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of a polygonal figure having m geometrical equations o
condi%iog,g and ;‘; the most probable value of the error
of any observed angle, we have

cs’zt'u;:;]-:?b=% for a single figuren
=Ea——§ for & group of figures,

the brackets []'in each case denoting the sum of alt! :]]:112
quantities involved. e, usually gives the best value o :
theoretical error, then e,. As a rule the value by e 1§h_o§
small ; but to.this there are notable exceptions, in W —{Ch
it was found to be much too greaf. The instrument xut-‘
which the angles were measured in these mstances.ge;wf
very discrepant resulis at diﬁ'erept settings of the circle;
but this was caused by large periodic errors of graduation
which did not affect the ““concluded angles,” because they
were eliminated by the systematic changes of setting, so
the results were really more precise than was apparent.

‘When weights were determined for the ﬁnq,l smlultt.meous
reduction of triangulations executed by different msi:_ru(i
ments, it became necessary to find a factor p to be applie
as a modulus to each group of angles m.ez}sm\ed with the
same instrument and under similar conditions, to convert
the as yet relative weights into absolute measures of _pre<1:1-
sion. p was made=e¢, =¢; Whenever (.iata. were availab e&
if not to e; +e¢,; then the absolute ivelght of an obsi.rv}ei
angle in any group was taken as wp? and the e.m.s. of the
angle as 12 pa/w. The average values of the e.m.s. thus
determined for large groups of angles, measured “-1(:11”1_;_he
36-inch and the 24-inch theodolites, ranged from + 0”24
to +0767, the smaller values being usually obtained at
hill stations, where the atmospheric conditions were most
favourable. : ; ;

13. Harmonizing Angles of Trigonometrical Figures.—
Every figure, whether a single triangle or a polygonal _net:
work, was made consistent by the application of COI‘I‘e-Ct.IOI’ia
to the observed angles to satisfy its geometrical conditions.
The three angles of every triangle having been observed,
their sum had to be made=180°+the spherical excess;
in networks it was also necessary that the sum of the
angles measured round the horizon af any station should
be exactly = 360°, that the sum of the parts of an angle
measured at different times should equal the whole, and
that the ratio of any two sides should be identical, what-
ever the route through which it was computed. These are
called the ¢riangular, central, toto-partial, and side condi-
tions ; they present # geometrical equations, which contain
¢ unknown quantities, the errors of t]%e observed‘ angles, ¢
being always >n. When these equations are satisfied and
the deduced values of errors are applied as corrections
to the obsefved angles, the figure becomes consistent.
Primarily the equations were treated by 2 method of suec-
cessive approximations; but afterwards they were all
solved simultaneously by the so-called method of minimum
squares, which leads to the most probable of any system
of corrections ; it is demonstrated un_der_ _EA_RTE, Ficure
oF THE (vol. vii. p. 599). The following is a general out-
e ble value of th and % the recipro

h - probable value of the error -
calLsitz fht,e xt-}e-?g?lltoitf I:ll:c?y observed angle X, and let @, 5,...7 be
the coefficients of « in successive geometrical equations of condition
whose absolute terms are ¢, €, . . . ¢, then we have the following
group of » equations containing ¢ unknown quantities E:ﬂba stattls-
ﬁed, the significant coefficients of  being 1 in the t_rza\_i? ar, toto-
partial, and central, and = cot X in the side equations :—

T+ asat. o o+ Qe =¢g

e e ).

T+ e te o o T NT=En 5 e
The values of 2 will be the most probable when = is & minimum,
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obtained by the solution of the following equa=
g&g:e_iulues fzfz?u]?«,,+ [abaulrs +. o o +[anu],=e,
: [ab.aih e+ [65. 24Ty - « « + [bnulN, =6,
i . ?\ -1: Im'u,]:\ + + ['rmu]?s =g
the brackets ‘:iﬁa;:::zlxt‘i‘ng[summ;ﬂons of z terms as to left of (3).
Then the value of any, the pth, = is
Ep=1pd@ A F B NsF e o FMARE wereneerencnnnilB),

The minimum or [E 38 =[] s vevovaesvaonerscrtenseestit U

In the application to a single triangle we have o+ 2 +zy=,
A=e (1 + U+ 2u3) 3 Ty =N Lg=U\ xg=u13l. e i
In the application toa snnp}a polygon, by ¢ 1angm:i sym] s any

putting X and ¥ for the exterior and Z for the centra angles, with
érrors z, v, and z and weight reciprocals %, v, and w, a for cot X
and & for cot ¥, e for any triangular error, ¢, and ¢, for the central
and side errors, A, and A, for the factors fo.r the central and side
equations, and F for #+2+w, the equations for obtaining the

factors becoﬁx:;ée ol bv}:lh i [Eg
o 7 e, e i W
["“’ W] [ W oL
wlau — bv) = o au—bv Spe E(au— Em)e]
—W—-:l)\c+|:a—u+b-v-7 ==
and the general expressions for the errors of the angles are—

m:%,{e+(rz W —au+bo)h— 1w} )

y= %{e — (P + au— bo)hs— Nw.} L

jz.—:;v-—-y_{e— {an = Bo)A+ (w+oA}

14. Calculation of Sides of Triangles—The anglesSideso
having been made geometrically consistent infer se in ea.cﬁﬁansl&
figure, the side-lengths are computed from the baséline
onwards by Legendre’s theorem, each angle being @mzm-
ished by one-third of .the spherical excess of the triangle
to which it appertains. The theorem is applicable without
sensible error to triangles of a much larger size than any

are ever measured. : ;
thait& Calculation of Latitudes and Longitudes ?fStatmwm;dm
and, Azimuths of Sides.—A station of origin being chosen e
of which the latitude and longitude are known astronomi- =20,
cally, and also the azimuth of one of the surroundu}:]gm
stations, the differences of latitude and longitude and t e?£
reverse azimuths are calculated in suceession, for all the)
stations of the triangulation, by Puissant’s formule (Zraité

Eodési is, 1842, 3d ed.). :
depigg:.z—%igrffn ;’ the earth to )be spheroidal, let A and B be
two stations on its surface, and let the latitude and longitude of A
be known, also the azimmth of B at A, and the distance between
A and B at the -mean sez-level ; we have to find the latitude and

longitude of B and the azimuth of A at B. 2 :
m’?_[?}lle fc?llc;wing symbols are employed :—a the major and b the

B : i
minor semi-axis ; e the excentricity, = %a = %; p the radius of

_al-e)
{1 — e3sin?0\} 3
__— % .2 and L the given
o §AL the required lati-
latitud d longitude of A ; A+Ak an + : ¢
tillde a:;ldalrclmaituégle of B; A the azimuthof Bat A ; Bthiazlfsugf
of A at B;%&A:B— (w+.4); ¢ the distance between A an
Then, all azimuths being measured from the south, we hava_‘

[ — € cos 4 cosec1”
2
-~ %i sin?4 tan X cosec 1”7
pv
32 €
“dpri-é&
'i'1 “ciz sin?4 cos 4(1+3 tan?A)cosec 1

p¥

carvature to themeridian in latitude A, = ; » the normal

to the meridian in latitude A, =

cos?4 sin 2A cosec 17

¢?sin 24 tan A R
cos A

(143 tan?)) sin 2.4 cos. 4 cose0l”

in3 2
sin®d tan?A 1w

& condition which introduces » indeterminate factors Ay - - . A,

2
cs
¥ cos A
&8
=

cosA

Limits of
geodetie ployed without Sensible Error—FEach A is expressed as a

formulee.
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—% sin 4 tan A cosec 17

e'—cos-n)\ } sin 2.4 cosee 1"“
l1-¢* an

35 tan\ . '\ %
—;g(g +tan® A )—5— sin 24 cos 4 cosec 1”

1
55
Each A is the sum of four terms symbolized by &, 8., 8;, and 3,3
‘the calculations are so arranged as to preduce these_terms in the
order 8}, 8Z, and 84, each term entering as a factor in caleulating
the following term. ‘The arrangement is shown below in equations
in which the symbols P, @, . . . Z represent the factors which depend
on the adopted geodetic constants, and vary with the latitude ; the
logarithms of their numerical values are tab ulated in the Auziliary
| Tables to Facilitate the Calculations of the Indian Survey.
'SA=—P.cosAd.c & L=+3\Qsechtand §, 4=+ 5,Lsin\
3A=+8,d.Rsind.c 3,L=—38\.5.cotd dod =1+ 3,L.T (12
SA=—03, 4. Vicotd &L=+ 8 A.U.sind.c S d=+5,L. 7 2
h=—0;4.X.tand S, L=+o N F.tan4 S d=+8,L.Z
By this artifice the calculations are rendered less laborious and
fmade susceptible of being readily performed by any persons who
are acquainted with the use of logarithm tables.
16. Limits within which Geodetic Formulz may be em-

AA%or

+% S 1+ 2tan?at
=
B-(x+d)=

sin®4 tan A (1 4 2 tan®A) cosec 1” J

series of ascending differentials in which all terms above

the third order are neglected; for the side length ¢ in no
.case exceeded 70 miles, nor was the latitude ever higher
than 36°, and for these extreme values the maximum magni-
tudes of the fourth differential are only 07-002 in latitude
and 07004 in longitude and azimuth.

Far greater error may arise from uncertainties regard-
;ing the elements of the earth’s figure, which was assumed
fo be spheroidal, with semi-axes a=20,922,932 feet and
6=20,853,375 feet. The changes in AA, AL, and A4
which would arise from errors da and db in @ and b are
lindicated by the following formulss :—

¥ s dp 50T Yelw dv 2de dv

am=-a gy ;-asx(j_ (T-—é)s)‘ 230 L
‘-il— (3L + aiz}g%

‘du:-uﬁ—szA{@_Z(‘?Z._@f 1
% Ty P 2tan"1\+%

'dAL==AL.‘-i1-62L.

- (B4 +3,4)2%
a8 which
%: — 000,000, 0478 {ds — 245 — 3(da — db) sin? A}

2 4 000,000,0478 {da + (das — B) sin® A

v

-(14).
-000,0145 {da — db}

g=aet
The adopted values of the semi-axes were determined
jpy Colonel Everest in an investigation of the figure of the
garth from such data as were available in 1826. TForty
jyears afterwards an investigation was made by Captain
L(now Colonel) A. R. Clarke with additional data, which
gave new values, both exceeding the former.! Accepting
these as exact, the errors of the first values are da— — 3130
Heet and d5— — 1746 feet, the former being 150, the latter
{84 millionth parts of the semiaxis. Tha corresponding
changes in arcs of 1° of latitude and longitude, expressed
i seconds of arc and in millionth parts (p) of arc-length,
are as follows :— :
Inlat. 5° . AX= —"069 or 19 pand dAL= ~
> 2 -*113 ,, 81 - — 23
— 7195 | ~54 S S TR T
55 —"‘303*,, B —"617 ,, 171 ,,:
Irinlese assumed errors in the geodetice latitudes and longi-
tudes are of service when comparisons are made between
Andependent astronomical and geodetic determinations at
'__‘_—__—

¥

“540 0r 150 4 ;
7554 |, 154 ,,"

35e

I, See dccount of the Principal Triangulation of the Ordnance Sur-
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any points for which both may be available : they indi-
cate the extent to which differences may be attributable
‘to errors in the adopted geodetic constants, as distinct
from errors in the trigonometrical or the astronomical
operations. :

17. Pinal Reduction of Principal Triangulation,—The
calculations described so far suffice to make the angles of
the several trigonometrical figures consistent infer se, and
to give preliminary values of the lengths and azimuths of
the sides and the latitudes and longitudes of the stations.
The results are amply sufficient for the requirements of
the topographer and land surveyor, and they are published
in preliminary charts, which give full numerical details of
latitude, longitude, azimuth, and side-length, and of height
also, for each portion of the triangulation—secondary as
well as principal—as executed year by year. But on the
completion of the several chains of triangles further reduc-
tions became necessary, to make the triangulation every
where consistent inter se and with the verificatory base
lines, so that the lengths and azimuths of common sides
and the latitudes and longitudes of common stations should
be identical at the junctions of chains, and that the
measured and computed lengths of the base-lines should
-also be identical. i

How this was done will now be set forth. PBut first i
must be noted that the triangulation might at the same
time have been made consistent with any values of latitude;
longitude, or azimuth which had been determined by
astronomical observations at either of the trigonometrical
stations. This, however, was undesirable, because such'
observations are liable to errors from delexion of “the
plumb-line from the true normal under the influence of
local attraction, and these errors are of a much greater
magnitude than those that would be generated in triangu-
lating between astronomical stations which are not a great
distance apart. The trigonometrical clements could not
be forced into accordance with the astronomical without
altering the angles by amounts much larger than their
probable errors, and the results would be useless for in-
vestigations of the figure of the earth. The only inde-
pendent facts of observation which could be legitimately
combined with the angular adjustments were the base-lines,
and all these were employed, while the several astronomical
determinaticns—of latitude, differentisl longitude,  and
azimuth—were held in reserve for future geodetic investi-
gations.

_As an illustration of the problem for treatment, suppose a com-
bination of three meridional and two longitudinal chains comprising
seventy-two single triangles, with a base-line at each corner, as shown
in the accompanying diagram (fig. 2) ; suppose the three angles of
every triangle to have been ¢ ;
measured and made con- A J
sistent. TLet A be the ori-

gin, with its latitude and
longitude given, and also
the length and azimuth of
the adjoining base-line.
With these data processes
of caleulation are ecarried
through the triangulation
to obtain the lengths -and
azimuths of the sides and — 2

the Iatitudes and longi- . Fig. 2.

tudes of the stations, say in the following order :—from A through
B to E, through F to E, through F to D, through F and E to
C, and through F and D to C. Then there are two values of
side, azimuth, latitude, and longitude at E,—one from the right-
hand chains via B, the other from the left-hand chains via F;
similarly there are two sets of values at C; and each of the base-
lines at B, C, and D has a caleulated as well as a measured value.
Thus eleven absolute errors are presented for dispersion over the
triangulation by the application of the most appropriate correction
to each angle, and, as a preliminary to the determination of these

{®ex, 1858, and Comparisons of Standards of Lengihm1866. -

corrections, equations must be constructed between each of the

! absolute errors and the unknown errars of the angles from which
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they originated. For this purpose assume X fo be the angle opposite
the flank side of any triangle, and ¥ and Z the angles opposite t_he
sides of continuation ; also let =, %, and z be the most probable
values of the errors of the angles which will satisfy the givem
equations of condition. Then each equation may be expressed im
the form [az+by+ecz]=2FE, the brackets indieating a sum‘ma;non_
for all the triangles involved. Wa have first to ascerfain the valmes
of the coefficients a, b, and ¢ of the unknown guantities. They are
readily found for the side equations on the ecircuits and between
the base-lines, for = does not enter them, but only y and =, with
coeflicients wkich are the cotangents of ¥ and %, so that ﬂ%esc
equations are simply [cot ¥.y —cot Z.z]=E. But three out of four
0(11 the circuit equations are geodetic, corresponding fo the closimg
errors in latitude, longitude, and azimuth. and in them th]e co-
efficients are very complicated. They are obtamned as follows.
The first term of each of the three expressions for AN, AL, and B
is differentiated in terms of ¢ and 4, giving

A= an[%_ggtan4sin1’}

c
dAL= AL{ % +dd cot A sin 17} b (15,

dB= dA+AA{‘%°+d.4cotAsiu1~}

in which de end d 4 re nt the errors in the length and azimmith
of any side ¢ which have been generated £
in the course of the triangulation up
to it from the base-line and the azi-
muth station at the origin. The errors 8
in the latitude and longitude of auy
station which are dae to the triangula-
tion are dA, =[d.AN], and dZ,=[d. AL]-
Let station 1 be the origin, and let
gLy <. ba the succeeding stations 4
taken along a predetermined line of
traverse, which may either run from
vertex to vertex of the succe;sw; txl-{l-
angles, zigzagging between the Hanks
ofgteht Bhsazﬁl, as in fig. 8 (1), or be 2K
carried directly along one of the flanks,
asin fig. 3 (2). For the general sym-
bols of the differential equations sub-
stitute Ahy, ALy, Ady, €ny An, and Br, )
for the side between stations m and \ Fiz. 3.
n+1 of the traverse ; and let 3¢, and - S
3.4, be the errors generated between the sides ¢,y and ¢ ; then
n
. c -
Sad aral; A mdB s . s dAn=dB, i +0dn
Performing the necessary substitutions and summations, we g=t

A AL AL
’;[AA]—+2[AA]%+...+ o
+(1+ A4 cot A]sin1")54; +(1 +[Adcot A]sin1) 54,

dBn= =
1

4 ... +(1+Ad, cot A,sin1")3d,
n 8c; , = ey 2 Bca
I[M}——r,_f_.&l\]cg +oee FAN

= Cn
Ana=q' {:[A.\ tan 4154, + [A\tan 41545+ ..
: + AX, tan 4,543 sin 17

UGy W, 3co Efl‘\'
AL T:+5[AL]-6;+ s +1:LL,. = ;
+ {,[AL cot ANoA,+ [AL cot Ayt ..

+ AL, cot Axd.4,}sin1” i
Thus we have the following expression for any geodetic
%CJ‘+¢16AL+. et OB =E;

i -
where p and ¢ represent the res ective summatiws \-.'}_1: -
coefficients of 8¢ and 84 in each instance but i.1:‘9 ﬁ‘rm, i
1 is added to the summation in fo z cos.‘r"imenn o.g 8

“The angular errors z, ¥, and z must now be inireduce ;k:-l1
of 3¢ and 84, into the general e )1‘&21313:*,'1\'11”.11 will thea
different forms, according as the rouis acop i
traverse was the zigzag or the d In the lorm:w_}: tk
of stations on the traverse is ordinaril 1e
triangles, and, whether or no, a comr

ALpn=

ac;
.ul-c-l-i- cen FHw
7 §

t ! es
for both the traverses q 1 <
Sl e hgle enter the general expression

thus the angular errors of eve
in the form Lor+c

in which p'=pg sin 1%, and th
angle lies to the left, the lower if the r

y — cot Z. 'z, Riy
n of ¢ is taken if &I
1, of the line of traw

When the direct traverse is andopted, Lhere are only nali a= man,

iTaverse stations as triangles, and therefore only half ‘lf umb'ir
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s *s to determine ; but it becomes necessary to adopt different
;:;%i?nis for the stations and the triangles, and the form of the
Cccfﬁcienf‘s of the angular errors alternates in successive triaugles,
Thus, if the pth triangle has no side on the line of the traverse but
enly an angle at the th station. ’the formis

+ ¢r2p+cot Yp.ppyp,— cot iyl 1
If the gth friangle has 2 side between the {th aud the (Z+1)th sta-
tions of the traverse, the farm’ is 3 :
cot X (ay =y W H (P T cot ¥ly, — (¢ — 1 cot Zp).
As each circuit has a right-hand and a left-hand branch, the
errors of the angles are finally arranged so as to present equations

f general form
of the general £ B iiir-fe ity cL=E.

The eleven circuit and base-line e.quatious of condition havi
been dnly constructed, the next stepis to find values of the angulay
errors which will satisfy these equations, and be the most probable
of any system of values that will do so, and at the same time will
not disturb the existing harmony of .thc_anglcs in each of the
seventy-two triangles. Harmony is maintained by introducing the
equation of condition z+y+== 0 for every triangle. The most
mrohable results are obtained by the method of minimum squares.
whic ay be applied in two ways. :

? h(li])l I.:fg.ctor }\YEMY be obtained for each of the eighty-three equa-
tions under the condition that gt % r:—y:‘ is made a minimum, %,
r. and w0 being the reciprocals of the weights of the observed anglea
This necessitates the simultaneous solution c.f cighty-three equations
o obtain as many values of A. The resulting values of the errors
of the angles in any, the pth, triangle, are E
ay=w[a\]; yu=000A15 2p=wplepA ] ceennns (17) ]
(ii.) One of the unknown rtua.ntities in cvery triangle, as, may
Be eliminated from each of the eleven circuit and base-line equa-
tions by substituting its equivalent — (y+z) forit. a sz_:mlar substi-
tution being made in the minimum. Then the equations take the
form [(b—ayy+(c—a)]l=1E, while the minimum becomes

+2P o =
[ 2 & v Tal
Thus we have now to find only eleven values of \ by a simultaneous
salution of as many equations, instead of eighty-three values from
eighty-three equations ; but we arrive at more complex expressions
for the angular errors as follows :—

il e
a— {2+ ,)[(Bp — @p)N] — 20[{ep = ap} ’
%, + v+ i 7 (18
w -
= 2 p_,‘w. (bt vp)(cp — @A - 2p[(0p — a)\}
t,+T ;
;e F - L5
The second method has invariably been adopted, originally be-
cause it was supposed that, the number of the factors A being re-
duced from the total number of equations to that of the circuit and
base-line equations, a great ._sa.ving of lguour.\\'ould be eﬁ'ected_.. 'l'}tst]it
subsequently it was ascertained that in this respect thereislitte
to choose between the two 1 f 1
and as many factors are introduced as there are equations, the factors
for the triangular equations may be readily ehm!natcd at the ontsek.
Then the really severe calculations will be restn{‘:ted'to the solutﬁ;ll
of the equations co inin&* thellaatcrs for the circuit and base-line
equations, as in th cond method. X
qln the ;:)receding illustration it is assumed that the Lase-lines are
errorless as compared with the triangulation. Strictly spe’a‘di?ﬂ?g,-
however, as base-lines are fallible quar s, presumably of ﬁt‘ia;
ent weight, their errors should be introduced as unknown guan .
of which the most probable values are to be determined 1t a simul
taneous investigation of the errors of all the facts of observat;;g;
whether linear or angular. When they are connected toget :
by so few triangles that their ratios may be deduced as accura :];?;
T so, from the triangulation as from the measured leng :;
- when the connecting triangles are
atios are of much greater \T?Jgh]t than
= : = ,_.
ors of the base-lines may be negle
decided, fnﬁhﬁf
x o o 1 -]
he relative magnitudes of the probable errors mli;@
T measures and ratios, to assume the base-

v composed of polygons

Q
CR-N

8
4 8,

=
£

of
3 osed of P 5
igle triangles, a3 has b:;v
on, the geometrical harm 5
troduction of a large nu.n_lber”
o-par ” equations of condition, :
Thus the problem for attack was t];e:l‘:?an
mber of equations of wnd;ﬁmu:t al O
as of every figure + four times the nf
; es+the number of
-1, nber of unknown quautitigs cunzam.e lesl.fs =
jons being that of the whole of the observed anfr -
od of procedurs, if rigorous, would be precisely simil

hods ; for, when z is not eliminated,
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already indicated for *harmonizing the angles of trigonometrical
figures,” of which it is merely an expansion from single figures to
great groups. -

The rigorous treatment woula, howeve.r, have. involved the
simultaneous solution of about 4000 equations between 9230 un-
Enown quantities, which was quite impracticable. The triangula-
tion was therefore divided into sections for separate reduction, of
which the most important were the five between the meridians of
67°and 92° (see fig. 1, p. 696), consisting of four guadrilateral figures
and a trigon, each comprising several chains of triangles and some
base-lines. 'This arrangement had the advantage of enabling the
final reductions to be taken in hand as soon as convenient after
the completion of any section, instead of being postponed until all
were completed. It was subject, however, to the condition that
the sections containing the best chains of triangles were to be first
reduced ; for, as all chains bordering contiguous sections would
necessarily be “* fixed ™" as a part of the section first reduced, it was
obviously desirable to run no risk of impairing the best chains by
forcing them into adjustment with others of inferior quality. It
happened that both the north-east and the south-west quadrilaterals
contained several of the older chains; their reduction was therefore
made to follow+that of the collateral sections containing the modern

hains.

<

But the reduction of each of these great sections was 1n itself a
very formidable undertaking, necessitating some departure from
a purely rigorous treatment. For the chains were largely composed
of polygonal networks and not of single triangles only as assumed
in the illustration, and therefore. cognizance had to be taken of a
number of ‘“side” and other geometrical equations of condition,
which entered irregularly and caused great entanglement. Equa-
tions 17 and 18 of the illustration are of a simple form becanse they
lave a single feometrica.l condition to maintain, the triangular,
which is not only expressed by the simple and symmetrical equation
z+y+z=0, but—what is of much greater importance—recurs in
a regular order of sequence that materially facilitates the general
solution. Thus, though the calculations must in all cases be very
numerous and laborious, rules can be formulated under which they
can be well controlled at every stage and eventually brought o a
successful issue. The other geometrical conditions of networks are
expressed by equations which are not merely of a more complex
form but have no regular order of sequence, for the networks pre-
sent a variety of forms ; thus their introduction would cause much
entanglement and complication, and greatly increase the labour of
the csﬁculations and the chances of failure. Wherever, therefore,
any compound ﬁ?xre occurred, only so much of it as was required
to form a chain of single triangles was employed. The figure having
previously been made consistent, it was immaterial what part was
employed, but the selection was usually made so as to introduce
the fewest triangles. The triangulation for final simultaneous
reduction was thus made to consist of chains of single triangles
only ; but all the included angles were *“fixed ” simultaneously.
The excluded angles of compound figures were subsequently har-
monized with the fixed angles, which was readily done for each
figure per se.

This departure from rigorous accuracy was not of material im-
Pportance, for the angles o? the compound figures excluded from the
simultaneous reduction had already, in the course of the several
independent figural adjustments, been made {o exert their full in-
fluence on the included angles. The figural adjustments had, how-
ever, introduced new relations hetween the angles of different figures,
<ausing their weights -to increase ca#feris paribus with the number
of geometrical conditions satisfied in each instance. Thus, suppose
2 to be the average weight of the £ observed angles of any figure, and
= the number of geometrical conditions presented for satisfaction ;
then the average weight of the angles after adjustment may be

taken as w't—in' the factor thus being 1'5 for a triangle, 1-8 for
.

3 hexagon, 2 for a quadrilateral, 2'5 for the network around the
Sironj base-line, &c.

In framing the normal equations between the indeterminate
factors A for the final simultaneous reduction, it would have greatly
added to the labour of the subsequent caleulations if a separate
‘weight had been given to each angle, as was done in the primary
figural reductions; this was obviously unnecessary, for theoretical
Tequirements would now be amply satisfied by giving equal weights

the angles of each independent figure. The mean weight

that was finally adopted for the angles of each group was therefors
taken as

i
e
# being the modulus already indicated in section 12.

The second of the two processes for applying the method of
Mminimum squares having been adopted, the values of the errors
¥ and z of the angles appertaining to any, the pth, triangle were
finally expressed by the following equations, which are derived from
(18) by substituting  for the reciprocal final mean weight asabove
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vp="2[(2b;— @y = c;]\]

Zp= %Ei(z"ﬁ —ap—Bbp)A]

The most laborious part of the calculations was the construction
and solution of the normal equations between the factors A, . On
this subject a few hints are desirable, because the labour involved
is liable to be materially influenced by the order of sequence adopted
in the construction. The normal equatibns invariably take the
form of (4), the coefficients on the diagonal containing summations
of squares of the coefficients in the primary equations, while those
above and below contain summations of products of the primary
quantities, such that the coefficient of the pth A in the gth equation
is the same as that of the gth A in the pth equation. In practice,
as any single angular error only enters a few of the primary equa-
tions of condition, many of the coefficients vanish, both in the
primary and in the normal equations ; and it is an object of great
im%-?rtance 80 to arrange the normal equations that most blanks
shall occur above and fewest blanks befween the significant valpes
on each vertical line of coefficients ; in other words, the significant
values above and below the diagonal should lie as closely as possible
to the diagonal, every value on which is always significant. This
advantage is secured when the primary equation’ are arranged in
groups In which each contains a number of angular errors in
common and as many as possible of those entering the group on
each side. Thus the arrangement must follow the natural succes-
sion of the chains of triangles rather than the characteristics of
the primary equations ; if, for example, all the side equations were
grouped together, and all the latitude equations, and so on, great
entanglement would arise in the solution of the normal equations,
enormously increasing the labour and the chances of failure. The
best arrangement was found to be to group the side and the three
geodetic eynations of each circuit together In-the order of sequence
of the meridional ehains of triangles, and then to introduce the
side equations connecting base-lines between the groups with which
They had most in common.

The following table (IL.) gives the numoer of equations of condi-
tion and nunknown quantities—the angular errors—in the five great
sections of the triangulation, which wers respectively included in
the simultaneous general reductions and relegated to the- subse-
quent adjustments of each figure per se:— {

B e e 4 L)

Simultaneous.

Eguations.

Externzl Figural.

Equations.

Circuit
and Base-
line.
Trl
angular,
Angular
Errors,

8
&
(=]

1. N.W. Quad,
2. 8.E. Quad.
3. N.E. Quad.
4. Trigon........
5 Quad.

1650 | 267
277 831 | 164
573 | 1719 | 112
808 909 | 192
172 518

[
@

Y
L=]

0
W 1D

The magnitudes of the 248) angular errors determined simultane-
ously in the first two sections were very small, 2240 being under
0711, 205 between 0”1 and 0”2, 33 between 0”-22and 0°3, 2 %etween
0"-3 and 0”4, and 1 between 0”4 and 0”'5. In the third section,
which contained a number of old chains, executed with instruments
inferior to the 2 and 8 foot theodolites, they were larger: 780 were
under 0”1, 911 between 0”1 and 1”°0, 27 between 1”°0 and 2”-0, and
1 between 2”0 and 2”'1. Thus the corrections to the angles were
generally very minute, rarely exceeding the theoretical probable
errors of the angles, and therefore applicable without taking any
liberties with the facts of observation.

18. TReoretical Error of eny Function of Angles of a
Geometrically corrected Triangulation.—The investigation
of such theoretical errors was no easy matter. When firs!
essayed it was generally assumed by mathematicians it
England that any attempt to exhibit the theoretical error
by a purely algebraical process socon led to results of in-
tolerable complexity, so that it was desirable to introduce
numbers as soon as possible for every symbol except the
absolute terms of the geometrical or primary equations of
condition. But on continuing the algebraical process cer-
tain relations were found to exist between the coefficients
of the indeterminate factors in the normal equations of the
minimum square method and the coefficients of the wan-
known quantities in the primary equations of conditiony
which enoinously simplified the process and led to a general
algebraical expression of no great complexity ; it was also

determined :—

found that, the number of primary equations being z, the.




704 STURVEYING

1abour of calculation by the formula was reduced t6 an
nth of that involved by resorting at once to numbers.

Let F be any function whatever of the corrected angles (X; — =),
(X;—2,), . ..0f a trigonometrical figure ; let

: fl:&f"&:d}fﬁ' .e
also let 24y, %, . ., symbols hitherto employed to represent the rela-
tive reciprocal weights of the observed angles X;,X,, . . ., in future
represent absolute. measures of precision, the p.c.” of the observed
angles ; then the following formula expresses the p.e. of any func-
tion of the corrected angles rigorously :—
e ot +/a.ul{[fo.u]ds+ [/b.u]ds+ ...+ [fn.'lc]An?
—fZa— i[fb.u] {Lfe. %] Ba+ [fB.%] Bo+ ... + [ . 2] Bt (20).
+[fn.ad{fe. wIN+ /5. w1V + ... + [fr. w] Vo)
The symbols @, 3,...n have the same signification as in (3) to
(6) of section 13. ., B,... N are coefficients which must be de-
termined in the process of solving the normal equations as follows:—
Na=Age,+Ases+. . .+Anen1
MN=B e, +Bies+...+ Bntu

s Me=N e, + Neta+. . .+ Natn
wnere the coefficient represented by any two letters in one order
is identical with that represented by the same letters in the reverse
order; thus 4,=N,. Hence tofind the p.c. of any angle, as (X; —,),
in a single triangle we have -
1

Ji=1, and Aa=[—w. T T

all the other factors vanish, and
U
%y + Ug+Ug
To find the p.e. of the ratio R of either side to the base, —if
R=sin (X, —z;)=sin (X3 —x,),

then Ffi=Reot X,sin 1" f,=Rcot Xysin 1, f3=0,
and p.elof B

=Rsin®1" { %, cot?X,; + uycot’X,

pelof (X;—x)=u — =p.e2 of X; —p.e? of z;.

(1 cot X — uyc0t X,)°
= AUy 1y + U E )

When the function of the corrected angles is the ratio
of the terminal to the initial side of an equilateral triangle
or a regular guadrilateral -or polygon (either of two sides
being taken if the figure has an odd number of exterior
sides), then, assuming all the angles to be of equal weight,
we have the following values of the p.e.’s and the relative
weights of the ratios :—

Fignre. p.e. Weight. Figure. p-e. Weight.

£7824/%5in 17 1-49 | Pentagon £1-21+/u sin 1”7 0-68
Quadrilateral 1-00 - 1-00 | Hexagon 1-29 = 0-60
Trigon 1-05 e 0-90 | Heptagon 141 . 0-50
Tetragon ... 1-15 3 075 | Octagon 157 S 041

In ordinary ground seven single triangles will span about
as much as two hexagons and the weights of the terminal
sides would be as twenty-one by the former to thirty by
the latter. In a flat country two guadrilaterals would not
span more than one hexagon, giving terminal side weights
as five to six; but in hills a quadrilateral ay span as
much as any polygon and give a more exact side of con-
tinuation. Thusin the Indian Survey polygons predominate
in the plains and quadrilaterals in the hills.

The theoretical errors of the lengths and azimuths of
the sides, and of the latitudes and longitudes of the stations,
at the termini of the chains of triangles or at the circuit
closings, might be calculated with the coefficients a, 5, and
¢ of #, 9, and 2z in the circuit and base-line equations as
the #’s, and the known p.e’s of X, ¥, and Z and the
other data of the figural reductions. Such caleulations
are, however, much too laborious to be ordinarily under-
taken. Thus the exactitude of a triangulation is very
generally estimated merely on the evidence of the magni-
tudes of the differences between the trigonometrical and
the measured lengths of the base-lines; for, though the
combined influence of angular precision and geometrical
configuration is what really governs the precision of the
results, it is not readily ascertainable, and is therefore
generally ignored. But, when questions as tb the intrinsic
value of a triangulation arise, the theory of errors should

[:rmcmx.&no;;

always be appealed to, and its intimations accepted rather
than the evidence of base-line discrepancies, which if v

small are certainly accidental, and if seemingly large may
be no greater than what we should be prepared to paie
Good work has occasionally been redone unnecessarily, and

inferior work upheld, because their merits were erroneously

estimated. The following formulse will be found useful jn -

acquiring & fairly approximate knowledge of the magnitude
of the errors which theory would lead us to expect, not
only in side, but in latitude, longitude, and azimuth also,
at the close of any chain of triangles. They indieaﬁ;
rigorously the p.e’s at the terminal end of a chain of
equilateral triangles of which all the angles have been
measured and corrected and are of equal weight ; the
results may be made to serve for less symmetrical chaing,
including networks of varying weight, by the application
of certain factors which can be estimated with fair pre-
cision in each instance. :

Let ¢ be the side length, e the p.e. of the angles, n the number
of triangles, and R the ratio (here=1) of the terminal to the
initial side, then

p.e. of R=¢sin 1"RA3n
p.c.of azimuth=eVFn ’

p.e. of either coordinate=ec su:sl N2n® + 302+ 100

When the form of the triangles deviates much from the equi-
angular, the p.e. must be multiplied by a factor increasing up to
1'4 as the angles diminish from 60° to 30° and a mean value ofc
must be adopted. When the chain is double throughout, the p.a,
must be diminished by a factor taking cognizance of the greater
weight of compound figures than of single triangles. When the
chain is composed of groups of angles measured with different in-
struments, a separate value of ¢ must be employed for each group,
and the final result obtained fromN/[p.e.7]. The p.. of R may ba
determined rigorously for any chain of single triangles, with angles
of varying magnitudes and weights, by (22), with little labour of
caleulation. -

19. Relations between Theoretical Errors of Base-lines
and those of a Triangulation.—These relations have to be
investigated in order to ascertain whether the baselines
may be assumed to be errorless in the general reduction of
the triangulation; being fallible quantities, their erroms
must be included among the unknown quantities fo be in-
vestigated simultaneously, if their respective p.e’s differ
sensibly, or if the p.e.’s of their ratios are not ‘materially
smaller than those of the corresponding trigonometrical
ratios. By (23) the p.e. of the ratio of any two sides of an
equilateral triangle is € sin 1” /23 ; but the p.e. of the
ratio of two base-lines of equal length and weight is 9 V2,
where 7 is the p.e. of either base-line ; thus weight of trigo
nometrical ratio : weight of base-line ratio : 3% : 2 sin?1%
or as 3:1 when e= +0"3 and %= + 15 millionth parts,
which happens generally in the Indian triangulation.
But the chains between base-lines were always composed
of a large number of triangles, and the average weight of
the base-line ratios was about eleven times greater by the
direct linear measurements than by the triangulation, even
when all the unascertainable constant or accidental errors
—as from displacements of mark-stones—which might be
latent in the latter were disregarded. Moreover, the base
lines were practically all of the same precision ; they were
therefore treated as errorless, and the triangulation Wéd
made accordant with them.

If a baseline 4D be divided at B and C info three
equal sections connected together by equilateral triangles,
and every angle has been measured with a p.e. =& E®
p.e. of any trigonomeurical ratio may be put =x.€ sinl’

(232

[ & being a coefficient which has two values for each ratio,—

the greater value when the triangulation has been cartt n
along one flank of the line, the smaller when along bot

vol. vile

1 For an investigation of these formule, see Appendix No. 3,
of Account of Operations of Great Trigonom. Survey, 1882
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f1'83 and 1'25; for j—%, 294 and 1-99; for %%’ 2'16_a.nd ’
1-46. The values for the last two ratios show that, when
¢he length of a base-line is determined partly by measure-
ment and partly by triangulation, the p.e. is smallest if
the central section rather than an end section is measured.
If, with linear and angular p.e’s as in the Indian
operations, a single section is measured once only, and the

‘lengths of the other sections are derived from it by trian-

lation, the p.e. of the entire length will be greater-than
that of the whole line once measured ; it will be less if the
section is measured oftener thah once and the mean taken.
! 920. Azimuth Observations in connexion with Principal
Triangulation.—These were invariably determined by
measuring the horizontal angle between a referring mark
and a circumpolar star, shortly before and after elonga-
tion, and usually at both elongations in order to eliminate
the error of the star’s place. Systematic changes of “face”
and of the zero settings of the azimuthal circle were made
as in the measurement of the principal angles (§ 9); but
the repetitions on each zero were more numerous; the
azimuthal levels were read and corrections applied to the
star observations for dislevelment. As already mentioned
(§ 17), the triangulation was not adjusied, in the course
of the final simultaneous reduction, to the astronomically
determined azimuths, because they are liable to be vitiated
by local attractions; but the azimuths observed at about
fifty stations around the primary azimuthal station, which
was adopted as the origin of the geodetic calculations, wers
referred to that station, through the triangulation, for
comparison with the primary azimuth. A -table was pre-
pared of the differences (observed at the origin — computed
from a distance) between the primary and the geodetic azi-
muths ; the differences wcre assimed to be mainly due to
the local deflexions of the plumb-line and only partially
to error in the triangulation, and each was multiplied by

the factor :

o tangent of latitude of origin

= fangent of latitude of comparing station’

in order- that the effect of the local attraction on the azi-
muth observed at the distant station—which varies with
the latitude and is=the deflexion in the prime vertical x
fthe tangent of the latitnde—might be converted to what
iit would have been had the station béen situated in the
same latitude as the origin. Each deduction was given
a weight, 0, inversel, proportional to the number of tri-
angles connecting the stetion with the origin, and the
most probable value of the error of the observed azimuth
at the origin was taken as
[(observed — computed) p w71 242

el e 24) 3
.the value of z thus obtained was —1"1.

The formul= employed in the reduction of the azimuth
observations were as follows. In the spherical triangle
PZS, in which P is the pole, Z the zenith, and . the star,
the colatitude PZ and the polar distance PS are known,
and, as the angle at S is a right angle at the elongation,
the hour anglé and the azimuth at that time are found
from the equations

cosP=tanPScotPZ,
cosZ=cosPSsinP.

The interval, 8P, between the time of any observation and
*that of the elongation being known, the corresponding azi-
muthal angle, 82, between the two positions of the star
at the times of observation and elongation is given rigor-
ously by the following expression—tan 82

= 2sin?15P ___25),
CotPSsin? Zsin Fl1 + 0 PS cos P+ sec’ PS cotPsind Py

=—

—

"B; join AD, then BD is deter-
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. BC CcD
‘flanks, 8s follows :—for ratio -, k= 1-41 and 1; for i’

which is expressed as follows for logarithmic computation—
37— _mian Zcos® PS
= 1-n+l °?

T o
where m =2 sin? 5 cosec 1", n=2 sin?P§ sin2 8—21-3, and

I{=cot Psin 8P ; I, m, and » are tabulated.
21. Calculation of Height and Refraction.—Let A and B
(fig. 4) be any two points the nor- K s
mals at which meet at C, cutting the
sea-level at pand ¢; take Dg= Ap,
then BD is the difference of height;
draw the tangents 4a and Bb at 4
and B, then a4 B is the depression £
of B at A and 684 that of 4 at

mined from the triangle 4ABD,
The triangulation gives the dis-
tance between 4 and B at the sea-
level, whence pg=c; thus, putting
Ap, the height of 4 above the sea-
level, = H, and pC =7,

H & h
AD:c(l-l-?— e ) et A Fig. 4. s
Putting D, and D; for the actual depressions at 4 and B,

&8 for the angle at 4, usually called the “subtended angle‘,’3
and % for BD—

S=3(Dy- D,
sin §

and e

The angle at € being = Dy+ D,, S may be expressed in
terms of a single vertical angle and C when observations.
kave been taken at only one of the two points. C,
%’ cosec 1" in seconds. Putting
D', and D' for the observed vertical angles, and ¢,, ¢5 for,
the amounts by which they are affected by refraction,
Dy=D's+ ¢g and Dy=D'p+ Pp; Pp-and ¢p may differ in
amount (see § 10), but as they cannot be separately ascer-
tained they are always assumed to be equal; the hypo-
thesis is sufficiently exact for practical purposes when both
verticals have been measured under similar atmospheric
conditions. The refractions being taken equal, the ob-
served verticals are substituted for the true in (27) to find
S, and the difference of height is calculated by (28); the
third term within the brackets of (26) is usually omitted.
The mean value of the refraction is deduced from the
formula

the ** contained are,” =¢

@=3{0C—(D'a+D's)} -eceerrernesanesanse...(29).
An approximate value is thus obtained from the observa-
tions between the pairs of reciprocating stations in each
district, and the corresponding mean *“ coefficient of refrac-
tion,” ¢+ C, is computed for the district, and is employed
when heights have to be determined from observations at
a single station only. When either of the vertical angles
is an elevation — & must be substituted for D in the above
expressions.t
II. TRAVERSING, AS A BASIS FOR SURVEY.—RECTANGULAR
SPHERICAL COORDINATES.
Traversing is a combination of linear and angular

measures in equal proportions : the surveyor proceeds from
point to point, measuring the lines between them and at

1 Tn topographical and levelling operations it is sometimes convenient
to apply small corrections fo observations of the height for curvature
and refraction simultaneously. Pautting d for the distance, r for the
earth’s radius, 2and k for the coefficient of refraction, and expressing the
distance and radius in miles and the correction to height in feet, then
correction for curvature—=3$d?; correction for refraction= —4xd®; cor-

? 2 — 4k

rection for both= o o

3




