Facultad de Ingeniería Mecánica y Eléctrica de la U. N. L.

ASOCIACION MEXICANA DE INGENIEROS MECANIICOS Y EIETTRCCSTAS, A. C.

SEMINARIO DE ING. MECANICA

MODIFICACION DEL DIAMETRO DE LOS

IMPULSORES EN BOMBAS CENTRIFUGAS
\square
\square

Montefrey, N. L.
Agosto de 1967 .

Presentada par:
ING. HUMBERTO CANTU

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN
DIRECCION GENER A DE BIBLIOTECAS
Precio
\qquad

ASOCIACION MEXICANA DE INGENIEROS MECANICOS Y EIECTRICSTAS, A. C.

HM

Clasificó oes

Oourre con freguencia en la práctiga que las condiciones DE BOMBEO, PRESIÓN Y CAPACIDAD NO SE AJUSTAN A UNA LINEA DE BOMBAS OENTRIFUGAS DISPONIBLE. POR EJEMPLO, LA NEOESIDAD DE PRESIÓN Y QAUDAL SON MÁS GRANDES QUE LAS QUE PUEDEN SURTIR UNA BOMBA Y LA SIGUIENTE EN LA LINEA ES DEMASIADO GRANDE PARA ESTAS OONDICIONES. ENTONGES HAY VARIAS ALTERNATIVAS A SEGUIRE

Primera, - Se puede aumentar la velooiaad de la bomba de MENOR TAMAÑ PARA AUMENTAR EL GAUDAL Y LA PRESIÓN. ESTE PROGEDIMIENTO GENERALMENTE NO ES PRÁOTIGO PORQUE GASI TODAS LAS BOMBAS EN LA INDUSTRIA ESTAN MOVIDAS POR MOTORES DE JAULA DE ARDILLA, LOS CUŔLES TIENEN VELOOIDADES CONSTANTES DEPENDIENDO DEL NÚMERO DE POLOS Y EN LA FREQUENGIA DE LA CORRIENTE ALTERNA DE OPERAOIÓN Y OAMBIANDO A OTRO MOTOR OON UN NÚMERO DIFERENTE DE POLOS LA DIFERENOIA DE LA VELOCIDAD ES MUY GRANDE, LO CUÁL OAMBIARIA GRANDEMENTE EL GAUDAL Y LA PRESIÓN. EL CAMBIO DE VELOCIDAD SE PUEDE EFEGTUAR TAMBIEN USANDO POLEAS Y BANDAS V OON LAS CUÁLES SE PUEDE LOGRAR LA VELOCIDAD DESEADA, PERO ÉSTO IMPLICA HAOER UNA BASE ESPEGIAL PARA EL MOTOR Y LA. BOMBA Y UNA
OUBIERTA PROTECTORA. EL USO DE LAS POLEAS DE TRASMISIÓN TIENE OUBIEATA pROTEOTORA. EL USO DE LAG POLEAS LA GRAN DEBVENTAUA QUE INDUGEN GARGAS LATERALES EN LA FLEGHA DE LA BOMBA, LO QUE AUNADO A LA GARGA AXIAL INDUGIDA POR LA PRESION EN LA CARA: TRASERA DEL IMPULSOR IMPLIGA EL USO DE RODAMIENTOS DE MAYOR OAPAOIDAD, ETG.

El USO DE TRANSMISIONES POR MEDIO DE ENGRANES ESTÁ GENERALMENTE FUERA DE CONSIDERACION DEBIDO AL COSTO.

Guando el aumento de velogibad es gonbiderable existe el PELIGRO DE EXITAR VIBRAGIONES DAÑINAS EN LAS TUBERÍAS DE LA INSTALACIÓN Y EN LA BOMBA MISMA; LO ANTERIOR ES DEBIDO A QUE LA MAYORfA DE LOS FABRIGANTES, A MENOS QUE SE TRATE DE GASOS ESPEGIALES, BALANOEAN LOS IMPULSORES ESTATIGAMENTE Y NO DINAMIGAMENTE.

Otro peligro existente es el de la oavitagión en la enTRADA DEL IMPULSOR DEBIDA AL AUMENTO CONSIDERABLE DE VELOGIDAD DEL FLUIDO Y A GAMBIOS ERUSGOS DE DIRECGIÓN.

Por las razones anteriormente mengionadas, es practica POCO COMÚN AUMENTAR LA VELOGIDAD DE LAS BOMBAS PEQUEÑAS PARA CUMPLIR CONDIGIONES DE BOMBEO MAYORES QUE SU GAPACIDAD NORMAL.

SEGUNDA.- AUMENTAR EL DIÁMETRO DEL IMPULSOR, LO OUÁL IMPLIOARÍA MODIFIGAR LOS MODELOS DE FUNDIGIÓN, LO GUAL ADEMÁS DE COSTOSO TIENE POCAS PROBABILIDADES DE'EXITO POR SER DIFICIL CONSERVAR LAS MEDIDAS OŔITIGAS DEL IMPULSOR. ADEMÁS DE NO PODEREE ACOMODAR EN EL DIFUSOR.

Tergera, - Disminuir la velogidad de la bomba mayor, lo QUÁL ACARREA PROBLEMAS DE LA MISMA ÍNDOLE QUE LA PRIMERA ALTERNATIVA. 'SISTEMAS DE TRANSMISIGN COSTOSOS Y POCO PRÁTICOS, ETO.

Guarta y última alternativa.- Reducir el diámetro del imPULBOR DE LA BOMBA MAYOR, LO GUÁL SI LA REDUGGIGN NO PASA DE

UN VEINTE POR GIENTO ES LA MEJOR SOLUCIÓN AL PROBLEMA, PUESTO QUE SOLO IMPLICA UNA OPERAGION SIMPLE DE MAQUINADO QUE PUEDE SER EFEOTUADA EN UN TORNO CORTANDO EL DIÁMETRO EXTERIOR HASTA La medida deseada.

Esta reducgión en dí́metro puede costar algunos puntos en EFIGIENGIA (MENOS DE 5 GENERALMENTE) EN ALGUNOS GASOS Y EN OTROS NO, DEPENDIENDO DE MUCHOS FACTORES GOMO VELOGIDAD ESPEOffica del rodete, geometría de la bomba, el limado de la cara frontal del alabe y otros mas.

Hasta ahora se ha hablado de cortar y aumentar el díametro del impulsor y aumentar o disminuir la velogidad de la BOMBA, PERO NO SE HA NENGIONADO EN QUÉ MODO ÉSTO AFECTA EL RE dimiento, la garga manométriga y la potengia consumida. DIMIENTO

LO ANTERIOR ES EXPRESADO POR MEDIO DE LAS RELAGIONES LLAMADAS DE AFINIDAD QUE DICEN:
1.- Cuando el dí́metro del impulsor o la velogidad de la bomba varían, el caudal varía directamente a la veloGIDAD O EL DIÁMETRO, LA GARGA MANOMÉTRIGA VARÍA DIREOTAMENTE AL CuADRADO dE LA VELOGIDAD O DEL DÍ́METRO Y la potencia requerida varía directamente al gubo de la velocidad o al diámetro.
MATEMATIGAMENTE ESTAS TRES LEYES SE EXPRESAN DEL SIGUIENTE
Matematicamente estas tres leyes
MODO:

$$
\text { 1). }-\frac{Q 1}{Q_{2}}=\frac{N_{1}}{N_{2}}=\frac{D 1}{D_{2}}
$$

ntidillua cmiaidfagis
"Mrepuse rexis"

DIRECCIÓN GENERA

Ejemplo.-
SE TIENE UNA BOMBA CENTRIFUGA CON UN IMPULSOR DE UN DIAMETRO D, GPU. V QUE AL PUNTO DE MAJOR EFICIENIA ENTREGA UN CAUDAL Q1 = ISO GPM. CON UNA CARGA MANOMETRICA HRIEA QUE
 OBTENIDO Y LA POTENCIA F_{2} REQUERIDA

RELACIONES DE SIMILITUD: $\frac{Q_{2}}{Q_{1}}=\frac{D_{2}}{D_{1}} \quad \frac{H_{2}}{H_{1}} *\left(\frac{D_{2}}{Q}\right)^{2} \quad \frac{P_{1}}{P_{1}}=\left(\frac{D_{2}}{D_{1}}\right)^{3}$ DE BIB binarama mol AS

UNIVERSIDAD AUTÓN DIRECCIÓN GENERA

BOMBEO DE LIQUIDOS VISCOSOS CON BOMBAS CENTRIFUGAS

EL BOMBEO DE LIQUIDOS VISCOSOS POR BOMBAS CENTRÍFUGAS ADQUIERE GADA DÍA MAYOR IMPORTANGIA EN LA INDUSTRIA EN GENERAL, ESPECIALMENTE EN LA INDESTRIA QUYMIGA Y EN LA INDUSTRIA PETROLERA. EL PROPOSITO DE ESTA DISGUSIÓN ES AGLARAR ALGUNOS CONGEPTOS E ILUSTRAR EL USO DE DIAGRAMAS PARA OBTENER LOS FACTORES DE CORREGCION RELACIONADOS CON EL BOMBEO DE LIQUIDOS VISCOSOS.

Las ourvas de operación publicadas por los fabricantes de BOMBAS INVARIABLEMENTE ESTAN BASADAS EN AGUA A TEMPERATURA DE $70^{\circ} \mathrm{F}$ DESCRIBIENDO EN FORMA DE GRÁFIGA DE GAUDAL CONTRA PRESIÓN, EFIOIENOIA CONTRA GAUDAL Y POTENGIA CONTRA CAUDAL.

El FUNGIONAMIENTO DE LA BOMBA.
LA RAZÓN DE LO ANT NIOR ES QUE EL ACUA ES EL LYQUIDO MA: bOMBEADO Y MÁS FÁCIL DE MANEJAR EN EL LABORATORIO DE PRUEBAS - SOBRE EL CUÁL SE TIENE MÁS EXPERIENGIA E INFORMACIÓN ACUMU-

LADA.
La relación que existe entre el funcionamiento de una OMMBA DON AGUA Y CON UN LYQUIDO DE DIFERENTE VISCOOIDAD ES PURAMENTE EXPERIMENTAL Y NO SE PUEDE DEDOCIR TEORIGAMENTE, DE ALLI QUE SE USEN FACTORES DE CORRECCIÓN PARA CADA CONDIGIÓN DE BOMBEO Y VISCOSIDAD。
(8 EN GENERAL CUANDO UNA BOMBA TRABAJA CON UN LYQUIDO MÁS VISCOSO QUE EL AGUA SE OBSERVA QUE EL PUNTO DE MAYOR EFICIENCIA SE MUEVE HACIA UN GASTO Y PRESIÓN MÁS REDUCIDOS Y ÉSTE TIENE

UN VALOR MÁS BAJO.
La RAZÓN PORQUE SE OBSERVA UN DEGREGIMIENTO EN PRESIÓN Y GAPACIDAD SE DEBE A PÉRDIDAS POR FRICCIÓN ADICIONALES DENTRO DE LOS OANALES DEL UMPULSOR Y DIFUSOR Y LA PÉRDIDA DE EFI-

OIENGIA QUE SE TRADUCE EN UNA MAYOR pOTENGIA NECESARIA PARA OPERAR LA BOMBA SE DEBE A QUE LAS PÉRDIDAS POR "fRIGGÍ́N DE dISGO" INGREMENTAN GON LA VISGOSIDAD. "FRIGCIÓN dE DISCO" ES UN TÉRMINO EMPLEADO PARA DESIGNAR LA POTENCIA NECESARIA PARA GIRAR UN DISCO SUMERGIDO EN UN LIQUIDO, EN ESTE GASO EL IMPULSOR. SIN EMBARGO, SE PUEDE DEGIR QUE LAS LEYES dE AFINIDAD SE QUMPLEN PARA BOMBAS MANEJANDO LIQUIDOS VISCOSOS CON menos exactitud que cuando se maneva agua.

Las leyes de afinidad de las bombas centrifugas son: 1.- La capacidad Varía proporgionalmente a la velocidad.

De lo anterior se puede ver que teniendo la curva de operagión DE UNA BOMBA TRABAJANDO CON UN LIQUIDO VISGOSO A GIERTA VELOCIDAD, LA GURVA DE OPERACIÓN DE ESA MISMA BOMBA CON EL MISMO

LIQUido a diferente velocidad se puede obtener usando las leyes DE AFINIDAD.

ANTERIORMENTE SE DIJO QUE LA PÉRDIDA DE GARGA MANOMÉTRIGA Y de gapacidad se debfa a las pérdidas por fricoión dentro de

IMPULSOR Y DEL DIFUSOR. LA PREGUNTA QUE CABE FORMULAR AHORA ES, ¿ QUÉ PASARÁ CUANDO LA BOMBA ESTÉ OPERANDO A CERO HLUJO? APLIOANDO LAS CONGLUSIONES ANTERIORES SE REDUGIRÁ QUE COMO NO hay flujo dentro de los canales, la pérdida por fricoión dentro de ELLOS SERÁ NULA; ENTONGES LA PRESIÓN DESARROLLADA POR LA bomba a cero fluvo será la misma para agua que para un líuiro VISOOSO. AHORA LA POTENCIA USADA POR LA BOMBA A GERO FLUJO SERÁ MAYOR PARA UN LÍQUIDO VISCOSO QUE PARA AGUA PUESTO QUE LA PERDIDA DE POTENCIA DEBIDA A LA FRICOIÓN DE DISCO ES FUNCIÓN de La VELOGIdad Y VISCOSIDAD; SOLAMENTE ESTAS dOS PERMANEGIENDO PERMANEOIENDO CONSTANTES PARA TODO EL RANGO DE OPERAGION DE LA BOMBA.

Cuando una bomba está trabajando a velocidad gonstante, la PRESIÓN Y LA GAPACIDAD DEGREGEN AL AUMENTAR LA VISCOSIDAD DE TAL MANERA QUE LA VELOGIDAD ESPECfFIGA EN EL PUNTO DE MEJOR EFIOIENCIA PERMANECE CONSTANTE. LA VELOCIDAD ESPECffica ES UN PARÁMETRO ADIMENSIONAL QUE DA UNA INDICAGIÓN DEL TIPO DE BOMBA. DOS BOMBAS DE LA MISMA VELOGIAAD ESPEC ${ }^{\prime} F I G A$ SON SIMILares. La velocidad espeoffica se define como sigue:

$$
N_{s}=\frac{N \sqrt{Q}}{H 3 / 4}
$$

DEL HEOHO DE QUE LA VELOCIDAD ESPEGffica NO VARÍE CON LA VISCOSIDAD EN EL PUNTO DE MEJOR EFIGIENCIA SE OBTIENE EL DIAgrama No. 3. ${ }^{\text {K }}$

* Adaptado del gatálogo de Goulds Pump Co. Inc., Senega falls N. Yo

$1+1$
(1)

$$
\begin{aligned}
& \text { Whombis de mexvo } 10
\end{aligned}
$$

$$
\begin{aligned}
& \text { "MPVHOSO Henspor }
\end{aligned}
$$

REFERENC|AS

Centbleugal and Axlal Flow Pumps Theory, Desian AND APPLLGATION, A. J. STEPPANOFF, JOHN WILEY and Sons, Inc., New York, 1948.

DESLGN AND PEREORMANGE OE CENTBLFUGAL AND AXIAL Elov Pumps and Compressors, A. Kovats, Pergamon press, The MagMillan Co., New York, 1964

- Diagramas 1 Y 2 REFERENCIA dESGONOCIDA.

DE BIBLIOTECAS

