E, on the 
r ight of I we have 

D E = | ( 2 c x — XS), and D F : D B = G Q : QB, or D F = -2 (c
2—b2) x 

c C XQ' 

As E K : E F = Q B : G Q , and E F = D E - D F, we have 

E K = (D E — D F ) and E K . D E = ( D E ! — D E . D F ) 
I . Y ' G Q ' 

Substituting the values of these quantities, we get 

2 E K . D E =J ~ cx x-y (2 c z x") x ^ x 

as the expression which is applicable f rom B to I. From A to I the abscissa 
E K will be limited by the line A G, which differs in inclination from B C. 
If x, however, is now reckoned from A to the r ight , and A Q, denoted by 
c + x0, is used in place of Q B, we have an expression for the space 
from A to I. This expedient was used in previous sections. As A G is in 
tension while B C is compressed, these two portions of (1.), § 113, will have 
opposite signs, and, when integrated, must be equal : we may, therefore, in 
equating, strike out the common constant quantities, obtaining 

( C - *<>) J l + b (4 ca Xs 4 c x8 -f- x*) d x - (c2 - b ^ f i + b (2 c x-- z*) d x 

= (P + x 0 ) / J "'6 (4 c* x2 - 4 c x* + x*) d x - (e2 - (2cx>—x*)dx. 

Performing the indicated integration, we get 

(*-*<,) [ | * (c+by-c ( c + b y + i (c+by]-(c2-b2) [§ c (c+by-* (c+by] 

which at once reduces to 

115. Another P r o o f . - W e may, if we please, find the desired 
distance ^ by another method. Imagine the roof of Fig. 34 to 

.have two equal but opposite forces, H, applied at the two points 
G and G in the same horizontal line. These forces, if acting 
alone, will tend to diminish the span of the roof; there will be 
no vertical forces; and as the bending moments caused by 
them in case the rib did not rest upon abutments, would be 
directly proportional to E F, the change of span would be 
proportional to ¿ E F . D E from C to G. When the rib is 
retained by abutments, one H will give rise to H, at A, and H, 
at B : the other H will cause H2 at A, and H, at B. As H, is 
always opposite in sign to H2, the resultant force at each abut-
ment will be H, - H,, and is manifestly a tension exerted by 
the abutment on the rib. The change of span due to II, - H„ 
will be proportional to ¿ D E2 from A to B (compare § 74), and 
this change of span must offset the one from H. 

If D is at a distance x from the middle of the span, and C is 

distant b from the same point, we have D E = - „ ( V - and 

k 
E F = -2 (P ~ z2)- Since the rib is acted upon symmetrically, 

we need only integrate from the middle to one side; and we 

therefore have, when we drop the common factor cr 
(H, - H2) fi („« - x*y d X = H fi (b* - X2) (c2 - x2) d x, 



or 

(H, - H2) Ac= = H (f b*c*-& C5). (a.) 

From the stress diagram of Fig. 33 we see that 

Hx : H2 : H = c -)- x0 : c — x0 :2c; whence 

Hï — Ho = H c + a r ° ~ c + *o = H 2c c 

Substituting this value in (a.) we get, as before, § 114, 

116. Formulae for H, and P. — The value of Hi is seen to 
be, from the above proportion, 

H- = H " 2 ? = 11 (* + £ ) = H + 

We also have, from Fig. 33, 

P : H = G Q : A B = - 2 ( c ! — 2>2) : 2 c ; c 
or 

The reader may now calculate, if desirable, numerical values 
of xw Hj, and P, for different values of b, as was previously done 
for vertical forces. The several values of £0 for four different 
positions of H are plotted in Fig. 33. 

117. Shear and Direct Stress. — The shear will undergo 
some modification when the force applied to the arch acts 
horizontally, instead of vertically. The stress diagram is, as we 
have seen, a triangle, whose base is H, and whose altitude is P, 
represented by 0 1 2 of Fig. 36. At A of the parabolic rib the 
thrust is 1-0 : if 1-4 is drawn parallel to the tangent at A, and 
0-8 perpendicular to it, 1 -8 will be the direct thrust, and 8-0 
the negative shear, on a right section at A. This shear will 

/ 

diminish at successive sections until we reach a point where the 
tangent to the rib is parallel to A G, when the shear will be 
zero, and the direct thrust 1-0. Beyond this point the shear 
will be positive until we pass I. At the abutment B, there is 
a tension 2 -0 : if 2-7 is drawn parallel to the tangent at B, 2-9 
will be the direct tension, and 9-0 the shear, again negative, on 
a right section at B. In the same way the shear just to the left 
of I will be 10-0, positive, and to the right of I, 11-0, negative. 
I t will be remembered that positive shear acts upward on the 
left of any section. 

118. Shear Diagram. — A shear diagram may be drawn for 
a rib under a horizontal force by a similar method to the one 
previously explained, showing the vertical shear which will be 
projected on each right section. Lay off at a the quantity 
P = 3-0 = a f , which is the vertical component of the reaction 
at A, and as P is constant across the entire span, being, in fact, 
the only external vertical force, complete the rectangle afdb. 
The vertical component which is required at A to produce 1-4 
is 3-4, laid off at a e ; and at B is 3-7, laid off above the line at 
b I, because 0-2 is a tension. A load of uniform intensity hori-
zontally being required to put a parabolic rib in equilibrium', 
and Hx being constant as far as I, draw e eg through c, the middle-
point of a b, and draw In so as to pass through c, if prolonged-
Then will the vertical ordinates between the inclined lines-
a n d / d represent the shear on a vertical section, and the projec-
tion of these ordinates on the respective normal sections will be-
the shear in the web. Thus ef is 4-0, which gives by projection 
8-0, ig is 0-5, and in is 0-6. As in previous diagrams, the 
ordinates will be measured from the inclined lines, positive 
above and negative below, as marked. The shear will change-
sign at the point of maximum bending moment, and it will 
plainly be equal to P at the crown of the arch. 

If it is remembered that the abutment reaction at B is of the 
opposite kind to that at A, or to the usual reaction for a 
weight W, the rotation of the diagram on the right of i, from 
the customary position below the line to its present place above 



a b, will be accounted for. The force H has been assumed on 
the right in Fig. 36, in order that this shear diagram may be 
compared with that of Fig. 8. The vertical shear from a nor-
mal force may be found from an addition of these two figures. 
Moment diagrams cannot be added together in the same way, 
as the values of H and H, or H2 will not be the same in the 
two cases. 

119. Circular Rib hinged at Ends. — The method of find-
ing Xp introduced in § 115, is easily applied to the circular rib 
hinged at the ends; while the process of § 114 is considerably 
more involved. Let the angle subtended, in Fig. 35, by the 
half arch of radius r be denoted by p; the angle from the crown 
to the point of application of the external horizontal force, H, 
be a ; and the variable angle from the crown to any point be 6. 
Let H be applied at two opposite points at the same level, 
as shown by the arrows in the figure, and let the abutment 
reactions be Hi — H2. Then, by parallel reasoning to that of 
§ 115, we have, if y denotes any ordinate, and a the ordinate to 
the point of application of H, 

(H, — H2) J^ y2ds =H J* (y — a) yds. . 

y = r (cos 6 — cos (3) ; a — r (cos a — cos /3) ; . •• 

(Hj — Ho) r3 f 3
o (cos2 tf — 2 cos a cos ,3 + cos2 0)de 

= H r*Ja (cos2 6 — cos II cos /j — cos 0 cos a -f- cos a cos 0) d t). 

Performing the integration, we get 

(H, — Ho) QP — i sin 0 cos ¡3 + ,3 cos2 ¡3) 

= H (£ a — i- sin a cos a — sin a cos /3 + a cos a cos ¡3). 

As in § 115, X0 = 
_ H t - H2 _ Hi - H, 

H H r sin p: whence 

. a — sin a cos a — 2 cos ¡3 (sin a — a cos a) , j . 
> — r6mP ¡j — 3s in /3cos0 2 0cos'-'0 ' 

115 

If the rib is a semicircle, p = i n; cos p = 0; sin p = 1; and 
(1.) becomes, 

2 r = — ( u — sin a cos a). (2.) 

120. Formulas for H, and P. - The value of H, will be, as 
in § 116, 

, J J A _ I _ a- — sin a cos a — 2 cos /3 (sin a — a cos a)\ 
\ P — 3 sin 0 cos,3 + 2 0cos2/? / 

and 
p H a cos a — cos 0 „ 

— "27 — 2~iiii~3 ' 

or, for a complete semicircle, 

TT ^ + a — sin a cos a „ „ TT " i = 4 H ; P = ^ cos a H. 

121. Experimental Verification. — The values of x0, obtained 
above, can be readily shown to be true by turning the model 
previously referred to through an angle of ninety degrees. A 
moderately stiff wire carefully bent to a curve A G B, Fig. 37, 
symmetrical with regard to the point G (an arc of a circle being 
probably the easiest one to fashion), is suspended from points 
C and D by strings from A to C, and from B to D. If the string 
B D is doubled so as to pass on both sides of the wire above G,' 
A G B will be prevented from swinging round. A thread from 
A to B will hinder the span from enlarging, and will indicate 
by its slackening when the span is narrowed. If, then, a 
weight is attached at E, and, the string at C remaining station-
ary, that at D is moved until B is vertically below A, as proved 
by plumbing the thread A B , C A, when prolonged, will be 
found to intersect B D at F in the vertical line E F, giving the 
desired value of xn. The point of intersection will be slightly 
changed by the weight of the wire, as before suggested in § 81. 
It is worthy of note that, II now being an external pull on the 
rib, in place of the usual thrust, x„ will, in Fig. 37, be found or. 
the same side of the centre with H. 



122. Parabolic Rib fixed at Ends; Formulae foi x„, xx, 
and x2. — Referring to Fig. 38, we will suppose that the exter-
nal force H is applied at I, on the left of this parabolic rib with 
fixed ends; that the desired equilibrium polygon is given by 
the lines L G and N G C ; and that the abscissse, at present 
unknown, are, A L = xu B N = x2, and O Q = the latter being 
measured from the middle of the span, and all being considered 
as positive when laid off as shown in this figure. The rest of 
the notation agrees with that used before. I t may be proved 
that the abscissee have the following easily computed values: 

or 

Severa'l of these values, for different positions of H, are plotted 
in Fig. 38. 

If b is given successive values from 0.1 e to 0.9 c, these quan-
tities will be found to be 

b. xv x0. x2. 

0.1 c 0.35 c 0.002 c 0.35 c 

.2 0.40 0.016 0.38 

.3 0.50 0.054 0.43 

.4 0.69 0.128 0.49 

.5 1.00 0.250 0.56 

.6 1.53 0.432 0.63 

.7 2.51 0.688 0.72 

.8 4.60 1.024 0.81 

.9 11.17 1.442 0.90 

If b exceeds 0.7 c, the point of intersection falls without the 
rib. 

123. First Equation of Condition. — If we remark that Q G, Fig. 38, 
k 

the ordinate to the line of action of II, will be equal to I S, or t o ^ ( c 2 — è 2 ) , 

and tha t R K = D E, we may find the value of E K as follows: 

E K = R N — D N ; R N : R K = Q N : Q G, or B N = R K ' Q N ; 

iherefore 
E K = D E Q N _ D N 

These quantities, in the notation employed, may be written, if x is measured 
from the right abutment, 

D E = c - 2 ( 2 c x — z 2 ) ; Q N = C D N = z2 + :r; Q G = | ( c 2 — Ô 2 ) . 

k 
As will be a common factor in the equations which follow, we shall omit 

it . Substituting these values, we shall get, as the expression to be summed 
from B to I, for the first condition, 

• Z E K . D E = + \ic*x*-icx*+rf)-(x2-\-x)(2cx—x*)^dx. 

If x is measured f rom the lef t abutment, L Q substituted for Q N, and x, 
written for x2, we get an expression which is applicable f rom A to I, or 

2 E K . D E = J C
g (4c a » 2 - -4c:c»+3«) — ( s . + a : ) ( 2 c z - z 2 ) ] d x . 

As in § 114, these two expressions will be equated to make the change of 
span zero, and upon performing the indicated integrations, and multiplying 
through by c2 — 62, we obtain 

( c + ^ - z0) [f c2 (c+J)* - c (C+5)<+He+&)5] - (c2 - &2) [c *2 (c + 6)2 

- i * i ( c + & ) « + 1 c (c + 6)« - \ ( c + J)*] = (e + », + *„) [f c2 (c - b y 
— c (c — by -{- \ (c — &)6] — (c2 — b2) [cxl (c — by — \ x, (c — by 

This equation, by reduction and factoring, may be written, 

8 c5 x0 — (cB — 5 c8 b2 -f- 5 c2 b8 — bB) x, - f (c6 — 5 c8 6s — 5 c5 b8 - f 6B) x2 

= 10 c3 bs — 2 c b5. (1.) 

124. Second and Third Equations of Condition. — The second condi-
tion, that the change of inclination at the abutments shall equal zero, is 
2 E K = 0, and the portion of this expression from B to I will be, 

2EK = ( 2 c z - 0 - ( x i + x ) ] d x , 



while f rom A to I we may write, as jus t explained, 

2 E K = V c x - r ) - ( z i + x)\dx. 

Equating, integrating, and reducing, we get 

(c + - x0) [c (c + by - | (c + 6)«] - (c2 - V) |>2 (c + &) + i(c + b)>] 

= (c + X, - f *0) [c (c _ - H e - &)8] 

_ _ 6=) [Xl (c _ b) + i (c - by]; 
or 

4 c3 z0 — (c3 — 3 c 62 -j- 2 f/3) x, - f (c3 — 3 c 62 — 2 ¿>3) x2 = 4 c bs. (1.) 

In writing the third condition, that the abutment deflection shall equal 
zero, or 2 E K . D B = 0, we must, if we use the values of E K already 
adopted, make D B equal to x on the r ight of I, and equal to 2 c — z on the 
left of I. W e then have, from B to I, 

f + " (2 c x * - * * ) - ( * , + x) x~\dx, 

and from A to I , 

J * ' °(4 c" x — 4 c f - f i 8 ) — (x, + x) (2 c — * ) ] dx. 

Equating these two expressions and integrating, we find that 

( c + * 2 - x 0 ) tfc(c+by-i(c+by]-(c>-b*)texs(c+by+Hc+m 
= (c + Xl + x0) [2 c2 (c - by - I c (c - by + \ (c - &)*] 

l2cXl(c-b) 4-H2C-S,) (c-&)2-i(c-6)8], 

which reduces to 

16 c4 x0 — (7 c4 — 18 c- 62 + 8 c ft3 + 3 b*) x, + (c4 — 6 c2 &2 — 8 c bs — 3 &4) x2 

= — 2 c 5 — 4 c 3 i 2 + 16c2&3-f 6c&4. (2.) 

From (1.), § 123, and (1.) and (2.) of the present section, we may readily 
eliminate x0, obtaining 

(c8 — bs) x, — (c3 + bs) x3 = 2 c bs, 
and 

(C2 _ ¿2) _j_ (C2 _ J2) ^ _ | c3 + 2 c b", 

whence may be deduced the fo rmula of § 122. 

125. Formulas for Ha and P . — T h e values of H„ H2, and 
P, can now be scaled from the stress diagram, which will also 
give, if preferred, the proportion 

H, : H 2 : H = c - f x, + x0 : c -f- x2 — x0 : 2 c -j- xt x2, 

or 

H, = H = H | ) + (5 ¿ - 8 ? ) ] = i H [ l + ^ 3 ( 5 - 3 n 2 ) ] . 

H, will therefore always be greater than H. 
Likewise we have, for the vertical component of the abutment 

reactions, 

P : H = p (c2 — 62) : 2 c + x, + x2, 

or 

P = H . f * ( E ^ l S
= | H | ( l - n 2 ) ' . 

The shear diagram for this case will follow the explanation 
given in § 118. 

126. Circular Arch fixed at Ends. — There remains to be 
considered the circular rib, fixed at the ends, under the action 
of an external horizontal force. The notation of the angles is 
the same as that previously used for the circular arch. As H 
is here applied at a point on the right side, x0, measured from 
the middle of the span, will now lie on the left of the centre O. 
Then we will prove that 

in which equations 

a = cos a — cos 0, 
b = a{3 — sin a sin 0, 
c —0° — 2 sin2 /3 —J— sin 0 cos 0, 

d = 0 sin a — a sin 0, 
e = 1 — cos a cos 0, 

f — 0 — cos a s i n p . 



\ 

I t will be noticed that c is constant for a given arch. The 
value of x„ can then be obtained from the equation 

2 (sin f3 — /3 cos 13) x0 — [sin ¡3 + sin a — (¡3 - f a) cos a] x, -f- [sin 8 — sin o 
— (¡3 — a) cos a]x2 = 2r sin ¡3 (sin a —a cos a) . (3.) 

The distance xx and x2 will, in every case, be laid off outwards 
from the abutments, and x0 will be plotted away from the side 
where the force is applied. In these formulas, xx is on the oppo-
site side of the arch from the applied force, as is also H,. In 
any case it is easy to distinguish between numerical values of 
Xt and x2, or Hi and H2, if we notice that the larger value belongs 
to the abutment which is nearer to the point of application of 
the external force. 

Several of the equilibrium polygons have been drawn in 
Fig. 39 for a horizontal force applied at different distances 
from the crown. The angle ¡3 of this rib is 60°; and the com-
puted values of the absciss®, for H at points distant 10° suc-
cessively from one another, are 

a. Xy.. x0. x2. 

10° .3704r .0186 r .4212r 
20 .4755 .0762 .5860 
30 .5892 .2547 1.0345 
40 .7291 .5950 2.1559 
50 .8749 1.1339 5.9953 

127. First Equation of Condition. — The processes to be followed 
are akin to those already g iven : although the work is somewhat more 
tedious, it presents no difficulty. As in § 123, we shall find that , Fig. 39, 

E K = R N — D N = I ) E " J ^ N — D N. In the usual notation 
Q G 

D E = r (cos 0 — cos /?), Q N = r sin ¡3 + -}- x0, 
Q G — r (cos a — cos 0), D N = r sin ,3 + x2 — r sin 0. 

We therefore have • 

E K = r s i n 13 (cos e — cos IS) — ( r sin ¡3 + — r sin 6) cos a — cos/3 v 

on the r ight of I . Upon the lef t of I, since E ' K now equals D' L — R L, 
this expression will change in s ign; and, since we measure f rom L, we mus t 
substi tute x, in place of x,, must subtract x0 in place of adding it, and must 
change the sign of r sin 0: hence, on the le f t of I, 

j* sm 3 j cc 
E K = cos a - cos ,3 ° (C0S 9 ~ C0s + (rsm[i + Xi + r sin 8). 

The first condition, invariabil i ty of span, will now give, 

/ E K . D E + E K . D E = 0, 

or, mult iplying by cos a — cos /3, 

riS 
r j Q [ ( r s m /? + - f x0) (cos2 8 — 2 cos 0 cos /J -j- cos2 ¡3) 

— (cos a — cos ¡3) (r sin ¡3 + ' ar2 — r sin 8) (cos 8 — cos i3)] d 8 

+ r [ ( r sin ¡3 - f a:, — x0) (— cos2 8 + 2 cos 8 cos 13 — cos2 ¡3) 

+ (cos a — cos 3) (r sin ¡3 - f xx + r sin 8) (cos 8 — cos 3 ) ] d 8 = 0. 

The integration is similar to t h a t already given for the circular r ib 
in the earlier sections. The re results, upon bringing together common 
factors, 

(¡3 — 3 sin ¡3 cos (3 + 2 3 cos2 3) x0 — Q 8 + £ a — £ sin 3 cos 3 — }2 sin a cos a 
— sin a cos 3 — cos a sin 3 -f- 3 cos a cos 3 -}- a cos a cos 3) x, 
+ (£ 8 — i a — ^ sin /3 cos /3 + sin a cos a -f- sin a cos 3 — cos a sin 3 
-f- 3 cos a cos 3 — a cos a cos 3)x2 = r sin 3 (a — sin a cos a — 2 sin a cos 3' 
-}-2 a cos a cos 3). (1.) 

128. S e c o n d and Third Equations of Condition. — T h e second con-

dition, t h a t ^ E K - ( - E K = 0, similarly gives, 

c3 J a [ ( r s i n 3 - f r 2 + xo) (cos6 — cos3) — (cosa — cos,3)(rsin3-}-a;2 — rsin0)]<?0 

- f - [ ( ' ' s i n 3 x, — x0) (— cos 8 + cos3) 

-f- (cos a — cos 3) (r sin 3 -f- x, -(- r sin 0 ) ] d 8 = 0. 

F rom this equation we obtain, by integrating and factoring, 

(2 sin 3 — 2 3 cos 3) x0 — (sin ,3 - f s ina — ¡3 cos a — a cos a) x, 
+ (sin 3 — sin a — ,3 cos a + a cos a) a:2 = r sin ¡3 (2 sin a — 2 a cos a). (1.) 



T h e third condition, that ^ E K . D B f . D B = 0, will give, 

when we introduce the value of D B = r (sin 0 — sin 6), 

r j 3
a [ ( r sin 0 -f- x2 - f x 0 ) (cos e — cos 0) (s in 0 — sin e) 

— (cos a — cos ¡3) ( r sin ¡3 + x2 — r sin 0) (sin ,3 — sin O)] d 0 

-{- r f ^ p [(>• sin /3 + x, — x0) ( — cos e - f c o s i3) ( s i n ? ~ s i n <0 

- f (cos a — cos 0) (r sin 0 -f- Xj r sin tf) (sin 0 — sin e)~]dd = 0. 

Operating upon this equation also, we find that 

(2 sin2 0 — 2 0 sin 0 cos 0) x0 — (sin2 /? + sin a sin 0 — $ cos2 0 — % cos2 a 
-J- cos a cos 0 — 0 cos a sin 8 — a cos a sin 0) a;, (sin2/3 — sin a sin 0 
- f - 1 cos2 0 + § cos2 a — cos a cos 0 — 0 cos a sin 0 + a cos a sin 3) ar2 

= r sin 0 (2 sin a sin 0 — cos2 a + cos a .cos 0 — 2 a cos a sin 0) 
r 0 (cosa — cos/3). (2.) 

129. R e d u c t i o n . — From (1.), § 127, and (1.) and (2.), § 128, we can 
determine the desired quantities x0, and x2, by any of the usual steps for 
elimination. If the second equation of condition is multiplied by sin/3, 
and then subtracted f rom the third, there will result 

Q cos2 0 — cos a cos 0 + £ cos2 a) (xj -(- x2) 
= r sin 0 (cos a cos0 — cos2 a) r ¡3 (cos a — COS 0), 

' which, upon being divided by £ (cos a — cos 0), becomes 

(cos a — cos 0) (x, x2) = 2 r (0 — cos a sin 0). (a.) 

Again: the second equation may be multiplied by cos 0, and added to the 
first, after which the values of x0 from the new equation and f rom the 
second equation of condition may be equated. If we then clear of fractions, 
and factor the resulting equation, it may be written 

[a (b — c) — d e] x2 + [a (b + c) — d e] xx = — 2 r sin 0 (a b — d e), (b.) 

while equation (a.) will be 

a (ar, + x2) = 2 f r ; (c.) 

in which equations the literal coefficients stand for the quantities already 
given in § 126. 

From (b.) and (c.) it is easy for one to obtain the half sum and the half 
difference of the two unknown quantities, and thence equations (1.) and 
(2.), §126. Equation (3.) is identical with (1.) , §128. 

130. Formulae for H„ &c.; Semicircular Arch. — To find 
the values of H1? H2, and P by formula, we make use of similar 
expressions to those of § 125. The figure gives us 

or 
H, : H a : H = r sin 8 + Xl — x0 : r sin 0 -(- a;2 -f- x0 : 2 r sin 0 - f x¡ -}- xt; 

H : H r s i n ft + * 1 — gp _ r sin 0 - f x¡ — x0 
1 2 r sin 0 + x, - f x2 2 r ' 0 — sin 0 eos0 

P : H = r (cos a — cos 0) : 2 r sin 0 -f- x, + ar2 = a r : 2 r sin 0 - f 

or 
p _ , H _ . H (cos a — cos 0Y 

2 a sin 0 -\-f f 0 — sin ,3 cos 0' 

If the arch subtends a semicircle, p = | n, sin p = 1, cos p = 0, 
and the preceding values are much simplified. Without writing 
them in detail, it will be sufficient to indicate that then 

a = cos a, c = i 7r2 — 2, e = 1, 
b = $ n a — sin a, d = £ * sin a — a, / = £ n — cos a. 

131. Sign of Bending Moment. — In determining the sign 
of the bending moment at any point when the arch is acted 
upon by a horizontal force, it will be well for the reader to 
recollect, that, when there is a thrust along any portion of the 
equilibrium polygon, the arched rib tends to move away from 
the polygon, but, when there is tension in any portion, the arch 
moves towards the polygon. This tendency to move in one 
direction or the other is easily fixed in the mind, if one thinks 
of the alteration of curvature of a bent wire when a force is 
applied at each end in the line joining the two ends. The same 
thing was noticed in the suspended arch of Fig. 1 and in those 
under vertical forces. Therefore, in Fig. 32 and the following 



ribs, the arch tends to approach the tension side of the equili-
brium polygon, and to recede from the compression side. If 
then, as before, that moment which makes any portion of the 
rib less curved, or which, if exerted on a beam supported at 
both ends, would make it concave on the upper side, be called 
positive, the areas of — M will occur between B and C in Figs. 
32 and 33, and those of -f- M will be found between C and A. 
Ribs fixed at the ends will be strained similarly. In Fig. 38, 
for example, the area to the right of B will give + M ; from the 
point where N G crosses the rib to C there will be — M, which 
then changes to -f- M on the left of C, and to — M, when the 
polygon crosses the rib above A. 

132. Example of Normal Forces. — As we have now ascer-
tained the values of the abutment reactions when a rib is acted 
upon by a horizontal force, we will show, by an example, that 
the various horizontal and vertical forces which are exerted at 
one time at different points of the rib may be provided for in 
one polygon, without the necessity for separate treatment of the 
horizontal and vertical components into which the normal or 
oblique external forces can be decomposed. We will suppose 
that a parabolic rib of 100 feet span and 50 feet rise is to be 
used as a principal to carry a roof, and that it is desired to 
ascertain the bending moments arising from the action of the 
wind upon one side. We will take the case where the rib is 
fixed at the ends as being less simple. After this discussion, 
the reader will have no difficulty in applying a similar treatment 
to other ribs. 

Let the rib be represented by A C B, Fig. 40, and let us sup-
pose that the normal wind pressure is directly.resisted by the 
flanges and bracing of the rib at points D, E, F, and G, at which 
purlins rest, and which are distant 40 feet, 30 feet, 20 feet, and 
10 feet horizontally from the middle of the span. The amount 
of the pressure N2 at E will be the total or resultant of the 
distributed pressure on m n, the points m and n being taken 
midway of the spaces on each side of E. There will be no error 
of consequence in assuming that the wind pressure on m n is 

perpendicular to the straight line m n, or to the tangent of the 
parabola at E.* To find this tangent, draw E E' horizontally, 
make C E " = CE' , and E E' ' will be the desired tangent. The 
tangents at the other points are found in the same way. The 
angle E ' E E " is very nearly 50° ; the intensity of wind pres-
sure, by the table of § 109, is 38 pounds on the square foot of 
roof; and if the principals are 10 feet apart, and m n is 151 feet, 
the total normal force N2 at this point will be 3 8 x 1 0 x 1 5 4 = 
5,890 pounds. For the four points we therefore find in detail 

N. V. H. 
1 58° 40 X 19 X 10 = 7,600 lbs. 4,000 lbs. 6,400 
2 50 38 15*. 10 5,890 3,800 4,500 
3 38£ 32 13 10 4,160 3,200 2,600 
4 22 20 11 10 2,200 2,000 900 

These normal forces are plotted on the figure, and then 
decomposed graphically into their vertical and horizontal com-
ponents, which, scaled to the nearest one hundred pounds, are 
found above in the columns headed V and H. The figure and 
diagrams are drawn to scales of forty feet and ten thousand 
pounds equal one inch. 

133. Finding the Reactions. — The next step will be to 
find the values of H„ H2, P„ and P2, for the above forces. First, 
upon referring to § 64, we see that a vertical force at E, 
Fig. 40, 0.6 c from the middle of the span, will cause a vertical 
reaction of 0.896 V at A, one of 0.104 V at B, and will give 

rise to H, at each abutment, of the amount 0.1921 V = 0.192 V. 

We also see, by the table of § 62, that the ordinate at A will 
be — 0.667 k, and at B + 0.333 k, for the same force at E ; and 
we can then obtain the values of M at the abutments arising 
from V by multiplying these ordinates by H = 0.192 V, just 
ascertained. The computations for the four loaded points may 
be grouped together as follows: 

* If preferred, analyze the wind pressures as in Part I., Roofs, p. 44. 



V. P,. H. 
1 4,000 X 0.972 = = 3,888 lbs. Y X -0607 

2 3,800 0.896 3,405 .1920 

3 3,200 0.784 2,509 .3308 

4 2,000 0.648 1,296 .4320 

13,000 P, ' = 11,098 lbs. H' 

y = 13,000 
730 P / = 11,098 

P 2 ' = 1,902 lbs. 

1,059 

864 

H. yv M,. y2. M2. 

1 243 X —2.000 k = —24,300 f t . lbs. 0.370 k + 4,495 f t . lbs. 
2 730 — 0.667 — 24,333 0.333 12,167 

3 1,059 —0.222 —11,767 0.286 15,144 

4 864 0.000 000 0.222 9,600 

Totals . . . M/ = — 6 0 , 4 0 0 f t . lbs. M»' = +41 ,406 f t . lbs. 

It is to be understood that yv, P„ and M, refer to the left 
abutment, the others, to the right abutment. 

From § 122 and § 125 we now compute the reactions from 
the horizontal forces at the four loaded points, and the accom-
panying bending moments: 

H. ± P . 
1 6,400 X -0486 = 311 lbs. H X 0.894 = 5,722 lbs. 

H — 14,400 

2 4,500 .1536 691 0.712 3,204 H , ' = 10^872 

8 2,600 .2646 688 0.572 1,487 ^ ~ + 3 ' 5 2 8 1 b s " 

4 900 .3456 311 0.510 459 
14,400 

Tota l s ,Pf rom H's = ± 2,001 lbs. H / = —10,872 lbs. 

P . X,. M t. r2. 
1 311 X 4.600 c = —71,530 ft . lbs. 0.807 c +12 ,549 f t . lbs. 

2 691 1.533 — 52,976 0.633 21,870 
3 688 0.689 — 23,702 0.486 16,718 

4 311 0.400 — 6,220 0.378 5,878 
Totals M / = — 154,428 ft . lbs. Ma' = : + 57,015 f t . lbs. 

The final abutment moments will be 

M,' = —60,400 — 154,428 = —214,828 f t . lbs. 

W = 41,406 + 57,015 = + 98,421 f t . lbs. 

The components of the reaction at A are, if thrusts are con-
sidered positive, 

P / = P, — P = 11,098 — 2,001 = +9 ,097 lbs. 

H,' = H + Ha = 2,896 — 10,872 = —7,976 lbs. 

The components at B will be 

P,' = P, + P = 1,902 + 2,001 = + 3 , 9 0 3 lbs. 

H2' = H + H2 = 2,896 + 3,528 = +6 ,424 lbs. 

The arrows at A and B show these reactions. If the rib con-
sists of chords and bracing, the stresses on the pieces can be 
found by a diagram like Fig. 21, Part I., «Roofs," care being 
taken to have the stresses in the two flanges at the abutment 
give the proper reaction (see § 195). If the equilibrium poly-
gon is to be drawn, from which to find bending moments and 
chord stresses, we need the point of beginning for the polygon. 

The abscissa, or ordinate to the equilibrium polygon at A, will 
be found by dividing the total M at that point by P, ' or H,'; 
and similarly for the abutment B; thus, 

As in previous examples, the ordinate at one abutment alone is 
needed; but the others are useful as a check on the accuracy of 
the drawing. 

134. Equilibrium Polygon; Bending Moments. — W e may 
now proceed to draw the stress diagram. Lay off 1-2, 2-3, 3-4 
and 4-5, parallel successively to the external forces at G, F, E, 



and D, and equal to the calculated amounts by any desirable 
scale ; make 5-6 = H/ , and 6-0 = P/ , so that 5-0 shall repre-
sent the reaction at A in the proper direction as expressed by 
the signs obtained above, P / being a compression, and 11/ a ten-
sion ; finally, lay off 0-7 = P2', and 7-1 = H/ , giving 0-1 for 
the reaction at B. The closing of- 0 -1 on the point 1 proves 
that the diagram has been drawn with care. Having drawn 
B Q = y./, or B R = -f x2, draw through Q or R a line par-
allel to 0-1, as far as O, where it meets the normal force at G. 
Then draw O L parallel to 0-2, to cut the force N3 at L. Fol-
low with L K and K I, parallel to 0-3 and 0-4, closing with a 
line through I, parallel to 0-5, which, if the polygon has been 
accurately drawn, will make A W = y{, as recently computed, 
or A U = — Xi. 

As neither H nor P is constant for oblique forces on an arch, 
the bending moment at any point will equal the product of the 
force acting along a side of the polygon just drawn multiplied 
by the perpendicular from the point to the side : thus the bend-
ing moment at E is E S X (0-3), or E T x (0-4) . If the exter-
nal forces had been considered as applied at a greater number 
of points, or as distributed along the principal rafter itself, we 
should have obtained a polygon which approached nearer to a 
regular curve, and such a curve has been sketched through the 
vertices of the polygon just drawn. 

135. Equilibrium Polygons for the Vertical and Hori-
zontal Components. — Since most of the needful data have 
already been obtained, we have thought it expedient to draw the 
equilibrium polygons for the vertical and horizontal components 
separately, so that they may be compared with each other and 
with the polygon for normal forces. If a horizontal and a 
vertical line are drawn from 1 and 5, the components H and V 
can be at once projected upon them. Upon laying off H„ and 
plotting P, we shall locate the pole 0"; and 0"-2", 0"-3", &c., will 
be parallel to the lines of the polygon for horizontal forces. 
In the same way, Pi and H for vertical forces will determine 0'. 
The value of y> will be found, upon dividing the M2 which 

comes from V by H, to be 14.3 feet, giving the starting-point 
just below Q. Upon drawing the polygon so that the angles are 
made at the verticals through the loaded points, we obtain the 
broken line which finally runs below A. This ordinate y, may 
be je r i f i ed . If M2 from the H's is divided by P, we have 
x2 — 28.5 feet, an ordinate a little longer than B R. The poly-
gon, if now drawn, will be the broken line which passes near 

' a n d e x tends to a considerable distance, 77.2 feet, to the left 
of A. All the sides of this polygon except the first are in 
tension. 

136. Shear and Direct S t r e s s . - T o complete this exam-
ple, the normal shear at the middle of each division is found 
and at the same time the direct stress. The small letters I, m n 
&c., mark the middle of each division. Draw 0-1 in the stress 
diagram, parallel to the tangent at I in the rib, and 5-1 perpen-
dicular to i t ; then will 5-1 be the normal shear at I, and Z-0 the 
direct thrust. To satisfy ourselves in regard to the sign of this 
shear, we note that 5-0 is the thrust in the side U I of the equi-
librium polygon, and will therefore be the resultant force on the 
left of any section between A and D ; the forces 5-1 and I-0, in 
the directions named, will be its components, also on the left of 
the section I: hence we have positive shear and a direct thrust. 
In the same way at m, since 4-0 is the thrust in I K , 4-m will 
be the positive shear, and m-0 the direct thrust. Between m 
and n the shear changes sign ; for at n we find 3 -n and n-0, the 
former being drawn down, instead of up. Passing on, we see 
that the shear again changes between r and s, because 1-r and 
1-s run in opposite directions. As noted before, this change of 
sign occurs at points of maximum bending moment. 

137. Ver t i ca l S h e a r Diagram. - We may draw a vertical shear diagram, 
it desired, and from tha t obtain the normal components; but it is not so con-
veniently constructed in the case of several forces which are always applied 
together as for a case of a single load. If a 6 represents the span, P, ' or 
b-0 is laid off a t a w, upwards as usual ; then the subtraction of V, a t D, or 
4 - 5 brings us to the line d; thence a step is made to to f , and finally to 
g, closing at b with 0-7, the reaction at B. The horizontal line below a b 
cuts off P, or 0 ' - 3 " , so that the vertical components shown in the line 5-1' 



migh t be considered as laid off f r o m th i s lower line, and the constant quan-
t i ty P, due to the horizontal components, then subtracted. As t h e th rus t a t 
B is 0-1, a l ine drawn through 0, paral le l to the t angen t a t B, will cut off 
f r o m a vertical l ine drawn f rom 1 as much vertical force as is required, in 
addit ion to 0-7, to give a resul tant i n the direction of the r ib at B. The 
amount so determined is laid off a t q' r'. Since i t has been shown t h a t all 
inclined lines are drawn towards the middle of t h e span c, and are unin-
ter rupted unti l an external force is encountered, w e draw through c t he 
l ine iJ c s. 

I n a similar way, a l ine 0-10 f rom 0, paral lel to the t angen t a t A, will cut 
the vertical th rough 5 a t a distance 5-10, equal to wu; a l ine f rom 0, par-
allel to the tangent a t D, will cut off t he distance f r o m a vertical through 4, 
which is plot ted f rom d to k; one paral le l to the t angen t a t E will cut off 
3-8, which is plotted at e o; and the t angen t a t F gives 0-9, so t h a t 2 -9 is laid 
off a t f p . If inclined lines are drawn through the points thus found, run-
ning towards the point c, t he d iagram wil l be completed. Normal com-
ponents of the ordinates between the two sets of lines jus t constructed, 
measured above I, m, n, &c., will agree wi th the values of the last section, 
—posi t ive when above the inclined lines, negat ive when below. 

C H A P T E R I X . 

STONE ARCHES. 

138. Location of Equilibrium Curve determines Thick-
ness of Voussoirs. —Stone arches may be treated as belonging 
to the class of ribs with fixed ends, as the voussoirs have suffi-
cient breadth at the skew-backs to make a firm bearing. We 
can, then, for a given rise, span, and distribution of steady and 
travelling load, draw the equilibrium curve, and thence deter-
mine the required thickness of the arch-ring. To repeat what 
was mentioned incidentally earlier: if no reliance is placed 
upon the tenacity of the cement, and if the intensity of pressure 
at a joint between' ^ny two voussoirs or arch-stones is considered 
to vary uniformly from the outside to the inside edge, the ex-
treme case of deviation of the resultant pressure from the middle 
of the joint consistent with safety will occur when the pressure 
is zero at one edge.. As the varying intensity of pressure will 
be represented by the ordinates to an inclined line which passes 
through the point where the pressure is zero, the total pressure 
will be equal to the area of a triangle, and the resultant will 
pass through the centre of gravity of the triangle, or at a dis-
tance of one-third the breadth of the ring from that edge where 
the pressure is most intense. Since the equilibrium curve is the 
locus of the resultant force at each joint, the condition that the 
pressure shall never be less than zero at any point, or that there 
shall be no tension, is equivalent to requiring that the equili-
brium curve shall never pass beyond the middle third of the 
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might be considered as laid off f rom this lower line, and the constant quan-
tity P, due to the horizontal components, then subtracted. As the thrust a t 
B is 0-1, a line drawn through 0, parallel to the tangent a t B, will cut off 
f rom a vertical line drawn from 1 as much vertical force as is required, in 
addition to 0-7, to give a resultant in the direction of the rib at B. The 
amount so determined is laid off a t q' r'. Since it has been shown tha t all 
inclined lines are drawn towards the middle of the span c, and are unin-
terrupted until an external force is encountered, we draw through c the 
line iJ c s. 

I n a similar way, a line 0-10 from 0, parallel to the tangent a t A, will cut 
the vertical through 5 a t a distance 5-10, equal to wu; a line from 0, par-
allel to the tangent a t D, will cut off the distance f rom a vertical through 4, 
which is plotted from d to k; one parallel to the tangent a t E will cut off 
3-8, which is plotted at e o; and the tangent a t F gives 0-9, so t h a t 2-9 is laid 
off a t f p . If inclined lines are drawn through the points thus found, run-
ning towards the point c, the diagram will be completed. Normal com-
ponents of the ordinates between the two sets of lines just constructed, 
measured above I, m, n, &c., will agree with the values of the last section, 
—positive when above the inclined lines, negative when below. 

C H A P T E R I X . 

S T O N E A R C H E S . 

138. Location of Equilibrium Curve determines Thick-
ness of Voussoirs. —Stone arches may be treated as belonging 
to the class of ribs with fixed ends, as the voussoirs have suffi-
cient breadth at the skew-backs to make a firm bearing. We 
can, then, for a given rise, span, and distribution of steady and 
travelling load, draw the equilibrium curve, and thence deter-
mine the required thickness of the arch-ring. To repeat what 
was mentioned incidentally earlier: if no reliance is placed 
upon the tenacity of the cement, and if the intensity of pressure 
at a joint between' ^ny two voussoirs or arch-stones is considered 
to vary uniformly from the outside to the inside edge, the ex-
treme case of deviation of the resultant pressure from the middle 
of the joint consistent with safety will occur when the pressure 
is zero at one edge.- As the varying intensity of pressure will 
be represented by the ordinates to an inclined line which passes 
through the point where the pressure is zero, the total pressure 
will be equal to the area of a triangle, and the resultant will 
pass through the centre of gravity of the triangle, or at a dis-
tance of one-third the breadth of the ring from that edge where 
the pressure is most intense. Since the equilibrium curve is the 
locus of the resultant force at each joint, the condition that the 
pressure shall never be less than zero at any point, or that there 
shall be no tension, is equivalent to requiring that the equili-
brium curve shall never pass beyond the middle third of the 
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arch-ring, however the distribution of the load may be varied-
hence, when the equilibrium curves are drawn, the thickness 
of the voussoirs is readily determined. The tensile strength of 
the cement after it has become firm, and any deviation from 
the assumption that the force between two stones must be 
distributed over the whole joint, increase the safety of the 
structure, and thus give what is akin to the. factor of safety in 

• other cases. 

139. Intensity of Pressure. - When the stability of the 
arch-ring is thus assured, it is an easy matter to find 
the greatest intensity of pressure, and hence to see whether the 
material proposed for the arch will have strength enough. 
When the equilibrium curve passes through the centre of the 
joint, the pressure on the square inch will be found by dividing 
the thrust at that joint by the area of the bearing surface. If 
the curve touches the extreme limit, the edge of the middle 
third, the most intense pressure, at the edge of the joint nearest 
to the curve, will be twice the mean pressure; for the height of 
the triangle whose ordinates represent the varying intensities 
is twice its mean ordinate. In some rare cases, where the span 
is large, and the stone is of a weak quality, we may have to 
increase the depth of the arch-ring in order to provide sufficient 
strength. 

140. Circular Arch; Load for Equilibrium. - Although 
the curve of the arch-ring may be anyone of a number of forms 
the circular arch is the more common type, and we have there-
fore thought it best to take such an arch as an example of this 
method: the steps will apply to any form. The Gothic arch 
will be classed with the example of § 194. If the load is en-
tirely, or almost entirely, steady, as in the aqueduct or canal 
bridge, it will be advisable, on the score of economy, to find 
that distribution of the load which shall cause the equilibrium 
curve to coincide with the centre line of the arch-ring Then 
by arranging the filling and the empty spaces above the arcli-
ring so as to conform to that distribution, the voussoirs can be 
made of moderate depth. 

Thus, if B C, Fig. 45, be one-half of an arch which it is de-
sired to load in this way, divide it, by vertical lines, into quite 
a large number of parts, equal horizontally. If the divisions 
are small, the areas of these portions between the soffit of the 
arch and the upper line may be considered trapezoids, and the 
middle ordinate of each division will be proportional to its 
volume for unity of thickness, and to its weight, if homogene-
ous. I t is then evident, that, if there is to be no bending 
moment at any point, the equilibrium curve must coincide, 
either with the tangents to the centre line of the ring at these 
loaded points, or with the chords drawn between these points, 
according as the first loaded point is taken at half a division's 
distance from the abutment, or at the abutment itself. See 
Par t II., "Bridges," § 58. Let this weight be concentrated, 
in imagination, on each middle ordinate. 

Upon drawing, from any point 0, radiating lines parallel to 
the tangents, or perpendicular to the radii, at the successive 
points of division, and cutting them all by a vertical line 1-12 
at any convenient distance, loads in each division, supposed to 
be concentrated at the intersection of the above tangents,* and 
proportional to the several portions of the vertical line inter-
cepted by the inclined lines, will be the ones required for equi-
librium; and the distributed loads spread over all of each 
division, or, in other words, a continuous load over the whole 
arch, will thus be found. If 1-2 is placed at such a distance 
from 0 that it will represent, by a convenient scale, the mean 
depth, as well as the weight of the load, in the first division on 
the right of C, 2-3, 3-4, &c., will represent the required depth 
of loading in the succeeding divisions. As the angle made by 
0-2 with the horizontal line is the same as that subtended at 
the centre by the first division near C, there is no difficulty in 
finding, by calculation, the exact length of 0-1, when 1-2 is 
given, in case the angle at 0 is too acute to give any accurate 
result graphically. In our figure the depth of the load at the 

* The tangents will not intersect exactly in the middle of each division. 



crown was assumed to be five feet, and the intercepted portions 
of the vertical line were then plotted from the points where 
verticals at the middle of each division would cut the centre 
line of the arch. The curved line drawn through the upper 
ends of these ordinates will then show the desired amount of 
homogeneous load to be spread over the arch to produce equi-
librium. 

141. Limiting Angle for Arch-Ring without Backing.— 
I t is now worthy of notice, that, while the required depth of 
loading increases but slowly for some distance after we leave 
the crown, when we reach the haunches, the ordinates rapidly 
lengthen, and the curve through their upper ends will finally 
become vertical, if the arch springs vertically from the abut-
ment. This point was also referred to in § 89. I t is appar-
ent, therefore, that it is not practicable to so load with vertical 
forces a circular arch, beyond a certain distance from the 
crown, that the line of thrust shall coincide with the centre line 
of the arch-ring. As the roadway must not deviate greatly 
from a horizontal line, we see, that, for an arch extending 60° 
each way from the crown, the amount of material as heavy as 
masonry required over the springing will fill all of the available 
space, and, when the spandrel filling is lighter, the limiting 
angle will probably be in the neighborhood of 45°. In ordina* 
ry cases of loading, the equilibrium curve will deviate so much 
from the centre line in this portion of the rib as to require 
very deep voussoirs to retain the curve within the middle third 
when the attempt is made to extend the unassisted arch-ring 
much farther. I t is customary, therefore, to carry the masonry 
backing, in horizontal courses, up to the neighborhood of the 
point where the arch-ring is inclined at an angle of 45° : below 
this point any attempt of the arch-ring to move outwards under 
the thrust of the upper portion is immediately resisted by the 
backing, and the arch will be designed as if the springing 
points were at the joints level with the top of this masonry 
backing. The portion below really forms a part of the abut-
ment. 

142. Example; Data. — In accordance with the above state-
ments, and as an example of the application of preceding prin-
ciples, we propose to design a circular segmental arch of stone, 
for a railroad bridge, which shall subtend 100°, with a radius, 
for the centre line of the voussoirs, of 100 feet, making the 
span, from centre to centre of skew-backs, about 153 feet, and 
the rise about 36 feet. The rolling load will be 3,000 pounds 
per running foot of track, and the width of the bridge over 
which this load is distributed will be ten feet. The backing will 
be carried up to the point where the rib js inclined at 45°, and 
the remainder of the spandrel will be filled with such material, 
or will have such an amount and distribution of empty spaces, 
that it shall weigh, on the average, one-half as much per cubic 
foot as does the masonry of the arch-ring. The equilibrium 
curve for steady load will now first be found; then such possi-
ble combinations of rolling load will be discussed as will in-
crease the deviation of the steady load curve at those points 
where it already deviates most from the centre line of the arch-
ring ; and, finally, the necessary depth of the voussoirs will be 
determined by the rule suggested in § 138. The depth of the 
voussoirs at the crown is assumed, in our present ignorance of 
the final dimensions, at five feet; two feet of filling, earth or 
some other material, is added at that point, and the horizontal 
line drawn seven feet above the soffit at the crown will be the 
upper boundary of the spandrel filling. If, then, the arch-ring 
is taken at a uniform thickness of five feet, as shown at A C, 
on the left half of Fig. 45, the depth of a homogeneous load 
equal to stone will be found by shortening each ordinate above 
the arch ring one-half. Thus was obtained the curve D E. By 
dividing the area between this curve and the soffit into small 
portions by vertical lines, we may find the weight to be concen-
trated on the several assumed loaded points of the arch-ring. 

143. Calculations for Steady Load — From the equations 
of § 92, after making ¡3 = 45°, and giving to a the successive 
values, 5°, 10°, 15° . . . 40°, we have worked out the quantities 
Hit Voi and y2, for a weight at such distances from the crown, and 



these quantities are given in the first portion of the following 
table, it being understood that the weights are here placed on 
the left of the crown to correspond with our figure : — 

. a. yi- 2/o- y«-- H. Pi. P2-
C- o° .0449 r .3587 r .0449 r 1.126 W .5 W .5 W 

F 5 .0252 .3585 .0607 1.095 .596 .411 

Ç i o .0001 .3578 .0735 1.007 .683 .325 

J 15 —.0341 .3569 .0842 0.866 .760 .244 

K 20 —.0817 .3555 .0930 0.690 .830 .172 

¡_ 25 — .1536 .3537 .1012 0.498 .890 .111 

/V 30 — .2730 .3515 .1078 0.311 .939 .063 

10 3 5 — .5137 .3487 .1142 0.150 .972 .027 

P 40 — 1.2407 .3470 .1183 0.040 .993 .007 

These values of Vv, yo> andy2, have been plotted on the arch 
of Fig. 44, and the several stress diagrams have been drawn 
on a vertical line which represents W. From this figure the 
amounts of H and of the vertical components of the abutment 
reactions for a load W at successive points can be scaled off, 
and thus we obtain the last three columns of the above table. 
H, P l5 and P2, can also be easily calculated by the formulas 
of § 63, if we make c = r sin ft, and b = r sin a. 

Having divided the centre line C A of the arch-ring of Fig. 
45 at points C, F, G, &c., distant five degrees from one another, 
the weight to be concentrated at each of these loaded points is 
next computed, for an arch one foot thick, perpendicular to the 
plane of the paper, by scaling the area between the dotted 
ordinates, marked on the horizontal line, and placed midway 
between the points of division, and multiplying this area by 
the weight of a cubic foot of masonry, here assumed at 150 
pounds. The weights at the several points, to the nearest 
hundred pounds, will then be 

C = 7,500, F = 7,600, G = 8,400, I = 9,600, K = 11,100, 
L = 12,800, N = 14,600, O = 16,600, P = 19,300 lbs. ; 

making the weight of the half-arch (when we take one-half of 
the load at C, and add 9,800 pounds for the load at A) , = 113,-
450 pounds. 

Calculate H for steady load by multiplying each co-efficient 
of H in the table above by its W in pounds just ascertained, 
and adding all the results for both halves of the arch. The 
work in detail is below. As the two halves of the arch are 
alike, we add up the column for H, add in again all but the 
amount for the load at the crown, and have H' for the entire 
arch. Each vertical reaction will equal the weight of the half 
arch. 

To find the ordinate y{ — y>', for the combined weights, mul-
tiply each H by its yx, add the products, and divide by H'. As, 
for each weight on one half of the arch, there will be a corre-
sponding and equal weight on the other half, it will shorten 
the process to add yx and y2 together for each point on one-half 
of the rib, except the centre one at C. 

W . H. yt + y2. M,. 
C. 0° 1.126 X 7,500 = = 8,445 lbs. .045 >• + 380.0 r lbs. 

F . 5 1.095 7,600 8,322 .086 715.7 

G. 10 1.007 8,400 8,459 .074 626.0 

I . 15 0.866 9,600 8,314 .050 415.7 

K. 20 0.690 11,100 7,659 .011 84.2 

L. 25 0.498 12,800 6,374 — .053 — 337.8 

N. 30 0.311 14,600 4,541 — .165 749.2 

O. 35 0.150 16,600 2,490 — .400 996.0 

P. 40 0.040 19,300 772 -- 1 . 1 2 3 867.0 

55,376 lbs. + 2,221.6 — 2,950.0 

46,931 — 2,950.0 

H ' = 102,307 lbs. ) — 728.4 X 100 ( — .712 f t . = y/. 

144. Equilibrium Curve for Steady Load. — Plot the 
weights of the above table on a vertical line from 1' to 10', lay 



off H' from the middle of l ' -2 ' to 0', and, starting at 0.71 feet 
below A, draw an equilibrium polygon with its sides succes-
sively parallel to the lines which would radiate from 0'. This 
polygon will run quite close to the centre line, crossing it twice 
between A and C, and passing 0.4 feet below it at the crown. 
In any actual example the whole polygon should be drawn, as 
its accuracy will be proved by its striking the ordinate from B 
at the proper distance. If this arch were never to be subjected 
to any other than a steady load, or should the travelling load 
always be light, voussoirs of moderate depth would contain 
this polygon within their middle third. The true equilibrium 
curve will pass through the angles of the polygon just drawn. 

145. Calculations for Rolling Load. —But , as we stated 
that a line of railroad was to be carried over this arch, let us 
suppose that the rolling load of one ton and a half per foot of 
track, or 3,000 pounds, is distributed over the ten feet of width 
of the arch; the moving load will then amount to 300 pounds 
per foot of span on the rib of our figure. The sleepers, the 
filling over the rib, and the bond of the arch-stones, will dis-
tribute any concentrated load over a considerable area. 

At the crown of the arch the curve already drawn falls some-
what below the centre line. Upon inspecting Fig. 44 we see 
that six of the polygons there drawn pass below the crown of 
the rib. If, therefore, we place upon the stone arch a rollino-
load which covers six points of division from each abutment, 
that is, from Q to R on one side, and a corresponding distance 
on the other half arch, this distribution of load, if a practicable 
one under the usual method of running trains, will cause the 
greatest deviation of the equilibrium curve at the crown C. 

To draw the polygon for this rolling load alone : first multi-
ply each horizontal distance belonging to I, K, L, &c., by 300 
pounds, to obtain the concentrated load on each point; then 
multiply by the proper co-efficients of H already obtained; sum 
the products, and double the results for both halves of the 
arch; multiply each H by its yx and y2; divide the algebraic 

sums of these products by H". The operations are carried out 
b e l o w . 

I. 8.4 
W . 

2,520 X .866 = 
H. 

2,182 
2/1 + 2/2 

.050 + 109.1 r i b s . 

K. 8.2 2,460 .690 1,697 .011 18.7 

L. 7.9 2,370 .498 1,180 — .053 — 62.6 

N. 7.5 2,250 .311 700. — 165 115.4 

O. 7.1 2,130 .150 320. — 400 127.8 

P . 6.7 2,010 

13,740 

.040 80 

6,159 

1.123 

+ 127^8 

90.0 

— 395.8 

H" = 12,318 ) — 268.0 X 100 ( — 2.2 f t . = y{\ 

Lay off the loads for one-half of the rib on a vertical line 
from 4" to 10"; make 4" - 0" = H " ; and, laying off y{' — - 2.2 
feet, at A, draw the polygon which passes horizontally below 
C at a distance, by scale, of 2.3 feet. 

146. Increase of Bending Moment at Crown; Required 
Depth of Keystone. — We can now find how much this added 
load increases the negative bending moment at the crown of 
the rib, or how much it causes 
the equilibrium curve to move 102<307 X = 4 0 '9 2 2 '8 ffc ' lbs" 
inwards. If we multiply H' 12,318 x 2.3 = 28,331.4 
and H " by the ordinates to their 114,625 )69,254.2 
respective curves at the crown, 0 l l d i n a t e a t c = 0.60 ft. 
which ordinates are 0.4 feet and 
2.3 feet, as lately stated, and add the products, we shall obtain 
the existing moment at the crown, and, upon dividing by 
H' -}- H", we get the ordinate from the centre line at C to the 
curve for the combined loads. I t is worthy of note how little 
effect the rolling load produces, owing to the great thrust of 
the masonry itself. 

In order that this deviation of 0.6 feet from the middle of 
the joint shall not bring the equilibrium curve outside of the 



middle third, the keystone and adjoining voussoirs must not be 
less than 0.6 x 6 = 3.6 feet deep. The greatest intensity of 
pressure, found at the inner edge, will then be twice the mean 
intensity of pressure, or 2 [114,625 -f- (3.6 X 144)] = 442 
pounds per square inch, giving a factor of safety against 
crushing of about ten, for good limestone or sandstone. 
If the depth of the joint be increased to four feet, the greatest 
intensity of pressure at the inner edge will be reduced to 
4 + 3.6 114,625 OP7f) „ . , 
— 4 — ' 4 x 144 = P e r square inch. 

147. Increase of Bending Moment at Haunch. — T h e 
steady load curve deviates outwardly from the centre line the 
greatest distance, 0.5 feet, at L. Fig. 44 again shows that a 
rolling load from Q to R of Fig. 45 will increase this devia-
tion to the greatest extent. The value of the horizontal thrust, 
H'", for this load, will be seen, from the table of § 145, to be 
6,159 pounds. Multiplying the same values of H by the then 
existing values of and proceeding as usual, we shall obtain 
y("- If the total M, of this table is subtracted from 

H. M,. W . P2. 
I 2,182 X-- . 034 = — 74.2 r i b s . 2,520 X -244 = 614.9 lbs. 

K 1,697 -- .082 — 139.2 2,460 .172 423.1 

L 1,180 -- . 154 — 181.8 2,370 .111 263.1 
N 700 -- . 273 — 191.0 2,250 .063 141.7 

0 320 -- .514 — 164.2 2,130 .027 57.5 

P 80 — 1.241 — 99.3 2,010 .007 14.1 
6,159 lbs. ) —849.7 x 100 ( — 13.8 ; f t . P2"' = : 1,514.4 lbs. 

) + 581.7 x 100 ( + 9.4 f t . =yi". 

that of the table in § 145, we shall obtain the moment at B, and 
thence find y{". To obtain the vertical component of one re-
action, multiply each load by the proper co-efficient of P; or P,, 
given in § 143. Since P2 '" is 1,514.4 pounds, lay this amount 
off from 4", draw H'" to 0'", and plotting - y{" at A, and 

Ordinate at L = 0.875 f t . 

• f- y"' at B, draw that equilibrium polygon which passes 7.1 feet 
above L. 

By the same process as before, we find that the equilibrium 
curve for the steady load, combined with these six loads on the 
left side of the arch, will be dis-
placed from the centre line ver- 1 0 2 , 3 0 7 x °"5 = 51>153-5 lbs-
tically at L 0.875 feet. The 6,159 x 7 1 = 43,728 9 
depth of the arch-ring at this 108̂ 466 )94,882.4 

point should, therefore, not be 
less, vertically, than 5.25, or, 
measuring normally, than 5.25 x cos 25° = 5.25 x 0.9063 = 
4.76 feet. 

148. Influence of an Additional Load. —When it is no-
ticed that an additional load on the point G will cause the 
greatest positive moment at K,.it may be suspected that these 
seven loads will cause a greater deviation at K than the one 
just found at L. To ascertain the fact, we may dispense with 
any. new polygon by proceeding as follows: The new load G 
will be 8.6 X 300 = 2,580 pounds. H for this point, being 
1.007 W, will equal 2,580 x 1.007 = 2,598 pounds. By scale, 
in Fig. 44, the ordinate from the proper polygon to the arch at 
the point K is .017 r = 1.7 feet. 
The ordinates to the curves 102,307 x 0.35 = 35,807.4 ft. lbs. 
already drawn in Fig. 45 being 6,159 x 8.10 = 49,887.9 
scaled at K, the annexed com- 2 598 x 1 70 = 4 416 6 
putation is readily made, and ^ ' ¿ ¿ ¿ ^ 
the quotient is seen to be less 
than the amount at L. Kindred steps might be taken for any 
point. 

149. Increase of Bending Moment at Springing; Maxi-
mum H. — The remaining point of maximum deviation of the 
curve for steady load is at the springing A, where we have 
found it to be .71 feet. As the same six loads from Q to R will 
be seen, from Fig. 44, to produce the maximum effect at A, the 
polygons are already drawn to our hand, and the moments at 
the springing point are seen in the respective tables. There-



fore the ordinate at A is 1.45 feet, and the normal displacement 
is 1.45 x cos 45° = 1.45 X .707 = 1.03 feet. The necessary 

102,307 X .71 = 72,840 depth for this joint.ml]I be 6.2 
feet. If the amount of Pi from 

6,159 X 13.8 = 84,970 rolling load, 1 2 , 2 2 6 pounds, is 
108,466 ) 157,810 laid off below 10', and H'", 

Ordinate at A = L45 ft. 6 ' 1 5 9 pounds, is plotted to the 
right of 0', the line connecting 

the two points thus found will be the thrust at A, and, from its 
projection on a line inclined at 45°, we get 158,000 pounds for 
the direct thrust at A. The maximum intensity of compression 
on this joint will be at the inner edge, and will be 2 [158,000 
+ (6.2 x 144)] = 354 pounds per square inch. 

The maximum value of H will occur when the rolling load 
covers the whole bridge. If the amounts of H for the points 
which have not yet been loaded are computed, the horizontal 
thrust for a complete travelling load will be found to be 26,206 
pounds. The equilibrium curve for such a load will be a para-
bola the ordinates yx and y2 will be 1.19 feet, and the curve 
will pass the crown at a distance of + 0.5 feet vertically. As 
this parabola, when drawn if desired, will be found to lie at 
most points on the opposite side of the centre line from the 
curve for steady load, the effect of a complete rolling load will 
be to bring the arch quite near to actual equilibrium. The de-
viation at the crown will be reduced to — 0.2 feet, and, as the 
total thrust will then be 128,513 pounds, the greatest intensity 
of compression at that section, for a four-foot voussoir, will be 
4 + 1.2 128,513 o n n „ 
~ 4 ' 4 x 144 ~~ 0 n square inch. We have now 
examined in detail all of the critical points of this arch. 

150. Final Dimensions of Arch. — T h e arch-ring was as-
sumed, at the start, to be five feet deep. I t is apparent, from 
our investigation and the conditions imposed, that this depth is 
greater than is necessary for the larger part of the arch, but is 
less than is required near the springings. For a travelling load 
of somewhat less intensity, a ring having a uniform depth of 

five feet will be entirely satisfactory. Guided by these results, 
we may redistribute the steady load in the spandrels so as to 
bring the equilibrium curve for that load nearer the centre line 
at the springings. Another trial will probably accomplish the 
desired end, and the above curves for rolling load can be used 
anew. Otherwise, the arch-ring may be made four feet deep 
at the crown, and six feet and a half deep at the apparent 
springings, as shown on the right half of Fig. 45, and in that 
case the curves which have been discussed will lie within the 
middle third of the rib. Although the formula for the circu-
lar arch were derived upon the assumption that the rib was of 
constant thickness, the deviation which we suggest will hardly 
be of serious consequence. The tenacity of the cement, and 
the greater or less resisting power of the material immediately 
in contact with the ring, will sufficiently provide for all contin-
gencies. We have therefore drawn this form as the final deter-
mined shape of the arch-ring, the centre line being undisturbed, 
and the radii of the intrados and extrados being about 95 feet 
and 104 feet respectively. One must remember, that, as the 
ring has been altered from a uniform depth of five feet, care 
must be taken to put a little more filling at the crown, and less 
at the springing, in order that the distribution of the steady 
load may be unchanged. 

151. General Remarks. — If the exterior spandrel Avail is 
massive, a separate equilibrium curve may be required for that 
portion of the ring which carries the wall : such portion will be 
subjected to a steady load equal to the weight of the wall, but 
need not be considered as carrying any travelling load. It was 
not our purpose to enter into the subject of the construction of 
stone arches, but to show the method of finding the forces 
which act on a given or assumed rib. Two or three matters, 
however, will be briefly referred to. If, at any point, the direc-
tion of the resultant pressure makes a considerable angle with 
the tangent to the centre line of the ring, the two voussoirs 
having a joint at that place might slip on one another if the 
joint were radial. No joint should deviate very far from a 



plane perpendicular to the pressure. Generally this angle of 
deviation is too small to be of practical importance, and the 
joints are made radial or normal to the intrados. 

In case several arches are built in a series, it is well to so 
proportion the span and rise of each, that the horizontal thrusts 
from steady load may nearly balance one another, as we shall 
then avoid a disturbance of one arch by the other, and can 
carry the arches on reasonably slender piers. If one arch has 
more thrust than the other, and the pier between the two 
yields, we have a change of span, like that due to temperature, 
so far as its treatment goes; and its effect upon the arches can 
therefore be determined. 

As we know the direction, amount, and point of application 
of the thrust at the springing, we can easily construct the line of 
thrust, or equilibrium curve for the abutment, by combining 
the weight of the abutment and of the mass of masonry imme-
diately above it with this thrust at the springing, the weight of 
the masonry just above this point being first compounded, and 
then the weights of successive portions of the abutment. 
Hence the required thickness of the abutment is ascertained. 

152. Exaggeration of Vertical Scale.— Since some of the 
equilibrium curves may run quite close to the centre line, espe-
cially the one for steady load, it may improve the accuracy of 
measurement of the ordinates or displacements to exaggerate 
the vertical scale of the drawing. In this case, since all verti-
cal lines will be increased in length, the load lines of the stress 
diagrams must be laid off with the same proportion to those 
which represent H. This suggestion immediately opens the 
question of the. possibility of treating elliptic ribs. 
%/15S. Elliptic Arch. — If we refer to the original equations 

of condition for any rib, viz., I E F . D E = 0, 2 E F = 0 , and 
2" E F . D B = 0, it is apparent, that, if all the ordinates D E 
and E F of a circular rib are multiplied or divided by any given 
quantity, the summations indicated above will still equal zero, 
and that the ordinates y„ y0, and y2, thus determined, will apply 
to an elliptic rib whose semi-axes are obtained from the radius 

of a circular rib by the same multiplication or division. This 
fact is easily seen by reference to Fig. 43. Here are drawn a 
semicircular rib and two elliptic ribs, of the same span, but dif-
fering in height; one having one-half the rise, and the other one 
and one-fourth the rise, of the semicircle. We will suggest, 
that, to find points on an ellipse, a simple way is to draw from 
the same centre two semicircles whose radii are the semi-axes of 
the ellipse ; then prolong any radius ; from the point where it 
cuts one circle draw a horizontal line, and, from the point where 
it cuts the second circle, draw a vertical line ; the intersection 
of the lines last drawn will be one of the desired points. This 
construction is seen in the figure, and, as one of the circles is 
needed subsequently, the method is convenient. 

154. Example.—Taking a load at 30° from the crown of 
the semicircular rib as an example, we find, by turning to the 
table of § 99, that yx = .360 r, y0 = 1.298 r, and y2 = .011 r : 
the polygon is plotted on the semicircle of the figure. In the 
upper sketch every ordinate for the ellipse being one-half of 
the corresponding ordinate for the circle from which it is pro-
jected, we have simply to substitute the semi-axis a = \ r for r, 
and we have ^ — .360 a, y0 = 1.298 a, &c. The equilibrium 
polygon may then be drawn, and it is apparent to the eye that 
it satisfies the imposed conditions alluded to in the last section. 
Similarly, for the other ellipse, we write a for r, in that way 
multiplying the ordinates of the semicircle by 1.25. 

I t is evident that the points of contrafiexure are unchanged 
in horizontal position, as is also the horizontal distance of the 
imposed load from the crown ; but the symbol a = 30° of the 
example has no significance in the ellipse as denoting the angu-
lar distance of the load from the crown. We must, in place of 
such notation, either draw the semicircle which has the span 
for a diameter, and.work from that, as has here been done, or 
else for a read r sin a, where r equals horizontal semi-axis of the 
ellipse, and lay off the distance from the centre on the diameter 
to locate the foot of y0. A segment of a semi-ellipse can be 
treated exactly as a segmental circular rib is treated : it will be 



necessary to draw the semicircle whose radius is the horizontal 
semi-diameter of the ellipse, and then to determine, by pro-
jecting the springing of the elliptic rib vertically upon the semi-
circle, what is the value of § to be introduced in the equations 
for &c. 

We see, also, from either the stress diagram, or a considera-
tion of the equation for H, that in proportion as the ordinates 
are diminished so is H increased: thus, for the flat ellipse of 
our figure, H is double the value of H for the semicircle; and, 
for the ellipse of large rise, H is f that of the semicircle. All 
of these remarks apply equally well to the rib hinged at the 
ends; and therefore the elliptic rib may be readily introduced 
in bridges or roofs, where it is desirable to have either a low 
arch rising rapidly from the springings, or a very high one. 

155. Treatment for Horizontal Forces. — Horizontal forces 
can be treated equally well by considering the elliptic roof as a 
projection of a circular are. In this case it will be necessary, 
since xv x0, and x2, are measured horizontally, to use the project-
ing circle which has the same rise, but different span; when 
the abscissas will be changed with the span, and the point of 
application of the horizontal force will continue on the. same 
horizontal line. 
^156. Catenary. — There is one special case which it may be 

well to take up. I t not seldom occurs in construction that an 
opening in a wall is to be spanned by an arch, and the masonry 
at top is limited by a horizontal line, while the load is perma-
nent. If we can make the arch of the form of the equilibrium 
curve for such a load, we may get a rib of good stability with 
a very moderate depth. A method of constructing such a 
curve will now be shown. We stated, in the early part of the 
book, that the curve assumed by a cord or chain hanging 
between two points of suspension, and under the action of its 
own weight only, was called a catenary. The load is distributed 
uniformly along the curve; that is, the intensity per foot of the 
curve is constant. To draw a catenary, proceed- as follows: 
Lay off on a vertical line, 1-11, Fig. 41, a convenient number 

of equal spaces, 1-2, 2-3, &c., the more the better, and let each 
of these spaces represent the weight of a certain short length of 
chain, as, for instance, in our figure, 6.4 feet. They may be of 
the same length as the pieces of chain, if desired. As we do 
not know the value of H at present, assume it, and draw 1-0 
horizontally, equal to H ; draw 11-0; consider the weight of 
the first piece of chain to be concentrated at its middle, and 
make A B equal to one-half piece of chain, say 3.2 feet; then 
draw B C parallel to 10-0, C D parallel to 9-0, and so on, B C, 
C D, &c., being successively laid off equal to one piece of chain, 
here 6.4 feet. We shall close with N O parallel to 1-0, and 
equal in length to A B. A curve from A to O, tangent to this 
broken line, will be a catenary. If 1-11 represents the weight 
of the chain A O, 1 -0 will represent the tension at O, and 
hence the weight of a piece of chain, which, hanging over a 
smooth peg at O, will keep the curve in equilibrium. Let O P 
represent the length of the piece which weighs H, or 0-1. 
Then a horizontal line P Q, drawn through P, is known as the 
directrix of the catenary. This curve has some peculiar attri-
butes, which may be deduced by mathematical analysis, and may 
be verified, in any particular case, from the drawing. Any ver-
tical ordinate to the curve will represent the tension along the 
curve at the point to which it is drawn. Further, this curve 
will also be in equilibrium under a load which shall fill the en-
tire area included between P Q and O A with a uniform load 
per square foot of the area. Since, however, when O P is given, 
the entire curve is fixed, it is possible to make a catenary curve 
of but one span and rise, if the depth of load at the crown is 
fixed; and hence the catenary itself is not applicable to the 
form of an arch where the three quantities just mentioned are 
given. This arises from the fact that all catenaries are similar 
figures: therefore, two of the above quantities being given, as 
for instance, span and rise, the third, the depth at crown, is 
definitely determined from them. 

157. Transformed Catenary; Example. — I t is possible, 
however, to find a curve which shall be in equilibrium under 



such a load, when the span, rise, and depth are all given. In 
the same way that an ellipse is derived by projection from a 
circle, a curve, called a transformed catenary, can be projected 
from a catenary, and will be in perfect equilibrium under the 
desired or prescribed wall. While some of the quantities used 
are derived by mathematical analysis, which we will not insert 
here, the accuracy of these quantities can be verified from the 
diagram. 

Let it be desired to find the form of the arch, of half span 
P Q, which shall be in equilibrium under masonry whose depth 
at the crown shall be S P, and at the springing R Q. I t is 
understood that the arch will be inverted from this figure, and 
it will be seen that this type of arch may be applied to any span 
and rise. Let P Q = <?, P S = h0, Q R = hu P O = m, and 
Q A = yv The first step will be to find the value of P O, and 
thus determine the original catenary. This will be done by 
solving the equation 

m = c . 
2.30158 X l o g G + J g - l ) ' 

where log. denotes the common logarithm of the quantity in 
the parenthesis. Let the half-span be 30 feet, the rise 8 feet, 
and the depth of load at the crown 2 feet; then is hx 10 feet, and 
the above expression becomes 

m _ 30 30 _ 
2.30158 X log (5 + V24) 2.29242 ~ 

Then by proportion 

k0:m = h1:yl, or y, = ^ = 13.09 X 5 = 65.45 ft. 
"o 

We next Obtain from the following formula, the length of the 
catenary, 

« = — O = \/(65.452 — 13.092) = 64.1 f t . , 
and 

H — m —13.09 — 

We may now proceed to draw the catenary between the 
points A and O. Any length of load line may be laid off, and 
H then drawn of the proper proportionate amount just found. 
But, if preferred, Px may be made equal to the weight on the 
catenary, which will be the area between the curve and the 
directrix multiplied by the weight of a cubic foot of masonry. 
The area can be proved equal to m s, or the product of P O by 
the length of the curve just found. Divide the load line into 
a certain number of equal parts, and divide s by the same 
number. Then proceed with the construction of § 156. 

158. Construction. —The transformed catenary must be a 
projection of the catenary so drawn, and the load and load 
line will be reduced in the same proportion. To save the 
trouble of redividing the load line, multiply 1-0 by the ratio 
m-t-h„; that is, enlarge the scale of the stress diagram, and lay 
off that distance from 1 to 0'. Radiating lines from 0' to the 
old points of division will be parallel to those which might be 
drawn from 0 to new points of division; therefore, starting 
from R, draw the curve R S by making its sides parallel to lines 
radiating from 0', and bringing the points B', C', D', &c., ver-
tically below B, C, D, &c. But it must be remembered that H 
in the new curve is the same in amount as H in the old one, 
Avhile Pi, the vertical component of the reaction, is reduced in 
the ratio just referred to. The rib need only be deep enough 
to have strength to resist the thrust. Fig. 42 shows the arch In 
an erect position. 

159. Many-centred Arch.— I f it is wished to lay out an 
approximation to the transformed catenary, composed of arcs 
of circles, draw normals at the middle points of the successive 
sides of our construction, and, to get them accurately, make 
them perpendicular to the radiating lines of the stress diagram. 
Prolong them until they intersect one another, and, on or near 
the curve which can be sketched through those intersections, 
select as many centres as may be desired for the circular arcs. 
Thus arches of three, five, or seven centres may be drawn, which 
will be good approximations to the transformed catenary. 



CHAPTER X. 

S T I F F E N E D SUSPENSION-BRIDGES. 

160. Necessity for Stiffening. — That the curve of equili-
brium for the cable of a suspension-bridge, when the load is 
supposed uniform per horizontal foot, and covers the entire span, 
is a parabola, was proved in § 28, Fig. 6. The steady load will 
always be carried by the cable. When, however, a moving load 
is upon the structure, the cable will tend to become flatter in 
curvature over the lightly-loaded portion, and more curved over 
the heavily-loaded portion, thus throwing the roadway from its 
proper line. Some means of stiffening the roadway or chain 
against distortion is therefore needed. Bridges subjected to 
travelling loads of but moderate amount may be stiffened by 
the longitudinal beams of the roadway; but heavy loads neces-
sitate the employment of trusses or girders in some form. 

161. Inverted Arch. — If the cable is divided into two par-
allel members, braced together as shown in Fig. 46, it becomes 
an inverted arch, and follows the treatment already given in 
either Chap. II., III., or IV., depending upon whether hinges 
are or are not introduced at the piers and the middle. From 
the fact that the cables are carried over the towers to anchor-
ages, and that movement over the top of the tower will take place 
both from change of load and change of temperature, the span 
cannot be assumed invariable: hence there is greater liability 
to alteration of stress in the several members from unavoidable 
causes; and a larger factor of safety than is commonly employed 
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in structures will be appropriate. The introduction of three 
hinges will do away with these sources of error. This type of 
stiffening truss will be discussed further in connection with the 
one which follows. 

162. Horizontal Girder. — It is much more common to em-
ploy a horizontal truss or girder, as shown in Fig. 47, to stiffen 
the suspension-bridge. If we note that the office of the arch or 
inverted arch is twofold, — first to resist the direct stress, and, 
second, to resist the bending moments at successive sections, 
— we see that the horizontal girder of this figure will be subject 
to the same bending moments at similar sections as the inverted 
arch or braced rib of Fig. 46, while the chain will here carry 
the direct stress, which in the former case was also resisted by 
the rib. 

If the truss is hinged at the middle as well as at the abut-
ments, it comes under the class of Chap. II . ; and the effect of 
one or more loads is easily determined. We may draw Fig. 48, 
if desired, and find by inspection the extent of rolling load 
required to produce the maximum bending moment of either 
kind at any point. See § 32. Thus, at one-fourth the span 
from one abutment, the maximum bending moment of one kind 
occurs when the rolling load covers four-tenths of the span on 
the same side; and the maximum bending moment of the oppo-
site kind, when the rolling load covers the other six-tenths of 
the span. The maximum moment at a point near the abut-
ment is found when the head of the load is at one-third the 
span from that abutment. These values are easily deduced by 
finding the horizontal distance of the point of intersection D, 
in Fig. 48, on A F, of that line, which, starting from B, passes 
through E, the extremitj'- of a certain ordinate. Those authors 
who make maximum bending moments at all points occur, for 
a stiffening girder hinged at ends and middle, when the half-
span is covered, are in error. The shear diagrams are con-
structed as explained in the earlier chapters. The construction 
for normal shear will be applicable to Fig. 46, and the vertical 
shear diagram to the stiffening truss of Fig. 47. 



163. Distribution of Rolling Load between Cable and 
Truss. — I t may be well to call more particular attention to 
the distribution of the rolling load between the truss and cable 
of Fig. 47, and the way in which bending moments are caused 
in the unloaded portion of the horizontal girder. If the bridge 
is unequally loaded, and no stiffening appliances are used, a 
distortion is produced, as explained in the first section of this 
chapter. When a weight W is applied on a suspension-bridge 
of half-span <?, at any point distant b from the middle hinge, we 
know, in the first place, that the total reaction at A, Fig. 47, the 

end farthest from the weight, is W and at B is 

and, in the second place, as there can be no shear in the cable, 
we see, from the equilibrium polygon of Fig. 48, and the lines 
0-4 and 0-3, drawn in the stress diagram parallel to the tangents 
to the cable at the tops of the towers, that 5-4 : H = 2 k : c 

2 k h ' 
or 5-4 = , — H. By § 23, H = ™ W ; therefore the amount 

of vertical force combined with H of the cable is W 
c 

Hence at A and at B the cable itself produces a reaction of 
c — b 

W —' t h e balance of the reaction comes from the truss; the 

reaction of the truss at A will therefore be — W ° ~ and at 
2 c 

B will be W _ = W T h i s reaction also 

will be negative when b is less than £ <?. Such is the case in 
Fig. 48, for the polygon A D B; and we have a corroboration 
in the negative bending moments near each end. 

As the vertical force at A or B from the cable is the load on 
the half-span of the cable, and this load must be uniformly dis-
tributed horizontally to keep the cable in its curve, the intensi-
ty of vertical pull exerted between the cable and the rods per 
horizontal foot is found by dividing the above force by the half-

c 5 
span: hence it is W . This will be the upward pull on 

the girder per horizontal foot at all points and the cause of the 
bending moments. Of course at the point of application of W 
the resultant force acts downward. The action of a continu-
ous load over a greater or less portion of the girder will follow 
the same law; and we shall have downward forces on the loaded 
portion of the girder equal to the difference between the im-
posed load and the pull of the vertical rods, and upward forces 
on the unloaded portion. 

I t is convenient to notice that the amount of W carried by 
either half of the cable is that portion which would be carried 
by the middle hinge if the half-girder alone supported W. As 
the girder reaction at the farther abutment is one-half of this 
amount, and the half-girder on the unloaded side is subjected to 
a uniform upward force, the shear on the middle hinge will also 

be one-half of this amount, or W The shear diagram is 

given in Fig. 48. For any extent of load it will now be easy 
to find the amount carried by the cable; for we have only to 
calculate the portion which would come upon the middle hinge, 
were that a point of support of a simple truss of span c, and 
this portion will be the load on the half-cable. 

164. Comparison of Inverted Arch and Horizontal Gird-
er.—All statements in regard to the horizontal stiffening girder 
are equally true of the two parallel chains with bracing. 
While, in the bridge formed of cable and horizontal girder, 
the girder resists bending moments, and the chain takes up the 
direct stress, in the latter case the cables have to resist both 
moment and direct stress. But the maximum direct stress at 
any section, half of which is borne by each cable, occurs when 
the bridge is fully loaded: the maximum bending moment is 
found with a partial load, at which time the direct stress is less. 
Hence less material is theoretically required for the cables and 
truss of the type of Fig. 46 than for one like Fig. 47,—per-
haps three-fourths as much. The introduction of the middle 
hinge in the axis of the rib of Fig. 46, with connections of suf-
ficient strength to transmit the cable stresses, is attended with 
a little difficulty, which does not exist in the other case. 



The three-hinged girder or rib may have the third hinge re« 
moved from the middle towards one end, as shown in Fig. 50, 
where one portion of the girder takes the form of a short link, 
extending to the first suspending rod. The same device may 
be introduced in an arch. The effect on the equilibrium poly-
gon and the derived quantities may at once be seen. 

165. Horizontal Stiffening Girder hinged at Ends only. 
— In case the middle hinge is omitted, the girder will be ex-
posed to bending moments, as explained in Chap. III . Here, 
again, an inspection of Fig. 8 will show the extent of load 
required to produce maximum M of either kind; and an exami-
nation of the table of bending moments in the chapter referred 
to will show that an absolute maximum M occurs at one-fourth 
of the span from either abutment for a continuous load extend-
ing from one end to a point distant 0.43 of the span from the 
end nearer to the point of maximum M. Its amount is about 

=-g, or .133 of the maximum moment at the middle of an un-
assisted girder of the entire span. The stretching of the cables 
on both sides of the towers impairs the accuracy of these de-
ductions. With a truss hinged at the middle, the sagging of 
the main cable, as well as the change of temperature, is of little 
consequence. From the value of Y1? § 50, it is evident that 

32 C1 — »*) (5 — n2) W is carried by either half-chain, and this 

quantity divided by c will give the intensity of upward pull on 
the truss from a load W at one point. The above amount is 
again that which would be carried to the point of contraflexure 
of the truss, if that were the point of support of the unas-
sisted truss, and the truss were discontinuous over the support. 
(Compare Rankine's " Applied Mechanics," p. 375, note.) 

If the ends of the girder are fixed in direction, we have the 
case of Chap. IV. Enough has been said to plainly indicate 
the treatment. 

166. Stiffening Girder of Varying Depth. — Returning 
anew to the case of the stiffening girder with three hinges, it is 

evident, that if the girder has a variable depth, greatest at the 
points of maximum bending moment, the stresses in the flanges 
or chords will be diminished proportionally, with an economy 
of material. If, at the same time, the girder is itself the sus-
pension cable, we can so adjust the depth, that the flange stress-
es for a partial load shall never exceed those arising from an 
entire load. Modifications having this end more or less in view 
have been suggested and carried out. Let us first draw, in 
Fig. 49, the equilibrium curve for a rolling load alone over half 
the span. While this curve will not give maximum bending 
moments, it will not differ greatly from the curves of maximum 
M, and . i t offers a very convenient and sufficiently accurate 
basis of comparison. Its form will be a straight line over the 
unloaded half of the span, and a parabola tangent to that line 
for the remaining portion. As the tangent at the abutment end 
of this parabola meets the tangent from the other end in the 
vertical through the centre of gravity of the load, the tangent 
A D is at once drawn. Draw the chord A C. The parabola 
cuts the middle vertical ordinate E D from the chord A C at 
its middle point F. If the height of the original parabola of 
the cable is k, the ordinate at one-fourth the span is f Ic. G D 
= | k; G E = | - i ; therefore E D — k; E F = \ k ; and F G 
— k. Hence the remaining ordinate for bending moment at 
one-fourth the span is I k on either side, and of opposite signs. 

167. Ead's Arch, or Lenticular Stiffening Girder.—If the 
two half-ribs of the arch of Fig. 51, or of the stiffened suspen-
sion-bridge, are each made of two equal parabolas, the outer 
ones being the continuous equilibrium curve for a complete 
load, the vertical depth of the semi-girders at their middle sec-
tions E and F will be one-half the rise or height, k. Let us 
denote the horizontal thrust or tension from steady load w by 
H ; that from a full rolling load w\ by H'. The horizontal 
stress due to a rolling load extending from one abutment over 
half the span will be | H ' ; for a similar load over the other 
half-span must give an equal stress, and both combined must 
equal H'. When the above bridge is fully covered with mov-



ing load, the equilibrium curve will coincide with the continu-
ous curve, and the stress at each section of the main cable will 
be that due to H + H'. The auxiliary ribs and bracing will 
experience no stress. When the bridge is half loaded, say from 
C to B, the equilibrium polygon for rolling load will be the 
one sketched in our figure; it passes at I, | k below the main 
cable at D, and through the middle or axis of the truss A C. 
The horizontal component of the stress at D, due to £ H' at 
I, is, from the equation of moments about E, | H ' ; that is, 
J H ' . | k = hor. comp. at D X i k. Taking moments about D, 
£ H' . \ k = — hor. comp. at E x h k ; or horizontal component 
at E is — | H'. At F and G the horizontal component is, in 
each member, £ H'. The minus-sign denotes opposite stress, 
here compression; in the arch, tension. We may therefore 
write the following table of cases: 

Horizontal component of stress a t . E D F G. 

With steady load only o f j O H , 

" and one-half rolling load — \ H' H + f H ' + | H ' H + | H ' , 

" complete " " 0 H + H ' 0 H + H ' . 

Since F and G change places with E and D for a load oil the 
other half-span, we see that the lower member, or main cable, 
experiences a horizontal component which fluctuates from H to 
H -(- H', always tension; while the auxiliary rib has a stress 
whose horizontal component ranges between £ H', tension, and 
i H', compression. The bracing will undergo no stress from 
a full load. The stress in the bracing for partial loads may be 
worked out by the method of the previous chapters for finding 
the amount of shear remaining after subtracting the vertical 
components for the two cables at a section, by the method of 
Part I I . , " Bridges," Chap. V., or by drawing stress diagrams as 
given in Par t I., " Roofs." 

As the parabola through I is a projection of that through D, 
the above deductions for the points D and E are true for the 
other points of the girder. Although, as pointed out in § 162, 

the bending moments are a little greater for loads which cover 
not quite half the span, it is evident that the horizontal compo-
nent of the stress in the main cable can never exceed H -f- H', 
and in the counter-rib will but slightly exceed ± I H'. This 
form of arch was designed and patented by James B. Eads: 
a paper upon it by him may be found in the " Transactions of 
the American Society of Civil Engineers," vol. iii., No. 6, 
October, 1874. 

168. Bowstring Stiffening Girder. —If the auxiliary mem-
bers connecting the hinges A, C, and B, Fig. 52, are straight, 
we have a variation in the method of stiffening and a change 
in the stresses. The equilibrium curve A F C I B, for a rolling 
load over one-half the span, is also drawn here, coinciding with 
A C, and passing through I, J k below D. The steady load will 
be entirely carried by the main cable as before, as will also 
a complete rolling load. The half rolling load, being entirely 
supported on the left by A F C , will cause in that member 
a tension whose horizontal component is £ H ' ; a horizontal 
tension in D, of H', and a horizontal compression in E, of 
£ H', as is found by similar equations of moments to those in 
the last section. There results, then, for this type the following 
cases:— 

Horizontal component of stress a t . . E D F G, 

With steady load only 0 H 0 H, 

" " " and one-half rolling l o a d — i H ' H + I F + £ H ' H, 

" " " " complete " " 0 H + H ' 0 H + H ' . 

The stress on the main cables will be very slightly increased 
for some partial loads, as shown before. The increase will, how-
ever, be small, for the direct stress is decreased at the time the 
bending moment is increased; so that the absolute maximum 
may be called H - f H' without any error of importance. The 
stress in the straight stiffening rib ranges from a tension of 
£ H' to a compression of i H'. While the member A C or C B 
has to resist double the force of the preceding case, and that 



force also completely reversed for a moving load over one-half 
of the bridge, the unbraced lengths are shorter than in Fig. 51, 
the construction of a straight member is simpler, and the web 
members are only one-half as long: the cost may therefore be 
sufficiently influenced to cause this design to commend itself 
more to the practical builder than does the former. A notable 
example of this type is the Point Bridge at Pittsburgh, Penn., 
eight hundred feet span, built by the American Bridge Com-
pany of Chicago, in 1876. 

169. Fidler's Stiffened Suspension-Bridge. — Again, let 
us conceive of two cables, A F C D B and B E C G A, Fig. 58, 
each separately subject to, and in equilibrium under, a rolling 
load over one-half the span, and then let their places be taken 
by the two girders shown. A C and C B will be straight, as in 
the last figure; A G C and C D B will be parabolas, each tan-
gent at C to the chord of the other; and the equilibrium curve 
for a complete load will pass through the middle of each truss, 
as shown by the dotted line. These trusses are, therefore, of 
the form of Fig. 52; but they have a depth equal to that of the 
trusses of Fig. 51. The horizontal component H, of steady 
load, and H', of complete rolling load, will be carried equally 
by both members of each truss, £ H and | H ' on each. A roll-
ing load on the right half of the span will cause a horizontal 
tension of £ H' at D and at F. We may, then, write, for this 

type^ 

Horizontal component of stress a t E D F G. 

Wi th steady load only . . . . ¿ H | H ¿ H , 

" " and one-half roll-
ing load . . . . . . . . ¿ H -

with steady load and complete roll-
ing load ¿ H + J H ' « " 

The stresses will, therefore, always be tension, and the hori-
zontal component will vary in each member from i H to i 
(H + H') , a most favorable showing for the structure. The 

remark of § 162 in regard to maximum bending moments 
applies here also. The maximum stresses in the bracing can 
be worked up in the way thought most convenient. This type 
may also be analyzed as two inverted bowstring girders, a 
weight on one causing simply a tension in the tie of the other 
and an inclined reaction in its line at the middle hinge. Hence 
the investigation of the bowstring girder in Part II. may be 
applied here. A very interesting analytical discussion of the 
types of bridges and arches of this chapter may be found in 
" Engineering," vol. xx. for 1875, from the pen of Mr. T. Clax-
ton Fidler, the inventor and patentee of the type discussed in 
this section. 

170. Ordish's Suspension-Bridge.—Another stiffened sus-
pension-bridge, in which the problem of resisting distortion 
from a partial load is solved in quite a different way, is what 
is known as Ordish's, shown in Fig. 55. The Albert Bridge 
over the Thames, at Chelsea, Eng., is of this type; and one of 
moderate span has been erected over the Pennsylvania Rail-
road, at 40th Street, Philadelphia. Here a certain initial stiff-
ness is given to the platform itself, and it is then directly sup-
ported at several points from the tops of the towers. I t is 
intended that the weight shall be entirely carried by the 
inclined ties. As these ties, from their length, would sag con-
siderably under their own weight, a passing load would cause 
the roadway to move vertically; for an increased pull on a tie 
would tend to straighten it. They are, therefore, suspended, 
at the joints in the several bars which make up the ties, from a 
light cable, which is designed simply to carry the weight of the 
ties; and the suspending rods are so adjusted, that the ties shall 
be straight. No movement of the roadway of any importance 
can then take place. The analysis is very simple. 

171. Erect and Inverted Arch combined.—The bridge 
over the Elbe, at Hamburg, one span of which is shown in Fig. 
54, is a combination of the erect and inverted arch. This con-
struction dispenses with abutments to withstand a thrust, as 
the thrust of the upper rib will at all times be balanced by the 



tension of the lower rib. If the ribs are of equal stiffness, any 
load may be considered as divided equally between the two 
systems: if the ribs, while having the same curvature, are not 
alike in cross-section, the load will probably be distributed in 
the ratio of their moments of inertia. As the erect arch 
always tends to move away from its equilibrium curve, and the 
inverted arch to approach the equilibrium curve, the tangents 
at the abutment ends will move in the same direction, and 
therefore the structure should be treated as hinged at the ends, 
unless each flange is firmly bolted to the skew-back. If the 
structure is carried on columns or a pier, it appears to us that 
the ends cannot be rigid, and we judge that the two ribs will 
begin to turn about the middle of the depth without the intro-
duction of a pivot or hinge. 

The effect of temperature is annulled. Also the shortening 
of the erect arch under the direct compression being opposite 
to the extension of the inverted arch under the direct tension, 
the span will tend to remain unaltered; but the ribs themselves 
will be changed in form, one rib flattening as the other be-
comes more convex. If, in making such a design, the section 
of the arch is found to differ much from the section of the in-
verted rib, it will be well to calculate the relative deflections of 
the two ribs at the middle. The amount of load each will 
carry varies inversely as the deflection under equal loads, since 
they must defleet equally; and hence, if the arch is first de-
signed of such shape, for the purpose of resisting compression, 
that it is stiffer or has less deflection than the chain, when each 
has one-half the load, the cross-section of the arch must be in-
creased, and that of the chain may be diminished. This type 
of structure must not be confounded with a lenticular girder: 
the absence of bracing between the ribs makes them independ-
ent. 

CHAPTER XI. 

B E N D I N G MOMENTS F R O M C H A N G E OF FORM. 1 

\ 

172. Displacement from Bending Moments. — It follows, 
from the fact that the arched rib moves away from the equilib-
rium polygon or curve, that the bending moments and chord 
stresses will have a slight tendency to increase. When the rib 
changes in shape, however, the equilibrium polygon must also 
move enough to still satisfy for the new form the equations of 
condition by which it was first established, and this movement 
will in some measure counteract the former. Besides, the 
equilibrium curve for steady load generally runs so close to the 
axis of the rib, that the change of shape from bending moments 
is very slight; and, even when the influence of rolling load is 
added, the increments of the bending moment ordinates are too 
small to be of material consequence. 

The vertical displacement at any point E, Fig. 56, produced 
by any load, will be found, for the parabolic rib, by taking area 
moments, as explained in Par t II., " Bridges," Chap. VI., or for 
the circular rib by summing the ordinates as usual along the 
rib. As was done in the treatment of beams, it will here be 
necessary to find the point D where the tangent to the rib in its 
new form is horizontal, which point will not be at the crown, 

1 Many of the deductions in this chapter are only intended as guides in practi-
cal construction, to indicate where, and to show approximately how much, addi-
tional stress may be anticipated from change of form. Exact results are not 
attempted. 
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from the fact that the arched rib moves away from the equilib-
rium polygon or curve, that the bending moments and chord 
stresses will have a slight tendency to increase. When the rib 
changes in shape, however, the equilibrium polygon must also 
move enough to still satisfy for the new form the equations of 
condition by which it was first established, and this movement 
will in some measure counteract the former. Besides, the 
equilibrium curve for steady load generally runs so close to the 
axis of the rib, that the change of shape from bending moments 
is very slight; and, even when the influence of rolling load is 
added, the increments of the bending moment ordinates are too 
small to be of material consequence. 

The vertical displacement at any point E, Fig. 56, produced 
by any load, will be found, for the parabolic rib, by taking area 
moments, as explained in Par t II., " Bridges," Chap. VI., or for 
the circular rib by summing the ordinates as usual along the 
rib. As was done in the treatment of beams, it will here be 
necessary to find the point D where the tangent to the rib in its 
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1 Many of the deductions in this chapter are only intended as guides in practi-
cal construction, to indicate where, and to show approximately how much, addi-
tional stress may he anticipated from change of form. Exact results are not 
attempted. 



except for symmetrical loads. D is then to be assumed momen-
tarily as a fixed point, and the deflection or area moment of A 
and E obtained with reference to i t : the subtraction of the 
latter from the former gives the displacement of E relatively 
to the abutment A ; that is, from the area moment between 
D and A subtract the area moment between D and E ; and 
the remainder, when multiplied by H E I, will be the vertical 
displacement of E. As just stated, these displacements may be 
neglected. 

173. Displacement and Bending Moments from Com-
pression. —The thrust which exists at each section of the rib 
must, by its compression of the particles, cause a shortening 
of the rib, and, as the shorter rib must fit the same abutments, 
it is necessarily lowered at the crown. The resulting bending 
moments may be of consequence. So far as the rib retains 
sensibly its old form, parabolic or the segment of a circle, the 
equilibrium polygon is lowered proportionally to the sinking of 
the rib, as indicated in Fig. 57, in order to still satisfy the 
equations of condition; but, as the deflection v at the crown 
is very small compared with k, the alteration of the bending 
moment ordinates is very trifling. On the other hand, this 
lowering of the apex of the equilibrium polygon at once in-
creases the value of H, offsetting the change first pointed out. 
This will be seen, also, from the values of M, § 44, into 
which k does not enter. The bending moments from the exter-
nal load are therefore practically unaltered by the change of 
form. 

To produce this change of form, however, or to bring the 
arch down to its new position, requires a change of inclination, 
and consequently a bending moment, at most points of the rib. 
The strains thus induced should be examined. Strictly accu-
rate theoretical investigations for the different ribs cannot 
easily be made j but formulae may be deduced which will serve 
all practical purposes. 

174. Parabolic Rib hinged at Ends. — The parabolic rib 
which we have treated varies in cross-section, from the crown 

to the springing, according to the secant of the inclination to 
the horizon, § 37; and, as the magnitude of the direct thrust 
for a complete uniform load varies in the same way, the inten-
sity of direct compression per unit of cross-section arising from 
H will be constant, and every unit of length of arc will be 
shortened by that thrust the same amount, so that the arch will 
be altered as if exposed to a change of temperature. We will 
assume that the new form of the rib is still a parabola with a 
rise k' in place of k, but with the original span 2 c. 

By definition, Part II., " Bridges," § 85, the modulus of elas-
ticity E equals the intensity of stress divided by the shortening 
of a unit's length. Let the constant intensity of thrust equal 
the thrust at the crown H, divided by the cross-section at the 
crown A ; let the compression of a unit's length equal the dif-
ference, «- / , between the lengths of arc before and after com-
pression divided by the original length s. Then 

An approximate formula for the length of a parabolic arc is, 
k2 

in our usual notation, s = 2 c -f f —. The value of s' will be 
0 

obtained by writing k' for k ; then 

* o' 4 (i2 V2\ H s 2 H 3 c2 4 - 2 £2 

As v, the deflection at the crown and the difference between 
k and k', is very small, we may write, without sensible error, 
k — kf = v, and k + kf = 2 k ; whence ¥ — k = 2 kv, and we 
have 

8 . 2 H 3c 2 + 2£ 2 H 3 c2 4 - 2 fc2 
s— fc y = _ , _ . ' , or v = . . _ . J . 
3 c 3 A E c ' 4 A E k 

It was proved, in § 36, that this rib deflected vertically like a 
horizontal beam of uniform section: hence to bring the arch 
down to its new position will create bending moments at all 
points such as would accompany the same deflection in a 



straight beam, supported at the ends, uniformly loaded, and of 
a cross-section equal to that of the rib at the crown. In 
Part II., " Bridges," § 95, we found, for a beam supported and 
loaded as above with w per foot, 

_5_ tvl* 5tee4 _ 5 M 0 c 2 

v ~ 384' E l 2 4 E I 1 2 E I ' 

if M0 is the bending moment at the middle. Equating these 
two values of v, we obtain 

5 M0 c2 H 3c 2 + 2fc2 
1 2 E I ~ 4 A E ' k ' 

or 
_ 3 l H ( 3 e 2 + 2fc2) 
— 5 Ac2 k 

the additional positive bending moment at the crown of the 
arch, caused by its compression under the thrust H. 

The bending moments at other points may then be taken 
to compare with those of the beam, that is, as the ordinates to 
the parabola, being M0 at the quarter-span. 

175. Remarks; Example. — It will be noticed that E has 
disappeared from the expression for M0: hence the bending 
moment will be the same, whether the material be iron, steel, 
or wood. As I contains A, and may be written n A A2, Part II., 
" Bridges," § 86, n being a numerical factor, it is seen that the 
bending moment from deflection of the rib due to compression 
increases with the square of the depth of the rib, and, as M -f- h 
equals the flange stress, this stress will increase directly as the 
depth. To diminish the effect of change of form alone, employ 
a shallow rib. 

If H = 20 tons, e = 100 feet or I = 200 feet, Jc =20 feet, 
and h = 2 | feet, for a rib with two plate flanges and thin or 
open web, I = 2 A . (JA)2} = \Ah\ and 

M 3 X 25 X 20 X 30,800 . „ .. . 
M ° = 5 X 16 X 10,000 X 20 = 2 , 9 f t t o n s a t c r o w n ' 

giving 1.16 tons compression on upper flange, and an equal 
tension on lower flange. 

176. Displacement from Change of Temperature. — The 
deflection produced by a fall of temperature in the parabolic 
rib hinged at the ends will be found by taking the area moment 
of the half parabolic segment, Fig. 16, from the crown to the 
springing about one abutment, and multiplying by H - f E I , 
Hence, as in Part II., " Bridges," § 95, 

the deflection at the crown when the temperature falls, and the 
rise of the crown when the temperature rises. One may prefer 
to consider the rib in its new position as the proper curve from 
which to obtain the area moment. If it is assumed to still be 
a parabola with the rise k', we have 

J J 

v = ^ ^ c2 k', and k' = k ± v. 

Substitute this value of W, and v becomes 

5 H e2 fc 
V ' 12 E I 5 H c2" 

This deflection is the result of the bending moments arising 
from H n and is not to be regarded in the light of the preceding 
section. The moments were computed in § 74. These moments 
will be slightly altered by the movement, as it shortens or 
lengthens the ordinates; but H4 will be changed in the opposite 
direction, reducing the actual modification of the moments. 
Since 

_ 15 i e E I _ 25 t e c 2 

— ¥ " " F - ' Vt — 32 - k ' 

a quantity independent of the cross-section of the rib, and, so 
far as the material is concerned, affected by the co-efficient of 
expansion only. 

The bending moments due to the direct thrust, whether arising from a 
load or change of temperature, have been considered, as well as the result-
ing deflection. When the temperature rises, H j is thrust, and in itself tends 



to shorten the rib, and thus reduce the above amount of rise due to expan-
sion. The ratio of the two deflections will be 

v Ht 3c 2 + 2 F . 5 H t 
vt 4 A E k • 12 E 

In the example previously cited this ratio becomes 

^ x S C i S o + w ) - 0 0 7 2 -

a reduction of three-fourths of one per cent. When the temperature falls, 
H t i s a tension, and, in lengthening the rib, slightly reduces the deflection. 

The deflection for a co-efficient of expansion of .000007 and a 
range of temperature of 30° will be, in our example of § 175, 

„ = 25 X 30 X^OOOT X 10,000 = > Q 8 2 f t . = x i n c h . 

[The expansion or contraction of a straight bar may be con-
veniently stated as i inch in one hundred feet for 30° F.] The 
theoretical movement of the rib at the crown for a range of 30° 
above and below the temperature at which it was constructed 
will therefore be two inches. The actual movement is gener-
ally less than theory would indicate, owing to gradual transi-
tion from one extreme to another, protection of some portions 
of the structure from extremes of temperature, as by shielding 
from the direct rays of the sun, &c., and, finally, imperfect free-
dom of motion. 

177. Initial Camber for Arch. — I t may be expedient to 
make the rib a little longer than the distance between the 
springings to compensate for the amount of compression which 
will arise from the steady load, or else to wedge up the spring-
ing points until the crown of the rib, when not under strain, 
shall be a distance v above its normal position: the rib will 
then, when in place and under its steady load, come down to 
the curve for which it is designed, and will be free from that 
portion of initial bending moment due to change of form from 
steady load. This will be true, because, in forcing the rib up, 

we have introduced bending moments of the opposite kind to 
an equal amount. An additional allowance may be made for 
an ordinary travelling load. If the rib is to be made longer to 
offset the compression, find v, § 174, or H from steady load, and 
make the parabolic rib of a span 2 c -f- u and a rise k, so that, 
when sprung into place on a span 2 c, it would rise to a height 
k -{- v, if it were not compressed at the same time. 

Noticing, from § 174, that this compression acts like a fall of 
temperature in shortening the rib, we have, from § 74, 

„ _ 15 E I _ 15 E I M 
1 ~~ 8 'ck% 8 ' c F * 2' 

j i j 

since u must equal 2 tec. But H, = J ^ - v , by § 176, and, 

equating these two values, we get 
15 E I 1 2 E I 
16 ' c ¿ 2 ' U 5 c*kV' 

or 
64 k 16 H 3 c2 - f 2 k? 

w ~ 25 ' c " " ~~ 25 ' A"E ' c 

If, in our preceding example, A is eight square inches, and E is 
24,000,000, u becomes half an inch. 

178. Parabolic Rib with Fixed Ends. — In this case the 
deflection will naturally correspond with that of a beam of 
uniform section, uniformly loaded, and fixed at the ends, as will 
be seen by comparing the equilibrium curve of Fig. 17, where 
H from temperature alone acts, with that of such a beam. In 
Part II., " Bridges," § 99, and Fig. 47, we found that 

wl 4 wc* M0 c2 

v ~ 384 E I — 24 E I — 4 E T 

if M0 is the bending moment at the middle. Equating this 
value of v with the one found in § 174, we obtain 

M _ I H ( 3 c * + 2 F ) 



The bending moment at the springings will be double this 
amount, and of the opposite sign. 

The deflection produced by a change of temperature will be 
found by taking the area moment of the semi-segment of the 
parabola already obtained in § 176, and subtracting the area 
moment of the rectangle whose height is -| Jc and base c. 

c) = 

Applying the data of the previous example of § 175, we have 

25 X 20 X 30,800 . _ . . M« = 16 X 10,000 ¿ 20 = 4 '8 ft" t0nS a t Cr°Wn' 

giving 1.92 tons, compression on upper flange and an equal 
tension on lower flange at crown, and 3.85 tons, tension on 
upper flange with an equal compression on lower flange, at 
either springing. 

To find such additional length of span for the parabolic rib 
fixed at the ends, that, when compressed under steady load, 
it may have no bending moments due to change of form, we 
pursue again the method of § 177. From § 76, 

As above, 

therefore 

w 45 E I 45 E I u 
T ' Tí?' UC~ 4 - ci?' 2' 

vx 1 2 E I 

_ 32 k _ 8 H 3 c2 -j- 2 fc8 

u — 1 5 - c — 1 5 ' A E ' c 

a quantity five-sixths of that for the rib with hinged ends. 
179. Circular Rib hinged at Ends. — I t is more difficult to 

obtain the amount of deflection from change of form produced 
by the compression at each section of a circular rib, even 
approximately. As the equilibrium polygon for steady load 
will not deviate much from the axis of the rib, the thrust T 
may be assumed to vary as secant 6, the inclination of the rib 

at successive points to the horizon: hence the shortening of a 
small portion, d s, of arc under the thrust will be 

, , T d s H d s . H r do d (s — s') — -x-=- = . _ secant 0 = -¡-^ . : v ' A E A E A E cos 0 

as the section is constant, 

. 1 + s i n g H r 
- A E J —p cos ft ~ l ° g 1 - s i n 0 • A E ' ^ 

(The symbol log denotes the hyperbolic logarithm; to obtain 
it, multiply the common logarithm by 2.30158.) 

As, with a small deflection, the rib will vary but slightly 
from its original form, let it be assumed to be an arc of a circle 
after compression. We have then s — s' = 2 r ft — 2 / ft, where 
r is the new radius, and ft the new angle subtended by the half-
arch. Now 

c2 -f- k* , c2 -4- (k —1>)2 , . c 
r = 2 2 ( k - v ) > a n d «*? = ?• 

By assuming a value for v, r' and ft can be obtained, and the 
value of 2 (r ft — r' ft) calculated: if it agrees with the value 
s — s' of equation (1.), the assumed v is sufficiently near the 
t ru th ; if not, the process of approximation majr be repeated. 
We may adopt, as a value which will answer very well in many 

s — s' ™ cases, v = —-—. lhen 

H r . 1 -(- sin 8 

This logarithmic expression may be written as a series, 

» = ^ ^ (sin 0 + I sin8 0 + \ sin* 0, &c.). 

I t was shown in § 36 that the vertical deflections of two 
beams of the same cross-section, and carrying the same gross 
load uniformly distributed,—one inclined at an angle i, and the 
other the horizontal projection of the former, — were in the pro-



portion of 1 : cos i. If, then, the load on the horizontal beam is 
increased in intensity in the ratio sec i : 1, the vertical deflec-
tions of the two beams will be the same. We desire to find the 
amount and distribution of load on a straight beam of the same 
span as the circular arch, Fig. 58, and the same cross-section, 
which shall produce the same deflection at the middle. By 
what has just been stated, the load on any horizontal foot of a 
straight beam must be to the intensity on an inclined beam as 
wsec 0 to w. A small portion of the arch d s = s e c d d x ; hence 
it follows, that, if the arch is carrying w per horizontal foot over 
the whole span, a horizontal beam, as above, loaded with the 

d s 
varying intensity w sec d = w per foot, will have the same 

deflection. This load will be the projection of a load of uniform 
intensity measured along the rib, or the load on the beam is 
w s, or 2 w r p, in our usual notation. 

In any particular case we may easily solve the problem 
graphically. Lay off 1-2, Fig. 58, equal w . A B ; divide A B 
into a number of equal parts, and 1 -2 into the same number, 
with half-loads at 1 and 2 as usual. Make 2-0 equal to H for 
this load, and, with 0 as a pole, draw the equilibrium polygon 
A' B', which, for an arch of moderate rise, will be a close 
approximation to a catenary. C' B' . (0-2) will be the desired 
bending moment M0, for a deflection found by taking the area 
moment of A! B' C about A', multiplying by 0-2, and dividing 
by E I . Use these values as we did those of § 174. In con-
structing, increase the length of the rib by (1.) if thought 
desirable. The values of the following section may be taken 
if preferred. 

180. Analytical Discussion. — The exact values may be deduced by 
the usual process for finding the deflection of a beam. If x is the dis-
tance of any point of the beam from one abutment (Fig. 59), 0, the angle 
subtended at the centre by the half-arch, 0, the angle from the crown to 
any point whose projection is x, and w, the load per foot on the arch, and 
also at the middle of the beam, then x = r (sin 0 — sin o), d x = —r cose da, 
the load at any point — w sec o per foot, and load on d x — w sec o d x 

= — iv r sec 9 cos OdO — — w r d 0. The load on one-half of the span is 
shown in the figure. 

Load on half-span = J^ w sec e dx = wr J^ do = u>r0. 

This expression is the reaction P, at the abutment. If a/ is the distance 
from the abutment to any section at which we desire the bending moment, 
and the corresponding angle is o', we have the bending moment 

M = ? ! x' — j * (z' — x) w sec Ddx 

= wr20 (sin 3 — sin 0') — w r°J J (sin o' — sin 0)dd 

==wr2 (J3 sin 3 cos 3 — o' sin o' — cos 0'), 

which becomes at the middle 

M (max) = a i r s (3 sin 3 + cos 3 — 1) = w r (c 3 — k). 

Writing the usual expressions for inclination and deflection, and dropping 
the accents, we have 

/
c M ¡or3 M 

E j d x = — J ^ (¡3 sin 3 -(- cos 3 — 0 sin d — cos 6) cos 6 d d 
W 7 

= — j T j (/3sin/3sin 0 4-cos,3sine — a s i n t i cos0 — f g ¿0cos20).* 

The slope at the abutment, when 0=3, is — ̂ ^ ( t f s i n 2 3—0 cos2 3+ sin/3 cos/3), 
J J 

which, if we remove is the area of the half equilibrium polygon A' B' C 

of Fig. 58. The deflection of the centre is 

/

c w ri ¡>3 

idx=g-jJ ^(3sin3smo+cos3sino—$sinoco$o—%o+&ocos20)cos0d0 

to ?** = E J (J fl sin® 8-+ h sin2 0 cos <3 - } 0 sin 0-%cos0+£).* * These expressions are reduced. To aid any who desire to prove them, 
we give the following integrals: f 0 cos 0 d 0 = 0 sin 0 + cos 0; fO sin 0 cos OdO 
= — £ 0 cos2 0 + i cos 0 sin 0 + \ 0 ; / cos2 0 d 0 = h sin 0 cos 0 + $ 0 ; 
f t ) cos3 0 dO = 0 cos2 0 sin 8 + % cos3 0 + § 0 sin3 0 -f- § sin2 0 cos 9. 



F r o m this expression, by removing we obtain the area moment of 

A' B' C'. 

The quanti t ies representing v and M will now be introduced in the 

equat ion of § 179: hence we ge t 

log T = jrrl(12¡3sin3/3-j-7 sin2¡3 cos¡3 — 9 /3sin /? — 4cos0 -{- 4). Ap X — sin p lox 

F i n d the value of M for the special arch, and value of (3, and also the 

value of v. Let » - f M = B r 2 ; then 

M - lo°" 1 + s i n ' 3 . 2 B r2 A E ¡3 ° 1 — sin 0 

If t he arch is a semicircle, 

•a r , , , „, . tur3 IT wr4 , „ . . . M (max) = i wr* (n — 2 ) ; i = — ^ . ^ 5 = g g ^ j ( f w + 4). 

181. Circular Rib F ixed at Ends. — From the method of 
treating the parabolic rib with fixed ends, as compared with 
the parabolic rib with hinged ends, we would suggest that the 
deflection and the bending moments a t crown and springing 
of the circular arch with fixed ends, due to the compression of 
the rib from H, may be obtained from a drawing like Fig. 58, 
when 2-0 is made equal to the H of this ease, by plotting the 
closing line of Fig. 27 on the arch of Fig. 58, at the height 

above A of r — cos fij (see § 105), projecting the points 

of contraflexure vertically on A ' B', drawing the horizontal 
closing line of this equilibrium polygon, and then finding M 
and v for the beam fixed a t the ends. 

For circular arches of moderate rise, the treatment for para-
bolic arches will probably suffice. 

C H A P T E R XII . 

BRACED A R C H W I T H HORIZONTAL M E M B E R ; OTHER SPECIAL 
FORMS ; CONCLUSION. 

182. The Usual Analysis not Applicable. — The difficulty 
in the way of a successful application of the usual formula 
2 E F . D E = 0 for the change of span of the braced arch with 
horizontal member, of Fig. 60, or, as it is sometimes called, the 
rib with spandrel bracing, arises from the fact that the moment 
of inertia of successive cross-sections cannot be left out of the 
equation as a constant. In fact, it varies rapidly; and its amount 
at any section is unknown until the sizes of the respective 
pieces are determined. I t was shown, in § 72, that I must be 
placed in the denominator of the above formula: and, if not 
constant, it must come within the sign of summation. 

This arch is pivoted at the springings, but continuous at the 
crown. If it were hinged at the crown by the omission of a 
piece in either the lower or the upper chord, the thrusts at the 
abutments could at once be determined by the principles of 
Chap. I I . ; and a diagram by the method of Par t I., " Roofs," 
would at once give the stresses in all the pieces for any given 
load. For the treatment of the case represented in Fig. 60, the 
following practicable method is offered. It was published in 
" The Engineer," Feb. 10, 1873, and will also be found in the 
ninth edition of " T h e Cyclopedia Britannica," art. "Bridges," 
where it is attributed to Professor Clerk-Maxwell. 



F r o m this expression, by removing we obtain the area moment of 

A' B' C'. 

The quanti t ies representing v and M will now be introduced in the 

equat ion of § 179: hence we ge t 

log T = jrrl(12¡3sin30 + 7 sin20 cos0 — 9 0 sin 0 — 4cos0 -{- 4). Ap X — sin p lox 

F i n d the value of M for the special arch, and value of 0, and also the 

value of v. Let » - f M = B r 2 ; then 

M - lo°" 1 + s i n '3 . 2 B r2 A E 0 ° 1 — sin 0 

If t he arch is a semicircle, 

•a r , , , „, . tur3 IT wr* , „ . . . M (max) = i wr* (n — 2 ) ; i = — j g j . g ; v= 3 3 3 1 ( i * + 4). 

181. Circular Rib Fixed at Ends. — From the method of 
treating the parabolic rib with fixed ends, as compared with 
the parabolic rib with hinged ends, we would suggest that the 
deflection and the bending moments at crown and springing 
of the circular arch with fixed ends, due to the compression of 
the rib from H, may be obtained from a drawing like Fig. 58, 
when 2-0 is made equal to the H of this ease, by plotting the 
closing line of Fig. 27 on the arch of Fig. 58, at the height 

above A of r — cos fij (see § 105), projecting the points 

of contraflexure vertically on A' B', drawing the horizontal 
closing line of this equilibrium polygon, and then finding M 
and v for the beam fixed at the ends. 

For circular arches of moderate rise, the treatment for para-
bolic arches will probably suffice. 

CHAPTER XII. 

BRACED A R C H W I T H HORIZONTAL M E M B E R ; OTHER SPECIAL 
FORMS ; CONCLUSION. 

182. The Usual Analysis not Applicable. — The difficulty 
in the way of a successful application of the usual formula 
2 E F . D E = 0 for the change of span of the braced arch with 
horizontal member, of Fig. 60, or, as it is sometimes called, the 
rib with spandrel bracing, arises from the fact that the moment 
of inertia of successive cross-sections cannot be left out of the 
equation as a constant. In fact, it varies rapidly; and its amount 
at any section is unknown until the sizes of the respective 
pieces are determined. It was shown, in § 72, that I must be 
placed in the denominator of the above formula: and, if not 
constant, it must come within the sign of summation. 

This arch is pivoted at the springings, but continuous at the 
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where it is attributed to Professor Clerk-Maxwell. 



183. Change of Span from Stress in a Piece. — From 
previous statements, we know that the modulus of elasticity 
E is the measure of the extensibility or compressibility of the 
kind of material to which it refers, so long as the stress does not 
surpass the elastic limit, and is equal to the quotient of the in-
tensity of the stress on a cross-section divided by the extension 
or compression of a unit's length of the piece in which the stress 
is exerted. Thus, if I is the length of a piece in inches, A its 
cross-section in square inches, T the thrust or tension in pounds 
to which it is exposed, and A I the change of length produced, 

If the piece A of the frame of Fig. 61 is changed in length, 
and every other piece is unchanged, while the portion of the 
frame to the right is held firmly in place, the span L of the 
frame will undergo an alteration J L. In this case the motion 
takes place about the joint opposite to A, and we may write 

¿L : AI = ac : ab, (2.) 

or the distance described by the point b for a small displace-
ment around the axis a will be to the horizontal movement of 
d as the arm a b to the arm of d, or ac. A similar proportion 
will be true, if one of the lower chord pieces is supposed to alter 
in length. In case any diagonal is changed in length, as, for 
instance, f g , the four-sided figure efig must alter to efi'g' of 
the sketch below, the point i turning about / as a centre, and 
the point g about e: hence, for a small displacement, the centre 
of motion is at the point of meeting, o, of if and g e prolonged, 
which, for this arch, will lie in the upper chord; and the perpen-
dicular p, dropped on the line of the piece, will take the place 
of a b above. 

184. Stress in a Piece from H and P. — L e t t be the 
stress produced in a member by a horizontal force H acting 
between the springing points. Then the principle of equality 
of moments as necessary for equilibrium about the point around 

which motion would otherwise begin, and which is no other 
than the point noticed at the close of the last section, will 
determine the relation of the forces. A general rule for find-
ing the axis about which rotation will begin is, Make a section 
which shall cut three pieces only; prolong the lines of two of 
the pieces until they meet: the moment of the stress in the 
third piece about that point of meeting will equal the moment" 
of H about the same point. Hence we have, for the piece A 

t . a b = H . a c, or t = H . 
a b 

Similarly, let tf be the stress produced in A by a vertical 
force P applied at one springing, while the other end of the 
frame is held rigidly so that it cannot turn. As the arm of P 
will be d c, we may write 

e . a b = P . d c, or I' = P. 
a b 

The distances d c and a c, being respectively horizontal and ver-
tical, may be denoted in general for any piece by x and y. In 
order to make the symbol ab of the last section and of this 
one general, so as to apply to a diagonal as well as a chord 
piece, let us write for a b the perpendicular p drawn from the 
axis of rotation upon the action-line of the piece. 

Any thrust at the springing having horizontal and vertical 
components H and P will produce a stress T in the piece, equal 
to t -f- f , or 

T _ ac. H + r 7 c . P _ H y - f P x 
ab p ' 

It is evident that heed must be paid to the kind of stress 
produced by H and P ; thus, in any piece of the top member, 
H will produce tension and elongation, while P will produce 
compression and shortening: the reverse will be true of the 
lower member; how the diagonals are affected will be seen 
when we come to our application. Appropriate signs, therefore, 
must be given to the arithmetical values of the stress and alter-



ation of length; thus compression and shortening may be 
called positive; tension and lengthening, negative. 

185. Formula for H. — From equations (1.) and (2.), § 188, 
upon writing y and p, as indicated above, for a c and a i, we get 
the change of span for any stress, T, in a particular piece, 

,v T y I A L = M ^ - ~ - f • f r - r , p p A 

or, upon inserting the value of T from equation (1.), last sec-
tion, „ 

Hy* + Pxy I 
f BA-

This same quantity can be calculated for the extensibility 
due to each member of the frame; and the result will not be 
altered by the slight yielding of all the others, unless this 
yielding produces sensible deformation, making appreciable 

changes in - and hence the sum of all the changes of span, 

or the total change of span, will be 

H T r J _ I J L . 
U Z j ? ' H A T i J V • E A 

If the abutments do not yield, this expression is zero. If the span 
changes, by a yielding of the abutments, so that e is the elonga-
tion of span for one ton of H, then the above expression for 
change of span equals e H. P is the vertical component of the 
reaction at one abutment, found as for any frame loaded as this 
arch may be : hence H may be found. If the abutments do 
not yield, we then obtain 

s p XJL _L 
T T / / - E A A 

7 ' E A 

186. Application of Method. — Let a single weight, W, be 
applied at any one of the top joints of the braced arch, Fig. 60. 

Inclined reactions will be produced at each abutment, whose 
components will be H and P, at the left, II and P2 at the right. 
The calculations for the resulting stresses in the pieces are then 
best made as follows: Construct tables of the values x-r -p and 
y- i -p for each member of the frame; the method of sections 
through the opposite joints, or of moments, will answer best for 
the top and bottom members, and a diagram such as has been 
drawn for a roof, for the diagonals; assume a cross-section for 
each member for an assumed probable value of the abutment 

CC If 1/ tP" I thrust ; make tables of —# . =—T- and ^ . or, what is f E A p- E A 
equivalent when all the frame is of one material, so that E is 

constant, make tables of -J™ and 4-4-. The summations indi-
p2 A p1 A 

cated in (1.), § 185, can then be made. In summing P . J j r j» the 

value Pi must be used for all pieces to the left of the loaded 
joint, and P2 for all pieces to the right of the load. Equation 
(1.), above, will now give the value of H for this single load. 

The process of finding the numerator of (1.) must be re-
peated for each joint which is loaded. The abutment reactions 
having thus been found, the stress in each piece will be com-
puted by (1.) § 184, or will be scaled from a diagram drawn as 
in Par t I., " Roofs." If, upon finding the maximum stresses in 
the pieces, resulting from the steady load and such rolling loads 
as will have the worst effect, the assumed sections are not 
strong enough for these stresses, fresh cross-sections must be 
assumed, and the whole calculation repeated. The change in 
cross-sections will cause some change in the values of H ; but 
this tentative process need seldom be repeated but once. 

187. Example; Stresses from H and P. — These processes 
will probably be rendered more clear by an example. Let the 
arched frame of Fig. 60 be 120 feet in span, 12 feet rise to the 
curved member, and 17 feet rise to the straight member, making 
the depth at mid-span 5 feet. Let the upper member be 
divided into panels of 10 feet each, and the parabolic or circu-



lar arc into portions of 10.268 feet each.1 The radius of the 
curved member will be 156 feet. Let it be desired to design 
this arched structure to bear a steady load of ten tons per joint 
of the top member and a travelling load of the same intensity. 

If a horizontal line L O is drawn to represent a certain value 
of H, we may construct Fig. 62 by the method used in Part I., 
" Roofs," and by scale determine the magnitude of the stress in 
each piece due to this H, as the only force, applied as a thrust at 
each abutment; all of the stresses being measured as fractions of 
H, and the kind of stress noted. One-half of the diagram is 
sufficient, as it will be symmetrical. The magnitude of any 
stress in a top or bottom piece can be readily proved by the 
method of moments. We may now fill the columns of a table 
with these ratios which represent y + p, being not only the 
ratios of the stresses to H, but of the change of span to change 
of length. Bow's notation is used, and the stresses in one half 
of the frame will correspond with those in the other half. The 
sign + denotes compression, the sign — denotes tension. 

V A L U E S OF P 
B O — 0 . 2 7 2 A L + 1 . 2 0 3 O A — 0 . 4 4 4 A B + 0 . 4 5 0 

D O — 0 . 6 3 9 C L + 1 . 5 2 0 B C — 0 . 4 7 8 C D + 0 . 4 8 0 

F O — 1 . 1 1 7 E L - F 1 . 9 2 7 D E — 0 . 5 0 0 E F + 0 . 5 0 2 

1 0 — 1 . 6 7 8 G L + 2 . 4 2 7 F G — 0 . 4 8 4 G 1 + 0 . 4 8 8 

K 0 — 2 . 1 8 5 J L + 2 . 9 4 2 I J — 0 . 3 8 4 J K + 0 . 3 8 6 

N O — 2 . 4 0 0 M L + 3 . 2 9 3 K M — 0 . 1 5 3 M N + 0 . 1 5 4 

In the same way a diagram constructed upon a vertical line 
which represents P1? Fig. 63, will give the stresses in the several 
pieces caused by this vertical force only, applied in an upward 
direction at the left abutment, while the right end is held rigidly 
in place by fixing the end brace in position. This figure will 
not be symmetrical, and therefore all the pieces must be entered 
in the table. P2 at the right abutment, in place of P, at the 
left, will reverse the table, B' O taking the place of B O, &c. 
The ratio of these stresses to P will give x + p. 

i If the arc is parabolic, the length of a piece will be 10.268 feet. The differ-
ence is not material for our example. t 

V A L U E S 
X 

OF - . 
P 

0 A + 1 . 1 7 8 B 0 + 0 . 7 1 8 A L — 0 . 3 5 4 

X 
OF - . 

P 
0 A + 1 . 1 7 8 A B — 1 . 1 8 9 

D 0 + 1 . 8 7 2 C L — 1 . 3 4 1 B C + 1 . 5 0 5 C D — 1 . 7 8 0 

F 0 + 3 . 6 6 2 E L — 2 . 8 3 3 D E + 1 . 8 7 2 E F — 1 . 8 7 9 

1 0 + 6 . 2 2 6 G L — 4 . 9 9 6 F G + 2 . 2 1 4 G I — 2 . 2 3 2 

K 0 + 9 . 3 1 9 J L — 7 . 7 8 7 I J + 2 . 3 4 1 J K — 2 . 3 5 3 

N 0 + 1 2 . 0 0 0 M L — 1 0 . 6 5 5 K M + 1 . 9 0 7 M N — 1 . 9 2 0 

K ' O + 1 3 . 1 6 3 M ' L — 1 2 . 5 9 2 N M ' + 0 . 8 3 3 M ' K ' — 0 . 8 2 7 

I ' 0 + 1 2 . 6 7 5 J ' L — 1 2 . 9 7 8 K ' J ' — 0 . 3 7 1 J ' I ' + 0 . 3 0 9 

F ' O + 1 1 . 2 8 3 G ' L — 1 2 . 1 3 4 I ' G ' — 1 . 2 1 2 G ' F ' + 1 . 2 0 2 

D ' 0 + 9 . 6 9 8 E ' L — 1 0 . 7 6 7 F ' E ' — 1 . 6 5 7 . E ' D ' + 1 . 6 6 4 

B ' 0 + 8 . 2 6 0 C L — 9 . 3 8 7 D ' C — 1 . 8 7 6 C B ' + 1 . 8 8 0 

A ' L — 8 . 1 3 9 B ' A ' — 1 . 3 6 7 A' 0 fixed. 
188. Computation of Tables, . — We may now write-a table 

for and another for for each piece of the frame. The 

first table, involving squares, will be positive throughout. The 
lengths of the horizontal and rib pieces will be multiplied by 
the footing of their respective columns to save labor; but the 
lengths of the diagonals are carried in as indicated. 

V A L U E S OF ^-J-. 
P 

B O 0.074 A L 1.447 O A 0.197 X 17-72 = 3.491 A B 0.202 X 14.08 = 2.844 
D O 0.408 C L 2.310 B C 0.228 X 14-33 3.267 C D 0.230 X 11.17 2.569 
F O 1.248 E L 3.713 I ) E 0.250 X H.58 2.895 E F 0.252 X 9-15 2.306 
I O 2.816 G L 5.890 F G 0.234 X 9-67 2.263 G I 0.238 X 7.75 1.844 
K O 4.774 J L 8.655 I J 0.147 X 8.25 1.213 J K 0.149 X 7.17 1.068 
N O 5.760 M L 10.844 K M 0.023 X 7.50 0.172 MIF 0.024 X 7.07 0.170 

15.080 X 1 0 32.859 13.301 10.801 
9.320 X 1 0 2 2 2 

244.000 65.718X 10.263 = 674.46 26.602 21.602 

Summing these columns, and doubling for the whole arch, we 

obtain 244.00 + 674.46 + 26.60 + 21.60 = 966.66 = If, 
P 

in the first trial, all the sections are supposed equal, A may be 
omitted from (1.), § 185, and 966.66 becomes the denominator 
of that expression. 



We next compute the following table, and multiply by the 
length of each piece as we advance. I t will be convenient to 
add other columns, marked 2, containing successive summations 
of the factors for each set of pieces, as these numbers will be 
used in turn. The summations are all negative, as will be 
readily seen, and hence the sign — is omitted. 

VALUES OF 
x y I 
? ' 

2 2 2 2 
B 0 — 1.95 1.95 A L — 4.37 4.37 0 A - 9.27 9.27 A B — 7.53 7.53 
D O — 11.96 13.91 C L — 20.92 25.29 B C - 10.30 19.57 C D — 9.54 17.07 
F O — 40.90 54.81 E L — 56.05 81.34 D E - 10.84 30.41 E F — 8.63 25.70 
I 0 — 104.47 159.28 G L — 124.44 205.78 F G — 10.37 40.78 G I — 8.44 34.14 
K O — 203.62 362.90 J L — 235.11 440.89 I J — 7.42 48.20 J K — 6.51 40.65 
N O — 288.00 650.90 M L — 360.10 800.99 KM — 2.19 50.39 M N — 2.09 42.74 
K'O —287.61 938.51 M'L — 425.55 1226.54 N5I ' + 0.95 49.44 M'K' + 0.10 42.64 
I ' 0 — 212.69 1151.20 J ' L —391.85 1618.39 K' J ' - 1.17 50.61 J ' V - 0.85 43.49 
F ' O — 126.03 1277.23 G ' L — 302.23 1920.62 I ' G ' - 5.68 56.29 G ' F ' - 4.55 48.04 
D'O — 61.97 1339.20 E ' L — 212.94 2133.56 F ' E ' - 9.59 65.88 E ' D ' - 7.64 55.68 
B 'O — 22.47 1361.67 C' L —146.43 2280.00 D'C'— 12.85 78.73 C B ' -10.07 65.75 

A ' L — 100.48 2380.48 B' A ' - 10.76 89.49 A' 0 fixed. 

189. Values of H. — The calculations for H can now be 
proceeded with, and they are given below. An explanation of 
one computation will suffice for all. If a weight W is placed 
on the third upper joint from the left, the vertical component 
of the left abutment reaction, P„ is -J-f W. Then, for the two, 

pieces of the upper chord to the left we have 2 P = 13.91 P!; 

for the two pieces of the rib to the left, we get 25.29 P„ and, for 
the five web-members to the left, 30.41 +17 .07 = 47.48 P,. On 
the right of the weight, the nine remaining pieces of the upper 

chord give 2 P 2 ^ f I = 1277.23 P2, which will be found opposite 

F ' 0 , as the vertical force is now applied at the right end; for 
the ten pieces of the rib we find 2133.56 P2, and for the rest of 
the web to E F we find opposite E ' F ' and F' G', for the reason 

just stated, 65.88 + 48.04 = 113.92 P* As the piece E L, below 
the weight, is acted upon by P, on one side, and P2 on the other, 
it makes no difference whether it is considered to lie to the left 
or the right of the loaded point. Adding up the respective 
numbers, multiplying one by and the other by adding, 

and dividing by I = 966.66, we get H = 0.831 W for a load 

on the third joint only. The divisor 966.66 x 24 = 23,200, is 
used. 

VALUES OF H . 

W on 1st Joint. W on 2d Joint. W on 3d Joint. 
0 1361 .67 1 . 9 5 1 3 3 9 . 2 0 1 3 . 9 1 1 2 7 7 . 2 3 

0 2 3 8 0 . 4 8 4 . 3 7 2 2 8 0 . 0 0 2 5 . 2 9 2133 .56 

9 .27 8 9 . 4 9 1 9 . 5 7 7 8 . 7 3 3 0 . 4 1 6 5 . 8 8 

9 .27 6 5 . 7 5 7 . 5 3 5 5 . 6 8 1 7 . 0 7 ' 4 8 . 0 4 

23 3897 .39 3 3 . 4 2 3 7 5 3 . 6 1 8 6 . 6 8 3 5 2 4 . 7 1 

2 1 3 . 2 1 2 1 3 19 5 

3897 .39 7 0 1 . 8 2 1 1 2 6 0 . 8 3 1 6 4 6 . 9 2 17623 .55 

41.1060-* - 2 3 2 = . 1 7 7 W 11260 .83 17623 .55 

1 1 9 . 6 2 6 5 - 5 - 2 3 2 = . 5 1 6 W . 1 9 2 . 7 0 4 7 - * - 2 3 2 = 8 3 1 W . 

W o n 4th Jo in t W on 5th Joint. W on 6th Joint. 

5 4 . 8 1 1151 .20 159.28 938 .51 3 6 2 . 9 0 650 .90 

81 .34 1920 .62 2 0 5 . 7 8 1618.39 440 .89 1226.54 

40 .78 56.29 4 8 . 2 0 5 0 . 6 1 50.39 49 .44 

25.70 4 3 . 4 9 3 4 . 1 4 42 .64 4 0 . 6 5 4 2 . 7 4 

202 .63 3171 .60 4 4 7 . 4 0 2650 .15 . 8 9 4 . 8 3 1969 .62 
17 7 . 15 9 13 11 

3444 .71 22201.20 6 7 1 1 . 0 0 23851 .35 11632.79 21665.82 

22201.20 23851 .35 21665 .82 

256.4591-5- 2 3 2 = 1 . 1 0 5 W . 305.6235-s- 2 3 2 = 1 . 3 1 7 W . 333 .0861 - 5 - 2 3 2 = 1 . 4 3 6 W . 

Having completed the computations for six joints, we add the 
H's, and multiply by two, obtaining 10.764 W as the value of H 
for an entire load of W on each upper joint. 



190. Diagrams and Table of Stresses for Equal Cross-
sections. — We may now draw a diagram for a single load W 
on any one joint, plotting the reactions, just obtained, and 
proceeding by the method of Part I., " Roofs," Fig. 21. Six 
diagrams, four of which are drawn, the scale being too small to 
make the other two clear, Fig. 64, will give all the stresses, as, 
by symmetry, loads on the right will cause stresses in pieces 
marked with unaccented letters equal to those now found in 
pieces marked with accents. The stresses are scaled in tons, 
tabulated, and marked with their proper signs, in the following 
table. They might be calculated by (1.), § 184, if preferred, 
and their sum might be checked by a diagram for complete 
load. The sums of the respective compressions and tensions are 
written below, and in the next line are found the differences of 
these quantities, or the stresses from steady load, marked S. L. 
Upon adding to these latter the tensions or compressions first 
referred to, we obtain the maximum stresses in the pieces for a 
moving load of the same intensity. 

It will be seen that the horizontal member is always com-
pressed ; the curved rib may have at times a little tension in its 
middle portion, but the larger part of it is always compressed; 
the web members are struts and ties alternately, until we reach 
J K ; the pieces from there to the middle may be exposed to a 
reversal of stress. 

191. Sections proportioned to Stresses. — Guided by these 
stresses, we will now assume sections of the different pieces, 
which shall vary approximately as do the stresses just found. 
Of the web members, those under compression are intended 
to be proportionately heavier than those in tension, as they 
will not safely resist so large a unit stress. The assumed ratio 

f f i i 
of the sections is marked on the figure. The quantities Jr. . 

1J 1/ 

and —f . ^ are now found anew by simply dividing the pre-

vious similar quantities by the section ratios just referred to. 
The result» follow on p. 184. A . 4 is now 161.18. v f A 

Load BO. on 
1st. +0.30 

2d. +0.49 

3d. +0.34 

4th. +0.21 

5th. +0.09 

6th. 0.00 

7th. —0.06 

8th. —0.09 

9th. —0.09 

10th. —0.07 

11th —0.05 

12th. —0.02 

AL. CL. EL. GL. 
—0.13 —0.13 —0.10 —0.07 

+0.30 —0.39 —0.35 —0.25 

+0.70 +0.17 —0.69 —0.57 

r>0. FO. XO. KO. NO 
+0.30 +0.28 +0.24 +0.17 +0.09 

+0.89 +0.85 +0.74 +0.54 +0.29 

+0.96 +1.43 +1.26 +0.95 +0.53 

+0.62 +1.36 +1.85 +1.43 +0.86 

+0.33 +0.82 +1.68 +2.06 +1.34 

+0.10 +0-38 +0.97 +1.91 +2.05 

—0.06 +0.07 +0.44 +1.13 +2.05 

—0.14 —0.10 +0.12 +0.61 +1.34 

—0.16 —0.16 —0.03 +0.31 +0.86 

—0.13 —0.16 —0.08 +0.14 +0.53 

—0.09 —0.10 —0.07 +0.06 +0.29 

—0.03 —0.04 —0.03 0.00 +0.09 

2 + 1.43 3.20 5.19 7.30 9.31 10.32 

2 — 0.38 0.61 0.56 0.21 0.00 0.00 

3. L. +1.05 +2.59 +4.63 +7.09 +9.31 +10.32 

+1.07 +0.72 +0.11 —0.89 

+1.37 +1.15 +0.73 +0.02 

+1.53 +1.43 +1.20 +0.73 

+1.54 +1.52 +1.40 +1.12 

+1.45 +1.47 +1.45 +1.30 

+1.22 +1.27 +1.29 +1.21 

+0.90 +0.95 +0.97 +0.93 

+0.55 +0.60 +0.62 +0.62 

+0.19 +3.20 +0.22 +0.21 

JL. 
—0.01 

—0.08 

—0.31 

—0.56 

—1.07 

—0.07 

+0.56 

+0.93 

+0.98 

+0.78 

+0.53 

+0.19 

ML. . 
+0.07 

+0.14 

+0.06 

—0.04 

—0.44 

— 1 . 1 6 

—0.26 

+0.32 

+0.52 

+0.46 

+0.37 

+0.15 

10.82 9.48 7.99 6.14 3.97 

0.13 0.52 1.14 1.78 2.10 

+10.69 +8.96 +6.85 +4.36 +1.87 

2.09 

1.90 

+0.19 

+2.48 +5.79 +9.82 +14.39 +18.62 +20.64 +21.51 +18.44 +14.84 +10.50 

Lo°nad «A. 
1st. +1.05 

2d. +0.80 

3d. +0.58 

4th. +0.33 

5th. +0.16 

6th. 0.00 

7th. —0.06 

8th. —0.13 

9th. —0.13 

10th. —0.10 

11th. —0.07 

12th. —0.02 

AB. 
+0.01 

—0.82 

—0.58 

—0.34 

— 0 . 1 6 

0.00 
+0.06 

+0.13 

+0.14 

+0.10 

+0.08 

+0.02 

BC. 
— 0 . 0 1 

+1.07 

+0.81 

+0.53 

+0.32 

+0.14 

+0.03 

—0.04 

—0.07 

—0.07 

—0.05 

— 0 . 0 1 

CD. 
+0.01 

+0.02 

— 0 . 8 2 

—0.54 

—0.33 

—0.15 

—0.03 

+0.04 

+0.07 

+0.07 

+0.05 

+0.01 

DE. 
—0.03 

—0.07 

+1.07 

+0.77 

+0.53 

+0.31 

+0.15 

+0.04 

—0.02 

—0.02 

—0.03 

0.00 

EF. 
+0.03 

+0.07 

+0.07 

—0.79 

—0.54 

—0.32 

— 0 . 1 6 

—0.04 

+0.02 

+0.02 

+0.03 

0.00 

FG. 
—0.04 

—0.09 

—0.14 

+1.04 

+0.76 

+0.51 

+0.33 

+ 0 . 1 8 

+0.11 

+0.07 

+0.02 

+0.01 

GI. 
+0.04 

+0.09 

+0.15 

+0.17 

-0.78 

—0.52 

—0.34 

—0.19 

— 0 . 1 2 

—0.07 

—0.02 

— 0 . 0 1 

I J. 

—0.06 

—0.16 

—0.25 

—0.32 

+0.95 

+0.72 

+0.52 

+0.37 

+0.25 

+0.17 

+0.09 

+0.02 

JK. 
+0.06 

+0.16 

+0.25 

+0.33 

+0.39 

—0.74 

—0.55 

—0.38 

—0.26 

— 0 . 1 8 

—0.09 

—0.02 

+5.84 

—0.23 

KM. 
—0.06 

—0.18 

—0.29 

—0.42 

—0.52 

+0.84 

+0.65 

+0.51 

+0.38 

+0.27 

+0.15 

+0.05 

+2.28 

—1.71 

MN. 
+0.06 

+0.19 

+0.30 

+0.42 

+0.52 

+0.60 

— 0 . 6 6 

—0.53 

—0.39 

— 0 . 2 8 

—0.15 

—0.05 

2 + 2.92 

2 — 0.51 

3. L. +2.41 

0.54 

1.90 

—1.36 

2.90 

0.25 

+2.65 

0.27 

1.87 

— 1 . 6 0 

2.87 

0.17 

+2.70 

0.24 

1.85 

—1.61 

3.03 

0.27 

+2.76 

0.45 

2.05 

—1.60 

3.09 

0.79 

+2.30 

1.19 

2.22 

—1.03 

2.85 

1.47 

+1.38 

2.09 

2.06 

0.00 
+5.33 +5.55 +5.57 +5.79 +5.39 

—3.26 —3.47 -3.46 —3.65 

+0.16 

—3.25 

+4.23 

—0.09 

+2.09 

—2.05 



VALUES OF - , . -P . 
J ? A 

B 0 0.296 A L 0.069 O A 0.582 A B 0.948 

D 0 

F O 

0.680 

1.248 

C L 

E L 

0.128 

0.248 

B C 

D E 

0.544 

0.483 

C D 

E F 

0.642 

0.577 
15.971 

134.527 
I O 1.877 G L 0.535 F G 0.377 G I 0.461 4.544 

K O 2.513 J L 1.236 I J 0.243 J K 0.356 6.138 

N O 2.743 M L 4.338 KM 0.043 Ï S 0.085 161.180 
24 

3868.320 
9.357 

6.614 

6.554 

2 

2.272 

2 

3.069 

2 

161.180 
24 

3868.320 

. 15.971 13.108 X 10.263 4.544 6.138 

VALUES OF ^ F . - L 
j r A 

2 2 2 2 
B 0 — 0.78 0.78 A L — 0.21 0.21 0 A —1.54 1.54 A B —2.51 2.51 

D O — 1.99 2.77 C L — 1.16 1.37 B 0 —1.72 3.26 C D —2.38 4.89 

F 0 — 4.09 6.86 E L — 3.74 5.11 D E —1.81 5.07 E F —2.16 7.05 

I 0 — 6.96 13.82 G L — 11.31 16.42 F G —1.73 6.80 G I —2.11 9.16 

K O —10.72 24.54 J L — 33.59 50.01 X J —1.48 8.28 J K —2.17 11.33 

N O —13.71 38.25 M L —144.04 194.05 KM —0.55 8.83 M N —1.05 12.38 

K'O —15.14 53.39 M'L —170.22 364.27 NM' +0.48 8.35 M'K' +0.02 12.36 

I' 0 —14.18 67.57 J' L — 55.98 420.25 K'J' -0.39 8.74 J' I' -0.1? 12.53 

F'O —12.60 80.17 G ' L — 27.48 447.73 I' G' -1.42 10.16 G' F' -0.76 13.29 

D'O —10.33 90.50 E ' L — 14.20 461.93 F'E' -2.40 12.56 E'D' -1.27 14.56 

B'O — 8.99 99.49 C' L — 8.13 470.06 D'C' -3.21 15.77 C'B' -1.68 16.24 

A' L — 4.78 474.84 B' A' -3.58 19.35 A'O' fixed. 

The above summations are negative. 
Next follow, as before, the computations of H (p. 185). 

I t will be seen that the change in the sections of the pieces 
has made but little change in the values of H ; the thrust now 
being 10.820 W for a steady load of W on each joint. We 
may therefore proceed to draw anew the diagrams for a single 
load W on any one joint, or we may, by the use of lines of 
another color, alter the figures already drawn. As H has been 
changed so little, the new stresses will determine the final 

A R C H E S . 

VALUES OF H . 
W Oll 1st Joint. W on 2d Joint. W on 3d Joint. 

U.Ü0 99 .49 0 . 7 8 90 .50 2 . 7 7 80 .17 
0 .00 4 7 4 . 8 4 0 . 2 1 4 7 0 . 0 6 1 .37 4 6 1 . 9 3 
1 .54 19 .35 3 .26 15 .77 5 . 0 7 12.56 
1 .54 16.24 2 .51 14 .56 4 . 8 9 13.29 

23 609 .92 6 .76 590 .89 14 .10 5 6 7 . 9 5 
35 .42 2 1 3 19 5 

609 .92 141 .96 1772 .67 267 .90 2839 .75 
645.34-5-• 3 8 6 8 = . 1 6 7 W . 1 7 7 2 . 6 7 2 8 3 9 . 7 5 

1 9 1 4 . 6 3 - 5 - 3 8 6 8 = . 4 9 5 W . 3 1 0 7 . 6 5 - ¡ - 3 8 6 8 = . 8 0 3 W . 

W on 4th Joint, 

6 .86 67 .57 
W on 5th Joint. 

13 .82 53 .39 
W on 6th Joint. 

24 .54 38 .25 
5 .11 4 4 7 . 7 3 16 .42 4 2 0 . 2 5 5 0 . 0 1 364 .27 
6 .80 10 .16 8 .28 8 .74 8 .83 8.35 
7 .05 12 .53 9 .16 12.36 11.33 12.38 

25 .82 

17 

537 .99 

7 

4 7 . 6 8 

15 

4 9 4 . 7 4 

9 

94 .71 

13 

423^25 

11 
438 .94 3 7 6 5 . 9 3 715 .20 4 4 5 2 . 6 6 1231 .23 4655 .75 

3 7 6 5 . 9 3 4452 .66 4655 .75 
4204.87-5-• 3 8 6 8 = 1 . 0 8 7 W . 5167.86-* - 3 8 6 8 = 1 . 3 3 6 W. 5886.98-Í- • 3 8 6 8 = 1 . 5 2 

dimensions of the pieces. A sample of the stresses obtained in 
the upper chord is given below for comparison. 

B O . D O . F O . I O . K O . N O . 
2 + 1 . 4 5 3 . 1 8 5 . 1 0 7 . 0 8 9 . 2 3 1 0 . 2 0 
2 — 0 . 4 2 0 . 6 3 0 . 5 1 0 . 0 7 0 . 0 0 0 .00 

S . L . 1 . 0 3 2 . 5 5 4 . 5 9 7 . 0 1 9 . 2 3 1 0 . 2 0 
M a x . - ( - 2 . 4 8 + 5 . 7 3 + 9 . 6 9 + 1 4 . 0 9 + 1 8 . 4 6 + 2 0 . 4 0 

A certain allowance in section may be made for the stresses 
from change of temperature, or the effect of the change of 
length in each piece may be worked out separately. 



192. Bracing with Vertical Struts. — The bracing of the 
arch just described is of the Warren or triangular type. The 
design of Fig. 65 has been used with success, is probably more 
economical of material, and is, in our judgment, more pleasing 
to the eye. The inclined braces are ties, and the introduction 
of the counters at the crown obviates the reversal of stress in 
the braces. When the upper member approaches the curved 
member closely at the crown, the web may be made of a plate 
for a distance of two panels: sometimes the two members are 
brought into contact at the crown. 

193. Cast-iron Arch as a Breast-Summer.—Builders some-
times employ a cast-iron member, shaped like Fig. 66, for span-
ning openings of considerable size, and carrying the weight of a 
brick wall. Aside from the fact that cast-iron in large masses 
is of very uncertain strength, by reason of internal stresses 
produced by contraction in cooling, an additional element of 
uncertainty is introduced by the method of constructing these 
ribs. The thrust of the arch is resisted by a wrought-iron rod, 
represented by a straight line in the figure, which, in place of 
being fastened by bolts or nuts, is fitted into recesses in the 
casting at its ends. In order to have the rod tight, it is made 
shorter than the distance between bearings, then heated, and 
shrunk into place. The rod is therefore under an initial ten-
sion, and the rib under initial compression, both of which are 
likely to be of uncertain amount, and detrimental; for, when the 
arch is loaded, its horizontal thrust will be added to the tension 
in the bar, and the compression of the rib will be increased. As, 
however, the bar elongates under the pull, it would be well, 
were it possible, to have the bar so much shorter than the nor-
mal span of the arch, that the value of H proper to the arch 
under the proposed load should elongate the rod to that normal 
span; then the initial bending moments produced in the rib by 
shrinking on the rod will be removed. It would seem possible, 
by a careful measurement of the extension of the rod between 
two marks some ten or twenty feet apart, especially if the 
stretch has been previously tested, to determine the initial ten-
sion. 

If the arch is well built into the masonry at the ends, and if 
the bearings are long, the rib may be considered as fixed at the 
ends. If not so built, and in preliminary testing on two sup-
ports under an applied weight, the rib must be considered as 
pivoted at the ends. From the small rise, such arches may be 
assumed, in either case, to be parabolic. In testing, therefore, 
under a single weight W applied at the middle, by § 40 
H = 6 4 I W - At that time temporary bearings ought to be 

placed at A to prevent the arch from bearing at C when loaded. 
Under the load of the wall, unless the latter is cut by large 
openings, so that a pier concentrates the weight on a small por-
tion of the rib, there will be no bending moments, as the load 
is uniformly distributed. 

194 Gothic Rib for R o o f s . - T h e rib which supports the 
roof of the Grand Central Depot in New-York City is proba-
bly circular, and will be analysed readily by the principles 
already laid down; but the Gothic rib requires some special 
treatment. Fig. 67 is a sketch of the rib which sustains the 
roof over the train-house of the Boston and Providence Rail-
road Depot in Boston, Mass. The span is 125 feet between 
walls, and the height is 55 feet to the axis of the rib. As 
height impresses one more than horizontal distance, it is evident 
that this roof appears lofty when viewed from the inside. In 
order to give height quickly near the walls, the half-rib is struck 
with two radii, as indicated in the figure. The lower portion is 
built with a solid web ; while most of the upper portion has a uni-
form depth of three feet. If the junction at the crown or apex 
of the roof allows any movement, if the ribs can rock or turn 
on castings at their bases, and if they are independent of the 
side walls, they may be treated as hinged at three points, and 
discussed like any three-hinged arch. If there is no opportuni-
ty for movement at the bases, and especially if the ribs abut 
closely against the side walls and buttresses, while still a joint 
is provided at the crown, the condition of invariability of span 
must be applied, and also the condition that the deflection of 



the crown when measured by area moments from the tangent 
at one abutment shall equal the deflection of the crown from 
the tangent at the other abutment. The integration will then 
be between limits which will appear from the discussion of the 
third supposition. 

The rib may be fixed at the ends and crown, and will then 
offer a troublesome case for treatment by reason of the great 
depth at the haunches, unless we assume that it is well but-
tressed by the wall. In this case, the portion below the top of 
the wall and the wall itself will act as an abutment; and, as it 
will only require a moderate tension in the inside flange at the 
springing to resist the overturning moment, such an assumption 
seems entirely warrantable. Above the wall, then, some 25 feet 
high, where the horizontal mark is made on the left-hand side, 
we assume the springing line of the arch, and consider the 
remainder as a rib fixed at the ends, and continuous at the 
crown. In applying the conditions for a rib with fixed ends to 
this case, we must change the derived equations, as the curve 
is not continuous at the crown. A parabola drawn through the 
middle of the depth of the rib at crown, springing, and a third 
point near the upper end of the straight portion of the rafter, 
will agree very closely with the axis of the rib throughout. 
We must first determine k and c for this parabola. In Fig. 68 
let h be the height or rise of the arch at the apex, a the hori-
zontal distance from h to the point where the parabola would 
become horizontal; then 

k c3 

^ = —a2); or k = 

For another ordinate h', distant c — a' from the springing, we 
write 

In this case c —a = 55.75 feet, h = 30.3 feet, c — a' = 22.5 feet, 
and h' = 17 feet: hence we find that k = 31.68 feet, <? = 70.48 
feet, and a = 14.73 feet. 

In place of performing the integrations of §§ 58-59 between 
the limits there given, we must omit or subtract from the 
equations the integrals between the limits + a and - a as this 
portion is cut out of the parabola. Thus the equation (1.) of 
§ 58 will be written K ' 

As limits e + aimdc-a will yield terms similar to limits c + b 
and c - b, the subtractive quantities above can be written from 
inspection of (2.), § 58, and (2.), § 39. A similar treatment 
ol the other equations of condition will be required. The 
solution will then proceed as usual. 

If the weight at the apex of the roof, arising from the venti-
lator, &c., is sufficiently great, it will take the place of the 
omitted portion of breadth 2 a, so that the rib will be very 
nearly in equilibrium under steady load. 

195. Remarks on Designing. _ The examples which have 
been given m the preceding pages will indicate the steps to 
be pursued m working out a specific design. The type of 
structure having been determined upon, the moving load must 
be taken of an intensity in harmony with the position of the 
bridge, or we must decide upon the weight of snow and pres-
sure of wind to which the roof will be liable. The dead weight 
of the structure must then be assumed, of such an amount as 
our judgment and experience dictate, to be afterwards verified 
and corrected from the actual sections. The abutment reac-
tions and bending moments from the applied forces will then be 
found, after which, stress diagrams may be constructed, or equi-
librium polygons drawn; from the first we obtain stresses direct, 
ly, as in Par t I . ; from the second, bending moments, with shears 
and direct thrusts, from which the stresses in the several pieces 
will be found, as in Par t II . The first method is probably the 
shorter for roofs, unless the rib is solid, or has a plate web, as all 
of the load of one kind may be included at one operation: the 
second method will be preferred where a moving load has to be 



considered. The stresses will then be tabulated, and the maxi-
mum compression and tension on each piece found. 

A point which may call for a little explanation is illustrated 
by Fig. 69. We desire to draw a stress diagram for an arched 
rib, which is fixed at the end A B, the equilibrium curve begin-
ning with the line G D, and the bending moment at A B being 
T . p, or its equivalent. The flanges at A and B will-transmit 
direct force only: therefore decompose T into C, the compres-
sion parallel to the flanges, at the springing, and F, the shear 
at right angles. Then, by moments about A, Thrust at 

B . A B = C . A G, or Thrust at B = ^ j ^ g ^ ; b y moments 

C B G 
about B, Tension at A = A B -. The shear F will be re-
sisted either at A or B, depending upon which of the braces is 
designed to carry i t : if the braces are ties, it must pass through 
the one at A. Thus we obtain the forces with which to begin 
the stress diagram. In case of a hinge at the abutment, the 
point G is found midway between A and B, and there will be 
i C, compression, at each flange. F will be found in the proper 
brace as above. 

The arched rib must be thoroughly stayed laterally ; for so 
much of either flange as is compressed is in unstable equilib. 
rium ; between lateral stays, the breadth of a compressed flange 
must be determined from the formulas for columns. For a few 
formulas and directions for detailing, see the closing chapter of 
Part I. 
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Descriptive circulars sent on application. 
Books marked with an asterisk are sold a t net prices only. 
All books .are bound in cloth unless otherwise stated. 

A G R I C U L T U R E . 

C A T T L E F E E D I N G — D A I R Y P R A C T I C E — D I S E A S E S OF A N I M A L S -

GARDENING, E T C . 

Armsby's Manual of Cattle Feeding 12mo, 75 
Downing's Frui t and Frui t Trees 8vo, 5 00 
Grotenfelt 's The Principles of Modern Dairy Practice. (Woll.) 

12mo, 2 00 
Kemp's Landscape Gardening 12mo, 2 50 
Loudon's Gardening for Ladies. (Downing.) 12mo, 1 5 0 
Maynard 's Landscape Gardening 12mo, 1 50 
Steel's Treatise on the Diseases of the Dog 8vo, 8 50 

" Treatise on the Diseases of the Ox .8vo, 6 00 
Stockbridge's Rocks and S o i l s . . . . 8vo, 2 50 
Woll 's Handbook for Farmers and Dairymen. 12mo, 1 50 

A R C H I T E C T U R E . 
B U I L D I N G — C A R P E N T R Y — S T A I R S — V E N T I L A T I O N — L A W , E T C . 

Berg's Buildings and Structures of American Railroads 4to, 7 50 
Birkmire's American Theatres—Planningand Construction.8vo, 3 00 

" Architectural Iron and Steel 8vo, 3 50 
" Compound Riveted.Girders 8vo, 2 00 
" Skeleton Construction in Buildings 8vo, 3 00 
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8vo, $3 50 

Carpenter's Heating and Ventilating of Buildings 8vo, 3 00 

Freitag's Architectural Engineering. 2 50 

Gerhard's Sanitary House Inspection 1 00 
1 50 

Hatfield's American House Carpenter 5 00 
75 

Kidder's Architect and Builder's Pocket-book.. .16mo, morocco, 4 00 

Merrill's Stones for Building and Decoration 5 00 

Monckton's Stair Building—Wood, Iron, and Stone. . . 4to, 4 00 

Wait 's Engineering and Architectural Jurisprudence.. 8vo, 6 00 
Sheep, 6 50 

Worcester's Small Hospitals—Establishment and Maintenance, 
including Atkinson's Suggestions for Hospital Archi-
tecture 12mo, 1 25 

World's Columbian Exposition of 1893 Large 4to, 2 50 

ARMY, NAVY, Etc . 

M I L I T A R Y E N G I N E E R I N G — O R D N A N C E — L A W , E T C . 

Bourne's Screw Propellers. 4to, 5 00 
BrufE's Ordnance and Gunnery 8vo, 6 00 
Chase's Screw Propellers 8vo, 3 00 
Cooke's Naval Ordnance 8vo, 12 50 
Cronkhite's Gunnery for Non-com. Officers 32mo, morocco, 2 00 
Davis's Treatise on Military Law 8vo, 7 00 

Sheep, 7 50 
" Elements of Law 8vo, 2 50 

De Brack's Cavalry Outpost Duties. (Carr.) 32mo, morocco, 2 00 
Dietz's Soldier's First Aid 16mo, morocco, 1 25 
* Dredge's Modern French Artillery Lagre 4to, half morocco, 15 00 

Record of the Transportation Exhibits Building, 
World's Columbian Exposition of 1893..4to, half morocco, 10 00 

Durand's Resistance and Propulsion of Ships 8vo, 5 00 
Dyer's Light Artillery 12mo, 3 00 
Hoff's Naval Tactics 8vo, 1 50 
Ingalls's Ballistic Tables 8vo, 1 50 

Handbook of Problems In Direct Fire 8vo, 4 00 
2 

Maliau's Advanced Guard 18mo, $1 50 
Permanent Fortifications. (Mercur.).Svo, half morocco, 7 50 

Mercur's Attack of Forlified Places 12mo, 2 00 
Elements of the Art of War 8vo, 4 00 

Metcalfe's Ordnance and Gunnery 12mo, with Atlas, 5 00 
Murray's A Manual for Courts-Martial 161110, morocco, 1 50 

Infantry Drill Regulations adapted to the Springfield 
Rifle, Caliber .45 82mo, paper, 10 

Phelps's Practical Marine Surveying 8vo, 2 50 
Powell's Army Officer's Examiner 12mo, 4 00 
Sharpe's Subsisting Armies 32mo, morocco, 1 50 
Very's Navies of the World 8vo, half morocco, 3 50 
Wheeler's Siege Operations 2 00 
Winthrop's Abridgment of Military Law I2m0 , 2 50 
Wood hull's Notes on Military Hygiene ? lOmo, 1 50 
Young's Simple Elements of Navigation.. 16mo, morocco flaps, 2 00 

first edition 1 00 

ASSAYING. 

S M E L T I N G — O R E D R E S S I N G — A L L O Y S , E T C . 

Fletcher's Quant. Assaying with the Blowpipe.,16mo, morocco, 1 50 
Furman's Practical Assaying gvo g QO 
Kunhardt 's Ore Dressing gvo 1 50 
O'Driscoll's Treatment of Gold Ores g v 0 2 00 
Ricketts and Miller's Notes on Assaying 8vo, 3 00 
Thurston's Alloys. Brasses, and Bronzes 8vo, 2 50 
Wilson's Cyanide Processes 12mo, 1 50 

" The Chlorination Process 12mo, 1 5 0 

ASTRONOMY. 

PRACTICAL, T H E O R E T I C A L , AND D E S C R I P T I V E . 

Craig's Azimuth 3 5 0 

Doolittle's Practical Astronomy 4 qo 

Gore's Elements of Geodesy gvo> 2 50 
Hayford's Text-book of Geodetic Astronomy 8vo. 3 00 
Michie and Harlow's Practical Astronomy 8vo, 3 00 
White's Theoretical and Descriptive Astronomy 12mo, 2 00 
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Baldwin's Orchids of New England Small 8vo, $1 50 
Loudon's Gardening for Ladies. (Downing.) 12mo, 1 50 
Thome's Structural Botany 161110, 2 25 
Westermaier's General Botany. (Schneider.). 8vo, 2 00 

BRIDGES, ROOFS, Etc» 

C A N T I L E V E R — D R A W — H I G H W A Y — S U S P E N S I O N . 

(See also ENGINEERING, p. 7.) 

Boiler's Highway Bridges 8vo, 2 00 
# «< The Thames River Bridge 4to, paper, 5 00 
Burr's Stresses in Bridges 8vo, 3 50 
Crehore's Mechanics of the Girder 8vo, 5 00 
Dredge's Thames Bridges 7 parts, per part, 1 25 
Du Bois's Stresses in Framed Structures Small 4to, 10 00 
Foster's Wooden Trestle Bridges .4to, 5 00 
Greene's Arches in Wood, etc 8vo, 2 50 

Bridge Trusses 8vo, 2 50 
Roof Trusses 8vo, 1 2 5 

Howe's Treatise on Arches 8vo, 4 00 
Johnson's Modern Framed Structures Small 4to, 10 00 
Merriman & Jacoby's Text-book of Roofs and Bridges. 

Part I., Stresses 8vo, 2 50 
Merriman & Jacoby's Text-book of Roofs and Bridges. 

Part II . . Graphic Statics 8vo, 2 50 
Merriman & Jacoby's Text-book of Roofs and Bridges. 

Par t I I I . , Bridge Design 8vo, 2 50 
Merriman & Jacoby's Text-book of Roofs and Bridges. 

Part IV., Continuous, Draw, Cantilever, Suspension, and 
Arched Bridges 8vo, 2 50 

* Morison's The Memphis Bridge Oblong 4to, 10 00 
Waddell's Iron Highway Bridges 8vo, 4 00 

" De Pontibus (a Pocket-book for Bridge Engineers). 
. . . 16mo, morocco, 3 00 

Wood's Construction of Bridges and Roofs; 8vo, 2 00 
Wright's Designing of Draw Spans. Parts I. and II. .8vo, each 2 50 

" "• " . " " Complete . . . . . . 8 v o , 3 50 

Adriance's Laboratory Calculations. 12mo, $1 25 
Allen's Tables for Iron Analysis g v o 3 0Q 

Austen's Notes for Chemical Students i 2 m o , 1 5 0 

Bolton's Student's Guide in Quantitative Analysis 8vo, 1 50 
Classen's Analysis by Electrolysis. (Herrick and Boltwood.).8vo, 3 00 
Crafts's Qualitative Analysis. (Schaeffer.) i2mo, 1 5 0 
Drechsel's Chemical Reactions. (Merrill.) 12,no , 1 25 
Fresenius's Quantitative Chemical Analysis. (Allen.) 8vo, 6 00 

Qualitative " " (Johnson.) 8vo, 3 00 
(Wells.) Trans. 

16th German Edition g v o 5 0 Q 

Fuertes's Water and Public Health i 2 m o ' 1 5 0 

Gill's Gas and Fuel Analysis i 2 5 

Hammarsten's Physiological Chemistry. (Mandel.) 8vo, 4 00 

Helm's Principles of Mathematical Chemistry. (Morgan). 12mo,' 1 50 

Kolbe's Inorganic Chemistry x g o 

Ladd's Quantitative Chemical Analysis i2mo, 1 00 
Landauer's Spectrum Analysis. (Tingle.) 8vo, 3 00 
LOb's Electrolysis and Electrosynthesis of Organic Compounds'. 

( L o r e n z " > - 12mo, 1 0 0 
Mandel's Bio-chemical Laboratory i2mo, 1 50 
Mason's Water-supply gy0>' g Q() 

" Examination of Water. (In the press.) 
Miller's Chemical Physics 8 v o > 2 0 0 

Mixter's Elementary Text-book of Chemistry i2mo! 1 50 
Morgan's The Theory of Solutions and its Results 12mo' 1 00 
Nichols's Water-supply (Chemical and Sanitary) 8vo,' 2 50 
O'Brine's Laboratory Guide to Chemical Analysis 8vo, 2 00 

Perkins's Qualitative Analysis l 00 
Pinner's Organic Chemistry. (Austen.) i 2 m o , l 50 
Poole's Calorific Power of Fuels gvo, 3 00 
Ricketts and Russell's Notes on Inorganic Chemistry (Non-

m e t a l l i c ) Oblong 8vo, morocco, 75 
Ruddiman's Incompatibilities in Prescriptions. 8vo, 2 00 
Schimpf's Volumetric Analysis iom o > ' 2 50 
Spencer's Sugar Manufacturer's Handbook. 16mo, morocco flaps, 2 00 
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Stockbridge's Rocks and Soils 8vo, 2 50 
Yan Deventer's Physical Chemistry for Beginners. (Boltwood.) 

12mo, 
"Wells's Inorganic Qualitative Analysis 12mo, 1 50 

" Laboratory Guide in Qualitative Chemical Analysis. 
8vo, 1 50 

"Whipple's Microscopy of Drinking-water 8vo, 
Wiedemann's Chemical Lecture Notes 12mo, 3 00 

" Sugar Analysis Small 8vo, 2 50 
Wulling's Inorganic Phar . and Med. Chemistry 12mo, 2 00 

D R A W I N G . 

E L E M E N T A R Y — G E O M E T R I C A L — M E C H A N I C A L — T O P O G R A P H I C A L . 

Hill 's Shades and Shadows and Perspective 8vo, 2 00 
MacCord's Descriptive Geometry 8vo, 3 00 

" Kinematics 8vo, 5 00 
" Mechanical Drawing 8vo, 4 00 

Mahan's Industrial Drawing. (Thompson.) 2vols . ,8vo, 3 50 
Reed's Topographical Drawing. (H. A.) . .4to, 5 00 
Reid's A Course in Mechanical Drawing 8vo. 2 00 

" Mechanical Drawing and Elementary Machine Design. 
8vo. (In the press.) 

Smith's Topographical Drawing. (Macmillan.) 8vo, 2 50 
Warren's Descriptive Geometry 2 vols., 8vo, 3 50 

" Drafting Instruments 12mo, 1 25 
" Free-hand Drawing 12mo, 1 0 0 
" Linear Perspective 12mo, 1 00 
" Machine Construction 2 vols., 8vo, 7 50 
" Plane Problems 12mo, 1 25 
" Pr imary Geometry 12mo, 75 
" Problems and Theorems 8vo, 2 50 
" Projection Drawing 12mo, 1 50 

Shades and Shadows 8vo, 3 00 
Stereotomy—Sione-cutting 8vo, 2 50 

Whelpley's Letter Engraving 12mo, 2 00 
6 

I L L U M I N A T I O N — B A T T E R I E S — P H Y S I C S . 

Anthony and Brackett 's Text-book of Physics. (Magie.). .8vo, $3 00 
Anthony's Theory of Electrical Measurements l2mo, 1 00 

Barker's Deep-sea Soundings 8vo> ' 2 0 0 

Benjamin's Voltaic Cell ^' g v 0 ' g 0 Q 

History of Electricity 3 0 0 

Cosmic Law of Thermal Repulsion 1 2 m 0 ) ? 5 
Crehore and Squier's Experiments with a New Polarizing Photo-

Chronograph 3 0 0 

^ Dredge's Electric I l luminat ions . . . .2 vols., 4to, half morocco, 25 00 

Vol .11 4to, 7 50 
Gilbert's De magnete. (Mottelay.) 8 v 0 j 2 50 
Holman's Precision of Measurements 8 v o ' 2 00 

Telescope-mirror-scale Method Large 8vo, 75 
Michie's Wave Motion Relating to Sound and Light Svo, ' 4 00 
Morgan's The Theory of Solutions and its Results 12mo,' 1 00 
Niaudet 's Electric Batteries. (Fisliback.) 2 50 
Pra t t and Alden's Street-railway Road-beds 8vo', 2 00 
Reagan's Steam and Electric Locomotives i 2 m o ' 2 00 
Thurston's Stationary Steam Engines for Electric Lighting Pur-

P°ses 

Tillman's Heat 1 ^ 

ENGINEERING. 

C I V I L — M E C H A N I C A L — S A N I T A R Y , E T C . 

0See also BRIDGES, p . 4 ; HYDRAULICS, p . 9 ; M A T E R I A L S OP E N -

GINEERING, p . 1 0 ; MECHANICS AND MACHINERY, p . 1 2 ; S T E A M 

E N G I N E S AND B O I L E R S , p . 1 4 . ) 

Baker's Masonry Construction 8 v 0 j 5 0 Q 

Surveying Instruments 1 2 m o ' 3 0 0 

Black's U. S. Public Works Oblong 4to,' 5 00 
Brooks's Street-railway Location i 6 m 0 j morocco, 1 50 

Byrne's Highway Construction 5 0 Q 

" Inspection of Materials and Workmanship 16mo', 3 00 

Carpenter's Experimental Engineering 8 v o 6 0 Q 
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Church's Mechanics of Engineering—Solids and Fluids 8vo, $6 00 
" Notes and Examples in Mechanics 8vo, 2 00 

Crandall's Earthwork Tables 8vo, 1 50 
" The Transition Curve 16mo, morocco, 1 5 0 

* Dredge's Penn. Railroad Construction, e t c . . . Folio, half mor., 20 00 
* Drinker's Tunnelling 4to, half morocco, 25 00 
Eissler's Explosives—Nitroglycerine and Dynamite . . . 8vo, 4 00 
Folwell's Sewerage 8vo, 3 00 
Fowler's Coffer-dam Process for Piers .8vo. 2 50 
Gerhard's Sanitary House Inspection 12mo, 1 00 
Godwin's Railroad Engineer's Field-book 16mo, morocco, 2 50 
Gore's Elements of Geodesy 8vo, 2 50 
Howard's Transition Curve Field-book 12mo, morocco flap, 1 50 
Howe's Retaining Walls (New Edition.) .12mo, 1 25 
Hudson's Excavation Tables. Vol. I I 8vo, 1 00 
Hut.ton's Mechanical Engineering of Power Plants 8vo, 5 00 
Johnson's Materials of Construction Large 8vo, 6 00 

" Stadia Reduction Diagram. .Sheet, 22J X 28i inches, 50 
" Theory and Practice of Surveying Small 8vo, 4 00 

Kent's Mechanical Engineer's Pocket-book 16mo, morocco, 5 00 
Kiersted's Sewage Disposal . . . . 12mo, 1 25 
Mahan's Civil Engineering. (Wood.) 8vo, 5 00 
Merriman and Brook's Handbook for Surveyors. . . .16mo, mor., 2 00 
Merriman's Geodetic Surveying 8vo, 2 00 

" Retaining Walls and Masonry Dams 8vo, 2 00 
" Sanitary Engineering 8vo, 2 00 

Nagle's Manual for Railroad Engineers 16mo, morocco, 3 00 
Patton's Civil Engineering 8vo, 7 50 

" Foundations 8vo, 5 00 
Prat t and Alden's Street-railway Road-beds 8vo, 2 00 
Rockwell's Roads and Pavements in France 12mo, 1 25 
Ruffner's Non-tidal Rivers, 8vo, 1 25 
Searles's Field Engineering 16mo, morocco flaps, 3 00 

" Railroad Spiral 16mo, morocco flaps, 1 50 
Siebert and Biggin's Modern Stone Cutting and Masonry.. ,8vo, 1 50 
Smart 's Engineering Laboratory Practice 12mo, 2 50 
Smith's Wire Manufacture and Uses Small 4to, 3 00 
Spalding's Roads and Pavements 12mo, 2 00 

Spalding's Hydraulic Cement f . i2mo, $2 00 
Taylor's Prismoidal Formulas and Earthwork 8vo, 1 50 
Thurston's Materials of Construction, 8vo, 5 00 
* Trautwine's Civil Engineer's Pocket-book. ,.16mo, mor. flaps, 5 00 

Cross-section Sheet, 25 
* " Excavations and Embankments Svo, 2 00 

Laying Out Curves 12mo, morocco, 2 50 
Waddell's De Pontibus (A Pocket-book for Bridge Engineers). 

16mo, morocco, 3 00 
Wait's Engineering and Architectural Jurisprudence 8vo, 6 00 

Sheep, 6 50 
" Law of Field Operation in Engineering, etc 8vo. 

Warren's Stereotomy— Stone-cutting 8vo, 2 50 
Webb's Engineering Instruments 16mo, morocco, 1 00 
Wegmann's Construction of Masonry Dams 4to, 5 00 
Wellington's Location of Railways.. - 8vo, 5 00 
Wheeler's Civil Engineering 8vo, 4 00 
Wolff's Windmill as a Prime Mover 8vo, 3 00 

HYDRAULICS. 

W A T E R - W H E E L S — W I N D M I L L S — S E R V I C E P I P E — D R A I N A G E , ETC. 

(See also ENGINEERING, p. 7.) 

Bazin's Experiments upon the Contraction of the Liquid Vein. 
(Trautwine.) ~ 8vo, 2 00 

Bovey's Treatise on Hydraulics 8vo, 4 00 
Coifin's Graphical Solution of Hydraulic Problems 12mo, 2 50 
Ferrel's Treatise on the Winds, Cyclones, and Tornadoes.. .8vo, 4 00 
Fuertes's Water and Public Health 12mo, 1 50 
Ganguillet & Kutter's Flow of Water. (Hering & Trautwine.) 

8vo, 4 00 
Hazen's Filtration of Public Water Supply 8vo, 2 00 
Herschel's 115 Experiments. 8vo, 2 00 
Kiersted's Sewage Disposal 12mo, 1 25 
Mason's Water Supply 8vo, 5 00 
Merriman's Treatise on Hydraulics. 8vo, 4 00 
Nichols's Water Supply (Chemical and Sanitary) 8vo, 2 50 
Ruffner's Improvement for Non-tidal Rivers 8vo, 1 25 
Wegmann's Water Supply of the City of New York 4to, 10 00 
Weisbach's Hydraulics. (Du Bois.) 8vo, 5 00 
Wilson's Irrigation Engineering 8vo, 4 00 

Hydraulic and Placer Mining 12mo, 2 00 
Wolff's Windmill as a Prime Mover 8vo, 3 00 
Wood's Theory of Turbines 8vo, 2 50 

9 



BOILERS—EXPLOSIVES—IRON—SUGAR—WATCHES —WOOLLENS, E T C . 

Allen's Tables for Iron Analysis 8vo, $3 00 
Beaumont's Woollen and Worsted Manufacture 12mo, 1 50 
Bolland's Encyclopaedia of Founding Terms 12mo, 3 00 

The Iron Founder 12mo, 2 50 
Supplement 12mo, 2 50 

Bouvier's Handbook on Oil Painting 12mo, 2 00 
Eissler's Explosives, Nitroglycerine and Dynamite 8vo, 4 00 
Ford's Boiler Making for Boiler Makers 18mo, 1 00 
Metcalfe's Cost of Manufactures 8vo, 5 00 
Met calf's Steel—A Manual for Steel Users 12mo, 2 00 
*Reisig's Guide to Piece Dyeing 8vo, 25 00 
Spencer's Sugar Manufacturer's Handbook 16mo, rnor. flap, 2 00 

" Handbook for Chemists of Beet Sugar Houses. 
16mo, mor. flap, 3 00 

Thurston's Manual of Steam Boilers 8vo, 5 00 
Walke's Lectures on Explosives 8vo, 4 00 
West's American Foundry Practice 12mo, 2 50 

" Moulder's Text-book ." 12mo, 2 50 
Wieclimann's Sugar Aualysis Small 8vo, 2 50 
Woodbury's Fire Protection of Mills 8vo, 2 50 

M A T E R I A L S O F E N G I N E E R I N G . 

STRENGTH—ELASTICITY—RESISTANCE, E T C . 

(See also ENGINEERING, p. ?.) 

Baker's Masonry Construction 8vo, 5 00 
Beardslee and Kent's Strength of Wrought Iron 8vo, 1 50 
Bovey's Strength of Materials 8vo, 7 50 
Burr's Elasticity and Resistance of Materials 8vo, 5 00 
Byrne's Highway Construction 8vo, 5 00 
Church's Mechanics of Engineering—Solids and Fluids 8vo, 6 00 
Du Bois's Stresses in Framed Structures Small 4to, 10 00 
Johnson's Materials of Construction 8vo, 6 00 
Lanza's Applied Mechanics 8vo, 7 50 
Martens's Materials. (Henning.) 8vo. (In the press.) 
Merrill's Stones for Building and Decoration 8vo, 5 00 
Merriman's Mechanics of Materials 8vo, 4 00 

Strength of Materials 12mo, 1 0 0 
Patton's Treatise on Foundations 8vo, 5 00 
Rockwell's Roads and Pavements in France 12mo, 1 25 
Spalding's Roads and Pavements 12mo, 2 00 
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Thurston's Materials of Construction 8vo, $5 00 
Materials of Engineering 3 vols., 8vo,' 8 00 

Vol. I., Non-metallic 2 00 
Vol. II. , Iron and Steel 8vo[ 3 50 
Vol. III . , Alloys, Brasses, and Bronzes 8vo, 2 50 

Wood's Resistance of Materials 8vo,' 2 00 

M A T H E M A T I C S . 

CALCULUS—GEOMETRY—TRIGONOMETRY, E T C . 

Baker's Elliptic Functions 8vo, 1 50 
Ballard's Pyramid Problem ]Qyo\ J 5 0 

Barnard's Pyramid Problem ' ' . .gvo,' 1 50 
Bass's Differential Calculus 12mo' 4 00 
Briggs's Plane Analytical Geometry i2mo,' 1 00 
Chapman's Theory of Equations i2mo', 1 50 
Compton's Logarithmic Computations 12mo,' 1 50 
Davis's Introduction to the Logic of Algebra 8vo,' 1 50 
Halsted's Elements of Geometry 8vo', 1 75 

Synthetic Geometry 1 50 
Johnson's Curve Tracing _ .i2mo' 1 00 

Differential Equations—Ordinary and Partial. 
Small 8vo, 3 50 

" Integral Calculus 1 2 m o > 1 5 0 

Unabridged. 12mo. (In the press.) 
" Least Squares 1 5 0 

Ludlow's Logarithmic and Other Tables. (Bass.) 8vo, 2 00 
Trigonometry with Tables. (Bass.) 8vo, 3 00 

Mahan's Descriptive Geometry (Stone Cutting) 8vo, 1 50 
Merriman and Woodward's Higher Mathematics ^vo,' 5 00 
Merriman's Method of Least Squares 8vo,' 2 00 
Parker's Quadrature of the Circle ^ ^vo', 2 50 
Rice and Johnson's Differential and Integral Calculus, 

2 vols, in 1, 12mo, 2 50 
Differential Calculus Small 8vo, 3 00 
Abridgment of Differential Calculus. 

Small 8vo, 1 50 
Totten's Metrology y ^ 
Warren's Descriptive Geometry 2 vols., 8vo, 3 50 

" Drafting Instruments i 2 m o | 1 2 5 
Free-hand Drawing 1 2 m o > 1 0 0 

" Higher Linear Perspective 8vo, 3 50 
Linear Perspective 1 2 m o ' i 00 

" Primary Geometry 1 2 m o [ 7 5 
" Plane Problems 1 S m 0 j 1 2 -
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Warren's Problems and Theorems 8vo, $2 50 
" Projection Drawing 12mo, 1 50 

Wood's Co-ordinate Geometry 8vo, 2 00 
" Trigonometry 12mo, 1 00 

Woolf's Descriptive Geometry Royal 8vo, 3 00 

M E C H A N I C S - M A C H I N E R Y . 

TEXT-BOOKS AND PRACTICAL WORKS. 

(See also ENGINEERING, p. 7.) 
Baldwin's Steam Heating for Buildings 12mo, 2 50 
Benjamin's Wrinkles and Recipes 12mo, 2 00 
Chordal's Letters to Mechanics 12mo, 2 00 
Church's Mechanics of Engineering 8vo, 6 00 

" Notes and Examples in Mechanics 8vo, 2 00 
Crehore's Mechanics of the Girder 8vo, 5 00 
Cromwell's Belts and Pulleys 12mo, 1 50 

" Toothed Gearing 12mo, 1 50 
Compton's First Lessons in Metal Working 12mo, 1 50 
Compton and De Groodt's Speed Lathe 12mo, 1 50 
Dana's Elementary Mechanics 12mo, 1 50 
Dingey's Machinery Pattern Making 12mo, 2 00 
Dredge's Trans. Exhibits Building, World Exposition. 

4to, half morocco, 10 00 
Du Bois's Mechanics. Vol. I., Kinematics 8vo, 3 50 

Vol. II., Statics 8vo, 4 00 
Vol. III . , Kinetics 8vo, 3 50 

Fitzgerald's Boston Machinist 18mo, 1 00 
Flather's Dynamometers 12mo, 2 00 

Rope Driving 12mo, 2 00 
Hall's Car Lubrication 12mo, 1 0 0 
Holly's Saw Filing 16mo, 75 
Johnson's Theoretical Mechanics. An Elementary Treatise. 

(In the press.) 
Jones's Machine Design. Part I. , Kinematics 8vo, 1 50 

" Part II . , Strength and Proportion of 
Machine Parts 8vo, 

Lanza's Applied Mechanics 8vo, 7 50 
MacCord's Kinematics 8vo, 5 00 
Merriman's Mechanics of Materials .8vo, 4 00 
Metcalfe's Cost of Manufactures 8vo, 5 00 
Michie's Analytical Mechanics 8vo, 4 00 
Richards's Compressed Air 12mo, 1 50 
Robinson's Principles of Mechanism 8vo, 3 00 
Smith's Press-working of Metals 8vo, 3 00 
Thurston's Friction and Lost Work 8vo, 3 00 
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Thurston's The Animal as a Machine i2mo, $1 00 
Warren's Machine Construction 2 vols., 8vo' 7 50 
Weisbach's Hydraulics and Hydraulic Motors. (Du Bois.)!.8voi 5 00 

Mechanics of Engineering. Vol. III . , Part i ' 
Sec. I. (Klein.) 8 v o ; 5 Q 0 

Weisbach's Mechanics of Engineering. Vol. I l l Part I 
Sec. II. (Klein.) 8 v o ; 5 ^ 

Weisbach's Steam Engines. (Du Bois.) 8vo, 5 00 
Wood's Analytical Mechauics 8 v o ' 3 0 0 

" Elementary Mechanics 12mo,' 1 25 
Supplement and Key 12mo, 1 2 5 

M E T A L L U R G Y . 

IRON—GOLD—SILVER—ALLOYS, ETC. 

Allen's Tables for Iron Analysis 3 QQ 
Egleston's Gold and Mercury .Larg^8vo,' 7 50 

Metallurgy of Silver Large 8vo, 7 50 
* Kerl's Metallurgy—Copper and Iron 8 v o , 15 00 

* " " Steel, Fuel, etc 8vo', 15 00 
Kunhardi's Ore Dressing in Europe 8 v o j 50 
Metcalf's Steel—A Manual for Steel Users i2mo,' 2 00 
O'Driscoll's Treatment of Gold Ores 8 v o ' 2 00 
Thurston's Iron and Steel 8 v o ' 3 5 0 

A 1 ! ° y s 8vo! 2 50 
Wilson's Cyanide Processes 12mo 1 50 

M I N E R A L O G Y A N D M I N I N G . 

M I N E ACCIDENTS—VENTILATION—ORE DRESSING, ETC. 

Barringer's Minerals of Commercial Value.. ..Oblong morocco, 2 50 
Beard's Ventilation of Mines 12mo[ 2 50 
Boyd's Resources of South Western Virginia .8vo,' '3 00 

" Map of South Western V i rg in i a . . . . . Pocket-book form! 2 00 
Brush and Penfield's Determinative Mineralogy. New Ed. 8vo, 4 00 
Chester's Catalogue of Minerals 8 v o ' j 2 5 

Paper, 50 
Dictionary of the Names of Minerals .8vo, 3 00 

Dana's American Localities of Minerals 8vo! 1 00 
" Descriptive Mineralogy. (E. S.) 8vo, half morocco,' 12 50 
" Miueralogy and Petrography (J.D.) l2mo, 2 00 
" Minerals and How to Study Them. (E. S.) 12mo, 1 5 0 
" Text-book of Mineralogy. (E. S.).. .New Edition. 8vo' 4 00 

* Drinker's Tunnelling, Explosives, Compounds, and Rock Drills. 
4to, half morocco, 25 00 



Egleston's Catalogue of Minerals and Synonyms 8vo, $2 50 
Eissler's Explosives—Nitroglycerine and Dynamite 8vo, 4 00 
Hussak's Rock-forming Minerals. (Smith.) Small 8vo, 2 00 
Ihlseng's Manual of Mining 8vo, 4 00 
Kunhardt's Ore Dressing in Europe 8vo, 1 50 
O'Driscolfs Treatment of Gold Ores 8vo, 2 00 
* Penfield's Record of Mineral Tests Paper, 8vo, 50 
Rosenbusch's Microscopical Physiography of Minerals and 

Rocks. (Iddings.) 8vo, 5 00 
Sawyer's Accidents in Mines .Large 8vo, 7 00 
Stockbridge's Rocks and Soils 8vo, 2 50 
Walke's Lectures on Explosives 8vo, 4 00 
Williams's Lithology 8vo, 3 00 
Wilson's Mine Ventilation 16mo, 1 25 

" Hydraulic and Placer Mining 12mo, 2 50 

S T E A M AND ELECTRICAL ENGINES, BOILERS, Etc . 

STATIONARY—MARINE—LOCOMOTIVE—GAS ENGINES, ETC. 

(See also ENGINEERING, p. 7.) 

Baldwin's Steam Heating for Buildings 12mo, 2 50 
Clerk's Gas Engine Small 8vo, 4 00 
Ford's Boiler Making for Boiler Makers 18mo, 1 00 
Hemenway's Indicator Practice 12mo, 2 00 
Hoadley's Warm-blast Furuace 8vo, 1 50 
Kneass's Practice and Theory of the Injector 8vo, 1 50 
MacCord's Slide Valve 8vo, 2 00 
Meyer's Modern Locomotive Construction 4to, 10 00 
Peabody and Miller's Steam-boilers 8vo, 4 00 
Peabody's Tables of Saturated Steam 8vo, 1 00 

" Thermodynamics of the Steam Engine 8vo, 5 00 
" Valve Gears for the Steam-Engine 8vo, 2 50 

Pray's Twenty Years with the Indicator Large 8vo, 2 50 
Pupin and Osterberg's Thermodynamics 12mo, 1 25 
Reagan's Steam and Electric Locomotives 12mo, 2 00 
R5ntgen's Thermodynamics. (DuBois.) 8vo, 5 00 
Sinclair's Locomotive Running 12mo, 2 00 
Snow's Steam-boiler Practice 8vo. (In the press.) 
Thurston's Boiler Explosions 12mo, 1 50 

" Engine and Boiler Trials 8vo, 5 00 
" Manual of the Steam Engine. Par t I., Structure 

and Theory 8vo, 6 00 
*' Manual of the Steam Engine. Part II . , Design, 

Construction, and Operation 8vo, 6 00 
2 parts, 10 00 
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Thurston's Philosophy of the Steam Engine i 2 m o . ~ 
Reflection on the Motive Power of Heat. (Carnot.) 

•• a. -, 12mo, 1 50 
Stationary Steam Engines 12mo, 1 50 
Steam-boiler Construction and Operation 8vo 5 00 

Spangler's Valve Gears ° ' 0 

Weisbach's Steam Engine. (Du Bois.).'. '. ' o™' t Tr 
Whitham's Constructive Steam Engineering... ' . . ' . ' / . gvo' Jo 

Steam-engine Design - "" 
Wilson's Steam Boilers. (Flather.) '.'.'.'.'. IOT' I 
Wood's Thermodynamics, Heat Motors, etc '.'.'.'.'/. sTo,' 4 oS 

TABLES, WEIGHTS, AND M E A S U R E S . 

F O R ACTUARIES, CHEMISTS, ENGINEERS, M E C H A N I C S - M E T R I C 

TABLES, E T C . 

Adriance's Laboratory Calculations 
25 i n m . , 

Allen's Tables for Iron Analysis. t I n n 

Bixby's Graphical Computing Tables ! ! . ! ! !.' ! S Z e t ' J ! 
Compton's Logarithms ' 2 5 

Crandall's Railway and Earthwork Tablés.'.'.'.'.' '.' " T v ° ' J ÏÏ 
Egleston's Weights and Measures ' 1 S t I° ' 1 _ 
Fisher's Table of Cubic Y a r d s . . . . ÖV V, ®' 
Hudson's Excavation Tables. Vol'. I I ^ T , » 
Johnson's Stadia and Earthwork Tables . . 8 l ° ' ] Z 
Ludlow's Logarithmic and Other Tables. (Bass) 1 2 m n ' 2 f 
Totten's Metrology.. . . J 2 0 0 

8vo, 2 50 

VENTILATION. 

STEAM H E A T I N G - H O U S E I N S P E C T I O N - M I N E VENTILATION. Baldwin's Steam Heating 1 0 
Beard's Ventilation of Mines. . . . ' . ? ?? 

House Inspection Square 16mo, 1 
Breathe, and Ventilation i6 m o > 1 QQ 

- - o f American Dwellings 12mn' 1 *n 
Wilson's Mine Ventilation. 1 5 0 

Gerhard's Sanitary House I n s p e c t é . T s q u a ^ ï 6 m o 
Mott s The Air We Breathe, and Ventilation . ! ! " °° 
Reid s Ventilation of American Dwellings . . . 1 2 ' , 
Wilson's Mine Ventilation i f , 

16mo, 1 25 

MISCELLANEOUS PUBLICATIONS, 
Alcott's Gems, Sentiment, Language r m 
Bailey's The New Tale of a Tub * 5 

Ballard's Solution of the Pyramid Problem.'. '."!. '. ' . '!*.'! '. ' g™' , Ï 
Barnard's The Metrological System of the Great Pyramid! 8vo » 
Davis's Elements of Law. . «i. .ovo, i su 

2 00 
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Emmou's Geological Guide-book of the Rocky Mountains. .8vo, $1 50 
Ferrel 's Treatise on the Winds 8vo, 4 00 
Haines's Addresses Delivered before the Am. Ry. Assn. ..12mo. 2 50 
Mott's The Fallacy of the Present Theory of Sound. . Sq. 16mo, 1 00 
Perkins's Cornell University Oblong 4to, 1 50 
Ricketts's History of Rensselaer Polytechnic Institute 8vo, 3 00 
Rotherham's The New Testament Critically Emphasized. 

12mo, 1 50 
" The Emphasized New Test. A new translation. 

Large 8vo, 2 00 
Totteu's An Important Question in Metrology 8vo, 2 50 
Whitehouse's Lake Man-is Paper, 25 
* Wiley's Yosemite, Alaska, and Yellowstone 4to, 3 00 

H E B R E W A N D C H A L D E E T E X T - B O O K S . 

FOR SCHOOLS AND THEOLOGICAL SEMINARIES. 

Gesenius's Hebrew and Chaldee Lexicon to Old Testament. 
(Tregelles.) Small 4to, half morocco, 5 00 

Green's Elementary Hebrew Grammar 12mo, 1 25 
Grammar of the Hebrew Language (New Edition).8vo, 3 00 
Hebrew Chrestomathy 8vo, 2 00 

Letteris's Hebrew Bible (Massoretic Notes in English). 
8vo, arabesque, 2 25 

M E D I C A L . 

Bull's Maternal Management in Health and Disease. 12mo, 1 00 
Hammarsten's Physiological Chemistry. (Mandel.) 8vo, 4 00 
Mott's Composition, Digestibility, and Nutritive Value of Food. 

Large mounted chart, 1 25 
Ruddiman's Incompatibilities in Prescriptions 8vo, 2 00 
Steel's Treatise on the Diseases of the Ox. .8vo, 6 00 

" Treatise on the Diseases of the Dog 8vo, 3 50 
Woodhull's Military Hygiene 16mo, 1 50 
Worcester's Small Hospitals—Establishment and Maintenance, 

including Atkinson's Suggestions for Hospital Archi-
tecture 12mo, 1 25 
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