
- 3. Escribe el nombre de cinco elementos que son muy activos, es decir, que reaccionan con facilidad.
- 4. ¿Qué tienen en común las estructuras electrónicas de los metales alcalinotérreos?
- 5. El cloro ocupa el lugar 17 de la Tabla Periódica y esta rodeado por los elementos 9, 35, 16 y 18. ¿Cuáles de éstos tienen propiedades físicas y químicas semejantes al cloro?
- 6. Localiza las estructuras electrónicas que representan a los elementos de una misma familia.
 - a) [He] 2s¹ b) [He] 2s² 2p⁵ c) [He] 2s² 2p² d) [He] 3s² 3p⁵
 - e) [Ne] 3s² 3p⁶
 - f) [Ar] 4s² g) [Ar] 4s² 3d¹⁰ 4p⁵
- II. Contesta lo siguiente:
- 1. Escribe el significado de las siguientes expresiones:
- a) Halógeno
- b) Calcógeno
- c) Metal alcalino
- 2. Sea E cualquier elemento representativo. Elabora en tu cuaderno una tabla como mostrada a continuación y escribe las fórmulas de los compuestos que se obtienen con le elementos siguientes al combina los con el oxígeno:

Grupo	IA	IIA	IIIA	IVA	VA	VIA	VIIA
	E ₂ O	EO ;	E ₂ O ₃	EO ₂	E ₂ O ₅	EO ₃	E ₂ O ₇
a) K	c)	Al	e) Sh		g) Cl		

a) K	c) Al	e) Sb	g) Cl	
b) Mg	d) Pb	f) S		

Actividad 3.7 Metales y No - Metales

I. Al concluir el análisis del tema "Los metales y No Metales" intégrate a un equipo de trabajo y en la tabla periódica en blanco resuelve el siguiente ejercicio:

- 1. Traza en la tabla, la división entre los elementos metálicos y los no metálicos.
- 2. Coloca, en el lugar adecuado de la tabla, los símbolos de los elementos metaloides y coloréalos.
- 3. Señala en la tabla la posición de los metales y no metales y colorea las zonas ocupadas por los mismos.
- 4. Considerando su estructura atomica, ¿Cuál es la diferencia entre metales y no metales?

5. Anota cuatro propiedades físicas de los metales.

6. Contesta las preguntas 2, 3, 4, 5, 7, 8, 9, y 10 de la pág. 177 del libro de texto.

7. Resuelve los problemas 1 y 2 de la pág. 174 del libro de texto.

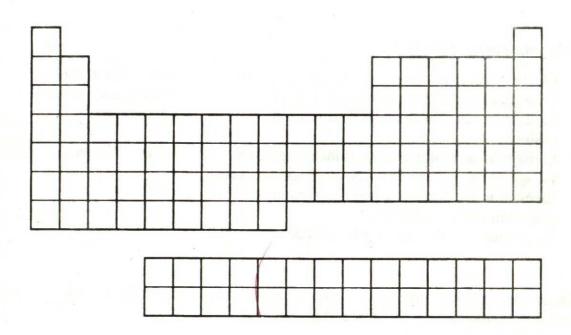
III. Contesta lo siguiente:

1. Investiga cuál es la diferencia entre metales y no metales de acuerdo a sus propiedades químicas.

2. Indica cuáles de los siguientes óxidos son básicos y cuáles son ácidos.

a) Na₂O

do CaO


b) SO₃

e) Br2O

c) Cl₂O₃

Actividad 3.8 Número de Oxidación

Al terminar de estudiar el tema "La Predicción de los Números De Oxidación", utiliza la tabla periódica para resolver el ejercicio siguiente:

1. Señala en la tabla los números de oxidación más probables de cada uno de los grupos A y B.

2. Indica los números de oxidación de los siguientes elementos después de localizarlos en la tabla periódica.

a) Rb _____ e) Cl ____

b) Ca ____ d) N ____

3. Resuelve los problemas 3 y 4 de la pág. 187 del libro de texto.

4. Define el concepto de número de oxidación.

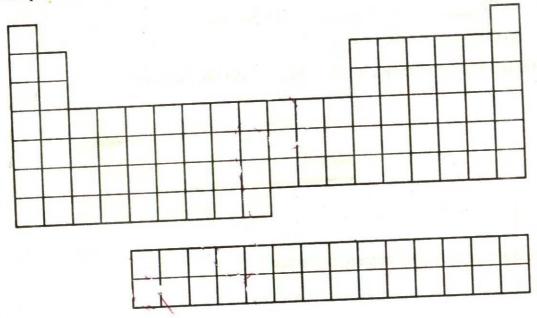
5. Relaciona ambas columnas:

 a) Elementos con números de oxidación negativos. b) Elementos con número de oxidación de cero. c) Elementos con sólo números de oxidación 	() Representativos) Metales Alcalino) Transición
---	---	---

) Gases Nobles positivos. Elementos cuyos números de oxidación positivos () Metales

son iguales al número de grupo al que pertenecen.

Elementos que presentan más de un número de (oxidación siempre positivo.


Elementos con número de oxidación de (1+)

) No-Metales

II. Determina el número de oxidación de los siguientes elementos de acuerdo a su posición en la Tabla Periódica K, S, Sr, Mg, Sc, Ag, Cu, Co, Zn.

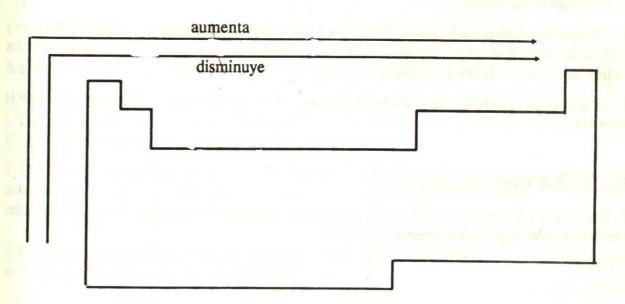
III. Ejercicio Final o Evaluación.

1.- En la tabla periódica siguiente contesta lo que se te pide:

- 2. Señala los grupos y períodos.
- 3. Señala los tipos de elementos.
- 4. Identifica a las familias típicas por sus nombres.

- 4. Escribe los números de oxidación más probables para los grupos o tipos de elementos.
- 5. Ubica a los siguientes elementos en la tabla partiendo de su configuración electrónica.

64Gd 32As 86Rn


6. Completa la siguiente tabla:

Elemento	Config. Electrónica	Grupo	Período	Tipo de Elemento	Clase	Familia	Núm. de Oxidación
32As							
37Rb				1			
79Au				/		~ ~	
64Gd							
86Rn							

Clase: Metal, No metal, metaloide

Actividad 3.9 Propiedades Periódicas

I. Al terminar el estudio del tema "Propiedades Periódicas", utiliza el esquema de la tabla periódica mostrado y resuelve el siguiente ejercicio:

1. Dibuja en la tabla las flechas que muestren el sentido del aumento o disminución de cada una de las propiedades periódicas siguientes:

- a) Radio Atómico
- b) Afinidad Electrónica
- c) Potencial de Ionización
- d) Electronegatividad

2. Escribe los conceptos de cada una de las propiedades periódicas.

3. ¿Cuáles son los elementos más electronegativos?

4. Menciona los factores que afectan a cada una de las propiedades periódicas estudiadas.

5. Resuelve los problemas 4, 8, 9 y 11 de la pág. 194 del libro de texto.

II. Investiga lo siguiente:

1. ¿Porqué los radios iónicos son diferentes a los radios atómicos de los cuales se forman y cuál es la tendencia en el tamaño de los iones metálicos y no metálicos en relación a los radios atómicos de donde provienen?

2. ¿Porqué las Energías de Ionización subsiguientes de un átomo son mayores que la primera?

III.- Ejercicio Final o Evaluación

1. Construye un esquema de la tabla periódica y muestra la variación de las propiedades periódicas a lo largo de los grupos y períodos.

2. ¿Cómo es, en general, la electronegatividad de los metales comparada con la de los no-metales?

3. Subraya el par de elementos que presenta mayor tamaño.

- a) K-Rb
- c) O F
- f) V Nb

- b) K Ca
- d) S Se

4. ¿Qué entiendes por Afinidad Electrónica?

5. ¿Cuáles son los elementos de mayor y menor electronegatividad? Especifica donde se localizan en la Tabla Periódica.

6. ¿Qué factores afectan a las propiedades periódicas de los átomos?

7. Explica en que consiste el efecto pantalla.

Actividad 3.10 Distribución y Estado Natural de los Elementos

I. Después de revisar los temas "Distribución de los Elementos" y "Estado Natural de los Elementos", resuelve el siguiente ejercicio:

1. Construye un esquema de la tabla periódica sin símbolos y ubica en ésta los elementos más abundantes de la corteza terrestre anotando sus porcentajes. (Coloréalos).

2. En ese mismo esquema, ubica los elementos esenciales para el organismo y los necesarios en la dieta. (Coloréalos de forma diferente).

Actividad 3.11 "Distribución de los Elementos en el País".

- I. Intégrate a un equipo de trabajo y después de analizar el tema "Elementos importantes para México", desarrolla el siguiente ejercicio.
- 1. Elabora una tabla que incluya la siguiente información:
 - *Los Estados del país con yacimientos de minerales.
 - *Los minerales que son extraídos en cada Estado.
 - *Los elementos que contienen estos minerales.
- 2. En un mapa de la República Mexicana, localiza los estados con yacimientos minerales y anota el nombre de los elementos extraídos en los mismos.
- II. Utilizando la lectura LE 3.6 "Elementos Contaminantes", construye una tabla y anota cinco ejemplos de elementos que presenten alto riesgo de contaminación ambiental, la fuente de contaminación, el medio que contaminan y la vía de incorporación al organismo.

Actividad 3.12 Principales Minerales en la Región

- I. Efectúa una investigación documental para identificar los principales yacimientos de minerales en Nuevo León y la región del Estado donde se localizan.
- II. Coordinados por el Maestro de la clase, efectúen visitas a industrias de la región relacionadas con el aprovechamiento de los recursos naturales del país.

IV GUIA DE	GUIA DE UNIDAD		
Dosificación de Temas	Temas y Subtemas	Experimentos y Actividades	Recursos Didácticos
1Día - 2 Hrs.	 FORMACION DE ENLACES Configuración electrónica estable de los átomos. Regla del Octeto. Representación de Lewis para átomos e iones. Relación entre propiedades periódicas y la formación de iones. 	Pretest Act 4.1: LE 4.1: Los Boranos Act 4.2: Act 4.3:	9.7,9.8; Pag. 171-173 13.13; Pag.256-257 8.13; Pag. 154-155 12.1; Pag. 219-220
3 Días - 6 Hrs.	2. TIPOS DE ENLACES Iónico Covalente Covalente Multiplicidad de Enlaces Enlace Metálico Representación de Lewis de compuestos tos Estructura Molecular Repulsión de Pares Repulsión en los Enlaces Múltiples Moléculas Polares y No Polares	Dem 4.1: Cristales LE 4.2: La Sal LE 4.2: Un compuesto iónico Act 4.4: LE 4.3: La Cerámica Act 4.6: Act 4.7: Dem 4.2: Enlace Metálico LC 4.1: Reglas sobre estructuras de Lewis Act 4.8: LC 4.2: Reglas sobre RPEV Act 4.9:	12.3, 12.4; Pag. 222-223 14.12; Pag. 280-281 Guía: Pag. 133 12.5,12.6,12.7; Pag. 223-227 12.11; Pag. 232 12.1, 12.2; Pag. 219-222 13.2; Pag. 240-241 13.2; Pag. 229 Guía: Pag. 107 Guía: Pag. 107 13.1,13.2; Pag. 240-242 13.1,13.2; Pag. 240-242 14.1; Pag. 263-265

ENLAC	ENLACES QUIMICOS. UNIONES QUE CONSTRUYEN	TRUYEN	
UIA D	GUIA DE UNIDAD		
Dosificación de Temas	Temas y Subtemas	Experimentos y Actividades	Recursos Didácticos
	3. ENLACE Y PROPIEDADES	Dem 4.3: Conductividad Eléctrica	
	Propiedades y Tipo de Enlace Atracciones Intermoleculares	Act 4.10:	Tabla 12.7; Pag.231
	Van der Waals Dinolo-Dinolo		14.2; Pag. 265-267
1Día - 2 Hrs.	Dispersion de London		
	Puente de Hidrógeno	Dem 4.8: Puente de Hidró- geno Act 4.11	17.10, 17.11; Pag. 335-337
	4. PRACTICAS DE LABORATORIO	Lab 4.1: Predicción de en- lace mediante conducti- vidad	Guía: Pag.

METAS DE UNIDAD

Al terminar las actividades de la unidad, el estudiante:

- 1.- Señalará la importancia de la configuración electrónica estable de gas noble en la formación de iones. (T 4.1)
- 2.- Explicará la formación de aniones y cationes considerando la ubicación de los elementos en la tabla periódica y en sus propiedades. (T 4.1)
- 3.- Dibujará fórmulas electrónicas de Lewis para elementos, iones y moléculas. (T 4.1) (T 4.2)
- 4.- Diferenciará entre enlaces iónicos y covalentes de acuerdo a sus características. (T 4.2)(T 4.3)
- 5.- Predecirá el tipo de enlace entre 2 átomos utilizando sus valores de electronegatividad. (T 4.2)
- 6.- Diferenciará entre enlaces covalentes sencillos, múltiples y coordinados mediante las estructuras de Lewis. (T 4.2)
- 7.- Explicará las propiedades físicas de los metales utilizando la teoría del enlace metálico.
 (T 4.2)
- 8.- Utilizará la Teoría de Repulsión de Pares de Electrones de Valencia para explicar la estructura de moléculas.
- 9.- Describirá la polaridad de una molécula con base a su estructura molecular.
- 10.- Comparará en un esquema las características de los diferentes tipos de enlace. (T 4.2) (T 4.3)
- 11.- Explicará las propiedades de las sustancias de acuerdo a su tipo de enlace. (T 4.3)
- 12.- Elaborará un cuadro sinóptico mostrando las diferentes fuerzas de atracción intermolecular. (T 4.2)
- 13.- Construirá modelos que representen las estructuras cristalinas de los compuestos iónicos. (T 4.2)
- 14.- Identificará experimentalmente el tipo de enlace en sustancia mediante la conductividad eléctrica. (T 4.3)