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weight of the arch will be found at each of these poin‘t‘..s, and one-
thirty-sixth at A and B; for A and B will each-cal:ry directly one-
half of the adjacent division. Therefore, beginning 'and closing
with one-thirty-sixth, space off the load-line into eighteenths;
from the middle of the load-line lay off H'=8.68 W =3-0,

. 3.68
where W = weight of one division, or H' = T .204 of the

whole weight of the rib. One-half of this load-line lb 1-3. Lay
off y/and y’ = .17 at A and B, and dra:w the'mdes of the
equilibrium polygon parallel to the lines which radiate from the
extremity of I’ to the points of division of the load-line, thus
obtaining the curve EGD. The second half of the curve was
obtained by spacing off 0'- 3 to the left.

101. Practical Application. — Having at hand a wooden
model of an arch-ring, representing the voussoirs, or stones, of
a semicircular arch, we tried some experiments as tests of the
accuracy of this method of analysis and of the correctness of
these results. The arch is represented by Fig. 26, and consisted
of forty-two independent voussoirs. The spat, A B, ’of the
middle line of the ring, 18 inches, was 13.09 times thej thickness
of the ring, and the structure would apparent.ly. just stand
alone when left to itself: a slight additional weight at the
crown would cause that part to sink, the hauncl}es to move
outwards, and the ring to fall in pieces. Considering that this
arch, so long as it rested squarely on the faces at A and 3, was
fixed in direction, or not free to turn at the ends, we lald.oﬁ‘
at AE and BD the value of y obtained in the 'Iast section,
and drew the equilibrium polygon, as just des?rlbed, on the
centre line of the ring, beginning at D with a line parallel to
0-4. It will be noted that no line is used from 0 to 1; for t.he
weight represented by 1-4 is directly supported at B; W}.nle
the amount 4-5 is the weight concentrated on the first vertical
just above D. .

As the arch is a continuous ring, the weights may properly be
concentrated at a greater number of points; so .that finally the
true equilibrium curve will pass through the vertices of the-poly-
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gon we have just constructed: the difference between the
two is unimportant, however, and is only appreciable near
the crown. The bending moment at any point has been proved
to be equal to H multiplied by the vertical ordinate between the
centre line and the equilibrium curve, or, by § 10, also equal to
T, the thrust along the tangent to the equilibrium curve, multi-
plied by the perpendicular from a point on the centre line to
this tangent: therefore if we draw EF as this tangent, the
bending moment at A will equal either H. E A, or the thrust
along E F multiplied by the perpendicular from A. The direc-
tion of the thrust EF, if prolonged, cuts the springing joint
very close to the outside edge: it will also be noticed that the
equilibrium curve approaches quite near to the edge of the
voussoirs at the crown G. Now, as we reminded the reader in
§ 11 that the force T, or 0’~1, at the distance F A from the cen-
tre line of the rib, is equal to the same force at the centre line
and the couple which produces bending moment, conversely,
the resultant of the pressure of this rib at the end A must cut
the base in the prolongation of the line E F: in short, the tan-
gent to the equilibrium curve at each point gives the direction
and point of application of the resultant thrust at that right
section of the rib to which it belongs, as ascertained by erecting
a vertical from the middle point of the section.

102. Limiting Position of Equilibrium Curve. — If, as s
usually the case, the intensity of the resisting force of the abut-
ment at A is assumed to vary uniformly from one edge to the
other, then, in case the resistance is zero at the inside edge and
a maximum at the outside edge, the intensity at all points can
be represented, as shown in the small sketch marked A’, by the
ordinates of a triangle whose base is the breadth of a VOussoir,
and whose longest ordinate is the intensity of the pressure at
the edge near F. The total pressure will be equal to the area
of the triangle, and the resultant will pass through the centre
of gravity of the triangle, cutting the base at one-third of its
length from the outer edge. If there existed any tension near
the inner edge, we should have two triangles, as shown in the
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other sketch, the inclined line cutting the base at the point
where the stress changed from tension to compression ; and the
resultant of the two stresses must, since they are of opposite
kinds, lie outside of their separate resultants, and on the side
of the greater one. This fact as to the position of the re-
sultant of two opposite parallel forces was indicated in § 11,
Fig. 2, and is one of the well-known properties of the lever,
as proved in Mechanics.

Since, then, the resultant force, or the thrust on a section of
the rib of Fig. 26, at A, B, and C, passes near the edge of the
section, or, as it is often stated, outside of the middle third of
the cross-section, we should expect to find tension at the
inside edge of the joint at these points. ~As this model consists
simply of wooden blocks placed in juxtaposition, a voussoir
cannot exert tension on its neighbor at any point of contact,
and movement must immediately take place when the weight
of the rib is allowed to act freely, rotation being set up about
the outside edges at F, G, and Q. The crown will sink, . the
haunches will move outwards, and the arch may be expected
to fall. The reader will remember that it was explained,
in § 12, that an arch tends to move away from the equilibrium
curve.

Since any material is compressible, it is probable that the
assumption of a uniform variation of intensity of stressat any
section will not be strictly true; that the stress may not be
exerted over the entire surface of the originally plave joint;
and that therefore the equilibrium curve may pass somewhat
outside of the middle third of the joint without causing the
arch to fall, although the joint will then open slightly at the
edge where no pressure is exerted, by reason of the compression
causing the joint to be no longer plane. = But such an assump-
tion gives an additional element of safety to a design, when the
engineer so proportions his rib of rectangular section that
the equilibrium curve of the load at any time shall never
leave the limits of the middle third, and the tensile strength
of the cement will not then be relied upon to assure stability.
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.103. Model as hinged at Three Points.— The arch: of
Kig. 26 stood when the string which at first passed around the
exterior was removed, although a slight change of shape was
ob_servable. A close inspection, however, showed that the vous-
soirs at the crown and the two springings were then in contact
only at the outer edges. The rotation at these joints, indicated
in the last section as probable, had commenced ; but, as soon as
thfe rib became thus hinged at three points, it Wa; in 6qui1{-
bnu-m. It is desirable, then; as a further test, to draw the
faquﬂibrium curve for this rib hinged at the crown and spring-
ings. As the change of shape and curvature was very little
the supposition that the weight of the voussoirs is concentra,tec';
along the arc K Q will be sufficiently near the truth for our
purpose. :

The half-weight being represented by 1-3, the first step is to
find the value of H for this case, when the load is concentrated
at iPtervals of ten degrees along the outer semicircle. © We can
avail ourselves of the formula of § 28, finding the different
values of & by measurement, or from tables of sines, since
b= rsin ¢, and summing up the several amounts of H for the
w}}ole semicircle ; ‘or, as is done in this figure, we may use the
principle explained in § 30, that any two sides of the funicular
polygon, or two tangents to the equilibrium curve, will meet,
when prolonged, on the vertical through the centre of gravity
of the included weight. Since the arch is symmetrically loaded
the thrust at the crown will be horizontal, and therefore lie in1
the line K L; the centre of gravity of the quadrant arc K Q
will be on the vertical line P L, drawn at such a distance, K L,
from the crown as to satisfy the value for the ordinate from the
centre of a circle to the centre of gravity of a circular are, viz

radius X chord : :

Tength of arc_
lie in the line QL, drawn from Q to the intersection of the
other two forces. As 1-8 represents the weight of one-half the
arch, and the thrust at the crown is parallel to 8-0, a line from
1, parallel to QL, will complete the triangle of forces, an<

;, and therefore the thrust at the springing will
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cutting the horizontal line at 9, will determine 3-9 to be the
desired value of H. The equilibrium polygon can now be
drawn from Q to K, its sides being successively parallel to
lines radiating from 9, the first line being 9-4 and the last one
9-6. These lines are not drawn in the stress diagram. The
other half of the polygon may be added, if desired.

It will now be seen, that, excepting the hinged points, the
nearest approach of the equilibrium curve to the edge of a
voussoir is at P, where it is still well within the rib, and conse-
quently no further movement of the rib is to be expected.
Another model, somewhat thinner than the one here illustrated,
was experimented with, and would not stand. If the arch of
Fig. 26 is slightly weighted at K, the joint at P begins to open
on the outside, confirming the result, that the equilibrium curve
here passes nearest to the inner edge. If it be objected that
the change of outline previously referred to carries the portion
of the rib near P farther from the centre, so that the equilibrium
curve may run nearer the edge than we have plotted it, we
rejoin, that such a movement, carrying the centre of gravity,
and hence the line P L, in the same direction, will cause QL
to make a slightly less angle with the vertical, diminishing the
value of H, and moving the equilibrium curve also a little away
from P.

104. Model as hinged at Abutments. — For the purpose
of making an additional test of our results, we finally placed a
small wire at A and B, thus hinging the rib on its centre line at
these points. The equilibrium curve for one-half of the arch is
ANK. The amount of H is determined by computation from
the formula of § 85, which becomes, for a semicircular rib,
Hi—= CO::“ W and the summation for the whole arch, carrying
~ W at intervals of ten degrees along the centre line, is
H =2.86 W, laid off at 3-8. Radiating lines between 8-4 and
8-6 will enable one to draw AN K. The arch, when released,
fell in ruins, and the first joint to open, on the outside at the
haunch, was near N, lower than P in the former case.
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We have dwelt on these curves at som
50 good a confirmation of previous deduc
as they will aid the reader in assuring h
stands the method of treatment.
accuracy, be drawn to quite a large
then be very satisfactory.

105. Effect of Chan
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Such diagrams must, for
scale, and the results will

ge of Temperature. — It remaj

find the effect of change of temperature on the circulaeiiall)n;i:}?
fixed e.nds. As was previously indicated in § 76, we must find
the height AG=BI— % at which the equilibrium line shall
be: dr.awn in Fig. 27, by the condition that the change.of in-
clination at the abutments, or SEF = 0. If the notation of
the angles subtended by portions of the arch is as before, and
as marked in the figure, we have EF =D E — ¥, and ,

2 +8
ELF:I__B?‘(reosﬂ —reosfS—y)do :Er(rsinﬂ——rﬂcosﬁ—-ylﬂ)=o,

or

sin
h=r ( ﬁ'g——coaG),
which becomes, for a semicircle,

2
Y= --ﬂ_r = 0.632 T

’I“he first term of (1.), § 76, therefore becomes 3D E? — #%.2ZDE.
From § 84, 3 D E? — 43 (B + 28 cos® 8 — 8 sin g cos g), while

% - 2D E gives, as above, #° ({»_1;1_5 — cos ﬁ) (2sing — 28cos ) ;

50 that the first term reduces to 7 (ﬁ + sin g cos g— . S;nz ﬁ), and
(1.), § 76, takes the form of

. 2 sin®
Ht-Ta(B-f—smﬁcosﬁ-— s?ﬁ = + 2EItersin 6.
ey 2EIte

B sin g\"
r sinp+ooss—255F
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~ For a semicircle, the formula for horizontal thrust simplifies
“into

Bt 42_}1‘_&-_—:]: 6.45-31—’;8.
s

R
(5—2;)

The bending moments at the crown and springing can now be
readily written, and compared with the values of § 90. The
horizontal thrust for the semicircular rib fixed at the ends is
ﬁ{{é times as great as when the ends are hinged. The remarks
of § 91 in regard to shear will apply equally well here.

For the Elliptic Rib, see § 153. :

106. Maximum Stress determined by Length of Ordi-
nate; Rib of Rectangular Section. — It may sometimes be
convenient to have the means of determining from a simple
inspection of a diagram, by. noting the position of the equili-
brium polygon, how much the maximum intensity of stress‘at
any section exceeds the mean intensity. As the mean intensity
f— T =S where T is the direct thrust and S is the area of
::,ross-section, and is obtained at any point from the known
value of the thrust in the side of the equilibrium polygon, the
maximum intensity of stress will be readily found by multi-
plying by the proper ratio. The stress arising from bending
moment in a solid section is always taken as uniformly varying
(see Fig. 2). The combination of direct stress with that from
bending moment will also give a uniformly varying stress.

Considering, first, the rib of rectangular cross-secltion, F1g.‘28,
we see, that if we call the intensity, A C, of direct stress unity,
a bending moment which will produce a compression, DE,.of
unity at the upper extreme fibre, and a tension, C A, of unity
at the lower extreme fibre, will bring the resultant stress at all
points to the amounts indicated in the left-hand sketch, twice
the mean intensity at one edge, and zero at the other. If the

cross-section is treated by the method of Part I., ¢ Rooffs,” p-
57, Fig. 24, in order to make an equivalent area of uniform
stress equal to the maximum, we get the shaded area of the
section on the left, which is evidently one-half of the whole
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section. The centre of gravity of this area, lying at one-third
the height from the upper edge, will be the point of application
of the resultant force on the cross-section. If the bending
moment is reversed, the sketch will be inverted: hence, when
the line of thrust, or the side of the equilibrium polygon, passes
at one-sizth of the depth above or below the azis of the rib, the
intensity of stress at that edge of the rib which is nearer the
line of thrust will be twice the mean intensity.

If, again, the maximum intensity is to be thrice the mean,
the line F G, starting at a distance BF =3B D, still cuts CD
at its middle point in order to make the total tension from
bending moment equal to the total compression from the same
cause. Noting where F G cuts A B, we have the point of no
stress at § 4 from the upper edge of the section: hence the
shaded areas are drawn as given in the section on the right,
the upper one for compression, the lower one for tension. The
area of the upper oneis }6.3% =304k the lower one, being
similar, but of one-third the altitude, has one-ninth the area of
the other, or ;% & 2. The difference is 3 b h, or one-third the area
of the cross-section, as required if the maximum intensity is to
be three times the mean. Letting these areas represent the
forces, and taking moments about the upper edge, each force
being applied at the centre of gravity of its triangle, we have
for the position of the resultant, measured from the upper
e $bh. 3k — Jobh. 13

. th— < h
e ggfﬁff 2= 4.

If, therefore, the line of thrust passes at } A from the edge, or
one-third the depth from the axis, the intensity of ecompression
on the outside fibre nearer the line will be three times the mean
compression, and at the other edge there will be a tension equal
in magnitude to the mean stress.

In the same way it may be shown, that, when the line of
thrust cuts the edge, the compression there will be BI, four
times the mean, and the tension at the other edge will be A K,

‘twice the magnitude of the mean stress. Thus it will be seen,
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that, for every one-sixth A that the line of thrust is distant from
the axis, the compression on the square inch will be increased
by unity on the side to which the line deviates, and dimin-
ished by unity on the other side, the mean compression being
denoted by unity. This is indicated by the numerals marked
on the sketches of Fig. 29.

107. Rib of Two Flanges. — If the rib is composed of two
flanges and an open-work web, the stress in either flange is
easily determined. If the line of thrust is in the axis, each
flange will carry one-half of the direct stress. If the line of
thrust passes through one flange, Fig. 30, that flange may be
considered to carry all of the compression uniformly dis-
tributed, and the other flange to be under no stress; for the
depth of the flange is so small, compared with the whole depth
of the rib, that no error of importance is involved in consider-
ing the stress as uniformly distributed over the section of one
flange. If the line of thrust passes without the rib a distance
equal to its depth, we get, by taking moments at A, Fig. 30,

Thrust at C X 2 A B = Compression at B X A B;
or, Compression at B = 2 X direct stress.

If moments are taken at B, we find,

Tension at A — direet stress.

In the same way, if B'C'=2A'B,

Compression at B'=3 X direct stress; Tension at A’ =2 X direct stress.

Hence we may draw a sketch for this rib similar to the one for
the rectangular rib. The numerals here denote that one flange
carries once, twice, &ec., the entire direct stress. If the rib has
a plate web, or is an I beam, the above method will give a good
approximation to the true stresses. If the web is heavy, the
method of the next section may be applied.
108. Rib of Circular Section; General Construction.

When the rib is of less simple section, we must return to the
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graphical construction first referred to. As an instance, sup-
pose the cross-section of the rib to be a circle. The variation of
stress on a diameter, in the direction of deviation, is indicated
by the left-hand sketch of Fig. 81, when the intensity of stress
is twice the mean at one edge, and zero at the other. By con-
structing, according to the principles already laid down, Part I,
“Roofs,” the equivalent area of maximum intensity, we obtain
the shaded area of the figure, and then we determine its centre
of gravity by cutting out the area, and balancing it over a knife-
edge. The deviation of the line of thrust from the centre of
the circle, to make the maximum intensity twice the mean,
and the minimum zero, is thus found, and proves to be one-
fourth the radius.

By the construction of the other sketch, taking moments as
in § 106, or reasoning by analogy, we find that the deviation, in
order that the maximum shall be thrice the mean intensity of
compression, and the tension at the other end of the diameter
shall equal the mean stress, must be one-half the radius from
the centre: hence, when the line of thrust cuts the edge, the
maximum compression equals five times the mean, and the
tension at the other extreme of the diameter is three times
the mean compression. Thus we get the numerals and their
positions, as given in the figure.

In a thin tube of circular, elliptical, or oval section, the
maximum compression is nearly three times the mean intensity
of direct stress where the equilibrium polygon cuts the surface
of the tube; and a tensile stress equal in magnitude to the mean
will then be found at the other end of the extremity of the
diameter : hence proportionate distances of the side of the
equilibrium polygon from the axis of the rib will give twice,
four times, &c., the mean stress.




