CHAPTER IL
ARCH HINGED AT THREE POINTS.

¥ 99, Three-hinged Arch.— Before taking up for treatment
any arches of special curves, we will notice the simple case of
a rib, of any form, hinged at both ends and the middle, or, as it
is sometimes called, the « three-hinged arch.” The three hinges
or joints may be located anywhere, and two of them may be
placed near together at one abutment, reducing .the portion of
arch between them to a short link or strut, which necessarily
lies in the direction of the thrust at that abutment. For the
vibs of this chapter it has been stated that the equilibrium
polygon or curve is at once definitely located. If a single load
is placed at K, on the arch AD B of Fig. 4, hinged at A, D, and
B, one of the two straight lines composing the polygon must,
starting from A, pass through D, while the other, starting from
B, must meet the former on the vertical line drawn through K,
as required by the principle of the funicular polygon: A CB,
therefore, is the polygon. If 2-1 represents the weight at K,
and 2-0 and 1-0 are drawn parallel to C B and A C, 0-8, drawn
horizontally, will give the horizontal thrust, while 1-3 and 8-2
will be the vertical components of the reactions at A and B.
Let it be remembered that the total reaction of the abutment
at A is, and is in the direction of, 1-0, although it is often con-
venient to decompose it into P; and H.

A load vertically below E will, similarly, have for its equi-

librium polygon A E B. For different positions of the weight
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between D and B, all of the vertices of the polygons will be
found on the straight line D L, and the portion A D does not
change for any movement of the weight on the right half of the
arch. A weight on the left half will simply reverse the dia-
gram. The dotted lines show the equilibrium polygons for a
weight at such successive points as divide the half-span into
five equal horizontal parts, and the corresponding changes in
the value of H will be seen in the stress diagram on the left.
23. Formula for H.—If F D, the height or rise of the arch,
is denoted by %, the halfspan A F, =F B, by ¢, and the hori-
zontal distance F G, from the weight to the middle of the span,
by b, we shall have A G =¢-+45,and GB=¢—d. From the
similarity of triangles A D F and 01 3, we may write,
3-0:8-1=c:k or H:Pi=c¢:k
By the usual rule,

e =

therefore

c—b
H= o W.

The quantity ¢ — b is to be understood to mean the horizontal
distance from the weight to the nearer abutment. H is seen to.
decrease regularly as the weight moves from the middle of the
span. :

24, Stone Arches.— In the treatment of stone arches it has
often been assumed by writers that the equilibrium curve passed
through either the middle of the depth of the keystone or some
other arbitrary point within the middle third of its depth; and a
similar assumption would then be made for the springing-points.
Such a treatment immediately reduces the stone arch to this
case, and the equilibrium curve can at once be drawn. As such
an assumption does not seem to be warranted, it is not thought
expedient to go into the case of the stome arch until later
(Chap. IX.); but the reader who desires to look up such a
mode of handling the problem is referred to a paper by William.
Bell, in the Transactions of the Institute of Civil Engineers of
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Great Britain, vol, xxxiii., reprinted in Van Nostrand’s * Engi-
neering Magazine,” vol. viii., March to May, 1878.

95. Bxample.— We will, as an example, show how to draw
an equilibrium curve for an arch which is loaded uniformly
along its rib. Such a distribution will conform quite well to
that of the steady load on an arched roof. For definiteness, let
the pointed arch of Fig. 5 be of 80 feet span, 40 feet rise, the
two arcs having a radius of 60 feet, and let it be loaded with
500 pounds per foot of the rib. - We may, if we please, divide
the rib into a convenient number of equal portions, which
divisions will give us a number of equal weights to be laid off
on the load line. Otherwise we may space off a number of
equal horizontal distances. In either case, the load of each
space will be considered as concentrated at its centre of gravity;
and, if the spaces are small enough, the centre of gravity may,
without sensible error, be taken as coinciding with the middle
of each space. For the sake of reducing the number of lines,
50 as to avoid confusion in a small figure, we have divided the
half-span into four parts, of ten feet each, measured horizon-
tally; and their centres of gravity will be assumed to be at five
feet, fifteen feet, &c., from the point of support. Draw verti-
cals through these centres of gravity, D, E, F, and G.

To find the weight on each division: The lengths of the
several portions of arc may, with sufficient exactness, be con-
sidered the same as the lengths of their chords, which chords
are perpendicular to the radii which pass through D, E, &e.
If, then, the load on ten feet is 5,000 1bs., draw @ b horizontally
and equal, by any scale, to this amount; then will ¢, 61, be,
and & d, drawn parallel to the respective chords, give the amount
of load on each division, at the successive points G, F, E, &ec.
Upon scaling these amounts we will lay them off upon a verti-
cal line, from 1 to 5. In order to cause the equilibrium poly-
gon to separate from the rib sufficiently to be easily seen in this
small figure, we have taken the liberty of doubling the load on
D, thus making it 4-6, in place of 4-5. The loads will there-
fore be, successively, about 5,400 lbs., 5,900 lbs., 7,000 1bs., and
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2 % 10,000 1bs., or 20,000 1bs., from G to D, and from 1 to 6.
e—b

Si H =
mnce 2 5%

W, we have for its value

35 % 5,400 4 25 X 5,900 4 15 X 7,
Gl 125 %5 g{—)lox7000+5><20=000:6,7691bs.

If the given load were unsymmietrical with regard to a verti-
cal through C, it would be necessary to calculate the two verti-
cal components of the reactions at A and B, or P, and P;, the
reaction at B being laid off from that end of the load line from
which was measured the load nearest to B, and then to draw a
horizontal line from the point of division between P, and P, on
which to lay off the value of H. But, if both sides of the roof
are loaded alike, half a diagram and half an equilibrium poly-
gon will be sufficient. The load on the half-arch being 1-6,
6-1 will be the vertical component of the reaction at B, and H
will be laid off in the direction 1-0. Since we have calculated
H for only one-half of the entire load, the above quantity must
be doubled, and the total horizontal thrust will be 13,538 lbs.,
= 1-0. The reaction at B is therefore 6-0.

Nothing remains but to draw, first a line from B to the verti-
cal through D, parallel to 6-0, then one, parallel to 4-0, from
the end of the last line to the vertical through E, and so on,
the last line, parallel to 1-0, passing through the hinge at C, as
required. The polygon on the side C A will be exactly similar.
It is well to have the points of division quite numerous. The
maximum ordinate between the rib and the equilibrium polygon,
multiplied by H, gives the maximum bending moment.

96. Caution.— As this is the first example, it may be well to
pause here, and renew the caution to the draughtsman to lay off
the polygon of external forces in the order in which the forces
are found in going round the arch or truss; otherwise he will
fail to make his equilibrium polygon close on the desired point.
Thus, beginning at G, he should have the weights at G, F, E,
&ec., or 1-2, 2-8, 3-4, &c., plotted, one after the other, down the
vertical load line in the direction of their action, until the point
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B is reached, for which he draws 6-0, from 6 to 0. Then the
point A gives a similar line from 0, slanting upwards toward
the right; and the remaining loads on the left half of the arch
come down a vertical line, and close on 1, the starting-point.
The decomposition of 6-0 into 6-1 and 1-0 does not alter the
case. If we had gone round the arch in the opposite direction,
this stress diagram would have been reversed, or turned 180°.
97. Relation between Equilibrium Polygon and Curve.
— The true equilibrium curve, for the load uniformly distrib-
uted along the rib, is a curve which will be tangent to the sides
of the funicular or equilibrium polygon just drawn. The
closer together the points D, E, &c., are taken, the nearer the
two will come together. If the points at which the loads are
concentrated divide the span into equal portions, that is, if the
end distances are the same as the others, so that the portions of
load near B and C are concentrated on those points, or, even
with unequal spacing, when the load between each two assumed

points is carried by those points as required by the principle of

the lever, the true equilibrium curve will pass through the wer-
tices of the equilibrium polygon. Such a distribution of load
is made in roofs and bridge trusses, when a half panel weight
is thrown on each abutment. Compare Part IIL., « Bridges,”
§ 58.

The curve assumed by a rope or chain, of uniform weight per
foot, when suspended between two points, is called a catenary.
Since the equilibrium curve in Fig. 5, if we had not placed the
extra weight on D, would have come quite near to the rib, it
would have been a close approximation to a catenary. As we
expect to make some use of this curve later, we will show how
to draw one at that time.

98. The Parabola the Equilibrium Curve for a Load
Uniform horizontally. — If the load on this arch were distrib-
uted uniformly horizontally, the curve of equilibrium would be
a parabola. In case the whole arch were a parabola, with the
vertex at the crown, and the load extended over the entire span,
the two curves, coinciding at the springing-points and crown,
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would be identical throughout, and the rib itself would be in
perfect equilibrium. This same point was brought out in refer-
ence to the parabolic girder, Part IL., « Bridges,” § 73. That
the parabola is the equilibrium curve for a continuous load, dis-
tributed uniformly horizontally, may be shown as follows: —

Let A B, Fig. 6, be a portion of a cord, horizontal at A,
which is in equilibrium under such a uniform load, represented
by A C, suspended from the cord. The tension at A will be in
the line of the tangent A C; the resultant of the load A C will
be vertical, and must pass through its middle point-D. As the
cord A B is in equilibriwm under its load and the reactions or
tensions of the other portions of the cord at A and B, the ten-
sion along the tangent. at B must, by the principle of the tri-
angle of forces, also pass through D. As B C, drawn vertically,
is parallel to the resultant of the load, the sides of the triangle
B C D will be proportional to the three external forces; and, if
AC=2z BC=y, W=total load on A B, =wx (where w=
load per unit of length), and H = tension at A, we have

W:H=BC:DC=y:ium
or
i w
iseH 71
the equation of a parabola with vertex at A.

Therefore an arched rib of parabolic form, when loaded uni-
formly horizontally, has no tendency to change its shape, that
is, experiences no bending moment, at any point.

29. Suspension Bridge.— A B of Fig. 6 may represent a
suspension bridge cable, A C being the half-span, and C B’ the
height of the tower: hence, if AC=cand CB=F#, we have
for the tension in the cable at the mid-span, § 28,

2,

_wz_we?
_ E=% o
The tension T at the tower will then be proportioned to H, as
BDtoDC, or as % + 2 ¢ to % ¢; therefore

we T I8 1 .2
—_— 4 k2 2,
T 2ra“/ B
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Each suspending rod must carry the greatest weight that can
come at.its foot. The. pressure on the top of the tower from
the half-span will be the weight of the half-span, or we; to this
must be added the vertical component of the tension on the
anchorage side of the tower. If the cable has the same inclina-
tion both ways, at the top of the tower, the pressure is 2 w e.

The manner of stiffening a suspension bridge to resist the
tendency to distortion under a partial load is treated in Chap. X.

30. Bquilibrinm Curve for Partial Load. — If the load
extends over a portion only of the span of the arch, and is uni-
formly distributed horizontally, the curve for the loaded portion
is parabolic, while that for an unloaded portion is a straight
line : thus,if the load extends from one abutment to the middle,
we shall have, on the unloaded half, a straight line from the
abutment to the crown, and, on the loaded half, a parabola from
the crown to the springing. As it was proved in Part 808
“ Bridges,” § 10, that any two sides of the funicular polygon,
when prolonged, meet on the vertical drawn through the centre
of gravity of so much of the weight as is included between
these sides, the equilibrium curves for any cases where the rib
1s hinged at three points can be drawn without previously deter-
mining the value of H. Thus, in the case just supposed, of a
load over the half-span, from B to F in Fig. 4, the centre of
gravity will be at G. Then, if G C is the vertical drawn from
G, the side of the funicular polygon, or, more properly, the
tangent to the equilibrium curve, at B, must pass through C,
where C G meets A D, and the required parabola will be drawn
from D to B on D C and B C as tangents. As one point of the
curve we have the middle point of a line from C to the middle
of the chord D B. We can then find H by drawing 1-0 and
2-0, parallel to A C and CB. Henck’s “ Field Book for Rail-
road Engineers” gives methods for constructing parabolas ; two
constructions are given in Part II., « Bridges,” §§ 20 and 28,
one of them applying when two tangents are given.

31. Suggested Examples.— We would suggest the follow-
ing examples for practice: 1st, Given a semicircular rib, loaded
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uniformly horizontally over the whole span, and pivoted at the
crown and springings: find that the maximum bending moment
occurs at 30° from the springing, and is equal to one-sixteenth
of the total load multiplied by the radius of the arch, while H
is equal to one-fourth of the total load. 2d, Given a para-
bolic arch similarly pivoted, and in equilibrium under a steady
load distributed as above; add a similar travelling load from
one abutment to the middle of the span: prove that the maxi-
mum bending moment is found at one-fourth of the span from
either abutment, is of opposite signs at these two places, and
is equal to one thirty-second of the travelling load then on the
arch multiplied by the span, while H for the travelling load
equals the same product divided by one-fourth the rise of the
arch, and for the steady load is twice as much.

32. Extent of Load to produce Maximum Bending
Moment. — It may be desired, when designing an arch of this
type, to find the extent of load which will produce the maxi-
mum bending moment at each point, and the value of that
moment. Suppose the point N, Fig. 4, to be examined: pro-
long BN until' it meets A D at E; it is then manifest that
any load in the vertical through E will cause no bending
moment at N ; that the equilibrium polygon for any load on the
right of E will pass outside of the arch at N, while the equilib-
rium polygon for any load to the left of E will pass inside of
N. Therefore the maximum bending moment at N of one kind
will be found when all possible loads are put on the arch from
B to the vertical through E, and the maximum moment of the
other kind occurs when the load extends from A to E. As the
arch tends to move away from the equilibrium polygon, the
kind of moment is easily distinguished. H can then be found,
the equilibrium curve drawn, the ordinate scaled and multiplied
by H.

83. Braced Arch.— For the reason that tlie equilibrium
curve is at once definitely located by introducing three hinges
or pivots, no matter what form the arch may have, that type
which used to be known as the braced arch, having a horizontal
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upper and a curved lower member, the spandrel being filled with
bracing, has usually been treated as free to turn at both crown
and springings; in that case a diagram may be drawn by Clerk
Maxwell’s method, as set forth in Part I., “Roofs,” or the
stresses may be found from the equilibrium curve. A braced
arch, hinged at crown and springings, with an elliptical lower
and a straight upper member, carries a track of the Pennsyl-
vania Railroad over Thirtieth Street, Philadelphia. (See ¢ En-
gineering,” July 22, 1870.) While a diagram only gives the
stresses in the various members for one position of load at a
time, one can determine all the maximum stresses by two dia-
grams and a tabulation, not difficult to one familiar with such
methods. The way to be pursued will be found in Du Bois’
« Graphical Statics,” appendix, § 7, p- 350. We will explain
another treatment in Chap. XIL.

84. Shear; Temperature. — Since it is not practicable to
draw a shear diagram until the form of the rib is defined, we
can only, at present, refer the reader to § 14. After we have
discussed the parabolic and circular ribs, the reader can doubt-
less work up any special design of the present class for himself.

One advantage possessed by this type of arch is that changes
of temperature have no straining effect, for the crown rises and
falls without affecting the two halves of the arch injuriously.
If the crown sinks a little, the value of H will be seen from
Fig. 4 to be very slightly increased, while the equilibrinm
polygon will practically go with the arch. x ;

CHAPTER IIL
INTRODUCTORY TO PARABOLIC ARCHES.

85. Parabolic Arch.— We propose to apply the facts which
have been developed thus far to the arch whose centre line is
a parabola. This curve is chosen as one form; because it is, as
proved in § 28, in perfect equilibrium under a load distributed
uniformly horizontally over the entire span. As in the case
of a suspension bridge, so in some arches of iron, most of the
steady load consists of a platform and such other parts as are
distributed in accordance with this requirement (the arch itself
and the vertical posts which- carry the platform giving a some-
what greater intensity per horizontal foot as we approach the
springings), so that, for the former portion, as well as for the
travelling load over the whole span, the arch will be subjected
to no bending moments, and no shear; hence there will be no
stress in the bracing. Then, again, the parabola for a given rise
and span is easily plotted and designed; and, lastly, the deter-
mination of the equilibrium curves, for the cases taken up, will
be simpler than for circular arcs, and will naturally prepare
the way by rendering the reader familiar with the steps of the
analysis. It may be well to add here that a circular segmental
rib, whose rise is not more than one-tenth of its span, is so
nearly coincident with a parabolic arch of the same span and
rise, that the investigations which follow will apply with suffi-
cient accuracy to such flat segmental ribs. -

36. Vertical Deflection of an Inclined Beam.—Let us
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