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upper and a curved lower member, the spandrel being filled with
bracing, has usually been treated as free to turn at both crown
and springings; in that case a diagram may be drawn by Clerk
Maxwell’s method, as set forth in Part I., “Roofs,” or the
stresses may be found from the equilibrium curve. A braced
arch, hinged at crown and springings, with an elliptical lower
and a straight upper member, carries a track of the Pennsyl-
vania Railroad over Thirtieth Street, Philadelphia. (See ¢ En-
gineering,” July 22, 1870.) While a diagram only gives the
stresses in the various members for one position of load at a
time, one can determine all the maximum stresses by two dia-
grams and a tabulation, not difficult to one familiar with such
methods. The way to be pursued will be found in Du Bois’
« Graphical Statics,” appendix, § 7, p- 350. We will explain
another treatment in Chap. XIL.

84. Shear; Temperature. — Since it is not practicable to
draw a shear diagram until the form of the rib is defined, we
can only, at present, refer the reader to § 14. After we have
discussed the parabolic and circular ribs, the reader can doubt-
less work up any special design of the present class for himself.

One advantage possessed by this type of arch is that changes
of temperature have no straining effect, for the crown rises and
falls without affecting the two halves of the arch injuriously.
If the crown sinks a little, the value of H will be seen from
Fig. 4 to be very slightly increased, while the equilibrinm
polygon will practically go with the arch. x ;

CHAPTER IIL
INTRODUCTORY TO PARABOLIC ARCHES.

85. Parabolic Arch.— We propose to apply the facts which
have been developed thus far to the arch whose centre line is
a parabola. This curve is chosen as one form; because it is, as
proved in § 28, in perfect equilibrium under a load distributed
uniformly horizontally over the entire span. As in the case
of a suspension bridge, so in some arches of iron, most of the
steady load consists of a platform and such other parts as are
distributed in accordance with this requirement (the arch itself
and the vertical posts which- carry the platform giving a some-
what greater intensity per horizontal foot as we approach the
springings), so that, for the former portion, as well as for the
travelling load over the whole span, the arch will be subjected
to no bending moments, and no shear; hence there will be no
stress in the bracing. Then, again, the parabola for a given rise
and span is easily plotted and designed; and, lastly, the deter-
mination of the equilibrium curves, for the cases taken up, will
be simpler than for circular arcs, and will naturally prepare
the way by rendering the reader familiar with the steps of the
analysis. It may be well to add here that a circular segmental
rib, whose rise is not more than one-tenth of its span, is so
nearly coincident with a parabolic arch of the same span and
rise, that the investigations which follow will apply with suffi-
cient accuracy to such flat segmental ribs. -

36. Vertical Deflection of an Inclined Beam.—Let us
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consider the two cases of a horizontal beam and of one inclined
to the horizon at an angle ¢; it is known from the usual for
mulee for deflection, Part IT., « Bridges,” Chap. V1., that, other
things being equal, the deflection of a beam is directly propor-
tional to the load and the cube of the length. If, then, the
inclined beam is of a length I, and the horizontal one of a
length 7 cos 4, as shown in Fig. 7, the deflection of each,
measured perpendicularly to the respective beams, will, as re-
gards length only, be in the ratio of 7% to 1® cos® 4. But, if each
carries the same load W, the {ransverse cornponent of W, which
alone causes flexure of the inclined beam, the longitudinal
component producing direct compression, will be W cos ¢
whence the deflection perpendicular to each beam will, for
similar points, be proportioned as 1 to cos?i. And, again, the
vertical component of the deflection of the inclined beam will
be to the perpendicular amount as cos ¢ to 1; whence the ver-
tical deflection of the inclined beam will be to that of the
horizontal beam of the same cross-section as 1 to cos 7. As
the stiffness of a beam is directly proportioned to its breadth,
should the inclined beam be made broader in its horizontal
dimension than is the horizontal beam, in the ratio of 1 to cos 1,
the depth being unchanged, the vertical deflections of the two
beams for the same load would be exactly the same.

87. Application to Arches. — Any very small portion of
an arch, taken within such narrow limits as to be considered
straight, behaves like the inclined beam, as regards its flexure
under a load ; and therefore it follows, that if an arch has the
dimension perpendicular to its face increased, from the crown
to the springing, in the ratio of the secant of the inclination
to the horizon, it may be discussed as if it were a beam of
uniform cross-section, of the same span, similarly supported,
and carrying the same load which produces flexure. In the
arch some of the load does not produce flexure; in the para-
bolic rib, for instance, before cited, a uniform horizontal load
gives equilibrium. We propose, in our analysis of the para-
bolic rib, to make this supposition, that the rib is broader at

ARCHES. 43

the abutments than at the crown in the ratio just mentioned,
and thus to simplify the work of investigation. ~ Iron arches
whose flanges or chords are thicker, as we approach the spring-
ing, in the above ratio, while the perpendicular depth between
the two flanges is constant, practically satisfy this case. In
this class of ribs the intensity of the direct thrust on the
square inch for a complete uniform load will be the same at all
cross-sections.

As we desire the reader to reproduce, on a much larger scale,
the figures and problems for himself, we remind him that points
on the curve of a parabolic rib are easily found by the construc-
tion of Fig. 8, Part II., « Bridges.”

PARABOLIC RIB, HINGED AT ENDS.

38. Equilibrium Polygon for Single Load. — Taking up
the case of the parabolic rib, hinged at the ends only, let us
place a single weight at the point I, Fig. 8. If the lines AC B
fulfil the condition of § 7, that the sum of the products of the
ordinates D E and E F for all points of the arch equals zero or

EF.DE =0,

A CB will be the required equilibrium polygon. From the
reasoning of § 87, it will be proper to divide the areas above
the springing line A B by equidistant vertical lines, moderately
near together, scale off the quantities corresponding to E.F and
D E, and find the proper position of A C B by one or two trials.
It can thus be located with all desirable accuracy, as a slight
movement of the point C vertically alters the quantities to be
computed very materially. The reader who is not familiar with
the higher mathematics can thus verify the results we are about
to obtain.

Since C G may be considered the unknown quantity by which
to locate A C and B C, its value may be deduced from the
above equation. Let the halfsspan AK,—=KB, =¢; the
height or rise of the arch at the crown = %; the distance
K G, from mid-span to the position of the single weight, =& ;
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and the required maximum ordinate C G =g, Then will the
value of C G be
_ 32 2
W=t LY —y

~ which becomes, if & = n ¢, where n = a fraction of the half-span,

32
Yo = 515‘__—712)76, (1)

a quantity independent of the span of the arch.

-89, Proof of Formula.— Let A D, the distance from the abutment A to
any ordinate D E, between A and G,—2. AG=c4b; GB=c—0.
Since the ordinates to a parabola from the line A B are proportional to the
product of the segments into which they divide the span, we have

DE:k=z@c—z): orDE:c_’;(zcxumﬂ).
Also,

orDF=_% 4

DF: =x: )
Yo=wx:c+4b ST

The required condition is that

SEF.DE=0, r s(DE—DF)DE=0;
therefore, SDEE=2DF.DE. (1)

(From the above expressions we see, that, if the area included between the
rib and A B is considered positive, the area of the triangle A C B, superim-
posed upon it, will be deemed negative as before explained in Fig. 14.)

Substituting the values of the lines from above in (1.), multiplying by

\q’j, and writing the sign of integration, we get for the left-hand member,

r
='\

2ck3 A L2 2¢
fo f@ea—apaz=h fu(402x9—4cx3+3:4)dx
ks S\ 16 72
_.5,4(3—0 B —crttiad) ‘=i e (@)
For the right-hand memiber, between A and G, we get

+b / +b
Yo K o — _kn e
J: c+bx.cs(2cx x)dx_cﬁ(c—}-b) fo Qecxt—ad)dzx
__ kw 3__ 1 )cﬂ__k% R 3
= ey gca 41&0 _.Ee—[gc(c-l-b) i(c+82. @)
For the portion between G and B, if we write ¢ — & for ¢ 4 b, and reckon

z from B to the left, D F will equal cﬁb x, while D E will be unchanged;
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so that the integration for the right-hand member of (1.), between G and B,
and between the limits z =0 and z = ¢ — b, will give, simply by writing
— & for +- b,
k
“Plic—1)r—f(C—bT @)
These two portions (3.) and (4.), for the right-hand member of (1.), being

added together, will produce, when the terms with the odd powers of & are
cancelled,

k
“Rger—ge).

Finally equate this value with (2.) to satisfy (1.), and

k 2 :

6%“ (Be?—1) =1§kec; orgo= Rk "0 (5)) /

which is the desired value of C G in terms of the constant quantities, and

the variable distance K G. This expression is plainly applicable to points

on either side of K.

40. Formula for Horizontal Thrust.— For any position of
the weight, plot the value of g, and draw the equilibrium
polygon. Then draw two lines from the extremities of the load
line W, parallel to the sides of the polygon, and thus determine
H, and the two vertical components of the reactions, which
vertical components will be the same as for a beam supported
at its ends. But, from the simple relations of the similar trian-
gles A G C and 031, Fig. 8, as also B G C and 03 2, we may
write a general formula for H, if desired. Thus we have

dre—b="F,: H, orP,z:c—i"—bH;

wict+b=W—P,:H, OEW—PZ*-_—ch’j 5 H.
Eliminating P, in the second equation, by substituting its
value from the first one, we get
= o e YD : 2 12y W= .
W c—bH_c+bH’0r(c ¥YW=2cy,H;
2—p2 ., 1—n? 5(5—n%) ¢ W
. . i? .

e . = 32
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This value also will apply to a load on either side of the
centre.

It will be observed that, to obtain this value of H, we have
simply to divide 3 (1 — »*) by the factor which multiplies k in
(1.), § 38, to obtain the variable factor here.

41. Computation of y, and H. — The numerical values of
these factors are worth obtaining, as, the computations once
made, the results apply to every parabolic rib with pivoted
ends. Let the span of the arch be divided into any convenient
number of equal parts, and, for illustration, suppose that the
number is ten, as shown in the figure ; let a weight W be placed
successively over each point of division, being supported by the
rib. The calculation may conveniently proceed in the following
manner : —

Find the different values of y, for different positions of W,
by equation (1.), § 38. Then compute H by § 40. The calcu-
lation and results are given below; the equilibrium polygons
and values of H for one-half of the arch are represented in
Fig. 8.  As #?is positive, whether »n is 4 or —, the values of
% and H will be symmetrical on each side of the centre.

VaLuEs oF y, axp H.

- =% S 0.2 7 04 0.6, 08

5 — n? = 5.00 4.96 4.84 4.64 4.36

5 (b—n?) = 25.00 24.80 2420 23.20 21.80

32

= 29
56— = 1.280 12903 1.3223 13793 1.4679.

Multiply these factors by % to give y,.

3 (1 —n?) = 050 048 042 0.32 0.18

32
—n?) e = 2 9 9
3 (1 —n?) = S 0.3906 ().3_?_0 0.3176 0.2320 0.1226.

Multiply these factors by % W to give H.

For any other desired division of the gpan, proceed in a simi-
lar way. :

/ f ARCHES. 47

42. Remarks. — If every point of division were loaded with
W at the same time, the value of the horizontal thrust would
be equal to the sum of the H’s for each load; that is, the fac-
tor in column 0 plus twice each of the others, and the sum

multiplied by the factor ;% W ; we thus obtain 2.479 IE; W = H.

If a truss were uniformly loaded horizontally, the bending mo-
ment at the 'middle would be one-eighth of the total load multi-
plied by the span, or, for a truss of ten panels, with W = one
panel load,

_10W.2¢

M 5

=2cW;

and the tension -in the lower chord, or the compression in the
upper chord, would be found by dividing this quantity by the
height of the truss, . If the span of the arch just treated had
been divided into twenty equal parts, the value of H, for loads

at all the points of division, would have been 4.‘990% W. The

20W.2¢
8k
We thus see that the equilibrium polygon, for a number
of equal loads, equidistant horizontally, on a parabolic rib, gives
a value of H approximating closely to that for a uniform load
on a truss of height %, coming nearer as the loads increase in
number, and agreeing when the load is continuous. Then the
equilibrium polygon becomes a curve, coinciding perfectly with
the parabolic rib, and gives the horizontal thrust to which we

are accustomed in the bowstring girder under a maximum
load.

truss, as before, would give =5 ;;W

43. Computation of Bending Moments. — While the ordinates can be
readily scaled from a diagram, one who wishes may compute values of the

" bending moment M for numerocus points, when W is placed on any one

point. If y denotes the ordinate from A B to the inclined line, and =z the
ordinate of the parabola from any point D, the bending moment may be
written, —

M=H{—=).
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If put in this form, it will be seen, that, in the neighborhood of #,, M will be
positive, coineiding with the moments for a beam supported at its two ends.
As this is the most familiar flexure of a beam or truss, we have chosen to
consider it as positive: § 12. The ordinates y and z can be readily calcu-
lated from the figure. Thus, if the weight is at 0.4 ¢ from the middle of
the span, we have found g, to be 1.3223 k. If the span is divided into ten
parts, the number of divisions on one side of the weight being seven, y will
be successively 3, 2, 8, &c., of y,; on the other side y will be % and % of .
The sum of the denominators always equals the number of divisions, and
the fractions increase from both ends up to unity. After finding the first
y at each end, we get the others by simple addition, and the row is checked
by obtaining z, at the proper point. As stated in § 39, the ordinate z is
proportional to the product of the segments into which it divides the span;
or, if it is at a distance n ¢ from the middle, we have,

c=1fned—nch=1—mk

The factors by which & is to be multiplied can therefore be at once obtained
by taking the decimals which are found in the second line of the table for

Yo § 41.
The computations may then be set down in the following shape, viz.: —

VALUES oF M.

Point Yo
of 1 2 3 4 5 6 T 8 9
Division.

Tw 1880 L3778 5667 TA56  .0445 11334 1.3223 L8815 L4408 = igy.,.

] = .30 W04 84 Ri] 1.00 96 84 W4 +36

y—z=—1711 —2622 —2733 —2044 —05556 1734 -}-.4823 -.2415 --.0808
‘
k
M = —.0543 —.0833 —.0868 —.06490 —.0176 -}+.05561 -+.1532 --.0767 --.0257 cW

Multiply by H = 0.3176 - W.

With the explanation already given, this table will be understood. The’

letter y, is placed over 7 as a convenience, to show that the value y, occurs
at this point of division. If the load is on the right of the centre, these
numbers run from the left abutment; if the load is on the left of the cen-
tre, they must be reckoned from the right abutment. :

44, Table of Bending Moments.— We have carried out this compu-
tation for a load at each joint successively, the span being divided into ten
equal parts, and have prepared a table given on p. 53. A table for a span
divided into twenty parts may be found in “Engineering News,” Vol. IV.
p- 108. As a load on either side of the middle gives the same set of values
in the reverse order, it is necessary to calculate but one-half of the table.

T T e T Y R T T (R TR R R
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As many decimals may be taken as will give sufficiently accurate results.
By the.use of logarithms the labor of preparing ancther table for a different
number of divisions is very little. Each colurn belongs to the point of
division whose number stands at its top, the numbers commencing at the
left abutment. Each horizontal line contains the factor for bending moment
at each point of division for a load W on the point marked at the beginning
of the line. The values of H are placed for convenience in the last column.

It is worthy of notice, that, while the value of Yo is inde-
pendent of the span of the arch, M is independent of the height
of the arch. As it was proved, in § 28, that the parabola is the
equilibrium curve for a load distributed uniformly horizontally,
this arch ought to be very nearly in equilibrium when we place
at once on each one of the nine points a load W : by footing
up the vertical ¢olumns of the table we shall find but a very
small residual moment at each joint.

45. Interpolation. — In the solution of a particular example,
it may happen that the points at which the weight will be
concentrated will not coincide with the points of division which
we have taken. It will then be necessary to determine new
values of y, and H, which may be done by the original form-
ulz or by interpolation. A new table of M may then be caleu-
lated, values may be interpolated in the one given here, or, if
preferred, from the value of H, and the vertical components of
the reactions, we may draw an equilibrium curve for any com-
bination of loads. The table here given, if not directly appli-
cable in all cases, serves two purposes; one to show how a simi-
lar table can be made, and the other to indicate, by inspection,
what arrangement of loads on any arch will produce the maxi-
mum bending moments.

If the successive values of any quantity increase at a tolera-
bly uniform rate, any intermediate value between two given
ones may be found by simple proportion. Otherwise we may
use the formula for interpolation, —

Desired quantity = a 4 £ [D, — 4 (1—7) D,],

- In which @ denotes the first given quantity, f the fraction of a

division from « to the desired quantity, and D, and D, the first




