an extreme condition and was performed to better discriminate the expected relative performance of the different mixtures under very severe exposure conditions.

Figures 4 and 5 show the results obtained for concrete mixtures made with Type land Type III Portland cement respectively. As discussed in a previous section, the lower chloride ion permeabilities associated to the lower W/B ratios and the presence of silica fume are due to the refinement of the capillary pore network as well as the reduction of the total pore volume. The results reported in Figures 4 and 5 reveal that drying can increase significantly the chloride ion permeability. This behavior can be partially explained by the internal microcracking resulting from thermal and moisture gradients. But a good part of the difference is most probably due to an important modification of the capillary pore structure. The removal of water from capillary pores is believed to open the thin water-filled spaces which connect the larger capillary pores to one another (this is known as the "ink bottle effect") [15, 16]. Drying is thus expected to yield a coarser pore structure with more interconnected capillary voids. The opening of the pore structure facilitate the migration of gas, liquids and ions through the cementitious matrix by means of different transport mechanisms such as capillary suction, ponding, permeability, osmose, and diffusion. Consequently, drying can be harmful to concrete durability in many different aspects such as deicer salt scaling, chemical attack, corrosion of steel reinforcement, etc.

Some important conclusions can be drawn from the Figures 4 and 5. First of all, concrete mixtures with smaller W/B ratio appear to be less affected by drying especially those made with Type III Portland cement. But even concretes with a 0.25 W/B ratio were affected by drying at 110°C when they do not contain silica fume. However, concretes containing silica fume and having a W/B ratio of 0.25 were not significantly affected by drying, even at 110°C. It is thus possible to make high-performance concretes which are extremely resistant to internal damage caused by drying providing that the mixtures have a very low W/B ratio (about 0.25) and contain silica fume. The beneficial effect of silica fume is probably due to the fact that its capillary volume is very finely divided (see Figure 2) which make him much less vulnerable to the opening of the pore structure.

RESISTANCE TO CHEMICAL ATTACK

The chemical attacks can be roughly divided in two categories: (1) the constituents of cement paste (such as calcium hydroxide) can chemically react with substances present in the surrounding solution to form new swelling hydration products (such as chloroaluminates), or (2) hydration products can be dissolved when exposed to an aggressive environment. Of course, both of these phenomenon can occur simultaneously. Although very few experimental data are available, HPC are expected to be much better resistant to the first type of chemical attack than normal strength concretes because their very low porosity constrain the intrusion of aggressive substances. The resistance of HPC to the second type of chemical attack has been investigated in our laboratory [15]. This resistance is particularly important for special applications such as the making of nuclear

raste containers where the very long term durability (after a few hundred years) is of a mamount importance.

norder to study the resistance of HPC to chemical attack, cement pastes were made with a Type III Portland cement, 6% of silica fume, and two W/B ratios (0.38 and 0.25). Itersix months of curing in a saturated lime solution, paste disks (70 mm in diameter and time in thickness) were soaked in three different pH controlled solutions for a period of p to 3 years. The three aggressive solutions were as following: 3% NaCl (by weight) satisfied at a pH level of 8.5; 0% NaCl at 8.5 and 0% NaCl at 4.5). It must be semblered that capillary water have a pH value of about 13, and that even pure water with a pH of about 7) is thus an aggressive, acid solution. At regular intervals, paste disks are removed from the solutions and submitted to scanning electron microscope saminations, X-ray energy dispersion analyses, and mercury intrusion porosimetry.

The results obtained from X-ray energy dispersion are particularly interesting. The moentration of calcium, chlorine, and aluminium were measured at $10\,\mu\mathrm{m}$ intervals along reginary lines extending from the external surface in contact with the aggressive solution wards the internal part of the disks. The results obtained are shown on Figure 6. The mizontal line drawn on each diagram represents the concentration of calcium in the add silicate hydrates (C-S-H). The concentrations above this line correspond to the add contained in the calcium hydroxide (Ca(OH)₂), and the concentrations below, to the calcium of deteriorated C-S-H.

As can be seen in Figure 6, after three months of exposure to aggressive solutions, the addition content far from the external surface was found to be similar to that in the control decimens (i.e. specimens tested immediately after the 6 months curing period). Near the aternal surfaces, however, the calcium content was much lower. The lower calcium antent near the surface can be explained by the fact that calcium hydroxide and C-S-H at a pH lower than about 13. The decalcified zone was more pronounced for the mixtures having a W/B ratio of 0.38, than for the 0.25 mixtures. For example, after the months of exposure, the calcium content for the mixtures in contact with chlorides as lower in a zone covering approximately the first 375 μ m for the 0.25 mixture, and 10 μ m for the 0.38 mixture. The results also shows that the pH level of the corrosive solution plays an important role on the decalcification process. The influence of the pH and of the corrosive solution confirms the results obtained from previous studies at pH and 11.5 [16, 17]. Mercury intrusion porosimetry measurements indicate that be leaching of calcium also increases the capillary porosity. The pores having a diameter aging from about 90 to 600 Å seems to be the most affected by this mechanism.

he results clearly indicate that the pH level of the aggressive solution is the most portant factor controlling the durability of cement pastes subjected to chemical attack. W/B ratio does not affect the deterioration processes but only influence the kinetics these processes. The use of a lower W/B ratio slow down the leaching of calcium.

CONCLUSION

When compared to normal strength concretes, high-performance concrete does not not provides a higher compressive strength, but also an improved durability. The properties of HPC can thus be advantageously used for a large number of applications which required a high quality construction material. Nevertheless, the design of the mixture composition as well as the batching, delivery, and placing of concrete is more touchy with an HPC than with a normal strength concrete. Consequently, although HPC can be easily and efficient produced in concrete plants with commonly used equipments, it remains that its production requires a well qualified staff and a higher quality control.

This paper was dealing exclusively with high-performance concretes made with Portland cements and silica fume. But other supplementary cementitious materials, such as five ashes or blast-furnace slags, can also be successfully used to produce HPC mixtures Actually, little data are available on that topic although a number of major works have been reported recently [18, 19]. The use of mineral by-products in the making of HPC is expected to grow significantly in the next years. However, research is still needed to better understand the properties of these concretes, especially as regards with their durability.

of world another the concentration of ACKNOWLEDGMENTS

The authors are grateful to the Natural Science and Engineering Research Council of Canada for its financial support for this project which is part of the research programo the Network of Centers of Excellence on High-Performance Concrete. The authors also wish to thank Françoise Garnier, Caroline Verreault, Janicka Maltais, and Michel Lessard for their help in doing the laboratory experiments, and Ann Lamontagne for her help in preparing the manuscript.

material 3 of the decalcified cone was thore pragonneed to

REFERENCES

N. S. 118 - 1715 Meaning introduction in agreement

- [1] Ipatti, A., 1991, A Bibliography on High-Strength Concrete 1930-1990, Imatral Voima Oy, Concrete and Soils Laboratory, Rajatorpantie 8, SF-01600 Vantage Finland, 70 p. o mort beniated attuest ent amilinos notitulos a
- [2] Aitcin, P.C., and Albinger, J.M., 1989, Les bétons à hautes performances Expériences nord-américaine et française, Annales de l'Institut Technique de bâtiment et des travaux publics, No. 473, pp. 151-189.
- [3] American Concrete Institute, 1992, State of the Art Report on High-Strengt Concrete, ACI Manual of Concrete Practice - Part I Materials and General Properties of Concrete, 48 p.

- DeLarrard, F., and Malier, Y., 1992, Engineering Properties of Very High-Performance Concrete, High-Performance Concrete: From Material to Structure, E & SF Spon Fditor, London, pp. 85-1,14.
- Sarkar, S.L., and Aïtcin, P.C., 1987, Comparative Study of the Microstructure of Normal and Very High-Strength Concrete, Cement, Concrete, and Aggregates, Vol. 9, No. 2, pp. 57-64.
- Jolicoeur, C., Simard, M.A., Aïtcin, P.C., Baalbaki, M., 119, Cement-Superplasticizer Compatibility in High Performance Concrete: The Role of Sulfates, Proceedings of the ACI Symposium "Progress in Concrete", Montréal, Canada, 26 p.
- Penttala, V., 1986, Compatibility of Binder and Superplasticizer in High-Strength Concrete, Nordic Concrete Research No. 5, pp. 117-128.
- Pigeon, M., 1992, The Frost Durability of Concrete, Cement and Concrete Science & Technology, Vol. 1, Part II, ABI Books, S.N. Ghosh Editor, New Delhi, India, pp. 417-448.
- American Concrete Institute, 1992, Guide to Durable Concrete, ACI Manual of Concrete Practice - Part I Materials and General Properties of Concrete, 37 p.
- Powers, T.C., 1949, The Air Requirement of Frost Resistant Concrete, Procee-dings of the Highway Research Board, Vol. 32, pp. 285-297.
- Pigeon, M., 1989, La durabilité au gel du béton, Matériaux et Constructions/ Materials and Structures, Vol. 22, No. 127, pp. 3-14.
- Gagné, R., Aïtcin, P.C., Pigeon, M., and Pleau, R., 1992, Frost Durability of High-Performance Concretes, High-Performance Concrete: From Material to Structure, E & SF Spon Editor, London, pp. 239-251.
- Pigeon, M., Gagné, R., and Foy, C., Critical Air-Void Spacing Factor for Low Water-Cement Ratio Concretes With and Without Silica Fume, Cement and Concrete Research, Vol. 17, No. 6, pp. 896-906.
- Pigeon, M., Garnier, F., Pleau, R., and Aïtcin, P.C., 1993, Influence of Drying on the Chloride Ion Permeability of HPC, Concrete International, Vol. 15, No. 2, pp. 65-69.
- Delagrave, A., Pigeon, M., and Révertégat, E., 1993, Durability of High Performance Cement Pastes Subjected to Chemical Attack, Bi-Annual Meeting of the Canadian Network of Centres of Excellence on High Performance Concrete, June 10, Québec, Canada, pp. 37-49.
- Gagné, R., Pigeon, M., Révertégat, E., and Aitcin, P.C., 1992, Chloride-Ion Attack On Low Water-Cement Ratio Pastes Containing Silica Fume, ACI Special Publication SP-132, pp. 1471-1490.

- [17] Révertégat, E. Richet, C., and Gegout, P., 1992, Effect of pH on the Durability of Cement Pastes, Cement and Concrete Research, Vol. 22, Nos 2/3, pp. 259-272
- [18] Bilodeau, A., and Malhotra, V.M., 1993, Concrete Incorporating High Volumes of ASTM Class F Fly Ashes: Mechanical Properties and Resistance to Deicer Sature Scaling and to Chloride-Ion Penetration, Forth International CANMETIAC International Conference of Fly Ash, Silica Fume, Slag & Natural Pozzolans in Concrete, Vol. 1, Istanbul, Turkey, pp. 319–349.
- [19] Mukherjee, P.K., Loughborough, M.T., and Malhotra, V.M., 1982, <u>Development of High-Strength Concrete Incorporating a Large Percentage of Fly Ash and Superplasticizers</u>, Cement and Concrete Research, Vol. 4, No. 2, pp. 81–86.

Richard Pleau, School of Architecture, Laval University, Quebec, Canada, G1K 7P4 Volume of permeable pores obtained from ASTM C 642 water absorp-tion test method.

OC. D		Type I cement			Type III cement		
P.S.	W/B	0.45	0.35	0.25	0.45	0.35	0.25
without silica fume	7 days 28 days	20.73	14.49	12.30 12.25	16.13 16.53	11.61 9.84	7.81 8.01
with silica fume	7 days 28 days	16.19 14.93	13.35	10.07 8.78	14.99 14.79	12.63 9.83	8.09 8.28

Note: Each number represents the mean value obtained on two concrete specimens

Charge passing through concrete specimens as obtained from AASHTO T 227 rapid chloride ion permeability test method (Coulombs).

	Produced a	Type I cement			Type III cement		
filating.	W/B	0.45	0.35	0.25	0.45	0.35	0.25
without silica	7 days	11 326	6 225	3 283	3 579	2 077	662
fume	28 days	5 045	2 737	1 809	424	276	164
with silica	7 days	8 447	4 903	3 060	3 610	3 503	741
fume	28 days	3 415	2 163	811	325	281	56

Each number represents the mean value obtained on two concrete specimens

Table 3 - Composition and properties of concrete mixtures used for the comparative study of the influence of coarse aggregates on compressive strength of HPC.

- Properties of concrete mixtures having exactly the same composition but made with different materials using different mixing techniques.

W/B	0.22	0.25	0.30
Water (kg/m ³)	109 – 112	127 – 129	126 – 129
Cement (kg/m ³)	550 – 570	540 – 550	445 – 455
Fine aggregate (kg/m ³)	690 – 720	710 – 730	840 – 860
Coarse aggregate (kg/m ³)	1100 – 1130 14.0 – 18.1	1050 - 1070	990 – 1010 7.0 – 7.1
Superplasticizer (kg/m ³) Slump (mm)	170 – 220	205 – 230	170 – 195
Unit Weight (kg/m ³)	2475 – 2541	2437 – 2493	2405 – 2472
Air content (%)	2.2 – 3.8	2.7 – 3.3	3.4 – 4.0

Table 4 - Compressive strength of similar concretes made with different coarse aggregates TCC TO (MPa). most same de l'agractice as electrone de l'agrace que la concrete electrone de l'agrace que l'agrace de l'agrace

		Coarse aggregate						
Age	169ma	A	B granitic gneiss	C dolomitic limestone	D granite	E peridotite	Fandesite	
Sa	0.22	66.6	53.8	73.7	61.2	60.2	62.6	
48 hrs	0.25	62.1	50.6	73.5			-	
	0.30	48.4	44.0	56.0	B 447	y days	in	
88	0.22	92.5	99.4	111.6	91.3	105.2	105.5	
28 days	0.25	88.5	93.6	106.2	m en t elna e	rues Edinari	-	
	0.30	83.8	87.1	93.7		-	_	

Note: Each number represents the mean value obtained on two concrete specimens.

Plasticizer admixture Sequence Super Plasticizer (L/m³) Plasti	Coarse	Super-	Mixing	Doongo of		7 2100	
A 6.5 220 2.1 62 N2 A 6.5 220 2.1 59 B 13.6 205 2.1 62 N2 A 6.5 220 2.6 53 naphtalene B 6.5 165 2.3 61 M A 6.5 185 1.8 63 melamine B 6.5 60 1.5 68 M A 6.5 220 2.5 54 N1 A 6.5 220 2.6 53 naphtalene B 6.5 165 2.3 61 N1 A 6.5 220 2.5 54 A 6.5 220 2.6 53 N1 A 6.5 220 2.6 53 N2 A 6.5 220 2.6 53 N3 59 B 11.5 210 2.5 54 M A 6.5 185 1.8 63 M A 6.5 185 1.8 63 B 12.3 225 1.5 68 N1 A 6.5 220 2.5 43 N2 A 6.5 220 2.5 43 N3 A 6.5 220 2.5 661 N4 A 6.5 220 2.5 661 N5 A 6.5 220 2.5 61 N6 A 6.5 220 2.5 61 N8 A 6.5 220 2.5 61 N9 A 6.5 220 2.5 61 N1 A 6.5 225 3.0 58 N2 A 6.5 225 3.0 58 N2 A 6.5 225 3.0 58 N3 A 6.5 225 3.0 58 N4 A 6.5 225 3.0 58 N5 N2 A 6.5 225 3.0 58 N6 A 6.5 225 3.0 58 N8 N2 A 6.5 225 3.0 58		The state of the s	1 1000	Dosage of	Slump	Air content	28 days
CL/m³) C	ayyreyate	同也 第四4至901号	sequence	on bunding it	(mm)	(%)	
M A 6.5 80 1.5 64 melamine B 6.5 50 2.4 64 B 25.5 215 1.1 58 A 6.5 220 2.5 55 Inaphtalene B 6.5 195 3.0 59 B 11.5 210 2.5 54 A 6.5 185 1.8 63 melamine B 6.5 185 1.8 63 melamine B 6.5 185 1.8 63 melamine B 6.5 220 2.5 63 A 6.5 220 2.6 53 B 11.5 210 2.5 54 A 6.5 220 2.6 63 A 6.5 165 2.3 61 M A 6.5 185 1.8 63 melamine B 6.5 60 1.5 63 B 12.3 225 1.5 68 A 6.5 220 2.5 43 Oranitic N1 A 6.5 215 2.8 43 naphtalene B 6.5 160 2.8 60 B 11.0 220 2.5 61 A 6.5 225 3.0 58 N2 A 6.5 225 3.0 58 N2 A 6.5 225 3.0 58 naphtalene B 6.5 165 2.8 60		admixture	313	The state of the s	nycles ir		
M							(MPa)
Marine Barrian Barri		ut angeres	y lann	ASTER TO SERVICE	90	2.1	59
B 25.5 215 1.1 58 A 6.5 220 2.5 55 Inastone N1 A 6.5 220 2.1 59 Inaphtalene B 6.5 195 3.0 59 B 13.6 205 2.1 62 A 6.5 220 2.6 53 naphtalene B 6.5 155 3.3 59 B 11.5 210 2.5 54 A 6.5 165 2.3 61 M A 6.5 185 1.8 63 melamine B 6.5 60 1.5 63 B 12.3 225 1.5 68 A 6.5 220 2.5 43 Machine B 6.5 160 2.8 60 B 11.0 220 2.5 61 N2 A 6.5 225 3.0 58 naphtalene B 6.5 165 2.8 60 B 11.0 220 2.5 3.0 58 naphtalene B 6.5 165 2.8 60 N2 A 6.5 225 3.0 58 naphtalene B 6.5 165 2.8 60		Marie III	-		80	1.5	64
A 6.5 220 2.1 59 Inaphtalene B 6.5 195 3.0 59 B 13.6 205 2.1 62 A 6.5 220 1.8 44 N2 A 6.5 220 2.6 53 naphtalene B 6.5 155 3.3 59 B 11.5 210 2.5 54 A 6.5 165 2.3 61 M A 6.5 185 1.8 63 melamine B 6.5 60 1.5 63 B 12.3 225 1.5 68 A 6.5 220 2.5 43 Oranitic N1 A 6.5 215 2.8 43 Oranitic N1 A 6.5 215 2.8 43 Oranitic N1 A 6.5 215 2.8 43 N2 A 6.5 225 3.0 58 N3 A 6.5 225 3.0 58 N4 A 6.5 225 3.0 58 N4 A 6.5 225 3.0 58 N5 A 6.5 225 3.0 58 N6 A 6.5 225 3.0 58 N8 A 6.5 225 3.0 58		melamine	ke a	6.5	50	2.4	64
N1		604	В	25.5	215	1.1	58
N2		805	Α	6.5	220	2.5	55
B		N1	A	6.5	220	2.1	59
A 6.5 220 1.8 44 N2 A 6.5 220 2.6 53 naphtalene B 6.5 155 3.3 59 B 11.5 210 2.5 54 A 6.5 165 2.3 61 M A 6.5 185 1.8 63 melamine B 6.5 60 1.5 63 B 12.3 225 1.5 68 A 6.5 220 2.5 43 Quantic N1 A 6.5 215 2.8 43 naphtalene B 6.5 160 2.8 60 B 11.0 220 2.5 61 A 6.5 235 2.4 41 N2 A 6.5 225 3.0 58 naphtalene B 6.5 165 2.8 60	imestone	naphtalene	В	6.5	195	3.0	59
N2 A 6.5 220 2.6 53 naphtalene B 6.5 155 3.3 59 B 11.5 210 2.5 54 A 6.5 165 2.3 61 M A 6.5 185 1.8 63 melamine B 6.5 60 1.5 63 B 12.3 225 1.5 68 A 6.5 220 2.5 43 Parameter B 6.5 215 2.8 43 Inaphtalene B 6.5 235 2.4 41 N2 A 6.5 225 3.0 58 naphtalene B 6.5 165 2.8 60		li.45	В	13.6	205	2.1	62
naphtalene B 6.5 155 3.3 59 B 11.5 210 2.5 54 A 6.5 165 2.3 61 M A 6.5 185 1.8 63 melamine B 6.5 60 1.5 63 B 12.3 225 1.5 68 A 6.5 220 2.5 43 Manaphtalene B 6.5 215 2.8 43 Inaphtalene B 6.5 235 2.4 41 N2 A 6.5 225 3.0 58 naphtalene B 6.5 165 2.8 60		And the second	A	6.5	220	1.8	44
naphtalene B 6.5 155 3.3 59 A 6.5 165 2.3 61 M A 6.5 185 1.8 63 melamine B 6.5 60 1.5 63 B 12.3 225 1.5 68 A 6.5 220 2.5 43 Inaphtalene B 6.5 215 2.8 43 Inaphtalene B 6.5 235 2.4 41 N2 A 6.5 225 3.0 58 naphtalene B 6.5 165 2.8 60		N2	A	6.5	220	2.6	53
B 11.5 210 2.5 54 A 6.5 165 2.3 61 M A 6.5 185 1.8 63 melamine B 6.5 60 1.5 63 B 12.3 225 1.5 68 A 6.5 220 2.5 43 N1 A 6.5 215 2.8 43 naphtalene B 6.5 160 2.8 60 B 11.0 220 2.5 61 A 6.5 235 2.4 41 N2 A 6.5 225 3.0 58 naphtalene B 6.5 165 2.8 60		naphtalene	В	6.5	155	3.3	
M A 6.5 165 2.3 61 M A 6.5 185 1.8 63 melamine B 6.5 60 1.5 68 A 6.5 220 2.5 43 Quantitic N1 A 6.5 215 2.8 43 naphtalene B 6.5 160 2.8 60 B 11.0 220 2.5 61 A 6.5 235 2.4 41 N2 A 6.5 225 3.0 58 naphtalene B 6.5 165 2.8 60			В	11.5	210	2.5	1
M A 6.5 185 1.8 63 melamine B 6.5 60 1.5 63 B 12.3 225 1.5 68 A 6.5 220 2.5 43 N1 A 6.5 215 2.8 43 naphtalene B 6.5 160 2.8 60 B 11.0 220 2.5 61 A 6.5 235 2.4 41 N2 A 6.5 225 3.0 58 naphtalene B 6.5 165 2.8 60		Charles Million	A	6.5	165	2.3	
melamine B 6.5 60 1.5 63 B 12.3 225 1.5 68 A 6.5 220 2.5 43 N1 A 6.5 215 2.8 43 naphtalene B 6.5 160 2.8 60 B 11.0 220 2.5 61 A 6.5 235 2.4 41 N2 A 6.5 225 3.0 58 naphtalene B 6.5 165 2.8 60		M	A	6.5	185	1.8	
granitic N1 A 6.5 220 2.5 43 gneiss N1 A 6.5 215 2.8 43 naphtalene B 6.5 160 2.8 60 B 11.0 220 2.5 61 A 6.5 235 2.4 41 N2 A 6.5 225 3.0 58 naphtalene B 6.5 165 2.8 60		melamine	В	6.5	60	- Carles	
Moderate of the product of t		greens !	В	12.3	225	all the	- 3 9
M1 A 6.5 215 2.8 43 gneiss naphtalene B 6.5 160 2.8 60 B 11.0 220 2.5 61 A 6.5 235 2.4 41 N2 A 6.5 225 3.0 58 naphtalene B 6.5 165 2.8 60	21	BUTTLE - LIVER IN	A	6.5	220	1 2	7. 4
naphtalene	granitic	N1	Α	6.5	215	- I	80 50
B 11.0 220 2.5 61 A 6.5 235 2.4 41 N2 A 6.5 225 3.0 58 naphtalene B 6.5 165 2.8 60	gneiss	naphtalene	В	6.5	160	2.8	
A 6.5 235 2.4 41 N2 A 6.5 225 3.0 58 naphtalene B 6.5 165 2.8 60		3/7-31 - CH	В	11.0	220	880	W. P.
N2 A 6.5 225 3.0 58 naphtalene B 6.5 165 2.8 60		1	A	6.5	235		W 20
naphtalene B 6.5 165 2.8 60		N2	A	6.5	225	Time and	
P 110		naphtalene	В	6.5	165	1	
ixing sequence: A: Compat and discounting	30.00	ASSESSMENT OF THE PERSON OF TH	В	11.0	220	3.0	54

Mixing sequence: A: Cement, sand, water and superplasticizer were first mixed to obtain a homogeneous paste and the coarse aggregate were further added.

B: Cement, sand and coarse aggregates were first mixed to obtain a homogeneous mixture and the water and superplasticizer were further added.

Table 6 - Critical spacing factors obtained for different concrete mixtures subjected to 300 freezing and thawing cycles in air or in water (µm).

		ezing and that cycles in wate		Freezing and thawing cycles in air
W/B	Type I cement	Type I cement with silica fume#	Type III cement with silica fume#	Type I cement with silica fume#
0.50	500	250	3 1 200	400
0.50*	500	200	2487 A	400
0.30*	400	300	> 800	450
0.25*	750	562 9	> 800	enedarigan eneda

: These mixtures were made using a superplasticizer admixture.

#: Silica fume was used as a partial replacement for Portland cement (10% in weight).

Figure 1 - Relationship between the charge passing through a unit volume of permeable pores and the water binder ratio for concretes not containing silica fume.

Relationship between the charge passing through a unit volume of permeable pores and the water binder ratio for concretes containing silica fume.

Relationship between the compressive strength and the water-binder ratio for similar concretes made with three different coarse aggregates.

Figure 4 - Chloride ion permeability versus water binder ratio for all concretes made with Type I Portland cement (with and without silica fume) and dried for 90 days (at the temperature indicated) before the test.

Figure 5 - Chloride ion permeability versus water binder ratiofor all concretes made with Type III Portland cement (with and without silica fume) and dried for 90 days (at the temperature indicated) before the test.

Control Specimen

After 3 Months of Exposure pH 8,5 + 3% NaCl

After 3 Months of Exposure pH 4,5

X-ray energy dispersion measurements for cement pastes with low water-binder ratios (0.25 and 0.38) after three months of exposure to aggressive solutions (a pH of 8.5 with NaCl and a pH of 4.5).