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and second differences. To illustrate, take the values of H in
§ 41. If we place these in a column as below, find the amount

b H. D.. D..

0 .3906
—.0186

2¢ 8720
—.0544

e 3176
—.0866

.6e .2320
—.1094

8¢ 1226

of increase from quantity to quantity, and then subtract these
differences from one another, marking each 4 if it is an
increment, and vice versa, we obtain the columns of first and
second differences as marked. Now suppose that we wish to
determine a value of H at 8 =.5¢; a will be 3176, f=1,
D, =—.0856, and D, for an average value between .0312 and
0288, = — .0275. If we substitute in the formula, it then
becomes

H (for .5 ¢) = .3176 4 4 [—.0856 — § . 3 (—.0275)]
— 3176 4 § (— .0836 4 .0069) = .2783.

The factor for ¥, at one-third of the interval between .4 ¢ and
.6 ¢, will, in the same way, be

1.3223 4 4 [.0570 — 4 . 3 (.0283)] = 1.3382.

(Careful heed must be paid to the signs.

5 46. Bxamples. — It will help to fix the ideas, if we draw
an equilibrium polygon for some combination of weights. We
shall take but a few loads, in order to have the diagram clear;
but the reader may vary the example by taking other amounts
in other places. The values of the two vertical components of
the abutment reactions will be the sums of the components for
each load, and the amount of H for the whole load will be the
sum of the separate H’s. Multiply each numerical factor which
belongs to H by the number of units of weight which are
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placed on the point to which the factor refers, add up the
products, and plot the resulting value of H horizontally from
the point of division on the load line between the two vertical
components of the reactions.

For example: Let us draw the equilibrium polygon for an
arch of 100 feet span, 20 feet rise, whose weight is at present,
for simplicity’s sake, neglected, when it is loaded with weights of

. 3 tons, 2 tons, 4 tons, and 2 tons, at the end of the 3d, 6th, 8th,

and 9th division from the left, of ten equal horizontal divis-
ions, as shown in Fig. 9, where the numbers denote the weights

and the points of division above mentioned. The supporting
force on the left will be

p_2X144X242x443%7
= 10

P, = 7.1 tons.

— 3.9 tons.

From the table for H,

H = (0.8176 X 3 4-0.372 X 2 + 0.232 X 4 + 0.1226 X 2) §3
—2.87 x -% =7.175 tons.

These quantities are plotted in the stress diagram, as seen in
the figure, and the equilibrium polygon is then drawn. The
reader who reproduces this figure, or draws another, can be
assured of the accuracy of the construction by the closing of
the equilibrium polygon on the point of support. The weight
of the arch itself may be accounted for by concentrating the
proper amount at each point of division. Such amounts will
increase towards the springing in proportion to the square of the
secant of inclination to the horizon ; for we recall the fact that
the parabolic rib is to increase in breadth from crown to spring-
ing, and the amount in length projected into a horizontal foot
increases in the same way. The weight of each division of the
arch can be obtained with sufficient accuracy from a moderately
large figure. :

Another good construction is the curve for a uniform load
over one-half of the span. The equilibrium curve for such a
load, on the left half of Fig. 8, is represented in that figure; the
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work may be carried out in detail by the reader, and compared

with the same curve for the three-hinged rib.

47. Numerical Value of M. — It will be seen that the poly-
gon and rib of Fig. 9 approach quite nearly at 3. We can
find the distance between them vertically, if we wish, from the
table of M. The bending moment will be, taking the column 8,

M=50(+.153 X 8 —.078 X 2— .075 X 4 —.043 X 2) = —8.650 £t.tons.

M  —365
=73 =—05 =y —-=z
A similar operation may be performed at any other point.

48. Shear Diagram. — This investigation of shear is intend-
ed to apply to ribs of an I-section or to those framed with
open-work or skeleton webs, and not to those of solid section,
rectangular, circular, or otherwise, nor to stone arches: in these
latter classes the shearing forces need seldom be taken into
account. :

Adhering still to the case of a single weight W, at a distance
b from the middle of the span, we found that the vertical com-
ponent, P, of the reaction at the end nearest to the weight,
2 2 C_b W, and at the other end ;\f’ W. Asseenin
Fig. 8, the diagram for shear on a beam will be, if we take the
shear on the left of any section, a d = P}, = 8-1, on the left of
the weight, and {g = —P,, = 8-2, on the right of the weight,
giving the two rectangles included between a and the broken
line defg. As the parabola is in equilibrium under a load of
uniform. intensity horizontally (§ 28), in which case there will
be no bracing required, — no shear for any bracing to resist, — it
is manifest that the diagram for that portion of the shear which
is here carried, at-each vertical section, by the flanges or chords,
must be similar to the shear diagram for a uniform load on a
beam supported at both ends; that is, to such a figure as atmnl.
If, then, we can determine the value of ai, or of the equal
ordinate [ 7, we can draw this portion of the figure.

It is a well-known property of the parabola, that a tangent at

would be
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the springing of the arch will intersect the middle ordinate at a
distance % above the crown, equal to the rise of the arch. If,
then, we draw a line 0—4 in the stress diagram, parallel to the
tangent A L, drawn as just described, the distance 8-4, inter-
cepted on the vertical line, will be the amount of vertical force
necessarily combined with H to give a thrust coinciding with
the rib at the springing point. Lay off, therefore, 8—4 at a7,
and an equal amount at ! ; then draw the straight line ¢ n, cut-
ting a at its middle point m : the ordinates to this line from a1,

Parasoric Ris, Hingep AT ENDs.

§44. M=mcW. Valuesof m.

3 4 5 6 7

—.043 | —.038 +.087
—.075 | —.063 +.085
—.087, | —.065 +.153
—.073 | —.087" 047
—.028 | +.025 —.028
+.047 | +.123 —073
+.153 | +.085 —.087
4085 | +.017 | —075
+.037 | +-.002 —.043

§63. V=nW. Valuesofn.

2 3 4 5 8 9

—121 | —072 | —028 | 4026 | +.075 | 4125 4223 | 212 | —.678
—.218 | —125 | —.032 | 4061 | 4153 | 4247 +.432 | —a75 | —.as2
—212 | —146 | —.018 | 4109 | 4236 | 364 —.382 | —285 | —108
—270 |- —121-| 4028 | 4177 | +.325 | 1am5 —.298 | —079 | 4-:060
—204 | —.047 | 4109 | 4265 | 4422 | —a422 —.109 | 4047 | 4202
—.060 | --.079 | 4228 | 4377 | —.475 | —.325 —.028 | 4121 [ L0
4128 | 4-255 | 4382 | —.401 | —.364 | —.236 +.018 | 4145 | 212
+.382 | 4475 | —.482 | —.3%0 | —.247 | —.153 4082 | 4.125 | 218
+4.678 | —212 | —223 | —173 | —125 | —o75 +.023 | 4072 | 121

H

b L2t =1 o0

at all points, will represent the amount of vertical force to' be
combined with the horizontal thrust to put the rib in equilib-
rium. The remaining ordinates are drawn at the middle of
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each division ; and, where the amount subtracted is greater than
the original shear, the remainder will be of the opposite sign.
The signs are placed in the areas of this figure; and it will be
apparent that the ordinates are reckoned from the inclined line
i n, all above that line in our figure representing positive or
upward shear on the left of a wertical plane of section, while
those below ¢ n will be negative. See p. 31.

49. Shear on a Normal Section.— To obtain the shear on
a right or normal section, as at Q, we must draw a line gs
parallel to the normal section at Q, and project » ¢ upon it, thus
finding sg as the shear at Q. A similar construction will
determine the shear at any other point. The property of the
parabola before alluded to makes it easy to find the direction
of gs, which will be perpendicular to a tangent at Q; a tan-
gent at Q will strike K L at S, a distance above the crown
equal to that of the extremity R of the horizontal line Q R
below it. What has been done by the above steps may also
be easily seen from the sketch above Fig. 8. At A, P, will he
ad or 8-1, and the whole vertical force to be combined with
H will be a¢ or 84, which when subtracted from ad leaves
i d or 4-1 as the negative shear on a vertical plane, and F, ¢ d,
or 6-1, as the shear on a right section at A.

In treating any arched rib, we shall desire to find the maxi-
mum shear at any section produced by a combination of
weights at several points. It will be easier to find the sum of
the several shears on a vertical section from single weights, and

then find the normal component once for all, than to resolve .

each vertical shear separately ; hence the shear diagram of Fig.
8 and of subsequent figures will simply show the shears on the
several vertical sections before they are projected on the nor-
mal sections.

50. Pormula for Vertical Shear.— A formula for this vertical shear
may be deduced without difficulty. If Y is the ordinate to in from any
point of al, and Y, its value at the springing, we have from the statement
of the last section,

Y.:H=2k:¢ or Y1:2—::H.
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The vertical shear V in the web, at the abutment on the left, will then
be,

o e B )

For successive points, P; will remain the value of the original shear
until we pass the weight, when it will become P, —W or —P,. Y will
diminish at a constant rate; and, if we deduct at each point the ordinate
from a ! to the inclined line, we shall get the desired results.

51. Computation of Shear.— As an example we will find the vertical
shear midway between the points of division of the arch of Fig. 8 with the
load there shown.

P,=03W; P,=07W; H:.Sl?ﬁ%W; Y, — .6352 W.

This value of Y, is applicable to any parabolic arch with hinged ends,
since it involves neither ¢ mor £ Y at the middle of the first space

— (.635 _ i W = .572 W; for every succeeding ordinate it diminishes

10
635
= W.

Varves or V. {,

Space, 1 2 3 5 6 \f 8 9 10
P 3 3 3 3 3 3 .3 -7 -1 —T7 —P:
X S72, 445 318 101 4064 —.064 —.101 —.318 —445 —.572
P—Y —272 —145 —.018 +.109 +4.236 +.364 491 —.382 —2556 —.128 W.

Three decimal places here will be as exact as four in the values of M.
It will be seen by the ordinates in the shear diagram of Fig. 8, how the
signs change.

52. Remarks on Shear.— We repeat that, as P, was taken
as positive, the signs of the shears apply to the left side of each
vertical or each normal section. In Fig. 10 the sketch marked
R is an instance of positive shear, which acts up or outward
on the left of the imaginary section and inward on the right
of the same section. From the way in which the two parts of
the arch will tend to slide at the section, we see that at R a tie
will be required sloping down from the upper chord to the
right (or a strut in the opposite direction), while negative
shear, as represented in the sketch marked S, calls for a tie in
the reverse direction.
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53. Table of Shears.— A table has been computed:by the preceding
process, for shears at the middle points of ten equal spaces, into which the
span is divided. It is intended to  supplement the previous table of bend-
ing moments, and will serve as a guide for the calculation of any table
with a greater or less number of spaces. It will be found on p..53. A
shear at a joint can be found, if desired, by taking the mean of two adja-
cent shears just obtained. It is easy to select from this table that combina-
tion of loads which will give on any parabolic arch, hinged at the ends
only, the maximum shear of either kind in any one division, one arrange-
ment being the complement of the other. These shears, as should be the
case, foob up very nearly to zero for an equal load on every joint. It is only
necessary to calculate one-half of the table; the other half will contain the
same numbers in the reverse order, with the opposite signs.. A table for
an arch of twenty divisions was printed in ¢ Engineering News,” vol. iv.,
p. 124.

54. Extent of Load to Produce Maximum Bending
Moments and Shears.— In single-span trusses the maximum
bending moments, and consequently the maximum stresses in
the chords, occur when the bridge is entirely covered with the
live load ; and the greatest shear at any section, or the greatest
stress in any brace, exists when the bridge is covered with
live load over one or the other, usually the longer, of the two
segments into which the section divides the span. A simple
inspection of the tables for M and V, lately given, will show
that such rules are not true for an arch. Why this is so, will
be seen, if we consider the fact that the portion of the arch,
Fig. 8, between B and the point where C A crosses the rib, is
under a bending moment of the positive kind, when there is
a single weight at I, while from that point to A bending
moments of the negative kind exist; and that an addition of
another load near I will increase in amount most of the posi-
tive and negative moments, while one placed on the left half
of the arch will have an opposite effect. The shearing forces
for the braces, depending upon the change of stress in the
flanges, will also be affected in the same way.

While an inspection of Fig. 8 will show, as was pointed out
with regard to Fig. 4,in § 32, the extent of load to produce
the maximum bending moment at any one point, and while the
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load to produce maximum shear at the same point can also be
ascertained by inspection, § 15, an attempt has been made to
represent, by the horizontal lines in the diagram, Fig. 11, those
positions of the live load, or the extent of the loaded portion,
which will give the maximum moments of both kinds at each
of nineteen points of division represented in the figure, and
also that arrangement of the live load which gives the maxi-
mum shear of either kind at the middle of each division, The
full line denotes the loaded portion of the span when the
maximum positive moment occurs at. that point whose number
is placed at the end of the line, positive being understood to
mean that kind of moment which would make a previously
straight beam concave on the upper side; and the remaining
portion of the span must alone be covered with the live load
to produce the maximum negative moment at the same point.
Thus the maximum positive bending moment at 2, and at
3 also, is found when the load is on all points from the left
to 7 inclusive. A load from 8 to the right abutment gives
the maximum —M. The maximum +M at 11 occurs when
the arch is loaded from 9 to 14 inclusive.

The extent of live load required to produce the greatest
upward, or positive, shear on the left of a section through the
web or brace in any division, is indicated by the broken line
drawn in its proper space; and a load over the complementary
blank portion will give the maximum shear of the opposite
kind in the same division. :Thus the maximum -+F, at the
middle of 3-4, is found when the load extends from 4 to 9
inelusive ; and the maximum —F, at. the same place, when
the load reaches from 1 to 8 and 10 to 19 inclusive. As a
partial load, not extending fo either abutment, will give the
greatest M at some points, and as the same thing is true of the
values of F, those writers who determine the greatest stresses
by the usual test for maximum applied to an algebraic equa-
tion, which contains the expression for load as continuous from
one abutment, must err in their results.” -

55. Resultant Maximum Stresses.— The steady or fixed
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load, unless distributed uniformly horizontally, gives some
definite bending moment and shear, of one sign or the other, at
each point; and these amounts must first be obtained from the
tables or by diagram. If,at a given point, the bending moment
from fixed weight is 4-, the arrangement of rolling load which
gives the maximum +M at that point will conspire with the
steady load, and give an actual maximum 4+M; while that ar-
rangement of rolling load which, in itself, gives a maximum — M,
will reduce the moment from steady load. If large enough to
prevail against the 4M, the rolling load will produce an actual
maximum —M; but, if not, it will only cause a minimum +M.
Similar remarks might be made concerning shear.

An absolute maximum M of either kind, for a uniform load,
will be found, if we sum up the quantities in the table, to occur
at the middle of the halfspan. .The loads to produce these
values are seen in Fig. 11. The absolute maximum +F is
found at the abutments, while another value, nearly equal in
amount, occurs at the crown. These absolute maxima are
found by comparing footings of the several columns, p. 58.

If Fig. 10 is supposed to represent a portion of the rib of
Fig. 8 or Fig. 12, the web system being of any type or a continu-
ous plate, we shall find that, when the chords or flanges lie on
the opposite sides of any equilibrium polygon, they will be in com-
pression from the weight which belongs to that polygon. When
they both lie on the same side, the nearer chord or flange will
be in compression and the farther one in tension. Hence the
extent and amount of load to produce maximum stress of either
kind in any chord piece can be found by inspection.

The actual stress is found by taking moments about the proper
joint in the opposite chord, as is done in bridge trusses, using
either H multiplied by the vertical ordinate, or the thrust in the
side of the equilibrium polygon multiplied by the length of the
perpendicular, drawn from the joint to that side, as may be pre-
ferred, and dividing by the length of the perpendicular from
the same joint to the chord piece in question, considered as
straight between its two joints. In this way the stress result-
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ing from the direct thrust combined with the bending moment
is at once determined.

Again, imagine a right section made in Fig. 8, through any
panel like Fig. 10, and arrow-heads placed on the equilibrium
polygons on the left of, and thrusting against the section. If
the forces represented by such arrows have components acting
up or outward along the section, they will cause positive shear
in the web at that section; if such components act inward,
they will cause negative shear. Hence the extent of load to
produce maximum shear of either sign in a particular panel can
also be found by inspection, and the amount of that shear can
then be determined. ;

56. Example of Flange Stresses.—It may be instructive
to make a little numerical calculation for the rib of Fig. 9, 100
feet span and 20 feet rise, supposing it to be loaded with the
four weights only which are shown in the figure. The maxi-
mum positive moment is plainly at 8. If the rib is made of a
web and two flanges 2% feet from centre to centre, what will be,
with this load, the stress in each flange at 82 If our figure were
larger, we could scale the ordinate above 8, and get the bend-
ing moment directly ; but, as the sketch is small, we will refer
to the table. We thus find that

M=(082 x 2 +.171 x4 + .003 x 2—.083 x 3) 50 = 30.15 foot tons.

From the same table we find that

H=(123x2+ 232 x 4 + .372 x 2 + .318 x 8)§% = 7.18 tons.
Then 80.15 = 7.18 = 4.2 feet, ordinate at 8. If we call the ver-
tical depth of the rib at 8, three feet, the whole ordinate to the
lower flange will be 4.2 + 1.5 = 5.7 feet, and to the upper flange
4.2 — 1.5 = 2.7 feet. The compression in the upper flange will
be 7.18 x 5.7 + 2.5 = 16.37 tons; and the tension in the lower
flange 7.18 x 2.7 + 2.5 = 7.75 tons.

Draw 0-5 parallel to the tangent at 8. Drop perpendiculars
3-6 and 4-7 on it from 8 and 4. On a right section close to,
but on the left of 8, there will be positive shear 4-7, equal to 2.1
tons. On the right of 8 will be found 36, or 1.5 tons negative
shear, to be resisted by the web.




