CHAPTER VL

CIRCULAR RIB WITH HINGED ENDS.

80. Circular Rib to be of Uniform Section. — Passing
next to the consideration of the arch whose curve is the arc of
a circle, we shall assume that the rib is of uniform section, and
not, as before, of increasing breadth from the crown to the
springing. As the rib is of uniform section, it can no longer be
compared to a horizontal beam, as regards its change of inclina-
tion and deflection under bending moments, and the length
along the arch, instead of its projection on a horizontal line,
must be used in spacing off and in summing up the usual
quantities ; that is, the sum of the changes of inclination
between any two points will be made up from the change of
inclination at each successive point along the »ib. We must
therefore use d s for d in our integration, where s denotes the
length of an arc; and polar co-ordinates will, in the more com-
plex cases, be used in place of rectangular ones. In spacing
off the rib for equal divisions, or for summing the ordinates
arithmetically, the measurements will be made along the curve,
and each division will subtend the same angle at the centre of
the circle. ;

We stated, it will be remembered, that a segmental arch of
the circular type, if the rise did not exceed one-tenth of the
span, might, without serious error, be treated as if it were
parabolic. In discussing circular arches, there will be so many

points similar to those we have already explained, that we shall
g
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not go inte much detail on some points, but leave the reader to
make the extended application as examples come up in his own
practice.

81. Experimental Verification.— The values to be obtained
for y,, for a rib of uniform section, curved to the arc-of a circle,
and hinged or free to turn at the ends, can be readily verified
or illustrated experimentally as follows: — Take a piece of
moderately stiff iron wire, and bend it accurately into the
desired shape, A C B, Fig.-19; suspend the wire from a
horizontal bar E F by means of strings fastened at A and B,
and then attach a weight at any point C. It will be convenient
to stretch a thread from A to B, which, as the span is to be
unchanged, will not interfere with the reactions. If the point
E is now moved horizontally, the length of the string E A being
at the same time changed, the line A B can be brought parallel
with E F, as can be readily ascertained with a scale. Then E A
and.F B prolonged will meet at D on C D, and D G will equal
#- E A and F B will actually intersect on the vertical through
the centre of gravity of the wire and weight combined ; but if
the weight of the wire is as small as is consistent with stiffness,
while the weight at € is large in comparison, the centre of
gravity will practically be in CD. If A B becomes slack, it
shows that E and F are not sufficiently far apart. By fastening
two long threads independently to E and F, the lines E A and
F B can be easily prolonged to an intersection.

82. Semicircular Arch with Hinged Ends: Value of Yo
— If the rib with hinged ends is first taken up for discussion,
the value of g, for a load at any point on a semicireular arch is
easily obtained by a simple device. Recurring again to the
usual formula in its modified form, we must satisfy the condi-
tion :

EDE=:3DE.DF.
If welet DE, Fig.20,=2; DF=y; AD =z; and represent
a small portion of arc by d s, this equation becomes, for the

entire semicircle,
e o
: f Pds—= f yzds.
0 0
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If we draw a radius from any point E of the rib to the centre
0, and also draw the infinitesimal triangle whose sides are d s,
d zyand d 2, we shall have, from similarity of triangles,

r:z—=—ds:dx, or zds=rdz;

substituting this value in the above equation, we get

2¢ 2¢
Tfo zdr =1 . ydz.

The integral of zdz between the given limits is the area of
the semicircle, while that of y d z is the triangle A C B. Substi-
tute the value }n¢* for the former, and 7y, for the latter, and
we obtain :

trrd =1Py,; or yy = nr =1.5708r.

The ordinate #,, for a load at any point, on a semicircular
rib with hinged ends, is therefore a constant quantity, equal to
the length of the half rib. If we draw a horizontal line at this
height above the springing, it will contain the vertices of all
the equilibrium polygons for single loads.

& 83. Segmental Arch; Value of y, — If the arch is seg-
mental, that is, less than a semicircle, we shall use the follow-
ing notation: Let the angle N O B, Fig. 21, subtended at the
centre of the circle by the half arch, be denoted by 8; the angle
N O1, from the crown to the point where the weight is placed,
be denoted by «; and the angle N O E, from the crown to any
point where the ordinates D E and EF are measured, be f. The
radius of the arch = ». If, then, A C B is the desired curve of
equilibrium, C K = . The value of this ordinate will be proved
to be

(sin®*@ — sin’a) (,5' %%G —3 cosﬁ)

r :
(sin?B — sin? @) 4 2cos 3 (asin @ + cos @ — Bsin 3 — cos 8)

Yo=—

If the arch is a semicircle, § = 90° = } 7, and this value reduces
to y, = 4 mr, as previously obtained.

The work of computing ryo for different values of « is not
great; as, for a given arch, g is constant, and the second factor
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of the numerator is a constant quantity. Since a segmental
arch may subtend any angle, it is not worth while to go into
the computation here of values of y, for a given value of 8; but,
as examples of y,; we will give
If B =45° and e = 09, then y, = .39 r nearly.
« 450 o« 300, « A2r
« goo «  gpo, « Tlr o«

All that one needs for the calculation from this formula is
an ordinary table of natural sines and cosines. The angles or
arcs § and e are to be expressed in lengths of arc, which subtend
the given number of degrees, to radius unity.’ The arc for one’

degree being i%’ or 0.0174563, any other arc will be obtained

by multiplying this quantity by the number of degrees which
the arc subtends, minutes being expressed as a decimal part of
a degree.

84. Proof. — From Fig. 21 we have D E = r (cos ¢ — cos g).
DF:CK=AD: AK_r(sinB»}—sine):r(sinﬁ—|——sina)

¢ Lz aing 4 éin ¢
on the left of K, or DF = smg Feme Yos

haim : sin 3 — sin ¢
on the right of K, DF = T - Yo
Substituting these values in the usual equation, §39, EDE*=:sDE.DF,
we obtain for the first member of the equation, remembering to use

ds =rdg in place of dz, and considering angles to the left of ON as
negative,

+8 +0
rsf B(cosﬂ-—cosﬁ)“d&:raf B(cos*ﬁ—?cos,&cose—l—cosg.ﬁ)dﬂ*

=78 (B -} 2pBcos*3 — 3sinfBecos ). (a.)
For the integral of the second member between a and — 2 we have

% Caes : : %
sinﬁ-|~3inaf_ﬁ($mr6°°” + singcosg§ — sinBeos B — cos@sing)dgt

"fcos“ﬂdﬂ-—;-“ﬂ-{r-sinﬂcosﬂ]; cos — 3 =cos 3; sin — B=—sinf.

ffsin&cos 0d0=—4cos20.
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T sinfB-tsina
- cos acos 8 -} sin® @ — }cos® B — @sin BeosB).
Likewise for the integral of the second member between a and 4 3 we have

¥
sing —sina

(sinasin 3 — }cos’a — asinBcosf?

fﬁ(sin Beos§ —singcosd — sinBeos 3 | cosBsing) de
a .

.

™% e 2 2 c -

= =——— (811 — # COS — 351N HCOS 5 — Sl asin
sTap —sing (sin’B3 — % cos’ @ — Ssin Beos 3 B

— }cos*a - asin Bcos B - cosacos B).

These two quantities are to be reduced to a common denominator, added
together and equated with the first member (¢.). Upon making simple
cancellations, dividing through by sin 3, and factoring, we get the form of
Yo given in the last section.

85. Formula for H; Value of Ordinates. — When the value,
of , is computed, we can readily draw the stress diagram of
Fig. 21, and scale the value of H; or the formula proved before,
§ 40, may be applied here, and is easily converted into the third
form,

W &—0p AK.KB r(sin?g — sin’e
HZE' e — T UK 2k — (yo.ﬁ2sin,3 )

w. (L)

If calculations have already been made for g, the quantities
desired for this formula are at hand.

Then the ordinate at each point of division, by which H is to be multi-
plied to give M for that point, will be, from § 84, if ¢ is the angle between
the two radii from the crown and the point E,

sin @ & sin §

EF=DF—DE=y2r

—r(cosf —cosp). (2.)
The plus sign is to be used for points between the weight and the farther
abutment, and the minus sign between the weight and the nearer abutment.
‘We must remember, however, that, if ¢ is measured from the crown to the
right as the positive direction, all angles ¢ on the left of the crown will be
negative, and their sines will be minus. If E F is plus, it gives a positive
bending moment, tending to make the arch less convex, and vice versa.

86. Numerical Computation of M. — In any practical case we should
much prefer, as more easy and sufficiently accurate, to scale all of these
quantities from a good-sized diagram; but it may be well to compute one set
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of values of M as an example, for fear the signs may give some readers
trouble. Taking the case of Fig. 22, let 3 —=45° and a — 20°. Then
the arc §—=.7854 and o« =.3491; sin 3= cos 8 =.7071; sin « = .8420,
cos ¢ =.9397. These values, substituted in the equation of §S3, give

(-5 — .1170) (.7854 2t 2.1213)

e 7071¢ .0384
Yo == T 5 —1T70 1 1.4143 (.1194 19397 —.5554 —7071) —.0954" — 10875

(1.), § 85, will then become
.383

S (A=) Sii

Sin g+ sine =1.0491; sin 8 — sin e = .3651;

Y _ 408r

e rh L AT e IR : Yo
smp-Fsma  1.0801 — -S04

sinf — sing ~_ .8651

VALUES oF M.
W.

(/] 20°
gin § =

+ sin ¢

Mult. by
.38‘; =

— €08 § . . . o E 7660

6050
+coe 8 7071

—.0342 |—.0704 |—.0924 |—.0728 |—.0214 l—i—.0605 <1703 |4-.0697 |4-.0121

X672 W |—.0230 [—.0534 |—.0621 |—.0489 [—.0144 |'+.o407 -.1144 || 4+.0468 |4-.0081 | »W =M

87. Shear at any Right Section. — Suppose that the rib of
Fig. 22  carries a single weight under the point C, and that the
curve of equilibrium is ACB. If 012 is the stress diagram,
2-3 will be the vertical component of the reaction at A, and 8-1
that at B. To find the shear on a right section near A, as at
E, lay off 2-3, or P, in Fig. 28, and draw H so that the arrows
may follow one another; then from 0 draw a line 0—4 parallel
to the tangent at E; the perpendicular distance 4-2 will be the
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shear in the web. For we see by the direction of the arrows
that these forces last drawn balance P; and H; and, as in
Fig. 18, no matter how much the bending moment, and hence
the flange stress, may be, the perpendicular distance 4-2 is
unchanged. The line 0—4 will be the magnitude of the direct
‘thrust.  Both of these forces are given on the right of the
section, and this shear is therefore negative. In the same way,
for the point E near B, draw 1-8 = —P, and 3-0 = H; draw
0-8 parallel to the tangent at E; 8-1, perpendicular to it, will
be the shear on the right of the section, again negative, and 0-8
will be the direct thrust. It is noticeable that the normal shear
in the web near the left abutment is opposite in sign to Py,
while near the right abutment it agrees in sign with P, For
the kind of brace needed, see Fig. 10. It is evident that these
figures may at once be drawn on the stress diagram, where 04
and 4-2 are already sketched. Such a way will answer well
for a few points on a large figure, especially if we have applied
such loads as give the maximum shear at any particular point.
If, however, we desire to see the variation of the shear across
the span, we may draw a different diagram.

88. Shear Diagram. — As the tangent is perpendicular to
the radius at the point of contact, we may at once see that the
angles marked 6 in Fig. 23 correspond with the angle § made
by the radius to the crown and that to the point E. = Hence we
get a value for the normal shear, P cos 6 —Hsing. As the
point E is distant horizontally from the middle of the span an
amount rsin 6, the last term of this expression for shear varies
directly as the distance from the centre; and if we draw 3-T, in
the stress diagram of Fig. 22, parallel to the radius at A, cutting
0-6 which is parallel to the tangent at A, 3-7 will be H sin 0 for
A, and may be laid off at ¢ w and b7 of Fig.23. The vertical
ordinate ¢ d will then represent H sin § at any point. P, is laid
off at ¢, and P, at em ; with ¢ as centre, and these two distances
as radii, draw the dotted ares seen in the figure ; lay off several
angles 0 at ¢, as, for instance, lcg and mc¢n for the points E;
project.¢ and » horizontally to f under the respective points E;
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df will be P cos#, and from several similarly located points the
curves slt and vfr are found. ~Then at any point the vertical
distance df—ed or ¢f will be the normal shear in the web on
the left of the section, positive if above the inclined line, neg-
ative if below it.

From the formula P cos #— H sin 6, a table of shears may be
easily computed for any given arch. P sing 4 Hcosé will give
the direct thrust.

89. Distribution of Load to produce Egquilibrium. — A -
series of lines drawn in the stress diagram from 0, parallel to
the tangents at a number of equidistant points in a circular rib,
will cut off such portions of the load line as represent the loads
necessary to make the successive sides of the equilibrium polygon
parallel to these tangents, or, in short, coincident with the rib.
But the lines radiating from 0 will successively intercept
increasing lengths of load line. Hence the load which will keep
a circular arch in equilibrium must increase in intensity per
horizontal foot from the crown to the springing, and must
become infinite at the springing of a semicircular arch. Hence
it follows that no amount and distribution of vertical load can
make a semicircular arch a true equilibrium curve, that is, one
which has no bending moment at any point. In fact, no curve
which starts vertically from the abutment can be an equilibrium
curve under vertical loads. : This may be seen in a more simple
manner if we consider that no arrangement of weights will
cause a cord, attached at two points, to hang in a funicular
polygon whose first side is vertical.

90. Effect of Change of Temperature. — The horizontal
thrust or tension; due to a change of temperature, in a circular
rib hinged at the ends, is found by a similar method to that
pursued for the parabolic rib. Referring, to avoid repetition,
to what was said at that time, §§ 71-73, the equation may be
written, as given in § T4,

H,.2DE*— 4+ 2EI.tcc.

Fig. 16 will answer for this case, if we imagine the arc to be
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circular. As we saw, in § 82, that =D E? for a semicircular
arch was %z % a substitution in the above equation gives at
once

4BI.tec EIlie

Hy=4 ——5— =+ 1.264 —3

for a semicircular rib. The bending moment at the crown,
where it is a maximum, will be

4EIte

Tr

M (max.) =

If the arch is less than a semicircle, (a.), § 84, gives
EDE?=173(3 -4 23 cos*3 — 8sin Bcos ),

and ¢ = rsin §; therefore, substituting, we obtain

2BItesing
=& 2 (3+ 23 cos? 3 — 3 8in B cos 3)’

and the bending moment at the crown will be

2EItesinp (1 — cosp)

e r(3+2Bcos?3 — 3sin Fecos @)’

91. Shear from Change of Temperature. — If a load of
the proper amount and distribution were imposed on the rib to
place it entirely in equilibrium, and cause it to exert against
the abutments the desired value of H due to temperature, such
a load would supply the amount of shear needed at each section,
and, when the load is absent, the bracing must supply such
shear. The line wecer of the shear diagram of Fig. 23 will
therefore limit the ordinates for shear at right sections of the
web under changes of temperature, when 0-3 is the amount of
H,. A reference to § 78 and § 87 will aid the reader in recalling
these points.

CHAPTER VII
CIRCULAR RIB WITH FIXED ENDS.

~ 92. Values of Equations of Condition. — When the cir-
cular rib is fixed at the ends, we apply the three equations of
condition which were developed in §§ 17-19, summing up the
ordinates, however, along the arch, as has just been done in the
preceding case, in place of the horizontal line. When the arch
is a complete semicircle, or, as it is often ecalled, a complete
arch, as distinguished from a segmental one, the value of g, ¥,
and y, may be obtained by a device similar to the one employed
in §82. The equation to satisfy the first condition is easily
derived, but the two others present more difficulty ; it is there-
fore not expedient to take up the semicircle as a special case,
but rather to work out the general equations, and make the
necessary substitutions.

In the arch of Fig. 24,let AN =y, CK =y, and BR = g,;
MOB=MOA =4 MOI =4, and MOE, to any point E,
=0, angles to the right of M being positive. The notation
agrees w1th that just used. Then it may be proved that the
three equations of condition will reduce to

sin B yo -+ 4 (sin f4-sina) y. -4 (sin f —sin a) yo= (B —sin peosf) r; (1.)

— sin B (cosa — cos B + asine — Bsing) y,
+ 3 (sin B — sina) (cosa — cos@ + asine -} Bsina)y
+ 3 (sin B3 4 sing) (cose — cos B 4 asine — Bsinea) 7,
= (sin B — BcosP) (sin?p —sinfa) r; (2.)
89




