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tension of the lower rib. If the ribs are of equal stiffness, any
load may be considered as divided equally between the two
systems: if the ribs, while having the same curvature, are not
alike in cross-section, the load will probably be distributed in
the ratio of their moments of inertia. As the erect arch
always tends to move away from its equilibrium curve, and the
inverted arch to approach the equilibrium curve, the tangents
at the abutment ends will move in the same direction, and
therefore the structure should be treated as hinged at the ends,
unless each flange is firmly bolted to the skew-back. If the
structure is carried on columns or a pier, it appears to us that
the ends cannot be rigid, and we judge that the two ribs will
begin to turn about the middle of the depth without the intro-
duction of a pivot or hinge.

The effect of temperature is annulled. Also the shortening
of the erect arch under the direct compression being opposite
to the extension of the inverted arch under the direct tension,
the span will tend to remain unaltered ; but the ribs themselves
will be changed in form, one rib flattening as the other be-
comes more convex. If, in making such a design, the section
of the arch is found to differ much from the section of the in-
verted rib, it will be well to caleulate the relative deflections of
the two ribs at the middle. The amount of load each will
carry varies inversely as the deflection under equal loads, since
they must deflect equally; and hence, if the arch is first de-
signed of such shape, for the purpose of resisting compression,
that it is stiffer or has less deflection than the chain, when each
has one-half the load, the cross-section of the arch must be in-
creased, and that of the chain may be diminished. This type
of structure must not be confounded with a lenticular girder:
the absence of bracing between the ribs makes them independ-
ent.

CHAPTER XI.

BENDING MOMENTS FROM CHANGE OF FORM.!

172. Displacement from Bending Moments.— It follows,
from the fact that the arched rib moves away from the equilib-
rium polygon or curve, that the bending moments and chord
stresses will have a slight tendency to increase. When the rib
changes in shape, however, the equilibrium polygon must also
move enough to still satisfy for the new form the equations of
condition by which it was first established, and this movement
will in some measure counteract the former. Besides, the
equilibrium curve for steady load generally runs so close to the
axis of the rib, that the change of shape from bending moments
is very slight; and, even when the influence of rolling load is
added, the increments of the bending moment ordinates are too
small to be of material consequence. ;

The vertical displacement at any point E, Fig. 56, produced
by any load, will be found, for the parabolic rib, by taking area
moments, as explained in Part II., « Bridges,” Chap. VI., or for
the circular rib by summing the ordinates as usual along the
rib. As was done in the treatment of beams, it will here be
necessary to find the point D where the tangent to the rib in its
new form is horizontal, which point will not be at the crown,

! Many of the deductions in this chapter are only intended as guides in practi-
cal construction, to indicate where, and to show approximately how much, addi-
tional stress may be anticipated from change of form. Exact results are not
attempted.
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except for symmetrical loads. D is then to be assumed momen-
tarily as a fixed point, and the deflection or area moment of A
and E obtained with reference to it: the subtraction of the
latter from the former gives the displacement of E relatively
to the abutment A; that is, from the area moment between
D and A subtract the area moment between D and E; and
the remainder, when multiplied by H < B I, will be the vertical
displacement of E. As just stated, these displacements may be
neglected.

173. Displacement and Bending Moments from Com-
pression. —The thrust which exists at each section of the rib
must, by its compression of the particles, cause a shortening
of the rib, and, as the shorter rib must fit the same abutments,
it is necessarily lowered at the crown. The resulting bending
moments may be of consequence. So far as the rib retains
sensibly its old form, parabolic or the segment of a circle, the
equilibrium polygon is lowered proportionally to the sinking of
- the rib, as indicated in Fig. 57, in order to still satisfy the
equations of condition; but, as the deflection 2 at the crown
is very small compared with %, the alteration of the bending
moment ordinates is very trifling. * On the other hand, this
lowering of the apex of the equilibrium polygon at once in-
creases the value of H, offsetting the change first pointed out.
This will be seen, also, from the values of M, § 44, into
which % does not enter. The bending moments from the exter-
nal load are therefore practically unaltered by the change of
form.

To produce this change of form, however, or to bring the
arch down to its new position, requires a change of inclination,
and consequently a bending moment, at most points of the rib.
The strains thus induced should be examined. Strictly accu-
rate theoretical investigations for the different ribs cannot
easily be made; but formule may be deduced which will serve
all practical purposes.

174. Parabolic Rib hinged at Ends.— The parabolic rib
which we have treated varies in cross-section, from the crown
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to the springing, according to the secant of the inclination to
the horizon, § 87; and, as the magnitude of the direct thrust
for a complete uniform load varies in the same way, the inten-
sity of direct compression per unit of cross-section arising from
H will be constant, and every unit of length of arc will be
shortened by that thrust the same amount, so that the arch will
be altered as if exposed to a change of temperature. We will
assume that the new form of the rib is still a parabola with a
rise &' in place of %, but with the original span 2 e.

By definition, Part II., « Bridges,” § 85, the modulus of elags-
ticity B equals the intensity of stress divided by the shortening
of a unit’s length. Let the constant intensity of thrust equal
the thrust at the crown H, divided by the cross-section at the
crown A ; let the compression of a unit’s length equal the dif-
ference, s—', between the lengths of arc before and after com-
pression divided by the original length s. Then

s—s = ﬁ

An approximate formula for the length of a parabolic are is,

4 : B :
in our usual notation, s = 2¢ + 4~ The value of & will be

obtained by writing % for & ; then

B o Hs  2H 8242k
bre gl = aan e
As v, the deflection at the crown and the difference between
k and ¥, is very small, we may write, without sensible error,
k—F =w and 4+ % =2%; whence ¥* — k2 =2%v, and we
have '

8,  9H 3c24 22 _ H 3c42R

ol AAE T e ! TUSpnes Ses

It was proved, in § 36, that this rib deflected vertically like a

horizontal beam of uniform section: hence to bring the arch
down to its new position will create bending moments at all
points such as would accompany the same deflection in a
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straight beam, supported at the ends, uniformly loaded, and of
a cross-section equal to that of the rib at the crown. In
Part II., « Bridges,” § 95, we found, for a beam supported and
loaded as above with w per foot,

if M, is the bending moment at the middle. Equating these
two values of v, we obtain '

5Myc?  H  8c2+ 2k

12ETI — 4AE" k 2

SIH (321 2k2
M, = 5(Acz_it )’

the additional positive bending moment at the crown of the
arch, caused by its compression under the thrust H.

The bending moments at other points may then be taken
to compare with those of the beam, that is, as the ordinates to
the parabola, being § M, at the quarter-span.

175. Remarks; Example.— It will be noticed that B has
disappeared from the expression for M,: hence the bending
moment will be the same, whether the material be iron, steel,
or wood. As I contains A, and may be written n A 2% Part II.,
“ Bridges,” § 86, n being a numerical factor, it is seen that the
bending moment from deflection of the rib due to compression
increases with the square of the depth of the rib, and, as M = &
equals the flange stress, this stress will increase directly as the
depth. To diminish the effect of change of form alone, employ
a shallow rib.

If H=20 tons, ¢ = 100 feet or I = 200 feet, £ = 20 feet,
and b = 21 feet, for a rib with two plate flanges and thin or
open web, I =2{1 A . (3A)*}=1}A%, and

3 X 25 x 20 X 30,800

— =2
M, = 5 % 16 x 10,000 X 20 — 2.9 ft. tons at crown,

giving 1.16 tons compression on upper flange, and an equal
tension on lower flance,
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176. Displacement from Change of Temperature.— The
deflection produced by a fall of temperature in the parabolic
rib hinged at the ends will be found by taking the area moment
of the half parabolic segment, Fig. 16, from the crown to the
springing about one abutment, and multiplying by H=-ETI
Hence, as in Part II., ¢ Bridges,” § 95,

it # fer o H,
vg_ﬁ—l.gck. %c__jﬁg.n-—:[.cﬂk,

the deflection at the crown when the temperature falls, and the
rise of the crown when the temperature rises. One may prefer
to consider the rib in its new position as the proper curve from
which to obtain the area moment. If it is assumed to still be
a parabola with the rise %, we have

v:%%czk’, and ¥ =k + v.

Substitﬁte this value of #/, and v becomes

R 5HeE
'S DEIFsHE

This deflection is the result of the bending moments arising
from I, and is not to be regarded in the light of the preceding
section. The moments were computed in § 74. These moments
will be slightly altered by the movement, as it shortens or
lengthens the ordinates; but H, will be changed in the opposite
direction, reducing the actual modification of the moments.
Since

15 teBI 25 tec?
Bi=a—@ v %= oo

a quantity independent of the cross-section of the rib, and, so
far as the material is concerned, affected by the co-efficient of
expansion only. i

The bending moments due to the direct thrust, whether arising from a
load or change of temperature, have been considered, as well as the result-
ing deflection. When the temperature rises, H, is thrust, and in itself tends
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to shorten the rib, and thus reduce the above amount of rise due to expan:
sion. The ratio of the two deflections will be

P dson 5 H
mEAB b v REICETARE (kz &

In the example previously cited this ratio becomes

25
et T 400 + wooo) = A

a reduction of three-fourths of one per cent. When the temperature falls,
H; is a tension, and, in lengthening the rib, slightly reduces the deflection.

The deflection for a co-efficient of expansion of .000007 and a
range of temperature of 80° will be, in our example of § 175,

25 X 30 x .000007 x 10,000
32 x 20

vy = = .082 ft. = 1 inch.

[The expansion or contraction of a straight bar may be con-
veniently stated as } inch in one hundred feet for 30° F.] The
theoretical movement of the rib at the crown for a range of 80°
above and below the temperature at which it was constructed
will therefore be two inches. The actual movement is gener-
ally less than theory would indicate, owing to gradual transi-
tion from one extreme to another, protection of some portions
of the structure from extremes of temperature, as by shielding
from the direct rays of the sun, &c., and, finally, imperfect free-
dom of motion.

177. Initial Camber for Arch.— It may be expedient to
make the rib a little longer than the distance between the
springings to compensate for the amount of compression which
~will arise from the steady load, or else to wedge up the spring-
ing points until the crown of the rib, when not under strain,
shall be a distance v above its normal position: the rib will
then, when in place and under its steady load, come down to
the curve for which it is designed, and will be free from that
portion of initial bending moment due to change of form from
steady load. This will be true, because, in forcing the rib up,
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we have introduced bending moments of the opposite kind to
an equal amount. An additional allowance may be made for
an ordinary travelling load. If the rib is to be made longer to
offset the compression, find v, § 174, or H from steady load, and
make the parabolic rib of a span 2 ¢ 4+ « and a rise %, so that,
when sprung into place on a span 2 ¢, it would rise to a height
k 4 v, if it were not compressed at the same time.

Noticing, from § 174, that this compression acts like a fall of
temperature in shortening the rib, we have, from § 74,

10 EI 15 BI u
H;, = tec—8 B

since % must equal 2fee. But H,= 'v, by § 176, and,

c%
equating these two values, we get

15 EBEI 12:EI

6 cit" "= 5 2k’

64 r 16 H 38428
il et S - ey wa

If, in our preceding example, A is eight square inches, and B is
24,000,000, % becomes half an inch.

178. Parabolic Rib with Fixed Ends.— In this case the
deflection will naturally correspond with that of a beam of
uniform section, uniformly loaded, and fixed at the ends, as will
be seen by comparing the equilibrium curve of Fig. 17, where
H from temperature alone acts, with that of such a beam. In
Part IL., « Bridges,” § 99, and Fig. 47, we found that

w it wct M, 02
V=33{HT — %ABI — ABT

if M, is the bending moment at the middle. Equating this
value of v with the one found in § 174, we obtain

IH@c 4 28)

M, =—7%
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The bending moment at the springings will be double this
amount, and of the opposite sign.

The deflection produced by a change of temperature will be
found by taking the area moment of the semi-segment of the
parabola already obtained in § 176, and subtracting the area
moment of the rectangle whose height is £ and base e.

H ,, H
vy = ﬁ-:-;(-fégc-k—gck.%c) :f-g-E—;:csk.

Applying the data of the previous example of §175, we have

25 x 20 x 30,800

M, = 16 ¢ 10,000 X 20 — 4.8 ft. tons at crown,

giving 1.92 tons, compression on upper flange and an equal
tension on lower flange at crown, and 3.85 tons, tension on
upper flange with an equal compression on lower flange, at
either springing.

To find such additional length of span for the parabolic rib
fixed at the ends, that, when compressed under steady load,
it may have no bending moments due to change of form, we
pursue again the method of § 177. From § 76,

45 EBI 45 BI u

I B - T

As above,

therefore
_ 82 k- 8 H 8&42F
Y =15 e YT 15 AR i

a quantity five-sixths of that for the rib with hinged ends.

179. Circular Rib hinged at Ends. — It is more difficult to
obtain the amount of deflection from change of form produced
by the compression at each section of a circular rib, even
approximately. As the equilibrium polygon for steady load
will not deviate much from the axis of the rib, the thrust T
may be assumed to vary as secant 6, the inclination of the rib
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at successive points to the horizon : hence the shortening of a
small portion, d s, of arc under the thrust will be

. Tds Hds H d
d(3—8)=ﬁ= HSQC&Btﬁ:ﬁ.EOS—a-a;

as the section is constant,

Hr +B(Za_]0 14 sing Hr 1
AEJ _gcoss 1—sing " AE. )

s—38 =

(The symbol log denotes the hyperbolic logarithm; to obtain
it, multiply the common logarithm by 2.30158.)

As, with a small deflection, the rib will vary but slightly
from its original form, let it be assumed to be an arc of a circle
after compression. We have then s — ¢ =2r8— 2+ g, where
7’ is the new radius, and §’ the new angle subtended by the half-
arch. Now
c? 12 7‘,_cﬁ-’f—- k — v)2

o il
r=-—gro V= 30— ,andsm,e_r,.

By assuming a value for v, #" and g can be obtained, and the
value of 2 (rg—+'§) calculated: if it agrees with the value
s — & of equation (1.), the assumed » is sufficiently near the
truth ; if not, the process of approximation may be repeated.
We may adopt, as a value which will answer very well in many

.
=7 ‘Then

p
_ Hr 14sing
*=2m5 51 —sig

8
cases, v =

This logarithmic expression may be written as a series,

= AH_I;Q (sin 8 + 1 sin® 8 1 }sins 8, &e.),

It was shown in § 86 that the vertical deflections of two
beams of the same cross-section, and carrying the same gross
load uniformly distributed, —one inclined at an angle ¢, and the
other the horizontal projection of the former, — were in the pro-
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portion of 1 : cos <. If, then, the load on the horizontal beam is
increased in intensity in the ratio sec ¢ : 1, the vertical deflec-
tions of the two beams will be the same. We desire to find the
amount and distribution of load on a straight beam of the same
span as the circular arch, Fig. 58, and the same cross-section,
which shall produce the same deflection at the middle. By
what has just been stated, the load on any horizontal foot of a
straight beam must be to the intensity on an inclined beam as
wsec # to w. A small portion of the arch d s =secfd z; hence
it follows, that, if the arch is carrying w per horizontal foot over
the whole span, a horizontal beam, as above, loaded with the
varying intensity w sec @ :wg—i per foot, will have the same
deflection. This load will be the projection of a load of uniform
intensity measured along the rib, or the load on the beam is
w 8, or 2w r B, In our usual notation.

In any particular case we may easily solve the problem
graphically. Lay off 1-2, Fig. 58, equal w . A B; divide A B
into a number of equal parts, and 1-2 into the same number,
with half-loads at 1 and 2 as usual. Make 2-0 equal to H for
this load, and, with 0 as a pole, draw the equilibrium polygon
A’ B/, which, for an arch of moderate rise, will be a close
approximation to a catenary. C'B’. (0-2) will be the desired
bending moment M, for a deflection found by taking the area
moment of A’ B’ C’ about A’, multiplying by 0-2, and dividing
by BI. Use these values as we did those of § 174. In con-
structing, increase the length of the rib by (1.) if thought
desirable. The values of the following section may be taken
if preferred.

180. Analytical Discussion. — The exact values may be deduced by
the usual process for finding the deflection of a beam. If z is the dis-
tance of any point of the beam from one abutment (Fig. 59), 3, the angle
subtended at the centre by the half-arch, ¢, the angle from the crown to
any point whose projection is z, and w, the load per foot on the arch, and
also at the middle of the beam, then z —7 (sin 3 — sing), d 2 = —rcos ¢ d 6,
the load at any point = w sec ¢ per foot, and load on d v = wsec v dx
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= —wrsecdcosddf = —wrdg. The load on one-half of the span is
shown in the figure.

Load on half-span =f: wsecb‘dm:wrffdﬁ:wrﬁ.

This expression is the reaction P, at the abutment. If ' is the distance
from the abutment to any section at which we desire the bending moment,
and the corresponding angle is ¢', we have the bending moment

M=Pu —f:’(x‘ —x)wsecddx
= wr? 3 (sin 3 — sin ¢') —wr"fj,(sin o —sing) do
=wr?(3sin B 4 cos 3 — ¢ sin &' — cos ¢'),
which becomes at the middle
M (max) = w2 (3sin 3+ eos 3 — 1) = wr (¢ 3 — k).

Writing the usual expressions for inclination and deflection, and dropping
the accents, we have

M wrd U ; ;
= :,,I!"Idx=_'1ﬁ ’ (3sin 3 4 cos 3 — ¢ sing — cos #) cos 0 d g

wid = . : ;
=—&7 (3sin3sin g | cos 3sing — Fsingcosd — 29 - } 6 cos?g).*

The slope at the abutment, when ¢ =3, is — %?I (Bsin?3—pBcos? 3+ sin B cosp),

which, if we remove o the area of the half equilibrium polygon A’ B’ ¢

of Fig.58. The deflection of the centre is

c, wrt 3 2 . 2 3
v=f0'*dz'=;g—rf0 (i2sin @sin g+ cos 3sing—Fsin 0 cos 0—3 6+ 4 6.cos26) cosgd §

=%¥ (4 3sin® f+ 5 sin® B cos 3—} Bsin 3—} cos B+ 1).#

* These expressions are reduced. To aid any who desire to prove them,
we give the following integrals: J6 cos 6 d6—=0sin6 4 cos8; fOsin 0 cosddo

= —¢ 0 cos?f 4 FeosOsind 4 16; Sceosddd=4sindcosd + 40;
Socos? 8 d0==0cos?dsint + §cos®d -+ %0 sin? ¢ + % sin? ¢ cos 6.
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From this expression, by removing ZEEi!i’ we obtain the area moment of
A'B' C.

The quantities representing » and M will now be introduced in the
equation of §179: hence we get

1 8
Elo 14sing _ wr?

Ap = 181(12,3sin36—|-7sinﬂﬁcosB-—-QﬁsinB—-icosﬁ-{-eL).

Find the value of M for the special arch, and value of 3, and also the
value of v. Let v — M = B r2; then

ol Hr 1-4sin3
M"QBrﬂAﬂalogl—sinﬁ'

If the arch is a semicircle,

M (max) = $w0r (r — 2); i = — g 35 v = o (fr 4 9).

181. Circular Rib Fixed at Ends.— From the method of
treating the parabolic rib with fixed ends, as compared with
the parabolic rib with hinged ends, we would suggest that the
deflection and the bending moments at crown and springing
of the circular arch with fixed ends, due to the compression of
the rib from H, may be obtained from a drawing like Fig. 58,
when 2-0 is made equal to the H of this case, by plotting the
closing line of Fig. 27 on the arch of Fig. 568, at the height

above A of r (Sl{iiﬁ — cos ﬁ) (see § 105), projecting the points

of contraflexure vertically on A’ B’, drawing the horizontal
closing line of this equilibrium polygon, and then finding M
and » for the beam fixed at the ends.

For circular arches of moderate rise, the treatment for para-
bolic arches will probably suffice.

CHAPTER XIIL

BRACED ARCH WITH HORIZONTAL MEMBER; OTHER SPECIAL
FORMS ; CONCLUSION.

182. The Usnal Analysis not Applicable.— The difficulty
in the way of a successful application of the usual formula
2 EF.DE =0 for the change of span of the braced arch with
horizontal member, of Fig. 60, or, as it is sometimes called, the
rib with spandrel bracing, arises from the fact that the moment
of inertia of successive cross-sections cannot be left out of the
equation as a constant. In fact,it varies rapidly; and its amount
at any section is unknown until the sizes of the respective
pieces are determined. It was shown, in § 72, that I must be
placed in the denominator of the above formula: and, if not
constant, it must come within the sign of summation.

This arch is pivoted at the springings, but continuous at the
crown. If it were hinged at the crown by the omission of a
piece in either the lower or the upper chord, the thrusts at the
abutments could at once be determined by the principles of
Chap. II.; and a diagram by the method of Part I., «“ Roofs,”
would at once give the stresses in all the pieces for any given
load. For the treatment of the case represented in Fig. 60, the
following practicable method is offered. It was published in
“ The-Engineer,” Feb. 10, 1878, and will also be found in the
ninth edition of «The Cyclopadia Britannica,” art. ¢ Bridges,”
where it is attributed to Professor Clerk-Maxwell.
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