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PREFACE.

Progress in education is symbolized in the multiplication and
improvement of text-books. They are showered upon us like
the flowers of spring-time, until a new text-book is no longer
a novelty. To-day the author sends forth this little volume
on what it is hoped may be a mission of usefulness. It comes
modestly claiming a welcome from the public as an addition
to our educational litérature, and in support of such elaim
the following statement of its object and peculiarities is pre-
sented.

Our text-books upon Geometry, though well adapted to our
higher instibutions, are, for'a large c¢lass of schools, Loth too
voluminous and difficult. In many of our Academies, Semina-
ries, High and Normal Schools, the time allotted to Geometry
is too brief to allow the pupil to complete more than fout or
five books of the ordinary text-book: in consequence of which,
all-of that most important and practical part treating of the
measurement of the surface and volume of prisms, pyramids,
eylinders, cones, andispheres, must be omitted. To supply this
defeet and enable the pupil to acquire a fuller knowledge of the

subject, the present volume has heen written.

GenerarL Fearvres.—In ifs adaptation to the class of pupils

designated, this work is characterized by four general features.
First, an 'abbreviation of the ordinary text-books: secontl, a
simplification, so far as possible, of the methods of demonstras
tion usually employed; third, examples to impart the power of
making a practical application of the principles of the science;

fourth, undemonstrated theorems, to cultivate the power of
3




4 PREFACE,
original thought and investigation. These general character
istics will be briefly noticed.

Apsreviation.—In the abbreviation of the subject, the object
has been to present the most valuable part of Geometry in
about one-half ot the space usually devoted to.it. This object
has béen| accomplished in two ways:—first, by an omission of
all that is not essential to the final results; and secondly, by
such a modification of the remainder as to preserve the chain
of logie intact.  The difficulty of this will be appreciated by thosa
who remember that many propositions, apparently of little im-
portance, arve essential to the proof of others which follow them.

Siypriricarion.—Much care has been taken to simplify the
subject as far as possible. /The author has endeavored to give
the very simplest methods of treating speecial subjects, such as
parallels, areas, volumes, the circle, ete. and also the cleavest
and most concise methods of demonstrating individual theorems.
The method. of infinites, as applied to/incommensurable guantities,
the circle, and the sphere, has Contributed largely to this simplifica-
tion and abbreviation, This method is regarded by some as less sat-
isfactory than the method of reductio ad_absurdwm, or the méthodk
of limits: /but it will be remembered that it is supported by the
authority of ‘our most eminent mathematicians, and, being so mueh
more simple and coneise, is believed to be preferable in a brief
worlk like this,

Avrricarions.—A radical defect of most of our text-books upon
Geometry is that they present the subjeet so/abstractly, that
when the pupil has completed his course he/is often unable to

any practical application of what he has learned. This

defect has been supplied by the presentation of a collection of

ples at the close of each book. With these, the

pupil can see the application, the practical value of what he is

doing, and will not only be able to make use of his knowledge,

but will be incited to study the subject with more interest and
earnestness.

TreoreMs For OriciNan Tmouvcnr.—Another general defect of
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our text-books upon Geometry is the lack of matter for oriuirm{
thought, for the training of the inventive powers of the student.
‘The pupil is required to learn the deménstrations of the text-
book, but he has no undemonstrated theorems to test his own
geometrical powers, and to train him in reasoning independently
of the text-book. In view of this general defect, a collection of
theorems for ariginal thought has been given at the elose of each book.

Geometry, in both the respects mentioned, has been treated
quite differently from arithmetic and algebra. In these latter
works, we have generally a large class of problems both for the
application of the principles and the exercise of original thought,
It is proper to remark, too, that several authors have realized this
defect of Geometry, and have occasionally given some practical
problems, and, in ore or two instances, a collection of undemon-
strated theorems. In the present work, such problems and
theorems are an essential and prominent part of the plan.

SpECIAL Frarvres—The attention of teachers is also respects
fully invited to the following special features of the work :

1. The Systematic Arrangement of the subject-matter, it is thought,
will be an aceeptable feature of the work. h

2. The Analysis at the beginning of each book is supposed to
be valuable in giving the pupil a general idea of the object of the
book, and thus often indicating the course of reasoning in its
development. ‘

3. The Dactrine of Poarallels, vesulting from the modem definition
of an angle and parallel lines, now adopted by several authors, is
here presented in its most simple and concise form.

4. The Subject ¢f Areas in Book IIL., and Volumes in Book VI..
are presented with great conciseness and simplicity by the use
of the doctrine of infinites and indivisibles.

5. The treatment of -the circumference ana area of @ circle, in their
relation to =, is much more simple and logical than any thing
the author has met. It is confidently believed that it will «_ri'w.;
pupils a clearer view of the subject than they usually acquire in

the study of other text-books.
1=
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MexnsurAtion.—A formal treatise upen Mensuration is’ alse
appended, although the most of it is really presented in the
practical exercises. A few rules are given without demonstra-
tion ; such omissions may be supplied by the teacher.

TricovoxETRY.—The little treatise on Trigonometry presents
the elements of the subject briefly, and contains about as much
as thé advanced pupils in our ordinary academies, seminaries, ete.
should ' be required to learn. A short treatise on Analytical
Trigonometry is appended for those who, haye! time to study
this very interesting and useful'subject. The Trigonometry and

Geametry will be bound) together, and also separately, to accom-

modate schools of \different grades.

A general acknowledgment of indebtedness is due to those
who have previously written upon the subject of Geometry,
especially to |American and French authors, many of whese
warks have been examined with great interest and profit.

Thanking my friends for the generous appreeiation bestowed
upon my previousiabors, I send forth/this little volume, hoping
that /it may beras kindlyselcomed, and thaf,in its mission of
usefulness, it may 2id in awakening a deeper interest in the
beautiful “science /of form,—a, science over which the ancient
sages mused with such deep enthusiasm, and to which the
achievements of modern art and invention are so largely in-
debted.

EDWARD BROOKS.

Srete Noryarn Scmoorn, Jan. 10, 1865.
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GEOMETRY AND TRIGONOMETRY.

GEOMETRY is generally supposed to have had its origin in Egypt, where the
annual overflowing of the Nile obliterated the landmarks and rendered it
necessary to have recourse to mathematical measurement to re-establish them.
This origin is indicated by the term itself, Geometry being from two Greek
words, ym, earth, and perpov, measurs, signifying, literally, the measurement of
the earth. But, whatever may have been the origin of the term, the natursi
tendency of the human mind to compare things in respect of their forms and
magnitudes is so universal, that a geometry more or less perfect must have
existed since the first dawn.of civilization.

Geometry, originating in Egypt, is supposed to have been introduced into
Greeee by Thales, who lived about the year 650 p.c. Pythagoras, who lived
about 570 B.c., was one of the earliest Gireek geometers. He is supposed to
haye discoyered the following prineiples:—I1. Only threa plane figures can
fill up the space about a point; 2. The sum of the angles of a triangle equals
two right angles The celebrated proposition of the square on the hypo-
thenuse. . Some say that in honor of this last discovery he sacrificed one
hundred oxen. ' Plutarch says but one ox. Cicero doubts eyen that, as it was
in opposition to his doctrines to offer bloody sacrifices, and suggests that they
may haye been images made of flour ox clay.

The next geometer of ominence was Anaxagor who composed a treatise
on the gradratureof the eirelas Plato, the “poetical philosopher;” delighted
in‘the science, and cultivated it with great success, as is proved by his simmple
and elegant solution of the duplication of the cube. About fifty years after
the time of Plato, Euclid collected the propositions which had been discovered
by his predecessors, and formed of them his famous < Elements,”—a work of
such eminent excellence that by many itis regarded,'even at the present day,
ag the best text-book upon the suhbject of El¢mentary Geometry. It consists
of fifteen books, thirteen of which are known to have been written by Euclid;
but the fourteenth and fifteenth are supposed to have been added by Hypsicles
of Alexandria.

Apollonius of Perga, about 250 years B.c., composed & treatise on Conic
9




10 HISTORY OF

Sections, in eight hooks. He is said to have given them their names; parabola,
etc. About the same time flourished Archimedes, who distinguished himself
in Geometry by the discovery 16 beautiful relation between the sphere
and cylinder. See Theorem®X1.Book VII. He also distinguished himself by
his work on comoids and) spheroids; by his discovery of the exact guadruture
of the paraboela, and his very ingenious approximation to that of the circle.
Other geometers of eminence followed, among whom the most illustrious,
perhaps, were. Pappus and Diophantus; but the Greek Geometry, th
was afterward enriched by many new theorems, may be said to have reached
its limits in the hands of Archimedes and Apolloni
seyventeen centuries peed befors this limit was passed.  Tn 1637, Descartes

lication of

publighed his Geometry, which containgd the first systematic apy
algebra to the solution of geometrical ‘propositions.  Soon after this followed
the discovery of theiinfinitesimal calculus of Leibnitz and Newton; and from
that time to the p nt Geometry has shared in the general progress of all
mathematical sciences.

TricoxoMeTrY.—Trigonometry, is generally helieved, originated with
the Greek astronomers of Alexandria. The solutions of the most useful cases
of splierical triangles have been known from the time of Hipparehus,
fundamental formulm appearin the Analemma of Ptolemy.

The Greeks used the clords of the double ares, instead of the sines. The
gines, or semi=chords, were introduced by the Arabians, probably by the astro-
nomer Albategninsg. /| To the g, who preserved and cultivated the sciences
during the dark ages; this scicnoce isdindebted also for several other improve-
wments. Regiomonfanus introduced the tangents, which did much to simplify
the ealeulations.

The term sine seems to be derived from the Latin sinus, 2 bosom ; the arc is
supposéd to repregent a bow, and thus gets its name: the string, half of which
represents the sine of half the are, would come against-the heart or bosom;
hence the name sine. The terms tangent and secant are naturally derived from

the old geometrical definitions, The cosine and co-secant of an arc mean the

sine and secant of the complement, the co being merely an abbreviation of
complement. They were first introduced by Gunter.

There are two methods of treating Trigonometry, known as the analytica)
and synthetic methods. The synthetic method regards the trigonometrical
functions ines, or geometrieal magnitudes, and develops the science ac-
cording tot ws of geometrical reasoning. The analytical method regards
these functions as ratios or numbers; and develops the science by me:mé of

analyticsl formulas,

GEOMETRY AND TRIGONOMETRY.

he modern or analytical method is superseding

method, This method is said to have been first introduced by Dr., P
Professor De Morgan, however, one of the first: English authorities, tells us
that “ Rheticus, who gave the first complete trigonometrical table, and invente
the sccant and co-secant to complete it, nsed the method of ratios.”

LogAnitaus.—Logarithms were invented by Lord Napier, Baron of Mer-
chiston, in Scotland. His work upon them was first published in 1614 ; though
it is probable that he had commenced the investigation of them afea

The invention is regarded as one of the most nseful ever made. It

ve the author so high a reputation that Kepler dedicated a work to him in

1617, and suceeeding mathematicians have paid him the highest compliments.

Napis system of logarithms was afterward improved by Henry Briggs, a

contemporary of the inventor, and Professor of Geometry in Gresham College.

X
.
Assuming 10 for the basis, he constructed a system of logarithms corresponding
to our system of numeration, which is much more convenient for the ordinary
purposes of ealculation. The two systems are distinguished as the Napierian
and Briggean, or the Hyperbolic and Common logarithms. The former are
called Hyperbolic hecause they rL‘!II“:FénL the area of a rectangular h)‘l.‘e:rimlu.
between its asymptotes; the lalter are called Common because they are those
in common use.

3riges calenlated the logarithms to 14 places, with the index of all numbers
between 1 and 20,000, hnd between 90,000 and 100,000, and published them in
1624. AdrianV L, anative of Holland, computed the logarithms of numbe
between 20,000 and 90,000, and thus completed what Briges had begun: he
reduced the tables, however, to 10 decimal places. Vlaecq's treatis published
in 1028, and contained the logarithms of all numbers up to 100,000, and also

rithms of the sines; tangents, and secants of every minnte of the
quadrant. In 1623, he published a work containing the logarithmic ‘sines,
cosines, tangents, and cotangents for every ten seconds of the quadrant, eal-
culated from the natural sines, ete. of the Opus Palatinum of Rheticus.

In the same year the Trigonomstrica Britannica was published at Gouda,
which contained the logarithmic sines and tangents for tho 100th part of every
degree of the quadrant, together with o table of natural gines, tangents, and
secants. These had been computed by Briggs. Since then, many different
tables have been published. The most complete are those of Vlacy; but these
are very scarce. [Hutton's Logarithms and Babbuage's Logarithme of Numbers

are among the most accurats and convenient. For more information upon the

ot, see Brande's Encyclopedia, from which most of this history is collated.
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SUGGESTID.\*S TO TEACHERS.

Tuw author desires to present the folloywing suggestions to those who
may use this -work:

1. Young pupils should have a preliminary drill upon concrete
Geometry before taking up the text-hook. Let them be required to cut
out triangles, squares, oto. from paper, give their names, compare them,
and draw them upon the board. In this manner a general idea of the
subject, the fignres treated of, and even the method of reasoning, may
be obtained, and the transition from this to the abstract will be simple
and easy.

2. In the recitation, the pupil should be required to construct his
disgram upon the blackboard without the aid of the text-book, and
then enunciate and demonstrate the theorem, care being taken that the
language and reasoning be accurate. At theclose of the demonstration,
those of the ¢lass who have noticed errors, upon being called upon by
the teacher, should rise and -point them out; after which the teacher
meay make any criticisms or explanations he may think proper.

3. With quite young pupils, and those whose time for fhe study is
limited, the theorems for original thought may be omitted; with others,
however, these exercises will be found to be of greaf value. They can
be given in connection with the demonstrations of the book; or lessons
may be assigned upon them after completing the bock to which they
belong, or they may be omitted until review. The latter method will
be generally preferred.

The Practical Ezercises should be solved by all classes.. The easier
problems may be assigned in connection with the theorems which they
illustrate; the others may be deferred until the book upon which they
depend is completed. The most difficult problems may be omitted

until the whole Geometry is completed. .
12

ELEMENTARY GEOMETRY

INTRODUCTION,

LESSON TI.
SUBJECT-MATTER OF GEOMETRY,

EvEry object that we can see occupies some portion
of space, and has extent and form. If we consider Some
object, as this book, for imstance, we will perceive that it
has length, breadth, and thickness. These are called the
dimensions of the book.

If; now, we remove the book from before us, we can
still imagine the space which it filled to be in the form
of a book. This space, of course, will not be a material
thing like the boolk, but it will have form and extent the
same as the book had. Such definite portions of space)
their forms and extent, are the things considered in
Geometry.

These limited portions of space are.called Volunies. A
volume has length, breadth, and thickness, and these are
called its dimensions. We should be eareful to distinguish
the geometrical volume, which isa portion of space, from
the solid body, which oceupies space. The one is material,
the other is immaterial; the one is real body, the other is
ideal body or pure form. It is ideal body or pure form that

is treated of in Geometry.
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Let us now consider this ideal body or volume a little
more closely. First, we will notice that it is distinetly
separated from the surrounding space. That which so
separates it is called a Swrface; and, since that which
bounds the volume forms) no part of the volume, it will
be seen that a surface has no thickness, and possesses,
theréfore, but twoidimensions,—length and breadth.

If we consider one of these bounding surfaces, we will
seethat it also is limited or bounded. That which limits
a.surface is ealled a-Line; and since that -which limits a
surface forms no part of the surface; it is seen that a line
has only one dimension,—length.

Aeain, if we examine ‘one of these lines;we will see
that its ends ave limited, This limit is called a Poinf;
and, since the limit forms mo part of the-line, a point
has neither length, breadth, nor thickness, but position
only.

Now, although we have considered a point as the limit
of a line, & line as the limit of ‘a surface, and a surface ag
the limit of’a volume, yet each of these may be regarded
in a purely abstract manner, distinct from each other.
Thus, we may consider points without regard to lines,
ines without reference to surfaces, and surfaces withont
reference fo volumes.

We have now attained a conception-of the ideas of
Geometry by passing from a body to an abstract volume,
from this volume to a surface, from a surface toa line, and
from a ling te & point. /This is the method-of analysis,
and is, without doubt, the method in which these ideas
were primarily attained. They may, however, also be
attained by synthesis, in the following manner.

Fix upon the ided of a point in space. Now, suppose

LESSON IL 15

this point to move, and we have a line; suppose the line
to move in a particular manner, and we have a surface ;
suppose the surface to move, and we have a volume.

These lines, surfaces, and volumes, of which we have
attained the idea, are the fundamental quantities of
Geometry. A guantity, yon will remember, is any thine
that can be measared. When one line crosses another,
their 411\‘(:1'-_;1*(].« may be measured: hence we have a fourth
kind of geometrical quantity, called angles. We are now
prepared to define Geometry.,

Geometry 1s that seience which treats of the properties
and relations of geometrical magnitudes. Tts subject-

matter are lines, surfaces, volumes, and angles.

LESSON II1.
REASONING OF GEOMETRY.

Tae subject-matter of Geometry, we have seen, are lines,
surfaces, volumes, and angles. These general conceptions
give rise to many special forms; these special forms are
deseribed, and such deseriptions constitute the Definitions
of the science. i

When we ¢onsider these Special forms of quantity, as
well as quantity in general; we perceive some-truths' con,
cerning them that arve selfevident,—that must be true,
since they cannot be conceived as untrue. These selft

evident truths ate called Awioms

MLa dheaak s Vel Y 4 - .
The seience of Geometry begins with these primary

ideas of space and the self-evident truths arisine out of
them, and from these, as a hasis, rises to the higher truths

by a process of reasoning. The axioms and definitions ave,
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therefore, said to be the basis of the science of Geometry.
The definitions present the subjects upon which we reason;
the axioms give the laws which guide us in the reasoning
process. From these we trace our way, step by step, to
the loftiest and most beautiful truths of the science, by
the simple process of comparison. . This process of com-
pavison is ecalled reasoning; and to this we now call
attention,

IpAsoNING—All Reasoning is comparison. A compari-
san requires @ standard er basis, and this gtandard is the
sumple, the. :u vomatie. the fnown. To thesetwe bring the
complex, the theoretic, the unknown, and learn to understand
them by comparing the complex with the simple, the theoretic
with the axiomatie, the unknown swith the known.

There are two distinet methods of geometrical reasoning,
which may be distinguished as the apalytic and synthetic
methods.. The-analytic method is-adapted to the dis-
covery of truth; the synthetic method, to the proving of
a truth/when it has already been discovered,

Synrieric Meraop.—The synthetic method, which is
generally employed in proving a truth which is already
known, is called demonstration.  There are two.distinet
methods of demonstration, called the Direct and the In-
direet Method. .

The simplest form of the Direct Meéthod is that inwhich

cures are divectly compared by applying one to another.
This is called the method |’}' .S'll'u,:/'jtu.w'(z'/,:)z. The more
ceneral form of the direct method is that in which truths
are proven by a reference to the definitions and axioms,
or some principle previously proven.

The Indirect Method, known as the reductio ad absurdum,

eonsists in supposing the proposition to be proven not ta
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be true, and then showing that such an hypothesis leads
to a contradiction of some known truth. This is fre-
guently used to prove the converse of a proposition, when
there is no good direct method; it is also used in incom-
mensurable quantities,

o~ 5 ..
Chere are two errors of demonstration into which voune
Ol =

pupils are liable to fall. The first is called Reasoning in a
Circle; the second is Begging the Question. We l'e:lsf);l in a
circle when, in demonstrating a truth, we cmploy a second
truth which ¢annof be proven without the aid 0;’ the first.
We are said to beg the question when, in order to establish
a proposition, we employ the proposition itself:

ANALYTIC METHOD.—The analytic method begins with
the thing required, and by tracing the relations of the
various parts we arrive at some known truth, It is a
kind of going back from the result sougcht by & chain of
relations to what has been previously established. In a
demonstration, we pass through every step from the sim-

plest self-evident truth to the highest deductions of the

Science; in the process of analysis, we pass over every

step from the latter truths down to the simplest.

Analysis is the method of discovery; synthesis, of
demonstration. The one has for its object to find unn-
known truths; the other, to prove known ones. Fre-
quently both methods are employed simultaneously, when
the object is to discover new relations, or the s()lilﬁ()ﬂ of
new problems ; but when we wish to prove to others the
traths we have discovered, the synthetical method is
usually preferred.
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INTRODUCTION.

LESSON III.
GEOMETRICAL LANGUAGE.

LANGUAGE is the instrument of thought and the medium
of expression. All thinking is by means of language; and
the more concise and perfect the language, the more pro-
found and searching isiour thought. The language of
mathematics differs ' somewhat from that of ordinary
usage, in being more concise and more definite in its use.

Much of the language of nfathematics is symbolical ;
that is, a symbol is used in place of the written word.
There are three classes of symbols in Geometry: symbols
of quantity, symbols of operation, and symbols of relation.

The SymBors oF QUANTITY are usually pictured repre-
sentations of the quantities considered., Sometimes, how-
ever, the letters of the alphabet ave used to indicate them.

The SymBoLs oF OPERATION are as follow :—

The Sign'of Addition, -, called plus; thus, A B, denotes
that B is to be added to 4.

The Sign of Subtraction, —, called minus; thus, A — B,
denotes that B is to be subtracted from 4.

The Sign of Multiplication, X ; thus, 4 X B, denotes that
A i8 to be mulfiplied by B.

The Signof Divigion, =; thus, A~ B, denotes that .4 is
to be divided by B.

The Exponential Sign; thus, 4%, denotes that A is used
four times as a factor, or is raised to the fourth power.

The Radical Sign,y/; thus, /4, /B, denotes that the
square root of 4 and the cube root of B are to be ex-
tracted.

The Parenthesis and Vineulum denote that the guantity
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is to be operated upon as a whole; thus, (44 B) x C. or

A+ B X €, denotes that the sum of 4 and B is to be mui-
tiplied by C.

The SymBoLs oF RELATION are as follow :—

The Sign of Equality,—; thus, 4 — B 4 €, denotes that
A is equal to the sum of B and C.

The expression of the equality of two quantities is an
equation ; thus, A = B 4 (| is an equation. The part on
the left of the sign of equality is the first member; that on
the right is the sécond member.

The Sign of Inzquality, > or < ; thus, 4 > B, denotes
that 4 is greater than B. The greater quantity is at the
opening of the sign.

The Sign of Ratie, :5 thus, 4 : B, denotes the ratio of
A to B.

The Sign of Equal Ratios,:; thus, 4:B:: C: D, denotes
that the ratio of 4 to B equals the ratio of C to D.

We present also a few combinations of these symbols,
called formulas, which will be found valuable in some of
the demonstrations.

LLAX B} CX B=(4+ ()X B

2 34X B—= 3B} O =% (A— )X B.
3. (44 BPr=A4°1+24 X B B

4. (A—B)*—=A4"—24 X B4 B

5. A+B)XA—B)=4*—B

DEFINITION OF TERMS,
An Axiom is a self-evident truth.
A TrEOREM is a truth to be demonstrated.
A ProBLEM i8 a question to be solved.

A PosTULATE is a problem whose solution is self:evident.
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A CorOLLARY is an obvious consequence of, or a theorem
suggested by, one or more propositions.
A ScHOLIUM is a remark upon one or more propositions.
Theorems, Axioms, Problems, and Postulates, are all
called Propositions.
+ An HyroTHESIS i8 a supposition made in the statement

of a proposition, orin its demonstration,

Nore.—In making references, A, stands for Axiom; B. for Book; C. for
Corollary; D. for Definition; I. for Introduction; The for Theorem; P. for
Problem; B. for Scholinm. = In referring to another Book, the number of the
book is given ; in referring to the same Book, the number of the Book is not

given.

ELEMENTARY GEOMETRY.

BOOK L

" DEFINITIONS.

1 GroMETRY I8 the science which treats of the pro
perties and relations of geometrical magnitudes.

2. A GEOMETRICAL MAGNITUDE is some definite
element of space. It is a line, a surface, a volume, or an
angle.

3. A Poinrt is that which has position, but no mag-
nitude.

4./A Lixg is that which has length, but no breadth
or thickness. Lines are straight or curved,

5. A StraTeHT LINE is one which
has the same direction at every point: -
as, 4.8.

6. A CurvED LinNg is one which
changes its direction at every point: c/\[,
as, ' OD.

The word line used alone, means a straight line; the
word curve, alone, means a curved line.

7 A SURFACE is that avhich has length and breadth,
without thickness.  Surfaces are plane or curved.

8. A PranNE is a surface such that if any two of its
points be joined by a straight line, every part.of that line

will lie in the surface.
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9. A Vorume is that which has length, breadth, and
thickness. 1
PLANE ANGLES.

10. An ANGLE is the difference of direction, or the
diyergence, of two lines proceeding from
a common point. /.-A

The point from which the lines proceed s
is called the vertexiof the angle; the lines /
themselyes are the sides of the angle.

An angle is named by the letter at the vertex, or by
the three letters with’ the letter at the vertex in the
middle. Thus, we say the angle €, or the angle ACB.

11. ApJACENT ANGLES are angles

which have & common vertex with a com- /p

mon. side between  them ; thus, 4 CD and
BOD are adjacent angles.

12. A Rigur ANGLEISan angle formed
by one straight line meeting ~another,
making ‘the adjacent angles equal. The
first line is thon said to be perpendicular to
the other.

13. An OBTUSE ANGLE is one which is8
aveater than a right angle; as, ACD:

An Acore ANGLE is one which is less
than a right angle; as, DCB.

Obtuse and acute angles are called obligue angles, in dis-
tinction from right angles.

PARALLEL LINES.

14, PARALLEL LINES are those
which have the same direction; as,
ABand CD.

BOOK I

When a straight line intersects

two parallel straight lines, the an-
»

gles formed take particular names.
Suppose the line HF to intersect
the parallels 4B and CD; then— /

I. INTERTOR ANGLES ON THE &

H

SAME SIDE are those which lie within the parallels, on
the same side of O secti i :
- : the secant, o mtersecting line; thus,
GH and AHG; also, HG-D and GHB;
9 A o Very Yy e - 2
2. ALTERNATE INTERIOR ANGLES lie within the
parallels, on different sides of the secant line, but not
adjacent; as, CGH and GHB;
2 P et ~ i
3. EXTER IOR-INPERTOR ANgups lie onthe same
side of the secant line, one without and the other within the
parallels, but not adjacent; as EGD and GHB. They are
also called corrvesponding angles, ‘
PLANE FIGURES.
& ) Y v Brarrees o
15. A PrANE F1gure is a plane hounded by lines
either straight or curved.
T > €3 TRYE :
16. A PorLyGon is a plane ficure hounded
by straight lines. These lines are called sides
of the polygon; taken together, they form
the perimeter of the polygon.
=2 V-V 4 IVl b ! :
17."A Porvaon of three sides is called a triangle; of
four sides quadrilateral ; of five si z
RR es, a quadrilateral; of five sides, a pentagon; of
six sides, a hexagon; of seven sides, a heptagon; of eight
sides; an aetagon; of nine sides, & nonagon; of ten sides, a
b) - p ) A
decagan, ete.
18. An EQUILATERAR PoLYGON is one whose sides
are equal. An Bquiangular Polygon is one whose angles
are equal.

MTw rOrONe 91, Y
T'wo polygons are mutually equilateral when their sides
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are respectively equal. Two polygons are mutually equis
gngular when their angles are respectively equal.
B g . . 53 ta
19. A DraconAw of a polygon s a line joining the

vertices of two-angles, not consecutive.

TRIANGLES.
20. A TrIANGLE is a polygon of three sides and three
angles. Triangles are classified by their sides and their

angles.

21. A SCALENE TRIANGLE i§ one in

which the three sides are unequal.

22. An IsoScELES TRIANGLE is one

which has two of its sides equal.

23. An HQUILATERAL TRIANGLE is

one which has its three sides equal.

24. A RiguT-ANGLED TRIANGLE
is one which has one right angle. The
side opposite the right angle is called the
&ypothenuse.
25. An AcureE-ANGLED TRIANGLE is one in which
all the angles are acute.
26. An OBTUSE-ANGLED TRIANGLE 18 one which

has one obtuse angle.

Triangles are the simplest of all polygons, since three sides are the
least number that can bound a plane figure. The properties of polys

rons are determined by analyzing them into triangles.
g A & g

QUADRILATERALS,
27. A QUADRILATERAL is a polygon of four sides and
four angles. There are three classes :—
1. The TRAPEZIUM is a quadrilateral

having no two sides parallel.

2. The TrAPEZOTID is a quadrilateral

having two of its opposite sides parallel.

3. The PARALLELOGRAM is a quadri-

lateral having its opposite sides parallel.

28. Parallelograms are divided; from their angles, into
two classes,—right-angled and oblique-angled parallelo-

grams,

1. A REGTANGLE i8 a parallelogram
whose angles are right angles.

A SQUARE is an equilate gl rectangle.

2. A RaoMBOID is a parallelogram £
whose angles are oblique.
5 1 /
A RuouMBUS isan equilateral rhomboid. \/
/
/

THE CIRCLE.
29. A CiroOLE is a plane figure bounded by a curve
line, every point of which is equally distant from a point

within, called the centre.
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The CIRCUMFERENCE is the bound-

ing line; any part of the circumference /-\D\

. [/ N
is called an are. A line through the : /

centre having its ends in the circum-

ference 18 a diameter;  a line from the \

centre to the circumference is the radius.

30. The arcs of circles are used to measure angles. An
angle having its yertex at the centre of a circle is measured
by the arc included between its sides; thus, the arc BD meas-
ures the angle D CB.

To measure angles, the circumference is divided into 360
equal parts, called ddgrees. Each degree
i§ diyided into 60 equal parts, called
minutes; eéach minute into 60 eqiml
parts, called seconds.  Degrees, minutes, .|
and seconds are marked thus, © /' 7; 16°
247 32" are read, 16.degrees, 24 minutes,
and 32 seconds.

A right angle, it will be seen, is measured by 90°; halfa
right angle, by 45°; two.right angles, by 180°; four right
angles, by 360°. .

AXIOMS,
81. An Axrowm is aself-evident truth. There ave two
classes of axioms in Geometry. First, those which pertain
to guantity in general; second, those which arise out of

the special forms of geometrical quantity.

FIRST CLASS.
1. Things which are equal to the same thing are equal
to each other.

2. If equals be addod to oquals‘, the sums will be equal.
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3. If equals be subtracted from equals, the remainders
will be equal.

4. If equals be added to or subtracted from unequals,
the results will be unequal,

5. If equals be multiplied by equals, the produects will
be equal.

6. If equals be divided by equals, the quotients will be
equal.

7. The whole is greater than any of its parts.

8. The whole equals the sum of all its parts.

SECOND CLASS.

9. Only one straight line can be drawn-connecting two
given points.

10. A straight line is the shortest distance from one
point to another.

11, All right angles are equal to each other.

12, Parallel straight lines cannot meet each other when
produced.

13 Through a given point only one straight line can be
drawn parallel to a given liné.

Corollary. From axiom 10, it is evident that any side of a

triangle is less than the sum of the other two sides:

POSTULATES.
32. The following postulates are self-evident problems
resulting from the preceding definitions:—
1. A straight line can' be drawn from one point to
another.
2. A straight line may be prolonged to any length.
3 A line or an angle may be bisected.

4. An angle may be described equal to a given angle.
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5. A line may be drawn through a given point parallcl to a
given line,
6. A perpendicular may be drawn to a given line from a

point without the line or in the line.

Axarysis oF Boor T.—Book 1. treats mainly of angles, parallel lines,
triangles, and parallelograms. It treats of the angles formed by one
line meeting or cutting another. of the angles formed by one line cutting
two parallel lines, of the equality and jnequality of triangles, of the sum
of the angles of a trifingle, of the relation of the angles and sides of a
paralielogram, and of thie exterior and interior angles of a polygon. It
is thus seen that the idea of angles is a prominent, if not the principal

e of the book. ’
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OF ANGLES.
THEOREM 1.
When one straight line meets another straight line, the sum of
the two adjacent angles equals two ;‘/i/i/t angles. .

Let the straight line D¢ meet the straight line A B at.
the point C; then will ACD | DCB —
two right angles.

For, at the point () erect CE perpen-
dicular to 4 B; then (D.12,) the angles -

ACH and ECB are both right angles. Now,

ACD — a right angle-- ECD; and

DOB —=a right angle — BOD ; hence, adding,
we have, ACD - DCOB=two right angles.

Therefore, when a-straight line meets another st raioht
line, the sum of the two adjacent angles equals two right
angles. '

Cor. 1. If oneof the angles 4 0D or DCB is aright angle,
the other is also a right angle.

Cor. 2. The sum ofsall the angles formed on the same
side of a straight line by drawing lines
to, any point, of that line; is equal to /.,
two right ‘angles. = For, their sum is \
equal to the sum of ACD and DCB, 1

which is equal to two right angles,

according to the proposition.

o®
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THEOREM IL
When two straight lines intersect each other, the apposite or
vertical angles are equal.

Let the two siraight lines 4B ¢
and (D intersect each other at the
point £; then will AEC be equal to
BED.

For, since CE meets A8, the angle
AEC + CEB = two right angles (Th. I.); and since B#
meets D, the angle CEB -+ BED — tworight angles; but
things which are equal to the same thing are equal to
each other (A: 1); hence;

AEBC+ CEB = CEB-- BED.
Taking from each sum the common angle CEB, there
remajus (A, 3),
ABC=BED.

In a similar manner it may be shown that the angle
AED equals CEB. Therefore, etc.

Cor. 1. The sum of the four angles formed by the inter-
section of two lines is equal to four right angles.

Cor. 2. The sum of all the angles that can be formed

about a point is equal to four right angles.

PARALLEL LINES.

THEOREM IIL
If a lne intersect two parallel lines;
1. The exterior-interior angles will be equal.
9. The alternate interior angles will be equal.
3. The sum of the interior angles on the same side will be
equal to two right angles.
Let the line EF intersect the two parallels 4B and CD;

then,
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First. The angle EGD is equal to
G HB. For, since HB and G D are pa-
rallel, they have the same direction;
hence, they must diverge equally from
the line EF'; therefore, the difference
f dirvection or divergence of G'E and G'D must be equal
to the divergence of HE and HB, or the angle EGD e¢qual
to GHB. In the same way it may be shown that FHB —
HGD.

Second. The two alternate angles CG'H and EHB will be
equal. For, CGH equals EGD (Th. IL.); but EGD equals
EHBEB; therefore, OGH — GHB (A. 1); and in the same
marner it may be shown that AHG equals HGD.

Third./The sum of the two interior angles GGHB and
HGD equals two right angles. TFor, EGD -+ DGH —
two right angles (Th. 1.); but BGD— EHB; henece, GHB
+ HGD —two right angles. In the same way it may
be shown that A/7G  CGH equals two right angles.
Therefore, ete.

Cor. I a line is perpendicular to one of two parallelsyitis
perpendicular to the other also. For, if EGD were a right

angle, its equal BH'B would be a right angle also.

THEOREM IV.
Conversely.—If a straight line meets two other straight lines,
these two lines will be parallel ;

L. When the exterior-interior angles are equal.

2. When the alternate interior angles are equal.
D n
.

When the sum of the two interior angles on the same sids
18 equal to two right angles.
Let the straight line £F meet the two straight lines A8
and CD; then,
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First. If the angles EGD and EHB
are equfal, the lines are parallel. For,
since EGD and EHB are equal, the
lines G:D-and HB miust diverge equally
from EZF; hence, they have the same
direction, and are, therefore, parallel (D. 14).

Second. If the alternate angles CG-H and G H B are equal,
the lines are parallel.  For,since CGH equals EG.D (Th. IL.),
when 0GH equals GHB, EGD equals GHB; but then the
lines are parallel, as has just been shown; hence, the lines
are parallel when the alternate angles are equal.

Third. If the. sumiof the two interior angles GHB and
HGD équals two right angles, the lines are parallel. For,
EGD 4 HGD —=—1two right angles (Th. I.); hence, BGD
HGD=— HGD + GHB (A1), Taking/ HGD from each,
we have BGD — G-HB; but/ then the/lines are parallel,
aceording to the first part of the theorem; hence, they
are parallel when GHB - HGD equals two right angles.

Cor. 1./ If two lines are perpendicular to the same ling, they
are parallel.. For, if EGD and GHB are both right angles,
they are equal, and the lines CD and A B are parallel.

Cor. 2. If two lines are parallel to the same line, they are
parallel to each other.

Cor/ 3. If thie sum of the two interior angles on the same

side is less than two right angles, the lines will meet.
THEOREM V.

Tuwo angles which have their sides respectively parallel, and lying
in the same direction or in opposite directions, are equal.
First, Let the angles ABC and DEF have their sides
parallel and lying in the same divection; then will ABC
equal DEF. For, prolong FE fo G Then, since AR and
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DE ave parallel, DEF equals A G E (Th.
[11.); and since G/ and B(C are paral-
lel, AG'E equals ABC (Th. TI1.); hence,
DEF equals ABC (A.1).

Second. Let the angles A BCand DEF
have their sides parallel and lying in
opposite directions; then will 4 I)'f;
equal DEF. Tor, prolong CB to G,
Then ABC eguals EGB (Th. I11.):
but ZGB equals DEF. being :1];

1) —

ternate ; hence, 4 BC equals DEF.
Therefore, ete,

TRIANGLES.

THEOREM VI.

If ‘two triangles have two sides and the included angle of the
I)/u,"(.’l'/?u'l! to two sides and the ineluded angle of the other
each to each, the triangles will be equal in all their parts.

Let the triangles 4BC
and DEF have the side 4B
equal to DE - AC to DF,
and ‘the angle A equal to
the angle D; then will the
triangle ABC be equal to
the triangle DEF.

Far, apply the triangle 4 BC'to the triangle DEF, placing
the side 4 Bupon the equal side DE; then, since the angle
A equals the angle D, the side 4C will take the «lircutliun
of DF, and the point € will coincide with #. since the two

lines are equal ; and-the side CB will coincide with the side
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FE(A.9)." Therefore, the triangles coincide and are equa)

in all their parts. Therefore, etc.

THEQREM VIL
]f two (l'f(?)t:'/.](',\' have two tI/).','/v:S and the included side !ii' the
one-equal to two-anrgles and the ineluded side of the other,
eacly to 1‘|‘("/I. the '(')'z'('(/!l,”r‘-'\‘ will be (‘r]/»‘-(l’ in all their par
Tiet ABC and, DEFX. be
two triangles having the
angle 4 equal to the angle

ol

D, the angle B equal to the

angle B, and the .included

side AB equal to the in-

cluded side DE; then will the two triangles be
all their parts.

For, apply the triangle 45 ("to the triangle DEF, placing
the side AB upon DE; the peint A upon D, and the point B
upon 72; then, since the angle A eguals the angle D, the
side AQ will take the direction D, and the point €' will be
found soméwhere in_the-line DF'; and since the ang
equals the angle E, the side B will take the direction I£F,
and the point ¢ will be found somewhere in E'F. Hence,
the point € being-in the two lines DF and EF, must be at
their intersection ;. consequently; the triangles coincide and

are equal in all their parts. Therefore, ete.

THEOREM VIIIL

If two triangles have twwe sides of the one 4‘1/!//7[ fo two sides of
the other. each i

third side will be greater in the triangle having the greater

included 11/2://:'.

Let ABC and DEF be two triangles in which A 0= DJF,

, 7 70,7 y ey
o each. and the inelwded angles I/;:"/"m.“f e
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BOZEEF and ACB > DFE; then will AB be greater than
D, :
Far, at the point (' make
BCG EFD,
F'D; and draw
ity ; then will the triangle
@& B equal DFE and GB
dgqual DE (Th. VI.). Draw
'K, bisecting the angle A CH, and draw alse G:X : vne two
triangles ACK and KCG are equal. (Th. VI.), and AKX
KG. Now, KG' -+ KB > GB; hence AK -+ KB, or AB, is
greater than G'B or its equal DZ,
The same demonstration will apply when the point G falls
within AB. If it falls on ®.B, the theorem is true by A. T

Cor. The eonverse of this theorem is also true.

THEOREM IX.

If two triangles have the three sides of the one equal to the
three sides '{F‘ the other, each to each. the f/'/w'w-,’/v-\' will be
r"}/,z:!_/' in all their DATLS. ’

Let ABC" and DEF be
two_triangles, having 4B
equal o I, AC ‘to \DF,

then will

L‘!lH:L' in

"andvA B are
irle 4 wer greater than D, BC would be
ER

B would be less than EF, for the same reason. But B(

1
LI

(Th. VITL.); and if 4 were less than D,

oreater than

18 equal to £F, therefore the angle 4 must be equal to 7.
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In the same way it may be shown that the angle C"eguals
F, and the angle B equals E. Therefore, ete.

THEOREM X.
In an 1sosceles fl"'-('/llf:/[t" the (I/lell' S «)/'/wv\‘/-.r't the (’!j"lltl[ cides agz

i'lj:/ll./.

Lett ABC be an isosceles! triangle, having c
the side 4 € equal to the side BCU; then will AN
the angle 4 be equal to the angle B. \

Join the vertex Cand the middle point of ft—
the base AB;  then in the two triangles ADC
and CDB, AC equals BC, DC' is common, and 4.D equals
DB; hence, the two triangles are equal in all their parts
(Th. IX.), and the angle 4 is equal to the angle B.

Cor. 1. /A line drawn from the*vertex of an isosceles tri-
angle to the middle point of the base; bisects the vertical
angle and is perpendicular to the base; also, a line biseeting
the vertical angle is-perpendicularto the base and biseets it;
also, a line drawn from the vertex perpendicular to the base
bisects both the base and the vertical angle,

Cor. 2. Hence, also, an ¢quilateral triangle is equian
gular; that is, it has all its angles equal.

THEOREM XL
Conyersely.—If two angles of a triangle are equal, the sids
opposite them are.also equal, and the triangle is isosceles.

Let 4ABC be a triangle, having the angle
A equal to the angle B; then will the side
A C be equal to BC.

For, if AC and (B are not equal, sup-
pose one of them, as A, to be the greater.

Then, take 4 D equal to B, and draw DB. *
Now. in the triangles 4 BC and A BD, we have the side 4D
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equal to BC, by construction, the side AB common, and the

included angle ABC equal to the included angle DAB, by

hypothesis; hence, the two triangles A BD and AB( are ('qu‘l

(Th. VL) ; that is, a part is equal to the whole, which is impos-

sible (A. 7). Hence, 4 C cannot be greater than BC; in the

same way it may be shown that 4 (' cannot be less than B(;

hence, AC and BC are equal, and the triangle is isosceles.

Therefore, ete.

THEOREM XII.

In any triangle the greater side is opposite the greater angle,
and, conversely, the greater angle is opposite the greater side.
[n the triangle 4 B, let the angle A B be

greater than C4B; then will AC be greater

than BC. ]

For, draw: B, making the angle 4 BD
DABj then will AD — DB (Th. X1.). To “
each add D€ and we have 4D - D@ — DR 4L DC; but
DB 4=D0> BO(A.10); hence, AD - D, or ACis greater
than BC.

Conversely. Let the side A0 > B('; then will the angile
ABC > CAB. For,if ABC' < CAB, AC < BG, from winn‘.
has just been proved; and'if ABC'— C4AB, AC— B (TL.
XIL.); but both of these results are contrary to the hypo-
thesis; hence, ABC must be greater than C4B. Tl.xm'(-‘
fore, ete.

THEOREM XIII.
In every triangle the sum. of the ihree angles, is_equal to two

riqht angles.

Let AB(C be atriangle ; then will

the sum of its three angles, 4, B, C,

be equal to two right angles.
For, prolong AB, and draw BD %
4
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parallel to.AC; then, since the parallels A Cand BDare cut
by A E, the angle 4 is equal to the opposite exterior angle
DB HE \_'I‘Il. [II1.). ike manner, since
wt by B¢, the\alternate-angles ¢
acnce, the sum: of the thrée-angles of the t
to the sum of the angles A BC, CBDDBE ; but
sum | equaly two rightyangles (ThoT. €. 2);
gum of the three angles of the triangle equal
angles. | Therefore, ote.
Cor. 1. If twoyangles of a triangle are’ given, the third

will | be found- by sabtracting their sum. from two r

ancles. or 1802 henee; if two triangles have two angles of the

one equal to two anglesof the other, the third angles will be equal:

Cor. 2. A-triangle canmot have more than one righ
for if theve were two the third angle would be zero.

Cors3. A triangle can” have only ene obtuse angle
must have at least tWo acuté angles.

Cor. 4. In a right-angled triangle the sum of the two acute
anglesiequals one right angle, or 902,

Cor. 5. In évery trianigle the exterior angle is equal to the
sum of the two inferior opposite ang

Scholivm. This theorem may be demonstrated by drayw-
i line }I:tl':l”"] fol either of he other sides of the tri-

Let the pupils be required to/do it.

THEOREM XIV.
—s Sy ‘1 4 " A g -
if from.aipoil wrthout a-strawgid e a per
all onit f

L.

5]

£ [ne ana obiique A Y

% in

hio fant of t] oy sidionlar are earal

from the toot o ¢ perpendicular are equal.,
3. The oblique line which terminates at the

from the foot of the //z/‘,’.Q/v'n"":"l/,l/' is the
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Let C be a given point, and 4D a given line, CF a per-
pendicular, and C4, C'B, and CD, oblique
lines; then,

First. In the triangle AZC, the angle
AFEC is a right angle, and, consequently,
greater than A4 ; therefore, the side CF is
shorter than CA (Th. XTII1.).

Second. Liet AE — EB; then, since CF is common and
the angle A EC —= (C'EB, the triangles AFC and CEB are
equal (Th. VI.), and 4 ¢ equals B!

Third. Let ED be greater than EB; then, since CBE is
an acute angle, CBD must be obtuse and BD(C acute, and in

» triangle CBD,; CD.is greater than B.C, being opposite the
greater angle (Th, XII1.). Therefore, ete.

Cor./1. Only one perpendicular can be drawn from the
same point to the same straight line.

Cor. 2. Twoequal oblique linesterminate at equal distances
from the foot of the perpendicular.

Cor. 3. A line having tiwvo points, each equally distant from
the extremities” of another line, is perpendicularto that'line

and hiseets it.

QUADRILATERALS.

THEOREM XYV.

Liet A BOD bhe aparallelogram; theén will
1 B be equal to DC, and 4D to BC.

For, dvaw the diagonal DB. Then, since
A B and D( are parallel; the alternate an-

gles A BD and BD(C are equal (Th, ITT.); and since 4 D and
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BC are parallel, the alternate angles ADB and DBC are
equal. Hence, the two triangles A BD and DBC have two
angles and the included side, DB, of one, equal to two
angles and the-included side, DB, of the other. each to

eachj-therefore; the triangles are equal (Th. VIL): and
the side A8 opposite the angle ADB is equal to the side
D opposite the equal angle DBC: hence, also, the side
AD equals BO; therefore, the opposite sides of a parallel-
ogram are equal.

Again, since the triangles are equal, the angle 4 is equal
to the :}nglu C; and the angle AD(; which is made up of
the two angles ADB and BD(, is equal to the anele Allli(’,
which is made up-of the equal angles DBC and ABD.
Therefore, ete.

Cor. 1. The diagonal divides the parallelogram into two

equal triangles.

Cor. 2. Two parallels included between two other paral-

lels are equal.

Y o 12 15 . = v 3 .

Cor. 3. Two parallelograms are equal when they have
two sidesiand the included angle of one, equal to two sides

and included angle of the other.

THEOREM XVI.

If the opposite sides of a quadrilateral are equal, each to each,
the equal sides are parallel, and the Jfigureis a parall /.:1,';"..'m:
Let ABCD be a quadrilateral, in which

AB equals DC, and AD equals BC'; then

will it be & parallelogram.

For, draw the diagonal DB. Then the
triangles ABD and DBC have all the sides
of the one equal to all the sides of the other, each to each :

therefore the two triangles are equal (Th. IX.): and the
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angle ABD (»p]msitc the side 4D is equal to the angle BD(
opposite the equal side B('; therefore, the side 4 B is paral-
lel to the side DC (Th.IV.). For a like reason, AD is

parallel to BC; therefore, the figure ABCD is a paral-

lelogram: Therefore, ete.

THEOREM XVII.
If two sides of a quadrilateral are equal and parallel, the figure
i3 a parallelogram.
Let 4 B (D be a quadrilateral, having the
sides A B and DC' equél and parallel; then
will 4 BC'D be a parallelogram.

For, draw the diagonal DB. Then, since £

/

AB is parallel to DC, the alternate angles

ABD and BDC are equal (Th.II1.)., Now, the triangles
ABD and DBC have the side 4B equal to DC by hypo-
thesis, the side DB common, and the included angles A BD
and BD(equal; hence, the triangles wre equal (Th. VI.),
and the alternate angles ADB and DBC are equal ; hence,
the sides 4 D and B(C.are parallel (Th. IV.), and the figure

is a parallelogram. Therefore, ete.

THEOREM XVIIIL
The diagenals of a parallelogram bisect each other; that is,
divide each other into equal parts.

Let ABCD be a parallclogram, and AC
and DB its diagonals; then will 4% be
equal to £C, and .DFE to EB.

For, since 48 and DC are parallel, the
angle CDE equals ABE (Th. II1.); and also DCE eguals

LA B; and since AB equals DC) the triangies 4 FB and

DEC have two angles and thé included side of the one
4%
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equal to two angles and the included side of the other

hence, the triangles ave equal (Th. VII.), 4 £ equals C'F, and

DE equals BE; therefore, the diagonals are bisected at £

ANGLES OF POLYGONS.
THEOREM XIX,

If each side of -a convex-polygon. be produiced so as to form one
eaterior angle at each vertex, the sum of the exterior angles will
be equal to four mght arngles.

Let ABCDEF be a convex polygon, with each side pro-
duced so as to form one exterior angle at

each vertex; then willl the sum of the ex-

terior angles be equal to four right angles:

For, from any Iu)illi within the ln‘z_'\ o1,

draw lines respectively parallel to thesides

of the ]ml_\'-_;'r‘\n: the angles¢ontained I».\ the

lines about this point will be'equal to the exterior angles

of the pelygon (Th. V.). | Butithe sum of the angles formed

about a point equals four right angles (Th. IT. C.2); hence,
the sum. of the exterior angles of a polygon. equals four
rioht angles. Therefore, ete.
Cor. 1. The sum of the inte angles of a l"';,‘ £01,
equal ; ight angles-as the polygon has
The sam of each exterior and interior

:li*'g_'lt‘ w|"\::£~ W 1 ," S, and there

are as many of eéach’as the polygon has

sides; hence, the sum of all the exterior

and interior angles eqnals two right angles

taken as many times as there are sides of

the polygon. But the sum of the exterior angles equals

BOOK L

four right angles; hence, the sum of the interior angles
equals two right angles taken as many times as the poly-

: sides. minus four right angles.

v sum of the interior angles of a quadrilateral

-J!vlt'!‘ 2 )'i;‘i;? angies Z!‘:‘l!]:il“-."!_ ;l“.' i minus 4 right ‘.lll;[]\‘.\,
i, or4 right angles. In arectangle each angle
_;‘Ill :l.lLfI“.
The sum of tne angles of a pentagon equals 2
— G right ancles. Each anglé of an equiangular pen-

is 1 of 6 or & of a right angle, or 108°

{. The sum of the angles of a hexagon equals 2 X

s

8 richt ancles. Bach angle of an equiangular

hexaeon s £ of a right angle, or 120°.

Cor. 5. In polygons of the same number of sides, the

sum of the ancles is the same.  In equangular polygons, each

angle equals the sum divided by the number of sides.
Seholinwm, This theorem is true at whichever extremity the

sides are produced.

If two lines meot a third at the same point, 1 ngles equal

302 and 80° respectively, required the angle between the two lines,
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8. How many degrees in each angle of a rectangle?

4. How many degrees in each angle of an equilateral triangle

5. If two angles of a triangle are 43% and 75° respectively, what is
the othe
f two-anglesiof atriangle.are each 45°, what is the other ar
1 what is the kind of triangle ?
7. one angle of a triangle is 60°, what is each of the other two,
ifequal, and what is the kind of triangle?
8. If one of'the two equal angles of a triangle is 30°, what is each
of the other angles?
9. Required the number of degrees in each angle of an equiangular
pentagon,
10, Required the number of degrees in each angle of an equiangular
hexagon.
In 4 triangle whose angles are A, B, €, what is each angle if
and B three times €2
In the preceding problem, what is the kind of triang
Required each angle of an isosceles triangle, if the uniequal angle
equals twice the sum of theother two.

14, Required the value of each exterior angle of an equiangular

oeclagon.

EXERCISES FOR ORIGINAL THOUGHT.
We now give some theorems to exercise the pupil in original thought.
The importance of such exercises cannot be overestimated. Much of

3

the discipline of Geometry is Tost by the pupil memorizing the demon-
strations given-in the book. One can become a good geometer only
trying his powers with néw theorems and problems, and endeavoring to
find out demonstrations and solutions for himself.

These theorems may be given upon review, one of them in connection
with the regularlesson ; or; if the teacherprefer, the losson may consist

wholly of them. | With classes whose time for the study is limited, they

may be omitted.

1. If the egual sides of an isosceles triangle be produced, the twa

obtuse angles below tk se will be equal.
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2. If the three sides of an equilateral triangle be produce

external acute angles will be equal, and all the obtuse angles will be

pqual.
Either side of 4 triax is greater than the difference between the
other two.
{. If a line be drawn biseeting an angle, any point of the bisecting

line is equally distant from the sides of the angle.

5. Prove that the diagonals of a rectangle are equal.

6. If the diagonals of a quadrilateral bisect each other 4t right angles,
the figure is a rhombus or square.

7. If a line joining two parallels be bisected, any other line through
the point of bisection and joining the two parallels, is also bisected at
that point.

8. If from any point within s triangle, two siraight lines be drawn to
the extremities of any side, their sum will be less than the sum of the
other two sides of the triangle.

9. If o line is perpendicular to another line at its middle point,—
1. Any point in the perpendicular will be equally distant from the ex
tremities. 2 Any point out of the perpendicular will be unequally dis-

tant from the extremities.
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RATIO AND PROPORTION.

1. Az reasoning is by comparison.  In comparing two

guantities, we see that they bear a certain-relation to each
other.

2
Se 1

RAT10 18 the measure of the relation of two similar

quantities. 1t is‘found by dividing the first. by the second;

thus, the ratio of 8 to4 is §, or 2, the ratio of 4 to Bi§ =
[ b

3. The two quantities compared are ealled the Terms of
the ratio. The first is called the Antecedent, the second

the Consequent, and the two.constitute a Couplet.

. A ratie is indicated by placinga colon between the

quantities, or by writing \the' consequent under the ante-
cedent, as in division;-thus, the ratio of 4 to B is writte

A B, or ‘1_.

S50 A ProroRrTTON I8 an expression of equality between

equal fratios ; thus, the ratio of 8 to 4 equals the ratio of
1d a formal “'Hll}l;tl'i"lﬁ of these, a

& proportion.

6. Theequality:of

colon; thus:8:4:% 6:3. 7‘1)2\ 1 reida; (he 7".1““""

equals the ratio of 6 to 3, or, 8 is to 4 us 6 is {
7. There are four terms in a proportion;
fourth are called the extremes; the second and third, the

46
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means. The first and second Ln‘_j'uihvr are the jipst couplet ;
the third and fourth. the second couwnlet.

%. Quantities are m proporuon by Alternation, when ante-
edent is compared with antecedent, and consequent with
nsequent ; thus, if 4: B:: C: D, by alternation we have

e Bab).

9. Quantities are in proportion by Inversion, when the
antecedents are made consequents and the consequents
antecedents; thus, if 4 : B:: C: D, by inversion we have
B:A::D:C.

10, l.J:I;LMi( ies are in ]vl";‘:‘lll'ti('ll (._\ ( ‘wm[».n )8ition, when the
sum of antecedent and consequent is compared with either
antecedent, or consequent; thus, if 4: B:: C: D, by com-
position we have, 4 : A B.::.(': CJ-D.

11. Quantities are in proportion by Division, when {l
difference of antecedent and consequent is compared with
either antecedent or consequent; thus, if 4 : B::€: D, we
havesduesde=—"R5%: ' ' = D.

A ConTINUED PROPORTION is @ series of equal ratios;

o O DRSS Bk . etc:

AxarLysis.—The objeet of the theore f this book is to derive the
principles of proportion. winciples ar nployed in the books
vhich follow. The meth

Thus, the" pupil

': D'as equival

demonstr

{ all others.
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THEOREM 1V,
THEOREM I THEOREM IV

If four quantities are in proportion, the product of the means 68 AT "“, )n‘u’/wz'r‘znjL they will be in proportion
will equal the product of the extremes. by alternation.
A:B::(C:D; from this (Th. 1.)

A X D= B X C; dividing by D X C,
A B
¢~ .D

AT G B i),

Take the proportion
Az Bi: C:D; then 'we wish to prove
¢hat A D=—B S| ek
Pory from the proportion we have

A [ . . :
= f)-" mullq‘»lymg by B \D, Therefore, ete.

; whence,

we have, (4 S D—B v - Al - :
% XL 2ig% & Remank.—The proposition is evidently true, since we have the same
m safird, a7l AT o v | BF ¢

Therefore, U four - gquantities are, ete, products when we take the product of the means and extremes as

before the change. This principle may be applied to several other

THEOREM II. . propositions.
1If the produet of tiwo quantities equals the product of two other THEOREM V.
quantities, the quantities forming one product may be made the If folr quantities are in proportion, they will be in proportion

means, and the other two the ettremes of ‘@ proportion. by inversion.

Suppose we have 5 - o .
Suppose we have Suppose A: B:: C:D; from this

A s, D— B DX ("; 1“\'i('“}z=’_: I-\ B X [)? 4 C
& we have, b’ =5 taking the reciprocal,

we have, == ; placing this in another form,
B D

B D
we have, 4:B:: (- D. b RN i) whence,

Therefore, cte. Br:Ad::D: 0.

THEOREM III. Therefore, ete.
A mean proportional between two quantities equals the square THEOREM VI.
- root of their product. If' four quantities are in proportion, they will be in proportion

Pt 1 7Y by composSition.
Let B be a mean proportional between 4 and ¢ ; then by compositio

we have, Suppose i B2 C: D then

A BB O

we have, =—-—. Adding one to each

\\'ln‘!xl"c \_T‘ll. ]
. /"
or, ~a X Gl we have, = =3+ 1; reducing to a common denomi-
4 ) £

There l‘bl‘v::
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A+B C+D
nator, we have, %ﬂi = —'D — ; whence,
A+ B:B::C+ D:D.
Therefore, ete.
THEOREM VIL
If four quantities are in proportion, they will be in proport @
by division.

Suppose ALNB:CE D then

AL A
we have, =7 subtracting 1,

A ¢ .
we have, B L= . 1; reducing,

A—B

g 18y
we have, B —

—_ : 'whence
l,) 2 b

A —B: B:: 0—D::D,
Therefore, ete.
THEOREM VIIL
If two proportions-have a-couplet in edch the same, the other
couplets will form a proportion.
Suppoese ARy C: Dy and
A+B7T E: F; then,
4 C { /54

s and :ff =7 hence (A. 1),

(' Iz 5 532 No. T)'s & ].‘. ]
2 =222 whencelCy.D : s B 1
Dy LR
Cor. If two proportions have a couplet in each proportional,
the other couplets will form a proportion.
THEOREM IX.
Equimultiples of two quantitics are praportional to| the quans
tities themselves.
Let 4 and B be any two quantities; then
A A :
B~ B’

multiply both terms of the first by m,
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m A . J .
mB B’
mA:mB::A:B.

whence,

I'herefore, ete.
THEOREM X.
If four gquantities are in proportion, any equimultiples of the
frst r‘zl'//:// t will be /'/'-’t[l’)lf!(l/(’z'[ to any re/!ﬂ/‘/!el,{(({j:!:‘s of the
cond i r/(l}‘,f( t.
Suppose A:B::C:D; then
A (6]
B~
mA nC i
— ; whence
m B nD

mA:mB::nC:nD.

ln_‘!x('v. ;ll.\u,

Pherefore, ete.
THEOREM XI.
The products of the corresponding tevms of two or more propor-
tions are proportional.
Suppose AnB :; CaD, and
M:N;:P: Q; then
» have, A D =— B¢ O
M ¥ Q=N x Pj; taking their product,
» have,
A M X D¢ O =¥ ;) ot N ¥ (¢ P; whenece (;'Hl. Il\
s have, A M B XN O P D 6.

THEOREM XII.
In. anycontinued proportion, any antecedent) awill. be to its
consequent as the sum of the anteeedents s to the sum of the

conseque 208,
A:B::C:D:: E: F,ete,
A:B::C:D,and
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A:B:: E: F; we have
A ¥ D= B ¥ C, and
AX F B % E; adding
io these, A X B= A4 ¥ B, we have,
AX B A D4 AX F=A
oY, AX B4+ DHF)Yy==8(A4 C-
whence, AR AL CA4-F: B:LD -+ F.

PRACTICAL EXERCISES.
1. If the first/three tex of a proportibn are 12, 14, and 18, what i3
the fourth term? Ans. 21,
2. Given the proportion 8.:12::5:20; what proportion have we by
composition ?
8. Find a mean proportional to 12/and 27; to m and
Ans, 185 i ¥
4. 1f the ratio of A to B is$, whatis the ratio of 3 4 1o 2 B2
Ans. %.
5. If the ratio of 3 4 to 2 Bis I, what is the ratio of 4 to B2
Ans. }
6. What proportion is deduciblefrom the equation M N =4 B2
Ans, M: A 4 B:: A— B9\
7. What proportion is deducible from the equation (C'-|- D) XX 4
e Ans. A5 Bre @D

THEOREMS FOR ORIGINAL THOUGHT.
b::c:d, prove that am: bn::em:
@
: d, prove that —

:d, prove that @z ¢
: d, prove that «

c:dand m:c:in:

BOOK IIL

AREAS AND RELATIONS OF POLYGONS.

PH18 book treats of the area of polygons and their
ion to each other.

2. The ArEeA of a polygon is its quantity of surface: it
I8 expre ssed by the number of times which the 1»1)1‘\’14[.][
contains gome other area assumed as a unit of measure.

3. The ALTI?7UDE OF A TRIANGLE is
the perpendicular distance from the vertex
of either anglé to the opposite side, or the
opposite gide produced.

The vertex of the angle from which the
altitude 18 drawn is called the verfex of the Triangle; the
L)I!l)"\i{\' side is called the base of the Il'i:nll_:fl(‘.

4. The ALOITUDE 0¥ A PARALLELOGRAM i the por-
pendicular distance between two opposite

\E‘I\‘h.

These ")]"1"'<i11' sides ave called bases; one //'

I /
the wpper base, the other the lower base. 74 4|

. The AvTiTuDpE OoF A TRAPEZOID
is the perpendicular distance boetween ifs
]m"‘.:!hi *i';\u\‘.

These sides are called bases; one

lled the Lpper hase. the other the lower ¢

6. Siminar Pornycons arve those which are mutually

equiangular, and in which the corresponding sides are pro-

I
portional.
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of either anglé to the opposite side, or the
opposite gide produced.

The vertex of the angle from which the
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L)I!l)"\i{\' side is called the base of the Il'i:nll_:fl(‘.
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I
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Corresponding sides or angles are those which are like
placed. They are sometimes called homologous.

7. EQuivALENT. POoLYGONS are those which are
equal in ared. Polygons which; being applied to each other,
coineide throughout their whole extent, are said to be equal
i all their parts, or simply equal.

The term' equal is often used in geometry for equivalent
meaning equal in-area. The sign of equality, =, is used in
comparing equivalent figures, and is read “ equals,” or “Is
equal to.”

8. A ReeuLArR PoryooN is a polygon which is both

equilateral and equiangular.

Axazysts.—The first object of this book is to find the area of poly-
gons, | It begins with the area of a rcr,:'l:.;[‘n;:h-, asguming as a unit of
measure a square whose side is a measure of the sides of the given
rectangle. From the.area of the rectangle we pass to the area of any
parallelogram, thence to the area of & triangle, and from this to the
area of any plane figure.

The book-aldo treats of the relations of the squares on the sidesof
triangles, and the relation of the angles, sides, and area of gimilar poly-
gons; to each other. It is one of the most interesting and practical

books of Geometry.

BOOK IIL

AREA OF POLYGONS.
THEOREM 1.
The area of a rectangle is equal to the product of its base ang
altitude.

Let ABCD be a rectangle ; then will its area be equal to
the product of its base and altitude.

For, let the line AF be a unit of
measure of the base and altitude, and
suppose it contained any number as 5

times in the base and 3 times in the

- altitnde ; then, divaide A B into § equal

Q

p:u"w and' A Dinto 3 equal parts, and through the points of

division draw lines parallel, respeetively, to the sides AB

and AD; then will the rectangle be divided mto equal

squares. For; their sides are equal (B. L TheXV..C.2);

their angles are right (B. I. Th. ITI.); hence, the figures
equal squares (B. I. Th. XV. C. 3).

Now, the whole number of these squares.is equal to the

number in one row multiplied by the number of rows,

which 18 the same as the number of linear units in the
base multiplied by the number of linear units in the alti-
tnde ; and the same is evidently true for any other numbers
than 3 and 5. Hence, the area of ABGD equals 4B X AD.

Since this is true when the linear unit of measure is any
Jenoth. it is true when it becomes exceedingly small, and
is, therefore, true when it becomes infinitely small, a8 it
must when the two sides are incommensurable. There
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fore, the area of a rectangle is equal to the produet of its
base and altitude.

Cor. 1. Rectangles are to each other as the products of their
bases and. aqlittudes., For, let AB and AD represent the
base and altitude of one rectangle, and EF and HH the
base and altitude of another; then we will have the iden-
tical proportion, ABCD : BEFGH:: AB X AD: EF X EH.

JCor. 2. Reetangles having equal bases, are to each other a3
their altitudes. For, suppose the bases 4 B and EF equal;
then, cancelling the equal factor in the second couplet, we
have, ABCD: BFEGH:: AD: BH.

Cor. 3. Rectangles having equal altitudes are to each other
as their bases. For, suppose the altitudes 4D and EH are
equal ; then, by cancelling the equal factor in the second

couplet of Cor. 1, we have, ABCD+EHGH:: AB: EF.

THEOREM II.
The area of a parallelogram is equal to the product of #s base
and altitude.
Let ABGD be a-parallelogram, A B its base, and £'B its
altitude; then will its area be equal to
AB X EB.
For; at-the points 4 and B dvaw the
two perpendiculars A F'and BE, and com-
plete the rectangle ABEF. Then, the
angle ADF equals the angle BCE, and
FAD equals CBE (B. I. Th. V.); hence, the two triangles
are equal (B:I1. Th. VIL) ; therefore, ABED BCE is equal
to ABED 4 ADF, or the parallelogram ABCD is equal to
the rectangle A BEF. But the area of the rectangle is equal
to AB X BE; hence, the area of the parallelogram is equal
to AB ¥ BE. Therefore, ete.
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. 1. Parallelograms are to each other as the products

r bases and altitudes.
(lor. 2. Parallelograms having equal altitudes are to each
sther as their bases; and parallelograms having equal bases

are to each other as their altitudes.

THEOREM IIIL

The area of a triangle is equal to half the product of its base
and altitude.
Lot ABC be a triangle, 4 B its base, and CDaty altitude ;
then will its area be equal to half the product of its base
1

and altitude.
)

For, draw BE parallel to AC, and C =
COFE parallel to AB, completing the \ £
parallelogram ABEC; then will the // I N\
triangle A BC be one-half the paral- A -
lelogram ABEC (B. I. Th. X'V, C.1).

But the area of the parallelogram is equal to AB X CD;

D B

hence, the area of the triangle is equal to § AB X CD.
Therefore, ete.

Coz.. 1. Triangles. are to each other as the products of
their bases and altitudes.

(or. 2. Triangles. having equal  altitudes are as thein

bases; having équal bases, they are as-their altitudes.

THEQREM IV.
The area)of a trapezoid is equal to_one-half the sym of the
parallel sides multiplied by the altitude.
Lot A BOD be a trapezoid, 4B and DC its parallel sides,
and DF its altitude; then will its area equal i (4'B + DC)

e
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For, draw the diagonal 4C, dividing
the trapezoid into the two triangles A BC
and 4 DC, the altitude of each being DE. /i
The aveaof ABCisd AB X DE, the area /

/
)

of ADC is'l DC X DE; hence, the area —=
of ABCD, the sum of these triangles, is
L AB % DE plus 1 DC X DE, which is 1} (4B + DO) X

1
DE. Therefore, ete.

/

SQUARES ON LINES.
THEOREM V.

he square deseribed. on the Sum of any two lines is equal to

the sum of the squares-described on the hnes, plus twice the

rectangle of the lines.

Liet A B and B be two lines, and A
their sum ;then will

A —ARB*3-BO* 1+ 2 AB X BC.

For,on A (' construet the square 4 CFD
and un A B construet-the square ABHG ;
prolong BH to E and GH to I. Now,
it is readily seen that HIFE is the
square of BC, also that BCIHA équals the reefangle on A B
and B(, and G-HED equals the rectangle on 4R and BCj
therefore, the square A CFD consists of the square on the
two lines plus twice the rectangle of the two lines:

Cor. 1. The square of the{differencejof e 1)
two lines equals the sum of the squares of ] lj

H i
|

Ni—1-

the lines, minus twice the rectangle of the o e
lines: For, construct a square on AC
and on 4B, prolong BH to E and HG a

1 4 B
to N, making GN = BC, and con-
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srict the square G ; then the rectangles BF and HDM are
each equal to 4C X BC. Now, ACED + NGDM— BCFE
HEMN — ABHG; or,
AC* + BC*— 240 X BC= 4B
Cor. 2. The rectangle contained by the sum and difference of
two lines equals the difference of their squares. For, construct a
square on AB and on AC, take BK ko
=— B and construct the rectangle AL ; "‘"—
then AK—AB + BC, AC=AB— . B———p— &
B(, BKLI = DGFE, and AKLE =
(AB 4 B(O) (AB — B(C). Now,
AKLE = ABIE + DF, which equals
ABHF = DIHG@G; hence,
(AB+ BC)(AB— B(0) = AB*— B(C™
THEOREM. VL

The/squaresdescribed on the hypothenuse of a right-anqgled tri-
angle is l.‘-/l.l,ul to the sum of the squares deseribed on the ather

liet ABC be a triangle, right-angled at B; then will
A0'—=AB FBC™.

For, construct squares on each

R
of the sides, draw B.D parallel to /N / N3
Y ' v . 3 // \*'/
AF and produce it to E, and draw, ;7 é
the' diagonals BF and HC. The
two triangles HAC and BAFK are

equal; for, AC equals AF, being

2L
/

/

sides  of {he same square; HA

equais A B, for the same reason,
and the angle HAC equals the
angle BAF, both being equal to a right angle plus BAC
hence, the triangle HAC equals BAF.

The triangle BAF 15 one-half of the rectangle AFED,

#@ince it has the same base and the same altitude (Th. ITL);
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also, since IB( is a straight line, the triangle HA4C and
square ABIH have the same altitude; hence, the triangle
is one-half of the square (Th. ITI.). But these two trian-
gles BAF and HAC are-equal ; hence, the rectangle A FED
is-equal to the square ABTH. Tn the same manner we may
prove  that the rectangle HGCD is equal to the square
BCLK; hence, the sum of the tworeetangles, or the square
on A (' is equal to the sum of the two squares HB and B L.
Therefore, ete,

Cor.1. The square of either side aboui the right angle is equal
tothe square af the f(!,’[/-‘i’f/u nuse diminished /'_)/' e square of the
ather side.

For, since AB? - B0* = AC? we have, by transposing,
AB*— 40— RO

Cor. 2. The square of the /r':lzi,/-‘:;m// of ¢ are 18 v';]:/({/ to
twice the square of the side of the Square.

Let ABCD be a square, then will 4(*—=
2 A B For, we have, by the theorem, A
AL B(CY; but AB* equals BC?; hence, by
substitution, we have 4 (* — A B? + A B, or,

Ac2_—2 4B’
Cor. 3. The side of @ square isto, its diagonal as 1 is to the

square root off 2.

For. since 2 AR — A 0%, 0or, 23X AB* =
the proportion (B. II. Th. IL.),
AB: AC*::1:2; extracting the square root,
we have, | 4B 401 /2
Cor. 4, Two right-angled triangles are equal in all their parta

when they have two corresponding sides respectively cqual.

Norte.—This is the celebrated Pythagorean proposition, so called be

it was discovered by Pythagoras. It is also known as the 47th of Enclid

thnt being its number in the first book of Euclid's Elements.
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THEOREM VIIL
ny obtuse-angled triangle, the square of the side r,];/m,g;'l#,
the obtuse ‘,'/,rv;{', 18 ¢ //u.l/ to the sum of the squares of the other

eides. /{/[.\‘ twice thi ‘u,"/;:’u.'r’ of the base into the distance

m the vertez of the obtuse angle to the foot of the perpen-
3= ~ : ~ 1. 7] 5 v "
dieular drawn from the vertex of the ungle opposite the base to
“‘,,1 base /,r‘ru!'u/-»//_

Let ABC be a triangle, of which 4 is an obtuse angle,

A Bits base, and (D the ln'l']n'n-[i«'lli;ll‘ drawn to the base

ed ; then wiil
AC2 AB2-- 2 AB X AD:

ancled triangle DBC,
DB*;
b

2 AB X AD (Th. V.).

1D 2AB XK AD.
But,
Hence, BO*— AB'-+ AC*+ 248 X AD.

Cor. 1. If the angle CAB becomes a right angle, AL

i}

becomes zero, and we have, 5(* A B 4 A,
THEOREM VIIIL
In.any triangle, the square of a-side opposite an agute angles

cq wal to the sum of the uires of the m"/u r {wo Sides, minuUs
1 .

fof the base and the distance from the vert

to the foot of the perpendi wlar let fall

AB € beany triangle

base, and /,A'/) the lrt.'l'}l-k"zntli

ACP—AB*+ BO*—2A4B ¥ BD.

in the right-angled triangle ADC,

O
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we have, A(?=DC*- AD?;

but AD —ARB DB;

hence, AD*—=AB*-{ DB*—2AB X DB(Th.V.C.1).
Hence, AC*—=DO*4- AB*-+- DB*—2 AB 3 DB.
But, DAL DBY= BC* in BDC.
Hence, AC?—=ARB* -+ BC*— 2AB X DB.

The same may also be shown if the per-

o

pendicular meets the base produced; as in

the second fieure. Therefore, ete.

Nore.—This 8th Praposition can be very prettily drawn from the 7th, by

transposing the tering of the 7th, and reducing, Let'the pupil try it.

THEOREM IX.
In any "]A[”)"f‘v']"' a ,\‘fl'«//'_r,'/rf line drawn ]r:l}',/fll I to the base
divides the other sides j,l/'r.‘/m/';‘fmp..'/'/1/.
Let 4B be adriangle, and DE alineparallel to the base;

then will
CD: DA : CF: \ BB,

For,‘draw A H and DB; then, since the

two triangles AF'A and DEC have their
bases in the same line and their vertices
at the same ]mi!lnl E, they have the same
altitude; hence, they are to each other as
their bases (‘Th. TIT. C. 2, or,
AED:DEC:: AD: DC.
For a similar reason, the triangles BED and DEC are to
each other as their bases:; henee, we have,
BED  DEC :: BE:; BC.
But the triancles A D and BED have the same base DF
and the same altitude. since their vertices are in the line

4B parallel to DE; hence, they are equal (Th. IT1L.), and
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the two proportions have a couplet in each equal; hence,
the remaining terms are proportional (B. IL Th. VIIL),
and we have,
AD:DC::BE: EC
Therefore, ete.
Cor. 1. By composition, we have,
AD 4+ DC:AD:: BE+ EC:BE,
AC:AD:: BC: BE; and, in the same way,
AC: DO BC Y EC

Cor. 2. Conversely, If a line divides two sides of a triangle
proportionally, it will be parallel to the third side.

Let DE divide C/A snd CB proportionally ; then, if DE is
not parallel to A B, draw DE' parallel to AB. Now CA: CD::
('/',’F: CE' (Cor. 1), but CA : €D : : CB : CE byhypothesis;
hence, CB' — CE, which is absurd. Therefore, ete.

Cor. 8. Since DEQ: AEC:: DC: AC and AEC: ABC'::
EC:BC, and also, DC: AC:: EC: BC; therefore,

DEC: AEC:: AEC: ABC.
That is, the triangle AEC is @ mean proportional between

DEC and ABC.

SIMILAR TRIANGLES.
THEOREM X.

Triangles which are mutually equiangular are similar,
Let ABC and DEF be two tri-
angles having the angle A =D,
the angle B— E, and '=F; then
will they besimilar.
For, on 4C take 0G equal to

./".“, and on B(C take CH l.‘llll;tl o

S
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F'E and draw G H; then the triangle CG H will be equal to
FDE (B. 1. Th. VI.) and the angle CG'H will equal F.DE;
hence, the angle CG H equals CA B, and G H is parallel to
AB (B. L. Th-TV.).. Hence, we have (Th. IX. C. 1).
AC: BC+G0 - HO, or,
ACTBC «: DI EFR;
and the same may be shown for the sides containing the
other equal angles; hence, the triangles are similar (D.
6). Therefore, ete.
THEOREM XI,
Triangles  which have their corresponding sides proportional
are similar.

Let ABC and DEF be ftwo triangles haying their cor-
responding sides proportional;
then will they be similar.

For, if they are not similar,
suppose some-other triangle, as
DEQG, to be constructed upon
the side DE, similar to ABC:
Then, by the preceding = the-
orem, we have,

AB:DE:: AC: DG;

but, by hiypothesis,
AB:DE:: AC+: DF; hence,

we have, DG = DF,
In the same way, itr may be shown that

EQ—=FEF.
Hence, the triangles DEG and DEF must be equal in al!
their parts (B. I. Th. IX.), and, therefore, mutually equi
angnlar; hence ABC and DEF are mutually equiangular,

and, consequently, similar, Therefore, efe.
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THEOREM XIL
viangles which have an angle in each equal, and the sides
including them proportional, are similar.

Let A BC and DEF be two triangles having the angle €

equal to the angle F, and
ACQ :BC :: DF : EF;

then will the triangles be similar.

For, apply the angle DFE to
ACB, and the triangle DFE will 6/

tuke the position G CH, and, from /

the proportion above, we shall have 4
AC=BC GO HC;

hence, GH is parallelito A B (Th. IX2€02), and the trian.

gles GOH and ACB mutnally equiangular, and therefore

similar. But, GCH is equal to DFE; therefore, 4 OB and

DEFE are mutually equiangular, and similar.

TIHEOREM XIIT.
Triangles which have their sides parallel, each to each, or per-
g 7! 3 £
]':»"))'//"'1/117/‘. each o eachysare similar.
Firste LietABC and DEFE be two triangles having the
5 5

side 4 B parallel to DE, A C parallel c
to DF, and CB parallel to F'E; then

/\ P
. - / \
will they be similar. / \ \
For, since AC is parallel to DF  / \
Ao N DN

and A B to DE, the angle 4 is equal {
> / D E
to D, (BII) Th. V.); for/ a)similar f—— =
reason €18 equal tod"and B to #; hence, the triangles are
mutually equiangular, and, consequently, similar.

Let ABC and DEF be two triangles having their

sides respectively perpendicular; then will they be similar

8
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For. produce the sides of DEF #ill they meet the sides of Lot Mha 106 vy b . e
v 4 y Second. The two triangles being similar to the given

ABC. Inthe trapezium G EIC, the sum of : one. we have,
AB: AC:: AC: AD.

A.Bs BQ: BC: BD

the four angles equals four right angles
(B.1.Th.XIX.C.2),dand since two of the

d y MO E Al ofn
angles are right angles, the sum of the reiore, etc.

angles (' and GEI equals two, right an- x Third. The two triangles being similar, we have,

/

AD:DC::DC: DB,

oles 3 the sun of ' and & o Lo _: —
gles. But the sum ol GEIand F'ED & i B

equals two right: angles (B. I. Th. L)

hence, the angle FED equals the angle .. In the same way

it may be shown that FDE equals B, and DFE equals 4; RE T AT
. . , and D RELATION OF POLYGONS
hence. the two triangles are mutually equiangular, and, POLYGONS.
consequently, similar. Therefore, etc. THEOREM XV.
T'riangles which have an :'ll«{:’/v' in each ,"//((,4({, are to each other

THEOREM XIV. as theproduets of the sides including those equal angles.
el - . ’ . . - . 7 S, (Y ay alal ) g . .
If,ina I'H/]u‘_;'lnf/]:,-«/ trianole. a line be drawn from the vertex Let ABC and DEF be two triangles having the an}__:lu
of the pight angle p -'i/u"/i_.v/:'-'Zz's’vl,t' to the hypothenuse; : F equal to the angle C; then will
1 Thedin it les (I“,_\‘ forme d will be similar to f/lr’ given ! Wl oM 1 () ) 9
. wo trinngles this f ( wear g ABO: DEF 2 A0 X 'BC: DE X EF
triangle and to.each other. QP i 4 '
9. Bach side about the right-angle will be a mean propor- For, place the angle Flon its
, equal €, and the triangle DEF

willtake the place GOH ; then

tfronal between th ]v(/)" ithenuse and adjacent “"r.'""’”'/;j'

3. The perpendi wlar will be a mean (,‘/"'v/x"r"jf‘(lh«lj between
the two segments.of the hypothenust draw A H. Now, since the tri-
angles AHC and GHC have

Tiet ABC be a right-angled triangle, €' the right angle,
their bases 4 C and G€ inthe

and 0D the perpendicular; then,
- Mol d T a A : .

First. The triangles ACD and fame line A C; and vertices
ABC have each a right angle, and H, they have the same altitude, and are to each other as
he their bases; hence,

AHC 1GHO w40 : 6C.

the angle A common; hence, -t

remining angles are equal, and

i

e el sl (Eh a0 ) T B B N B WA B, .
the triangles are similar Th. X.). {150, since A H(" and A BC' have their bases /€ and B( in

y the same manner, we w BODand A BO equiangular the same line. 3 e :
In the same manner, we show BCD an { B( equiang 16 same line, and vertices at the point 4, they have the

and similar; and then ADC and BDC, being both similar

to ABC. are similar to each other.

same altitude. and are as their bases; hence

ABC:AHC::BC: HC;
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multiplying the corresponding terms of these two propor-
tions together, and omitting the common factor A H(, we

have,

ABC~GHC :: AC X BO: GC X HC,
o1, ABC :DEFE:: AC X BC:DF X

Therefore, ete.

THEOREM XVI.
Similar- triangles .are to each otheras the squares of their
/I.«'//w/l_)‘//(mx Stdes.
Tiet ABC and ADE be two similar triangles ; then will
they be to oach other as the
squares of any two homolo-
gous sides. Draw the alti-
tudes AG and AF; then,
gince the triangles are as
the product of their bases
and altitudes (Th. IIL. C. 1),

ve have,

ABC:ADE:: BC X AG:DE X AF.
But, by similar triangles, we have,
BC:DE::AB: AD,
and, AG:AF::AB:AD;
hence, BC X AG i DE X AF A B ADA
Comparing this with the first. proportion, we have,
ABC:ADE:: AB*: AD

THEOREM XVIL

Similar ]uﬂi,‘/r;/w may be divide d into the same nuinber of i

angles, similar each to each, and similarly situated.

Let A BCDE and FG-HIK be two similar polygons, having

the angle 4 equal to the angle F, Bto G, C to H, ete.; then
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n they be divided into the same number of similar tri-

a
ancles similarly situated.
From the homologous
vles A and F draw the
diagonals AC, AD, and
s 1. F'I. Since the poly-
wons ave similar, the tri- D
wmoles ABC and FGH .
have the angles B and G equal, and the sides about these an-
orlos !1]‘«'])"‘.‘liuillll; they are, therefore, gimilar (Th. XIL).
Since the triangles ABC and FGH are similar, the angle
ACB equals FHG, and the sides AC and FH are propor-
tional to BC and GH, and hence to CD.and HL  If we take
the equal angles A OB and FHG from the equal angles BOD
and G-F1I, we have A @D equal to F.HI; hence, the triangles
AQD and BHT have an angle in each equal, and the sides
ineluding these angles proportional ; they are, therefore,
SGimilar (Th. XI1.). In a similar manner, it may be shown

that ADE and FIK are similar. Therefore, ete.

THEOREM XVIIIL

2 /:l\ of similar /)"f/'./,l:,fw/n» are to ,,/‘-], other as any
wo I ulr"/’*f’/’r“’-\' sudes; and the ]/v:/"/‘./:‘/':ILN are o each, other s
thie .»A/"."/,"l S of those sides.

Lot ABCDE and FGHIK be two similar polygons; then

ill their perimeters be

y each yother, as any
WO A‘f‘."“l“!(i:""l)ll* .\i(lx'i.
and their areas be as
the squares of those
gi1des.

’

First. Since the polygons are similar, we have,
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- e T ) There.
AB: FG::BO: GH:> CD: 1/[7 olon are oqual: hence, the l,(.l}‘f:(‘,ns are similar (D (J) 'here
: ( ZS CD 3% a 1 ;
henee ( B: IE TH. X1 L.), N
AB -+ BC + OD4-ete.: PG -~ GH -+ HI - ote.:: AB: FG (r. Sinee regular polygons of the same number of sides
T { ; . : s AB L HG &

: . : i ' i joures gy merimeters are proportional to
or, the perimeter of the first to the perimeter of the second gimilar figures, their perimeters & proy

are

{

. . ;s id [ s lines, \ir areas are as the squares
as any side of the first to the homologous side of the anv homologous lines, and their areas are 1

sécond, of those lines.
Second. Sinee the triangles are vespectively similar, we

have, ABC: FGH:: AC®: FH; Yoota et dagiare BaOH

and also L OD: FHI : L A G2 | FiHA 1. Required the perimeter gnd area of a square Wiose sides are eac

b L ais0, oS 0 9 B My Y : y > B

hence, we have, AB(C: FGH :: ACD: FHI. £P o

Required the perimeter and area of

PRACTICAL EXAMPLES.

a rectangle whose sides are
In a similar manner; we find,

ACD FHT :;: ADE : FIK-.
Hence (B. II. Th. XIL), the sum of the anfécedents, ABC =

sotively 18 and 24 inches.

9 What ic the area of a parallelogram whose base is 16 inches and
altitude 12 inches? » 5
i | G i form of a triangle; what i its areal
ACD - ADE;is to the sum of the consequents, F'GH - 4 A wan hos a board in/the form of a {riangle; what is

, X Y71 e . s 0 1 the altitude 18 inches?
FHI + FIK, ag any antecedent A BC is to its consequent (hie base is 9 feet and the altitude 18 inc

feld in the for * o trapezoid ; the kwo parallel
£ . 0 G 32 G2 § farraer has o field in the form of a trapezoid; the ]
FGH; and, since A B isto FGH as AB*to FG2 we have. B enrnitiBins o Beld ,

3 tho o) ~ndd s vo-
and the distance belween them 82 rods; re

o, <l ;S ok are 40 amdi60 rods;
ABCDE : FGHIK «: AB*: FG-.

5 o ired its area.

Therefore, ete - : 1 le triancle, the two side

B c10re, € 3 . £ o +Wt-¢ le trianele, the two si1aes
" Reauired thehypothenuse of a right-angie triang

Cor. Thé perimoters are ot Kan an ame d - 6. Required thehyy o
7. 1€ permmeters are 1o _each other as any two A0mo- 3 and 4 inches respectively.

i 17 2 104 ihe hace 24« what 8

logous lines, and the polygons are as the squares of those o2 of o frlangle 4 18 and 21, and the buse 24 : what are

lines. e sides of a similar triangle

- c - RE P ey e v gle; the hypo-
THEOREM XIX, 8. ] y 1ot in the form of a right-angle {

A
Regular polifgons of the saine\number of sides @re| Siiildr i

y that its foot is

does it reach?

Let ABCDEF and GHIKLM be two regular polygons

of the same number of

from the top, and fell o that the end

tlie length of the pole:

sides ; thenmwill they be i s

simiar.

A l i » 3 1 the small i rar h can express the
94 . » ¥ TIras - \ / \ / 2 The umobers o, 4, ans { S . 1
L 0%y LG 01T OSpOn / \ / . leut that we
i“g B oaph e . 1 imber of 3 their s des in this
( ; 7S ' F . f ) o 15 oto. Another integral relation of sides
("Q”lll (B. 1. Th, XIX. C. : Phus, 8, 8, 103 8-12, 15, eto. Another infegral IEIAL

5),and the corresponding sides are proportional, since they
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20 rods; what is the hase of a similarly-shaped lot contair mg 4 times as
much land ? Ans. 40 rods.
12. A man has a lot 40 rods long and 23 rods wide; what are the
dimensions of a similar lot 9 times as lare Ans, 120 69,
13. A-ladder, whose length is' 91 feet, stands clos ainst a hoilding,
how far must it be drawn out at the bottom that the top may be low-
ered 7 feet? Ans. 35 feet.
14 A'ladder 130 feet long, with its foof in the street, will reach on
one side th & window: 78 feet zh, and on the other to a window 50 feet
high; what is the width of the street? Ans. 224 feet.
15, There is-a rectangular) fisld whose sides ave 25 yards and 16
yards respectively ; what is the side of a square field of equal area?
Ans. 20 yards.
16. If it cost $528 to put.a fence around a farm 50 rods long and 32
rods wide, how much less will it,cost to.enclose & square farm of equal
area with the same kind of fence ? Ans. $8.
17. The gable ends of a honse are ench 48 feet wide, and the perpen-
dicular height of the ridge above the eaves is 10 feet : how many feet of
boards will it take.to board up both gable Ans, 480.
18. Aman has a field in the form of a rect gle which contains 40
acres ; what are its dimensions if' the le wice the breadth?
Ans. Length, 113.186 rods: width, 38 rods.
19. A cemetery containing 60 acres is lnid out in such a manner that
its length is equal to three times its width ; ired the dimensions of
the cemetery. Ans. Length, 169.704 rods : Ith, 56.568 rods,
20. A general wishing to draw up his carps in form of a square,
found by the first trial he had 100 men: over ; he then increased the
side of the square by 2 men, and found he lacked 186 men to complete
the square; how many men had he in the corps? Ans. 3464.
21. A man has a square yard containing 75 of an acre; he mal
gravel wallsaround, ithwhich deeupies &5 of the whole yard ; what is tl
width of ‘the walk ¥ Ans-4'feet 1} inchee

29, le the two sides are 13 and 15. respectively, and

perpendicular from the vertex of the angle which they form

posite side, 12; required the third gide.
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EXERCISES FOR ORIGINAL THOUGHT.

he squares of their diz als.
1. Two squares are to each other as the squares of their diagonals

9. Two similar parallelograms are to each other as the squares of

ir diagonals
/ o ¥ snch hor
Prove that the diagonals of a rectangle are equal to each other.

| ey diagons f a parallelogram is o ysite the
4. Prove that the greater diagonal of a parallelogram is oppo

greater angle.
=k . 1 3 3 < -
riangle must be drawn 1o

5. Show where a line from the vertex of a tria

ide the triangle into two equal parts.

6. Prove that the ratio of the side of a square to its diagonal is 2s 1

to the square root of 2.
7. The straight line joining the middle points of the oblique sides of
s straigh i z

tl

i ot sr sides, and equs half their
a trapezoid will be parallel to the other sides, and equal to half their

sun.
8. The four lines joining the middle points of the adjacent sides of a
quadrilateral form a parallelsgram. A
9. The lines drawn from the vertices of the three amgles of an equi-

ieul t yposite sides of the triancle,
lateral triangle, perpendieular to the opposite sides of the triang

intersect each other in the same point,

10. The line which bisects the vertical angle of a triangle
the base into twa parts which are proportional to the adjacent s

11. If a line be drawn para of a triangle, and Tines be
drawn from the yertex of the tria
the base and parallel proportion:

12. Triangles-which have an angle in each-equal,

L.




BOOK IV.
OF | THE CIROLE
DEFINITIONS.

1. A CircrEisa plane’ bounded by a carve line, evers
point: of which is equally distant from a point within.
called the centre.

2. The CIRCUMEERENOE is the bound-
ing line of a-cirele. -An Arc is any
part of the circumference; as, BD.

3. The Rapius is a straicht ‘line
drawn from the cenfre to any point ofi the circumference ;
thus, CDis a radius.

4. The' DIAMETER is a straight line passing througa
the centre and terminating at both extremities in the cir-
cumference; as, 4B.

5. A Crorp 18 a straizht line joining the ertremities
of an arc; thus, BD.is a chord.

6. A'SEGMErND is'a portion-of the
circele included between an arc and its
chord; as, DBE.

7. A SrorTor is a portion of the
cirele included by lan arc ‘and the radii
drawn to its extremities; as, DCBE.

8. ATANGgENT is g straight line which touches the cir.
cumference in one point; thus, 4B is a tangent. The

point E is called the point of tangency.

A
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"
9. A SgcANT is a straight line which cuts the eircum-

ference in two points; thus, CD is a /—\
gecant. =

10. An INSCRIBED ANGLE I8
an angle whose vertex is in the cir-

enmference and whose sides are

chords; as, ABC in the next figure.
11. An IxscriBED POLYGON is &
polygon whose sides are chords, the
vertices of the angles being in the cir-
cumference ; as, A BCDEF.
12. A PorvGoN 18 ecircumscribed
about o circle when allvof its sides ave
tancents to the circumference. The eircle is at the same

time imscribed in a ]/fl.]//»"j'l/l.

AXTIONMS.
1. The radii, and also the diameters, of a eirele, or of
equal circles, are L'\'ill;ll.
|
9. BEvery diameter is donble the radius, or is equai to
the sum of two vadii,
A straicht line can cut a cirecumference in only two

points.

\Lysis.—This book treats of the nature of the circle,the measure-
measurement of
wrea of a circle, and the relat of the ecircumfe s, and also

of the areasof circles.
rence and are nd their relafions; is torregard the cirele

con of an infinite number of sides, and derive the principles

from those of polygons. By a simplification of the sabject, we embrace

1 one book what is nsually given in two.




GEOMETRY

NATURE OF THE CIRCLE.

THEOREM 1.
The diameter of '« circle is greater than any other ehord.
Let AB be any chord; then will-it be less than any

diameter.
~— \B

N

For, from the point 4 draw the dia-
meter AD; and draw also the radius
CB. Then, in the triangle ACB, the
sum of the sides 4 Cand CB is greater
than AB (B. I. A.10. C.). But AC++
OB equals AD (Ax. 2); hence, 4D is greater than AB.
Therefore, ete. 7

THEOREM IT.
In the same circle or equal civeles, equal angles at the eentre
l‘)l.’rﬁ‘i't"'_]i" (‘Q’!L‘.l/ arcs on z’/'lri’ f'f/'l‘l/lli_,"‘t'."!'u."f'.

In the equal circles ABC and DEF let the angle AOC
equal DO'F'; then will the
arc 4 C be equal to- the arc
DF.

For, apply the circle A BC
to the circle DEF so that the
anglerA OC shall. coincide
with the angle DO'F. Then,since 0C=0Fand OA=0D,
the point €' will fall on F' and the point A will fall on D,
and the arc 4 will coincide with the are DF, since every
point of each arc is equally distant from the centre of the

cirele. Therefore; ete.
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-
Cor. Conversely.—TIn the same circle or equal cireles, equal

ares subtend equal angles at the centre. For, if we apply the
equal arcs AC and DF, placing the point C on F, they will
coincide, and the point A will fall on D; hence, the line OC
will coincide with O'F and OA with O'D, and the angle
A0C will be equal to DOF.

THEOREM IIT.
Any vadius which s perpendicular to a chord bisects the chord
and, also the are subtended by the chord.
Lot AB be the chord, and CD the radius perpendicular
toit; then will AD = DB and AE= EB. '
First., Draw the radii C4 and C'B ; then
the angle A CD equals DEB (B. L. Th. X.
¢, 1), and the triangles A€D and DCB
are equal (B. I. Th. VI.); hence, the side
AD equals DB.
Second. Since the triangles ACD and
DB are equal, the angle 4 CE equals ECB ; hence, tle arc
AE equals-the are EB (Th. 11. C.).

THEOREM IV.
Through three points not in the same straight line a circumference
may be made to pass.
Iet A, B, and C be any three points not in the same
straicht line; then may a circumference
be described E'!i:'-ivll_-_fll them.
Draw A B and BC, and at £ and D, the
iddle points of 4 B and B C, draw perpen-
lars, and unite the points E and D.
Now, since OED + ODE is less than two

right angles, the perpendiculars will meet
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in some point, as O (B. 1. Th. IV, C. 3). Draw 04, 0B,
and OC'; then 04 =0B (B. I. Th. XIV.), and, for the same
reason, OB =0C; hence, a circumference deseribed from O
as a centre will pass through the three points 4, B, and €
Cor.- 1t may also be readily shown, that but one circum-

ference can be made to pass through three points.

THEOREM V.
If a straight line i3 perpendicular to a radius.af its extremity,
i will be tangent-to the cirele at that, point.
Let the straight line 4B be perpendicular to the radius

CD at D; then will it be tangent to the

E B

circle at the point D. . . B

For, take any point of 4B, as B, and /F\
draw the line CE. Now, CE is greater @
than CD (B. I. Th. XIV); conse-
quently, the point E will be without the
cirele, and henece the line 4B touches
the eircumference in onlyone point: it is therefore tangent to
it at the point D (D. 8). Therefore, ete.

Cor. Conversely.— A tangent to_the cirele is perpendicular
to the radius drawn to the point of contact.

For any line, as CF, is greater than CF, or its equal €D;
hence, CD, being the shortest line from € to'the tanpent,
is perpendicular to the tangent at D (B. I. Th. XIV.).
Therefore, ete.

THEOREM VI

Two parallel lines intercept equal ares on the eircumference.

There may be three cases: first, when both lines are secants;
second, when one is a secant and the other a tangent; third,

when both are tangents.

BOOK 1IV.

First. Let AB and (D be two lines cutting the cirele;
then will the ares MN and PQ be equal.

For, draw the radius OH per-
1|\':1;viir>111;xx' to the chord N@; it
will be perpendicular to MP (B. L
Th. TII. C.), and will bisect the
ares NHQ and MHP at the point
H (Th. IIL); hence, NH equals £ @
and MH equals HP; and, therefore,
MH—NH=PH—QH, or MN equals PQ. Therefore, ete.

Second. If one of the lines, as C'D), is a tangent. Then

the radius OF, drawn to the point of contaet, H, is perpen-
dicular to the tangent ¢'D' (Th. V.), and" consequently to its
parallel 4B. Since OH is perpendicular to the chord MP,
it biseets its are MHP (Th. TIL) ; hence, arc MH equals are
PH.

Third. If both lines, as "D’ and A/B, are tangents. Draw
any secant, as AB, parallel to A"B’; it will be parallel to
(.1".])' (B. L. Th. IV. C. 2). By the second case we have arc
MK — are PK, and are MH = arc PH; adding, we have
MH + MK = PH + PK, or avc HMK =arc HPK.

Cor. 1. In the ease of parallel tangents it is evident that
each arc is a semi-circumference.

Cor. 2. The straight line joining the points of contact of
two parallel tangents is a diameter,

Seholium. Regarding a tangent as a secant whose two pqints
of intersection coincide, the demonstration of the first case of

the theorem may be regarded as including the-other two cases.
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MEASUREMENT OF ANGLES.

. THEOREM VIL
Tiv the same cirele or n equal cireles, two angles at the centre
have the same ratio as their intercepted ares.

Iet ACB and DCYE be two angles at the centre of equal
circles, and A Band D E their
intercepted ares ; then will
ACB: DC'E :{: AB : DE.

First. Suppose some com-
mon unit is contained 5 times
in the are AB and 3. times
in the are DE; then

arc AB ¢ are DE: 6 : 3.

Draw radii to-the several points of division of the ares;
the angles thus formed will be egual, since their arcs are equal
(Th. TI. C.); hence the angle A CB will consist of 5 equal
parts and the angle D C'E of 3 such equal parts ; therefore

angle ACB :angle DC'E :: 5: 3.

Comparitig the two proportions, we have

angle A CB : angle DC'E : : arc AB : are DE.

Second. Now this js true whateyer the size of the unit of
measure; hence it is. true when the unit of measure becomes
indefinitely or infinitely small, as it must when the two arcs
are incommensurable. Therefore, any two angles at the centre
uf'l/l" same or l’,'l."/ll{ll; circles are to each other as their f/t(t/'(ft})(l :f‘

arcs. ™
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THEOREM VIII,

An angle having is vertew at the centre of a cirele is measured

by the are intevcepted between its sides.

Let -A OB be an angle at the centre of the circle 4 CB, and
AB its intercepted arc ; then will AB be the measure of the
angle 4 OB.

For, let BOD be the unit of measure
of the angle A OB, and the arc BD be
the unit of measure of the arc BA ; then,
by Theorem VII., we have
AOB: DOB:: AB: DB,

AOB _AB
DOB DB

Now, A OB divided by DOB equals the number of units in

‘the angle AOB, and AB divided by DB equals the number

of units in the arec AB; hence the number of units in the

or,

angle is equal fo the number of units in the arc; therefore
the arc may be used as the measure of the angle.

Seholivm 1. This theorem-is usually expressed thus: An
angle at the centre is measured by iis intercepted arc. The
statement is, however, rather conventional, “ measured by ”
meaning “having the same numerical measure.” * Both angle
and are have the same numerieal measure; hence the are
may be assumed as the measure of the angle.

Seholiuvm 2. It would seem more natural to measure an
angle by a quantity of the same kind, and for this purpose
the right angle would naturally be taken as 'the unit of
measure. It has been found more convenient, however, to
use the are of a circle as the measure of an angle, and for
this purpose the circumference has been diwided into degrees,

minutes, and seconds, as before explained.
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THEOREM IX.

An angle having iis vertex at the cireumference of a circle 13

measured by half-the arc_intercepted between s sides

There may be three cases; first, when the centre of the
circle is on one of the sides of the angle; second, when it
is within the angle ; third, when it iswithout the angle.

First. Let ABC be the angle, having
its vertex at B, and O_be the centre of
the circle; then will ABC.be measured
by one-half of 4 C.

For, draw the radius. 40; then the
exterior angle A 0( is equal to the sum
of the opposite interior angles ABO and
OAB (B.1. Th. XIII. C. 5)." But, the triangle 4 OB being
jsosceles, the angles A and B are equal ;.and, consequently, the
angle 4 0C is double the'angle ABC.” But 4 0c, f’wing at
the centre, is measured by the arcd ¢ (Th. VIIL); hence,
the angle ABC is measured by one-half of the are AC:

Second. Let ABC be the angle, and O the eentre of the
cirele; then will ABC be measured by -
one-half of ADC. BT I

For, draw the diameter BID; then, ‘,/ \ N
from what we have just shown, the \ / ::u\\
angle ABD is measured by one-half of \/ o\
AD. and the angle DBC by one-half of 13
DC'; hence, their sum, or the angle 4 B(,
is measured by one-half of the sum of AD and DG, or one-
half of ADC,

Third, Let ABC be the angle, and O the centre being
without the angl®; then will ABC be measured by one-half
of AC.

BOOK 1V.

For, draw the diameter BD ; then, ABD is measured by
one-halt’ of 4D, and CBD is measured .
by one-half of CD; hence, ABC, their
difference, is measured by one-half //

/ /
/]

> . / ;
of AD minus CD, or one-half of 4 C. i
Therefore, ete. / :

Cor. 1. All the angles ABC, ADC, )
inseribed in a semicircle are right
angles, being measured by one-half
of the semi-circumference A EC' (Th.
IX)-

Cor. 2. All the angles ABC, ADC,
ete., inseribed in a segment greater
than & semicircle are less than right
angles, being measured by less than
one-halfjof'a semi-circumference. Any
angle AFC inscribed in less than a
gemicircle is greater than a right
angle, being measured by more than
one-half of a semi-circumference.

Cor. 3. All the angles inseribed in
the same segment are -equal; heing
measured by one-half of the same are.

Scholium. A right angle is measured by one-half a semi-
cireumference, or a quadrant.

THEOREM X.
The angle formed by a tangent and a cthord %s measured by half
the are intercepted between its sides.

Let AB be a tangent to the circle at €, and CD a chord
meeting the tangent at C'; then will the angle A CD be meas-
ured by one-half the are CED.
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For, draw the diameter CE. The ancle ACFE is a richt
angle, and is measured by half the “ .
semi-cireumterence CFE (Th. IX. S.);
the angle ZCD is measured by half the
arc ED. (Th. IX.); hence, the angle
ACD, which equals A CE -+ ECD, is
measured by half the sum of the ares
CFE and ED, or by half the arc CED, 4=————¢—

Therefore, ete.

THEOREM XI.
An angle formed by two chords which intersect 1s measured by
/lu{f the sum of the inte /'(.‘r’/lif;ll arcs,

Let AEC be an angle formed by the intersection of the
chords 4B and CD; then will it be measured by half the
sum of AC and DB,

For, draw DF parallel to AB; then thie arc 4 F equals the
arc DB (Th. VL), and the angle £D(C o
equals the angle AEC (B. I.-Th. IIL). \
Now, the angle FD (' is measured by one- / 4

half the are FC (Th.¥W{I.): hence, the (
= X

angle AF(C is xnc-.lsuz"(:a by one-half® of
FC) or Y(ACO+ AF),or #(ACA DBE).

Therefore, ete.

THEOREM XII.
The angle formed by two secants is measured by half the dif-
ference of the intercepted ares.
Let the angle ABC be formed by the two secants AB
and C'B; then will it be measured by one-half the differ-
ence of the ares AC and ED.

BOOK IV,

For, draw DF' parallel to 458 ; then
the arc AF is equal to the arc ED, and
the angle D C equal to ABC. Now, the
angle FDC is measured by one-half of
the are #/C; hence, 4 BC is measured by
one-half of FC; that is, by

}(AC—AF) or $(4C— ED).

THEOREM XIII.
The angle formed by a secant and a tangent is measured by
half the difference of the intercepled ares.
Let AB be a secant cutting the circle in E, and AC a
tangent at the point D; then will the
angle BAC be measured by one-half of
the difference of the ares DB and DE.
For, draw EF' parallel to 4 C; then
the angle FEB equals 4B, and the
arc DB equals are DF. Now, the angle
FEB is measured by one-half of FB;
hence C'4 B is measured by one-half of B ; but FB=DB—DF
or DB — DE; therefore C4B is measured by (DB — DE).

THEOREM XIV.
The angle formed by two tangents is measured by half the
difference of the intercepted ares.

Let AB be a tangent at D, and 4 C a tangent at E; then
will the angle BA C be measured by
half the difference of the arcs DFE
and DE.

For, draw EF parallel to 4 B; then
the angle FEC equals B4 (; and the
are DE equals the are DF. Now, the

angle FEC jis measured by half the

8
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are FE (Th, X.); hence BAC is measured by half the arc
FE: but arc FE= DFE — DF,or DFE — DE ; hence BAC
is measured by $(DFE — DE). Therefore, ete.

’

THE CIRCUMFERENCE AND AREA.

THEOREM XV.
The eircumference of a circle may be circumseribed about a
regular polygony and it may also be inseribed within at.
Let A BCD he aregular polygon; then can the circum-
forence of a circle be cireumsceribed about.it.
Through the three vertices 4, B, and
(! describe a circumference ; its centre
0 will be in.OK drawn perpendicular
to B at its middle point K. The tri-
angle BOC being isoceles, the angles OB C
and OCB are equal; which, beingsubtracted
from the equal angles ABC and BCD,
leave ABO and OCD equal; hence, the triangles OB A and
OCD have two sides and an included angle respectively
equal, and are equal (B. 1. Th. VL), and OD equals 045

hence, the circumference passing through A also passes through

D and in the same way it may be shown to pass through all

the vertices.

Second. Since the triangles 4 OB, BOL, ete. are all equal,
their altitudes are eqnal ; henge, a ¢ircumference deseribed
from O as a centre with the radius OK will touch all the
¢hords at their middle points, and, consequently, be in.

seribed within the polygon. Therefore, ste.

BOOK IV.

THEOREM XVI.

The circumferences of circles are as their radit, and their areas
are as the squares of their radit.

Tt ¢ and O be the centres of two circles whose radii
are ("4 and OM; then
will their cireumfer-
ences be to each other
as their radii, and their
areas as the squares of
their radii.

Inscribe in the cir-
cles regular polygons of the same number of gides. These
polygons being similar figures, their perimeters are to each
other as any two homologous lines €4 and QM and their
areas arve as the squares of those lines (B. ITL Th. XVIIL
@); and this is true whatever the number of
hence, it is true if the number of sides is infinite, and the

yolycon becomes the eircle. Hence, we have,
v o ’

eire. OA-:eive.. O 1.2 CA-: OM ;. and, also,
area CA : area OM :: CA*: OM™.

Cor. 1. Since the radii of cixcles are to each other as
the diameters. we have the eircumferences to each other
as the diameters, and the areas as the squares of the dia-
meters.

Cor. 2. From this we see that the circumference of a
circle is to its diameter as the cireumference of another
circle to its diameter; hence, the ratio of the circumfer-
ence to the diameter is a constant guantity. This con-

gtant ratio mathematicians represent by =, the Greek letter
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p; called pi. Letting C represent the circumference and D
51

the diameter we have = — —.

Nore.—This symbol « is of great importance in mathematics: the pupil

should be very careful to thoroughly understand its signification and use.

THEOREM XVIIL.
The circumference of -a-circle equals the diameter mulli-
plied by =.
Since the ratio of the circumference to the diameter is
represented by =, we have,
a e |
B/ and, multiplying by D,
we have, C=mn=. D.
Therefore, ete.
Cor. Since the diameter is twice the radius, if we sub-
stitnte 2 R for D, we will have,
O=m"Y 2R, or\ O=2=R.

, the circumference equals the radius multiplied

Hence

by 27
//'

Rematg.—The value of = cannot be exactly expressed in numbers.
The number generally used is 3.1416, which is sufficiently aceurate for

practical purposes.

THEOREM XVIII.
The area of a cirele is equal to the circumference multiplied
by one-half the radius.
Let O be the centre of a circle whose radius is 04, and
circumference A BCD, ete.; then will its area be equal to
circ. OA X } 04

BOOK IV,

Inseribe in the circle a regular poly-
gon ABCD, ete., and draw the radii
DA, OB, ete., and the perpendicular OF.
The area of each triangle of the poly-
gon is equal to its base multiplied by
one-half its altitude, and since the alti-
tudes are equal being radii of the inscribed cirele, the area
of the polygon is equal to the sum of the bases, or its peri-
meter multiplied by one-half of OZ. Now, this is true
whatever the number of sides; hence, it is true when the
number of sides is infinite and the polygon becomes a circle.
In this case the perimeter becomes the circumference, and
the line O K, the radius. Therefore, the area of a circle is
equal to the circumference multiplied by one-half of the
radius.

Cor./The area of a circle is equal to the circumference

multiplied by one-fourth of the diameter.

THEOREM XIX,
The area of -a circle-equals the square of the radins multi-
plied by =.
Let ' be the centre of a circle; denote its radins 04 by
Ryand.its area by area CA ; thenfrom the previons theorem
we have,

area C4 — cire. CA e

X I R;

l)lli. cire. 04 =2 =R ("Th. X\vII. (‘,.) -
hence, areq C4 =27 R 1 R,
which, reduced; gives,

area OA —

Therefore, ete.
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Cor. Tn a similar manner, we find that area CA == } 17,
or area CA =13 = D*

Scholium. The finding the exact length of the circum-
ference of a civele-is called the rectification of the circle.
The finding ‘of the area of a eircle is called the guadra-
ture of or squaring the circle.. Both of these are celebrated
problems, and can only be solved approximately, as may
be shown by Calculus,

Tt was/ stated in Theorem X VII. that the value of = is
about 3.1416. This value is generally determined by find-
ing a numerical expression for the area of a circle whose
radius is unity, which area may be shown equal to the
retio of the cirewmference to the diameter. The solution

is given in the following proposition.

THEOREM XX.
ProerEM—To. find the numerical value of =, the ratio of the
circumference to the diameter.
The area of a circle equals =&*; but when R =1, the
area of the cirele equals =; nence, we may find the value

of = by finding the area of a circle whose radius is 1.{ As

a circlo is a pulv;:hn of an infinite number of sides, by con-

structing successive similar inscribed and circumscribed
polygons of double the number of sides, two may be found
whose areas so nearly approach each other that either of
them may be taken for the area of the circle.

Let C'be the centre of the circle, AB the side of an in-
seribed, and EF of a circumseribed, polygon. Draw the
chord A M, and the tangents AP and BQ; then A M will be

the gide of an ingeribed, and PQ of a cirenmseribed poly-
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gon of double the number of
gides,. Draw CE, CP, CM and
CF.

Let P represent the area of
the given circumseribed poly-
gon; p, the area of the given in-
scribed polygon; P, the area of
a circumseribed polygon of dou-
ble the number of sides; and ', the area of an inscribed poly-
gon of double the number of sides. Also, represent the tri-
angles CEM; CAD, CPQ and CAM, which are respectively
like parts of P, p, P and p/, by T} t, 7" and ¢.

1. The triangle CAM is a mean proportional between CAD
and CEM (B. IT1. Th, IX, C. 3), hence,

st st 2t
whence, PSpes: p . p (B. IL. Th. X.);
therefore, PE— 1/ P E. (1)

2. Because of a common altitude; CAM and CAD are to
each other as CM to OD, and CEM to CPM as EM to PM;
hence, et 2 OM: OD)}
and, T:37":: EM: PM,
by division, T— 37" 17":: EP: PM, since EM— PM <=EP.

The triangles C4AD and AEP are similar; hence,

AC: CD:: EP: AP, or, since AC= CM and AP = P,

CM: CD:: EP: PM.

Hence, from the first and third proportions, we have,

ety T3P 4 T;
whence, plepde 2P2— PP LB Th. X))
and P pip:: 2P P; (B. 1I. Th. VL)
whence, P = i‘]? ?f : @

pTPr
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Now if p and P are squares, the radius being 1, the ares of
is 4; and the side of p iz /2 (B. IIL Th. VL. C. 3); heuce
the area of p is 2;

then, from (1),
and, from (2), —— 3.3137085

which are the areas of the inseribed and cirenmseribed
octagons; and in the same manner we may find the areas

of polygons of 16,32, cte. sides. For 8192 sides, the area

29

of the inscribed polygon is 3.1415923 -, and of the circum-

scribed polygon, 3.1415928 -, either of which may be taken
for the area of the circle whose radins is 1; and, since we
have shown this to be the value of =, we havez = 3.14159 |,

Scholiuwm. The value of = is generally tuken to be 3.1416,

Nore.—We invite special attention to the method of treating the circum-
ference and area of the'eircle, and also to the simple and concise methed of

presenting the derivation of the valueof =, as given in' the last proposition.

PRACTICAL EXERCISES.
The radins of a circle is 6 inches; what is its circumference?
The diameter of a circle is 8 inches; what is its area?
The circumference of a cirele is 50.2656 feet; required the radius,
Ans. 8 feet.
The area of a cirele is 490.B75 squars ‘inches; rvequired the dia-
meter and circumference.

Ans, Diameter, 25; circumference,

78

y around a circular park i3 180 rods; required
Ans.
Vr',. What is the length of an are of 752 on the circumference of a
pirele whose radius is 5 feet'? Ans.

7. How many degrees in an are 18 inches lony, on 4 circumferenca

whose radjus is 5 feet ? Ans. 17° 117197
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L3 ]
8. A cirele 20 feet in diameter is circumsecribed by another ecircle 30
feet in diameter; what is the area of the space included between them?
9

A has a circular garden whose diemeter is 18 rods, and B has one
whose area is 27 times as great; what is the diameter of B's garden ?
Ans. 30 rods.

Find the side of a square ingcribed in & circle whose diameter is
3.535 feet.

11. Within a cireular park 160 rods in circumference is a circular

lake 80 rods in circumference; required the width of the ring of land
surrounding the lake. Ans. 12.732 rods,

12. Deborah has a eireunlar garden and John a square one, and the

distance around each is 120 rods; which contains the most land, and
how much | Ans. 245.93 square rods.

13. A man has a square garden and his wife a circular one, and each

garden contains one acre; how much further around is one than the
other ? Ans. 5,756 rods,

14. The aren of a circle i3 314.16; if this.circle be eircumseribed by

a square, required the area of the part between the circumference and
the perimeter of the square, Ans. 85.84.

15. The area of a ¢ 2 is 4 acres; required the side of t
seribed s re, and the f the part of the civele hetsveen the cir-

cumference and verimeter of the square. Ans. 1. AL T R. 82°P.

THEOREMS FOR ORIGINAL THOUGHT.

I. If two circumferences intersect, tl listance between their
trgs will be less than thegum of their radii and greater than the diffex-
ence.

2. If two circumferences intersect, the points of intersection will
perpéndicular to the line joining their centres, and at equal dis-
es from it.

In equal circles the greater arc ha greater chord, and, con-

7, the g  chord subtends the greater s
In equal ¢ s, equal chords are equally distant from the centre,
and the greater chord is nearer the centre.

5. If we inscribe a square in a circle, the radius is to the side of the

inseribed gquare as] is to /2,
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6. If a regular hexagon be inscribed in a circle, each side will be
equal to the radius of the cirele.

7. The area of a triangle is equal to the perimeter multiplied by one-
half the radius of the inscribed circle.

8. In any inscribed quadrilateral; the sum of the opposite angles is
equal to two right angles.

9. When a quadrilateral circumseribesa cirele, the sums of its oppo-
site sides are eqnal.

10. When the radius of a circle is unity, its area and semi-circum-

ference are numerically equal.

PRACTICAL PROBLEMS IN GEOMETREI
CAL CONSTRUCTION,

INVOLVING THE PRINCIPLES OF BOOKS I., IT., II1I., AND IV.

Tae following problems are solved by the principles of
the previous books. The solution of a few is given in
full : in others. the construction is given, and the reason
for the solution indicated l'_\' I‘L‘IL'I']'iUg to the theorem or
theorems nupon which it depends. The pupil will give the
explanation in fall.

The object of these is to teach the pupil to draw aceu-
rately upon paper. They are of great use in drawing the
notes of a survey, or in representing any geometrical figure
uponpaper. The pupils need two instruments, a rule and
compasses ; with these all the following problems may be

readily solved
PROBLEM 1.
To bisect a given straight line.
Let AB be the given straight line, From 4 and B, as
centres, with a radius ghreater than

one-half of AB, describe arcs inter-

N
N

secting at B and F'; draw the line
FE¥; then will €' be the middle point
of AB. For, Eand F are each equally
distant from 4 and B; hence, EC bi-
seets AB (B. L. Th. XIV. C. 3).
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PROBLEM II

From a given point without a straight line to draw a perpen-

dicular to the line.

Let ABbe the given line, and C the given point. From
(' as the centre, with a radins saffi-
ciently great, describe an arc cut-
ting the line 4Bin the two! points
A and B; then from 4 and B as cen-
tres, with a radius greater than one-

half' of 4 B, describé two ares cut- s
! o e < D
ting each otherin D, and draw ('D;

it will be the perpendicular required (B. I. Th. XIV. C. 3).

PROBLEM TII.
At a given point in a straight line to erect a perpendicular to
that line.
Let ABbe the given line, and € the given point. Then,
in the line 4B take the points 4 and B
equally distant from ¢, and with 4 and
B as centres, and a radius greater than
one-half of 4B, describe two arcs cut-
ting each other at D; draw D(C; it will
be'the perpendicular required (B. 1. Th.
XTV. C. 3).
PROBLEM IV,
At a point on a given straight line to make an angle equal to a
given angle.
Let 4 be the given point, AB ¢
the given line, and EFG the 7

given angle.

From the point 7 as a centre,
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with any radius F@, deseribe the arc EG. From A4 as a
centre, with the same radius, describe the are CB; then,
with a radius equal to the chord EG, describe an are from
B as a centre, cutting the arc CB in D, and draw 4D ;
then will the angle DA B equal EFG (B. 1. Th. IX.).

PROBLEM V.

To bisect a given are, or & given angle.

First. Liet A DB be the given are, and C'its centre, Draw

the chord 4B, and from €' draw CD per-
pendicular to AB (P. IL); then will CD
biseet A B (B. IV. Th. IIL).
Second. Let ACB be the given angle.
Then, with (' as a centre and any radius
(A, deseribe the arc AB, and bisect this
arc by the line D, as in the previous case; then will ¢D
bisect ACB (B. 1V. Th. IIL.)

PROBLEM VL
Through a given point to draw a straight line parallel to-a
qive /z'\.':'f":l/'_"l/uf line.
Let A be the given point and €D the given line. From
A as a centre, with a radius greater than the shortest dis-

tance from Ato CD, describe an

indefinite are DE; from D as ¢
centre, with the same radius, de-
geribe the are 4 F; take DE equal
to A F. and draw 4 B; AB will be

the parallel required.
For, drawing AD, we have ADF = DAE (Prob.
hence, AE and CD are parallel (B. I. Th. IV.).
Q9

U Sl P
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PROBLEM VIL
Two angles of a triangle being given, to jind the third.
Let M and N be the given angl D
Draw the indefinite 'line, 48; at any /
point,as C, construct the angle A CP equal
to M, and the angle DCE equal toV;
then will ZCB equ:al the third angle,

PROBLEM VIIL.

Gliven two sides and the included angle of a triangle, to con-

Struct the triangle.

Draw the indefinite line 4D ; take AB equal to one of
the given sides; at A construct the >
angle 4 equal to the given angle, and //‘\
take A C equal to the other given side;
draw B¢ then will AB(C be the re-
quired triangle (B. L. Th. VIL.).

PROBLEM IX.

Given one side and two angles of. a triangle, To construct the

('/‘:'((/r:-/]r.

If the angles are not adjacent, find the third angle by
P. VII.; we then have two angles and
the included side, and proceed thus:—
Draw the indefinite line 4D ; take
AB equal to the given side; at 4 make

the angle’ BAC equal to one of the an- A

gles; at B make the angle AB( equal
the other angle; then produce 4C and B(C till they meet,
and ABC will be the required triangle (B. I. Th. VIL).

PRACTICAL PROBLEMS.

PROBLEM X
Giiven two adjacent sides of a parallelogram and the included
angle, to construct the paralle logram.
Draw the indefinite line 4#, and upon it take 4B equal
to one of the sides. At A construct

> : G
the angle BAD equal to the given A

angle, and take A D equal to the other /
i i DC parallel tao E

oiven side. Draw paral to £ :
A B
A B, and B parallel toAD; then will

ABCD be the l»;u".LHx-lug‘l‘:l!l\ required (B. [. Th. XV. C

PROBLEM XI.
To find the centre of a given circumference or are.
Take any three points, 4,.8, and ¢, on
the circumference or are, and unite them
by the lines 4B and BC. Bisect these
chords by the perpendiculars DO and
EO; then will their intersection O be
the centre of the circle (,_UA [V.Th. lv.).

PROBLEM XII.
Through o given paint to draw a tangent to a given cirele:
First. Suppose the given point P to .be in the cireum-
ference.
Find C, the centre of the circle (P.
XIJ); draw the radius CP; and then
through P draw the perpendienlar
DE; DE will be the tangent re-
quired (B. IV. Th. V.).

Second. Suppose the given point P
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to be without the circle. Join P and
the centre of the circle; bisect PC
in D; with D as a centre, and a ra-
dius DC, deseribe the cirecumference
intersecting the given eircnmierence
in A and B; draw P4 or PB; then
each of those will be the tangent required.
For, since 04 P is a semicircle, the angle CAP is a right
angle (B. IV. Th. IX. C. 1); hence, 4 Pis a tangent (B.
1V Th. W\

PROBLEM XIII.
To divide a given line into any number of equal parts.
T.et A B be the given line, and suppose we wish to divide
it into any number, say 5 eqnal parts,
Through 4 draw the indefinite
line A £, making any angle with
AB. Take A0 of any convenient

length, and apply it:5 times to A.5;

join B with the last point of the A
division; and through the other
points of division draw lines parallel to EB; then will 4B
be divided into 5 equnal parts.

For, singe DC and BE are parallel, we have (B. IIL.
Th. TX.),

AC: AE::AD: AB.

But 4 C'is one-fifth part of AE; hence, A Dis one-fifth part
of AB.

PROBLEM XTV.
To divide a given line into parts proportional to given lines.

Let 4B be the given line, to be divided into parts pro-
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portional to the given lines P, Q.and R. Through A draw
A G, making any angle with 48. On

AG lay oftf AC equal P, CE equal @,

EG equal R; draw BG, and from the X

points ¢ and E draw CD and EF ';/ =
parallel to GB; then will 4D, DF,

and FB be proportional to AC, CE, and EG (B. 111

Th. IX.).

PROBLEM XV.
To construct a mean proportional to two given lines.
Tiet Pand Q be the two given lines. Draw an indefinite
line, and on it lay off 4D equal to P, and
DB equal to @; on AB as a diameter

deseribe a semicircle, and deaw DC per-

/ -

p\-nt.livul:u' to AB: then, in the triangle L -l
A D

ACB,will D( be a mean proportional to
ADand DB (B. ITI. Th. XIV.).

PROBLEM XVI.
To construct a square equal to a given triangle.
Tet ABC be the given triangle, AB its base, and CD its
altitude.

o

. . 1
Find a mean proportional

7
petween D and one-half of
|
AB (Prob. XV.). Let FG |
be {lnzlt. mean ]'nmpm-tiunnl_ Q)

i D '

and on it, as a side, construct
the square F'GHI; this will be the square required. For,
by the construction, we have FG*= 1 AB X CD, which

equals the area of ABC.
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PROBLEM XVIL

To inscribe a regular hexagon in a circle.

Suppose. the problem to be sols I, and that ABCDEF

is a reoular hexagon; draw the radii

OB and OC, Now, the arc B('is one-

sixth of a cireumference; or 60%; hence;
the angle BOC'is 60%, and the other
angles OBCand BCO/equal 1802 minus

602, or 120%, and, OB being equal to O o

the angles OBC-and BCO are equal ;

hence, leach ‘is equal to one-half of 120°,.cr 60°. Con-
sequently, the triangle OBC is equiangular;and therefore
equilateral; hence, the side B( is équal te the radius OB.
Therefore, to inscribe a regular hexagon in a circle, wa

apply the radius six timesas a chord to the circumference.

PROBLEMS FOR ORIGINAT, THOUGHT.

1. Given the three sides of a triangle, to construct the triangle.

9. Given two sides of a triangle, and the angle opposite one of them,
to construct the triangle.

3. To inscribe & cirele in a given triangle.

4. To inscribe a circle in & square; and a square in a circle.
5. To find the side of & square wlich shall be equalitoithe sum
two given squares,

6. To find the side of a square which shall be equal to the diffe
between two given sguares.
7. To construct a rectangle equal in/area fo a given triangle.

8. To find a fourth proportional te three given lines.

9, Ona given line to construct a rectangle which shall be equal te
& given rectangle.

10. To construct a square that shall be equal in area to a given paral-

lelogram.

BOOK V.
PLANES AND THEIR ANGLES.
DEFINITIONS.

1. A PranE is a surface such that a straight line con.
necting any two of' its points will lie entirely in the surface.
2. A straight line iS PERPENDICULAR TO A PLANE when it
is perpendicular to every line of the plane passing through
us foot. /The joot is the point where the line meets the
plane.
Reciprocally, the plane is also perpendicular to the line.
3. A straight line is PARALLEL TO A PLANE when it can-
not/meet the plane, however far both be produced.
Reciprocally, the plane is also parallel to the line.
4. Two PLANES ARE PARALLEL when they cannot meet,
however far both be produced.
5. When two planes meet, they form & line, which. is
called their LINE OF INTERSECTION.
6. /A DiIEDRAY ANGLE g the divergence of two planes.
The line in which the planes intersect is
ealled the ""',i!'" ,,_," the « { le; the ]?llill".\
are called the Jaces of the """.'//"
A diedral angle is measured by the an-
gle formed by two lines, one in each plane
and )u-rln-nnlimll:n' to the edge at the same
point. Thus, the diedral angle in the margin

sured by the angle ACB.
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PROBLEM XVIL
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Suppose. the problem to be sols I, and that ABCDEF

is a reoular hexagon; draw the radii
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the angle BOC'is 60%, and the other
angles OBCand BCO/equal 1802 minus

602, or 120%, and, OB being equal to O o

the angles OBC-and BCO are equal ;

hence, leach ‘is equal to one-half of 120°,.cr 60°. Con-
sequently, the triangle OBC is equiangular;and therefore
equilateral; hence, the side B( is équal te the radius OB.
Therefore, to inscribe a regular hexagon in a circle, wa

apply the radius six timesas a chord to the circumference.

PROBLEMS FOR ORIGINAT, THOUGHT.

1. Given the three sides of a triangle, to construct the triangle.

9. Given two sides of a triangle, and the angle opposite one of them,
to construct the triangle.

3. To inscribe & cirele in a given triangle.

4. To inscribe a circle in & square; and a square in a circle.
5. To find the side of & square wlich shall be equalitoithe sum
two given squares,

6. To find the side of a square which shall be equal to the diffe
between two given sguares.
7. To construct a rectangle equal in/area fo a given triangle.

8. To find a fourth proportional te three given lines.

9, Ona given line to construct a rectangle which shall be equal te
& given rectangle.

10. To construct a square that shall be equal in area to a given paral-

lelogram.
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DEFINITIONS.

1. A PranE is a surface such that a straight line con.
necting any two of' its points will lie entirely in the surface.
2. A straight line iS PERPENDICULAR TO A PLANE when it
is perpendicular to every line of the plane passing through
us foot. /The joot is the point where the line meets the
plane.
Reciprocally, the plane is also perpendicular to the line.
3. A straight line is PARALLEL TO A PLANE when it can-
not/meet the plane, however far both be produced.
Reciprocally, the plane is also parallel to the line.
4. Two PLANES ARE PARALLEL when they cannot meet,
however far both be produced.
5. When two planes meet, they form & line, which. is
called their LINE OF INTERSECTION.
6. /A DiIEDRAY ANGLE g the divergence of two planes.
The line in which the planes intersect is
ealled the ""',i!'" ,,_," the « { le; the ]?llill".\
are called the Jaces of the """.'//"
A diedral angle is measured by the an-
gle formed by two lines, one in each plane
and )u-rln-nnlimll:n' to the edge at the same
point. Thus, the diedral angle in the margin

sured by the angle ACB.
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7. A PoLYepRAL ANGLE is the divergence of three
or more planes proceeding from a common point.

The common point is called the vertex of the angle; the
planes are its facesh the intersection of the planes, its edges.

8. A TRIEDRAL ANGLE is a polyedral angle of three
faces.

9. Two planes are PERPENDICULAR TO EACH OTHER when
their diedral angle is a right angle.

ANATYs18,—This Book treats of planes, the lines and angles formed
by their intersection. It is not go valuable in itself as the other Books
of Geometry, and much less interesting. = Its object is to prepare for the

Book which immediately follows it.

THEOREM L
Through three points not in the same straight line, one plane
can be passed, and but one.

Let 4, B, and € be the three points; then can one plane
be passed through them:

Fox, join' two of the points, as 4 and 0
€, by the Ting A0, Pass a plane through
AC; and turn it around 4 C until it con-
tains' the point B; it will then pass
through the three points 4, ¢ and B.

If now the plane be turned about 4C,

it will no longer contain the point B; hence, only this one
plane can be passed through the three points. Therefore,
ete.

Cor. 1. Since only one plane can be passed throungh
three points, three points are said to determine the posi-
tion of a plane.

Cor. 2. Two lines which are parallel or which intersect de-
termine the position of a plane.

BOOK V.

THEOREM IT.
If two planes cut one another, their common section 13 @
straight line.

Let the two planes AB and CD cut one another in the
points £ and F; then will their common
section be a straight line. 1

For, draw the line EF uniting the two

common points E and F of the planes.

~Z

Now, this line, having two points in the (‘\
F

plane AB, will lie wholly in the plane A
; : ! J
AB (B. 1. Def), and, having two points

in the plane CD, it will lie wholly in the plane CD ; hence,

¢
<

the'line EF is common to both planes, and must therefore be

in their eommon interseetion.. Therefore, ete.

THEOREM III.

I from a point without a plane lines be drawn to the plane,

1. The perpendicular is the shortest distance from the point
to the plane;

9. Oblique lines which meet the plane at equal distances from
the foot of the pmymn«'/ivn/'rr are equal’;

3. Of iwo oblique lines which -meet the plane at unequal dis-
iaices from ilie foot ofthe perpendieular, the one which meets
it at the greater distance 13 the longer.

Let A be a point without the plane MN; let AB be a per-
pendicular to the plane, and let 4C AD, and A E be oblique

lines.

First. AB will be shorter than any oblique line AC. For,
through B draw the line B(; then in the triangle ABC, AB
is less than A C (B. L Th. XIV.).

Second. Tet A€ and AD meet the plane at equal distances




106 GEOMETRY.

from the point B; then 4 C will be equal to 4D. For, draw
BC and BD; then the right-angled triangles ABC and ABD
will have B(C' equal to BD, and the

side AB common 3 hence, the. tri-

angles -are equal, and A€ equals

AD.

Third. Let  AC and AFE meet
the plane so that ‘the distance BE
18 greater than B(C'; then AE will il
be greater than 4 C. \For, take BF equal to/BC and draw
AN ; then AE>AF (B. T Th. XIV); but 4 E= 4C; hence,
AE> AC

Cor. 1. Equal obligue lines drawn from a point to a plane
meet the plane at equal distances from the foot of the per-
pendicular ; \and of two unequal oblique lines, the greater
meets the plane-at the greater distance from the foot of
the' perpendicular.

Cor. 2./ The equal oblique lines meet the plane in the cir-
cumference. of a circle whose centre is B ; hence, to draw a
perpendicular front a point 4 to a given plane MY, find any
three points, €, D, and F) of the plane equally distant from
A, then find the centre of the circumference passing through

these points ; then AR will be the perpendicular required.

THEOREM IV.

Il. a .3,/:‘1'!'1,'/'(/ line is e /'.)/I']/’r'-/.(‘h'l;d/' to two ::f/'u/'i;]‘f lines flr‘. a ]:/':1/;:"
ut the point of heir-uiterséetion, it 13 perpendigular 1o, e
plune of those lines.

Let AP be perpendicilar to PB and PC at the point P;
then will it be perpendicular to MXN, the plane of those lines.
For, let PD be any other straight line of the plane MN

1 3
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drawn through P. Draw BC, cutting PB, PD, and PC in

B, D, and ’f:}nl_'a»linx(-e:- AP making PA’ = AP; and draw 4 B,

AD, AC, A'B, A’D and A’C. Then,

since BP and CP are perpendicular

to AA’ at its middle point; 4B equals

A'B, and A equals 4"C, and the tri-

ancles ABC and A’BC are gequal

(B. I Th. IX.), and also AD equals

A'D : whenee PD is 1»\*)'1\»’*1113':(4_1]:11‘ to

AA" (B. I. Th. XIV. C. 3). Hence,

A Pis perpendicular to any line passing

Hu'nu;h i:‘-' foot ; it is, therefore, ps:r;n'wiirulzn' to the plane M.
Cor. ©nly one perpendicular can be erected to a plane from

: lario
a pointof the plane.

THEOREM V.

If from the foot of a perpendicular to a plane o line is drawn

at right angles to any line |f/. the I’J/',l,)r", and the point of
intersectiontis joined with any point of the perpendicular,\the
last lineiwill be 1,(('/‘1_”,‘/)_'(‘I‘r‘h’v":!/' to the line I:f- the ]'liv/'llf'.

Let AP be a perpendicular to the plane MN, P its foot,

B( the ziven line, and A any point of
APR; dvaw PD. pexpendicular to B,
and join the points A and 0); then will
AD be perpendi sular to BC.
For, lay off BD equal to DC, and _
deaw PB.PC.AB, and AC., Since PD i
and DB equals DC, PB equals PC

is perpendicular to BC;

(B. L Th. XIV.); hence, in the triangles APB and APC,

.
{B equals AC. Therefore the line 4D, having two pomts,

s &5

A and D. equally distant from B and €, is perpendicular to

BC (B. 1. Th. XIV. C. 3).




108 GEOMETRY.

Cor. The line BC is perpendicular to the plane of the tri-
angle A PD, because it is perpendicular to 4D and PD at the
point D (Th. IV.).

THEOREM VI.
If one of two parallels is perpendicular-lo a plane, the other
w8 also. pe

Let 4B and CD be two parallel lines, and let AB be per-
pendicular to the plane MV ; then will
OD also be perpendicular to MN.

For, pass a plane through the parallels

cutting MN in/BD; draw AD, and in
the plane MN draw EF perpendicular
to BD at the point D. Then, EF is
perpendicular to the plane ABD C(Th.
V. C.); henee, the angle ED (@' is a rizht angle; but CDB is
a right angle, since. C'D is parallel to 48 (B. I. Th, IIL (6]
hence, CDis perpendicular to the two lines BD and EF ;lt,
their point of intersection; it is, therefore, perpendicular to
the plane MN (Th. IV.). Therefore, ete.

Cor. 1. Conversely.— Two lLines which are perpendicular to
the same. plane are parallel. - For, suppose the itwo lines 4B
and\ CD to be perpendicular to the plane MN; then, if they
are not parallel, draw from the point D a line which i\ll«:a:' ]
to BA ; this line will be perpendicular to MN (Th. VL): we
shall then have tiwo perpendiculars to the plane MV from the
same point, which is/impossible (Th. IV. @) ; therefore, 4 B
and CD are parallel.

Cor. 2. Two lines parallel to a third line are parallelto each
sther. Let the two lines A and B be parallel to a third line

; pass a plane perpendicular to C; it will be perpendicular
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6 both 4 and B (Th. VL) ; hence, 4 and B, being perpen-
dicular to the same plane, are parallel (Th. VI. C. 1).
THEOREM VIL
If two planes arve perpendicular to the same straight line, they
are parallel.

Let the two planes MN and P be ['hf!'IN'H(“('Hl&“' to the
straicht line 4 B; then will they be parallel.
For, if they are not parallel, they L
will meet in some point O. From
O draw the lines O4 and OB; then,
gince OA lies in the plane MN, it

will be perpendicular to 4B at 4 /
(D.2);.and since OBlies in the plane |
PQ,it will be perpendicular to 4 Bl /e ¥
at B. Hence, we have two lu_-r},’wndim11;11‘.~' drawn from the
same point to the same straight line, which is impossible (B. I.
The XIV. C 1); consequently, the planes cannot meet, and
are, therefore, parallel,

THEOREM VIII,
If a plare meet two parallel planes, the lines of intersection
are /ulﬁl/h'/.

Liet the plane A intersect the two parallel planes MN

and PQ; then will 4B and €D be 1-:11';1110].
D Q

For, if the lines AB and CD are not /——',\ —/

parallel, since they lie in the same plane,
S

they will meet if sufficiently 1'.:~<,:.iu(-~,,-l{.‘ /,'

and, consequently, the planes 27\ and I£18)
will meet; but the planes cannot meet,
since they are parallel ; hence, the lines
AR and 0D cannot meet ; they are, there-

fore, parallel. v

e

3
Pa w0 e A e,
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Cor. Parallel lines included between parallel planes are

¢qual. For, the opposite sides of the figure AC being

parallel; it is a parallelogram, and hence A D equals BC.

THEOREM IX.
If a straight line is perpendicular to one of two parallel planes,

‘l".,lbi[l/fy'il////' to {/’l:,‘ f.‘/'u‘/' :/.". 0.

it Asp
Let MN and PQ be two parallel planes,and let the line
AB be perpendicular to P@; then will it
also be perpendicular to the plane M.
For, pass any plane through AB; the
intersections A C' and BDwill he paral-
lel (Th, VIIL.); since 4B is perpendicular
to PQ, it will (be perpendicular to BD
€D.2), and since BD and 4 C are parallel,
i will be perpendicular to AC (B. I. Th.II1. C.); hence,
B4,/ being perpendicular to any line of ‘the plane MMV
passing through its foot, is perpendicular to the plane M AL
Therefore; etc,
THEOREM X.
Iy two angles not in the same plane have their sides 7

£
and- lying i the same direction, the angles will be equaland

their planes parallel.

arallel

Let BAC and DEF be two anglesinot in the same plane,

having their sides respectively parallel
and lying in the same direction; then
will these angles be wl\::xl and their
planes parallel. ”

Take D cqual to A B, a

1

v 1 .
o oodlCl ATaAW

First. The and DEF will

}‘L' r‘l;‘_%:l|.
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For. since A C and EF are equal and parallel, the figure
ACFE s a ‘-:\l'::”«'l~):jl am (B.T.Th. XVIL), and 4 E and CF
are equal and parallel. Since AB and ED are equal and
parallel, ABDE is a parallelogram, and AE and BD are
:w;rml and parallel ; hence, BD and CF are equal and paral-
1:;1 Th. VI.C. 2), and, consequently, DF' is equal and parallel
to BC. Hence, the triangles ABC and EDF have their cor-
responding sides equal; they are, therefore, equal, and the
angle DEF equals the angle BAC.

Second. The planes are ‘!\Llr';xl_lvl,

For, three lines which intersect determine the ]\N‘hiiinn
of a plane; and since the three sides of the triangles are
respectively parallel, thewr planes must be parallel,

Cor. If three straight lines not in the same plane are equal

J

7 3 7 s Flog
and parallely the tridng!

s formed by joining the extremil
these dines will be r,‘/u.:,", and their /:/r'fm"e‘ paraz

readily proved; let the pupil show it.

THEOREM XL
If two straight linesare ecut-by three parallel planes, they will
be divided 1 ;‘w[,u«n'[/'u/ul//f‘,/.
Let the lines AB and CD be cut by the parallel planes
MN,PQ, and RS, im, the; points 4, ¥ 0
B, and ¢, G,D; then will
AE:EB:: CG: G D.
the line A D, meeting
o draw also AC, EF, F&,
the ]-121\:"\ N
and P are in::l'u“n'i. B is p:u':fl’:vl to
BD (Th. VIIL); and since P@Q and RS
are parallel, AC is parallel to F@,

Henee (B. IIL Th. IX.), we haye,
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AE:EB:: AF : FD; and also,
AF:FD::CG: GD.

Henee, from the principles of proportion, we have
on, we have,

AE v EB: (G : GD.
Therefore, ete,
THEOREM XII,
Bither angle of the three plane angles which form a triedral
angle,. is/less than the swm of the other two.

Let the triedralangle whose vertex isS be formed by the
three planc angles 4SC, ASB, and CSB; then will ;m;' one
of these be less than the sum of the other two. ‘

If the angle considered is less than
either of the other two, it is evidently
less than their: sum. Suppose, how-
ever, the angle greater tham either of
the otheér two, and let 4S8 be that an-
gle./ Inthe plane A SB make theangle
BSDequal to BSC, draw the line 48
at pleasure, make SC equal to SD, and draw 4 € and BC.

In the two triangles BSC and BSD, BS is common, CS
equals DS, and the angle BSC equals BSD by construction ;
hence, the triangles are equal, and BDequals BC: Now
(B TV AX10,/CH,

AD -+ DB < AC + BC.
And, taking away the equals DB and B(, we have,
AD < AC.
Henee (B. I. Th. VIII. C.), we have;
angle ASD < angle ASC;
and, adding the equal angles DSB and CSB, we have,
angle ASB < angle ASC + angle CSB.
Therefore, ete. \

BOOK V. 113

THEOREM XIIL
The sum of the plane angles which form any polyedral angle,

is less than four right angles.

Let S be the vertex of a 1;«'1:\\-(11‘;11

ancle formed by the plane ancles ASB,

BSC CSD, ete.; then will the sum of

these plane angles be less than four

right angles.

For, pass a plane cutting the edges in

the points 4, B. (¢ D. E, and F, and the

faces in the lines AB, BC, etc. From

any point, O, in the polygon thus formed,

draw the lines O4, 0B, OC, etc. We then have two sets

of triangles, one set having their vertices at S, the other

at O, and both having the common bases AB, BC, ete.
Now. the sum of the angles of the uppdr set of tri-

angles i8 equal to the sum of the angles of the lower set

of triangles, since both sets consist of the same number

of triangles. But thesum of the angles SBA and SBC'is

greater than *ABC, or ABO + OB@ (Th. XIL); and also

SOB + SCD is greater than OCB + 0CD; and so on with

the other angles at D. BE. ete. ence, the sum of all the

angles at the bases of the upper set of triangles is greater

than the sum of all the angles ab the hases of the lower
set of triangles; therefore, the sum of the angles at S
must be less than the sum of the ancles at 0. But the
cum of the angles at O is equal to four right angles (B. L.
Tl 11, @« 2) ; hence, ile sum of the angles at S is less than
four richt angles. Therefore, Cte.

Seholivm. This pr-»lumiﬁnn supposes that the pt'ulym.h‘:ll
ancle is convex; if it were not, the sum of the plane an-

oles would be unlimited.
B 10 %
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THEOREM XIV.
1If the three face angles of a i
the triedral angles are either equal or symmetrical.

Let Stand i§ be the yertices.of two triedral angles in which
ASBequals DS'E, BSC = ESFand ASC—= DS'F: then
the diedral angles are respectively equal, and the triedral
angles are either equal®or symmetrical.

For, on SB take any point' B, and in the faces ASB and
BSC draw the lines BA and BC
perpendicular toSB; then the angle
A B (C will measure the diedral angle
of the faces ASE and BSC (Def. 6). a \
On S E lay off S'E equal to.SB, and "/ﬂ” \T_' ;
on the faces DS E gnd ES'F draw l
DE and EF perpendicular to S'E; then the angle DEF will
measure the diedral angle of the faces DS E and ES'F

The right-angled triangles SBA and 8'ED are equal, since
SB=/5E and ASB= DS'E; h:nce, AB equals DE and A4S
equals DS’ /In a similar way it may be shown that B equals
EF and CS equals £S. Hence, the triangles ASC and DS'F
have their sides respectively equal; and 4SC equals DS'F by
hiypothesis ; therefore A C equals DF. Hence, the triangles
ABC and DEF have their sides respectively equal, and con-
sequently their corresponding angles are equal. Hence the

ABC; which measures the diedral angle of the planes
ASB and BSC, is equal to the angle DEF, which measures
the diedral angle of the planes DS'E and ES'F, or the diedral
angles are equal. In the same way it may be shown that the
other diedral angles are respectively equal.

Now, if the face angles of these triedral angles are sim-

ilarly placed, the triedral angles may be applied to each other

S Sy
riedral n()x_«//(‘ are respectwvely equal,

BOOK V. 115

and they will coincide; if, however, the face angles are not
similarly placed, the triedral angles will not coincide, but are
then said.to be symmetrical. Therefore, ete.

yiiwm. Polyedral angles are said to be .»‘.///u,rnt‘//'{«'«r/ when,
havine the same number of face angles, these angles and the
suceessive diedral angles are respectively arranged in a reverse

order.

THEOREMS FOR ORIGINAL THOUGHT.
1. Prove that but one plane can be passed through a given point
perpendicilar to a given line.
2. 1f «line is perpendicular £o a plane, every plane passed through
the line is perpendit to that plane.
3. If two planes are perpendicular to each pther, a line drawn in

¢ of them perpendicular to their intersection is perpendienlar io the

lanes wh cut each other are both perpendicular to a

third plane, their infersection is perpendicular to that plane.

5. Prove that through a given line of a given plane, only one plane
perpendicular to the en plene can be passed.
. Prove that through a line parallel to a given plane, only one plane
perpendicular-to the given plane can be passed,
If two planes which iterseet contain /two limes parallel to each
er, the intersection of the planes will be parallel to the lines.
8. If a line is parallel to one plane and perpendicular to another,
e two planes are perpendicular.
If two irl:‘. s are parallel to a third, '.in‘_‘}' are (parall lel to each
I l be d varallel to a
10. Only one plane can be drawn lh.ull h a Ll\ en lunlu pal el a
given plane.
11. If two lines ave parallel in space, and planes be passed through

them perpendicular to a third plane, the two planes will be parallel.
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PROBLEMS,

N :
The following problems are easily solved from the principles already
presented. .
1. To erect a perpendicular to a given plane at a given point of the
plane. (See Prop. I1L.)
S 3
2. To construct a plane parallel to/a given plane.
2 n
3. )y constriace g arpendie: . 4 oy 3
= T -w I\HHI.A[ a plane perpendicular to a given plane intersecting
it in a given straight line.
4. Todraw & line from a given point of 4 plane making any given
£ any g
angle with the plane. ’
). Ta draw a flane intersecting a given plane and making any given

angle with it,

BOOK VL
POLYEDRONS.
DEFINITIONS.

1. A PornyEproxN is a volume bounded by polygons.

The bounding polygons®are called the faces of the polye-
dron: the lines in which the faces meet aré called edges;
and the points in which the edzes meet are called vertices
of the }"']:\",“l!'“ll‘

2. A Prisw is apolyedron, two.of whaose faces are equal
polygons, having their homologous sides pa-
rallely the other faces are parallelograms.

The equal polygons are called bases of the
puism ; one, the wupper base; the other, the
lower badk. The parallelograms eonstitute

the lateral or convex surface of the prism j the

intorsections of the lateral faces are called
lateral edges.

3. The ALT1TuDE of a prism is the perpendicular dis-
fance between its bases.

4 A Rriemr Prrsw is one whose luteral edges are per-
pendicular to the bases. In a right prism, each lateral
edge is equal to the altitude.

5 An O BurQuE Prrswis one whose lateval edges are

oblique ‘to the bases.. Each 'lateral edge is, consequently,

greater than the altitude.
6. A prism is named from its bases. A triangular prism i3
one whose bases are triangles; a quadrangular prism is one

whoss bases are quadrilaterals © and so on.
17




GEOMETRY.

PROBLEMS,

N :
The following problems are easily solved from the principles already
presented. .
1. To erect a perpendicular to a given plane at a given point of the
plane. (See Prop. I1L.)
S 3
2. To construct a plane parallel to/a given plane.
2 n
3. )y constriace g arpendie: . 4 oy 3
= T -w I\HHI.A[ a plane perpendicular to a given plane intersecting
it in a given straight line.
4. Todraw & line from a given point of 4 plane making any given
£ any g
angle with the plane. ’
). Ta draw a flane intersecting a given plane and making any given

angle with it,

BOOK VL
POLYEDRONS.
DEFINITIONS.

1. A PornyEproxN is a volume bounded by polygons.

The bounding polygons®are called the faces of the polye-
dron: the lines in which the faces meet aré called edges;
and the points in which the edzes meet are called vertices
of the }"']:\",“l!'“ll‘

2. A Prisw is apolyedron, two.of whaose faces are equal
polygons, having their homologous sides pa-
rallely the other faces are parallelograms.

The equal polygons are called bases of the
puism ; one, the wupper base; the other, the
lower badk. The parallelograms eonstitute

the lateral or convex surface of the prism j the

intorsections of the lateral faces are called
lateral edges.

3. The ALT1TuDE of a prism is the perpendicular dis-
fance between its bases.

4 A Rriemr Prrsw is one whose luteral edges are per-
pendicular to the bases. In a right prism, each lateral
edge is equal to the altitude.

5 An O BurQuE Prrswis one whose lateval edges are

oblique ‘to the bases.. Each 'lateral edge is, consequently,

greater than the altitude.
6. A prism is named from its bases. A triangular prism i3
one whose bases are triangles; a quadrangular prism is one

whoss bases are quadrilaterals © and so on.
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7. A PARALLELOPIPEDON is a prisin whose hases
are parallelograms,

A RBOTANGULAR PARALLELOPIPE-
DoN is aright parallelopipedon with rect-
angular bases. A cube 18 al reetangular
parallelopipedon, all of whose  faces are”
equal squares.

8. A PYRAMID s a polyedron hounded

by & polygon, and by triangles mveting at a common point.

The polygon is called the base of the }n\';':lﬂli'l -
the triangles,its lateral or convex surface;.and
the !wil)l where the trianeles meet, its verfea.

9. Pyramids are named from their bases;

thus, we! have friangular, quadrangular, pent-

wngular, ete. pyramids, as the bases are tri- "\\\l,//

angles, quadrilaterals, pentagons, ete.

10. The ArriTuDdE of 4 pyramid is the perpendicular
distance from the vertex to the plane of the basd

11. A/Rigar PYrAMID is-one whose base is a regulax
polygon, and in which & perpendicular from the vertex to
the base passes through the centre of the base. This per-
pendicular is called the oxis of the pyramid.

12. The St ant Hrrcurmof aright pyramid is the per-
peudicular distance from its vertex to any side of the base.

13. A FrustuyMm oF A PYrAMID is the part of a
pyramid included between its base and a plane

eutting the pyramid parallel to the base. //1,7\
F . R N N /
14. The Avrrrowpp of e frustum of a pyra-

!
] -—f'-J
s O 3 : . {
mid is the perpendicular distance between its / , | \
X : ) I-/T/\
bases, \ \/
\

15. The Sran® Hercur of a frustum of g
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vight pyramid is that portion of the slant height of the
§>_\:I':zll‘.i-l included between the bases of the frustum.

16. SiMmiLAR PorLyrEproNs are those which are
bounded Dy the same number of similar polygons, similarly
placed. Parts which are similarly placed are homologous,
whether faces, angcles, or edges.

17. The D1aGoNALof a polyedron is a line joining the
vertices of any two polyedral angles not in the same face.

18. The VornuMmE of a-polyedron is its numerical valug,
expressing how many times it contains some other polye-
dron as 4 unit.

19. A RreaT SEcTIoN of a prism is a section perpen-
dicular to its lateral.edges. An obligue section is one oblique
to its lateral edges.

90./A Tru~xcATED PRISM ig a portion of the prism
sncluded between either base and an oblique section of the

prism,
Axarysis.—This book treats of pi pyramids, and frustums.
The object is to find the surface and volume of these polyedrons,
and the relation of tho Their surface is readily
determined by finding the areaof the polygons w hich foinn their faces.
In finding their volumes, we begin with the rectangular parallelopipe-
don./assuming :for a unit of measuré a' cube/ whose edge is & upit of
moasure of the edges of the parallelopipedon. From the volume of a
1

rectangular parallelopipedon

!

pass to that of sny parallelopipedon,

3 : R - thasd 16 £
thence to the volame of a tris rism, and from this to that o
any prism. The division of a triang into three equal parts

3 2 1 | B © hiakave naas to tl
gives the volume of a triangular py ramid, from whichve pass to the

volume of any pyramid, and also of any frustum.
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THE PRISM.

THEOREM L
The convex surface of a right prism’is egqual to the perimetes
of the base multiplied by the altitude.

Liet ABODE—K be aright prism ; then will its convex
surface be equal to

(AB+ BCH+ CD-+DE -+ EA) X AF.

For, the convex surface of the prism
is equal to the sum of all the rectangles
AG, BH, CI, etc. Now, the altitude of
each of these rectangles is equal to the
altitude of the. prism, and the area of
each rectangle is equal to its base mul-
tiplied by its altitude; hence, the convex
surface, which is the sum of the areas of these rectangles;
is equal to

(AB4- BC+ CD+4 DE - BA)Y X AF;

or, the perimeter of the base multiplied by the altitude.
Therefore, etc.

Cor. If two right prisms have the same altitude, their
convex surfaces are to each other as the perimeters of
their bases.

THEOREM II.
If a prism be cut by parallel planes, the sections formed will be
equal polygons.

Let the prism A BCDE—K be cut by the parallel planes
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L0 and QT; then will the sections LOand Q7" be equal
polygons.

For, LM and QR are parallel, being the

intersections of the two Il::.‘;l“-‘l planes

with ABGF (B. V. Th. VIIL); these lines
LM and QR are also equal, since they are
parallels included between the two paral-
lels AF and BG(B.1. Th. XV. C. 2.).

a like reason, MN is equal and parallel to
RS. NOto ST. OPto TU, etc.; hence, the
angle LMY is equal to the angle QAS,
MNO toRST,ete. (B. V. Th. X.); there-
fore, the sections-aresequal polygons:

Cor. Every sectionof a prism parallel to the base is equal

to the base.

THEOREM IT1IL
Two prisms are equal if three faces, including a triedral angle
of one, are respectively equal to three faces similarly placed,
including a triedral of the other.

Let the three faces of the triedral angles 4 and I of the
prisms ABCDE—F and LMNOP—¢ be equal and similarly
placed ; then will the prizms be .

A\'r//\
equal. /

For, place the base ABCDE
on its equal LMNOP; then,
gince the triedral angles 4 and
L are equal (B. V. Th. XTIV.),

they will coincide when applied

Ny i/

to each other, the face A G will coincide with LR, and the
face AK with LS: hence, the sides FG and FK of the upper

base of one prism will coincide with the sides @R and @S of
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the upper base of the other prism; hence also the planes of
their bases will coincide, and, since these bases are equal, they
will coincide throughout; consequently, all the lateral faces
of the two prisms will eoinecide, each to each, and the prisms
will eoincide throughout, and are therefore equal. There-
fore, ‘ete.

Cory 1. Two right prisms are equal if they have equal bases
and equal altitudes.) For; if the faces are similarly placed, the
prisms will coincide when applied to each other. If the faces
are not similarly placed, by inverting one prism the faces will
be similarly placed; and the prisms may be applied to each
other and will coingéide:

Cor. 2. Two truneuted prisms are equal if three faces inelud-
ang o triedral angle of one are respectively equal to three faces
including a triedral angle of the othér.  For, the above demon-
stration will apply whether-the upper bases are parallel to the
lower bases or are inelined to them, as they are in a truncated

prism.

THEOREM IV.
An oblique prism is equivalent to « right prism whose base is
equalito o vight section of the oblique prism, and wkose alti-
tude 13 ,wjuql to a lateral ;u"lf_,',-‘ /:f the (n”u"/‘:_lw/y /u’z'rm,

P X \ W
Let A B CDE—A"be an oblique prism.

At any point F, in the edze A A’, pass a
plane perpendicular to A4’ forming the
right section FGHIEK, Produce AA’
to F’, making FF" equal to 44" and
through F’ pass a seeond plane perpen-

dicular to the edge 44', intersecting

4 7B
all the faces of the prism produced. / /
. \

i, o : &
and forming another right section, 3
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F'G@H'T'K’, parallel and equal to FGHIK. The prism
FGHIK — F’ is a right prism whose base is the right sec-
tion FGHIK, and whose altitude, FF", is equal to the lateral
edge of the « i'h\}l\,llf I‘»l‘i%n,

-.\_l-\‘-', the truncated l:!‘iﬂ‘:i ABCDE —F' is l,‘n;ll:xl to the
truncated prism A'B' C' D' E'—F" (Th. IIL Cor. 2) ; if to each
of these equal prisms we add the volume FGHIK — A!, we
shall have the oblique prism ABCDE — A', equivalent to the

right prism FGHIK — F’. Therefore, etc.

THEOREM V.

] g 7 S > -y LY g Ny e T

Any paralls lopipedon is equaiv ent to « rectangulay parallel
- 3 : - T T S - ~ap— hets
opipedon having the same altitude and an equivalent base.

et ABCD— D' be any oblique parallelopipedon whose
base iz ABCD and altitude B'P. Produce the edges, 4B,
e A'Byand D'C';
on A B produced take
EF equal to A5, and

through £ and F.pass

planes iwri'[.w!\.]éﬁlﬂ:\l'

to the produced edies,

forming the parall lo-
pipedon EF GH H.
This parallelopipedon, regarding EE'H'H as the base and
EF the altitude, is a right prism, and is equivalent to the
ablique 1411‘:(!16-1111\3;%(«lxm ABCD — A" (Th. IV.).

Acainy froms B’ and H' let falll the perpendiculars E'K
and H'N to BH produced, and from F' and G' let fall the
perpendiculars F'L and G’ M to FG produced, and draw LK
1 MN: then KLMN— H' will be axectangular parallelo-
hase is KLMN and altitude E'K equal to B'P.

and

pipedon whose
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Thus, the rectangular paralle lopipedon KLMN — H’ is
equivalent to the oblique parallelopipedon EFF'E' —
(Th. IV.); but this parallelopipedon EFF'E’' - H. which,
with EE’ H'H s a base, is-a right parallelopipedon, is equiv-
alent to the parallelopipedon ABGD — I (Th. IV.)
ABCD — D' is equivalent to the right parallelopipedon
KLMN—H. Also, the base KM is equal to the base E'@,

; hence,

and hence to its equal, £G, which is equivalent to the base

AC; hence KM is equivalent to 4 () Therefore, ete,

THEOREM VI
The plane passed through two n’/fl,"/cm‘z/,'/_’/ oppasile

edges of a
parallelopipedon divides the parallelopipedon in

to two. cquiv-
alent triangular prisms,

Let ABCD— E be any parallelopipedon, and let a plane
be passed through its opposite edges BF and DH ; then will
the triangular prisms ABD — H and
BCD — H be equivalent.

For, let KLMN be any right sec-
tion of the parallelopipedon made by
a plane perpendicular to the edge
AF; the intersection, LN, of this
plane with the plane BH is the diag-
onal of the parallelogram KLMN,
and divides the parallelogram into
two equal triangles, LMN and KLN. The oblique prisin
ABD — H is_equivalent to_a right prism whose base is the
triangle KLN and whose altitude is AZ (Th. IV.) ; and the
oblique prism BCD — H is equivalent to a right prism whose
base is the triangle ZMN and altitude A ; but the two richt
prisms are equal (Th. IIL C. I); hence, the two oblique

prisms’are equivalent to each other. Therefore, ete.

BOOK VI.
THEOREM VIIL
The opposite facesof aparallelopipedon are efual and parallel.
The opposite faces o 7 .
Let ABCD—H be & parallelopipedon ; then will its op-
posite faces be equal and ]»zu';t”\'l.
s are equal and paral-

lel, by the definition of a parallelo-

pipedon. Algo, B(C' is equal and pa-

rallel to 4 D. since the ficure ABCD
is a parallelogram, and, for a similar
reason, BF and AE are equal and
parallel ; consequently, the angles EAD and FBC are
equal, and their planes parallel (B. V. Th. X.), and,
therefore, the parallelograms BG and AH are equal (B. I.
The XV. (. 3). In'a similar manner it may be shown that
the faces AF and DG are equal and parallel. Therefore,
ete.

Cor. 1. Any two opposite faces of a parallelopipedon may
be taken as the bases.

Cor. 2 The ,/‘[,,v,/“,l.u’,; of a ]'tli‘H/'}' 7"v/"'/'u./lf'/f. bisect each
ather. »

Draw the diaconals D and BH; draw also BD and
FH: then, since BF and HD are equal and parallel, the
ficuré BDHF is a parallelogram;
henece, the diagonals FD and BH
bisect each other at O (B. I. Th.

i : e
XVIIL). In the same manner 1t
mavibe shownr that either-of these
arid any other diagonal bisect each

: 1 | 1 e

other: hence, all the diagonals bisect
each other.

Cor. 3. In a rectangular parallelopipedon, the square of
‘ ' the three

either diagonal equals the sum ol the squares o
11%
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edwes which meet at the same vertex. Tet the pupil show
it; that BH*—="BC* DC* -+ DH".

THEOREM VIIL
The volwme «{f' @ rectan /‘)I[vlf' para {1 ',/v"l'.r"u"w.‘! 28 r-/l/./" to the
['/'urt’:iv'lf '{}. tts hase and altitude
et ABCD—H be a rectangular ]I:U“.lllt.'l-*]vf]n;vllm : then
will its volume be equal to its base ABCD multiplied by
its altitude A F.

Suppose A K to be a common unit of
measure of the three sides AB, AD,
and A.F, and suppose.it to be contained
4 times in 4B, 3 times in AD, and 5
times in AF; thén divide 4B info 4
equal parts, 4D into 3, and A E into 5
equal parts, and pass planes through
the points of division parallel to' the
faces of the pamallelopipedon.. The
parallelopipedon will, thus be divided into equal cubes,
cqual since their sides-are equal and their angles are
equal, all being vight angles.

Now, the number of these little cubes upon the base'is
equal,to the number of surface units in the base, and the
whole number of cubesin the parallelopipedon is equal to
the number upon the base multiplied by the number of
layers, and the numbdr of layers is the same as the number

of units in the altitude ; hence, the number of cubic units

in the parallélopipedon is ‘equal to the base mulfiplied by

the altitude. Now, this is evidently true whatever be the
size of the linear unit; hence, it is true when the linear
unit is exceedingly small, and, consequently, when it is

infinitely small, as it must be when the three sides are
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incommensurable. Therefore, the volume of a rectangular

parallelopipedon is equal to the product of its base and
altitude

Cor. 1. Tt is evident that the number of cubie units upon

s base is egual to the number of rows multiplied by the

number in each row : that is, the length of the base mul-

tinlied by its breadth; hence, the volume of a rectangular

£

s - . y S & 5 o
parallelopipedon equals he product of its lenath. breadtlh, and

altitude. or the product of its three dimensions.

Cor. 2. Any two rectancular ]v:ll‘:ll](‘ln»]»i[lwll\lm are to
each other as the products of their bases and altitudes, or as
the products of their three dimensions.

(or. 3. When their bases are equal, they are to each
other as their altitudes; when their altitudes are equal,

they ‘are to each other as their bases.

THEOREM IX.
The volume of any parallelopipedon. is equal to the product
of its base and alttbude.

Let ABCD—E be any parallelopipedon whose base is
ABCD and altitude H; then will its
volume be equal to the base” A BCD \ \
Illlll‘U})llL'll by the :n'mm.lu H. - 2N
For, the parallelopipedon ABCD—E
is equivalent to a rectangular parallelo-
pipedon having the same altitude and
an equivalent base (Th. V.); but the
volume of such a rectangular parallelo-
pipedon is equal to the product of its
base and altitude (Th. VIIL); hence, the volume of the
parallelopipedon ABCD — E is equal to the product of its

base and altitude. Therefore, ete.
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THEOREM X.
The volume of any prism is equal to the product of s base
and allitude.

1st. Let ABC— E be a triangular prism. This prism is
half the parallelopipedon constructed
on-its edges AB, BC, and BF (Th.
VL).. The volume of this parallelo-
pipedon is equal to its base 4 BCD mul-
tiplied by its altitude (Th. IX.) ; hence,
the volume of the triangnlar prism
ABC— E is equal to its base A BC, the
half of A BCD;multiplied byitsaltitude.

2d. Let ABCDE — F be any prism.. Divide it into tri-
angular prisms by passing planes through any lateral edge
B(@; these prisms will haye a common
altitude, the altitude of the prism.

The wvolume ‘of -any triangular prism,
ABE — F, igequal t6 the product-of its
base and altitude; as just shown; hence,
the volume-of the prism ABCDE —F,
which is the sum of these wiangular
prisms, is equal to its base, which is the
sum-of the bases of the triangular prisms,
multiplied by its altitude. Therefore, etc.

Cor. 1. Prisms having equivalent bases and equal altitudes
are equivalent.

Con:2. -Any. two prisms-are to.each other. as the products
of their/bases and altitudes.

Cor. 3. Prisms having equal altitudes are to each other as
_ their bases.
Cor. 4. Prisms having equal bases are to each other as

their altitudes.
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THEOREM XI.
Similar triangular prisms are to each other as the cubes of
their homol 1 OUS ,;,f{/,;.-
Tiet AE (0—E and GBH—L be two similar triangular
]hl'i*lihi then will liu'_‘,' be
to each other as the cube

of any two homologous
N : o I

n {
/\ \ i /

edoes AB and GB. e

For, sinee the two prisms

are similar, the faces con-
taininge the triedral angles
B and B are respectively
similap; therefore;the prism G:BH—L being applied to
thr prism ABC—FE will take the position GBH—P. From
D draw DM perpendicular to the base, and from K draw
KN perpendicular to the base: then the two triangles
DMB and KNB must be similar, since they are mutually
equiangular.

Now, since the bases are similar, we have (B. IIT. Th.
X VL), | :

base ABC :base GBH :: AB*: GB*;
and. since the triangles DMB and KNB are similar, and
alfo the parallelograms 4D and G K, we have,
DM:KN:: DB:KB:: AB: GB.

Multiplying together the corresponding ferms of the

first and last «"»1}1|ix-1~ of these two proportions, we have,
base ABCx DM base GBH X KN:: 4B : G B

But base ABC x DM is the volume of the prism ABC—E,
and base GBH X KN is the volume of the prism
G BH—I; hence, the prisms are to each other as AB* to

G . Therefore, etc.
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Cor. 1. Any two similar prisms are to eack other as the
cubes of their homologous :.//!:'.5,
For, since the prisms are similar, their bases are similar,

and may, therefore, be divided into the same number of

similar triangles, similarly sitnated (B. I1I. Th. .\’\'H.):

henee; each prism may be divided into the same nhmber
of siniilar triangular prisms. But these triangular prisms
ate to each other/as the cubes of theirhomologous edges;
hence, the polygonal prisms which are respectively the sum
of these triangular prisms must be to each other as the cubes
of their homologous edges.

Cor. 2. Similar prisms are to each other as the cubes of

their altitudes, or as the cubes of any.other homologous

lines.
THE PYRAMID.

THEOREM XII,
The convex surface of @ right pyramid is equal to the perime-
ter of the base //ull'ffl//fr d. by one-half of the slant height.
Let ABCDE—S be a right }»)‘1';Hni11, and SH the slant
height; then will the convex surtace be
egual to the perimeter 4B + B CD -
DE - EA multiplied by § of SH.

Draw SO perpendicular to the 1

base;
then, from the definition of a right pyra-
mid. O_is the centre of the basej conse-
quently, thedistances 4 0, BO, GO, ete.are
all equal, and therefore the edges S4, SB,
SC, ete., are all equal (B. V. Th. III):
and, since the sides AB, BC, ete., are

all equal, the triangles SAB, SBZ; ete. are all equal, and
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their altitudes, which is the slant height of the pyramid,
are equal.

Now, the area of each triangle is equal to its base multi-
plied by one-half of its altitude; hence, the sum of the
arcas of these triangles, which is the convex surface of
the pyramid, equals the sum of their bases into one-half
of the slant height SH; that, is, the convex surface of the
pyramid equals

(AB+ BC - CD - DE -+ EA) X } SH.

Therefore, ete

THEOREM XIIL

If a pyramid be cut by @ plane parallel to the base;

1. ‘The nt’_w'c-* and altitude will be divided ['I‘r/[‘Y)l’l’tluhllny.

24 The section will be a polygon similar to the base.

Let the pyramid S—ABCDE be cut by a plane
GHIKL parallel to the base; then will the edges S4, SB,
S(! ete., with the altitude SO, be divided
proportionally, andthe sect ion GHIKL
will be similar to the base.

Flirst. ‘Since the planes ABCDE and
G-HIKT ave parallel, the intersections
AB and GH are parvallel (B.V.Th.VIIL);
for the same reason, B( is parallel to
HI, and BO to HP. Hence, we have
(B: TIIyTh X G 1);

SA SE 2 SBySH;
and also, * SB:SH:: SC: 81;
and also, SB:SH:: SO:SP.
Hence, the edges and altitude are divided propcrtion-

ally.
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Second. Since GH is parallel to AB, and HI to BC, the
angle GHI is equal to ABC (B. V. Th. X.); and, for the
same reason, each angle of the polygon GHIKL is equal
to the-correspending angle of the base; hence, the two
polygons are nmltiu]l_\' equiangnlar.

Again, since G H iz parallel‘to/ 4B, we have,

. GH:AB: SH:SB;
and, since HT is parallel to B, we have,
HI:BC:: SH: SB.
Hence, from equal ratios, we have,
GH:AB:: HI: BC.

In the same manner, it may be shown that all the sides

of the two polygons are proportional; hence, thegection

GHIKL is similar to the base ABCDE (B. 111, D. 6).

THEOREM XIV.

If two pyramids have the same altitude, and their bases in the
same, plane, the sections made by a plane parallel to their
bases are to each other as their bases.

Let S—ABCDE and S—MNO be two pyramids, having
the, same  altitude, and

their bases in the same

plane; and let GHIKL

and PQR be sections

made by a plane parallel

to their bases; then will

these | sections be to each

other as the bases.

For, the ltl.l]}‘;\1.'bll$
ABCDE and GHIKL,
being similar, are to each other as the squares of their

sides AB and GH (B. I1L. Th. XVIIL) ; but
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AB:GH:: SA: 8G

Hence, ABCDE: GHIKL : : SA* : SG~

For a similar reason,
MNQO:PQR:: SM*: S
But (B. V. Th. XI.) we have,
S4: SG ::SM=: SP:
Hence, ABCDE : GHIKL :: MNO: PQR.
Therefore, ete.
Cor. 1. If the bases are equal, any two sections parallel to
the bases at equal distances from the vertices are equal.
Cor. 2. Any two sections parallel to the base are propor-

tional to the squares of their distances from the vertex.

THEOREM XY.
Toso triangular pyramids having equivalent bases aid equal
altitudes are fr!u.tf s wolume.
Let 8— ABC and N — A’ B'€" be two triangular pyramids
having equivalent bases ABC and 4'B’ (" and equal altitudes
AT; then will these pyramids be equal in volume.

For, place the bases of the pyramids in the same plane,

divide the altitude, AT, into any number of equal parts, and

through the points of division pass planes parallel to the

plane of their bases, forming the sections DEF), D'E'F", ete.,

12
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and construct prisms in the two pyramids with these sections
as upper bases. Now, the corresponding sections DEF, D' E' F',
ete., are equivalent (Th. XTV.); hence, the corresponding
prisms, haying equivalent-bases and equal altitudes, are
equivalent (Th. X. C. 1).

Now,.this is true whatever the equal number of inseribed
prisms;hence, it is true when the number in each prism
becomes indefinitely jor infinitely great, in which case they
will coineide respectively with the two pyramids; therefore,

the pyramids are equal in yolume. Therefore, ete.

THEOREM XVI.
A l’l‘7"7/?:]?/7(7" prisnvapay be divided into three equal triangular
l‘ili';'//r/?/«!_\-’
Liet ABC—F be a triangular
prism; then. may it be divided
into three equal triangular pyra-
mids.
Passa }\]:lnr T]H"‘m;"h the t‘(]_:_"k"
AC and the point E, cutting off
the pyramid ABC—F; pass an-
other plane through D& and the
point C, cutting off the pyramid DEF—C; there will re.
main a pyramid whose base muay be regarded as ACD,
having' its vertéx at £~ Now, the two pyramids A BC—F
and DEF—C are equal in volume, since they have equal
he pyra-
mid DERF—C as_having the base DOE and vertex at 2,
it is equal in volume fo the pyramid 4 CD—E, since their
bases are equal, being halves of the parallelogram 4 CFD,
and their altitudes are equal, since their bases are in the

same plane and vertices at the same point. Ience, the
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three pyramids into which the prism 18 divided are all
equal in volume. Therefore, ete.
Cor. 1. A triangular pyramid is one-third of a prism
: - 1 : an annal alftude
having an equal base and an equal altitude.
Cor. 2. The volume of a triangular pyramid 18 one-third

of the product of its base and altitude.

THEOREM XVIL

~ .y shio NrodiLe
The volume of a ‘,',‘.1,//',/,;;'/ 18 "',""""/ to one-third oJ the 1:/:)«/,ll.t

’ -
of its base and altitude.

Let S—ABCDE be a pyramid, and SO the altitude; then
will its volume be equal to ABCDE X
1 SO.
Draw the diaconals 4@ and 4D, and
pass the planes SAC and 84D through
these diagonals and the vertex .S; the
pyramid will thén be divided into tri-
angular pyramids, whose altitudes are
equal, being the altitude of the pyra-
mid. Now, the volume of each of
these triangular pyramids is equal to
its base by one-third of the altitude
(Th. XVI. C. 2); hence, the volume of the pyramid
L BADE. which is the sum of these triangular pyra
mids, is "-].4::1 {o the sum of their bases into one-third of
the altitude ; that is,base A BCDE x L SO. Therefore, ete.
Cor. 1. The volume of a ‘;v‘\‘mml.l is one-third of the
volume of a prism having an equal bas¢ and.an equal alti-
tude.
Cor. 2. Pyramids are to each other as the products of
their bases and altitudes.

Cor. 3. Pyramids having equal bases are to each other
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aq i Hnudos + e 1 T
as their altitudes; pyramids having equal altitudes are to
each other as their bases.
Seholivm. The volume of any polyedron may be found
by dividing it into triangular pyramids, by passing planes
. R =8 *

through-its vertices.

THEOREM XVIIT,
Similar pyramids are to each other as the cubes of their homao-
/‘,Ju,r/.\' “/_.,'.-,c,

Tiet S—4 BCDEand S—FGHIK be two similar PyYa.
mids; then.will they be to each other ‘
as the cubes of any two _homologous
sides A B and FIG:

For, since the pyramids are similar,
they may be %o placed that their ho-
mologous angles at the vertex will
coincide. Then, since the faces S4B
and SF@G are similar, 4 Bis parallel to
F'G ; and since SBO and SGH are
similar, BQ is parallel to G H; hence,
the planes of the bases are parallel
(B. V. Th, X.).

Draw SO perpendicular to the base 4 B( 'DE; it will alse

Nd
N\
B

beperpendicularto the base G HIK at somé point, P; then

(Ph. XTIL),
SO: SP::SB:SG:: 4B FG-
R 2
and, consequently,
38053 SP A B L BG,
y L1 A ¢ I vn v -

But, the bases of the pyramids being similar, we have (B
IT1. Th. XVIIL), *
base ABCDE : base FGHIK : : AB*: FG?
Multiplying these two proportions, term by term, swe have

. = ; ~3

cbase ABCDE X § SO : base FGHIK YSP:: 4B : FG»,
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But, base ABCDE % 1 S0 is equal to the volume of the
pyramid S—A4 BCDE, and base FGHIK % 1 SPis equal to
the volume of the pyramid S—FGHIK ; hence, the two
pyramids are to each other as the cubes of the homologous
edges AB and FG. Therefore, ete

(Jor. Similar pyramids are to each other as the cubes of

vo homologous

their altitudes, or as the cubes of any tv

lines.

FRUSTUM OF A PYRAMID.

THEOREM XIX,

The convex of @ frustum of a right pyramid is equal
to one-half of the sum of the perimeters of the upper and lower

bases, multiplied by the slant height.

et ABCDE—K be the frustum of a
right pyramid, and N its slant height ;
then will its convex surface be equal to
one-halfof the sum of the perimeters of
its twwo bases, multiplied by NM.

The faces forming the convex surface \/\
|re «-(lllall TI':lin.‘Vu‘ri‘lF « for the faces of the B
pyramid of which this frustum is a part are equal; and the
faces of the pyramid cut off are equal; hence, the figures
which remain are equal, and theirupper and loywer bases
heing parallel, they aré equal trapezoids, and have a’ com-
mon altitude N, the slant height of the frustum.
Now, the arvea of each trapez id, as ABGF, is equal to

1 (AB -+ PG) X NM (B 1L Thei I'V.): hence, the area of

the convex surface, which is the sum of all the trapezoids,
is equal to one-half the sum of the perimeters of the upper

and lower bases multiplied by the slant height. There-

fore, ote.
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THEOREM XX.
The wvolume of a frustum of a triangular pyramid s equal to
the sum of the volumes of thvee pyramids, whose eommon

altitude s the altitude of the frustum, and whosze bases are

the lower-base of. the frustum, the upper base of the Sfrustum,
and @ mean proporvtional between the two bases.

Let A BC—F ber the frustum ) of a triangular pyramid.
Through the points 4y E, ¢ pass a plane cutting off the
pyramid Z—A4BC: ' Thispyramid has
the alvitude of the frustum, and for its
base the lower base of the frustum.

Through the points D, I, € passaplane
cuttingoff the pyramid (—DFEFE This
pyramid has the altitude of the fius

tam, and for its base the upper base
of the frustum. The remaining part
of the frustum “is a pyramid svhoze
bage is ACD, with its vertex at E.

Now, draw EG pavallel to DA ; draw also GD; then the
pyramid £ — A CDiis equal to the pyramid G — 4 CD, since
they have the same base and equal altitudeg. But the pyramid
G—A4 CD may be regarded as having 4 G C for its base, and
its vertex at 0; it will then have the altitude of the frus-
tum. We will now show that its base A G C is a mean pro-
portional between the two basés'of the frustum.

Draw G parallel to B('; then the triangles 4 GH and
DEF, being similar to A B, are similar to each other, and,
henee, equiangular; ‘and since 4G equals DE, the triangle
AGH equals DER (B./1.Th. VIL).~ Now, 4 GCisa mean
proportional between A GH and ABC (B. IIL Th.IX. C. 3);
hence, the base of the third pyramid is a mean propor-

tional between the upper and lower bases. Therefore, ete.

-~
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Cor. This proposition is true for the frustum of any pyrd-
mid. Por, since any pyramid is equal toa triangular ]»y‘r:r
mid having an equal base and equal altitude, by cutting
ghe pyramids with a plane parallel to the base, :‘x.‘.l'l re-
moving the upper part, it may be shown that the Alm.\mm
of any pyramid is equal to the frustum nl"z'. triangular
pyramid having equal bases and the same altitude; heuce,

if the w-u}u.mmn is true for triangular frustums, it 1s true

for all frustums.

Tl s
REGULAR POLYEDRONS.
A REGULAR POLYEDRON is one whose faces are all
equal and regular polygons.
‘Dhere ¢an be five, and only five, regular polyedrons,
namely : !
1. The TETRAEDRON, OF regular pyramid, a polyedron

oy B 70
hunlhl-‘ti ]\\' ]-011/' e':;;l(![ (";{'I[,//ll'l'}'u/ (/!(ln:/- 3.

9 The HEXAEDRON, OT cube, & Iurl‘\'c(h'l)l) hounded by

stw equal squares.

1

]
; nded by eight equal
3 The OcTAEDRON, a polyedron bounded by eight eque

equilateral triang

4. The 16D ECA EDRON; & poly edron hounded by twelve

caval regular pentagons. \
- . . T Voo dore o
5. The lcoOSAEDRON, 2 nolyvedron bounded by twe equal
J. < o4 4 O N, @ b
eqilateral trinngles. o
| | G | vedral angle 1s formed 0
ist. Th the petraedron the polyedral angle 1 )

v p :

1 4 1 - . Wao .y ) four S .11
tivee equilateral triangles; An the. octaedron: of jour Suc
e b | < il —

5 sl The combina-
trianeles ; in the icosaedron, ol jwe triangles. The combina

angies ; & ; m « o e o deht angle
tion of siz such angles (each angle being 4 of a right angle)

i fi i wrles, or & | g, ¢ \ence no polyedral
sives four right angles, or a plane, and hence poly
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angle; and the combination of more than six will not form
a convex angle; hence only three regular polyedrons ean be
formed of triangles.

9d. In the hexaedron the polyedral angle is formed of
threesquares.. The combination of four squares gives a plane,
and ‘& greater number would not give'a convex angle; hence,
but one regular polyedron can be formed of squares.

3d, In the dodecaedron the polyedral angle is formed of
three'regular pentagons. The combination of more than three
such angles (each angle being £ of a right angle) exceeds four

richt angles, and will not give a convex angle; henece, but

one regular polyedron can be formed of

4th. Three or more angles of a regular hexagon (each
angle being 4 of a right angle) exceeds.a right angle, and
cannot form a convex polyedral angle; and the same is true
of the heptagon, octagon; etc.

Therefore, only-the five regular polyedrons named above

re }r(»\’.\”\i(‘.

PRACTICAL fo.\\H"LT..\'.’
1. Required the convex surface of a right prismowhose altitude is 14
inches and perimeter of the base 16 inches. Ans. 224 square inches.
y contents of apri area of whose base is 24 squure
it and altitude 7 feet. 7, 168 cubig feat.
equired the convex surface of a right pentangular py id whose

ht is 18 inches and each side of the base

2quired t rolume of the frustum of a's

ose bases are 8 and 6 inches, ¢

5. Required the entire surface of

inches.
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6. A man wishesto make a cubical cistern whose contents are 3T

cubic inches; how many feet of inch boards will line it ?
Ans. 180 square

y volume 20

8. What is the 'l'.‘}"l’. of a cubical cistern which shall

gallons, each 231 cubic hes of water? . 5.98 feet.
Required the d \sions of a cube whose surface shall be na-
7 equal to its contents. . 6 units.
10. Thore are two similar prisms whose lengths are as
gpectively ; required the relation of t eir dontents.
11. Required the contents of & pyramid whose altitude is 20 inches
and whose base is a regular hexag » being 61 K
3.5386 cubic inches.
12, If we pass a plane parallel to the base of the pyramid of the 11th
problem, half-way between ite veriex and base, required the convex
surface and contents of the frustum.
: Ans. Vol. — 545.596 eubic inches.
18. A farmer wishes to know what must be the depth of a cubical box
which shall contain 100 bushels of grain, e h bughel 2150.42 cubic

incheg. Ans. 4.9 fe

THF“!IHS‘\].\' FOR ORIGINAL THOUGHT.
1. Parallelopipedons haying equal bases and equal alfitndes ave equal

in volume.
2. The diagonals of & rectangular parallelopipedon are equal.
8. If a plane be passed through the opposite edges of a rectangulax
parallelopipedon, the tri ngular prisms formed are equal,

4. Two prizsms having the same base are to each other as their alti-

tudes.
5. Two similar pyramids are equal when the hase and lateral e
the one equal the base and lateral edge of the other.
8. The surfaces of similar polyedrons are to sach other as the sjuares

of their homologous edges
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THE CYLINDER, THE CONE, AND THE SPHERE.

1. A CyniNDER is.a volume which may be generated

by the reyvolution of a rectangle about one of its sides as
an axis.

Thus. if the rectangle A BOD be revolved around the side
A B as an ax1s, it will generate the cylinder
in the margin. —Thedine 4B is called the
azis: the surface deseribed by €D is called
the copver surface; the circle BC s the lower
base ; the circle AD is the upper base.

It is ovident that the circle described by
the line EF perpendicular to the axis is equal to either
base; hence, if 'a cylinder be cut by a plane parallel to the
base. the section will be & cirele equal to the base.

2. A Cong is a volume which may be generated by the
revolution of & right-angled triangle about one of its sides
adjacent to the right angle.

Thus, if the right-angled triangle SBA be revolved
pound SB as an axis, it will® genérate
the cone ADE—S. The side SB is the
axis of the cone; the circle described by
A B is the base; the hypothenuse SA 18
the slant height; the surface generated
Oy N4 is the convex surface.

it is evident that the circle described
by any line MN ]\cl'pcudiculul' to the
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axis is a circle: hence, the section of a cone by a plane
parallel to the base is a cirvcle.

3. A PrustuM oF A ConNg is the part which remains
after cutting off the top with a plane paraliel to the base.

Thus. ADC—G' is the frustum of a cone; KB is its
altitude : BA is its slant height. The
frustum of a cone may be generated by
the Tevolution of the trapezoid A BFE.

4. StminAr Cyninpers or CONES
are those whose axes are l‘n'npw!‘\itllml to
the radii or the diameters of their bases.

5. A prism may be inseribed in a cylinder
by inseribing similar polygons w ith their sides parallel in
each base, and unifing the vertices of the angles with
gtraight lines. The r_\'liml.-!' is then said to elrcumsecribe
the prism.

6. A pyramid may be inseribed in @ cone; and a frustum
of apyramid may be inscribed in the frustum of a cone.

7. A SpuerRE is a volume bounded by a curved surface,
every point of which s equally dis-
tant from a point within, called the
centre.

The distance from the centre to
the' circumference: is  called ' the
radius, - The dicmeter is a-line pass-
ing through the centre and limited
at both extremities by the surface.

S, AlSPAERICAT SEcT0R 18 a volume generated by the
revolution of a sector of a circle—about" the diameter.
Thus, the revolution of ACFK will generate a spherical
sector.

9. A ZonNE is a portion of the surface of a sphere in-
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cluded between two parallel planes. The bounding lines
of the zone are called its bases; the distance between the
])|fll<:.\ i1s its altitude.

10. A SPUBRTCALSEGMENT is a portion of the sphere
includéd between two parallel planes.

11, Jf a semi-circumference be divided into equal ares, the
chords*f these arcs form half of the perimeter of an inscribed
polygon. | ‘The half perimeter is called a regular semi-per-
imeter.

The figure bounded by the diameter of the semi-cirele and
the regular semi-perimeter is called a regular sema-polygon.
The diameter is‘called the azis of the semi-polygon.

12, The Cyrisper, the Cone and the SpHERE are the

Taree Rouxp Bopies of Geometry.

Axarnysis.—This book treats of the eylinder, the cone, and the sphere.
Its object is to-find the comber surfuce and volums of each of these
bodies, and also theirselation to'each other.

The methol of treatment cons rding these volumes as
polyedrons of an infinite number of sides. Thus, the cylinderis re-
garded as a‘right prism of an infinite number of sides, the cone as &
right pyramid, and the sphere as a polyedron having its cenire at the

centre of the sphere.

BOOK VII.

CYLINDER, CONE, AND FRUSTUM.

THEOREM L .

7//;,' CORVER: sSuryrace oy a 4'///,m/1 L8 (v/f/u’" to the circumrerence

/

of 18 base //,r//_,’l[;/f,,f .’,,/ its altitude.

Let ABDE be the base of a cylinder whose altitude is

H ; then will its convex surface be equal
to circumference CA ¢ H.

For, inseribe in the eylinder a prism
whose base iz a regular polygon. Now,
the eonvex surface of this prism will be
equal to the perimeter of its base multi-
plied by its altitude (B. VI.h. I.); and
this'is true whatever the number of sides;
hence, it 18 true when the number of sides is infinite. But
when the number of sides is infinite, the convex surface of
the prism becomes the convex surface of the cylinder, the
perimeter of the base of the prism becomes the circums
ference of the base of the cylinder, and the altitudes being
the same, therefore, the convex surface of the cylinder
equals the circumference of its base multiplied by its alti-
tude.

Cor. 1. Since []h‘ cireumierence of the l".’\.\\" 1S :f/l). 11'10
expression for the 'convex surface/ of w cylinder is 2
7t $ H

Cor. 2. The convex surfaces of ecylinders which have
equal altitudes are to each other as the circumferences of

their bases.
13
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THEOREM IT.
The volume of a eylinder i3 ¢ L’”“'] to the area "{v" its base multi
' plied by the altitude.

et A BD-_F be a cylinder;syhose altitude is H; then
will 1its volume be \'llll;[l to the mrea of
its bade multiplied by its altitude.

For, inseribe in the cylinder & prism
whose baseis a regular polygon.  Now,
the volume of this prism jis equal to its
base multiplied by its altitude (B. VL
Th, IX.), and this is true whatever the
number of sides, and therefore true when
the number/of _sides is infinite. [But when the number of
sides is infinite, the prism coingides with the cylinder in
every respeet; hence, the volume of the cylinder is equal
to its base multiplied by its altitude.” Therefore, etc.

Cor. 1. Since-the arvea of the base is =f?, the expression
for thie volume of & cylinder s mi® X H.

Civlinders are to-each other as the productsiof
their bases and altitudes. Cylinders having equal bases
are to ecach other as their altitudes; cylinders having
equal altitudes are to cach other as their bases.

(or. 8/ Similar c¢ylinders are to each other as the cubes
of their altitudes, or of the radii of the bages.  lLuet the

pupil prove it.

THEOREM III.
The convex L\‘?llff""" ",". a cone s "’j”'"” to thi "//'c‘///‘i"’/.lyv nee of
its base /ItllNI‘/'/‘ir d /H/ "'.'"~:~/'ul/_f '{f the stant h lj;‘//!’.
Liet S—ABCD be a cone whose base is ABD and slant

heicht S4; then will its convex suriace be equal to the
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circumference of its base multiplied by one-half of its
slant height. i

For, inseribe in the cone a right
pyramid. The convex surface of this
pyramid is equal to the perimeter of
its base multiplied by one-half of the
slant height (B. VI. Th. XIL); and
this is true whatever the number of

les of the base; henee, it is true

SI(
when the number of sides is infinite.
But when the number of sides is infinite, the pyramid
coincides with the cone in every respect ; henee, the con-
vex surface of the cone is equal to the circumference of
its base multiplied by one-half’ of the slant height.

Cor. 1. If S represents the slant height, the expression for

the convex surface of a cone is 2 =R X IS or zR X S.

THEOREM IV.
The volume ol a cone is equal to the base ,,,,'/y','/,,’,', d by one=
third of the altitud®
Let S—4 BCD be a cone whose base is ABGED and altis

tude SO; then will its volume be equal

o

to its base multiplied by one-third of A

its altitade.
For, inscribe in the cone a
pyramid. The volume of this pyramid
i8 equal'to the base 4 5D multiplied
by one-third of its altitude SO (B. VI.
Th. XVIL); and this is true whatever
the number of sides of the base; hence, it is true when

the number of sides is infinite. But when the number of
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sides of the base is infinite, the pyramid becomes the
.

cone; hence, the volume of a cone is equal to its base
multiplied by one-third of its altitude. . Therefore, ete.

Cor. 1. The expression-for the volume of a cone is
R \1 H, or, 1 =R X Hi

(or. 21 A cone is one-tuird of a c¢ylinder having an equal
base and altitude.

(br. 3. Cones are to each other as the products of their
bases and altitudes: cones having equal bases are to each
other as their altitudes; cones having equal altitudes are

to each other-as their bases.

THEQREM V.

The convexr surface of a frustum of @ cone s equal to one-half
of the sum. of the circumferences of the-upper and lowerbases
//1://,"//,/"/':,/ Uf/ L“/l( ,:-'/“!u_/ fre (.l///!f.

Let ABDE—H bea frustum of acone, OC its altitude, FA
its ‘slant height;then will \its-convex
surface be equal to one-half the sum of
the circumferences of its two bases mul-
ii}:“l'-l 1\\' its slant ]u“:-_'llll.

For, inscribe within the frustum of
o cone the frustumef a rioht ],_\‘:‘:m!id.
The convex surface of this frustum is
equal to one-half the sum of the peri-
bases multiplied by the slant height (B. VL

meters of its

Th. XIX.); and this/is true whatev

it is true when the number of faces is infinite.

or the number of lateral

faces; hence,
But when the number of faces is infinite, the frustum of a

pyramid becomes the frustum of a cone, the perimeters of

the circumferences of the bases of the

ts bases become
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frustum of the cone, and the slant height of the frustum
of a pyramid becomes the slant height of the frustum of a
cone; hence, the convex surface of the frustum of a eone
equals one-half the sum of the circumferences of its bases
multiplied by the slant height.

Cor. The expression for the convex surface of a frustum
of a cone is § (27R -+ 2=R") X S, where R and R' repre-
sent the radii of the bases, and S the slant height.

Seholium. Through L; the middle point of HE, draw LK
parallel to EC, and HR and LS perpendicular to EC;
now RS= SE (Bk. III. Th.1X\); OH = CR, and KL.— CR
-+ RS (Bk. I. Th. XV.C. 2). But CR+ RS=SE-+ OH;
henee,

KIL,—%} (CR+ RS+ SE+ OH)or § (CE+ OH).

Multiplying this by 2z, we have,

2rKL—3Y(2%CE -+ 2z0H);

1
that is, ¢ire. KL equals } of thesum of the eircumferences
of the two bases; hence, the convex surface of the frustum
of a cone, generated by the revolution of the line HE, isequal
to the circumference of a circle generated by its middle point

into the length of the line.

THEOREM VL
The volume of the Jrustum-of @ cone s m]vl.‘;] to the 'sum of the
volume of three cones, ]1;/,*[/'/‘;;‘7‘*/‘ a common altitude the alti-
tude of the frustum, and for bases the two bases of the frustum
and a mean proportional between them.
Tet A BDE—H be a frustum of a cone, OC its altitude:
then will its volume be equal to the sum of the volumes
of three cones whose common altitude is OC, and whose

bases are the two bases and a mean proportional between
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For, inseribe in the frustum the
frustum of & right pyramid. The
volume of this frustum is equal to the
sum of the volumes of thret pyramids
havinethe 'common altitude jof the
frustum, and whose bases are the two
bases 'of the frustum and a mean pro-
portional between them (B. VI. Th.
XX.); and this is_true whatever the number of lateral
faces, and, hence, true when the number of faces is infi-
nite. But when the number of lateral faces is infinite, the
frustum of the pyramid becomes the frustum of a eone,
and the three pyramids become cones; hence, the volume
of the frustum of a cone ecquals the swm of the volumes
of three cones, whose common altitude is the altitude of
the frustum, and whose bases are the two bases of the
frustum and & mean }n'u]‘ran‘tinnnl between them.

Clor. The expression for the volume of a frustum of a

wone is (z28* 4 7"+ w It Y ) Xt H.

THE SPHERE.

THEOREM VII.
Euery section of a sphere mads by a plane is a circle.

Let (¢ be the centre of a sphere
whose tadits iy €4, and ADB any
section made by a plane; then will
this section be a‘eirgle.

For, draw ('O perpendicular to the
section ADB, and draw the lines OD

and OFE to different points of the
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curve ADB; draw also the radii CD and CE. Then, since
the radii €D and CE are equal, the lines OD and OFE must
be equal (B. V. Th. IIL C. 1); hence, the section ADB isa
circle, - Therefore, etc.

Cor. If the plane pass through the centre of the sphere, the
radius of the section will be equal to the radius.of the sphere.
The section is then called a great eircle. All other sections

are called small circles.

THEOREM VIIIL.

If @, reqular semi-polygon be revolved about ifs axis, the surface
generaied by the semi-perimeter will be equal to the (‘f,-(u_“',}fg'r.
enge of the inscribed eirele multiplied by the azis.

Let ABCDEF be a regular semi-polygon, A the axis,

ON the radius of the inseribed cirele ; then

will the snxfice generated by the revolution

of the semi-polygon be equal to eire. ON X

AF.

For, from the extremities of any side, as

BC, draw BG and CH perpendicular to AF;

from N, the middle point of BC, draw NM

IH'I']H'H’“('H1:'.1' to AF; draw also BL per-

pendicular to CH., Now, the surface de-

scribed by B(Cis equal to cire. MN X BC(Th.'V.S.

since the triangles BCL and NOM are similar, we have,

BC: BLor GH:: ON : NM:: cire. ON : circ. NM;
hence, cirec. NM ¥ B ='irc. ON > GH;

that is, the surface generated by BC is equal to the cir-

cumference of the inseribed circle multiplied by the alfi-

tnde G*H; and the same may be shown for each of the

other sides; hence, the surface described by the entire
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semi-perimeter is equal to the circumference of the inscribed
cirele multiplied by the sum of AG, GH, HI, etc., or the
axis AF. Therefore, etc.

(or. The sturface deseribed by any portion of the peri-

meter, as BCOD, is equal to cire. ON X GL

THEOREM IX.

The surface of a sphere isequal ta the circumference o f a great
\ circle multiplied by the diameter.

Tiet ABCDEF be 'a semicircle, O its eentre, and AF' its
diameter: then vill the surface of the

sphere generated by the revolution of the B/_//”‘

semi-circumference about the diameter be /,’,L

7
/

equal to cire. 0A X AF. /...
For, inseribe in the semi-circumference

a regular semi-pelygon. The surface de-

seribed by the revolution of the polygon is

equal/to/ ¢ire. OH X A F (Th. VIIL.); and

this is triue-whatever thenumber of sides;

hence, it l\ true when the number of sides is infinite, in
which case the volume becomes a sphere with the radius
OA : hence, the surface of a sphere is equal to cire. 04X
AF Therefore, etc.

Cor. 1. The surface of a ..\“1’:71,:'7‘(’- is equal to four of its great
circles. For,sur.—circ. 04 X 204 ; but tirc. 04 =2 204 ;
hence, sur.— 2 =04 X 2 OA; which ¢ ives sur. =4 n0A%;
but =QA2is the areaof a great circle; hence, 4 7OA*is the
area of four great circles.

Cor. 2. The expression for the surface of a sphere is 4
2R or = D¢ in which R is the radius and D the diameter.

Cor. 3. The surfaces of spheres are to each other as the
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squares of their radii or diameters. For, sur. S — 4 7.2 and
sur. 8 —4 nr*; hence, | |
N:s::4zR: 472 or R2: 72,

Cor. 4. The surface of a zone is equal to the ecirecumfe-
rence of a great circle multiplied by its altitude.

Cor. 5. Zones on the same sphere, or on equal spheres,
are to each other as their altitudes. A zone is _tn Lln;
surfice of a sphere as the altitude of the zone is to the

diameter of the sphere.

THEOREM X.

The polume of a .\jf/u/r 18 (‘r/m!/ to ifs surface ',/gu_[_f[‘[/]{g./ by

one-third «:IA its radius.

For, conceive a regular polyedron to be inscribed in a
sphere ; this polyedron may be conceived as consisting of
pyramids having their vertices at the centre of the .\']‘nllu'»n-.
and for bases the faces of the polyedron. The volume ni‘v:xvﬁ
of ‘these pyramids is equal to its base multiplied by one-third
of its altitude, and, their altitudes being equal, the volume of
the polyedron will be equal to the sum of all their bases,
which is the surface of the polyedron, multiplied by one-third
of the common altitude. Now, the sphere may be regarded as
a polyedron consisting of an infinite number of p\‘mmrids. hay-
ing their vertices at the centre of ‘the sphere and their bases at
its surface, their altitudes being equal to the radius of thesphere ;
hence, the volume of a sphere is equal to its surface multiplied
by one-third of the radius.

Cor. 1. If we represent the yolume of a sphere by wol. S, and

the surface by swr. S, we will have,

we have,
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i =R
R'—1Djor B*— i D’
1

vol. S =} =D~

G

vol, S =

r. 2..Spheres are to eich other as the eubes of their
radii; or.diameters.

Cors 3. The volume of a spherical sector or pyramid is
equal to its basé multiplied by one-third of the radius;

For the sector or pyramid may be conceived as consist-
ing of an infinite number of pyramids having their ver-
“(A'v‘l at the centre of the /sphere, and the volume of the
sum of these will be the sum of their bases multiplied
by one-third of the radius.

Cor. 4. The volume of a spherical segment of one base

and less than a hemisphere, as that gene-

rated by ACB revolving about AF,is equal R
to-the velume of the spherical sector AOC ”/ |
e ;

minus the volume of the-cone formed by / Ty
(_}(“l:’. ’ Mo

The volume of a)spherical-segment of
one base and gréater than a hemisphere, as
ABD, s ulll;ll to the volume of’ ’\]n'\]»lu‘l‘i—
cal sector AOE plus the volume of the
eone formed by EDO.

The volume of a spherical segment of two bases, as that
generated by BCED, is equal to the volume of the sector,
‘fUI‘lIlL'l] by COE, plus the volume of the cones formed by
OCB and OED. If the points and F fall on the same
side of the centre, the last cone must be subtracted. « Tha
measure is as follows:

A\'.’:-///?r"'iz? BCED — zone CFE X ‘ 0C +- T/VJ‘(:’I B l 0B +
«<DE? X § OD.
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THEOREM XI.
The surface of a sphere is to the entire surface of the eircum-
seribed eylinder, ineluding its bases, as 2 to ;;; and their

/'U(’ll?/’l:.r\' are to e'//!’.‘]v L'./JI.:I‘ in the same ratio.

Let AE be a cylinder circumsecribed about a sphere
whose centre is P; then,

Fiirst. The surface of the sphere is
to the entire surface of the eylinder
as 2 1s to 3.

For, the surface of the eylinder
(j'<||'.‘;l].\ l'/,"f“{////}"‘-"/'! nee Alf,) O" Tll

I.); that is, the cirenmference of a

oreat circle of the sphere multiplied
by the diameter of the sphere; but
this 18 equal to the surface of a
gphere (Th. IX.); hence, the surface of the eylinder equals
the surface of the sphere; but the surface of the sphere
equals four great circles; hence, the convex surface of the
cylinder.equals four great circles, and-adding the two
bases, we have the entire surface of the cylinder equal to
six great circles; hence, the surface of the sphere is to the
surface of - the eylinder as 4 great circles is fo 6 great
L to 6, or 2 to 3,

Second. The volume of the sphere is to the volume of
the eylinder as 2 is to 3.

For, the volume of the sphere is § =R (Th. X. C. 1.),
and the wolume of the eylinder.is zF* X €0 (Th. IL), or
=R % 2 R =— ¢ =R hence,

vol. S. vol. eyl. :

Therefore, efe.
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PRACTICAL EXAMPLES,
1. Required the convex surface and contents of a cylinder whose
altitude is 16 inches; and-diameter of the base 8 inches.
3. 402.12 5 804.-
2. Required the convex surface and volume of a cone whose altitude
is.24 inches, and radius of the base 10 inc¢hes.

Ans. 816.816; 2513.28.

3. Required the ¢onvex surface of the frustum of a cone whose alti-

tude is 86 inches, the radius of the upper base 6 inches, and lower
base 21 inches. Ans. 3308.1048,

4, Required the yolume of a frustum of a cone whose altitude is 8
feet. diameter of lower base 4 feet; and of upper base 2 feet.

Ans. 65.9736.
5. Required the surface and contents of a gphere whose dinmeter is
16 inches. Ans./804.
6. The surface of & sphere is 1809.5616 square finches; required its
diameter and its volume. Ans, D. — 24 inches.
7. The volume of a-&phere ig 113.0976 cubic inches; required its
diameter and its surface. Ansg. D, = 6 inches.
8 Given the yolume of a sphere 268.0832 cubic inches; reguived
the altitudeof the eircumscribing ¢ylinder. Ans. 8 inches,
9. What is the surface of a: of & single base whose altitude is
10, faety the diameter of the sre being 100 £
10. Required the volumeof a spheri
altitude is 2 feet, the diameter of the-gphere being 8 feet.
Ans. 41.888 cubic feet.
11. Required the volume of a spherical segment whose greater dia-
meter is 24 inches, les¢ diameter 20 inches, and distance of bases 4
inches. Ans, 1566/6112 cubie inches.
THEOREMS FOR ORIGINAL THOUGHT.
1. Prove that two great cireles of a sphere bisect each other.

9. Prove that every great circle divides the sphere into two equal

parts.

. BOOK VIL

3. Prove that the centres of a small circle and the sphere are in a
fine perpendicular to the small circle.
i ‘rove 4 he radl § 3 S >
t. Prove that the radius of & small circle is less than the radius of
he sphere.
5. Prove that circ idi : i
Prove that cire > equidistant from the centre
are lf‘l'.izl].,
6. Prove that the intersection of two spheres is a cirecle.
L4 Penv the } P ' - 3
7. Prove that the are of a great circle may be made to pass through
any two points on the surface a sphere.
b NN ~ 4 14 3 3 i
8. Prove that if a c and sphere be inscribed in a cylinder, that

these bodies are to each other , 2, and 3.

MISCELLANEOUS PROBLEMS.—PLANE FIGURES.

1. How many bricks 8 inches long and 4 inches wide will it take to

pave g rd 20 feet by 16 feet? Ans. 1440.

2. How much will it cost to plaster a room whose length is 24 ft., width
18 ft.; and height 12 ft., at 16 ¢ts. a square y Ans. $25.60.

3. What is the rence in area between a rectangle G0 feet by 40
feet, and a square which has the same perimeter ? Ans. 100 sq. ft.
4. What is the diagonal of a square whose areais equal to the ares
of a rectangle 16 inches by 25 inches? Ans. 28.28 inches.

5. The diagonal of a square is /30 inches; required the side of the
square. Ans. 5 inches.

ired the diangonal of asroom whose is 48 feet, width

20 feet; and height 39 feet. Anas. 656 feet.
7. A yessel sailed' north 20 mil then west 80 miles, then north 60

g: how far v ym the point at which

Ans. 128,06 miles.,

base is 20 feet,

and e f its equal sides 15 feet. Ans. 111,808 square feet.
10, A o-staff was broken, and fell, the broken part resting upon
the upright, so that the end siruck 48 feet from the foot; the uy ght

part measured 86 feet; how long was the staff ? Ans. 96 feet.
14
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juare rod in the form of an equilateral tri

11. I wish to enclose a
angle: what must be the length of each gide? Ans. 25.0786.

19,435 square inches; required

g
12. Given the area of a cir

diameter and cireumference,
13. The equal sides of an r‘-vizlil:li'._"':a'l ngle

is the side of the inscribed sgu
14, 1 haye o plank-124ect long which con

is tho width of | each end, if ithey are as 2 to 37

15. If the minute-han ' a clock

space does it pass in 40 minutes?

nee of a cire

16, What is the circumt

diagonal of & square which contains 25 8q.
17. What is'the diameter of @ wheel which

a minute, .11 the cars are going 30 miles an hour?
18, A horse i8 fastenied in a meadow, by a halter 2 long. to the
hatis the area of the'eirele shich hie
Ans. 06 square J ds.

X Pressing

in which the number e

ifs area equalsthe pumber expres circunt!
5664,

90. The arew of a circular, park ia 4 acres:; how long will it take to
drive vound it-at the Tate ol & miles an hour? lns. 2 min. 48 see.

21. A eircular g 2N

walk of uniform- widihy which takes

width of the walk.
If: the hour-h lock

what\is the difference-of the surfaces oyer which

ns. 108 61 square inches.

MISCELLANEOUS PROBLEMS.—VOLUM ES.

7 * al s iehes wide
1. ann’.i'\--'\ the surface of a by 4 inches wide,

2 inches

9. Required the enfire sur

square { in. long, and the slant height 12 inches.
3. Required the entire surface of a cylinder
in.. the radiusof the base being 61 }.3824 5q. in.

bordered by a :;‘\'.\‘\'wl

the minuté-

whose altitude is 16

BOOK VII.
A B
1 Required the entire surface of g cone whose height is 16 1
radius of the base being 12 feet. “‘ W
wired the surface and contents of ‘AI“\\... v s el
o 0 is of a sphere inseribed in a cube
inches; and also t} between them '

riace Py . .
riice ol a-sphere is 6,305 s feet
sq feet ;

8 cubic feet,
required the digpmeter
ins. D. 16 inches
: 14 feet 15 116.666
r of" itg base
9. What is tl 1 e e
2. At 1s the volume of a i
the volume of a cylinder whose i
o A whose 18 20 feet. and i}
cumference of the bas 20 1 o,
kel ] ! Ans. 636,64 feet,
inder is 15.708 cubie
" the base is 2 feet ?

The convexssurface of a cond s 141 {
1¢ 1 i, <~ square ieet, ¢

1.5 feet; 1 .
o height ¢
128

If'a segment of 6 foet slant heieht ”
shEL LGS e cut off

height is 3
I ht is 30 {
: - umierence of the basc
what is the su of the fy ¢
i ustum ?

13. The ¢ y
19, he convex surface of a fr -
a frustum is 376.992 square the slant

he slant

.!} "_. ™ 13
20 feet, a1 diameter of the I i
what is the
Ans. 8 feet,
e altitude 15 feet :
Ans. 18 inel

frustum of a ecome is 65 » -
- 9.5 cubic feot, the

i feet and of the ofher 2 #
s : feet : required the

9 feet

Required theer
juares, the
12 feet
How far must a person ascend

one-third of the surface?
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SPHERICAL GEOMETRY.

1. SpaErrcaL GuomMeTRY has for its object the inves-
tigation of the properties and relations of those portions ‘.‘1 the
Sl.ll‘l':u‘l.' of alsphere which are bounded by arcs of” great circles.

2 A Sen ;;mr.\ L ANGLE is an-angle included between
the ares of two great ¢ircles mesting at’a point. The ares are
called sides; and the point at which they meet the vertes
the angle,

The measure of a spherical angle isthe same as that of the
diedral angle included between the planes of its sides. Spheri-
cal angles may be acute, right, or obfuse.

3\ _.\ .\'1'-51‘111::«.\ L PorycoN is a portion of the surface
of a sphere bounded by arcs of great circles. These arcs are
called, the sides of the polygon,and the points in which they
meet/ the ventices, | Each are is supposed to be less than a semi-
circumfierence;

4. A SPHERICAL TRIANGLE is a spherical polygon of
three sides. Spherical triangles are classified in the same man-
ugr as plane triangles.

9. A LuN® iis'aportion of the surfice of a sphere bounded
by two semi-circumferences of great cireles.

: 6. ASpaERrICAL WEDGE is a portion of a sphere bounded
by a luneand the planges of ifs two sides.

.T. A'SPHERTIOAT PYRAMID is a portion of a sphere
bounded by a spherical polyezon and the cireular sectors formed
upon the sides of the polyeon. The spherical polygon is ealled
the base of the pyramid, and the centre of the sphere is called

the verter.

160
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8. A PoLE oF A CircLE 5 a point on the surface of the
sphere equally distant from all points of the eircumference of
the circle.

9. A D1acoNaL of a spherical polygon is an are of a great
circle joining the vertices of any two angles not consecutive,

10. The SuPPLEMENT of an are is what the arc lacks of

being a semi-circumference.

THEOREM T.
Any side of a spherical triangle s less than the sum of the other two,
Let ABC be a spherical triangle, O being the centre of the
sphere; then will any side, as 4B, be less
than the sum of the sides 4 ('and BC.
For, draw the radii 04, OB, and 0@,
forming a triedral angle whose vertex is 0
then ‘the plane angle 4 OB is less than the |/
sum of the angles 40C and BOC (B. V. 0%
Th. XIL); hence the arc 4B, which measures 4 OB (B. IV.Th.
VIIL.), is less than 4 C + B C, which measure A Q¢ + BOC.

Therefore, ete.

THEOREM IT.
Any side of a spherical polygon is less than the sum of the other

sides.

Let ABCDE be a spherical polygon; then will any side, as
4Z, be less than the sum of AB, BC, CD,

n
and DE, 7 c
For, draw the diagonals BE and CF /
dividing the polygon ABODE into tri- 4
D
angles. The are A% is less than the sum \
: . \_;/

of AB and EB, ER is les than the sum
of BC and EC, and EC is less than the sum of ED and D(

14#
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(Th. I.); hence AE is less than the sum of AB, BC, CD, and
DE.

Cor. The are of a great circle measures the shortest distance
between two-points on the surface of a sphere.

For, if we divide any arc of 'a_small circle joining the two
poinis into equal parts, and through their extremities pass arce
of & great circle, the arc of ‘the great cirele joining the two
given points will be less than the sum of these ares (Th. IL.).
When the number of arcs becomes infinite, their sum is equai

to the arc of the small circle, Therefore, ete.

THEOREM IIL.
The sum of the sides of a spherieal polygon 'is less than the eir-
cumference of a great cirvele.

Let ABCDE be a spherical polygon, and O the centre of the
sphere; then will the sum of its sides be less
than the cireumference of a great cirele.

For, drayw the radit Q4, 0B, OC, OD, and 4\
OE, forming a polyedral angle whose vertex is
O; then the sum of the plane angles 4 OF,
EOD, DOC, COB,; and BOA is less than four
right angles (B. V. Th. XIIL); hence the sum
of the arcs which measure them is less than the circumference
of a great circle, which is the measure of four right angles,
Therefore, ete.

THEOREM IV.

If a diameter of a sphere be drawn perpendicular tothe plane of

any circle of the sphere, its extremities will be poles of that circle.

Let CFD be any circle of a sphere, and AB a diameter of
the sphereé perpendicular to the plane of CFD; then will 4
and B be the poles of the circle CFD.
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The diameter 4B, being perpendicular to the plans of CFD,

must pass through the centre %,

since the diameter €D is a chord
cirele ADBC, and

nust therefore be bisected by a

liameter perpendicular to it (B, sl

+V. Th. IIL). If arcs of great cir-

cles AC, AF, and AD be drawn

from A to different points of the

circumference C'FD), the chords of

those ares will be equal (B, V. Th. TI1.): hence the ares will
be equal. But these ares are the shortest lines that can be
drawn from 4 to the points of the l‘iI'cll!nl'«‘l'tn_(‘i.‘ (Th. II. Cor.) ;
henee 4, being equally distant from all points of the circumfer-
ence, is a pole of the circle OFD (Def. 8). It may be proved
in like manner that Bisalsoa pole of the circle. Therefore, cte.

Cor. 1. The poles of a greal eirele are at equal distances from.
the circumference ; and those of a small cirele are at unequal dis-
tances, the sum of the distances being equal to the semi-clreumfer~
ence of a great evrcle.

For, let GUHI be a great: circle perpendicular to 4 B %hen
will the angles 4 OH, BOH, etc., be right angles, and the arcs
AH, BH, ete., will be quadrants (B. V. Th. IX. C.). The arc
A (s less than a quadrant, and B('is greater than a quadrant,
and their sum equals 4 OB,

Cor. 2. If any point in the circumference of @ great circle s
Jowned with either pole by the are of ‘a great civele, the latter are
will be perpendicular to the eircumference of the given cirele.

For, the line 4 O being perpendicular to the plane GHT, any
plane, as A OH, passed through it, will also be perpendicular
to the plane GUHI; hence the spherieal angle AHQG is a right
angle, and the arc A H is perpendicular to the cirele GHL
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g curface of @ sphere al the distance of a
Cor. 3. A point on the surface of a sphere J

( L not at the
quadrant from two points i the are of @ great cirele, no
4

extremities of .« diameter, is o pole of the are.

For, since ‘the arcs 4G and AH are quadrants, the angles
A0G and A OH are right angles, and the line 04 .1.\ P‘-'P%“"
dicular to the straight lines OG and OH ; hcnf\:e (_)j-l 18 a radius
perpendicular to the plane GHI (B. V. Th. IV.), and the
point 4 is therefore a pole of the are HG. . - ,.1

Scholiunt. By means of poles we may with facility n_h;s:«-r'\ e
ares of a cirele on the surface of & sphere. Furi 1'0\'«;1\'1.ng
the arc A C around the pole A, the extremity €' will Ill'.\L‘I‘l\,,\O'
the small circle’ CFD; and hy revolving the quadrant ._1(1'
around the pole, the extremity & will describe the great circle

GHL

THEOREM V.

The amgle formed by the intersection of two ares of greut eireles
i3 equal to the angle included between the tangents to f/ujy/ ru.4_.>
at/ the point of intersection, and s measured. by the .u;.(' of «
great circle deseribed from the wertex as a pole, and, limated by
the sides, produced if necessary.

Let the angle BAC' be formed by the intersection of the two
arcs AB and AC; then it'is equal to the

ancle HA G formed by the tangents 4 H

aua A@G, and is measured by the arc ED

of a great circle described from A as a

pole.

For, the tangent A @, drawn in the plane

of the are AC, is pu‘pcu«livul:u' to the

radius 4 0; and the tangent AH, drawn

in the plane of the arc 4B, is also perpen-

dicular to the radius 4 O; hence the angle

BOOK VIII.
HAG is equal to the ang

le formed by the planes ABDF and
ACEF (B. V. Def. 6), which is the an

gle formed by the ares
AB and AC

Now, if the ares AD and AE are both gquad-
rants, the lines 0D and OF arg perpendicular to 4 0, and the
angle DOE is equal to the angle of the planes ABDF and
A CEF; hence the are DE, which is the measure of DOE, is
also the measure of B4 (.

Gor. The opposite or vertical angles formed by two ares of

great circles intersecting each other are equal, and the sum of

any two adjacent angles is equal to two right angles,

Seholivm. The angles of spherical triangles are compared by
means of the arcs of great circles described from their vertices
as‘poles and included between their sides; Thus a spherical
angle can always be constructed equal to a given angle,

THEOREM VI,

If from the vertices of the angles of a spherical triangle, as poles,
ares be described Jorming a spherical triamgle, the vertices'of
the angles of the second tr iangle will be re ~peclm/'/ poles of the

gides «;r the /l/ 3t

From the vertices A, B, (' as poles deseribe tlie ares DE,
EF, FD, forming the triangle EFD : then "‘
will the: vertices D), E, F be respectively

poles of thesides B, A C. AB. / /\

For, since the point A4 is the pole of the \
S s Ct V5 |
re EF, the distance AF is a quadrant: ,? —

0 . 2 » \v/ &

and since the point (is the poleof the arc
DE; the distance CF is a quadrant; hence the point £ is at
& quadrant’s distance from 4 and € and therefore it is the
pole of the are 4 €' (Th. IV. Cor. 3). In the same manner it
may be shown that D is the pole of CB, and F the pole of AB.

“herefore, eote,
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Seholium. The triangle A B(C may be described when DEF
is given, as DEF is described when AB(C is given. Triangles
thus related are called polar triangles or supplemental iriangles.
Sinece great cireles intersect each other in

two points; three other friangles may be

formed| by producing the arcs DE, FE

and F'D; but the central triangle only is
taken as a polar trigngle, being the only
one in 'which the wertices A and D) are.on
the same side of B! the vertices B and E on the same side of

A C, and the vertices C'and F on the same side of AB.

THEOREM VII.

T two. polar trigngles, any angle of one triungle 18 measured by

the supplement of the side lying opposite 1o it in the other.

Let ABC and-DEF he two polar triangles; then will any
angle of either triangle be measured by D

- 5 : ; b
the supplement of the side lying opposite KL

i in therol /S
1 2 =S\ \
fo it in the other. // N
For, produce A B and A C, if necessary,
N =2 ' LA / \at
N \
i e

till they meet EF in H and G. Since 4 e\
is the pole of EZF. the angle A is meas- ] }/ JF
ured by the are GH (Th. V.).. Butsince e

E is the pole of A G, the are EG is a quadrant ; and since F

-

is the pole of 4 H, the are FH is a quadrant, and the sum of
the ares EG and FH is a semi-circumference: Bot EG 4 FH
= BF-L GH; hence the arc GH, the measure of ‘the angle
4, is equal to a semi-cireumference minus the are EF. 1In the
same manner it may. be proved that the measure of any other
angle in either triangle is the supplement of the side lying

opposite to it in the other.
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THEOREM VIII.
The sum. of the angles of a spherical triangle 1s less than siz right

angles and greater than two.

For, any angle, being measured by the supplement of the side
i}‘inz opposite to it in the polar triangle (Th. V1LY, is less than
two right angles; hence the sum of the three angles is less
than six right angles. Also, the measure of the sum of the
three angles is equal to three semi-circumferences minus the
three sides of the polar triangle. But the three sides of a tris
angle are less than a circumference (Th. ITL); hence the meas-
ure of the sum of the three angles is greater than a semi-cir-
cumference, aud the sum of the angles is greater than two right
angles. Therefore, ete.

Cor. 1. A spherieal triangle may have two, or even three,
right angles ; also two, or even three, obtuse angles.

Cor. 2. If the triangle ABC has two right angles, it is called

bi-rectangulogr. Since the arcs 4B and AC are A
\

\

perpendicular to B¢, they must both pass through
the pole of B hence their point of interseetion,
A'is the pole, and the ares A B and 4 € are quad- |

L ’
rants. : d

If the angle A is also a right angle, the triangle is tri-rect-
angulor, the sides being ‘quadrants.. Four tri-rectangular tri-
angles make up the surface of a hemisphere, and eight that of
& sphere.

Seholiwm, The sum of the three angles of a spherical triangle
is not constant, like that of the angles/of a plane triangle, but
varies hetween two right angles and six without ever reaching
either limit. Two angles, therefore, being given, do not' serve
to determine the third. The excess of the sum of the angles

over two right angles is called the spherical excess, and taking
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the right angle as the unit may be represented thus: 4 + B

~+~ €' — 2 =spherical excess.

THEOREM IX.

Two spherical triangles on the same sphere or on equal spheres
e equal—

1. When two sides and. the included, angle of the one are equal
to two sidesiand the ineluded angle of ‘the other.

2. When twoungles and the included side of the one are equal
to two angles and the included side of the other.

3.| When. the three sides are respectively equal.

The three cases of this theorem may be demonstrated, as in
plane triangles, by applyivg one of the given triangles to the
sther or to its symmetrical triangle,

Scholium. The symmetrical triangle is formed thus:

Let AB; BC' and AC be three aves of great cireles, from
A

which either of the two triangles ABC, AB(C"

may be formed.  These two iriangles, although

all their parts are equal, are not capable of su- e

perposition, bécause in inverting one in order to /
bring the corresponding parts together the con- #

vex surfaces would be turned toward each other. Such tri-
angles are called symmetrical triangles.

Cor., ' The eircles passed through the vertices of two mutually
squilateral triangles on the same sphere or on equal spheres are
equal.

For, the plane triangles formed by the chords of the sides
of these spherical triangles must be equal; hence, if the
spherical triangles are applied to each other, the vertices of
the spherical triangles will coincide, and the ecircles passing

through the vertices are equal.

BOOK VIII.

THEOREM X.
Two symmetrical spherieal trian gles are equal in area.

Let ABC and DEF be two symmetrical triangles, in which
AB equals DF, A C equals DFE, and OB

quals EF. Then will the area of the
wo triangles be equal.

For, let & be the pole of the small
circle passing through the points 4, B,
and C, and H the pole of the circle passing through D, F, and
F'; these cireles will be equal (Th. IX.,C.); Join A. B, and
with G, and D, E, and F with H, by ares of great circles;
these arcs will.all be equal, since they measure the distances
from the circumferences of equal circles to their poles. The
triangles A (G and DEH, being isosceles and having equal
sides; may be applied to each other, and are equal in area; so
also OB@ is equal to EFH, and ABG to DFH. Hence 4 &
+ CBG:— ABG@ = DEH -+ EFH — DFH, or, reducing,
ABC = DEF. Therefore, ete.

Scholiwm. T the point G fall within the triangle A OB the
point H will also fall within the triangle DEF, and the areas
of the triangles will equal the sum of the three isosceles tri-
angles,

THEOREM XI.

If two triangles on the same, or on ecounal spheres, are mutually

equiangular, they are also mutually equilateral.

Sinze the two given triangles are mutually equiangular, their
polar triangles must be mutually equilateral (Th. VIL), and
consequently mutually equiangular (Th. IX.). But if these
polar triangles are mutually equiangular, the given triangles

are mutually equilateral (Th. VIL).
15
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Seholium. This proposition does not extend to plane triangles,
for similar plane triangles are not necessarily mutually equi-
lateral. But two spherical triangles on the same or equal

gpheres éannof be similar without heing equal.
g €q

THEOREM XIL
The surface of a line as to the surface of a sphere as the angle of
the lune to four right angles, or as the are which measures that

nm;/f' s to the l?'/-)'('.'/’mﬁ'?";/l(':,:‘ 11)‘ (1 ://‘{/If eircle.

fet A BEDA be alane on the surface of’ a sphere, and BD
the arc of a great circlewhose poles
are 4 and C the vertices of the
angles of the lune; then will the sur-
face of the lune be to the surface of
the sphere as the are RD to the cir-
cutference BDEG.

For, if 'we divide the arec BD and
the eirenmference BDEG into equal
parts, BF beéing one ol those parts, and pass planes through
the diameter 4 € and each of the points of division, the surface
of the sphere will evidently be divided into equal lunes, of
which’ the given June will contain as many as there are parts
in the are-BD: hence, the lune ABCDA is to_the whale/sur-
face of the sphere as the arc BD is to the circumference BDEG
and the same may also be shown when the arc BD and the cir
cumference! are! incommensurable.  But BD is the measure of
the angle of the lune; and the eircumference is the measure of
four right angles. Therefore, ete.

Cor. 1. Lunés on the same sphere or on equal spheres are to
each other as their angles.

Cor. 2. Taking the right angle as the unit of angles, and

BOOK VIII.

denoting the angle of a lune by A, the area by L, and the
surface of a tri-rectangular triangle by 7, we ]1;1\:0.
s 8% = A4 o4
whence, = ¥ 24, |
-l]m‘e:ﬁnx'c the area of a lune is equal to the tri-rectanaular
reangle multiplied by twice the angle of the lune. "

Cor. 3. A spherical wedge bears the

: same relation to the
o e asphere as the aneole g y
entire sphere as the angle of the wedge to four rial

‘ it angles, as
may be shown by a similar course of reasonine to that em-

ployed in the theorem ; hence the volume of the wedge is equal
‘ € 0l : o S € <

: - 8515 I8 . Sy :

.10 the lune which forms its base, multiplied by one-third of the

~adius.

THEOREM XIII.
If two eireumferences of great. circles intersect on the surface of
- “ b ;e { 0
@ /J,m:.q[,/uv,'»; the sum 'l" either two of the (;];/n,,q',‘u {/'fv/}lq/r\'
thus formed 7s equal to a lune whose angle is equal to that
Jormed by the cireles.
Let the circumferences AEBF. CEDF interseet on the sur
j:‘" P ey o3 i i ;
1ce of a_hemisphere; then will ghe

sum of the opposite triancles A E (!

L) 3
DEB be equal o the lune
angle'is A B¢t

For, since A EB and EBF are semi-

circumierences, if we take awav the

\'.'l'l' ISe

common part £B we have 4 F equal
to' BY. TIn the same way, we find
CE equal to DF and BD equal to 4 ¢
AEC and BFD, having their sides equal, must be symmetrical
and therefore equal in area (Th. X.). ' .

; henee the two triangles

: But the sum of the tri-
angles DEB and BFD is equal to the lune EDFBE

%, whose
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ancle is AEC; hence the sumof AEC and DEB equals tha
lu;e whose angle is A EC. Thefefore, cte.

Soholium. Tt is evident that the two spherical pyramids which
have the triangles ACFE and BED for bases are together equal

to'the spherical wedge whose angle is AEC.

THEOREM XIV.
The areo of a spherical triangle is equal to its spherical excess
multiplied by the tri-rectangular triangle.
TLet ABC be a spherical triangle; then, representing the
1 - 1T 3 S11-
tri-rectangular triangle by 7\ the si s e A
face of the given triangle will be equal 7 \\ / \
: m A
to(d + B+ €¢—2) X T. 4 \
For, I'H'H(ll]('tf the sides until Il\l'}‘

meet. the circumference of a great

sircle, drawyn without the triangle,

forming, three sets of opposite tri-
angles, By the last theorem the area
(_'yf\\:'.h'.‘n v)f'-Llw-'e sets is equal to the June whose angle is the cor-
responding angle of the triangle. Hence (Th. XI1I., Cor. 2);
ADF - AHI =2
BEI tH-BFG = 2
CGH -+~ CDE =2
But the sum of these six triangles exceeds the h\‘nli.’\‘]\h(’"l"f‘.‘ or
{ T by twice the triangle A B(; hence, by adding the equations
and substituting in the first member its value, we have
4T+ 2ABC=9AXx T+2B X T+ 2
reducing, ABL A+ B+ 0—2) X T. .
But 4 - B + C — 2 is the spherical excess of 11;.:‘ 1:;2111;’10
(Th. VIIL. Sek.), and T'is the trivectangular triangle. There

fore, ete.
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THEOREM XYV.
The area of a spherical polygon is equal o its spherical excess
multiplied by the tri-rectangular triangle.
Let ABCDE be a spherical polygon. If we draw the diag-
onals A C'and A D, the polygon will be divided
mto as many friangles as there are sides, less
two. Now, the area of each triangle is equal
to the sum of its angles minus two right
angles, multiplied by the tri-rectangular tri-

angle; and the area of the polygon, or the

sum of all the triangles, is equal to the sum of all the angles of

the triangles, or the sum of the angles of the polygon, dimin-

ished by two right angles, taken as many times as the polygon
has sides, less two, and the difference multiplied by the tri-
rectangular triangle; which is the spherical excess of the polugon
multiplied by the tri-rectangulor triangle. Therefore, eto.

Cor. If we represent the sum of the angles by S, and the
number of the sides by n, we shall have

the area of a polygon — [S—2(n—2 )] X T';and re-

ducing have area of @ polygon = (§—2x +4) X T

PRACTICAL EXAMPLES,

L Find the area of a spherical triangle each of whose angles is 70°,

Ans; L mR3
2. Find the area of a spherical polygon/of six sides each of whose
Ans. = R

le whose angles are 1« speetively 80°, 90%,

angles is 150°,
3. Given the spherical triar
and 140°, to find the sides of its polar triangle,

Ans. 100°: 90°: 40°,

4. If the sides of a triangle are respectively 75° 110°, and 130°, what

are the angles of its polar triangle ? Ans. 105°%; 70°; 50°,

e

S W A

-y

v
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5. What is the area of a bi-rectangular triangle whose vertical angle
is 108° 7 v Ans. § = RL

6. Find the area of a spherical triangle whose angles are 60°, 9C%, and
120°, the diameter of thé sphere being 8. Ans. 8 7.

Ans. 3 ™R

7. Find the area of a lune, its angle being 45°.
8. Pind the area of a lune, the angle being 54° and radius of the

:phere being 5, Ans. 15 7.

MENSURATION.

9. Find the volume of a spherical wedge, the angle of the lune being

720, Ans. % = R

MENSURATION OF LENG T SITRE a
10. Find the volume of a spherical wedge; the angle of the lune being SURATION OF LENGTHS AND SURFACES.

Ans. 16% 7.
11. Find the angles of an equilateral spherical triangle whose area is

Ans. 120°.

862 and the diameter of the sphere 10. o <
26° and the diamete I « n S il . :
1. MENSURATION is the science which treats of the

measurement of geometrical v i
: « : ent of g etrical mag 5
equal to the surface of a great circle, i e

T . M ko8 X

2. The ArEa of a figure is its quantity of surface; it is
expressed by the number of times which it contains the
unit of measure.

19. What must be the angles of an equilateral spherical triangle that

its area may be equal to an equilateral spherical hexagon, each of whose

=
-

Ans. 80°.

angles is 130°?

THEOREMS FOR ORIGINAT, THOUGHT.

1. Prove.that invan isosceles spherical triangle the angles opposite
the equal sides are equal.

9. Prove that a spherical triangle having two equal angles is isosceles.

3. In anyspherical triangle the greater side is opposite the greater
angle, and conversely. 2

4. If from any point of a hemisphere two ares of great circles are
drawn perpendicular to its direnmference, the shorter of the two ares is
the shoftest are that can be drawn from the given pointto the cireum-
farence.

5. Two oblique ares drawn from the same point 5 points of the cir-
cumference at equal distances from the foot of the perpendicular are
equal.

6. Of two oblique ares, that which meets the circamference at the
greatest distance from the foot of the perpendicular is the longer.

7. Prove that the area of a spherical ngle, each of whose angles

is 4 of a right angle, is equal to the surface of a great circle.

9 M. o . .
3. This Unit of Measure is a square whose side is some
known length ; as, an ineh, a foot, ete
- ; ; 5
4. The unit of surface has generally the same name as
the linear unit; thus, if the linear unit is one foot the sup-

face unit is one Squdare foot, ete.

0. nome superfieial units have no corresponding linear
unit of the same name; as, the rood and aere

6. To refresh the memory, we give a few of the more
Important measures of surfices.

1 rood = 40 perches, or square rods.
1 acre = 4 roods.
1 square mile — 640 acres:
Also,
1 chain = 100 links — 4 rods.
10 chains = 1 farlong.
1 square chain — 100 X 100 = 10,000 square links.
1 acre = 10 square chains = 100,000 square links.

175

e
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e
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MENSURATION.

THE TRIANGLE.

7. The AREA is found by the following rules:

Rurs 1.—Multiply the base by one-half of the altitude ; or,

Rute 2.— Tuke half the. sum. of the sides, subtract from it
eath side separately, multiply the half sum and these remain-
ders together, and take the square root of thi product. .

1. What is the area of a triangular field whose base is
40 rods and altitude 16 rods? Ans. 2 :u:rus.‘
2 Raquired the area of a triangle whose sides are t."“. 30,
and 40 chains respectively. Ans. 29 A. 8 P.

3. A man has a triangular garden whose sides are 150,
200, and 250 feet respectively ; required the area.

Ans. 1666.66 yards.

THE QUADRILATERAL.
8 PARATLLELOGRAM.—The ArEA is found as follows:
Ruve—Mutiply the base by the altitude.
1. What is the area of a parallelogram 9 feet long and 7
Ans. 63 square feet.
70

feet wide ?
: 8 ; v gide is 1
2. How many acres in a square field whose side is 703
chains ? Ans. 497 A. 4 P.
3 A man has a lot in the form of a rhombus, whose
lenoth is 333 feet and altitude 33.35 feet; required 1i8
5
Area Ans. 1233.95 square yards.
red. Ans )

9. TrapPEzZoTD.—The AREA is found as follows:

£

- - oyl .A'.w )
RuLE—Multiply one-half of the sum of the parallel sides
by the altitude. a0
3 > - d 3 . ' ‘.. = - l'
1. Required the area of a trapezoid, one side being 192
)6 i 3 i 2 foe
inches and the other 96 inches, and altitude 12 feet.
Ans. 144 square feet.

GEOMETRY.

9 The i 3 AT0F of « - R 3
2. What is the area of a plank 24 feet long, 18 inches

wide at one end and 12 inches at the other?
Ans. 30 square feet,
3. A farmer has a field in the form of a trapezoi.
parallel sides are 95

i, whose
and 75 rods respectively, and the per-
pendicular distance between them 65 rods;

in the field ?

how much langd
Ans. 34 A.2R.5P. !
10. Traprziumr.—The AREA is found as follows :

Runn.—Divide the trapezium into two trianqgles by a diago-

nal, find the area of each triangle, and take their sum.
1. What is the area of a trapezium whose diagonal is

90D, T : . . ;
290 inches, and the altitudes of the triangles; the diagonal

being the base, are 60.and 80 inches respectively ?
1 A

Ans. 140 square feet, 140 square inches,
16 area of a trapezium the lengths of whose
sides are respectively 40, 60, 50, and
diagonal 80 chains.

2. Required tl

70 chains, and the
Ans. 289 A. 1 R. 24 P.

POLYGONS OF ANY NUMBER OF SIDES.

11. REcurARr Ponvaons—The AREA is found
RuLe.—Multiy

as follows:
wy /(-.’/j the /H'/'!-//U ter /4'2,/ the perpe /(///‘t_‘(‘l/l,l,f _](.‘t
Jall from the centre on one of the sides.

1. Whatis the ares of

& regular hexagon whose side
14.6 feet and perpendicular 12.64 feot ?

18

Ans. 61.5147 square yards.
23 Roqzm(wl the area of an octagon whose sides are 9.941

feet and its perpendicular 12 feet

Ans. 477.168 square feet.

5 m P, -
12. The following table shows the areas of ten regular

polygons when the side is 1:—
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L

4.8284271

6.1818242

Tri 'rl- 0.4330127 | Octagon...e..

PIANEIE cevrnraransmmanenns ' ‘

S 3 1.0000000 | Nonagon G

to A{XUUW" ..U s
7204774 | Decagon

.. . 0.8656404

11.1961524

PONtaZON. coveansesresssne - o :
32.1 Undecago
Hexagon
f o nd Dodecagon
Heptagon 3.63¢ | ;
V imil 7 ; are to each
Now. since the aveas of similar polygons are }
oW, 8 t as . ¥ '
h . i -ons sides, to find the
sther as the squares of: their homologons sides
other as SQuUATe ! .
y fi wing
wwea of a regular polygon we have the follow g
ares ¢ onle Y & |
ar : (% U, solilat and multiply by The
~ v the sideé 0] (//. /yl/(y!/ . 1
n['T.F..——.\I{Il(I/I the )]
tabular area set opposite the polygon. .
| i * o peoular hexagon whose 8108 18
3 What is the area of a regulax hexag e
o hes 1 ¥ Ans. 64.9519 square INches.
A inches long ! 7
5 inches long elali
rhose s are each
daquired the area of an octagon W hose side
4. Requirec ¢ e
8 feet 4 inches. Ans.
3 fee
k is fi as follows :
13, TRREGULAR PorygoN.—TLhe AREA 18 fonnd as fol
i - \ ¢ 7 -~ into triangles,
aw didgonals dividing the polygon tito triany
Rure—Draw diag S | / » A
) : e the sum.
find the area of thesertriangles, and take th : 1 AC
1. Tn the irregular pentagon ABCDE, the diagonal AU
1AV Ly «} peguR L 3 g o o
is 18 inches y altitude o
194 inches, the diagonal AD 18 18 inches, the altit 5
e ’ i i 'D is 10 inches, and o1
the triangle ABCis 8 inches, of ACD is 10 inche
e triangle AD
7D 6. i ;- pequired the area.
D). 6 inches; required ! .
o Ans. 240 square feet.
s gide AB i3
2. In the irregular hexagon ABCDEF, the si R
2. , 2 7 946 links,
83, B@ 249.'¢D 310, DE 290, EF 199, and AF 246 1inks,
268, B 249, Lol La = e L e
and 59 $ 7 326 links
nd the diagonals 4C 459, CF and AFE )i b 3
res Sihe s 2 922 P. 13 yd. 47 1t
required the area. Ans. 1 A. 2R. 22 P. 133
THE CIRCLE. 1
= ST,
14. The CIRCUMFERENCE 1S found by the following
. 1¢ C U3 A uNC :
2 . 2 1416.
Rune.—Multiply the diametel by 3.1416
Y ' o
Hence, the diameter equals the circumference divided by
Nore.—Hence, the @&

8.1416, or multiplied by .31831.

of the ecircle is 20 inches:
are?

diameter, or the square of the radius by 3.1416.

the square of the cirewmference by .07958.

GEOMETRY. 17¢
1. What is the circumference of a circle whose di
18 50 inches ? Ans. 157.08 inches.

2. A man has a circular fish-pond 32 rods in d

2. iameter;
Ans. 100.5312 rods.

3. Required the diameter of a water-wheel whose cir-
cumference is 78.54 feet.

what is the distance around it ?

Ans. 25 feet.
4. A man has a garden in the form of a cirele, the dia.
meter being 45 rods; what is the distance around it?

Ans. 141.372 rods.
15. The LENGTH oF AN ARC, when its degrees and

ading
are given, is found as follows :

Rure.—Multiply the number of degrees by the decimal
01745, and the produet by the radius.

1. The degrees in an arc are 45, and the radius 10;

what i8 the length of the arc ? Ans. 7.8;

2. What is the length of an arc of 32° 3% 42", the radius
Ans. 14.2414 inches.

16. 'When the ckord and chord of the half ave are given.

YULE—From 8 times the chord “f /11./1{"‘ the are,

.‘ -~ .
being 25 inches?

subtract the

chord of the whole are, and divide the remainder by 3.

1. The chord of an are is

96 inches, and the chord of

half the arc is 60 inches; what is the length of the arc?
Ans. 128 inches.

2. The/chord of an arc is 16 ‘inches, and the diameter

what is the length of the

Ans. 18.5178 inches.
17. The ARBA OF A orRerE is found as'follosvs -

RuLe l‘—,u!([(/;.'/]}/ the r-/)zw//;,.rl TEenee /I_)/ one-fourth of the
WLE IL—Multiply the square of the diameter by 7854, or

(Let the pupil prove the last rule from the previous principles.}

ameter

}
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1. What is the area of a circle whose diameter is 50
inches and circumference 157.08 inches?
Ans. 19631 square inches.
2. Required the area of a circle whose diameter is 13
Jinchesi Ans. 2544696 square inches.
3 What is the area of a circular garden whose circum
ference is 90 rods? Ans. 644.598 square rods.
18 The AREA OF A SECTOR is found as follows :
R Lli:——l. ‘U'I[f!///_!‘/ the are i)i/ One -/.'.’/f the radius ; or,
I1.. The sector is (o the circle as the number qf- (i(i/l'r,'a',S in
the sector is.to 360°.
1. What is the area of a circular s.ctor whose arc con-
tains 18°, the diameter of the circle being 6 feet?
Ans. 1.4137 square feet.
2, Required the-area of a, sector, the chord of half the
arvc being 30 inches,and the radius 50 inches:
Ans. 1523.45 square inches.
19. Thé AREA OF'A SEGMENT is found as follows :
Rure—~Find the area of the sector having the Swme are,
and also the area ::i' the T/f.!x':‘/ﬁ _i'z,:/'l.'fr,'rl,' /'/:'/ the chord uf the
seqgment and the radit of the sector.
If the-segment s, greater than a semicircle, add the two
areas ;. if less; subtraet them.
1. Required the area of a segment whose height is 2
inches, and chord 20 inches. Ans. 26.864 square inches.
9. Wlhat is the area of a segment whose height is 18
inches: the diameter of the circle being 50 inches?
Ans. 632 sq. in.
3. Required the area of a segment whose are is 180°, and
926.1952

radius of circle 12 feet. Ans.

20. The AREA OF A CIRCULAR RING is foand as follows:

GEOMETRY.

RunE.—Find the difference of the

= squares of the radii, an
H:l:‘”‘[;/l/ it C,v,’/ 31 H‘i, ) dit, and

DEMONSTRATION.—Let the ficure represent two eire
mon centre O; then the difference between them -
bea circular ring. The area of circle 0A
18 w042, and of OB is 7OB%; the difference is
TO0A? —70B2 — (042 — ’/’/»“-‘, which proves
the rule. ‘

1.

What is the area of the circular

ring when the diameters are 20 and 309

ins. 392.70
2- \ ‘.' ~ .‘ . - N . ; s . IS .
A circular park 400 feet in diameter has s

a carriage-

24 feot wide: requi
; required the area of the

i

way around it

carriage-way. 3149.¢
ce-wiay Ans. 3149.9776 square yards
21. 'Ti 5 - :
21. The st AN INSC
a \¢ SIDE OF AN INSCRIBED BQUARE i8S found thus :
NULE.— Multiply 1 ; "
Vi ne i erer 707 ]
o Pty the diameter by 7071, or multiply the cir-
umjierence /,z/ .2251. ‘
1. What i 3i y
: at is ) 2 of a8
- theside of a square that can be cut out of-a
circular board whose diameter is 14 inches ?
o ] Ans. 9.899 inches
A OW large ¢ juar |
arge a square can be cut out of a circulai
s ' » : . H Y
board whose circumference is 400 inches ?
Ans. 90.04 inches.

THE ELLIPSE.
99 " T >
22. An Errirse is a plane figure bounded by a curve
Oy & 'C C

‘h( sum { !l\('l”(-\ 'lH A ) O ¥V )
)1 1 C « 8 O1 every 1mg I\ \IU Il {
1

Bwolida 3 AN . ;
ixed ‘points is equal to the line drawn throueh thosc
| = ; ; &hn ISE
points and terminated by the curve

The tw ints 1

‘he ) points arve called foei; the li {

foci is tl I e called foci; the line throuch the

)C1 18 the fransverse Ii . |
transverse axis; a line perpendicular to this

18 the comjugate axis
16

Thrnugh the centre
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93. The ArEA is found by the follow-

ing
]:I'l.]*l.——_Jl'Ul'f«'[_AZy iu’lzf Uf the two axes 4

N\
woaether, and multiply that product by NS

3.1416: 4 » |
1. What is the area of an-ellipse whose transyerse axis

|
I

! U AN, L
i3 20 inches and conjugate axis 16 inc hes?
Ans. 251.328.

i & f g HU1CE 0 W HOSE
2. Required the area oif an elliptical mirror who

length is 6 feet and breadth 5 feet.
Ans.28.562 square feet.

MENSURATION OF VOLUMES.

924 MENSURATION OF VOLUMES is the process of ceter-
mining their surtace and contents.
95, The CoxrryTs of & volume is the number of times it

contains a given unit of measure.

9. The UxntT oF MEASURE of & volume is a smal! cabe

whose dimensions are known.

MEASURES OF VOLUMES.

728 cubic inches.

1 cubic foot==1
1 yard
1 ¢ Tod

§ feot:
«. " feet.
1 wine gallon= inches.
1 ale gallon inches.
1 bushel inches.

1 cord feet.

GEOMETRY,

THE PRISM.

27. The CONVEX SURFAOE OF A RIGHT PRISM is found thus:

,“1-1417:"'-“/{/./flv/ll‘l,/ Ll /u'z‘z//w".‘:/' u_«“ the base by the altitude.

To find the entire surface, we add the bases.

1. What is the convex sarface of a triangular prism, the
three sides of whose base are respectively 6, 7, and 8
inehes, and the height 50 inches?

Ans. 1050 square inches.

2. What is the entire surface of a cube. the length of
each side being 16 inches? Ans. 102 square feet.

3. What is the entire surface of the triangular prism
given in the first problem? Ans. 1090.66 square inches.

28. The cONTENTS OF A PRISM are found thus :

Rore.—Multiply the area of the base by the altitude of the
pr sm.

1. Required the contents of a cube whose sides are 30
inches. Ans. 15,625 cubie feet.

2. Required the contents of a square prism whose alti-
tude is 27 feet, and the side of the base 4 feet?

Ans. 432 eubic feet.

3. Required the contents of a triancular prism whose
altitude is 24 feet, the sides of the base being 3. 4 and 5
feet respectively. Ans. 144 cubie feet.
THE PYRAMID.

29. The CONVEX SURFACE OF A RIGHT PYRAMID is found
thus :

Rone—Multiply the perimeter of the base-by one-half the
slant height.

L. What is the convex surface of a triangular pyramid
whose sides arve 3, 4, and 5 feet, and slant height 20 feet ?

Ans. 120 square feet.

LY o=
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2. Required the convex surface of a pentangular pyra-

mid whose sides are each 5 feet, and slant height 60 feet.
Ans. 750 square feet.

30. The CONTENTS OF A PYRAMID are found thus:

YuLe—Multiply the base by one-third of the altitude.

1. Required the contents of a pyramid whose base is a
hexagon, each side being 5 feet, and whose altitude is 20

feet. Ans. 433.013.
2. The pyramid of Cheops is 480 feet high, and the base

is a square 763.4 feet on aside; required its solid contents.

Ans. ‘.)32“,72{?; cubic feet.

THE CYLINDER.
31 The CONVEX SURFACE and coNTENTS are found thus:
RuLE 1.—The surface equals the circumference of the base
multiplied by the altitude.
RuLe 2—The contents equal the area of the base m ultiplied

by the altitude:
1. What is the convex surface of
Ans. 226.1952 square feet:

a cylinder 12 feet long

and 6 feet in-diameter?

2. Required the convex surface of a cylinder whose length

is 20 feet and the diameter of the base 8 feet.
Angs. 502.656 square feet,

3. A ‘man has a log 12 feet long and about 63 feet in
diameter ; required its contents. Ans.418.88 cubic feet.

4. The Winchester bushel is a cylinder containing 2150.42
cnbic vinches, its height being 8 inches; yhat is its dia-
- meter? Ans.181 inches.
THE CONE.
39. The CONVEX SURFACE and cONTENTS are found thus:
Rure 1.— The surface equals the circumference of the base

into one-half of the slant height.

GEOMETRY.

o ) ') -~ -

RuLe 2—The contents equal the area of the base into one
third of the altitude.

l. Find the convex f

- 1¢ convex surface and cc 3 of
e nvex \.LUI.U( and contents of a cone, the
aiameter of the base being 6 ft. and altitude 4 ft

Ans. Sur. — 47.124.

9 P T1rfac '

2. Find the surface and contents of a cone whose slant
neight is 26 in. and radius of the base 10 in

Ans. Vol.

THE FRUSTUM OF A PYRAMID AND CONE.
33. The coNnvEX SURFACE is found by the following
RuLe.—Find the sum of the perimeters or cireunife /'.,,4;/1-,\- of
the two bases, and multiply it by one-half of The ,\‘/:./u( height.
1. Required the convex surface of the frustum of a sq.n:n'e
pyramid whose slant height is 24 ft., the side of the lower
base 12 ft., and of the upper base 8 ft. Ans. 960 sq. ft
2. Required the surface of a frustum of a cone ;vh-n)so
slant height is 20 ft., the diameter of the lower base being

=

12 ft., and of the upper base 8 ft. Ans. 628.82 sq. ft
Ans. H28.32 sq. ft.

0 r ANTMTAT & A - - o
34."The CONTENTS OF A FRUSTUM are found as follows -
> 3 v hots o 1 ¢ ; :
RULE—Find the sum of the two.bases.and-the Squareroot
of their /;,":_y,[,114f, and //[,7//'[/[,/,‘/ this sum by one-third of the alts
g Y < 2 b=
tude of the jrustum.
NoTe.—In a frustum of a cone the following formula gives a shorter
& . & x 9

vule: — ¥V = T (2 r2 L R.7)Xh
1. What is the amount of timber in a log¢ which mea-
sures 40 feet in length, the radius of one }':1\';- being 6 feet
and of the other 3 feet ? Ans. 2638.944 r-xxl:it:‘\ll'w'-f |
2. Required the contents of the frustum of a recular
hexagonal pyramid, the side of the greater end being 3
feet, that of the less 2 feet, the heiszht being 24 feet. :

Ans. 394.9075 cabic feet.
16 @ .
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3. A cask, consisting of two equal conic frustums joined
at their larser ends, has its bung diameter 30 inches, and
its head diameter 20 inches; how many gallous of wine

will ‘it -hold i 3% feet long? Ans. 90.44 galions.

THE SPHERE:

35. The SURFAGE oF A SPHERE is found as follows:

H(‘xhlvi.—_llll.[h'j!/}/ the diameter /lj/ the ecircumference; O,
Square the radius, and multiply it by 4 and 3.1416.

1. Regunired the surface of a sphere whose diameter is
17 inches.” Ans.6.305 square feet.

2. How many square miles on the surface of the earth,
the diameter being about 7912 miles?

Ans. 196,663,355 square miles.

3@ The SUREACE OF A ZoNE 1S found as follows:

Rure—Multiply the height of @ zone by the circumjérence
of @ great cirele of the spheres

1. The diameter of @ sphere is 25 feet, and the height of
the zone 6 feet; what is the surface of the zone ?
Ans. 471.24 square feet.

2. Required the surface of the torrid zone, the diameter
’

of 'the earth being 7912 miles.
Ans. 78,419,272 squate miles.
Nore.—This is to be solved after the pupil has cgupleted Trigonometry.
97. The cONTENTS OF A sPHERE are found as follows:
Rure—Multiply the surface by one-th ird of the.radius ;. or,
Multiply the cube of the diameter by & of 3.1416.
1. Required the contents of a sphere whose diameter is
17 inches. Ans. 25724468 cubic inches.
2. Required the contents of the planet Mars. the diameter

being about 4500 miles. Ans. 47713050000.

GEOMETRY.

38. The contents of a SPHERICAL SEGMENT OF ONE BASE
are found thus:

Rorne.—Add the sSquare of the /cl"j/.’rr' to three times the square
o RS > - h o SID . 15 r+he '3 oy |
of the radius of the base; multiply this sum by the height, and
£fi¢ ‘1'1r'/l,71/wf /'..'/ 5236 ; or, see Th. X. B. VII.

Nore.—For the volume of a segment of two bases, see B. VII. Th
X. C. 4.

20 19" < * }

1. Required the contents of the segment of a sphere

whose height is 4 inches, and radius of the base 8 inches
Ans. 435.635 cubic inches.

9 33 o r O > 3

2. Find the volume of either temperate zone, the dia-
meter of the earth being 7912 miles.

' Ans. 54,919,403,678 cubic miles.
Nore.—The pupil will solve this after completin.z Trigonometry

CYLINDRICATL RINGS.

39. A eYLINDRICAL RING i§ formed by bending a eylinder
until the two ends meet. We find its \'url';u‘u.l'\_' ~llw fol-
lowing

Rune—170 the thickness of the ring add the inner diameter ;
maultiply this sum by the thickness. of the ring, and i"/'u’}»l'm/u::‘f

by 9.8696.

o
Note.—For contents, multiply the sum by the square of % the thickness

instead of tMe thickness, the other part of the rule heing the same as
for surface, 7
mh Yalrmaca of 3 3 3 : 3

1. The thickness of a cylindrical ring is 4 inches, and

the inner diameter 18 inches; what is the convex surface?

Ans. 868.52 square inches.

2. The thickness of a eylindrical ring is 2 inches, and

the inner diameter 1 foot; required its contents.

Ans. 138:1744 cubie inches.
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(o]

40. The SIDE OF AN INSCRIBED cUBE is found thus:
Rung—Multiply the diameter by HT136, or the radius by
1.15472.
DEsoNSTRATION —Let the cube in the mar-
gin| represent an inseribed cube ; then will
AZ be the diameter of the sphere. | Tiet the
diameter be denoted by D, and the radins by
R. Now, A3 on D2 = AC* 4= CE?; but
A Q2= ABY - B0 hence; D? — AB* |-
BG2-- OE2, oy, since the sides are equal,
3483 or, D = AB X o
1.73 and, consequently, AB=D 3
R < 1.15472.
1. Required the side of a cube that can be.cut out.of a
sphere whose diameter is 16 inches. Ans.

& 3 T Y 1 « 3 ST°0
2. Required the volume of a cube inseribed. in & sphere

whose circamference is 18.849552 inches.
Ans 41.571219 cubie inches.
41, 'The VOLUME OF AN IRREGULAR BODY is found thus:
RuLE—TImmerse the body in a vessel of known dimensions,
containing water; note the rise in the water, and caleulate
accordingly. :
1. A stone immersed in a eylindrical vessel 10 inches in
diameter, raised the water d inches ; required the volume
of the ST;'\!I(}. Ans! 892.70. cubi@ inches.
2. A man put a stone into a vessel 14 cubic feet in capa-

city. and it then required 21 quarts of water to fill the

vessel ; required the volume: of the stone. N |
Anz. 13.9164 cubic feet.

GEOMETRY,

MISCELLANEOUS PROBLEMS—PLANE FIGURES.

1. How many yards of paper that is 30 inches wide will it require to

cover the wall of a room 15} feet long, 111 feet wide, and 7% feet high?
Ans. 55.2833 yards.

2. A ladder 130 feet long, with its foot in the street, will reach on

one side to a win v 78 feet high, and on the other to a window 50 feet
high; what was the width of the street ? Ans. 224 feet.

3. The diameter of a cirele is 4 feet; required the area of the inseribed

]

equilateral triangle. Ans. 3 /3 square feet,

4. From a plank 16 inches broad, 6 square ft. are to be sawed off; at

what distance from the end must the line be struck ? Ans. 1_ feet.
5. The ball on the top of a church is 6 feet in diameter; what did

the gilding of “it cost; at 8 cents pergquarcineh?  Ans. $1302.884.

gle, whose base falls on the dia-

6. The area of an equilateral trian
meter and its vertex in the middle of the are of a semicirele, is 100
square feet ; what is the diameter of the semicirele ? Ans. 26.82148.

7. The cost of paving a semicircular plot of ground, at 20 cents a
square foot, amounted to $20; required its diameter. Ans. 15.9576.

8. A gentleman has a den B0 feet long and 60 feet wide; what
must be the widtlt of a walk extending around the garden; which shall
oceupy one-half of the ground? Ans. 10 feet.

9. Required the perimeter of & regular dodecagon which shall con-
tain the same area as a circle whose circumference is 1000 feet.

. Ang, 1011.67 faet.

10, If'a horse tied to a post in the centre of a ficld by a rope 1 ¢hain
78 links can graze upon an acre, what length of rope would allow it fo
graze upon 5% acres? Ans. 4 chains 151 links

11. A has a circular garden which is 20 rods, and B has a eirenlar

garden whose area is 61 times as great; what.is the diameter of B's
garden? Ans. 50 rods,
12. A has a cireular garden, and B a square one; the distance around
each is 64 rods; which contains the most land, and how much ?
Ans. 69.948 square rods.

13. Atherton has a cirecnlar garden and Fell has a square one, and
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they contain 4 acres; how much farther around is ome than the

sther ? Ans. 11.512 rods.

14. Mr. Thompson hag a square yard containing f an acre; he

makes a gravel walk around it which occupies } whole yard;
g I ; : s

what is the width of the walk? Ans. 4 feet 11 inches.

15. A general, sttempting to draw up his division in the form of a
square, found he lacked 100 men to-complete the square; he then re-
ceived 4 reinforcement of five companies of, 100 men each, and found
he could increase the side of the square by'3 men and have 1 man

vemaining; how many men had he at first2 Ans. 4125 men.

VOLUMES.

1. The volume of a sphere is 606,132 cubie feet; required its dia-
meter. Ans. 10.5 feet.
9. The edee of & cube is 6 feet; what is the volume of a sphere that
muy be inscribed within it? Ans. 113.0976 cubie feet.
I have &-cistern in the form of the frustum of a cone, its top «
meter being 12 feet. its Bottom diameter Y Iget, and its depth b feet;
Ans. 103.515 barrels.

Low many barrels.of water will it contain ?

+. Bunker Hill Monument is 220 feet high, 30 feet square at the base,

and 15 feet at the vertex; what i its volume ? Ans, 115500 cubic {t.

5. My, Wilson has'a pond which covers 100 acres, the average depth
being 10 feet; how many cubic feet of water does it contain?

Ans. 60000 cubic feet.

6. /A man hag a log of wood 20 ft. long, the layger end being 3/ft. in dia-

meter, and‘the smaller 2 {t. 5 required thie contents of the largest square

stick, 20 £ long, that can be sawed out of it. Ans. 631 cubie feet,
7. A bushel measure is 184 inches in diameter and 8 inches deep;
what shonld be the dimensions of & measure of similar form to contain

bushels ? Ans. Diameter, 74 inches; depth, 32 mches.

& Mr. Benson can dig a shaft 5 feet each way in one day: how long

will it take him to dig a shaft 20 feet each way ? Ans. 64 days.
9. A man has a square garden 100 feet long, and wishes to make a
gravel walk half-way avound it: what will be the width of the walk
Ans. 29.289 feet.

it takes up one-half of the garden?

GEOMETRY
. 191
10. A wishes to enclose his garden, which is 100 feet long and 80 feet
wide, with a ch 4 feet wide; how deep must it be dug z>h:11 the soil
taken out may raise the surface 1 foot? k 5.31Y feet.
11. A cubic foot of brass is to be drawn into a wire of an inch in
diam ; required the length of the wire, supposing there is no loss
of metal in the process. Ang. 31.252 wmiles.
12. Mr. Bonnycastle mentions a globe whose volume and surface ave
represented by the same number; what was the diameter of this gl

Ans. 6.

13. Mr. Haswell requires the weight of an iron s 1 4 inches in dia-

meter, the thickness of the metal being 1 inch, estimating a cubic inch
of iron at } of & pound. Ans. 7.3304 pound

14. Bunker Hill Monument is 220 feet high, the lower base being 30
feet square, the upper 15 feet square; through its centre runs a <-\:!in~
drical opening 15'feet in diameter at the bortom and 11 féet at xlmhrup-
how many cubic feet of material in the monument?

- Ans. S6068.444 cubic feef.

15. A gentleman has a bowling-green 300 feet long and 200 feet

broad, which he wishes to riaise 1 foot hizher by means of the earth

that is to be taken from a ditch thatis to go around it; to what depth

must the diteh be dug, supposing its breadth to be 8 feet ?

Ans. T feet 3.21 inches.
16. A man having a garden 100 t long and 80 feet broad, wishes
to make a gravel walk half-way around it; what will be the width of
the walk if it takes up one-half of the garden ? Ans. 25,9688 feet
17, Three persons having bought a sugarloaf, want todivide it equally
among them by sections parallel to the base; what is the altitude u.f‘
each person’s share, supposing the loaf is a cone 20 inches high .

Ans. 18.867 uj » part; 8.604 middle; 98 1owop

SveeesTroN.—Solve it by the princi
it by the princiy g to each other

as the cubes of their altitudes.

Nore.—Several of thase problems are frox v isuration
} e 0. £ t. re on.
For more methods and exerecises, see Bonnycastle’s and Haswell’s works on

Mensuratio




ELEMENTS OF TRIGONOMETRY.

INTRODUCTION.

LOGARITHMS.

1. Logarirays are a species of numbers used to abbreviate
Multiplication, Diyision, Involution, and Evolution.

2./ The logarithm of anumber is the exponent denoting the power
to which a fixed number must be raised in order to produce the
first number.

3. This fized number is called the base of the system. The base
of the common system is 10,

4, l{ui‘ing 10 to different powers, we have,

10° =1 : hence, 0 s the log of 1;

10t=10 £ 1 5 10;

10% = 100 £ 2 ¢ 100 ;

107 = 1000 (L 3 & 1000 ;
ete.

5. From this we have the following prineiples:

Prix. 1. The logarithm of a number between'l and 10 @s betwesn O'and
1, and is, therefore, a decimal.

Prix. 2. The lgarithm of a number between 10 and 100 is between 1
and 2, and s, therefore, V and a decimal. Thus,it has been found
that the ]‘7;_’. of T6.is 1.830814.

Prin. 3. The logarithm of a number between 100 and 1000 is between
9 and 3, and is, therefore, 2 and a decimal. Thus, the log. of 438 is
2.660865.

6. When the logarithm consists of an integer and a decimal,

10 1

.




9 TRIGONOMETRY.
the integer is called the characteristic, and the decimal part the
mantissa. 'Thus, in 2.660865 the 2 is the characteristic, and 660865

is the mantissa.

PROPERTIES OF LOGARITHMS.

Prix. 1.—The charactenistic is' always.one less than the number
tegral places in the number.

For, from Art. 4,4ve see that the log. of 100 is 2, the log. of
1000 is 3, and of any number between 100 and 1000 it is 2 and a
decimal : hence, the characteristic is one less than the number
of integral places.

PriN, 2.—The logarithm of the base is 1, and the logarithm of 1 is
zero.

For. since 10! =10, 'the log of 10 s 1; and since 10°

1, the
logarithm of 1 is 0.

Prin. 3.—The characteristic of the 'v-,:',wv;*?.‘/';/n of a decimal is megative,
and is numerically one greater than the number of ciphers between the
decimal point and the first si nifiednt 17,

For, if we raise the base, 10, to powers which give decimals, we
will have,

10° ) =1 ;- hence, log 1
I0—=.1
.
]()—‘f_(‘l ¢ ln\:' 01
10—°= .001 «  log .001-
etc: ete.

which proves the principle. " Thus, thelog of .458 is 1.660865.

Prix. 4. —The J'.'-“//’I'-"/:lu'z f}l'. the /N‘t‘f«!-'w‘:’ ,_‘r' two numbers is eq wl to the
sum of the /'-'.'/.17'/'//,//,;: ‘;!'. those numbers.
For. let M and N be any two nambers, and s, and = their lo
rithms: theniwe ghall have, according to the definition,
10m = M, 10— V:
Multiplying these equations, member by member, we have,
10m+n = M X N.

Hence, log (M X N)=m +mn; or,=log M+ log N.

INTRODUCTION

Prix. 5.—The logarithm of the quotient of two numbers equals the dif-

Jerence of the logarithms of those numbers.

For, from the definition, we have,

10m — M, 105 —V.

Dividing the first by the second, we have,

10m —n — '1{
N

)
Hence, log (4\[) = m—n, or, — log M —log N.

PriN. 6.—Tke logarithm of any power of a number is equal lo the
logarithm of the number multiplied by the exponent of the power.
For, since
10m—= M,
if we raise both members to the nth power, we have,
10mn — n
Hence, log M* = mn, or,— log M >
Prix. T—The logarithm. of the root of any number is equal to the
logarithm of the n r divided by the index of the root.
For, since

10 = M

’

if we take the nth root of both members, we have,
m
10" = /L.

Hence, log /M ==, or, log M+ n.
. !

m
PriN. 8.—The logarithm of the product of any number multiplied by
10 is '3‘1«/‘1.1 to the arithm QY' the number increased by 1.
Suppose log M = m; then, by Prin. 4,
log (M X 10) = log M -+ log 10. But log 10=1;
Hence, log (M X 10)=m - 1.
Thus, log (76 X 10) =1.880814 + 1; or, log 760 = 2.880814.
Prin. 9.—The logarithm of the quotient of any number divided by 10

iz equal 10 the logarithm of the number diminisked by 1.
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Suppose log M = m; then, by Prin. 5,
log (M —+ 10) = log M — log 10; from which
sdog (M—+10)=m—1.
Thas, log (458 +/10) =2.660865 — 1;

or, log 458 = 1.660865.

7. The following examples. will llustrate Principles 1, 3. &

and 9,

1.369216,
0.369216,
9216,

0234 ¢ 2.369216.

From this, we see that when we change the place of the de-
cimal point we change the characteristic, but do not change the
decimal part of the logarithm.

The minus sign is written over the characteristic, showing that

it only is negative.

TABLE OF LOGARITHMS.

8. A Tasie or LocarrTaxs is a table by means of which we ean
find the logarithms of numbers, or the numbers corresponding
to given logarithms.

9, In the annexed table the entive logarithms of the numbers
up to 100 are given. For numbers greater than 100 the mantissa
alone is given ; the characteristic being found by Prin. 1.

10. The numbers are placed in the column on the left, headed
N.: their logarithms are opposite, on the same line. The first two
fi
rithms.

11. The column headed D shows the average differences of

ame horizontal line. This difference

ures of the mantissa are found in the first column of loga-

o
o

the ten logarithms in the s
is found by subtracting the logarithm in column 4 from that in

column 5, and is very nearly the mean or average difference.

INTRODUCTION.

TO FIND THE LOGARITHM OF ANY NUMBER.

12. D» find the logarithm of @ number of ONE or TWO figures.

Look on the first page of the table, in the coluwmn headed N,
and opposite the given number will be found its logarithm.
Thus, A

the logarithm of 25 is 1.397940,
- 0 87 is 1.939519,

13. 7o find the logarithm of a number of THREE figures.

Look in the table for the given number; opposite this,
column headed 0, will be found the decimal part of the loga-
rithm, to which we prefix the characteristic 2, Prin. 1. 'l'hus,'v

the logarithm of 325 is 2.511883,
“ ; 876 is 2.942504.

V4, o find the logavithm of a number of POUR figures.

Find the three left-hand fizures in the column headed N, and
opposite to these, in the eolumn headed by the fourth figure,
will be found four figures of the logarithm, to swhich two Xi;urf-s
from the column headed 0 are to be prefixed, The «-'lnu'.'x(-tur-
wstie is 3, Prin. 1. Thus,

the logarithm of 3456 is 3.538574,
¢ o 7438 is 3.871456.

15, In some of the columns, simall dots are found in the place
of figures ; these dots mean zeros, and should be written zevos.
If the four figures of the logarithm fall where zeros occut, or if,
in passing back from the four figures found to the zero column,
any of these dots are passe i over, the two figures to be prefixed
must be taken from the line just below. Thus,

the logarithm of 1738 is 3.240050,
3, i 2638.is 3.421275.
16. To find the logarithm of a number of MORE THAN FOUR figures.
Place a decimal point after the fourth figure from the left hand,

thus changing the number into an integer and a decimal. Find

ihe mantissa of the entire part by the method just given. Then

16 #
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from the column headed D take the corresponding tabwlar differ-

ence, multiply it by the decimal part, and add the product to the
mantissa already found; the result will be the mantissa of the
given number, The characteristic is determined by Prin. 1.

If the decimal part-of the product exceeds .5, we add 1 to the

entire part; if less than .5, it is omitted.

EXAMPLES.

1. Find the logarithm of 234567.

Sorumion.—The characteristic is 5, Prin: 1. | Placing a decimal
point after the fourth figure from the left, we have 2345.67. The
decimal part of the logarithm of 2345 is 370143 ; the number in
column D is 185 and 185 3 .67 = 123195, and since .95 exceeds .5,
we have 124, whiel, added to .370143, gives 370267 ; hence, log
234567 = 5.370267.

9. Find the logarithm of 4567, Ans. 3.659631.

3. Find thelogarithoy of 3586. Ans. 3.554610.

4. Find the logarithm Ans. 4.072102.

5. /Find the logarithm Ans. 1.674769.

6. Find the logarithm 28 ; 3. 1.467416.

17. To find the numb ng to a given logarithm

1. Find the wo legft-hand figures of the 7u in the column
headed 0, and the other four, if possible, in the same or some
othar column,ton the same line ;: then; in column N, opposite to
these latter fgures, will be found the three loft-hand figures, and at
the top of the page the other fizure of the required number.

9. When the evact mantissa is not given in the table, take out the four
ficures corresponding to the next less mantissa in the table; sub-
tract this mantissal from the given onej; divide the yemaindery
with ciphers annexed, by the number in column D, and annex
the quotient to the four figures already found.

3. Make the number thus obtained correspond with the cha-
yracteristic of the given logarithm, by pointing oft decimals or

annexing ciphers.

INTRODUCTION.

EXAMPLES.
1. Find the number whose logarithm is 5.370267.
Sorvrioy.—The mantissa of the given logarithm is . . .370267
The mantissa of the next less logarithm of the table is . .370143
and its corresponding number is 2345.
Their difference is - - . . 124
The tabular difference is 185 .
The quotient is . . 7 185)124.00(.67
Hence, the required number is

Nore.—If the characteristic had been 2, the number wounld have been

234.567

if it had been 7, the number would have been 23456700 ; if it had

been 2, the number would have been 0234567, ete.

Find the number whose logarithm is 3.659631.
Ans. 4567,
Find the number whose logarithm is 2.554610.
Ang. 358.6.
Find the number whose logavithm is 1.072102.
Ans. 11.8086.
Find the number whose logarithm is 2.674769.
."lms'. 04729,
Find the number whose lagarithm is 3.065463. -

Ans. 0011627,

MULTIPLICATION BY LOGARITHMS,.
18. From Prin. 4, for the multiplication of numbers by means
of logarithms, we have the following
RuLe—Find the arithms of the f take their sum, and find the

r will be the required product.

Nore.—The term swm is used in its algebraic sense. Hence, when any of
ncteristies are negative 1 issa is always positive,—we take

ference between the sums of the positive and negative chuaracteristics,

and prefix to it the sign of the greater. 1f any thing is to be carried from
the addition of the mantissas, it must be added to a positive characteristic,

or subtracted from a nagative one.
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EXAMPLES,
. Multiply 35.16 by 8.15.

1
SoLUTION. log 35.16 = 1.546049

log 8.15=0.911158

2457207

457125
Produect, 286,554 N
152)82.0
Find the product of .7856, 31.42. Ans. 24.6835,
Find the produet of 31.42, 56.13, and 516.78.
Ans. 911393.7.
Find the product of 31.462, .05673, and .006785.
Ans. 01211168.
Produet of 06517, 2.16725, ,000317, and 42.1234
Ans. 001886,
Product of 2.3456, .00314, 123.789, 00078, and 67.105.

Ans. O4772076.

DIVISION BY LOGARITHMS.
19./From Prin. 5, to divide by means of logarithms, we have
the following
Rune.—Find he "'rg‘/ writhms of the dividend and divisor, sub
latter v/’."di{t the former. ‘.4"’.,"['/4'17 the number corves
this number

Nore.—The term subtract is bere used in its glgebraic s o, hence, we

must subtract according to the principles of algebra,

EXAMPLES,
1. Divide 783.5 by 6.2
SOLUTION. ¢ 2.204039

y = 0.795880

2093159
097951

Quotient, 25.36 —
346)208(6

INTRODUCTION.

Divide 636 by 6.37. Ans. 42.8.
Divide 50.38218 by 67.8. Ans. T431.

ivide 155 by .0625. Ans. 2480.

A l’xl'l'll.\{li'l' [CAL COMPLEMENT.

20, The operation of division when combined with multipli-

cation is somewhat simplified by using the principle of the arit/
I complement. o

21. The Ariramericar ConpreMeNT of a logarithm is the result
arising from subtracting the logarithm from 10. Thus, the arith-
metical complement of the logarithm 5.623427 is 10 —5.623427,
or 4.376573. 4

22. The arithmetical complement may be written directly from
the table, by subtrasting each figure of the Togarithm from 9, except the
right-hand figure, whick must be taken from 10. This is the same as
subtracting the logarithm from 10.

23. We will now prove that iz difference between two logarithms is
equal to the first logarithm, plus the arithmetical complement of the second,
menus 10.

Let a — the first logarithm,

b — the second logarithm,
and ¢ = 10 — b = arith. comp. of &.
Thedifferenceis a—b.
3ut, —b=c—10.
Hence, a—b=a-}e¢— 10,
which proves-the ‘principle.

24, Hence, to divide by means of the arithmetical complement,
we have the following

RuLE-—Add the arithmetical complement of the Egarithm of the divisor
to-the logarithm. of the dividend, subtract 10, and. find the number corre-
y /

) 4 ) o == 17 7
sponding to the difference, this 1 wie ve it wred guot

EXAMPLES.

1. Divide 856.3 by 45.32.
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2.932626

3710

SOLUTION.

Quotient, 18.8945 1.276336

e 95

2. Divide 0.3156 by 78.35. .
log 0.3156 | . 1.499137
) 8.105961
Quotient, 1004028 ;':'.i'u 15098
3. Divide 3.7521 by 18.346. Ans. 204519,
4, Divide 483.72 by .30751. Ans. 157¢
5. Multiply 32,16 by 7.856, and divide the product by 4
Ans. 5.574.
6. Divide the produet of 31.57 and 123.4 by the product of
816,2 and .0316. Ans. 389.8884
Find by logarithms the first term of the proportion,
16: 3 .. 1.11237.

z:73.15: 48,16 : 3167, A

INVOLUTION BY LOGARITHMS.
95 /From Prin. 6 to raise a number to any power, we have the

following

) it by the exponent

e result.

EXAMPLES,

1. Find the 4th power of 45.
SoLuTION.

log 45 = 1,653213

Power, 4100625
Ans. 0.2746.

Ans. 1.243.

Ans. 0.005846.

Find the cube of 0.65.
. Find the 6th power of 1.037.

Find the Tth power of .4797.

INTRODUCTION.

EVOLUTION BY LOGARITHMS.

26. From Prin. 7, to extract any root of a number, we have

the following
—1. Find the logarithm of the number, divide it by the index of
s :(m/ﬁ"x:'/» the number corre n ."u\_; to the result.
IL. If the characteristic is negative and not divisible by the index of the

root, add 1o it the smallest negative number that make i divisible,

. . y * 2 ] . :
prefiring the same numoer wili a pius aign i

EXAMPLES.
1. Find the square root of 576.
SOLUTION. log 576 = 2.760422
2.760422 - 2 =1,380211
Henee, the root is 24.

b

2! Find the fourth root of .325.

SOLUTION. log .325 =1.511883 =14 - 3.511883.

Then (T -+ 3.511883) <-4 =T.877971

Hence, the quotient is, .75504.
3. Find the fifth root of .0625. Ans. 574348,
4. Find the cube root of 7. Ans. 1,.9129.
5. Find the fifth root of 5. Ans. 1.3797.

6. Find the tenth root of 8764.5. Ans. 2,479,

L
CALCULATION OF LOGARITHMS.
The pupil will by this time naturally inquire how these logavithms
are calculated. This we have not room to explain here; in facf, an
anation of the modern methods would be almost too difficult for the
yrity of pupils who study this book: | Only ageneral idea can here
be given.
In computing logarithms, it is only necessary to ealculate the loga-
rithms of prime numbers, since the logarithms of composite numbers
may be obtained by adding-the logarithms of their prime factors.

The logarithms of the prime numbers were first computed by com-
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o

paring the geometrical and arithmetical series, 1, 10, 100, ete., and 0,
1, 2, ete., and finding ecometrical and arithmetical means; the
arithmetical mean being the logarithm of the corresponding geome-
trical mear. This method was exceedi v laborious, involving so
many multiplications an extractions of roots.

The method now generally used is that of series, by which the com-
putations are much more easily made. The following formula is de-

rived hy algebraic reasoning.

log (1 z)=4 (1 5

In this the quantity 4 is called the modulws, which in the Napierian
gystem is #nily. The series, when A is one, put in a more venient

form, hecomes,

log. (z-+1) —log.z=

From which, knowing the logarithm of any aumber, we readily find
the logarithm of the next lapger number. The pupil will be interested
in finding logarithms by this formula. Begin with 2, in which =z —=1.
The loearithm found will be the _\'n]\icri.u:‘.{\;::11*11}11:\. and this mul-

tiplied by 0.434294 will give the common logarithm.

PLANE TRIGONOMETRY.

DEFINITIONS AND PRIMARY PRINCIPLES.

1. Praxe TrRicoNoMETRY is the science which treats of the
solution of plane triangles.

2. The Sovurion of a triangle is the operation of finding the
unknown parts when a sufficient number of the known parts are
given.

3. In every triangle there ave six parts; three sides and threz

These parts are so related that when three of the parts
are given, one being a side, the other parts may be found.

4. An angle is measured, as we have previously seen, by the
are included between its sides, the eentre of the circumference
being at the vertex of the ang

5. For measuring angles, as has already been explained, the
circumference is divided into 360 equal parts, called degrees,
each degree into 60 equal parts, called minutes, etc.

6. A QuapraxnT is one-fourth of the circumference of a circle;
hence, if two lines be drawn ‘through the
centre of a circle at right angles to each
other, they will divide the circumference
into four quadrants. Each quadrant con-
tains 90°.

7. The CoupruEMENT of an arc is 90°
minus the are; thus, D('is the complement
of BC; also, the angle DO('is the comple-
ment of BOC.

8. The SurrrexeENT of an arc is 180° minus the arc; thus,

17 13
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AR is the supplement of the arc BDE; also, the angle AOE is
the supplement of the angle BOE.

9. Trizonometry, instead of comparing the angles of tri-
angles, or the arcs which measure them, we compare certain
lines, called funcfions of the ares. A function of a quantity is
something depending upon the quantity for its value. These
functions are the sine, cosing, tangent; cotangent, secant, and cosccant.

10. Thus, instead of reasoning with the.angle ACB, or the a
AB, which measures i, we draw the per-
pendicular 4D, and use the lines 4D and
CD. The lineg 4D is called the sine of the
arc or angle; the line CD is called the cosine
of the arc or angle:

11. If we draw BE perpendicular to CB,
meeting €4 produced in E, the line BE is
called the tangent of the angle, and the line
CFE'is called the secant.

12. In comparing the sides and angles,
these lines, we say, are used instead.of the
angles or the ares. The necessity for such
lines is evident, since we could not compare the sides, which are
straight lines, with the engles, or the curve lines, which measure
them.

We will now represent these lines in the first and second

quadrants.

13. The Siyr.of an are is the per-

pendicular let fall from one extremity
1

of the arc on the diameter whick
passes through the other extremity.
Thus, CD is the sine of the ar¢c A(C.
14. The Cosinke of an arc is the
sine of its complement; or it is the
distance between the foot of the sine
and the centre of the circle; thus, CF or OD is the cosine of the

arc AC

PLANE TRIGONOMETRY.

15. The TaxceNT of an arc is a line which is perpendicular
to the radius at one extremity of the are; and limited by a line
passing through the centre of the cirele and the other extremity;
thus, 47" is the tangent of AC.

16. The CorancENT of an arc is equal to the tangent of the
complement of the arc; thus, B1” is the cotangent of 4C.

7. The SecaxT of an are is a line drawn from the centre of
]

the eircle fhrough one extremity of the are, and limited by a

tangent at the other extremity ; thus, O7"is the secant of AC
18. The Cosscant of an arc is the secant of the complement

of the arc; thus, O7” is the cosecant of AC.

19. The sine, cosine, tangent, cotangent, etc. of an are are in-

dicated as follows:

tan AC; sec AC;

cot AC'; cosee AC.

20. Princrrres.—From the definitions now given, we can readily
derive the following simple prineiples.
: ple} I

1. The sineof an are equals the sine of its supplement, and also the
cosine of an are equals the cosine of its supplément.

Dey.—Take the are 4 BF; its sine is FG, its supplement is
FH, and the sine-of its-supplement is FG. Hence, its sine
equals the sine of its supplement. Its cosine is GO, which is
also the cosine of FIH. Ience, ete.

2. The tangent and cota gent ._.;' an_@rc are respec L '_‘f/w‘(/ o tie
tangent and cotangent of the supplement of the are,

Dexw.—The tangent of the arc A BF is AT/, and the tangent
of its supplement #H is H77/, and, by similar triangles, it may
be shown that A7/ equals HT%/; therefore, ete.

3. The secant and cosecant of an are aré respectively equal to the s
and’ coseeant of the sup
- > L

This may be demonstrated in a manner quite similar to those
above. Let the pupil be required to show it.

4. If a equals any arc or angle, then we shall have, from the

definitions,
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sin a=cos (90°—a)
tana= cot  (90°—a)

Sec « cosec (90° — a)

NATURAL-SINES;. COSINES, ETC,

91. 'The lengthof these trigonometrical lines may be expressed
in numbers, differing, of course, as the radius of the ecirele is
laveer or smaller. If the radius is regarded as wnify, or 1, we
have what are/called natural sines, cosines,.etc. The method of
calculating thése sines, cosines, ete. will be explained hereafter.

The operation of multiplying and dividing by these natural
gines being long and tedious, it has been found more convenient

to use logarithmie stes, which we will now explain.

TABLE OF LOGARITHMIC SINES.

99 A Logaritusic Sixe, Cosing, Taxcest, or COTANGENT is the
logarvithnof the sine] cosine, tangent, or cotangent of an arc of a
sircle whose radius is 10,000,000,000.

93, A/ Tante oF Locarmenyic Sives is a table containing the
logarithmic sine, cosine, tangent, and cotangent of arcs.

94 The table of logarithmic sines may be caleulated from a
table of natural sines, as will be explained hereaft In the
table, the degrees are given at the top and bottom of the page,
and the minntes at the sides, in the golumn headed M.

95. The column headed D contains the increase or decrease for
1 second. This is found by subtracting the lo; arithmic sine, ete.
of an arc from that next exceeding it by 1 minute, and dividing
the difference by 60.

If

ssedd an d

the angle is less than 45° look for the degrees at the fop of the

page, and for the minutesin the Zeft-hand column ; then, opposite

to the minutes, on the same horizontal line, in the column headed
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Sine, will be found the logarithmic sine; in that headed Cosine

will be found the logarithmie cosine, etc. Thus,

log sin 23° 35 9.602150

log tan 23° 35 9.640027

If the angle exceeds 45°, look for the degrees at the bottom of the
page, and for the minutes in the right-hand column; then, oppo-
site to the minutes, in the same horizontal line, in the column
marked at the bottom Sine, will be found the logarithmic sine, ete.
Thus,

log cos 65° 247

log tan 65° 247

2, When the arc contains —Find the logarithmic sine, ete.
as before; then multiply the corresponding number found in
column D by the number of seconds, and edd the product to the
preceding logarithm for the sines or tangents, and subtract it for
cosines or cotangents.

We subtract for cosine and cotangzent, because the greater the
are the less the cosine or cotangent. In multiplying the tabular
difference by the number of seconds, we observe the same rule
for the decimal point as in logarithms. If the are is greater fisun

90°% we find the sine, cosine, etc. of its supplement.

EXAMPLES,

1. Find the logarithmic sinelof 36° 247 4277,

SOLUTION.,
log sin 36° 247, 9.773361
Tabular difference; )
No. of seconds, 42
Produect, 119.70 to be added, 120
log sin 36° 247 4277, 9.773481
2. Find the logarithmie cosine of 64°

17
L
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SOLUTION.
log cos 64° 30,
Tabular difference, 4.41

No. of seconds; 30

Product, 132.20 to be subtracted,

log cos 64° 307 307/,

Find the logarithmic tangent of 120157 247,

SOLUTION,
180° 007 0074

The given are, 120/ |15 | 24

Supplement; 59 44 36

log tan 59° 447, 0.233905
Tabular difference, 4.84

36 to be added, 174.24

log tan 120° 157 2477, 10.334079

No. of seconds,

Find the logarithmic sine of 40° 407 4077, Ans. 9.814117.
Find the logarithmic cosine of” 140% 307 207
Ans. 9.887441.
. Find the logarithmic tangent of 85° 257 45/,
Ans. 11.097200.

Find the logarithmic cotangent of 144° 44/ 2877~
Ans. 10.150603.
97. To find the arc corresponding to any logarithmic sine, cosine, tangent,
or colangent.

1. Look, in the proper column of the table for the given loga-
rithm: if found there, and the name of the function be at the
head of the column, take the degrees at the #p, and the minutes
on the Zgft; but if the name of the function is at the foot of the
column, take the degrees at the bottom, and the minutes on the
right.

9, If the given logarithm is not exactly given in the table,
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then take the next less logarithm, subtract it from the given
logarithm, and divide the remainder by the corresponding tabular
difference; the quotient will be seconds, which must be added to
the degrees and minutes corresponding to the logarithm taken
from the table, for sines and tangents, and subtracted for cosines sud

colangents.

EXAMPLES,

1. Find the are whose logarithmie sine is 9.617033.

SOLUTION.

Given log sine, 9.617033

Next less in table, 9.616894

Tabular difference, 4.63) 139.00(30, to be added.

Hence, the arc or angleis 24° 277 307”.

Find the arc whose logarithmic cosine is 9.704682.

SOLUTION.
Given 1(‘);; cosine, 9.704682

Next less in table, 9.704610

Pabular difference, 3.58) 72.00(20, to be subtracted.

Hence, the arc or angle is 59° 337 4077,
Find theare whose logarithmie sine is9.438672.
Ans. 15° 567 1477,
Find the are whose logarithmic cosine is 9.634520.
Ans. 64° 277 4772,
Find the arc whose logarithmic tangent is 10.75
Ans,
Find the are whose logarithmie cotangent is 11.449852
Ans. 2° 17 407~
5} avine learmmed how to nd la 14 1o =1 3
28. Having learned how to find logarithmic sines, cosines, ete.,
we will next demonstrate some theorems for the solution of tri-

angles.
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THE THEOREMS OF TRIGONOMETRY.

90, The Theorems of Trigonometty express the relation between
the sides and trigonometrical functions ot the angles of triangles.
30, We give five theorems, the first three relating to triangles

in general, the others to tight-angled triangles,

THEOREM I.

» proportional

31. Inany plane triangle, the sides are
opPoS ite/angles.

Let ABC be a plane triangle; then will

CB:CA::sin A:sin B.

For, with A as a centre, and a ¥adits A E
equal to B(, describe the arc EG, and draw
the perpendicular EF. With Basa centre,
4nid the equal radius BC, describe the arc ( 'H, and draw the per
nendicular GD; ‘then will €D be the sine of the angle B, and EF
be the sine of the angle 4, tothe same radius. Now, by similar
triangles'( BoIIL. Th. X.),

AFB : AC:: EF : CD.
Sut AE equals (B, EF issin' 4, and CD is sin B.
Hen'ce, B(Y: A€ 1:sin A': sin B,
In a similar manner, it may be shown that
AC: AB::sin B ::sin C.

Therefore, ete.

THEOREM IT.

32. In any pla ) their diflerence
ax the langend ..-'
dalf ther ’.l’{jf;'rru/.‘»‘.

Let ABC be any plane angle; then will

B+ AC: BCO—AC :tan } (4 4 B):tani (4

PLANE TRIGONOMETRY,

For, produce 4 C'to D, making C'D equal
to CB, and draw BD; take CE equal to
AC, draw A B, and produce it to F'; then
ADis the sum and BE the difference of the
two sides 4 Cand BC.

The sum of the angles CAE and A EC
equals the sum of CAB :L‘nd CBA, both
sums being equal to 180° minus ACB (B. £
I. Th, XIII.); but the angle CAE equals
AEC (B. I. Th. X.); hence, CAE or CAF is the half sum of CAB
and CBA ; also, BAF is the half difference of the angles CAB and
A BC, since it equals the Aajf sum CAE, subtracted from the greater
angle CAB.*

The angle CDF equals CBD, since OB equals 0D; also, CAE,
which equals A EC, is equal to the vertical angle FEB; hence,
the third angles of the triangles, AFD and EFB, are equal, and,
therefore, A F is perpendicular to BD; consequently, if then we
regard AF as the radius, FD will be the tangent of DAF, and FB
will be the tangent of FAB. Now, by similar triangles,

AD:FEB::FD:FB; or,
CB+4C:CB— AC::tan i (44 B);tan § (4 — B).

THEOREM TIT.
:‘//‘{L/jw‘ frome the '1‘«',",",.”/1’ (7?7.'/’"». per-
[ be to the sum of the other
two sides as the difference of those i3 lo the difference of the segmends
r_‘f'.*/r. base.
Let ABC be a triangle, and CD perpendicular to the base; then

will
AB:AC X BCz:: AC—BC: AD— DB.

* This principle is thus prove -Lot aand b be any two ; then the half sum is
a -+ H - ’- a [
~———, and the half differenceds —;—; snda——F—=— ' ; that is, the greater

2

vunus the half sum equals the half d
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-

For, from Th. V1. Book III.,
AC?=: AD*+D(?,

and [Tf‘«l 1;/,-.-_,7')7;»‘

Subtracting, A(* — BO*= AD*— BD" 7
b
[ énee (B. III.“Th. V. C. 2),
(4C4+ BC) % (utC— BC)=(4D+BD) X (AD— BD);

tlierofore, | AD DB : AC+BC M C—BC: AD—DB.

Therefore, ete.

THEOREM IV.

34. In any 7*[{//1{-4:7:4:;&',,' plane triangle, radius s lo the sine of either
atigle as the hypothenuse is to the side apposite.

Lot CABbe a triangle right-angled at 4, and denote the radius
by R: then will

R:sin C:: CB: AB.

For, from the point C'as a centre and any
radius, as.CE, deseribe theare EF, and draw DF
B.D perpendicular to €A ; then will ED be
the.sine of the angle €.\ The two triangles CED and CAB are
simiilar ; hence, we haye (B. I1I. Th. X.),

CE: ED:: CB:BA,

or, R:sinC:: UB: BA,

Therefore, ete.

Cor/ Tt may also be shown that ro:dius is to the cosing of either agule

angle as the hypathenuse is o the side adjc

THEOREM V.
5. In any right-angled plane triangle, radius is to the tangent of either
geute angle as the side adjacent is to the sicle opposite.
Let CAB be a triangle right-angled at 4; then will
R:tan C':: C4: AB.

For. with ' as a centre and any radius OD, describe the aro
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DE, and draw DF perpendicular to C4; FD
will be the tangent of the angle C. The

triangles CDF and CAB are similar; hence,

CD:DF;::CA: AB,
or, R:tanC:: C4d: AB.
Therefore, ete.
Cor. Tt may also be shown that radius is to cotangent of either ax

as side opposite is lo side

SOLUTION OF TRIANGLES.

36. Tre SoLuTionN oF A TRIANGLE is the process of finding the
anknown parts when a sufficient number of the parts are given.

37. There are siz parts in a plane triangle, and three of these—
one of the three being a side—must be given to find the other
parts.

38. If the angles alone were given, it is clear that the sides
could not be determined, since there could be an indefinite
number of triangles haying their angles respectively equal.

39. There are four cases, as follows:

1. When two angles and a side are given.

2. When two sides and an angle are given.

o

3. When two sides and the included angle are given.

4. When the three sides are given.

CASE 1.
40. Given two angles and one side, to find the remaining parts.
Mernonp.—We subtract the sum of the given angles from 180°

to find the third angle, and then find the sides by Theo»:m I.

EXAMPLES.

1. In a triangle A BC, there are given the angle 4 = 32° 24/,
the angle B==40°32/, and the side 4 B—=240; required the other
parta,
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Sonurion.—Let A BC represent the: triangle; then the sum of
Aand B="T2° 567, and =180 —T72° 56" = o
107° 047. Then, to find 4 C, we have,

ACN: "ABjsi

Hence, AC = ABY sin B-&in C.

From whieh A€ is readily found by multi-
plying 240 by the natural sine of B, and dividing by the natural
gine .of .C. It is simpler, howeyer, to use logarithms. To find
AC we add the log of AB and log sifi B, and subtract log sin

C, or add the anith. comp. of log sin C.

a.c. log sin O (107°047), 0.019558
Jog sin B (40° 327), | 9.812840
log AB - (240), 2.380211
log AC,

To find the side BC; we have,
BC+ AB::sin Assin C:
or, by logarithms,

a./c. log sin'@ | (107°047); 0.019558

log.sin 4 (32°247), 9.729 )24

log AB (240 2.380211

log BC, 9.128793 .-. BC' = 134.522

9/ In the triangle A BC, there are given Il.f'.:m'_:lf” A= 27407
the angle €' = 65° 45/, and the side 4 B = 625..to find the other

parts. Ans. B— 862 357; BC=318.29; AC= 684.266.

41, G sides and an angle 0) tc one of them, to find the
yemaining ports.

Meraon.—One of the fequired angles is found by Theorem I.
The third angle is found by subtracting the sum of the two from

180°: the third side is found by Case L.
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EXAMPLES.
1. In the triangle A BC, there are given 4 €= 200,
and the angle 4 — 44° 267, to find the other parts.
Sonutioy.—Let A BC be a triangle in which
A — 44° 267, A} = 200, and BC = 150; then,
to find the angle B, we have,
sinB:sind:: AC: BC,
BC (150) a.ec. 7.823009
AC  (200) 2.301030
srsin A (44°267) 9.845147
: sin B ( )
" B=068°40" 167/, 01, 111° 197 44”7
In this problem, if the side BC. opposite the given angle 4,
18 shorter than the other given side.d 7, the solution will be am-
biguousy for two iriangles, ACB and 4 (B, may be formed, each of
which will satisfy the conditions of the problem. Hence, the
angle B found above may be either ABC or B’ But these, it will
be seen, are supplements of each other; hence, in finding the
angle corvespanding to sin B, we take the angle orits supplement.
In practice, there is often some circumstance to determine
whether the-angle-is acute or obtuse. If the angle given is obluse,
the other angles must be acute, and there will be but one solu-
tion. Jf the side BC s equal i

-cater than AC, there will be but
one triangle.

In the given diagram above, the angle ABC'=111° 1974477,
and A B/ ('= 68° 407 16”7; hence, the angle ACB= 24° 13/ 167,
and the angle 4 0B/ =113° 67167,

To find the side 4B, we have,

AB: OB::sin ACB:sin 4 ;
from which, by logarithms, we find 4B = 88.085.
To find the side 4 B/, we have,

AB’+CB/::sin ACB :sin 4;
from which, by logarithms, we find 4 B/ = 197.484.
18
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2. In a triangle ABC' there are given AB 45.96, BC 62.50, and
the angle 4 79° 217; find the remaining parts.
Ans, C=46° 167387/ : B=>54° 227 2277y AC ="51.69.
(There is no ambiguity, sincethe side B is greater than AC.)
3. In a triangle ABC thereare given BC= 15.71, A0 = 21.12,

and the angle 4 =27° 507; find the other parts.
Ans; C=7113°% 177137 B = 38° 527 4777; AB = 30.906.

on, Q=112 27 47(; B=1419T 1377; AB—= 6.447.

CASE 111,
42, Given twa sides and the included angle, to find the remaining parts.
Mernon.—We find the sum of the two angles by subtracting
the given angle from 180° and divide this by 2 for the Aalf sum.
We then find the kalf difference, by Theorem 11. Haying found
the half sum and half difference of the two angles, we find the
greater angle by adding the half difference to the half sum; and
the less by subtracting the balf difference from the half sum.

The third side is found by Theorem I.

EXAMPLES.
1. In the triangle ABC; let BC'— 680, 4 C = 460, and the in
sluded angle 84°; required the other parts.
Sorvrion.—Let ABC represent the ftriangle, AC = 460,
B('= 680, and the angle C'—=84°, Then,
AC -+ BO=4604-680=1140; BC —A0=

%
/N

AS0 — 460 — 220. A + B = 180°— 84° = =

96°; hence, half sum=48° The half dif- | \ .

ference we find by the following proportion.
BC—+ 4AC 1140 ar. co. 6.943095
BC—AC 220 . . 2.342423
:: tan § (4 4 B) 48° . 10.045563

. tani (4 — B) 120 57 4977 9.331081
Hence, 4 — 60° 57 4977, and B= 35° 547 1174

oo
dol

The other side, found by Theorem 1., equals 783
A » €4

99
D
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9. Given two sides of a plane triangle 240 and 360, and the

included angle 68° 367; required the other parts.

Ans, T2°02 26; 39° 217 3477 ; 352.349.

CASE IV.

43. Given the three sides of a plane iriangle, to find the angles.

Meruon.—Let fall a perpendicular upon the greater side from
the angle opposite, dividing the triangle into two right-angled
triangles. Find the difference of the segments of the base by
Theorem III.; half this difference added to half the base gives
the greater segment, and subtracted from half the base gives the
fess., We will then have two sides and the right angle of two
right-angled triangles, from which we can find the acute angles

py Theorem I.

EXAMPLES.
1. In a triangle 4BC, given AB= 60, 4C =50, and BC' =40,
to find the angles.
SoLurion—Let - ABC represent the tri-
angle; then AB =160, AC=50, BO=40;
then, by Th. III.,
AB: AC+ BC:: AC— BC: AD—BD,
or, 60: 90 e 10 : AD~— BD,
hence, AD— BD =90 X 10 + 60 =15;
then, AD =} (60 -} 15) = 37.¢
and BD = }(60—=10)=22.5
Then, in the triangle A4 CD, tofind the angle 4 CD,
a. C. AC (50) 8.301030
+AD (37.5) 1.574031
:sin D (90°) 10.000000

: sin 4CD  48° 357 2577 9.875061
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Then, in the triangle BCD, to find the angle BCD,

a, ¢, BC (40) 8.397940
BD

:8in D 1 (90%)

: sin BOD - 34° 137 4477
Hence, A=—90°—48° 357,267 =41° 24 35",
and B=—90°—34% 137 44/ —="55% 46”7 1677,
and C'=48° 357257 -+ 349 137447 = 82° 49”7 09",
9. Ina plane triangle the sides are 1005, 1210, and 1368; re-
quired the angles.

s FO OO/ OE/ . EQOWEQL TR .- a0/ »
Ans-45° 22 35773 58°°587 18775 T5% 3917,

SOLUTION OF RIGHT-ANGLED TRIANGLES,
44. Tn the solution of right-angled-triangles we have the four
following cases:
, When. the hypothenuse and an acute angle are given.
./ When thehiypothenuse and' a side are given.
3. When one side and the angles are given.
. When the two sides about the right angle are given.
Mermnop.—The first three cases are readily solved by Theorem
..: remembering that the sine of 90° is radius, the log. sin. being
10. The fourth case may be solved by Theorem V. or we may
find the hypothenuse by B.IIL Th. VI., and then find the angles
by Theorem I.
These four cases may also be solved by Theorems IV. and V.;
but the method suggested aboye is preferred, since it is simpler

and more easily remembered.

EXAMPLES:
1. In a right-angled triangle, given the hypothenuse 475 and

36° 347 ; find the other parts
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Sorurion. —Let CAB represent the triangle, BC being equal
to 475 and the angle €= 36°347; then, to find B
AB, we have,

sin 4 90° fi . 0.000000
gin €' 36° 3 8775070
:: CB § 2 676604
AB 282,985 2451764

The angle B = 90° — (36° 34/) = 53° 26 ; then, by a similar
proportion, we can find the side C4 = 381.503.

9. (iiven the hypothenuse 45.36 and the angle at the base 45°
307 ; required the other parts. Ans.

3. Given the hypothenuse 396 and the base 218, to find the

other parts. Ans. 330.50: 33° 247 0577 ; 56> 357 5577

4, Given the two sides 58.75and 74.58, to find the remaining

parts, Ans. 94.94; 38° 137 4577; 51° 467 1577,

PRACTICAL APPLICATIONS.
HEIGHTS AND DISTANCES.

45. A HorizoNTAL PLANE is one which is parallel to, the
plane of the horizon.

46. A VeErTrcan PLaNE is one which is perpendicular to &
horizontal plane.

47 A HorrzoNg AL LINE isany lingin'a horizontal plane., A

: is a line perpendicular to a horizontal plane.

48. A HorizoxTar ANGLE is an angle in a horizontal
plane.

49. A VErTICAL ANGLE is an angle in a vertical plane.

50. An Axane oF ELEvartox is a vertical angle having cne

18 =
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side horizontal, and the inclined side above
the horizontal side: as BAD.

51. An ANGLE oF DEPRESSION is a ver-
tical angle having one side horizontal, and
the inclined side under the horizontal side;
as CDA.

52. Distances upon the _i;i'(':l/rr(' are u.\‘li:l“_\‘
measured by a chain, called Gunter’s Chain. This chain is 4 rods
or 66 féet long, and consists of 100 Iinks. Sometimes a half
chain is uged, consisting of 50 links.

53. Angles are measuved by various instruments. Torizontal
angles are measured by an instrument called 7% Compass. Hori-
zontal and yertical angles are both measuréad by the TVeoc

what is still better for general use, a Zransit-Theodc

54, To dotermine the height of @
sontal plane:

Mernon.—>Measure from the foot of the
object any convenient horizontal distance
AB; at the point A take the angle of ele-
vation BA(C; then, in the triangl
have a side and an-acute angle ; hence, we
can réadily find the altitude.

1. From the foot of a tower I measure a
horizontal line 120 feet, and at its extremity find the angle of
elevation to be 48° 367; what was the height of the tower ?

Ans. 136,113 feet.

CASE II.

find the distance of a vertical object whose h Jnown.,

Mernon.—Measure the angle of elevation to the top of the

cbject, as before; we will then have a right-angled triangle in
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which we know the perpendicular and an acute angle; hence,

can readily find the base.

1. I took the angle of elevation to the
top of a .flag-staff whose height I knew to
be 160 feet, and found it to be 20°; how far

was I from the staff?
Ans, 439.60 feet.

CASE IIL

56. To find the distance of an inaccessible object.

Meriop.—Measure a horizontal base-line 4B, and then take
the angles formed by this line and lines
from the object to the extremities of this
base-line, as (/A B and ABC'; the distance
AQor BC can then be readily found.

1. T am on one side of a river, and wish
to know the distance to a tree on the
other side. I measure 300 yards by the
side of the river, and find that the two
angles formed by this line and the lines from its extremities to
the tree are 72° 407 and 45° 367; required the distance from
sach extremity of the base-line to the tree.

Angs. 243,362 yardsy 325.15 yards,

IV.

57. To find the distance between two object: separated by an impassalble
barrier.

Mernonp.—Select any convenient station,
as () and measure the distance from it to
each of the objects 4 ana B,and the angle
Cincluded between these lines. We can
then readily find the distance AB.

1. The distance between two trees can-

not be directly measured : I therefore take a third position from
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by

which each of the trees can be seen, and find the distances from

it to the trees to be 300 and 250 yards, and the included angle

43° 167 ; required the distance between the trees.

Ans. 208.02 yards.

58. To find the keight of @

MerrOD,—Measure any convenient
distance AD on a line from the foot
of the object, and at the point D) mea-
sure the angles of elevation, ZDA and
EDB, toicot and top of the tower By
means of the two triangles DAA and
DEB, we can firid the height of 4B

1. Wishing to determine the height of a tower situated upon

D

« hill. T measured a distance down/(the slope of the hill 400 feet,
aud found the angles of elevation to the foot of the tower 42 287,
and to. the top of the tower 68° 427 ; required the height of the

fOWeE, Ans. 486.747.

59. To find the h Tt ¢ v indecessible 1) above farizor ".I,)/?/H?V.

Firse Mernop.—Measure any con- -
venient horizontal line 45 direetly i

soward the ohject, and takethe ans
zles of elevation at.4 and B; we will
then have conditions sufficient to
find DC.
1. Wishing to find the altitude of
a hilll T measured the angle of elevation at the bottom 60° 377
and 460 feet from the foot in aright line of the top of the hill

and the point at the foot, and in the same horizontal plane as the

foot, I measured the angle of elevation 36° 52/; required the
height of the hill. Ans. 597.092.

Seconp Meraon.—If onvenient to measure a horizontal bases
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, W6 measure any

line A B, and also measure the hori-

zontal angles BAD, ABD, and the
angle of elevation DBC. Then, by
means of the two triangles A 5D and

CBD, the height CD can be found.

CASE VII.
60. To find the distance between two inaccessible objects when points can
be ~/:"<’<".l at which botl !v"l.“‘;r.”" can be seen.
Meraop.—The method of measurement
is indicated in the following problem.
The method of solution we prefer leaving
to the ingenuity of the pupil, that he may
learn to think for himself.
1. Wishing to know the horizontal clis-
tance between a tree and house on the
opposite side of a river, I took the fol-
lowing measurements :
AB =400 CAD = 56° 3V,
SAD = 42° 247; ABC—=44° 367,
and DBC = 68° 50/,
Required the distance CD, Ans. T47.913.
CASE VIIL
61. To find the distance between

can be found from which both object

is when no points

Merron.—The method is in-
dicated in the following pro-

blem and T'his and
the following case may be
omitted with young pupils.

1. Wishing to know the hori-

zontal distance between two in-
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accessible objects when no point can be found from which both
objects can be seen, two objects C'and D are taken, 600 feet apart,
from the former of which 4 can be seen, from the latter B. From
¢ we moasure the distance CF, not in the direction DC, equal to
600 foet, and from D a distance DE equal to 600 feet. We then
measure the following angles:

OFA = 80316”, BED = 86° 2!

AQF= 52° 24/, BDE'= 60° 24/,

ACD=756 367, BDC = 150° 30".

Required the distance 4 B. Ans. 1117.44 feet.

CASE IX.
62. To find the distances from a given point-to three objects whaose
tances from each other are known.
Merrop,—The method is indicated in
the problem and figure.
1. Twish to locate three buoys, 4, B, and
(! in a harbor, so that the distance between
A and B is'800 yards, between 4 and C
600 yards, between Band (400 yards, and
from a fixed point on shore, the angle
APC shall equal 33° 457, and BPC 22°
307; required the distances P4, PC, and
PB. n 7 N
Ans. PA = 710:1935 PO = 10425225 PB= 934201,
Nore.—This last problem is given by quite a pumber of authors, and seems

to be general property.

ANALYTICAL TRIGONOMETRY.

ANALYTICAL TRIGONOMETRY.

63. Avarnyrical TrRicoNoMETRY is that branch of Mathe-
matics which treats of the properties and relations of trigono-
metrical functions.

64. Trigonometry, in its origin, was confined to triangles, the
method of reasoning being geometrical. After the invention of

s, mathematicians began to apply it to trigonometry, and,
in course of time, developed the general properties of trigono-
metrical functions. This has enlarged the science and greatly
increased its power as an instrument of investigation and dis-
coyery.

DEFINITIONS,

65. A circumference consists of four quadrants. AB is the first
quadrant; BCis the seeond quadrand, ete.

66. The origin of arcs isat 4, all ares being
generally supposed to begin at 4.

67. 'The extremity of an arcis where it ends.

An arve is said to be'in that quadrant where
its extremity is situated.

68. The sine, cosine, tangent, cotangent, D
ete. of an are have already been defined,
and need not be repeated here. The versed sine of an are is the
distance from The foot of the sine to the origin of the arc. The
coversed sine is-the versed sine of the eomplement.

The sines, cosines, ete. are called the cireular functions of the
arcs.

69. FUNDAMENTAL FORMULAS EXPRESSING THE RELATION BETWEEN
THE CIRCULAR FUNCTIONS OF ANY ARC.

1. Let a represent the measuring arc of any angle. Draw the

lines represented in the figure. Then, from the definitions,
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quadrant; BCis the seeond quadrand, ete.

66. The origin of arcs isat 4, all ares being
generally supposed to begin at 4.

67. 'The extremity of an arcis where it ends.
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AB=1, BE — tan a, sop .
3 s 6. Again, from the triangle 4 BE, we have,
(D = gin a, AFE =sec a, NG~ . :
sec* a — ] + tan*a;
AD = cosa DB = ver sin a. / \ ;
4 : : i hence, cosecta—1 -1 cot? a.
In the richt-angled triangle ADC, we have, ; 70. Tl SR S T . -
‘ { 70. These are the fundamental formulas of frigonomefry, and

OD% - AD* = A2 or, by substitution, { : » .
: i should be committed to memory. i1l collect then. forming

e R e ( <l v 3 :
SHISdes = 0kY 1. (1) the following table:

Hence, sindg==i1 ~ticost a ;) (2) Jeosta=1 —sin*a.
9. From the figure, we also have, L. Sin2sil 6os2s — ;
DB= AB— AD; thatis, 9, Sin?a o8 i ‘ 3 col a
-~ AT W — GOS8 & 50 L

ver sing—1—cosa. ¢ 3. Costa : STy 1
Since this is true for any value of g, it is true for 90° —a; {, Versina o i tan @

. v &1 \° ) == e ot Q(® -
hence, versin (90°—a) = 1 —cos (90° —a), SR vor i

or, co-versin e — 1 —sin a. ! =
6. Tan a

3. Again, the triangles AD(C and ABE being similar,
EB: AB:: CD: AD, 7. 'Cot a

y tana: 1::sina:cosa; 3 e
LI i / ‘ 8. Tan a cot a

sin'a

henee, tan ¢ —

CO
Substituting 90° —a for a, we have, ALGEBRAIC SIGNS OF THE CIRCULAR FUNCTIONS.
. ane ) sin (90° —a)
tan (90° —a b 24 ' :
\ 08 (YU —a) the functions as well as their numerical value, The sign of a

71. In analytical trigonometyy, we regard the algebraic signs of

COoS @ function is determined by the following prinei

or, cota=—
sSin @ 5 1 2o . y o : !
1. All lines estimated upward, from 1 icontal diameter. are POSITIVE

4. Again, multiplying equations (6) and'(7), we have,

(8)

tan ¢ cot a = 1:

1 9
ence a — —— (9), and eot a. = — 10 POSIRIVE:: all L
hence, tan @ = == (9) ot ¢ oo (10) POSITI ;

Thius, the

Again, from the same triangles, we have,
AE:AB:: AC: AD,

or, seca: l::lieosa;

1

hence, =y
COsS &

Substituting 90° — a for a,
|

1 the alge
= s (30° — a) : ; : ; A
cos (90 a) functions is to derive those of
coseca = —— - sine and cosine from the figure,
sin a . : . i 2
the others from the formulas.
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1. The SiNE is positive in the first and second quadrants, being
measured above, and negative in the third and fourth quadrants.

9 The Costne-is-pesitive in the first and fourth quadrants, and
2. y : v |

wednithe sezond and thrd quadrants.
TANGENT ispositive in the first and third quadrants, and
negative in the second and fou

For, from formula (6),
sin
tania— =+
COs &
and this s positive when sine and cosine have like signs, and
negative when they have unlike signs.<In the first quadrant,
both sine and cosine are. plus, in the third both are minus, in
the second and fourth one is plus and the other minus; hence,
the tangent is positive in the first and third guadrants and nega-
tive in the second and fourth.

4. The CorTANGENT is positive in thefirst and third quadrants,
and negative in the second and fourth; 2s'is'readily showit from the
formula,

COS @
Cob a =— .
sina
5 The/SBcANT is positive in the first and fourth quadrants, and
in the-second-and third. For, from formula (11),

1
seca = H
COS a
hence, the secant has the sanie sign as the cosine.
ft The-Co-sBcaNT is positivesin the first and second quadrants,
and negative in the third and fourth, asmay be shown from For-(12).
NOTE.—Dt : ay alzo be readily shown from the figure. 1 the
gesant, when the di xtremity of the are, it'iz

plus : wl am the extromity, i

LIMITING VALUES OF THE CIRCULAR FUNCTIONS.
73. The L » values of the ecireular funetions are their yalues
at the beginning and end of the different quadrants.
These values are determined by the principle that the value of a

A 4 J, o 2ho L
variable quar up 10 1 il the limit.

ANALYTICAL TRIGONOMETRY,

Beginning at the origin, we see that thevalue of sin 0180, and the
cos 0 is the radius, or 1. As the arc increases, the sine increases
and the cosine decreases, until at 90° the sine is 1 and the cosine
0. As the arc increases from 90° to 180° the sine decreases and
cosine increases numerically (diminishes algebraically), until at
180° the sine is + 0 and cosine — 1. In the same way we see that
sin 270° = —1, and cos 270° = —0; also, sin 360°=—0, and co-

sine 360° =1

Now, since, by formula (6),

sin a
tan « )
. COS @
sin( 0
= —_— D .

>

substituting 0 for a, tan 0 = 5
> cos

1

L&l . cos ) 1
and, @also ot ) = —=z=——z"=="o0;
! cot sin U 0 X
74. By a similar examination of the limiting values of all the

functions, we have the following table:

TABLEE 11.

FUNCTIONS OF THE SUM OR DIFFERENCE OF AN ARC AND
ANY NUMBER- OF  QUADRANTS.

75. The trigonometrieal function of any are formed by adding
an are to or subtracting it from any number of quadrants, may be
expressed in functions of the arc which is added to or subtracted
irom.

1. Let a represent any are less than 90°; then, from the dafini-

tions, we have,
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si¥ (90° —a)=cosa, cot (90°—a)=tana,

cos (90° —a) =sin a, sec (90

tan (90° —a) = cota, osee (90° —a) =seca.

9.« Now, let .z représent the are BN/, then will A BN = 90°

From the fizure, Art. 71 we seethat

N —=sin-a,

PO =cos )2 - a), % 90° 4 a).
Hence, remembering that 4 BN, be 1 second quadrant
cosine is negative, we have,

sin (90° + @) = cos a, and ¢os (90° + &) = — sin a.

Substituting these values in the formulas for tan, cot, ete. found

in Table 1., we have,
tan (90% +a) =-—cot a, > 90° + a) — gosec a,
cot (90° +a)=—tan q, cosec (90° -+ a 8ee a.
3."Acain, let ¢ represent the arc CN”, then wi Nr= 180 —a.
From thefigure, we have,
N7 P’ —=sin g; P/0—= cosa,
N/ P4=sin (180 —a), P’ 0 =cos (180 —a).
Hence, remembening that the cosine of ABN” ending in ftLe
cond quadrant is negative, we have,
sina, and cos (180° —a) = — cos a.
Substituting these values in the formulas for tan, cot, ete. in Takie
L., we have,
tan (180° —a) = —tana, see [180°—a)

cot (180 —:l) — — GOl @, cosec 1"!“‘.‘\ — Q&)

From the above, we s that the si
supplement,
plement, ete.
of the sines
and cosines from the e making the sabstitutions in
proper formulas, we may obtain the fun

270° - @, and 360°—a. All of these, with the

bited in the following table:

ANALYTICAL TRIGONOMETRY.

TABLE IIL
Are — 90° 4
sin — cos«a, cot
cos—=-—sgina, geec

tan ——cota, cosec=

-180° —a
gin— sina cot ——cota, in ——cosa, — —tana,
CO8 = —COS &, sec — —Sec a, o ?‘ili a, CcCOsSec @

)

tan ——tan a, cosec = coseca, lan—-—cot a,

Are—1 f-a. Ave —360° —a.
gin —-—sgina, ¢o ot a. — —sina, cot —_cot a,
COB=——C95 @, — See a, S cosda, sec
an = on a, — —_ ¢Osec ¢. tan=——1tana, COSC0C—-—CO03eC d.
77. This table can casily be committed to memory, hwiobsel
that when the arc is'conneeted with 180° or 3607, the
Botliveolnmns have the same name; but when eonnected with 9(
or 270°, the functions in the two columns have different names

1
3

principles of this table of great value. By their

ne of @l are

— sin ( 90° + 30°) = cos 30°,
— tan-(180% - 63%) = tan 633,

—"tan-34°;

79. When the arc is
times unfil we
the same ol
euldr function of the remainder
are, and this remainder being le an 360°, its Tunctions ean be
ssed in functions of an are less than 90°. Hence. the functions

can il 2 v'l"]).r'LAll"‘(I i
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CIRCULAR FUNCTIONS OF NEGATIVE ARCS.

Suppose 4B to be any are, and A4C, esti-
mafed from the origin'downward, be numeri-
cally equal to AB; then, if the arc 4B be
denoted by a, the arc AC will ‘be denoted by
—a; and D will be the sine, and 0D the co-
sine, of —a.

Now, since BD = CD and 0D is the cosine of both a and — g,

we have,

sin/ (= a) = — sina, ‘and ¢os (~— a) = cos a.
Substituting these in the formulas of Table I., we will have,

versin (—a) = versin a, - @) = — cota,
co-versin (—a) =1 -+ a (—a) Sec a,

tan (—a) = an @ CO-seg [— — GO-5eC .

81. Frog what has now been presented, we see that the eircular
funetzons of all arcs, whether positive or negative, may be ex-
pressed in functions of args less than 90°; lhence, in the tablwe of
sines, costnes, etc.; we have only positive arcs and those less

90°.

RELATION OF THE SIDES AND FUNCTIONS OF RIGHT-ANGLED
TRIANGLES.

Let A C'B be a right- d triangle, the right angle ‘being
at 4. Representdhe angles by A, B, €, and

their opposite sides by a, 4, c. With & radius

CE =1, describe the are EF, and draw the
perpendicular ED; then ZD = sin €] and

(‘D—=c¢os (7,

Now, fromithie figure,

and, also,

hence, (1), cos O==
¢ a

or, c=—=asin C (3), b—=a cos (f (4).

ANALYTICAL TRIGONOMETRY.

Dividing (1) by (2) and then (2) by (1), we have,
(6),
or, e—=btan C(7), and b=c cot C' (8).
83: These the pupil will commit to memory, and‘ also translate
mto common language. The first, thus translated, is as follows :
1. The sine of either acute angle of a right-angled le i equal to
th apposiie side divided ’7‘.'/ the /“_:_/ otl
{4, GENERAL FORMULAS RELATING TO THE SUM AND DIFFERENCE
OF ARCS, DOUBLE ARCS, ETC.
1. Let AB and BC be two arcs having the common radius
04 or OC=1; denote A5 by band BCby a.
From C«draw CD perpendicular to OA4, and
CNperpendicular to OB; from N draw N£
perpendicular to 04, and N/ parallel to
04. Then,
C'D=—=sin (a-+5), ON = sina, ON =cos a.
Now, CD—= M+ NE.
In the triangle OEN,
NI = ON sin B—=¢os asin b;
since OMN and NOPE aresimilar, and the angle MON =NOE =1},
CM — CN cos b—=sin acosb.
Substituting these values in eguation (1), we have,
i (i 2 ) =sin @ cosh Fucose=inb. (A)
This formula expresses-the value of the sine of the sum/of’ two
os in terms of the sine and cosine of the single ares. It is

nunciated as follows:

* in formula (A) we substitute —& for &, we have,
sin (a—5) — sin acos{(— &) — cosasin (—&

but (Art. 80) cos (—b) =cos b, and sin (— & —sinb;

hence, gin (@ — ) =sin @ cos b—cos asin b.
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s 3 If in formula (B) we substitute 90° —a for a, we have, 2tana

sin (90° —a — &) =sin (90°—a) cos b — cos (90° —a) sin b; Zania

but, gin(90°—a—5)=r¢in (90°—(a -+ 56) cos (a1 6),
and, | sin (90%—=a) =cos ¢, and cos (90 —a) =sin a;

hence, cos (@ -+5) R AN S T 1) 2. If now in (C”) we put 1 —sin*« for cos*a, and then 1 —cos*a

S - ] for sin? @, we have,
4. Substituting — b for&in formula(C), we have,

cos (a — b)Y ="cosa cos {—Db)—~—sin asin (— &)

or, cos(a—b)=cos a cos § -~ s @sin b. (D) from which we have,

)
5. From Table I., For. (6),.and formmilas (A) and (C), we have,

sin a cos b -~ cosasin b

4 =X = St Tars
cosia cosb—sin esind COSa="j 9 (C”)

: by cos a cos b, we have SR T 7 r Bk T
g AR Diyiding (A7) by(€74) and then (C//) by.(AZ/), multiplying nume.

rator and denominator by the denominator, and reducing,

sin 2

tana= —5: HE)

necelling common factors, and reducing, we have, cob o=
, . an a + tan b

tan (a4 6) =+ s ) v A . I

3 1 —tan « tan 3. Now, substituting 1 a

bstituting — & for & in formula (E), and reducing, we have, [

) sin §¢
; tan ¢ — tan &

tan (a—9) : £

1 T~ tan g tan o

7. Dividing formula (C)by (A),and reducing as in/(5), we have,

0L ¢

ot b — 1

cot a=

formula (G), and reducing I —cosa

Taking the reciprocals of (E;) and (G;); we have,

et

1 - cosa
5 F C la - -
89, FORMULAS FOR DOUBLE AND HALF ! 5. Cot $a— S
}. Makinga—= bin formulas (- Aot
tan fa=-

sin a
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ADDITIONAL FORMULAS.
I. Adding and subtracting formulas (A) and (B), and doing

the same with (C) and (D), we have,

sinl(a -+ &) 2sin a cos b,
sin|(a/+6) (a—b) =2cosasind,
cos(a--by+ ( h) =2 ¢cosacosh,
¢08 (@— b) — cos (@ + &) =2sin asin b.
2. Now, making
panda—b=gq,

whence, = p+g)and b=} (p—1q);

7)

and substituting thesein the above, and we have,
sinp -+ sin g=2sin $(p + ¢) cos § (p—q);
sinp—sing=2cos § (p -+ ¢)sin 3 (7

cosp +cosg=2cos 4 (p + ¢)cos

cosg—cosp—=2sin ¥ (p - ¢)sin’}

3. Now, dividing (K) by (L),

sin pJ=ging “8in{(

sin’ p—sin'y

q) cos 4 (p */',-"1 " o ,
Ba)eoa bl =tan y -+ q)
.v/vc‘¢>_~£\i.—,:.) e \PT9)

28ind (]7 —ag)eosd (p+ ,’,) :
) st =—{an §

gin p —sing
cosp+cosg  Zcost (ptq)cos i (p—q)

sinp+sing  2sin(p-tq)eosd (p—g) cosi|
sin (p 2sind (p+¢) cos 3

sin p—sing  2sind(p—gq)cos i (7
|

sin l:/_) -+ q)

in i (p-¢) cos

2sind (p—gq) cos

1p —sing  2sind (p—g) c

These formulas may be enunciated in propositions; thus for
) proj ;

mula (P) gives,

The sum of the sines of two arcs is to the difference of their sines as the

tangent of one-half of the sum of the arcs is to the tangent of one-kalf of

their di

ANALYTICAL TRIGONOMETRY.
Comparing (5) and (U), we haye,

sin (p-—g) sinp-sing

sinp—siftg  sin (p+¢q)

Hence, the sine of the difference of i

gines as the sum of e funes 8 to the

INTRODUCTION OF THE RADIU
87. In the preceding formulas, the radius, being unity, does not
appear in any, of the terms. When the radius is other than a
unit, it should gyppear in these formulas, and we will now show
how it may be introduced.
Let @ be an arc whose radius is 1, and @/
be an are whose radius is 2; then, by simi-
lar triang
sina:sina’::1: B
oo
sina

hence, sina’ = R X sina; sina= -3
/l‘

and thesame may be shown for the other circular functions.

Therefore, any circular JSunction whose radius is R is equal to the cir=
cular functionwhose radius is 1, mull i IY/,r_z/ R.

Also, any circular function whose ra is 145 e to the circular
Junetion u R, divided by I2.

Now, if we substitute these in any of the formulas, we will find
that Rawill be introduced in! siich a manner as to make the for-
mulas komogencous. . Thus, For. 6, Tab. 1., gives,

sinag”
or, tan a” s ',//
COs @

Here, tan o’ is a fine, and R sin @/ + ¢os a” 18 a supface divided by a
lire, which is also a linz; hence, the formula is homogeneous. And
since the same is generally true, therefore, we can introduce the
radius in any formula by multiplying or dividing by R, so as to

make the formula homogeneous,
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CALCULATION OF A TABLE OF NATURAL SINE

log Sina =

88, The cireumference of a circle whose diameter is 3. D8 7= 14 But log log 10,000,000,000
henee, when the padius 181, the semi-circumference 18 « ;& Hence, ].,._:, Sin a log sin a - 10.
if we divide this by 10800, the number of minutes in 180°% the quotient, In the same manner, we find the log cosine; and in a similar manner,
s will | be the Jéngth of an arc of one minute. Now, from the formulas of Table I., we can find all the other logarithmic cir-
; 50 small that it does not differmaterially from itssine; hence, cular functions,

we may assume 0002¢ ¢ as the gine of one minute.

THEOREMS AND PROBLEMS.

We then find the cosine of 17 by For: 3, Table I. Thus,

We now present a few exercises for original thought. The first and

a1/ sind 17 QaaqQaaa957 thivd ar, ) . 1= = -
co8 1/ =/1—si — 909909957 ) third are derived from a diagram: the 5th by For. 2. Art. 84 ; several”

To find the sine of other arcs, we take the formula under Art. 86 which follow, by substituti vlues from Table L., obtaining an equation

putting it.in the form, inyolving but one unknown quantity, ich can then readily be found;

sin (@ &) — 2 sin @ cos b — &in (a —b). the others, by judicious substitutions and reductions.

Now, maked = 1/, and then in succession, « equal tosl4;:24,84, ete., . Prove thatsin60° = } /3, and cos'60°=1:
IO :an 4 :
and we have, . Prove that sin 80° — 1, and cos 80° =
sin 27 —2sin 1/ ¢os 17— sin 0= 40005817764 . . wu . . Prove that sin and eos of 45° equal

sin 8/ = 2 gin 2/ cos I/ — sin 1= 0008726646 . . . . 4. Prove that tan 45° — 1, and Sec 4

sin 4/ —ete. Sy . \
Proye sin 15°, orsin (0°—45 , and cos 15° -
We may thus obtsin the sines of any number of degrees and minutes P o .
; . . : A : rove tan 15°=—2 — /3, and eot 15° — 2 & 8
ap to 459, the correspending cosines being obtained from equation (1). & »1 }
- If sin @ cos =1 /3 find sin @ and cos a.

Then, since the sine of“an arc equals the cosine of its complement,
1 o 2 R Y A gsinag—1
eto., the sines and cosines of arcs between 45° and 90° are immediately &) oo o s ) . z ¥
If 3sin a5 /8 X cosa—19, find sin a.

. o (s] £C 20T
derived from those between 0° and 45°. - o ol
- . - : - 2 ; If sin a (sin @ — cos a) = %, find sin a. Ans. sin ¢ —
The tangents are found by dividing the sines by the cosines; the X ) -
- e s - - d A If tan ¢ = £, find sin ¢ and cos a. _ Ans. sina—3: cosa—2
cotangents ave found by dividing the cosines hy the sines, or by dividing : N - 7 NG
g If tang -\ cot ¢ = 2, find tan «. Ans. tan'a —1.
1 by the tangents. Prove that tan? ¢ Ry AAE
Ve At 1an® a — 8“2z — tan?a sin? @.

Prove that sec? a cosec? @ — sec? & - cosec? 4.

CALCULATION OF A TABLE OF LOGARITHMIC SINES.

Prove that sin (30° 4 @) -

° — u‘) — CO8 a.
80. A tahle of logarithmic, sines is computed from a table of natural P

rove that cos|(G0” 4-"a) 1= ¢os (60° —<a) = cos a.
s He process is as follows: 4B e
sines.  The process is as follows: If 4 b+ ¢= 180°, prove that
Pae ihe earvithmice sine. take the'l f the natural stne, and ;
For the logarithmic sine, & J 725 tan c —tanatan S tanc.

add 10. 17. If @ - & 4- ¢ = 90°, prove that

o sepresent th aturs ine, and let Sin ¢ represent the
For, let sin a represent the natural sine, and let Sin ¢ rep cot a - cot b -1~ eot e — cot @ cot & cot e
STID a radiug of 10.000,000.000: then, Art. 87 ey - . . ™ %
sine to & radiug of 10,000,( e . > caesTioN.—In 16th, tan (a - &) — tan ( 180° — ¢), develop and gimplify ;
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