CHAPTER VIIL
ARCHED RIBS UNDER WIND PRESSURE: HORIZONTAL FORCES.

109. Wind Pressure on an Inclined Surface.— When
arched ribs are used, as is often the case, for the support of a
roof, the pressure of the wind, being normal to the surface, will
have a different effect upon the arch from that caused by a simple
weight or vertical force. While referring to Part L., “Roofs,”
p. 31, for some remarks about the action of wind on a roof, we
will repeat here, that, if P equals the horizontal force of the
wind on a square foot of a vertical plane, the perpendicular
pressure on a square foot of a surface inclined at an angle % to
the horizon may be expressed by the empirical formula, —

s +1Bicosi=1
Bain

If, 'then, the maximum force of the wind be taken as forty
pounds per square foot, which is an amount sufficiently great
for the purposes of a design, the perpendicular or normal press-
ure per square foot, on surfaces inclined at different angles to
the horizon, will be: —

Angle of Normal Angle of Normal
Roof. Pressure. Roof. Pressure.
50 5.2 1bs. 30.1 lbs.
10 9.6 33.4
15 14.0 36.1
20 18.3 88.1
25 22.5 39.6
30 26.5 40.0
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For steeper pitches, the pressure may be taken as forty
pounds.

The resultant pressure at each of the joints in the rafter
which is on the side of the wind is then ascertained as in the
case of any roof. If the roof surface is curved, any short por-
tion between two points where braces abut, or purlins rest, may
be considered as straight, and the wind force will then be per-
pendicular to such portion ; this pressure being the only force
exerted by the wind. If the resultant pressure at each joint
is then found, either graphically or otherwise, and is resolved
into vertical and horizontal components, we may include the
vertical component in the analysis already carried out in detail.
The effect of the horizontal component remains to be con-
sidered.

110. Form of the Equilibrium Polygon; Vertical Com-
ponent of Reaction.— The tendency of such a force to distort
the arch being resisted by the stiffness of the rib, the equili-
brium polygon for a single horizontal force H, applied at any
point I on the rib, Fig. 32, must, if the arch is hinged at the
ends, be two straight lines, which start from the two springing
points, and meet on the prolongation of the line of action of
H; for the rib must be in equilibrium under H and the two
forces at the abutments. In the case of the arch A CB of Fig.
32, the reactions at A and B must lie in the lines A G and B G,
the point G being found on the’ horizontal line I G, but its loca-
tion on that line being at present unknown. It will be evident,
when we conceive H to be applied to the equilibrium polygon
at G, that the side A G will be in tension, while G B is com-
pressed : therefore the reaction at B will be a thrust, as usual,
but that at A will be a tension ; and, if H were the only applied
force, the arch would tend to rise from the abutment A, and
would require fastening down. ]

As II acts at a vertical distance I L above the springing line,
the moment which tends to overturn the frame is H.I L. If
we take either abutment as the axis of moments, the condition
of equilibrium that the moments of exterior forces must balance
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gives H.IL=P. A B; and consequently the vertical component
of the reaction at either abutment is, —

IL
Lk
being tension at the side nearer to I, and compression on the
other side. H will be partially resisted at each abutment. The
stress diagram will be a figure like 1 2 3, in which 8—4 and 4-1
are — P and H, for A, while 2-4 and 4-8 are H, and+ P for B,
1-2 being equal to H.

111. Rib hinged at Three Points.— As was the case with
arches under vertical forces only, so also with ribs under a wind
pressure: the hinging of the rib at three points makes the analy-
sis at once very simple. If the arch of Fig. 32 is pivoted or
jointed at A, C, and B, C being usually taken at the crown of
the rib, and the external horizontal force H is applied at I, the
line of thrust for the right-hand portion of the arch must be
B C. This will be plainly scen, if we consider that the part
B E C of the rib is supported by a reaction at B and the thrust
of the other half of the arch at C, while there is no other force
exerted upon it: for equilibrium, therefore, these two forces
must lie in one straight line, which can be no other than B C,
drawn through the two points of application. Then, as proved
before, the reaction at A must lie in A G, drawn to the inter-
section of I with B C. It may be noted that 14, or H, is
always greater that one-half of H.

112. Value of Bending Moments. — If we make a section

at any point E on the right of C, the only force acting on the

right of the section is the inclined reaction at the abutment B.
The bending moment at E is, therefore, equal to (3-2) E N, or
to either of the equal products H,. EF and P.EK. The bending
moment at any point between C and I, for the same reason, will
still be expressed by H;. EF or P. E K, but will be of the oppo-
site kind, since we passed a point of no bending moment at C,
and E F or E K is drawn in a reverse direction. For sections
between I and A it will be easier to take the force on the left
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of the plane of section, which will be the tension of the left
abutment, as this is the only force on that side : the bending
moment will therefore be H, . EF or P .EK. It will be per-
ceived, on a little reflection, that these moments will agree in
kind with those between C and I; the reversal of the ordinate
EF from the outside to the inside of the rib offsetting the
change from H,, compression, to Hj, tension. The application of
H at I to a moderately flexible wire of the shape A C B would
flatten the left portion, and make the right portion more convex.

We may very simply consider the bending moment at any
point of the rib to be represented by the product P . E K, where
E K is the horizontal distance or abscissa from E to the equili-
brium polygon. We thus have an evident analogy between the
equilibrium polygons for horizontal and for vertical forces, if
the ordinate for bending moment is taken parallel to the applied
force, and is then multiplied by a constant, P in this case, I in .
the other. The point of contraflexure is where the polygon
meets the rib, and one point of maximum flexure is at I, the
point of application of the external force.

The insertion of pivots at three points of the rib enables one
to draw the equilibrium polygon at once for one or all of the
forces to which the roof may be at one time subjected, and we
will therefore proceed, without further delay, to consider the
case of the parabolic rib hinged at the abutments only.

118. Parabolic Rib hinged at Abutments; Formula for
@, —If Fig. 33 represents a parabolic rib hinged at A and B,
with a horizontal force H applied at I, the point of intersection
of AG and BN must be determined. Since it will lie upon
the horizontal line drawn through I, the distance of G horizon-
tally from the middle of the span will be denoted by z, positive
when measured from the middle away from I. The well-known
condition that change of span shall be zero may be put either

IH,.EF.DE (fromBtoI) - =H,. EF. DE (from A to I) = 0,

or
P.ZEK.DE=0, (1)
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in which latter expression P, being constant, may be omitted.
If &, as usual, denotes the horizontal distance of I, the point of
application of the force, from the middle of the span, and e
equals the halfspan, we can find that

T = 4%8* O —0)=1n3(5— e, (2.)
when & =nec. We shall see that 2, depending for its sign upon

that of &, will always be laid off on the opposite side of the
centre from &, since it is so first taken in the figure, and hence

that H,, the horizontal tension, is always greater than one-half -

of H. The value of 2, is independent of £.
114. Proof of Formula. — Retaining - the usual notation, we have

AL=c—b, LB=c+3; and 6Q=TL=%(—5). It + denotes
the horizontal distance, B D, to the abutment, from any ordinate, D E, on the.
right of I we have

Ly
DE=Y(@cz—+,and DF: DB=GQ: @B, or DF:E,(cz_bz)cjxu_
AsEK:EF:QB:GQ,andEF:DE—DF,wehave
EK:(DE—DF)'S_S, andEK.DE:(DE“—DE.DF)g%.

Substituting the values of these quantities, we get

EEK'DE:IL% l:(?'”-'—-'l'ﬂ?— (Qc:c—xg)xi—j Eian Ty oot

c— x| & —®

as the expression which is applicable from B to I. From A to I the abscissa
EK will be limited by the line A G, which differs in inclination from B C.
1f z, however, is now reckoned from A to the right, and A Q, denoted by
¢+ Ty, is used in place of Q B, we have an expression for the space
from A to I.  This expedient was used in previous sections. As A G isin
tension while B C is compressed, these two portions of (1.), § 113, will have
opposite signs, and, when integrated, must be equal: we may, therefore, in
equating, strike out the common constant quantities, obtaining

(c —2,) f:“ Aead—dedta)iz—@—) [ Qe — o) da

=C+a)f Pttt ad)dr— @@= 7" @er—t)ia
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Performing the indicated integration, we get

(e=20) [$ * (c+0)P—c (c+B)+1 (c+b)¥]— (") [F ¢ (o4 B)°—% (e +8)4]
= (et @) [ (=) —c (c=b)+} (c—b)s]— ('~ [ (e=b)2—% (c—b)*],

which at once reduces to
HeSay= 4§35 — 4 030,

B
zozﬁ(ﬁc‘——b).

115. Another Proof.— We may, if we please, find the desired
«distance 2, by another method. Imagine the roof of Fig. 34 to

.have two equal but opposite forces, H, applied at the two points

Cand G in the same horizontal line. These forces, if acting
alone, will tend to diminish the span of the roof; there will be
no vertical forces; and as the bending moments caused by
them, in' case the 1ib did not rest upon abutments, would be
directly proportional to E F, the change of span would be
proportional to SEF.DE from C to G. When the rib is
retained by abutments, one H will give rise to Hy at A, and H,
at B: the other H will cause H,at A, and H,at B. As H, is
always opposite in sign to H,, the resultant force at each abut-
ment will be H, — H,, and is manifestly a tension exerted by
the abutment on the rib. The change of span due to H, —H,
will be proportional to D E? from A to B (compare § 74), and
this change of span must offset the one from H.

If D is at a distance 2 from the middle of the span, and C is

distant & from the same point, we have DE — i—i (¢ — 2*), and

EF = i—i,(bz —2°). Since the rib is acted upon symmetrically,
we need only integrate from the middle to one side; and we

k
therefore have, when we drop the common factor »

(H —H,) [ (¢ — 2% da :-..Hf:(bﬁ--z"') (2 — 22 da,




(H, — Hy) 8 =H@G 0 e? — f ). (a)
From the stress diagram of Fig. 33 we see that

H:IL:H=c+tx:c—z:2¢;
whence

Hy gt At —Oohity, g &
2 1 B 2 c — ¢ b
Substituting this value in (a.) we get, as before, § 114,
- e 5¢2 b2
Ly = T (5¢2 — ).

116. Formule for H, and P.— The value of H, is seen to
be, from the above proportion,

c -+ z,

2, b
H=HSC =II(§-|—Q—?_; :H[§+8—‘:5(5c3—52)].

We also have, from Fig. 33,
P: H::GQ.:AB:C%(cz——b?) Bes

k i
g'?g(ﬂﬂ——bz):HQ—c(l—ﬂg).

P=H

The reader may now calculate, if desirable, numerical values
of z,, H;, and P, for different values of b, as was previously done
for vertical forces. The several values of =z, for four different
positions of H are plotted in Fig. 88.

117. Shear and Direct Stress.— The shear will undergo
some modification when the force applied to the arch acts
horizontally, instead of vertically. The stress diagram is, as we
have seen, a triangle, whose base is H, and whose altitude is P,
represented by 012 of Fig. 86. At A of the parabolic rib the
thrust is 1-0: if 1-4 is drawn parallel to the tangent at A, and
0-8 perpendicular to it, 1-8 will be the direct thrust, and 8-0
the negative shear, on a right section at A. This shear will
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diminish at successive sections until we reach a point where the
tangent to the rib is parallel to A G, when the shear will be
zero, and the direct thrust 1-0. Beyond this point the shear
will be positive until we pass I. At the abutment B, there is
a tenston 2-0: if 2-T is drawn parallel to the tangent at B, 2-9
will be the direct tension, and 9-0 the shear, again negative, on
a right section at B. In the same way the shear just to the left
of I will be 10-0, positive, and to the right of I, 11-0, negative.
It will be remembered that positive shear acts upward on the
left of any section. ¢

118. Shear Diagram. — A shear diagram may be drawn for
a rib under a horizontal force by a similar method to the one
previously explained, showing the wertical shear which will be
projected on each right section. Lay off at a the quantity
P = 8-0 = af, which is the vertical component of the reaction
at A, and as P is constant across the entire span, being, in fact,
the only external vertical force, complete the rectangle afd .
The vertical component which is required at A to produce 1-4
is 3-4, laid off at e e ; and at B is 3-7, laid off above the line at
b1, because 0-2 is a tension. A load of uniform intensity hori-
zontally being required to put a parabolic rib in equilibrium,
and H, being constant as far as I, draw e ¢ ¢ through ¢, the middle:
point of a b, and draw In so as to pass through ¢, if prolonged.
Then will the vertical ordinates between the inclined lines.
and fd represent the shear on a vertical section, and the projec-
tion of these ordinates on the respective normal sections will be:
the shear in the web. Thus ef is 4-0, which gives by projection
8-0, g is 0-5, and in is 0-6. As in previous diagrams, the
ordinates will be measured from the inclined lines, positive
above and negative below, as marked. The shear will change:
sign at the point of maximum bending moment, and it will
plainly be equal to P at the crown of the arch.

If it is remembered that the abutment reaction at B is of the
opposite kind to that at A, or to the usual reaction for a
weight W, the rotation of the diagram on the right of 7, from
the customary position below the line to its present place above
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ab, will be accounted for. The force H has been assumed on
the right in Fig. 36, in order that this shear diagram may be
compared with that of Fig.8. The vertical shear from a nor-
mal force may be found from an addition of these two figures.
Moment diagrams cannot be added together in the same way,
as the values of H and H, or H, will not be the same in the
two cases.

119. Circular Rib hinged at Ends.— The method of find-
ing z, introduced in § 115, is easily applied to the circular rib
hinged at the ends; while the process of § 114 is considerably
more involved. Let the angle subtended, in Fig. 35, by the
half arch of radius » be denoted by g; the angle from the crown
to the point of application of the external horizontal force, H,
be «; and the variable angle from the crown to any point be 6.
Let H be applied at two opposite points at the same level,
as shown by the arrows in the figure, and let the abutment
reactions be H, — H,. Then, by parallel reasoning to that of
§ 115, we have, if y denotes any ordinate, and a the ordinate to
the point of application of H,

(H‘—-*H,,)f‘fy"’dszﬂ.f:(y—a)yds.

y=r(cosf—cos B); a=r(cosa—cosf); .~

(H, — ) r{f'f (cos?9 — 2cosgcos 3 - cos? @) d o

:Hﬂf: (c0s® 6 — cos § ¢os 3 — €0s ¢ ¢08 a -~ cos a cos 3) d 6.

Performing the integration, we get
(H, — H,) (38— §sin 8 cos 3 + 3 cos? §)

=H(§a—:}SinaCOSa—SinaGOSB—]—dCOSaCOB,?).

H,— H, H,—
1 |
H S

2 psin f: whence

Asin § 115, 2, =

— sin ¢ cos a — 2 cos 3 (8in ¢ — a cos @) )

B — 3singcos g+ 23 cos?p

. a
I,=rsinp

L
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If the rib is a semicircle, 8 =% 7; cosg=10; sinf=1; and
(1.) becomes, :
2r :
Zy=— (¢ —sinacosa). (2.)
120. Formulze for H, and P. — The value of H, will be, as
in § 116,

_pgfta__ x
B=H==H0+t 50y

=%H(1+a—sin::cos:z—-?cosﬁ(sina—acos_a)
3—3singcos 34 23cos? g %
and
_ cosa—cos 3oy
= 2sin 3 !

or, for a complete semicircle,

HI=§”+¢*—SlnacOSQH; Pt ook o

™

121. Experimental Verification. — The values of 2, obtained
above, can be readily shown to be true by turning the model
previously referred to through an angle of ninety degrees. A
moderately stiff wire carefully bent to a curve A G B, Fig. 37,
symme.rical with regard to the point G (an arc of a circle being
probably the easiest one to fashion), is suspended from points
C and D by strings from A to C, and from B to D. If the string
B D is doubled so as to pass on both sides of the wire above G,
A G B will be prevented from swinging round. A thread from
A to B will hinder the span from enlarging, and will indicate
by its slackening when the span is narrowed. If, then, a
weight is attached at E, and, the string at C remaining station-
ary, that at D is moved until B is vertically below A, as proved
by plumbing the thread A B, C A, when prolonged, will be
found to intersect BD at I in the vertical line EF, giving the
desired value of ;. The point of intersection will be slightly
changed by the weight of the wire, as before suggested in § 81.
It is worthy of note that, H now being an external pull on the
rib, in place of the usual thrust, z, will, in Fig. 87, be found o=
the same side of the centre with H. :




L4

116 ARCHES.

122. Parabolic Rib fixed at Ends; Formulae for z, ),
and 2, — Referring to Fig. 88, we will suppose that the exter-
nal force H is applied at I, on the left of this parabolic rib with
fixed ends; that the desired equilibrium polygon is given by
the lines LG and N G C; and that the absciss®, at present
unknown, are, A L = z;, BN = 2, and O Q = %, the latter being
measured from the middle of the span, and all being considered
as positive when laid off as shown in this figure. The rest of
the notation agrees with that used before. It may be proved
that the absciss® have the following easily computed values:

452 b
n=1% (;) n=1} e+c+b : xu:?{?,

2 2 -
e

Several of these values, for different positions of H, are plotted
in Fig. 38.

If b is given successive values from 0.1¢ to 0.9.¢, these quan-
tities will-be found to be

b e Tq- s
0.1c 0.35¢ 0.002¢ 0.35¢
2 0.40 0.016 0.38
3 0.50 0.054 0.43
A 0.69 0.128 0.49
o -~ 1.00 0.250 0.56
6 1.53 0.432 - 0.63
7 2.51 0.688 0.72
8 4.60 1.024 : 0.81
9 11.17 1.442 0.90

If b exceeds 0.Te¢, the point of intersection falls without the
rib. :
123. First Equation of Condition.—If we remark that Q G, Fig. 38,

the ordinate to the line of action of H, will be equal to I8, or to:% (c2—b9%),
and that R K = D E, we may find the value of EK as follows:
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EK=RN—DN; RN:RK=QN:QG,or RN— RE- QN
QG :

therefore

DE.QN

EK =
QG

— DN.

These quantities, in the notation employed, may be written, if z is measured
from the right abutment,

k
DE=3@2ecz—aY); QN=c +5—2; DN=n-42; QG="1 (2.

ks, .
As pr will be a common factor in the equations which follow, we shall omit

it. Substituting these values, we shall get, as the expression to be summed
from B to I, for the first condition,

sEK. DE—f ["*‘”’2 T0(4 c2a2—dcadfat) — (x2+x)(2cx—xﬂ)]dx

If z is measured from the left a.butment, L Q substituted for Q N, and z,
written for x;, we get an expression which is applicable from A to I, or

SEK.DE f I:C+I’+x°(4c232—4cx3—{—$4)-—(9:,+x)(2cx—a:9):|d.z

As in § 114, these two expressions will be equated to make the change of
span zero, and upon performing the indicated integrations, and multiplying
through by ¢? — 42, we obtain

(e 2—20) [§62(c4-B)3—c (o B4 } (D)) — (2— ) [ 2 (- B)?
—§n(c+0)2+ e (c+0)° —1(c+ 0= (cF+a+ =) [$c (c—b)®
— ¢ (e —B)* 4} (e — B)F] — (&2 — b9) [om (e —b)P—} 2, (e —B)"
+ge(c—0)°*—i(c—b)]

This equation, by reduction and factoring, may be written,
865z, — (B—5c3b2 5c2b8— 1) 7, (B—B5 BB — B P b 4 B5) my
—=10¢® 3*—2cb5. (L)
124. Second and Third Equations of Condition.— The second condi-

tion, that the change of inclination at the -abutments shall equal zero, is
2 EK =0, and the portion of this expression from B to I will be,

suk=[" EEEFR o~ — @t 9)]es




