

NEW EDITION
oz

BOTANY FUR BEGINNERS:

$$
B \mid B L I O T E C A
$$

Δx

INTRODUCTION TO MRS. LINCOLN'S

LECTURES ON BOTANY.

 FORTHE USE OF PUBLIC SCHOOLS, AND THE YOUNGER PUPILS OF HIGHER SCHOOLS AND ACADEMIES.

BY MRS. LINCOLN PHELPS,
AUTHOB OF "LINCOLN'S BOTANY," "phMiPS'S PHMOBOPHY," "CHEMTSTRY," " NRESID

TWO HUNDRED AND SEVENTLETH THOURAND.
STEREOTYPE EDITION.

PHILADELPHIA:
T. B. LIPPINCOTT COMPANY.

CONTENTS.

COMMON NAMES OF PLANTS DESCRIBED IN THIS BOOK,

EXPLANATION OF THE FRONTISPIECE.

Plants were made on the third day of the Oreation. At the command of God, grass appeared upon the earth, the shrub and the tree, each yielding fruit, after its kind, whose seed was contained within itself, for the reproduction of the same while the earth should exist.

The plate represents the appearance of the earth at this exact period; darkness had been separated from light; the waters, gathered together, had left the land dry and solid for the support of regetation. The sun had not yet been created; no animal existed; no eye but that of God then beheld the earth. We see represented the darkness still retreating from the light, as in the morning twilight. We must imagine the solemn silence which brooded over the broad earth : no hum of insect, song of bird, or lowing of animal was heard, for it was not until the fourth day (or period of time) that the sun was created; and not until the fifth day, that the earth became animated with living things, which had voices, and could move. The plants had only vegetable life; they were made for the use of the animal creation, and to adorn the face of the earth. The Creator beholding His work at this stage, "saw that it was good." The plate exhibits vegetation in different forms, grass and rushes by the margin of the waters. In the centre of the foreground of the picture, is a small plant with broad leaves; it is called the side-saddle plant.* Back of this is the papaw tree \dagger of the Tropies, with its rich clusters of

[^0]fruits. On the left is a strange-looking tree, resembling a gigantic fern; this is the sago tree.* Further in the background wo see the well-known oak, with its spreading branches; and far off on the horizon appears the outline of the banyan tree (see page 14). Coming back to the foreground of the picture, we see a little to the left of the centre a huge stalk of Indian corn, with its full ears of ripened fruit; its barren, staminate-flowers are conspicuous as a feathery crown at the summit of the stem; (see page 159, ZEA) yet, though they have no fruit, they are essential in the vegetable economy to the production of the fruit from the pistillate flowers below, now changed into the golden corn, every thread of silk having been a long pistil to which the germ or infant seed was attached. \dagger

INTRODUCTION.

THE STUDY OF PLANTS.

Gon made plants for the study of man, as well as for utility and beauty. The seed, ever true to its nature, always bringe forth the plant after its own kind; it is therefore the essential organ: on its strueture is founded what is called the "Natural System" in Botany, the outline of which we will briefly state:
Take an acorn, (the seed of the oak), and then remove the outer coat or skin. The seed will voluntarily divide into two parts (called cotyledons, see page 93) ; nestled in a little cavity at one extremity of the seed is the germ, or embryo plant-this is a miniature oak tree. Now examine a kernel of Indian corn; you will not find it composed of two distinet lobes or cotyledons like the acorn. The germ is seen at what is called the eye of the seed.*

We perceive in the beginning of the life of plants a great dif ference between plants of different kinds; this can be readily observed by placing seeds upon moistened cotton in a glass vessel, and watching from day to day the gradual development of the germ. In the difference in the manner of their growth is founded the great division of plants in the Natural System. In the full-grown oak, which has proceeded from the seed with two cotyledons, and in the Indian corn with one cotyledon, there are the following remarkable differences:
First-The oak has a branching stem. The corn has a sim ple stem.
Second - The oak has grown by the increase of tissues from the outside of the stem, and the wood is hardest towards the centre. The corn has grown from the inside, pushing outwardly, and is hardest at the outside.
Third-The leaves of the oak are net-veined. The leaves of the corn are straight-veined.
We shall now leave the pupil to begin the study of Botany, in which he will be led, gradually, to an understanding of the wonderful organization of the vegetable kingdom, and the different modes of classifying plants.

* Refer to page 91 for an explanation of the seed and the germinsting process.
(8)

CHAPTER I.

Advantages of the Study of Botany.*

1. You are now about to commence a study which was forzoerly thought too difficult for children, but which is, in reality, much easier than many to which they usually attend.
2. In Grammar, you can have no assistance from maps or pictures,-every thing in this science depends on the powers of the understanding ; and it affords no pleasant objects to delight the eye. But Grammar is a very useful study, and should be pursued while you are young; and other studies, especially the one you are about to commence, will help you to understand it.
3. Geography is easier than Grammar, because you may have maps or pictures of countries before you, and the eye impresses on the mind the relative situation of places, the direction of mountains, the course of rivers, \&c.-but if, instead of maps, you could have the countries themselves before you, to examine with your eyes and hands, if you could see the people who live in them standing before you, how much deeper would be your impressions of Geography !
4. You are now to study Botany; here the objects about which you are to learn, will be placed before you, to see, to touch, and to smell. Thus three of your senses will be called upon to aid the memory and understanding; and as flowers are objects of much beauty and interest, your imagination also may be gratified.
5. Your emotions, too, will be warmed by the thought of His love and kindness who causeth the earth to bring forth, not only

* Nots, -It is important, for the teacher to ask the pupils to give the heads of the chapters, either at the commencement or close of the lesson.

1. What is said of the study you are about to commence?
2. What is said of the study of Grammar?
3. What renders Geography an easier study than Grammar?
4. Are the objects about which you study in Botany manifested to the senses?
5. What effect has the contemplation of flowers upon the emotions?

INTRODUCTION.

THE STUDY OF PLANTS.

Gon made plants for the study of man, as well as for utility and beauty. The seed, ever true to its nature, always bringe forth the plant after its own kind; it is therefore the essential organ: on its strueture is founded what is called the "Natural System" in Botany, the outline of which we will briefly state:
Take an acorn, (the seed of the oak), and then remove the outer coat or skin. The seed will voluntarily divide into two parts (called cotyledons, see page 93) ; nestled in a little cavity at one extremity of the seed is the germ, or embryo plant-this is a miniature oak tree. Now examine a kernel of Indian corn; you will not find it composed of two distinet lobes or cotyledons like the acorn. The germ is seen at what is called the eye of the seed.*

We perceive in the beginning of the life of plants a great dif ference between plants of different kinds; this can be readily observed by placing seeds upon moistened cotton in a glass vessel, and watching from day to day the gradual development of the germ. In the difference in the manner of their growth is founded the great division of plants in the Natural System. In the full-grown oak, which has proceeded from the seed with two cotyledons, and in the Indian corn with one cotyledon, there are the following remarkable differences:
First-The oak has a branching stem. The corn has a sim ple stem.
Second - The oak has grown by the increase of tissues from the outside of the stem, and the wood is hardest towards the centre. The corn has grown from the inside, pushing outwardly, and is hardest at the outside.
Third-The leaves of the oak are net-veined. The leaves of the corn are straight-veined.
We shall now leave the pupil to begin the study of Botany, in which he will be led, gradually, to an understanding of the wonderful organization of the vegetable kingdom, and the different modes of classifying plants.

* Refer to page 91 for an explanation of the seed and the germinsting process.
(8)

CHAPTER I.

Advantages of the Study of Botany.*

1. You are now about to commence a study which was forzoerly thought too difficult for children, but which is, in reality, much easier than many to which they usually attend.
2. In Grammar, you can have no assistance from maps or pictures,-every thing in this science depends on the powers of the understanding ; and it affords no pleasant objects to delight the eye. But Grammar is a very useful study, and should be pursued while you are young; and other studies, especially the one you are about to commence, will help you to understand it.
3. Geography is easier than Grammar, because you may have maps or pictures of countries before you, and the eye impresses on the mind the relative situation of places, the direction of mountains, the course of rivers, \&c.-but if, instead of maps, you could have the countries themselves before you, to examine with your eyes and hands, if you could see the people who live in them standing before you, how much deeper would be your impressions of Geography !
4. You are now to study Botany; here the objects about which you are to learn, will be placed before you, to see, to touch, and to smell. Thus three of your senses will be called upon to aid the memory and understanding; and as flowers are objects of much beauty and interest, your imagination also may be gratified.
5. Your emotions, too, will be warmed by the thought of His love and kindness who causeth the earth to bring forth, not only

* Nots, -It is important, for the teacher to ask the pupils to give the heads of the chapters, either at the commencement or close of the lesson.

1. What is said of the study you are about to commence?
2. What is said of the study of Grammar?
3. What renders Geography an easier study than Grammar?
4. Are the objects about which you study in Botany manifested to the senses?
5. What effect has the contemplation of flowers upon the emotions?

BOTANY FOR BEGINNERS.

[Ca. 1
'grass for the beasts of the field, and food for the use of man,' but a rich succession of curious and lovely blossoms for our ad miration and enjoyment.
6. In Botany you study things which God has made. When examining plants, with all their wonderful varieties, and observ ing the wise provision which is made for their growth, and the perfection of the seed, with the mutual relations of the various parts to each other, you must remember to give the praise to Him whose infinite mind directs and watches over the growth of the most humble plant, at the same time that he upholds the vast worlds which he has created, and which every moment need his sustaining care. Every motion we make, every breath we draw, and every pulsation of our hearts, show that this same care is over us too; for without it, we could no more live, than we could have created ourselves.
7. Before attempting any new thing, we should always understand the reasons for so doing. I will now tell you why your parents and instructors wish you to learn something about Botany, 1st. It is a delightful study: it presents you with sweet and pleasant objects, the contemplation of which is calculated to render your tempers mild and amiable. It will always furnish you with an agreeable amusement, which is not only innocent, but of a nature to refine and improve your minds.
8. 2d. If you live in a city, your friends may have houseplants or gardens, and you may sometimes go to public gardens, where the most wonderful plants of all countries are collected, -will it not be pleasant, when you meet with flowers, to be able to find, by examining a book, what are their true names, their characters and habits, and their medicinal qualities?
9. 3d. There are a great many other things too, which Botany will teach you, such as the offices performed by the root, stem, leaves, and other organs of the plant, especially by the different parts of the flower, to which is assigned the care ot forming and ripening the seed.
10. 4th. If you live in the country, every mountain-glen, every meadow, the banks of every little brook, and the waysides, wit show you the different families of plants, which appear, one af ter another, from April till October. And many a beautiful ε ossom will lift up its little head in your rural walks as if to
6. Whose works do we examine in the study of Botany?
7. What advantages are first mentioned as connected with the study of Botany?
8. What advantages of the study are mentionsd secondly?
9. What thirdly?
10. What fourtly?

Oh, 1.1

ADVANTAGES OF THE STUDY.

ask vour notice. If you know nothing of Botany, you may indee love to look at pretty flowers, and to pull them to pieces, but in this there is little amusement and no instruction. It is when your reason is brought into action in order to examine how these wonderful pieces of work are put together, and to trace their various properties and relations, that the notice of flowers decomes important as a means of improvement.
11. 5th. The study of Botany will teach you to be systematic n other things: you will find that men of science have so arranged plants, that all, even dandelions, daisies, and thistles, have their exact places in the system of classification.-It is this exactness of arrangement which makes us able, amidst so vast a multitude of plants, to find the description of each one. It all the articles in a house were thrown together without order, you would be troubled to find a needle, a pair of scissors, a book, or an article of dress. But by means of system, a person who possesses a hundred thousand articles, may arrange them so that any one can be found at any moment.
12. As a house is divided into apartments, so in Botany the regetable kingdom is divided into classes ; as each apartment contains sideboards, bureaus, closets, \&c., for disposing of different articles, so each class in Botany contains orders in which are arranged the individual plants. There are also subdivisions of orders in Botany, which may be considered as corresponding to the different drawers of bureaus, and shelves of closets, so that a Botanist is seldom obliged to look over a whole order before he finds the particular plant which he seeks for. Now some children are very careless with respect to the arrangement of the clothes, books, and other articles, with which their kind friends provide them: it appears to me, that when they see how beautiful is the systematic arrangement of plants in Botany, they will at once resolve that every thing which belongs to them, or that they have the care of, shall be arranged according to some rule, so that they may always find what they want without being obliged to make a long search for it, I could spend a great deal of time in telling you of the advantages of a knowledge of Botany; but it is better that you should proceed directly to the study, and then your own minds will suggest to you many reasons why it is to be classed among the most useful and interesting pranches of science. I will however mention one farther recommendation of this study.

[^1]13. 6 th. I leads us to love and reverence God. Flowers are presents which our heavenly. Father gives us. It is therefore proper that we should examine and study them. We see that He whomade them must be wiser and more powerful than the greatest of men-for what man could make the least plant? We can imitate flowers in wax and various other ways, but who an give them life?

```
None can the .ife of plant or insect give
Save God alone
```

14. Flowers may be considered as tokens of God's love to us ;-" If God so clothe the grass of the field, which to-day is and to-morrow is cast into the oven, will he not much rathei clothe us?" He

Scoms not the least of all His works; much less
Man, made in His image, destined t ' exist,
When e'en yon brilliant worlds shall cease to be.
Then how should man, rejoicing in his God,
Delight in His perfections, shadow'd forth
In ev'ry little flow'r and blade of grass -
Each op'ning bud, and care perfected seed,
Is as a page where we may read of God.

CHAPTER II.

Division of the Sciences.-Different parts of flowers.- $1 m$ portance of Botanical arrangement.
15. We are now about to commence our new study. - There are many sciences to be learned by those who wish to be wise, but yet all things which exist in the whol
lassed under two heads, mind, and matler.
16. Mind or spirit cannot be seen by us, although it exists in
all rational beings, and is that within us which thinks and feels.
17. God is a spirit; he is not like us confined to any body, or portion of matter, but as the sun's rays spread abroad over the earth, so the presence of God extends to every part of his crea
13. What advantages are mentioned sixthly as connected with the otudy of Botany?
14. How may flowers be considered?
15. Under what two heads may all things which exist be classed 3
16. What is observed of mind or spirit?

Ch. I.]
DIFFERENT PARTS OF FLOWERS.
thon; we do not perceive him, becanse we cannot see mind. When our spirits are separatel from the body, or matter, they will no doubt at once perceive that they are in the presence of God.
18. The science which treats of the Deity, and of our duties to Him, is called Theology.*
19. The science which treats of the Human mind, is called Philosophy of the mind, or Metaphysics. \dagger
20. The study of matter is sometimes called by the genera term Physics; it is divided into three general heads.

1. Natural Philosophy.
2. Chymistry.
3. Natural History.

A mere definition of Natural Philosophy and Chymistry would not enable you to understand what these sciences are. hut you will soon be able to study them with pleasure and profit.
21. Natural History, or the History of Nature, is divided into,
22. 1. Zoology, \ddagger which treats of animals.
23. 2. Botany, which treats of plants,
24. 3. Mineralogy, which treats of stones, \&c. This science includes Geology, which treats of rocks, the manner of their form ation, and the various changes which have taken place on the surface of the globe, since its creation.
25. The word Botany is derived from the Greek botane which signifies a plant. The objects of this science are the vegetable kingdom, including every thing which grows out of the earth, having root, stem, leaf, or flower.
26. There are two principal departments in Botany ; 1st, that which treats of the classes and orders of plants; this is called Systematic Botany.
Note.-The attention of the pupsl should be directed to the note which point out the derivation of words.

* From the Greek Theos, God, and logos, a discourse. \bigcirc -
+ From meta, beyond, and phusis, nature.
\ddagger From zoe, life, and logos, a discourse.

18. What is tnat science called which treats of the Deity 3
19. What is the science which treats of the Human Mind
20. How is the study of Matter divided?
21. What are the branches of Natural History?
22. What does Zoology treat of?
23. What does Botany treat of?
24. What does Mineralogy treat of

25 . From whence is the term Botany derived, and what α the ob Jeets of the science?
26. What is systematic Botany
27. 2d. That which treats of the different parts of the plants and their uses ; this is Physiological Botany.

Fig. 1..

28. In beginning to study Botany, t it best to examine first the parts of a flower.
29. Here is a lily, Fig. 1 ; that part of it which you would call the blossoms, is the corolla; * this is composed of sia parts, each of which is called a petal.
30. There are within the corolla six threadlike organs; these are called stamens ; examine them as they appear at Fig. 2. You see that one part, as at $a_{\text {, }}$ is long and slender; this is called the filament, from filum, a thread. At b is a little knob which is hollow like a box; this is the anther.

* So called from the Latin corolla, a little crown.

27. What is physiological Botany?
28. What is the best way of beginning the study of Botany?
29. What are he botanical names of the blossom of a lilv and 1 ts ${ }^{\text {varts. }}$ Describe tie stamens and their parts

Ch. II.
DIPEERENT PARTS CF FLOWERS.
31. In the centre of the lily is the pistil; this consists of three parts, the stigma, (see Fig. 2. f) the style, (e) and the germ, (d).
32. The end of the flower stem, where the petals of the flower are inserted, is called the receptacle; you may see it at Fig. 2. g.
33. In most flowers you will observe the corolla standing in a little green cup; this is called the caly x.* The lily has no calyx, but the rose and the pink have.
34. I have now told you of five parts of a flower:

1. Calyx-the cup; surrounding the corolla.
2. Corolla-the blossom; the parts are called petals.
3. Stamens-enclosed by the corolla; the parts are the fila nents and anther.
4. Pistil-standing in the centre; the parts are the germ style, and stigma.
5. Receptacle-bearing the other pasts of the flower.
6. Besides these, there are two other parts, which are considered as belonging to the flower: viz. the pericarp and the seed.

* The word calyx signifies a cup.

31. Describe the pistil and its parts.
32. What is the receptacle?
33. What is the calyx?
34. Name the five parts of a flower whica have been mentioned.
35. What twe other parts belong oo the flower ?

Ch [I.] DIEFKRENT PARTS OF FLOWERS.
hese organs, or members of the flower; but m st now proceed u teach you something about analyzing plants;-The word snalyze means, to separate a thing into parts; in one sense, theretore, you have now, in considering the different organs of a flower, analyzed it: but this is only to prepare you for another kind of analysis, by means of which you will be able to tell where a plant belongs in the botanical system, and what is its , otanical or true name.
41. In the introductory chapter, I spoke of the importance of systematic arrangement; when you iearn something of Botany, you will perceive that this science could not exist witrcut system.
42. Formerly hocanists endeavoured to give descriptions of plants; but naving no rules to go by, they were not able to understand eazh other. If a person wished to learn about any particular plant, he might be obliged to look over a great many pages, or a whole book, before he could find it; because he kid no rule io guide him in his search.
43. When you look out a word in a dictionary, you searen for the first three letters, and as the words are arranged by rule, you can find immediately what you wish. If all the words in a dictionary were thrown together without any order, how discouraging would be the task of looking for definitions.
44. Now it is just so with respect to describing plants; we must be guided by some rule in their arrangement. - What shall this rule be? Suppose we should arrange the names of plants in alphabet. al order, and then give descriptions of them.- But here is one great difficulty; the names by which people wh o do not understand Botany call plants, are not the same in difi rent places; persons whose gardens are very near each other, will often call the same flower by different names; and in differen countries, the names of plants are expressed in different lan guages ; what we call corn, is in Frenen, blé, and in Latin, ce res. Without some general system, therefore, you perceive we could not learn any thing of the plants of different countries, and could not understand each other even with respect to our own plants.
45. After a great many attempts had been made to class
41. Is systematic arrangement necessary in Botany?
41. Is systematic arrangement necessary in Botany?
42. Why were the botanists of former times unabie to understand each other?
43. By what rule are words in a Dictiunary arranged?
44. W ould the description of plants in alphabetical order, serve as a rule for botanical arrangement?
45. How did Linuæus pronose .o arrange plents?

2*
plants, Linnæus, cf Sweden, proposed to arrange them under classes and orders, by means of the stamens and pistils. He had discovered that these organs existed in all plants; that some had one stamen, others two, three, \&c. and that it was the same with regard to the pistils, which, although the lily has but one, are numerous in the rose and some other plants In the next chapter I shall tell you something more of the classes of Linnæus, and teach you how to analyze a flower according to his system.

CHAPTER III.

Prartical Botany commenced by the analysts of the Pink. Method of preparing an Herbarium-Botanical excursions -The study of nature the duty and privilege of intelligent ninds.
46. Plants, as I have told you, are arranged in elasses an! orders by their stamens and pistils. The largest division is that of classes.
47. There are twenty-one classes.
48. Each class is divided into orders.
49. A plant with one stamen belongs to the first class; as there are some plants here with one pistil, and others with two, there are a first and second order in the first class.

46 What is the largest division of plants?
47. How many classes are there?
48. How is each class divided? 49. What circumstan
order o? the firct elass

Analysis of the Pink. Fig. 4.

50. You will understand this better if I gıve you an exam山e. You shall now analyze a flower in order to find its botanical arrangement and name. Here is a pink. We wish to know in what class it is-count the stamens-you say ten, therefore this is in the tenth class; the name of the class is Decandria (from deka, ten, and ardria, stamens.)
51. We wish to know in what arder this flower is-count the pistils-you say two, it then belongs to the seoond order of the tenth class; the name of this is Digynia (from dis, two, and gynia, pistil.)
52. Orders are composed of families of plants calied genera, which is the plural of genus.
53. We must, as a third step in our analysis, learn to what genus this flower belongs; for this purpose it is necessary that you turn to that part of your book called "Description of the Genera of Plants;"* look for Class 10, Order 2.-Now instead of looking a whole book through, you have only to examine the genera which you find under this order, and to compare your Hower with each description until vou find one which answern to it.

* To find this, see the "Table of Contents."

50. How can you find in what class the pink is placed?
51. How can you know in what order the pink is ?
52. Of what are the orders of plants composed?
53. What is a third step in the analysis of the pink?
54. You have a fourth step to go in the analysis of this Hower; for each genus is composed of several sorts or spectes of plants.-It is necessary to know to what species of the genus Dianthus this flower belongs.
55. Look in the latter part of your book for the " Description of species of plants."* Here you find the genera arranged in alphabetical order, each genus being followed by a description of its species. If you have a natural flower with its leaves, you can now compare it with the specific descriptions.
56. "Armeria, fiowers aggregate;" this means clustered together on one stalk; but pinks do not grow in this manner therefore the plant is not of this species.
57. "Barbatus, flowers fascicled," (bundled together;) it cannot be this species, because the flowers are not fascicled.
58. "Caryophyllus, flovers solitary, scales of the caly.x sub-rhomboid; " (sub-rhomboid means somewhat diamond shaped,) "very short, petals crenate," (scolloped on the edge,) oeardless, (without hair or down.). The pink is in all respects answerable to this description. It is also added, that the leaves are "linear," which means long and narrow; "subulate," sig nifies pointed at the end like a shoe-maker's awl; channelled, signifies having a groove or channel running through the leaf.
59. You have now learned the class and order of the pink, with the genus and species to which it belongs. The botanieal name of the pink is,

Diantrus caryophyllus.
It belongs to,
Class 10. Decandria. Order 2. Digynia.
64. Having analyzed a flower, you must now take one of the same kind, and lay it between sheets of paper to dry, having a weight placed over to press it. Every person who would become a Botanist, shour preserve specimens of all the plants he meets with. A book of such specimens is called an herb. arium.
65. Tnere are few parents who would not delight to see a handsome herbarium made by their child. There is no diffi

- See "Table of Contents."

58 What is the fourth step in the analysis of a flower ?
59. Where are you to look to find the species?
60. Why is not the pink of the species armeria?
61. Why is it not of the species burbatus?
62. Why is it not of the species caryophyllus?

64 What is an herbarium?
65. Describe the precess of preparing plants for an herbarium
culty in your affording your parents this gratificaticn. All that you need in pressing plants, is some sheets of paper, (newspspers will answer, they are better than more firm and stiff paper) board, and a stone or some other weight to press the plant. Some leaves and flowers of the plant should be carefully spread out upon one sheet of paper, and half a dozen other sheets placed over them;-the board with the weight should then be laid upon the upper sheet of paper. The plants at first, ought to be taken out and placed between dry sheets of paper as often as once or twice a day. Some will dry in a few days, others require more time.
66. When you have as many as fifty speeimens prepared, you can then arrance them in a blank book, fastening upon the first page of each leaf one or more flowers, either with glue or by means of cutting through the paper and raising loops, under which the stems may be placed. By the sides of the plant should be written the class, orler, genus, and species, and also the place where found, that is, whether in dry or wet ground, cw or mountainous, \&c., and also at what season of the year. Such herbariums would do children much credit if prepared to be exhibited at public examinations of their school.
67. Young botanists, as well as those who are older, may derive great pleasure in making excursions into the fields, and upon the hills and mountains, for the purpose of collecting plants. Thus they learn to love every blossom which springs up under their feet; their hearts beat with pleasure when they meet with some little strange flower, which exhibits new traits in the character of the vegetable race. Every murmuring brook shows its banks clad with flowery treasures; the forests and groves exhibit another, but not less beautiful assemblage ot plants: and the mountain, the valley, and the sea coast, have all their own peculiar vegetable productions.
68. Did the great Being who created such a profusion of these beautiful and curious objects, and who also gave to children eyes to see, hearts to love, and understandings to study them, intend they should pass them by with neglect? No, my dear children, it is your duty, as it should be your pleasure, to search into the wonders of created nature, to exercise your mental faculties, and to animate your pious feelings in thinking much upon the works of God.
66. How should dried plants be arranged in a book?
67. What is said of making botanical excursions ?
68. What is said of paying attention tc the works of Gud ?

Eh. IV.] introduction to practioal botany-continued.

CHAPTER IV.

Introduction to Practical Botany continued-Latin and Greek Numerals-Classes of Linncus.

69. You have been taught to analyze one flower;-while vou were doing this, did not many thoughts seem of themselves to some into your minds? You examined a lily; you found it had six stamens, and one pistit, and it is very likely you thought that if the pink was in the tenth class and second order because it had ten stamens and two pistils, the lily must be in the sixth class and first order-it is so.
70. Now when you learn one fact it will bring many new shoughts to your mind; and this furnishes great encouragement for you to study; since you not only gain the knowledge which is the immediate object of your search, but are enriching your minds with many connected ideas which follow in Its train.
71. You will, perhaps, now think that all flowers are classea by the number of stamens, but this is not correct, for as some have more than a hundred stamens, such an arrangement would be making quite too many classes; and besides, it is found that such plants as have more than ten, often vary in the number of stamens, so that only the first ten classes depend on this circumstance.
72. Linnæus discovered that the stamens of some plants grew upon the caly.x, and others upon the receptacle; the rose is of the former kind, and the poppy of the latter.
73. Take off the petals of a rose and you will perceive the stamens to be inserted upon the calyx; for this reason it is of the 11th class; and because it has many pistils is in the 13th order.
74. The name of the genus is Rosa. In this genus are many species; as Rosa muscosa, or the moss rose, which has upon its calyx and stems a collection of hairs resembling moss Rosa alba, the white rose, distinguished not only by the whiteLess of its petals, but by peculiar circumstances of the leaves and stems.
75. After learning the classifi:ation of the pink, what should vo: ufer respec.ang the class and order of the lily?
76. W nat should encourage you to learn?
77. Are all flowers classed by the number of stamens 3
78. Are the stamens of all plants placed in the same position?
79. Why is the rose in the 11th class, 13 th order?
-4. What is observed of the different species in the genus rose?
80. The apple blossom appears like a little wild rose, it be longs to the same class and order as the rose, but is of a differ ent genus.
81. If you examine a poppy, you will find numerous stamens growing upon the receptacle or top of the flower stem, this is therefore of the 12th class. It has but one pistil, and is therefore in the 1st order.
82. Having made you acquainted with some of the princ.oles in Systematic Botany, and taught you how to proceed in the Analysis of flowers, I shall now give you to learn the Latin and Greek numerals, which, added to certain other words, :ompose the names of the Classes and Orders.
It is not in Botany alone that a knowledge of these numerals will be useful to you; many of our most common words are sompounded with them; for example, unyform is from unus, one, and forma, form,-octagom, is from octo, eight, and gonia a_{3} ingle, \&c.

[^2]16. Why is the poppy in the 12 h c.ass, 1 st rder ? 77. Is it in Botany alore that a $x \mathrm{~m}$ wizds; of Greek and Latip merals is useful?
(th. IV.)
rLAASSES OF PLANTS.
79. These are founded upon distinctions observed in the \& fabiens.
80. All known plants are divided intc twenty-one classes.
81. The thrst twelve classes are named by prefixing Greet η imerals to andria, which signifies stamen.

Monos, single.
Dis, twice.
Treis.
Pent
Hex.
Hepta.
Ennea.
Deka

32 . The first ten classes depend on the number of stamens
CLASSES.
Names. Definitions.
83.

Number of Stamens.

One Stamen.
Two Stamens.
Three Stamens
Four Stamens Five Stamens.
Six Stamens.
Seven Stamens.
Fight Stamens.
Nine Stamens.
Ten Stamens.

Fig. 6.

Note. The pupil should be required to give the derivation of the ames of the classes ; as "Monandria, from Monos, one, and Anaria, stamen," Sc.

[^3]84.
Number and

positic 3. $\left\{\begin{array}{r}\text { 11. Icos-andria, } \\ \text { (Eikosi.) } \\ 20 \\ 12 \text { Poly-andria, } \\ \text { (Polus.) } \\ \text { many. }\end{array}\right.$

Over ten stamens

 inserted on the Calyx. Over ten Stamens insertea on the Recepta on cle.
85. The two following classes are named by prefixing Grees numerals to dYNAMA, which signifies power or length.
Number $\{$ Having four stamens; two and relative $\left\{13\right.$. Di-DYNAMIA, $\left\{\begin{array}{l}\text { of which are longer or more }\end{array}\right.$ length. (powerfiul than the other two.
Number $\{$ 14. Tetra-dy- Having six stamens; four and relative $\left\{\begin{array}{c}\text { 14. Tetra-dy- } \\ \text { namia, }\end{array}\right.$ af which, are longer or more length.

IN
86. The two following classes are named by prefixing Greek numerals to the word Adelphia, which signifies brotherhood.
 he number of stamens is often more or less than twenty.
84. What are the two classes which depend on the number and pm sition of the stamens?
85. What two classes depend on the number and relative length of tamens?
ef. What two classes have their stamens united by their flaments?

16. Di-ADELPHIA,

Tion brother hoods.
The next class is named by prefixing syn signifying together, to Genesia, whicn signifies growing up. 17. Syn-genesia, $\{$

Five united anthers. flovers compound.
a7.
Fig. 9.

88. The next class is named by an abbreviation of the word gynia, which signifies pistil, prefixed to andria, showing that the stamen and pistil are united.

91. The name of the last class is a compound of two Greet words, cRyPTOs, and GAM1A, signifying a concealed union.
87. What class has the stamens united by their ar thers?
88. What class has the stamens growing out of the pistil?
89. Describe the class Moncecia
90. Describe the clas: Direcia.
91. Describe the class Cryptogaura.
 92. All plants are either Phenocamous, with stamens and istils visible or Cryptogamous, with stamens and pisti', inpistils visible, or Cryplogamous, visible; the first class of the latter kind.
93. You have now been taught the classes into which I lants re divided-It is important that these should be well u iderstood, and that as early as possible, you collect some plas ts of each class.
each class.

CHAPTER V

Ordirs of Linneus-Synopsis of Classes and Orders.
4. Tue classes are divided into Orders. Each class usu ally contains several orders; you will best learn to distinguish them by practice in analyzing plants, though it is proper you should learn their names, and the circumstances on which the are founded.

ORDERS OF PLANTS.

95. The orders of the first twelve classes are founded upon the number of Pistils.
96. What general name is given to the first twenty classes, and what re the plants of the twenty-first class called?
97. What have you now been taught? 34. How ca each class?
what are the orders of the first twelve classes founded?

Ch. V.I
classes and orders.
96. The orders are named by prefixing Greek numerals ic the word gynia, signifying pistil.

ORDERS.

97.	Names.	No. of pistils.
	1. Mono-gynia,	
	2. Di-gynia,	2.
	3. Tri-gynia,	3.
Orders	4. Tetra-gynia,	4.
found in the first	5. Penta-gynia,	
	6. Hexa-gynia,	6. this order seldom found
twelve	7. Hepta-gynia,	7. this stıll more unusual
zlasses	8. Octo-gynia,	8. very rare.
	9. Ennea-gynia,	9. very rare.
	10. Deca-gynia,	
	13. Poly-gynis,	ten pistils.

The classes vary as to the number of orders which they zontain.
98. The orders of the 13th class, Didynamia, are but two.

1. Gymnosperma. From gymino, signifying naked, and seeds usually four, spermia, signifying seed, implying lying in the valyx.
-. A narospmanis.
seede numerous in a
capsule. \qquad From Angelon, signifying bag or sack, added to spermia, implying that the seeds are enclosed.
2. The orders of the 14th class, Tetradynamia, are two both distinguished by the form of the fruit.
3. Siliculoss. Fruit, a silicula, or roundish pod,
4. Siliquosa. Fruit, a siliqua, or long pod.

100 . The orders of the 15 th and 16 th classes, are founded o the number of stamens, that 1s, on the characters of the first twelve classes, and they have the same names; as Monanaria, \&c. The 17 th niass, Syngenesia, has its five orders distinguished by different circumstances of the florets, as:

1. Equalis. Stamens and pistils equal, or in proportion, that is, each floret has a stamen, a pistil, and one seed. Such florets are called perfect.
2. How are these orders named?
3. Repeat the names of the orders.
4. Repeat the names of the orders.
5. What are the orders of the 13 th class?
6. What are the orders of the 13 th class?
7. What are the orders of the 14th class?
8. In what clasees are the orders founded upon the number of stamens?
9. What are the ordet of the seventeenth class?
10. Superflua. Florets of the disk perfect, those of the ray containing only pistils, which without stamens are sus perfluous.
11. Frustranea. Florets of the disk perfect, of the ray neutral, or without the stamen or pistil ; therefore frustrated, or useless.
Necessmas. Florets of the disk staminate, of the ray pis-
12. Necessahia. Florets being necessary to the perfection of
tillate; the latter ber the fruit.
13. Segregata. Florets separated from each other by partial calyxes, or each floret having a perianth.
14. The orders of the 18 th, 19th, and 20th classes, like
hose of the 15 th and 16 th , depend on the number of stamens.
15. The orders of the 21st class, Cryptogamia, constitute six natural families.
16. Filioes, - includes all F erns, having the fruit on the leaves.
17. Muscr,-Mosses.
18. Hepatice-Liverworts, or succulent mosses.
19. Algis-Sea-weeds, and frog spittle.
20. Alge,-Sea-weeds, and frog spiting on the barks of old 5. Licaens,-Lid wood, \&e.
21. Fungl,-Mushrooms, mould, blight, \&c.
22. No confusion is produced for example : if you have a some classes, for orders in others; for example : if you have a some with ten stamens, united by their filaments into one sel, now know by the definition of the classes that it belongs to the you know by thelphia, you can then, because it has ten stamens,
clase class Monadelphia, you candria of the same class.
lace it in the order Decand
slace it in the order Decandria of the same class.
Having explained the principles on which the artifial
Hases and orders are founded, we will now place them before you, in a synoptical or general view.
"SYNOPSIS OF THE CLASSES AND ORDERS 105. "SYNOPSIS OF THE OLAS LINN EUS."*

CLASSES. ORDERS.
z $\left\{\begin{array}{l}\text { 1. Monandria, } 1 \text { stamen. } \\ \text { 2. Dindria, 2. }\end{array}\right.$
$\left\{\begin{array}{l}\text { 1. Monanda, } 2 \text {. } \\ \text { 2. Diandria, } \\ \text { 3. Tiandia }\end{array}\right.$
3. Triandria, 3.
4. Tetrandria, 4.

Number of styles, if styles are 5. Pentandria, 5. wanting, number of sessile stigmas Monogynia, 1. style, or one sessile stigma Digynia, 2, Trigynia, 3 Tetragynia, 4. Pentagynia, 5. Hex
We say of Linnaus, because there are other systems of classing plants, though none so generally adopted, or so proper for the learner.
102. On what do the orders of the three following classes depend? 103. On what do the orcers of the class Cryptogamia?
103. What are the orcers of collow from taking the characters of some isses, for orders in other classes?

Ch. V. 1
CLASSEQ AND ORNERS.
6. Hexandria, 6.
agynia, 6. Heptagynia, 7. Octo- gynia, 8. Enneagynia, 9. Decagynia, 8. Enneagynia, 9. Decaover 10 .
² $\left\{\begin{array}{l}\text { 8. Octandria, } 8 . \\ \text { 9. }\end{array}\right.$
9. Enneandria, 9

右 (10. Decandira, 10.
Oner

Number and \{11. Icosandria, over 10 stamens, on the calyx.
Position. $\quad\left\{\begin{array}{l}12 . \text { Polyandria, many stamens, not on the calyx }\end{array}\right.$
13. Didynamia, 4 sta-) 1. Gymnospermia, seeds na-

Number and
Number
relative
relative
Length.
mens, 2 of them longest.
14. Tetradynamia, 6 4, 6 sules.
them longest. of 1 . Siliculosa, pod short.
15. Monadelphas,
filaments uni- Characters and names of pre-
Jonnexion
of the Sta-
nens by
ilaments
or anthers.
16. Diadelptia, filaments united in 2 sets.

17. Syngenesth, anthers unitedpound.
18. Gynandria, staGYNandria, sta-
mens on the pismens on the pis-
til, distinet from corolla.
19. Mongesta, stamens in flowers separate from pistils, on t
same plant.
20. Digecis, stamens in flowers separate from pistils, on separate
filaments uni- ceding classes. As, 1. Munandria, 2. Diandria, 3. Triandria, 4. Tetrandria, 5. Pentandria, 6. Hexandria.

Disk and ray florets compared. 1. Æqualis, 2. Superflua, 3. Frustranea, 4. Necessaria, 5. Segregata.
21. Cryptogama, stamens invisible, wanting, or very caducous.

Characters and names of preceding classes, (as under the classes 15 and 16,) \%. Heptandria, 8. Oc15 and 16, , Heptandria, 8. Ocdria, 12. Polyandria, 16. Manodelphia.

Natural families. 1. Filices, 2 Musci, 3. Hepaticæ, 4. Algæ, 5

Note.-The teacher cannot too much insist upon a thorough hni wledge of the names and characteristics of the classes and orders.
105. You may now repeat the names of all the classes, with their o.ders.

CHAPTER VI.

Best method of learning Technical terms-Organized and of inorganized Beings - The Root.
106. Whin you began to analyze plants, you were made ac10.nted with the first ten classes, because these are the most simple and easy to learn. But as you have now learned all the classes and orders, it is necessary that you should understand that the best method of analyzing a plant, is to begin by comparing it with the description of the last class, and if it does nol belong there, to go on to the lower classes.
107. As you proceed in your Botanical studies, you will find it necessary to look out many words in the vocabulary, which is attached to the book you are now studying. In fact, the language of Botany is new to you, and you must make use of a dictionary, as if you were studying a new language.
108. It used to be considered necessary for a pupil in the first place to learn to repeat the hard words, or what are called the place tochical terms, but this was tedious and discouraging, and technical terms, therefore Botany was thought to be a dry and difficult study.
109. But you can much better learn the technical terms by looking out their definitions as you have occasion to understand them; for instance, when you are examining some one plant, you find in the description of the species which belong to the genus to which you have traced it, one which is said to to the genus leaves radical; by turning to the vocabulary, you find have leaves radical; by from the root;* if your plant has its that this means growing from the root; , your plil perceive that they leaves growing from the stalk, you will perceive that they were not radical. If the leaves were said to be serrate, by turning to the vocabulary, you find that this means having notehes upon the edge, like the teeth of a saw (from serra, a saw ;) if your plant has its leaves without such notches, you would see that they were not serrate. If the term glabe were ased, you would find it meant smooth; if cord would not your plant were rough, you would see that this was ded as having apply to them. If another species was described as having

- The root in Latin is radix, genitive radicis, from whence comes radical.

406. What is the best method of analyzing plants?
407. Why must you use a vocabulary in studying Botany?
ins
1ut. What is the best way of learning technical terms?
cculne leaves, (that is, growing out of the stem) entire, or without notches, hirsute, or rough, you would perceive that this description corresponded with your plant.
408. Now you will remember the words radical and cau line, serrate and entire, glabrous and hirsute, by learning them as you proceed in your analysis, much better than by committing them to memory with their definitions.
409. The exercise of looking out words in the vocabulary, and at the same time examining a plant, is useful, by bringing tato exercise your judgment and powers of reasoring.
410. Thus you see, my dear children, how much more agree able and profitable is the study of Botany now than formerly. Authors and teachers are labouring to make it easy and pleasant for vou to learn. Many of the thorns and briars which once hindered the young from gaining access to the garden of knowledge, have been removed by those who love and care for vou. And will you not put forth a little power to make your own way towards this delightful region, where rich fruits of literature and science will be the reward of your efforts?
411. The analysis of plants is called Practical Botany. We commence with this, because we think you will feel an interest in plants when you have become acquainted with their place in the system of Linnæus, and that you will wish to know the uses of their various organs, the manner in which they receive food, and what it is which makes them living beings.
412. These th ags will now be explained to you, and with aftention on your part, you will be enabled to understand many curious and interesting facts. Every kind of plant which you can find, should be carefully examined, and each part noticed. Will not this be better for your minds than idle play? Your parents and teachers will delight to gratify your fondness for botanical walks, and will perhaps sometimes be at leisure to aceompany you.
413. 1 have said plants are living beings. When deprived of water or air, they droop and die, as you would do without fond and drink.
414. Hov would you be likely to remember the terms radical, cauline, sec.?
415. What effect does the analysis of plants have upon the mind ?
416. What encouragements have children to endeavour to gain knowledge?
417. Why do we commence with Practical Botany 3
418. What can you learn by giving your attention to these things?

115 Why do plants need water and air?
110. Plants are organzzed bengs; that is, they are composed of parts which bear a mutual relation to each other ; and which are all necessary to form a perfect individual.
117. Children, you too are organized beings; there is an intsmate connexion between every part of your bodies. From your brain, a substance similar to it extends in every direction, forming nerves. If you prick your finger, or hurt your toe, the feeling which follows is communicated by nerves to your brain and by your brain to your mind.
118. If some organs of your body were lopped off, for instance, your hands or feet, you would not be a perfect organized :eing; so if a plant were stripped of its leaves or deprived of its root, it would be an imperfect specimen of its kind.
119. But you might break a stone into many pieces, and each one would be as perfect a specimen of its kind as the whole stone was. This is because a stone is an inorganized being that is, it does not consist of parts which have a mutual connexion and relation.
120. Plants, then, are living, organized bo ngs; they are furnished with pores, by which they imbibe os suck their nourishment from surrounding bodies.
121. The principal organs of the plant are the Root, Stem, Leaves, and Flower.
122. The Root fixes the plant in tile earth, and absorbs from it various substances necessary for its support.
123. The Stem conducts juices from the root to the leaves and branches; the divisions of the stem are branches; the divisions of these are boughs.
124. Leaves are to vegetables what lungs are to animals; by their means, the plant imbibes from the surrounding atmosphere, moisture, and a substance called carbonic acid gas ; this is composed of two parts, oxygen and carbon ; the latter is retained by the plant, and hecomes a part of its own snbstance, while the oxygen, after being deprived of its carbon, i3 throws back into the air.
116. Why are plants said to be organized beings?
117. Are there other organized beings besides planis? R
118. When is an organized being imperfect?
119. Are stones organized beings?
120. How do plants derive nourishment from surroundiug tadies
121. What are the principal organs of the plant?
122. What is the use of the root?
123. What is the use of the stem?
124. What is the use of the leaves?

Ch. VI. 1
ORCANS OF PLANTS.
125 Flower. The parts of this have already been named. we shall speak more particularly of them hereafier.
126. The root, stem, and leaves, are organs necessary for the growth of the plant.
127. The flower contains within it the seed, and the parts 16 cessary for its security and perfection.

Of the Root.

128. The root is that part which grows in the earth, and su;? ports the plant in an upright position. It sends nourishment to every part. Some roots grow in water, and are called aquatic, (from aqua, water,)-some fix themselves upon other plants, and get their support from them,-these are called parasites.
129. The root gains its stock of food for the other parts of the plant by means of small tubes or fibres, which are cailed ra. dicles, a word that signifies little roots.

Duration of Roots.
130. Roots, according to the age to which they live, are di vided into three kinds; annual, biennius and perennial.
131. Annual roots do not live over one year. They are raised from seed every season; this is usually sown in the spring, the plant comes up, bears its blossoms and fruit, and dies in antumn. Of this kind are poppies, beans, and cucumbers.
132. Biennial roots live two years. They do not blosscm the first season; the next year they produce flowers and frut, and the fruits die. You have probably seen cabbages carri:d into the cellar in the fall; the heads, which are only the leaves growing close together, are used for the table. The root, with the stalk upon it, is in the spring set out in the garden. Leaves toon spring from the stalk, these are used for sallad; by and by flowers appear, the petals of which drop off, and the germ becomes a pod or silique containing the seed. The root then dies, and no care can restore it to life. The life of the plant R

$\int_{\pi 20}^{125}$ Doyon reco lee the parts of the flower, as mentioned in Chap

126. What are the organs necessary for the growth of the p.ant? 127. What does the ilower contain?
127. What are the different kinds of roo:?
128. What are the racicles?
129. How are roots divided with respect to age?
130. What are annual roots?
131. What are biennis' cuts?
seems to be expended upon the blossom and fruit. The onion, beet, and carrot, are biennial plants.
beet, and carrot, are biermial plants. 133. Perennial roots live many and all trees and woody plants. asparagus, dandelion, and grasses, and all thees and woody plamt 134. Climate and cultivation alect plants become annual by transperte climates: the garden nasturtion, a pepennial shrub or woody plant of South America, has become in zur latitude an annual plant.

The shape of roots is different in different kinds of plants; the most common form is the
135. Branching root, which is divided into many parts, like the branches of a tree; same of these branches extend deep into the earth, while others creep along its surface.Roots that have been torn up have been known to heeome branches covered with leaves, and branches buried in the earth have become roots, and sent out fibres or radicles.The radicles are the real roots, as they imbibe, through pores, the moisture and salts which the earth affords for the nourishment of the plant.

136. Fibrous roots consist almost wholly of radicles. Most of the annual wholly of rade the grasses, have roots of plants, and also the grasses, rectly from the bottom of the stem; by obrectly from the bottom of the stem; you can serving them in a handful of grass, you can understand the description, better than by any drawing.
133. What are perennial roots?
134. What affect the duration of plant: 3
135. Describe branching routs.
136. Describe fibrous roots.
137. Spindle roots are large at the top, and tapering downwards, as carrots, radishes, \&c.-This root has but few radicles, and is therefore not so well furnished with the means of gaining its food as some others. You could easily convince yourselves that the plant owes its food to these fibres, by taking two radishes, placing one in water unti every part is covered except the radicles, and putting only the radicles of the other in water;while the leaves of the former would soon droop and die, those of the latter would for some time remain fresh and green.
138. Creeprig roots, instead of forcing their way downwards into the earth, extend almost horizontally along its surface; they send out many fibres, and new plants spring forth from the roots in every direction around the original one. This kind of root is very hardy; it grows in sandy places, and is often useful in binding the soil, by spreading and weaving its fibres together. Holland, which is much exposed to the washing of its numerous lakes and bays, has ita soasts bound together by such vegetable products.
137. Describe spindle roots.

138 What are creeping ronts?

Ch. VII.]
нооту.

139. Tuberous roots, are hard, solid, and fleshy; they constst of knobs called tubers. Some have but one tuber, is the potato, which is shown at Fig. 16, a. In the artichoke, many tubers are strung together by fibres, as at b. In a kind of plants alled orchis, the root has two tubers, resembling the parts incalled orchis, the root has two tubers, res You will perceiv to which a bean may be divided, as at c. You will perceive that they all are furnished with radicles. The tuber is a reserveir for the nourishment collected by the radicles. Such roots are knobbed, as in the potato; oval, as in the orchis; abrupt, as in the plantain.
140. $G^{\text {anulated roots consist of little buibs or tubers }}$
41. Bulbous roots are fleshy, and of a bultous or gotular form. They enclose a plant, and in this respect resemble seeds. A plant thus protected within a bulb, is able to bear a degree of cold that it could not otherwise sustain. We see, then, the wisdom of Providence in so ordering things, that cold countries have more bulbous plants than warm ones.
142. Bulbous roots produce many of the most beautiful plants of our gardens; sucn as, tulips, filies, snow-drops, ana nyacinths. Bulbs seem in many respects to resemble buds, and in scme plants, they grow like stems or branches, as, in one kind of lily. In the macical onion, the bulbs or onions grow upon the stalk in clusters of four or five; they continue to enlarge until their weight brings them to the ground, where if they are suffered to remain, they soon take root. Bulbs are solid, as in the tulip, (Fig. 18, a) scaly, as in the lily, (b) and coated, as in the onion, (c).

Fig. 18.

143. Some plants grow without roots, these are called air plants. One of this kind, suspended from the ceiling of a room. will grow and blossom for years.

Different kinds of Stems.
144. The stem is the body of the plant. This is hard and woody in some plants, and soft and watery in others. The oals
141. What are bulbous roots, and why are they most commos in cold countries ?
142. What is farther 1 emarked of bulbous roots?
143. Are there any plants without roots?
144. What is the stem?

[^4]2 Eb VII. 1
STEMS.
and rose are woody plants, the lily and pink are herbaceous. Woody plants are divided into trees which have large stems alled planks and grow to a great height, and shrubs whose called trunks and grow which never grow very high.
stems are smaller and which never grow very high,
145. The use of the stem is to suppormeans of certain tubes, and flowers, and to convey to them, by the earth. The stem such substances as the root absorbs also conveys back to the root, by means or anothe sel leaves also if you water a plant with coloured liquid, the stem will in time show that it has ascended into it.

146. The caulis* or proper scem, is seen in orest trees, in shrubs, and in most annual plants. The caulis is either simple, as in the white lily; or branching, as in the geranium the branching, is the more common forn. You have here, Fig. 19, the representation of a callis, or prover stem, (a), a peduncte, or flower stalk, (b); and a petiole, or leaf stalk, (c). Plants with the real stem, or caulis, are called cauline plants.
147. Geologists, by examining rocks, and the petrifactions they contain, have found that the petriactions were not ereated until after such as $\mathrm{h}^{*}+0$ culms or stipes.

15. What is the use of the stem?

145. Describe the caulis or proper stem.
146. Wescribe have geologists discovered with resnect to the ordez of reation of plants?

147. Culm, or straw, (Fig. 20,) is the knd of stem Which you see in grasses and rushes. The bam boo, sugar cane, and various species of reeds, have stems of the culm kiad; some of them, particuarly the bamboo, are known to attain to the height of forty feet. We can imagine something of the appearance which extensive plains of these lofty tropical reeds must present, gracefully bending to the slightest breeze, like our meado grasses.

Fig. 21.

149. Scape. This is a stals springing from the root, which bears the flower and fruit, but no the leaves; as the Dandelion, the Cowslip, and the Lily of the Val Ley, (a a Fig. 21). Plants with scapes are sometimes called stemless plants.
150. Peduncle, or flower stalk. This is a subdivision of the principal stem ; it bears the flower and fruit, but not the leaves. When the peduncle is divided, each sub-division is called a pedicel.
151. When there is no peduncle or flower stalk, the flowers are said to be sessile, which means sitting down upon the main stem.
152. Petiole. Tne petiole or leaf-stalk, is a sind of e . 1, or alcrum, supporting the leaf; it is usually green, and appears to be a part of the leaf itself. In most cases, the leaves and llowers are supported by distinct foot stalks, but sometimes one foot-stalk supports both the leat and flower.
148. Describe the culm.
149. What is a scape?
150. What is a peduncle, and what is a pedicel?
151. When are flowers said to be sessile?
152. What is the petiole?
 153. Frond. Fig. 22. This is where the leaf appears to be a part of the stem, as in the common fern, which bears its flowers and fruit upon the back and edges of the leaf. The palm leazes are called fronds. Plants with fronds and stipes are sometimes called by the general name of stipedplants.
154. By observations of geolo gists, it is ascertained that stiped plants were created before cauline ones; since petrifactions of tie former are found in the lower formations of the earth, whiue no remains of cauline plants are ever found in them. In this sketch of the fern, a represents the lower part of the frond, sometimes also called the stipe.

Fig. 23.

155. Stipe, is the stem or leafless part of a frond, or the stalk of a fungus or mushroom. The term is also applied to the slender thread, which a in many of the compound flowers, elevates the hairy crown, with which the seeds are furnished, and connects it with the seed. Thus, in the seed of the Dandelion, which is here represented, the column (Fig. 23, a) standing on the seed (b) and
elevating the down (c) is the stipe.

153. Describe the frond. 154. What plants, according to the observations of geologists, were first created?
 155 What is a stipe ${ }^{\text {^ }}$

C.2. VII. 1
stems.

156. Here is a mushroom, or Toad. stool, with the cap, (Fig. 24, d) elevated by its stem or stipe (e).
157. Herbaceous stems usually die every year; in some cases, when the root lives more than one year, the stem is annual, as in the Tulip.
158. Woody stems are composed of tough fibres, as the oak, currant-bush, \&c. Plants with woody stems are generally much longer lived than herbaceous plants.
159. Pithy stems, like the elder, are in their centre composed of a soft substance, called meditla, or marrow. Some stems are solid, as the Box; hollow, as the Onion; and corky, as the Cork tree.
160. The stem is either simple, or divided into branches. The divisions of the main stem are called branches; the divisions of the branches are called branchlets, or boughs.
161. Branches sometimes grow without any regular order; sometimes they are opposite; sometimes alternate; and sometimes, as in certain species of the pine, they form a series of rings around the trunk. Some branches are erect, as in the poplar; others are pendant, as in the willow; some, as in the oak, form nearly a right angle with the trunk.
162. A remarkable phenomenon is described by travellers as being exhibited by the stems of the Banyan tree of India, called the Ficus Indicus; these stems throw out fibres, which descend and take root in the earth. In process of time, the stems become large trees; and thus from one primitive root, is formed a little forest. The tree is called by various names; as the 1 n -dian-God-tree, the arched-Fig-tree, \&c. The Hindoos plant it near their temples, and in many cases the tree itself serves them for a temple. Milton speaks of this tree as the one from which Adam and Eive obtained leaves to form themselves garments; he says:
156. What is the stem of the mushroom called
157. What are herbaceous stems composed of i
158. What are woody stems?
159. Wha. other kinds of stems are there?
160. What are branches and boughs?
161. What are the different appearances presented ky branches?

What is said of the Banvan tree?
"Such as at this day to Indians known In Malabar or Decan, spreads her arms, Branching so broad and long, that in the ground The bended twigs take $100 t$, and daughters grow
About the mother tree, a pillar'd shade High over-arched, and echoing walks between."

You have here a picture of this wonderful tree, which is and to have given shelter to an army of several thousand men

CHAPTER VIII.
Buds.
163. Most leaves and flowers proceed from scaly covenngs coser closely ; the outer called buds. ones being dry and hard, the inner moist and covered wrevents the they are also furnished with a kind of resin, which prevents embryo or future plant from being injured by too much moisture. Buds have been known to lie for years in water without injury to the infant plant, or branch, within.
164. The sap is the great fountain of vegetable life; by its 104. Tew budo are yearly formed to replace the leaves and agency, new boy destroyed by the severity of winter.
165 . The bud is usually a cone-like protuberance formed b)
163. What do most leaves and flowers proceed from?
164. By what agency are new buds formed?
the bud usually make its appearance?

Ch VIII. 1 BUDA.
the swelling of the germ : and as for tais purpose the agancy of an additional quantity of sap is needed, we see the bud ap pearing at the axils of leaves, or the extremities of branches and stems, where there is an accumulation of this fluid. If yon plant a slip of Geranium, you will observe that it either spiouts from the axil of a leat, or from knots in the stem which auswer the same purpose as the leaf, by slightly interrupting the circulation of juices, and thus affording an accumulation of sap necessary for the production of a new shoot.
166. Herbs and shrubs have buds, which usually gi w and unfold themselves in the same season, and are destitute ot scales; while the buds of trees are not perfected in less than two seasons, and in some cases they require years for their fuil development.
167. You have, no doubt, observed in the spring, the rapid growth of the leaves and branches of trees; and perhaps, have also noticed, that as summer advances, the progress of vegetation seems almost to cease, and that new leaves and branches do not come forth as before; but you may not have known, that instead of resting in her operations, nature is now busy in providing for the next year; that she is turning the vital energies of the plants to the formation of buds. Those little embryo plants, so nicely wrapped up in downy scales as to be able to hear the coldness of the winter, in the ensuing spring will come Sorth from their snug retreats, and taking the places of the leaves which had withered in autumn, will delight us with new ver dure and beauty.
168. You may here see a representation of two

Fig. 26. scaly buds; one of which appears as if cut vertical ly, in order to show the germ or embryo, which is enfolded by the scales.
169. The term bud, in common language, extends to the rudiments of all plants, whether with scales or without, which originate upon other living plants. Buds with sealy coverings are chiefly confined to the trees of cold countries. In the northern part of the United States, there are few trees which tan endure the cold weather, without this security. In Sweden, it is said there is bet one shrub* destitute of scaly buds

- A species of Rhamnus, which grows under trees in marshy forests.

166. Do herbs and shrubs have buds?
167. At what period of the year are buds formed?
168. What does Fig. 26 represent?
169. In what zountries are the trees mostly furnished with scalv
and this from the peculiarity of its situation, is always protected from the inclemencies of the weather.
170. That there is, in reality, a difference in the nature of regetables as well as of animals, is very apparent; an oravge ree will not form scales to protect its buds trom cold; neithel can the unost delicatic tropical animal resist the rigours of a polar clinate.
171. There are cases, however, in which plants, as well as animals change their habits. The horse-chestnut, in India, its native slimate, unfolds its leaves to the atmosphere, without receiving any check in their development; in a colder cllmate, the leaves, in attempting to unfold, are checked in their mate, the leaves,
progress, degenerate into scare three sorts; the flower-bud, leaf-
172. Of the buid, there ar bud, and mixed-bud.
173. 1st. The flower-bud, is of a short round form, and con-
\& tains the rudiments of one or several flowers folded over each [T) other, and surrounded with scales. It is often found at the - extremities of small short branches; this is the kind of bud which is employed in grafting or inoculating. This operation which is employed in gromed by cutting into the bark of another tree, and placing is performed by cutting into the bark of another cree, and placing a bud in the aperture; the sap of the tree flows to it. and forms around it a substance which connects the bud to itself; in this situation it shoots forth, and becomes a fruit-bearing branch.
174. 2d. The leaf-bud contains the rudiments of several eaves without flowers; it is usually longer and more pointed than the flower-bud
175. 3d. The mixed-bud contains both leaves and flowers. In the peach we have examples of the first two divisions, the
leaf and flower-bud being distinct; in the lilac they are enclosed together in the same bud.
176. You have now seen the manner in which buds commence their existence; and how they gradually unfold themselves until they become, in their turn, branches covered with selves and flowers. In considering this subject, you cannot eaves and flowers. In considering this subect, yous of that Sut have been impressed with a sense of the goodness of that
177. Dees there appear to be any difference in the nature of vegeables?
178. Do plants ever change their habits?
179. How many kinds of buds are there?
180. Describe the flower-bud
181. Describe the leaf-bud.
182. Describe the mixed-bud.
183. What refections arise when considering the progress of vegete. ble life?

Ch. IX. 1
LeAVES.
great Being, who watches with unceasing cave over his vast creation. To observe the progress of life, whether in the vegetable or animal kingdom, is highly interesting to an investigating mind;-but here the power of man can achieve nothins; he may plant and water, but God alone giveth the increase.
177. A bind lives; an infant lives; both are destined to grow and to pass through physical changes; but the bud, although active with a principle of lite, knows not its own existence: while the infant becomes consclous of its own pow ers and faculties, capable of loving those who have con tributed to its well-being, and of adoring the great Author of its existence.

CHAPTER IX.

78. The leaf is generally a thin, flat organ, consisting of an expansion of the fibres of the bark, connected by a substance which is called the cellular tissue ; the whole is covered with a green coat or skin called the cuticle.
79. Leaves are furnished with pores for exhaling and inhaling gases; and as they present to the air a more extended surface than all other parts of the plant, they are of great utility to the vegetable, by imbibing suitable nourishment, and throwing off such gases as would be useless or injurious.
180 . We have seen how the bud is formed, and by what culrious means the principle of vegetable life which it contains is preserved and protected through the cold and dampness of winser. In the spring, when the sun has torned his course towards the north, re-crossed the equator, and is advancing towards the tropic of Cancer, ${ }^{*}$ the vegetable world in our region quickened by its stimulating warmth, begins to awaken from its dormant state; the leaf-buds expand, and soon bursting their envelopes. the green leaves come forth.

- It is here presumed that the pupil has been instructed in the apparent course of the sun, as explained in the common school geographies.

[^5]and this from the peculiarity of its situation, is always protected from the inclemencies of the weather.
170. That there is, in reality, a difference in the nature of regetables as well as of animals, is very apparent; an oravge ree will not form scales to protect its buds trom cold; neithel can the unost delicatic tropical animal resist the rigours of a polar clinate.
171. There are cases, however, in which plants, as well as animals change their habits. The horse-chestnut, in India, its native slimate, unfolds its leaves to the atmosphere, without receiving any check in their development; in a colder cllmate, the leaves, in attempting to unfold, are checked in their mate, the leaves,
progress, degenerate into scare three sorts; the flower-bud, leaf-
172. Of the buid, there ar bud, and mixed-bud.
173. 1st. The flower-bud, is of a short round form, and con-
\& tains the rudiments of one or several flowers folded over each [T) other, and surrounded with scales. It is often found at the - extremities of small short branches; this is the kind of bud which is employed in grafting or inoculating. This operation which is employed in gromed by cutting into the bark of another tree, and placing is performed by cutting into the bark of another cree, and placing a bud in the aperture; the sap of the tree flows to it. and forms around it a substance which connects the bud to itself; in this situation it shoots forth, and becomes a fruit-bearing branch.
174. 2d. The leaf-bud contains the rudiments of several eaves without flowers; it is usually longer and more pointed than the flower-bud
175. 3d. The mixed-bud contains both leaves and flowers. In the peach we have examples of the first two divisions, the
leaf and flower-bud being distinct; in the lilac they are enclosed together in the same bud.
176. You have now seen the manner in which buds commence their existence; and how they gradually unfold themselves until they become, in their turn, branches covered with selves and flowers. In considering this subject, you cannot eaves and flowers. In considering this subect, yous of that Sut have been impressed with a sense of the goodness of that
170. Dees there appear to be any difference in the nature of vegeables?
171. Do plants ever change their habits?
172. How many kinds of buds are there?
173. Describe the flower-bud
174. Describe the leaf-bud.
175. Describe the mixed-bud.
176. What refections arise when considering the progress of vegete. ble life?

Ch. IX. 1
LeAVES.
great Being, who watches with unceasing cave over his vast creation. To observe the progress of life, whether in the vegetable or animal kingdom, is highly interesting to an investigating mind;-but here the power of man can achieve nothins; he may plant and water, but God alone giveth the increase.
177. A bind lives; an infant lives; both are destined to grow and to pass through physical changes; but the bud, although active with a principle of lite, knows not its own existence: while the infant becomes consclous of its own pow ers and faculties, capable of loving those who have con tributed to its well-being, and of adoring the great Author of its existence.

CHAPTER IX.

78. The leaf is generally a thin, flat organ, consisting of an expansion of the fibres of the bark, connected by a substance which is called the cellular tissue ; the whole is covered with a green coat or skin called the cuticle.
79. Leaves are furnished with pores for exhaling and inhaling gases; and as they present to the air a more extended surface than all other parts of the plant, they are of great utility to the vegetable, by imbibing suitable nourishment, and throwing off such gases as would be useless or injurious.
180 . We have seen how the bud is formed, and by what culrious means the principle of vegetable life which it contains is preserved and protected through the cold and dampness of winser. In the spring, when the sun has torned his course towards the north, re-crossed the equator, and is advancing towards the tropic of Cancer, ${ }^{*}$ the vegetable world in our region quickened by its stimulating warmth, begins to awaken from its dormant state; the leaf-buds expand, and soon bursting their envelopes. the green leaves come forth.

- It is here presumed that the pupil has been instructed in the apparent course of the sun, as explained in the common school geographies.

[^6]181. Some plants are destitute of leaves; they are then calsed Aphyllous, which term signifies wanting leaves.
182. In determining the species of plants, the leaves are much regarded. Specific names are often given from some circumstance of the leaf; for example, the Hepatioa triloba is that species of the Hepatica which has leaves with three divisions called lobes; the Viola rotundifolia is a species of violet with round leaves.
183. A knowledge of the various appearances presented by leaves, is of great importance ; in order to become acquainted with all their varietied considerable practice in the analysis of plants is necessary. Engravings will assist you in understanding definitions, but you must consult ature. There are many ing definitions, terms to express the varieties observable in leaves; we shall here explain some of the most important.
184. 1. Seminal leaves are those which come up with the plant when it first appears above the surface of the earth; as in the garden bean: these leaves are the cotyledons, or lobes of the seed, which, after nourishing the young plant, decay.
185. 2. Primordial leaves succeed the seminal ones, and resemble them in position, form, and size. The primordial leaf, according to the fanciful idea of a French butanist, is a sketch which nature makes before the perfection of her work.
186. 3. Characteristic leaves are found in the mature state of the plant; or according to the idea above advanced, nature here perfects her design.
187. It is not always, however, that this process with regard to change of leaves takes place; as in many cases the proper, or characteristic leaf, is the only one which appears.
188. There are many terms to express the mode of insertion of the leaf; such as radical, growing from the root (radix,) of the lear; such as 189. To express the position of leaves, we find the terms. opposite, alternate, \&c.
181. What are plants destitute of leaves called?

182, Is the leaf noticed in determining the species of plants?
183. What is the best way of learning the varieties of leaves?
184. Describe the seminal leai.
185. Describe the primordial leaf.
186. Describe the characteristic leaf.
187. Dres this process with respect to the change of leaves alwayz cake place?
188. What are some of the terms which express the mode of inserton of the leaf?
189. What terms expuess the position of the leaf?

Ch. IX.!
LEAVES.
190. The form of the leaf is expressed by various terms borrowed from the names of different objects; as digitate, (from digitus, the finger,) \&c. For the explanation of these different terms you must consult the vocabulary as often as you find those you do not understand. We will, however; illustrate some of the most common forms of simple leaves

Fig. 27.

191. Orbicular, or the round leaf; the Nasturtion attords an example of this kind; (see Fig. 27, a;) this is also peltate, having its petiole inserted into the centre of the leat, and thus resembling a shield.
192. Reniform, (from the Latin ren, the kıdney,) or as it is sometimes called kidney-form; the Ground-ivy (Glechoma) has a leaf of this kınd. (See Fig. 27, b;) It is crenate, or has a margin with scolloped divisions, ciliate, being fringed with hairs like eyelashes.
193. Cordate, (from the Latin cor, the heart,) or heart-shaped. Fig. 27, (c,) represents a cordate leaf with an accuminated point ; that is, acute and turned to one side; the margin is serrated; an example of this kind of leaf may be seen in one species of the Star-flower, Aster cordifolium.

$$
\text { Fig. } 28 .
$$

D

190. What terms express the form of the leaf?
190. What terms express the for
191. Describe an orbicular leaf.
191. Describe an orbicular leaf.
192. What is a reniform leaf?
192. What is cordate?

5
194. Ovate, obovate, oval; these are terms deriven from the Latin ovom, an egg ; suppose the figure at 28 , a, to represent an egg, you observe that one end is broader than the other, now if to this broad end you add a petiole prolonging it into a nid-rib with some lateral divisions, you have, as at b, the re mid-rib with some lateral divisions, youle, were placed at the presentation of an ovate leaf. If the petiole, were placed at the narrowest end, it would be an obvate leaf. An oval leal ($($ c) is when both the ends are of equal breadth. When the length is much greater than the breadth, the leaf is said to be elipti$c a l$, as at d.

195. Lanceolate, this kind of leaf may be seen in the peach tree; it is represented in Fig. 29, a; this has a serrulated or slightly notched margin; at b, may be seen the cleft stipules. or appendages of the leaf.
196. Linear, as the grasses and Indian corn, Fig. 29, c, represents a leaf of this kind; it is sheathing, or encloses the st m presents a leaf of base, as may be seen at d.
197. Deltoid, from the Greek letter delta Δ; this kind of leal 197. Deltond, from the Greek lettord Lombardy poplar affords an is represented at e, Fig. 29; the Lombardy popiar anords al example of the same.
194. Describe the terms ovate, obovate, and oval.

195 Describe a lanceolate leat.
195. What is a linear leaf?
197. What is a deltoid leaf?

C: IX. 1
LEAVEs.
Fig. 30.

198. Sagittate, (from sagitta, an arrow,) or arrow shaped :eaf; this is represented at a, Fig. 30; the Sagittaria, or Ar-row-head, an aquatic plant, affords an example of this leaf. 199. Acerose, or needle shaped; this is represented at b, Fig. 30. Leaves of this kind are mostly clustered together, as in the pine; they are subulate, or pointed like a shoemaker's awl; they are rigid, or stiff, and evergreen.
200. Trees with acerose leaves, are usually natives of mountainous or northern regions; any other kind of leaves would is these situations be overpowered by the weight of snow or the nolence of the tempests; but these admit the snow and wind through their interstices; their many points or edges, presented even to a gentle breeze, produce a deep, solemn murmur in the

- forest; and when the storm is abroad, and the tempest high.
"The loud wind through the forest wakes, With sound like ocean's roaring, wild and deep,
And in yon gloomy pines strange music makes."

[^7]The poet Burus, in describing such a scene, says: "this is my best season for devotion: my mind is wrapt up in a kind of enthustasm to Him who, in the pompous language of the Heentrew bard 'walks on the wings of the wind.'"
201. Inrate, differs from pinnatifid in having its terminating segment broader and more circular. See Fig. 30, c.
segment broader and more circular. See Fig. 30 , c.
202. Pinnatifid, may be seen at Fig. $30, d$; leaves of this
form are sometimes finely divided, like the teeth of a comb; they are then said to be pectinate.
203. Patmate, or hand shaped, (Fig. 31, a;) one species of the Passion-lower affords a good example of this kind of leat. The oblong segments like fingers, arise from a space near the petiole, which may be considered as resembling the palm of the hand.
204. Digitate, or fingered leaf, (Fig, 31, b,) differs from the palmate leaf in having no space resembling the palm of a hand; but several distinct leafets arise immediately from the petiole as may be seen in the Horse-Chestnut.
205. Connate, (Fig. 31, c;) the bases of opposite leaves are united so as to appear one entire leaf.

201. Describe a lyrate leaf.
202. What is a pinnatitid leaf?
203. What does palmate signifv?
204. What is a digitate leat?
205. What is a connate leaf ?
206. Lobed; when leaves are deepiy indented at their margins, they are said to be lobed, and according to the number o: these indentures, they are said to be three lobed, four lobed, \&c. Fig. 32, a, represents a three looed leaf, as may be seen in the Hepatica triloba.
207. Sinuate, from the Latin sinus, a bay; this term is applied to leaves which have their margins indented wi.h deep, roundish divisions, as at b, Fig. 32 .

Fig. 32.

208. Emarginate, denotes a slighter indentation than sinuste, as at c, Fig. 32.
209. Stellated, or whorled; (from stella, a star;) this term is applied both to leaves and flowers, and relates to the manner in which they radiate from the stem, as in Fig. 33.
210. Tubular, there are many varieties of this kind; the leaf of the onion is a complete tube; the Saracenia, or sidesaddle flower, has the sides of its leaf united, forming a cup which is found filled with liquid, supposed to be a secretion from the vessels of the plant In some countries of the torrid zone is the
206. What does lobed signify ?
207. What is sinuate?
208. What is emarginate?
209. What does stellated signify?
210. What leaves are called tubular?
wild pine, Tillaridsia, the leaves of which are hollowed ou: at their base, so as to be capable of containing more than a pint of liquid. A traveller says, "by making an incision into the base of this leaf, and collecting the water in our hats, we could cbtain a sufficient supply for the relief of the most intense thirst." The fluid is not a secretion from the plant, but is deposited during the rainy season. Fig. 34.

211. The Pitcher-plant, (Nepenthes distillatoria,) Fig. 34, affords a most singular tubular receptacle in an appendage to its lanceolate leaf; beyond the apex of the leaf a, the mid-rib extends in the form of a tendril; at the extremity of this tendril is the cylindrical cup or pitcher b, about six inches in length, is the cylindrical cup or piteher i, is furnished with a lid, c, and one and a half in diameter; it is furnished with a lid, c. This is usually found filled with pure water, supposed to be a secretion from the plant. Insects which creep into this cup are drowned in the liquid, except a small species of shrimp, which lives by feeding on the others. The Pitcher-plant is a native of Ceylon, where it is called monkey-cup, on account of its being frequented by these animals for the purpose of quenching their thirst.

Compound Leaves.

212. When several leafets grow on one petiole, the whole in termed a compound leaf, as in the Rose.

Ch. IX.]
Lenves.
213. Piniate; at Fig. 35, a, represents the petiole or pridcipal leaf stalik; from this, spring out other divisions, each beaing a leafer; b, b, represent the stipules or appendages; the whole taken together forms one compound pinnate leaf. Tae term pinnate is from the Latin pinna, a wing or pinion.
214. Binate; when two leafets only spring from the pericle. as in Fig. 35, c.

Fig. 36.

215. Ternate; when three leafets arise from the patiole, ns Fig. $36, a$.
216. Bi-ternate is a second division of threes, as Fig. 36, b.

317 Tri-ternute is a third division of threes, as Fig. 36, r

218. Decompound, is when a pinnate leaf is again dirided, or has its leaves twice compound, as Fig. 37, a. At b, is a representation of thrice compound leaves.
219. Leaves vary in size, from the small leaves of some of
213. What does pinnate signify?
214. What is binate?
215. When is a leaf said to be ternate?
216. When bi-ternate?
216. When bi-ternate?
218. When is a leaf said to be decompound?
218. When is a leaf said to be decompound?
219 What is remarked of leaves with respect to size?
the forest trees of our climate, to the spreading palms and ba nanas of the torrid zone. As we approach the torrid zone, the leaves increase in magnitude; we can however scarcely credit the report of travellers, who say, that the Talipot tree, in the island of Ceylon, produces leaves of such size, that twenty per sons may be sheltered by one single leaf. Although this account may be exaggerated, there is no doubt of the fact, that count may be exaggerated, the re a wonderful size; and that whole fanilies often dwell under the branches of these trees. Whole families often dwel an ever kind Providence, which, in
Here we see the care of an Here we see the care of an ever has formed such refreshing shelters.
220. Mungo Park, in his travels in Africa, remarks upon the many important uses of palm leaves; serving as coverings to cotrages, as baskets for holding fruit, and umbrellas for defesce against rain or sun. These leaves are a good substitute for paper, and were so used by the eastern nations. Many sappose that the scriptures of the Old Testament were originally committed to palm leaves
221 The magnitude of leaves often bears no proportion te the size of the plants to which they belong. The Oak, and other forest trees, bear leaves, which appear very diminutivn when compared with the Cabbage, or Burdock.
222. Leaves, with respre: to duration, are,

Caducous, or such as fall before the end of summer; Deci. luous, falling at the commencement of winter; this is the case with most vegetables, as far as 30° or 40° north of the equator; Persistent, or permanent, remaining on the trees amidst changes of temperature, as the leaves of the Pine and Box; Evergreen, preserving their greenness through the year, as the Fir-tree and Pine, and generally all cone-bearing and resinous trees; these renew their leaves annually, but the young leaves appearing before the old ones decay, the plant is always green.
223. In our climate the leaves are mostly deciduous, return mg in autumn to their original dust, and enriching the soil from which they had derived their nourishment. In the regions of the torrid zone, the leaves are mustly persistent and evergreen; they seldom fade or decay in less time than six years; but these same trees, removed to our climate, some

Q20. What is said of the uses of palm leaves?
221. Does the size of the leaf correspond to the size of the plant?
222. How are the leaves divided with respect to duration?
223. What is observed of the leaves of our climate with respect to furation and what is said of the leaves of the 'orrid zone?

Yh. IX. 1
mes become anuual plants, losing therr foliage every year. The Passion-flower is a perennial evergreen in southern elimates, though annual in ours
224. Leaves have not that prilliancy of colour whic.a is seen in the corolla or blossom; but the beauty of the corolla, like most other external beauty, has only a transient existence; while the less showy leaf remains fresh and verdant, after the flower has withered away.
225. The substance of leaves is so constituted as to absorn the other rays of light, and reflect the green ray; this colour is, of all others, best adapted to the extreme sensibility of our organs of sight. Thus, in evident accommodation to our sense of vision, the ordinary dress of nature is of the only colour upon which our eyes can, for any length of time, rest without pam. 226. But although green is almost the only colour which leaves reflect, its variety of shades is almost innumerable.
"No tree in all the grove but has is charms,
Though each its hie peculiar; paler some,
And of a wannish gray; the willow such,
And poplar, that with silver lines his leaf;
And ash far stretching his umbrageous arm;
Of deeper green the elm; and deeper still,
Lord of the woods, the long surviving oak.".
The contrast between their shades, in forests, where duferent families of trees are grouped together, has a fine effect, when observed at such a distance, as to give a view of the whole, as forming one mass.

CHAPTER X.

 Leaves.-Appendages.227. Leaves perform a very important office, in sheltering and protecting the flowers and fruit. The fact of their inhaling or absorbing air, is thought to have been proved, by placing a plant under a bell glass exhausted of air, permitting the leaves only to receive the influence of air ; \dagger the plant remained

- Cowper.
+ Natural philosophy will inform you of the manner in whicn is glass vessel may be thus exhaustel by means of the air-pump.
224 What is observed of leaves with respect to brilliancy of colour 1 225. What coloured ray do leaves reflect?

226. What is said of the different shades of green which may be seen in leaves ?
227 What are some of tie offices of leaves?
thi ifty in this situation for a length of time; but as soon as the whole plant was placed under the receiver, it withered and whole
died.
227. The upper surface of leaves is usually of a deeper green. and supposed to perform a more important part in respiration, than the under surface. The upper surface repels moisture you may perceive, by examining a cabbage leaf after a showes o heavy dew, that the moisture is collected in drops, but has n. appearance of being absorbed by the leaf. It has been found tat the leaves of plants, laid with their upper surface upon wattr, wither almost as soon as if exposed to the air, although the leaves of the same plants, placed with their under surfaces upon water, retain their freshness for some days.
228. But few among the vegetable tribes are destitute either of leaves, or green stems, which answer as a substitute. The Monotropa, or Indian pipe, is of a pure white, and looks as if Mono Mrooms are also destitute of any green herbage. It is not known in what manner the deficiency of herbage. It is not known in mates.
229. The period in which any species of plant unfolds its leaves, is termed Frondescence. Linneus paid much attention to this subject; he stated as the result of his investigations, that the opening of the leaf-buds of the Birch tree, (Betula,) was the most proner time for the sowing of barley. The Indians of the most propad an opinion that the best time for planting Indian country had when the leaves of the white oak first made dian corn, was when the leaves of the white oak first made their appearance; or, according to their expression, are of the size of a squirre's ears.
230. One of the most remarkable phenomena of leaves, is their irritability, or power of contraction, upon coming in contact with other substances. Compound leaves possess this property in the greatest degree; as the foreign sensitive plant, and the American sensitive plant; these, if the hand is brought near them, seem agitated as if with fear; but as they are destiphysical cause, perhaps the warmth of the hand, which produces he contractions and dilatations of the leaves.
231. The effect of tight upon leaves is very apparent, plants being almost uniformly found to present their upper surfaces

228 . In what respects do the upper and under surfaces of leave: d ffer ?
229. What plants are destitute of leaves?
230. What is meant by the term Frondescence?
231. Wha: is said of the irritability of leaves?

232 What is said of the effect of light upon leaves?

Ch. X. 1
LEAVES.-APPENDAGES.
to the side on which the greatest quantuty of light is to be found. it has already been observed, that plants throw off oxygen gas; but for this purpose they require the agency of light.
233. Carbonic acid gas is a necessary food of plants; this consists of carbon and oxygen, and is decomposed by the agency of light; the carbon becomes incorporated with the vegetable, forming the basis of its substance, while the oxygen is exhaled thrown off into the atmosphere.
234. Many plants, close their leaves at a certain period of the day, and open them at another; almost every garden contains some plants, in which this phenornenon may be ohserved ; it is particularly remarkable in the sensitive plant, and the tamarind tree. The folding up of leaves at particular periods, has been termed the sleep of plants; this may seem a singular term to apply to plants; but a celebrated botanist remarks, "this folding up of the leaves may be as useful to the vegetable constitution, as real sleep is to the animal."
235. Linnæus was led to observe the appearance of plants in the night, from the following circumstance, which occurred in raising the Lotus plant; he found one morning some very thrifty flowers, but at night they had disappeared; this excited his attention, and he began to watch the plants through the night, in order to observe the period of their unfolding. He was thus led to investigate the appearance of other plants in the night, and to observe their different manner of sle ${ }^{\circ} p$.-He found that some folded their leaves together, some threw them back upon their stems, or exhibited other curious appearances.-This phenomenon has been attributed to the absence of light.
236. The following experiment was once made by a botanist; he placed the sensitive plant in a dark cave at midnight, and then lighted up the cave with lamps; the leaves which were before folded up suddenly expanded, and when on the following day the lights were extinguished, the leaves again closed.
237. The period at which the leaves fall off is termed the Defoliation* of the plant. About the middle of Autumn, the leaves of all annual, and of many perennial plants, begin to ose their vigour, change their colour, and at length fall from heir stems.

* From de, signifying to deprive of, and folium, leaf.

[^8]238. The "fall of the leaf" may be referred to two causes; the death of the leaf, and the vital action of the parts to which it is attached. If a whole tree is killed by lightning, or anv sudden cause, the leaves will adhere to the dead brancnes, be cause the latter have not the energy to cast them off.
239. The richness and variety of colouring exhibited about he end of autumn, by American groves and forests, is spiendid beyond the power of the painter to imitate. Yellow, red, and brown, are the most common colours of the dying leat; but brown, are the most common, colvis vary from the brightest scarlet, and the deepest these colvurs vary from the orightew, from the deep orange to
crimson, to different shades of yellow, crimson, to different shades of ycllow, fron
he pale straw colour.

Appendages to Plants.
240. Plants have a set of organs called by the genera! name of arpendages. These we shall now describe.

241. Stipules are membranous or leafy scales, usually in pairs, at, or near the base of the leaf or petiole. They are various in their forms and situations, are found in most plants, but are sometimes vanting. In the garden violet, Viola tricolor, (Fig. 38, a, a, the stipules are of that form called lyrate pinnatifid, while the true leaf (b) is oblong and crenate. The most natural situation of the stipules is in pairs, one on each side of the ball almost as footstali, as in the siveel panded, but in general, they remain as long as the leaves.
242. Prickles, arise from the bark; they are sometımes traight, sometimes hooked, and sometimes forked. They are usually found upon the stem, as in the Rose; but in some cases they cover the petiole, as in the Raspberry; in others, they are
238. To what may the fall of the leaf be referred?
239. What is said of the appearance of American forests in the A tumn?
240. What organs have plan s besides those already named?
241. Describe stipules.
242. Describe piickles.

Ch. X.I
appendages to plants
found upon the leaf or the calyx, and in some instances upon the berry 'as in the Gooseberry.

243. Thorns, seem to be a kind of short pointed stem, easily distinguished from prickles, as they grow from the woody part of the plant, while the prickle proceeds only from the bark. On stripping the bark from a rose-bush, the prickles will come away with it, but let the same experiment be made with a thorn bush, and although the bark may be separated, the thorn will still remain projecting from the wood.
244. In this drawing (Fig. 39) you will observe the thorn (a) to remain on the stem, while the bark (b) has been peeled off. In the prickle (c) the whole appears separated from the plant Thorns in some plants have been known to disappear by cultivation. The great Linnæus imagined that the trees were dirested of their natural ferocity and became tame. A more rational opinion is given by another botanist, viz.: that thorns are in reality buds, which a more favourable sitiation converts into luxuriant branches. But in some cases they do not disappear even under circumstances favourable to vegetation. Thorns have been compared to the horns of animals.
245. Glands are roundish, minute appendages, sometimes called tumours or swellings; they contain a liquid secretion, which is supposed to give to many plants their fragrance.They are sometimes attached to the base of the leaf, sometimes they occur in the substance of leaves; as in the Lemon and Myrtle, causing them to appear dotted when held to the light. They are found on the petioles of many plants, and between the teeth or notches of many others.
246. Stings are hair-like substances, causing pain by an acrid liquor, which is discharged upon tneir being compressed ; they are hollow, slender, and pointed, as in the Nettle.
247. Scales are substances in some respects resembling the

243 What are thorns?
244. What does Fig. 39 reqresent?
245. What are glands?
246. What are stings?
247. What are sceles?
cnarse scales of a fish; they are often green, sometimes colour ed, and are found upon all parts of vegetables, upon the routs of bulbous plants, and upon the stems and branches of other plants. They are imbricated upon the calyxes of most of the compound flowers. You have seen in buds, how important the scales are to protect the embryo plant during the winter. Scales scales are to piotect the embrys plase under the name of glumes. They envelope and sustain the stamens and fruit of the pine. oak, chestnut, \&e.

Fig. 40.

248. Tendrils, or claspers, are threadlike, or filiform appendages, by which weak stem3 attach themselves to other bodies for sup port; they usually rise from the branches, in some cases from the leat, and rarely from the leaf-stalk or flower-stalk. You have here the representation, Fig. 40, of a tendril. Tendrils are very important and characteristie appendages to many plants. In the Trumpet flower and Tvy, the tendrils serve for roots, planting themselves into the bark of trees, or in the walls of buildings. In the Cucumber and some other plants, fendrils serve both for sustenance and shade. Many of the papilionaceous, or Pea blossom plants, bave twining tendrils, which wind to the right and back again. Some plants creep by their tendrils to a very great height, even it the tops of the loftiest trees; and seem to cease ascending only because they can find nothing higher to climb upon. One of our most beautiful climbing plants is the ClemaTis virginica, or Virgin's bower, which has flowers of a brilliant whiteness; in autumn, its pericarps, with the long pistils remaining upon them, look like festoons of rich, yellowish fringe.
249. Pribescence includes all down, hairs, woolliness, or silkiness of plants. The pubescence of plants varies in differ ent soils, and with different modes of cultivation. The species in some genera of plants are distinguished by the direction of are genera of plant is sometimes necessary in determining the hairs. A microscope is sometimes necessary the pubescence. with precision the existence and direction of the pubescence. it has been suggested that these appendages may be given to
248. What are tendrils ?
249. What is included under the term pubescence ?
'h. XI. 1
APPENDAGES TU PLANTX.
piants for similar purposes as the fur, hair, and bristres of antmals, viz. : to defend them from cold and other injuries.

Fig 41.

250. The Bract is a leaf among or near the flowers, different from the leaves of the plant. In this branch, (Fig. 41,) you observe the difference between the real leaves ($b b$) and the bract (a) ; the former being cordate and crenate, the latter lanceolate and sntire.
251. In some plants, as in several species of the Sage, the transition from leaves to bracts is so gradual, as to render it difficult to distinguish be tween them, and a considerable part of the foliage is composed of bracts. In other plants, as the Crown imperial, the stem is terminated by a number of large and conspicuous bracts. The appendages are sometimes mistaken for the calyx.
252. We have now, in regular or der, considered the first of the two elasses of vegetable organs, viz.: such as tend to the support and growth of the plant, including root, stem, leaf. and appendages; we are next to ente* upon the description of a class of organs whose chief use appears to be that of bringing forward the fruit

CHAPTER XI.

Different parts of the Flower.-The Calyx.

253. You are no doubt pleased to have arrived at the blus som. tnat part of the plant which is the ornament of the vege lable kingdom. Flowers are delightful to every lover of na

[^9]mre; a bnuquet, or even the simplest blossom, presented by a 'riend, interests the heart. How many pleasant thoughts are awakened by the fresh and perfurned incens? which is offered by flowers ! their odour has been poetically termed the language by which they hold communion with our minds.

2F. Although every part of a plant offers an interesting subjec. .Jr stuty, the beauty of the blossom seems by assoctation to he,ghten the pleasure of scientific research. Flowers are inc'eed lovely, but like youthful beauty, they are fading and transient they are, however, destined for a higher object than a short-lived admiration; for to them is assigned the important office of pro ducing and nourishing the fruit. May those also who study this book, so improve the bloom of life, that when youth and beauty sball have faded away, their minds may exhibit thas fruit, which it is the important business of the season of youtt to purture and mazure.
255. The parts of the flower, or the organs of fructification aro the following:

Calyx,	
Corolla,	
Stamen,	Pericurp,
Pistil,	Seed,
	Recestacle.

256. The Calyx is frequently wanting, as in the Tulip. The Corolla is also wanting in many plants, as in most of the forest trees, which to a careless observer, may seem to produce no flower, but the presence of a stamen and pistil, is in botany considered as constituting a perfect flower. These two organs are essential to the perfection of the fruit.
257. When a flower is destitute, either of stamens or pistuls, it is termed imperfect. A Hower is said to be incomplete when any of the seven organs of fructification are wanting.
258. The word Calyx s derived from the Greek, and literaliy signifies a cup; it is the cover of the corolla, and usually green $;$ when not green, it is said to be coloured.
254. Is there any other office assigned to flowers than thowe of p.easing the senses ?
255. Repeat the names of the parts of the flower.
256. What parts of the flower may be wanting,-and what parts are essential?
257. What is the difference betwero an imperfect and an incomplete flower?
258. What does the wora calvx signify, and what is the u:ual siour of the calyx?

1\%. X1.]

259. The leaves or parts of the calyx are called sepals: sometimes the calyx consists of one leaf or sepal, it is then called monosepalous; when it consists of several distinct leaves, it is rslled polysepalous; when one calyx is surrounded by another, t is double; when one calyx surrounds many plants, it is common.
260. The calyx is said to be superior when it is situated on the summit of the germ, as in the apple; it is inferior when situated below the germ, as in the pink. In many plants the zalyx is neither superior nor inferior, but is situated around the germ.
261. When the calyx drops off before the flower fully expands, it is called caducous; the petals of the poppy are, at first, enclosed in a calyx of two large green sepals, but these fall off before the flower is full blown. When the calyx withers and drops off with the corolla, it is called deciduous. In many plants it remains until the fruit is matured; it is then called persistent. In a pea pod, for example, the calyx znay be spen as perfect as it was in the blossom. In an apple or pear the dried leaves of the calyx may be seen on the tops of the fruit ; this shows that the calyx was superior.
262. According to the divisions of Linnæus, there art seven kinds of calyxes; viz.:
Perianth,
Involucrum,
Ament,
Spatha,
263. Perianth. This term is derived from the two forpek words peri, around, and anthos, flower. This is the onlv real calyx or cup, as the term cup does not properly apply to we other kinds of calyxes. A gocd example of the perianth csigx is presented in the Rose, where it is urn-form, with divisions at the top resembling small leaves. In the Pink, the periauth is long and tubular, having the border dentate or toothed. The Hollyhock, Hibiscus, and many other plants, have a double peranth.
264. What is a monosepalous calyx ?-polysepalous?-cuuble?common?
265. What terms express the various positions of the caly x with respect to the germ?
266. What terms express the differext degrees of duration of the calyx?
267. What are the different kinds of calyxes ?

263 Describe the perianth.
6^{*}
264. Involucrum. This term is derived from the Latin, in volvo, to wrap up; this kind of calyx is usually found at the tase of an umbel, as in the Carrot. It 's said to be universai when it belongs equally to the whole of an aggregate flower when it belongs and partial when it enchases a compound or aggregate flor. The term involucrum stitutes a compound or aggregate fower.
is also applied to the membranous covering in the fructification is also applied to the membranous covering in of ferns.
265. Ament, or catciin, is a kind of calyx, by some classed as a mode of inflorescence; it consists of many chafly scales, ranged along a thread-like stalk or receptacle; each scale pro tects one or more of the stamens or pistils, the whole forming one aggregate tlower. The Ament is common in forest trees; as in the Oak and Chestnut, and is also found in the Willow and Poplar. In some trees the staminate flowers are enclosed in an ament, and the pistullate in a perianth.
266. Spatha signifies a sheath. It is that kind of calyx 266. Spatha signies a steal. and when it expands, bursts which first encloses the nower, and wistance below it. The lengthwise, and often appears at some distle of this kind of ca-Wild-turnip, or ARUM, furnishes an exampled a spadix. From lyx, enclosing a kind of inflorescence called as it stands up surthe peculiar appeararice of the spadix, as il stands up pulrounded by the spatha, it is sometimes called ach in many of our pit. (See Fig. 41, a.) The spatha is common in cultivated exotics, as in the cultivated exores, it appears brownish and withered af. brow full expansion of the ter the full expansion of a re-flower.- You (Fig. 41, b), of the spatha of the Arum, and of the Narcissus (c). In the Egyptian Lily, the spatha is white and permaspata is the stamens and nent, and the stamaty uppistils grow separately upon the spadix. Palms have a spadix which is branched, and often bears a greal quantity of fruit.
264. What is an involucrum?
265. What is an ament?
266. What is a
267. Glume is from the Latin word gluma a husk. This s the calyx of the grasses, and grass-like plants. In the Oat Fig. 42.

a. d Wheat it forms the chaff. In the Oat, (Fig. 42,) the glume calyx is composed of two preces or valves ; in some kinds of grain, of but one, in others, of mure than two valves. To the glume belongs the awn or beard. The corolla of grasses is husky, like the calyx, and is sometimes considered as a part of it.
268. Calyptra. This term is derved from the Greek, and signifies a vail. It is the cap, or hood, of pistillate mosses, re sembling in form and position the extinguisher of a candle.
269. Volva, or curtain, the ring or wrapper of the Fungus, or

Mushroom plants. It first encloses the head of the Fungus, afterwards bursts and contracts, remaining on the stems or at the root. (See Fig. 23.)
270. The calyx is of use in protecting the other parts of the flower, before they expand, and afterwards supporting them, by keeping all in their proper position. Pinks having petals with long and slender feet, which would drop or break without support, have a calyx. Tulips having firm petals, and each one resting upon a broad strong basis, are able to support themselves, and they have no calyx.
267. What is the glume?
268. What is the ca.ypatra
269. What is the volva?

2i7. Of what use is the calyx?

CHAPTER XII

Corolla.-Nectary.

271. T He term corolla, or corol, is derived from the Latin orolla, a little crown or chaplet. As the calyx is formed bv a continuation of the fibres of the outer bark, the corolla is a cun finuation of the cellular integument, or inner coat of the same.
The texture of the corolla is delicate, soft, watery, and coloured.
The cuticle, or outward covering, of the corolla is of an extreme. Iy fine texture. The rich and variegated colours of flowers, are owing to the delicate organization of the corolla; and to this owing to ts transient duration may also be attributed.
272. The corolla exhíbits every variety of colour, except black; florists sometimes present us with what they term black roses, and we see some other flowers which approach this colum, yet none are perfectly black; the darkest being but a very deep shade of purple. Corollas are white, vellow, blue, violet, \&c.; in some, different colours are delicately shaded and blended : in some, different in others, they meet abruptly, withnut any intermediate tint.
in others, they meet abruptly, whinsoming, is folded in the calyx.
273. The corolla, before blossol
as the leaves are within the scales of the leaf-bud, and the whole is then called the flower-bus.
274. In most cases, the calyx and corolla are so distinctiy marked, that it is perfectly easy to distinguish them. The colour usually constitutes a very striking mark of difference ; the calyx being ordinarily green, and the corolla of a more lively hue, but the colour is not always a criterion. In some cases, the calyx is the coutifully coloured.
275. Fach simple part, of which the corolla is composed, is called a petal. A flower with petals is said to be petalous, without petals, apetalous. The petals are definite, when their number is not more than twenty; indefinite when they exceed that number.
276. If the corolla is formed of one single prece, or petal, is is monopetalous, if of more than one, it is potypetulous. You

271. What is the corolla?

27. What is observed of the various colours of the corolla?
${ }_{273}$. Where is the corolla before blossoming?
${ }_{274}$. How are the calyx and corolla distingushed
28. What is said of the divisions of the corolla, and the terms which express them?
ađf. What is meant by the terms monopetalous and polypetalous
may sometimes find a difficulty in determining whether the corolla is in one piece or more; for monopetalous flowers often have deep divisions, extending almost to the base of the corolla; but a corolla must be divided at the base, or be in separate pieces, n order to be considered as polypetalous. It is a good rule to sonsider the parts into which a corolla naturally falls, as so many petals
29. Monopetalous corollas (see Fig. 44,) consists of the tube, throat, and limb. The tube, is the lower part, having more or less the form of a tunnel. The throat is the entrance into the twe ; it is either open, or closed by scales or hairs. The limb is the upper border of the corolla. Eig. 43.
30. Polypetalous corollas consist of several petals. Each petal consists of two parts, the lamina and claw.
31. The lamina, (Fig. 43, a) is the upper and usually thinner part of the pe tal; its margin is sometimes entire, or without divisions, as in the Rose; sometimes notched, or crenate, as in the Pink. The lamina corresponds to the limb of monopetalous corollas.
32. The clavo (Fig. 43, b,) is the lower part of the petal, and inserted upon the receptacle; it is sometimes very short as in the Rose; in the Pink, as seen at Fig. 43 , it is long and slender. The claw is analogous to the tube of monopetalous corollas.
33. The corolla is superior when it is inserted above the germ; inferior, when below. It is regular when each division corresponds to the other. The Rose and Pink have regular corollas. When the parts do not correspond with each other, a corolla is irregular, as in the Pea and Violet.

Different forms of Monopetalous Corollas.
Monupetalous corollas may, according to their forms, be d:vided as follows; $\perp \bigcirc$ -
277. What are the parts of a monopetalous corolla ?
${ }_{278}$. What are the parts of a polypetalous corolla?
279. What is the lamina?
289. What is the lamina
281. What is meant by the terms inferior and superior, reguter end irregular, wben applied to the corolla?

- From personns, a mask. + From ringor, to grin or gare.

285. What is a labiate sorolla, and what is meant o the term persunate and ringent?
286. Describe the cruciform corolla.
287. Describe the caryopl yllons cornolla.
288. Litiaceous, a corolla with six petals, spreading gradually from the base, so as to exhibit a bell-form appearance, as in tien Tulip and Lily.
289. Rosaceous, a corolla formed of roundish spreading petals, without claws, or with very short ones, as the Rose and Apple.
 290. Papilionaceous, a Hower with a banner, two wings, and a keel; the name is derivec from the word papilio, a butterlly, on account of a supposed resemblance to this insect, as in the Pea blos som, (Fig. 50 .)
290. When a corolla is of no determinate form, it is said to be anomalous.

Odour of Flowers.

1

29?. The odour of flowers has its origin in the volatile oils, elaborated by the corolla.
293. Temperature renders the odours of flowers more or less sensible; if the heat is powerful, it dissipates the volatile oils more rapidly than they are renewed; if the heat is very feeble, he volatile oils remain concentrated in the little cells where hey were elaborated; in both cases the flowers appear to have but little odour. But if the heat is neither too great nor too little the volatile oils exhale without being dissipated, forming a per fumed atmosphere around the flowers.
294. You see now the reason, that when you walk in a garden in the morning, or towards evening, the flowers seem more fragrant than in the middle of the day. The air being also more damp causes an increase of fragrance at those times, as the moisture, by penetrating the delicate tissue of the corollas. expels the volatile oils.

[^10]Fig. 51.

300. The Crown mperia., Fritillaria Imperialis, exhibus in the claw of each of its petals, a cavity called a nectary, each one is always filled with a sweet liquid. It these drops are removed, others immediately take their place. You have here a representation (Fig. 51,) of have here a represels appear as if cut off, in order to show the six nectariferous in order to slow the six
glands at the base of each.
201. In the Ranunculus, the nectary is a production of the corolla, in the form of a scale; in the violet a process of the same, in the form of a horn or spur. In the Columbine, the pectary is a separate organ from the petals in the form of a jorn. In the Monks-hood, one of the petals, being concave, conceals the nectaries; they are therefore said to be honded.

CHAPTER XIII.

Stamens and Pistils.
302. The stamens and pistuls in most plants are enclosed oy the same envelope, or stand upon the same receptacle; in the class Moncecia they are on different flowers which spring from ne common root; and in Diœcia, they are on different flowers pringing from different roots. Yet, however distant the stamens and pistils may be, nature has provided ways by which the pollen from the staminate flowers is conveyed to the pistillate, to assist in perfecting the seed. That you may be better anderstand this curious process, and the organs by means of which it is carried on, we will examine each one separately.

$$
\begin{aligned}
& \text { which it is carried on, we will examl } \\
& \text { Stamens. }
\end{aligned}
$$

303. Stamens are thread-like parts, exterior as to the pistil, and interior as to the corolla. They exhibit a variety of posi irons, some being inserted upon the pistil, some below it, and others around it.
304. What is said of the nectaries of the Crown imperial?
305. What are some of the other forms in which nectaries appear 1
306. Are the stamens and pistils always upon the same flowers?
307. Are the stamens are stamens situated with respect to the pistil and corolla?
308. When a corolla is monopetalous, the number of stanens is usually either equal or double, or half that of the diisions of the corolla; the stamens in such flowers never exceed wenty.
309. In polypetalous corollas, the number of stamens may be much greater. When the number of stamens equals the divisions of the corolla, they usually alternate with these divisions of the corolla, half of the stamens are usually placed in the intervals of the divisions, and the remaining half before each obe of the corolla, corresponding to the intervals in the divieorlla, if any of the stamens are barren or with sions of the calyx. of the corolla.
310. In commencing the analysts of flowers acoording to the Linnæau system, you learned that the number of stamens, their position, relative length, and connexion, taken either singly or in combination, afford certain and distinctive marks for purposes of classification.
311. In the first place we find the stamens differing in num ber, in different plants; some plants have but one, some two, and so till we come to ten; when they have more than ten stamans, we find the number in the same plant varies, and therefore we cannot depend on the circumstance of number for further classification.
312. Secondly, we regard the position, and consider whether the st unens are inserted upon the calyx or the receptacle, thus furnishing an eleventh and a twelfth class.
313. Thirdly, inequatity in the length of stamens, considerd with respect to number, furnishes us with a thirteenth and fourteenth class.
314. Fourthly, the connexion or union of stamens gives us the fifteenth class, where the ilaments of the stamens are united in one set; the sixteenth class where they are in two sets; the seventeeth where the anthers of the stamens are united.
315. Fifthly, the three remaining classes of phenogamous plants are distinguished by the position of the stamens with respect to the pistils. In the eighteenth class the stamens
316. What is said of the stamen of monopetatous corollas?
317. What is said of the stamens of polypetalous corollas?
318. What did you learn respecting stamens, in commencing the analysis of flowers?
319. What is the first thing in which we find stamens to differ?
320. What do we regard secondly with respect to the stamens?
321. What do we observe thirdly with respect to the stamens?
322. What do you observe fourthly as to the stamens?

311 What do we Jbserve fiffhly with respect to the stamens?

BOTANY FOR BEGINNERS.

[Ch. XII]
stand on the pistil; in the nineteenth, the samens and pistile stand on the pistil; in the nineteenth, the s amens and pistiio
are on separate flowers on the same plant; in the twentieth they are on separate plants. Lastly, in Cryptogamous plants, they are invisible.
re invisible.
312. We will now proceed to the parts of the stamen ; these are two. The filament and anther. The filament, is so called from filum, a thread. Filaments vary in their form; some are long and slender, as in the pink; others are short and thick, as in the tulip. They are usually smooth, but in the Multhick, as in the tulip. They are usually smoot, but in they are bearded, in the Spider-wort they are covesed with dowa. In most cases a filament supports but one anther, but sometimes it is forked and bears two or more; in some instances, many filaments have but one anther. When the filaments are enclosed in the tube of the corolla, they are said to be inserted, when they extend out of it, exserted. In some cases the filament is wanting, and the anther is sessile, or imcases the filament is wanting, and
mediately attached to the corolla.
313. In double flowers, the stamens, which seem to be intimately connected with the parts of the corolla, are changed to petals. This is the effect of cultivation, which by affording the stamens excess of nourishment, causes them to swell out, and stamens excess of nourishmets, In some double flowers almost every trace of the stamens disappears; in orhers, it is very easy to perceive the change which they have undergone, as they re tain something of their original form. The anthers usually disappear, which shows that the filiaments have absorbed all the nourishment. In many double flowers, roses especially, we can see the change as it takes place, some stamens being entirely changed, others retaining something of their form, and others still perfect. When all the stamens disappear, no perfect fruit is produced.
314. On account of this change in the stamens, cultivated Howers are not usually so good for botanical analysis, as wild unes. The single flower exhibits the number of paits which nature has given to it. The Rose in its native state has but five petals.
312. What is said of the filament? (UNINTR 313. What causes double flowers?
314. Are cultivated flowers usually the best for aralysi3?

PISTILS.

315. The Anther, is a little knob or box, usually situated on the summit of the filament; it has cells or cavities which contain a powier calleil the pollen; this is vellow, and vary cunspicuous in the Lily and Tuhp. You have here the representation (Fig. 52) of a stamen with its filament $(a$,$) its$ anther (b) and the discharging pollen (c.) In many flowers, you wi.l perceive the filarging to be wanting; the anthers are then said to be sessile; that is, placed immediately upon the corolla; as at d, which represents a flower cut open, and its five stamens growing sessile in the throa.

Pistils.

315. In the centre of the flower stands the Pistil, an organ essential to the plant. Like the stamens, pistils vary in num ber in different plants, some having but one, others hundreds Linneus has founded the orders of his first twelve classes on the number of these organs.
316. The pistil consists of three parts, germ, style, and stig. ma. It may be compared to a pillar ; the germ (Fig. 53, a) corresponding to the base; the style (b) to the shaft; and the stigma (e) to the capital.

Fig. 53.
The figure at (g) represents the
 pistil of the Poppy; the germ or base is very large ; you will perceive that the style is wanting, and the stigma is sessile, or placed immediately on the germ. The style is not an essential part, but the stigma and germ are never wanting; so that these two parts, as in the Poppy, often constitute a pistil.
318. Germ. The germ contains the rudiments of the frust yet in an embryo or unformed state. This germ is the future frut, but in passing to its perfect state it undergoes a great

[^11]change. You would scarcely behere that the Pumpkin is but the germ of the small yellow flower of the plant. the gio. Style. This, like the filament, is sometimes wanting; when present, it proceeds from the germ, and bears the stigma on its summit. It is usually long and slender, of a cylindricaı forn, consisting of bundles of fibres, which transmit the fertilizing pollen from the stigma to the germ.
320. Stigma. This word signifies perfecting. The stigma is the top of the pistil, and always present; if the style be wanting, it is placed upon the germ, and said to be sessile, as wantung, it is placed upon The stigma is various in size and in the Tulip and Poppy. The stigma sometimes hollow and form; sometimes it is a round head; sis in its highest perfecgaping, more especially when the flower is in its les moist with
tion; it is generally downy, and always more or less mol a peculiar, glutinous fluid.

- Use of the Stamens and Pistils.

521. We will now consider the use of the stamens and pis. tils, those organs so important, that without them no plant would produce fruit.
522. The pollen of the stamens, when the flower becomes mature, being thrown from the anther by the opening of its lids, falls upon the stigma, or top of the pistil, and passes through the style to the garm. In the germ are little seeds beginning the style to the garm. In the germme to maturity without the to form, but which would never come the wonderful contrivance agency of the pollen. You see now the wred.
by which the races of plants are preserved.
523. The real use of stamens and pistris was explained it beyond of disputility of doubt. These organs have, from the most rea pore antiquity, been considered of great umportance in perfectmote antiquity, The Date Palm, which was cultivated by the ing the fruit. The Date Paim, when pistils on separate trees; the Greeks ancients, bears stamens and pistis on sepait, it was necessary to discovered that in order to have good fruit, it was necessary plant the two kinds of trees near each other, and nat good for this assistance the dates had no kernel, and were not good for food. Alans the fertilization of plants, whens
524. Describe the style.
525. What is the stigma?
526. What is said of the importance of the stamens and pistils? 322. Give an account of the manner in which the seeds in the germ are fertilized.
are tertilized.
527. What did the Greeks discover with respect to the date-palm? 323. What are some of the vanous modes in winit nature conveys pol.an to the pistillate plants?
and pistils are on separate flowers, depends a litlie upon chance, the favourable chances are sonumerous that it is liardly possible, in the order of nature, that a pistillate plant should remain unfertilized. The partieles of the pollen are light and abundant, and butterflies, honey bees, and other insects, transport them from Hower to flower. The winds also assist in executing the designs of nature.
528. The pollen of Pines and Firs, moved by winds, may be seen rising like a cloud above the forests; the particles being disseminated, fall upon the pistillate flowers, and rolling within their scaly envelopes, fertilize the germs.
529. A curious fact is stated by an Italian writer, viz., that at places about forty miles distant, grew two Palm trees, the one without stamens, the other without pistils; neither of them bore seeds for many years; but in process of time they grew so tall as to tower above all the objects near them. The wind thus meeting with no obstruction, wafted the pollen from the staminate to the pistillate flowers, which to the astonishment of all, began to produce fruit.
530. "Gardeners," says a botanical writer, "formerly attempted to assist nature, by stripping off the infertile flowers of melons and cucumbers, considering them as unnecessary incumbrances, since they would never become fruit. But finding that they then obtained no fruit at all, they soon learned the wiser practice of admitting the winds to blow, and the insects to transfer, the pollen of he infertile to the fruit-bearing flowers."

CHAPTER XIV.

Inforescence-Receptacle-trun-Linnaus' classification

of Pericarps.
328. We shall now proceed to consider the various ways in which flowers grow upon their stalks; this is called their inflorescence, or mode of flowering.

325 . What is said of the polueu ul pures and lurs?
326. What fact is stated by an Italian writer ?
327. What is the effect of stripping off the infertile or staminate dowers of plants?
328. What is meant by inflorescence ?
329. The most common kinds of inflorescence are the :chori raceme, panicle, spike, umbel, cyme, corvmb fascicle reah. ament, and spadix

330. A whorl (Fig. 54,) is an as semblage of flowers surrounding the stem or its branches. This is seen in Mint, and many of the lahiate plants Flowers which grow in this mannel are said to be verticillate, from the Latin word verto, to turn. Leaves surrounding the stem in a similan
manner are said to be stellate, or like a star.

329. Which are the most common kinds of inflorescence?

 330 Describe the whorl.Cn. XIV ?
ENPLORESCENCE.

331. A raceme, (Fig 55,) a, consists of numerous flowers on it6 own stalk or pedicel, and all arranged on one common peduncle as a bunch of currants.
332. A panicle, (Fig. 55,) b, bears the flow ers in a kind of loose subdivided bunch or cluster, without any regular order, as in the oat. A panicle con tracted into a compact, somewhat ovate form, as in the Lilac, is called a thyrse or bunch a bunch of grapes is a good example of thyrse.
331. Describe the raceme.
332. What is a paniele, and how does a thyrse differ from it?

Fig. 56.

333. A spike, (Fig $56, a$) is an assemblage of flowers arising from the sides of a common stem; the flowers are sessile, or with vecy short peduncles, as the short ped and Grasses and the
lein. A spike is genlein. A spike is genest llowers usnally blos som and fade before the upper ones expand. When the flowers in a spike are crowded very spike are crowded very,
close, an ear is formed, close, an ear is forn.
as in Indian corn.
334. An umoel (Fig. $56, b)$ presents several flower-stalks of nearly equal length, spreading out from a common centre, like the rays of an umbrella, bearing Howers or their summits; as Fennel and Carrot.
335. A cyme (Fig. 56, c) resembles an umbel in having its common stalks al. spring from one centre, but differs in having those stalks irregularly sub-divided; as the Snow-dall and Elder.
333. What is a spike? 334. What is an umbel
335. What is a crme?

Ch XIV.) INFLORESENGE.

Fig. 57.

336. 7tn. Corymb (Fig. 57, a) or false umbel, waen the peduncles rise from different heights above the main stem. but the lower ones being longer, they form nearly a level or a convex top; as the Yarrow.
8th. Fascicle (Fig. 57, b) flowers on httle stalks variously inserted and subdivided, collected into a close bundle, level at the top; as the Sweet-William; it resembles a corymb, but the flowers are more densely clustered.
437. 9th. Head (Fig. 57, c) or tuft, lias sessile flowers heaped together in a globular form ; as in the Clover, and But. ton Bush.
336. What is a corymb, and what is a fascicle?
337. What is a head? \bigcirc ?

338. 10th. Ament, or catkn, is an assemblage of flowers, composed of scales and stamens, arranged along a common, thread-like receptacle, as in the Chestnur and Willow ; this is more particularly de scribed under the divisions of the calyx. The scales of the ament are properly the zalyxes; the whole argregate, including scales, stamens or pistils, and filiform receptacle, constitutes the ament.
339. At Fig. 58, is the representation of the ament of the Poplar, containing pistillate flowers; this is oblong, loosely imbricated, and cylindrical; the calyx is a flat scale, with deep fringed partings. At b, is an enlarged representation of the fertile or pistillate flower: the calyx or bract is a little below the corolla, which is cupshaped, of one petal, and crowned with an egg-shaped, pointed germ ; the germ is superior, and bears four (sometimes eight) stigmas.
340. The staminate ament of the Poplar resembles the pistillate, except that its corolla encloses eight stamens but no pistil. The Poplar is in the class Diœcia, (or two houses,) because the pistillate and staminate flowers are on different trees, and of the order Octandria, because its barren flowers have eight stamens.
338. What is an ament?
339. What does Fig. 58 represent
340. Why is the Poplar in the class Digecia, order. Octand ia ?

Fig. 59.

341. 11th. Spadix, is a. assem. blage offlowers srow ing upon a common receptacle, and surrounded by a spatha or sheath, as in the Egyptian lily.
342. At Fig. 59, a, is a representation of the blossom of the Wild turnip, (arum); a, represents the spatha, which is erect, sheathing, oblong, convolute at the base b, this is compressed b, this is compressed above and below the
middle ; c represents the spadix, which from its club-shaped appearance, is called claviform (from cla$v a$, a club).
343. At B (Fig. 59) is the spadix divested of the spatha, \boldsymbol{a} is the claviform summit, b a ring of filaments without anthers, c a ring of sessile anthers, d a dense ring of pistillate flowers with sessile stigmas ; each germ produces a one celled globular berry.
344. This is a plant of the class Monœuia, (one house, because its staminate and pistillate flowers are separate, but yet grow on the same plant; it is in the order Polyandria, because its stamens are numerous.

Receptacle.

345. The receptacle is the extremity of the peduncle; at first it supports the flower, and afterwards the fruit. As this is ite only use, it may properly be considered in connexion with

[^12]he organs of fructification. In simple flowers, as the Tulip, the eceptacle is scarcely to be distinguished from the peduncle, but in - ompound flowers it is expanded, and furnishes a support
flowers and fruit. Receptacles are of various kinds; as, Violet
346. 1st. Proper, supports but one flower, as in the Viole and Lily. 2d. Commun, supports manv fowers or florets, the assemblage of which forms an aggregate or compound fower, as in the Sunflower and Dandelion. The common receptacle presents a great variety of forms, it is either dry or pulpy; con cave in the Articl she; conoea in other plants; flat, in the SunHover ; conical in some, and spherical in other plants. As to its surface, it is punctiute, or interspersed with hollow points or its surface, it is punctuate, or as in the Thistle, naked as in the dots, as in the Daisy, haxry as in the Thile. 3d. Rachis, is thre
Dandelion, or chaffy as in the Camomer filiform receptacle which connects the florets in a spike, as in Q the heads of wheat. 4th. Columella, or pillar, is the central column of the fruit, as the cob of the Indian corn.
347. The fruit is composed of two principal parts, the pert carp and seed. The term pericarp is derived from peri arouna, and karpos seed or fruit ; it signifies surrounding the seed. All hat part in any fruit which is not the seed belongs to the pericarp.
rp. \bigcirc Pericarp and Seed.
348. The germ being fetilized, the parts of the flower which are not necessary for the growth of the fruit, usually fade and either fall off, or wither away. The germ continues to enlarge until it arrives at perfection. Every kind of ruit, you can see, has been once but the germ or a nower, vegetable which pronot usually proportioned to that of the vegetable wlender herduced it. The Pumpkin and the Gourd grow upon slender
baceous plants, while the large Oak produces but an acorn.
349. The pericarp consists of valves, sutures, partitions, cells. and a receptacle.

- The term fruit, in common language, is limited to pulpy fruits which are proper for food; but in a botanical sense, the frui includer he seeds and pericarps of all vegetables.

346. Mention the different kinds of receptacle.
347. Ot what is the fruit composed?
348. What takes place in the flower after the germ is fertilized) 39. Of what does the pericarp consist 3

349. 1st. Valves, are the pieces, which form the stdes 0 , the seed vessels. If a pericarp is formed of one piece, it is univalved; the chestnut is of this kind. A pericarp with twe valves is said to be bivalved, as a pea pod. The pericarp of the Violet is trivalved, that of the Stramonium quadrivalved. Most valves separate easily when the fruit is ripe; this separation is known by the term deliscence.

2d. Sutures or seams, are lines which show the union of vaives; at their seams the valves separate in the mature stage of the plant.

3d. Partitions or dissepiments, are internal membranes which divide the pericarp into different cells; these are longitudinai when they extend from the base to the summit of the pericarp; they are trunsverse when they extend from one side to the other.
351. Column or columella, the axis of the fruit; this is the central point of union of the partitions of the seed vessels; it may be seen distinctly in the core of an appie. This was noticed under the head of receptacles; it is the receptacle of the fruit.
352. 4th. Cells, are divisions made by the dissepiments and contain the seeds; their number is seldom variable in the same genus of plants, and therefore serves as an important generic distinction.
353. 5th. Receptacle, is that part of the pericarp to which the seed remains attached until its perfect maturity ; this organ, by means of connecting fibres, conveys to the seed for its nourishment, juices elaborated by the pericarp.
354. Some plants are destitute of a pericarp, as in the labi ate flowers, the compound flowers, and the grasses; in these cases the seeds lie in the bottom of the calyx, which pertorms the office of a pericarp.

LLinneus Classification of Pericarps. 1
355. Linnæus divided pericarps into the nine followng classes; Capsule, Silique, Legume, Follicle, Drupe, Nut, Pome, Berry, and Strobilum.
356. Capsule, signifies a little chest or casket; that is \&
350. Describe each of these parts.
351. What is the column ?
352. What are cells ?
35. What are cells ?
353. Are any plants destitute of a pericarp 3
355. Are any plants destutute of a pericarp ?
356. What is a capsule?
honlow pericarp; which spontaneously opens by pores, as the poppy, or by valves, as in the Mullein.
poppy, Fig. 60. 357 . Fig. 60, a, represents the capsule of one species of Lily, the Martasule, as it appears atter the opening of gon, as it appears atter the opening of
the valves or pieces which compose the the valves or pieces which compose
pericarp. At b is the same capsule re pericarp. At b is the same capsule re
presented as cut crosswise, shewing the presented as cut crosswise, shewing the
seeds as they lie in their differpnt celis

Ch. XIV. $]$ linnauds' classification of pericarps.

Fig. 61. 359. Fig. 61, a, represents a silique, the fruit of the white mustard; this is rostrate, terminating like a bird's beak; b, represents a globular seed : c, the same magnified ; d, shews the seed dividing and the embryo making its appearance.
360. Silicle (silicula, a little pod,) is distinguished by being shorter than the proper silique ; it is almost round, as in the Shepherd's purse. This difference in the form of the Silique and Silicle, is the foundation of the distinction of the orders in the class Tetradynamia.
c

361. 3d. Legume, is a pericarp of two valves, with the seeds attached only to one suture or seam; as the pea.
362. In this circumstance it differs from the Silique, which las its seeds affixed to both Sutures. The word pod is used ir cummon language for both these species of pericarp.
363. Plants which produce legumes, are called leguminous The greater number of these plants are in the 16 th class, Diadelphia.

35\%. What does Fig. 60 represent?
358. Describe the silique.

359. What does Fig. 61 represent ?
360. What is a cilicle?
361. What is a legume?
362. How does it differ from the silique?
363. In what class are most leguminuus plants?
354. Fig. 62, a, represents a legume $\cdot b$, the same cut trans versely in order to show the two cells.
365. 4th. Follicle, is a one-valved pericarp, which opens longitudinally on one side, having its seed loose within it, thap is $20 t$ bound to the suture.
is $10 t$ boung. 63 . 366 . Fig. 63, shows a frut of this kind,
Fin
 which is composed of three pods or follicles; a shows the valve opening; b, a seed cut lengthwise. This is a comseed cut lengthwise. fruit, of the Monk's-hood, (Aconipound fruit, of the Monk's-hood, (Acon-
tum.) tum.)
367. 5th. Drupe, a stone fruit, is a kind of pericarp whicn has no valve, and contains a nut or stone, within which there is a kernel. The Drupe is mostly a moist, juicy fruit; as in the plum, chera mois, the peach. The nut or stone in ry, and the peach. the drupe, is a kind of woody cup callea monly containing a single kernel calleo the Nucleus: this hard shell thus enve-
in the toping the kernel, is called the Putamen; it may be seen in the
stone of a cherry or peach. 368 . 6 th . Nor, is a seed covered with a shell, resembling the capsule in some respects, and the
see in the walnut, chestnut, \&c.
see in the walnut, chestnut, ce,
369. 7th. Pome, is a pulpy pericarp without valves, but having a membranous capsule, with a number of no external opentain the seeds. This species of pericarp has no external opening or valve. The apple, pear, quince, gourd, cacurp. With melon, furnish us with examples oblong, ovate, globular. \&c. the respect to form the Pome is oblong, ovate, form of fruits being much varied by climate and soll, With respect that apples are not uniform in their size or figure. to the number of cells also, the apple is variable.
370. Sth. Beary, is a succulent, pulpy pericarp, without valves, and containing naked seeds, or seeds with no other ccvering than the pulp which surrounds it, as in the gooseberry and currant; the seeds in the berry are sometimes disperse:

[^13]Ch. XV.] the seed.
promiscuously through the pulpy substa ice, but are more generally placed upon receptacles within the pulp. A compound berry consists of several single berries, each containing a seed united together; as in the blackberry and raspberry. Each of the separate parts is called an acinus, or giain. The orange und lemon are berries with a thick coat.
371. There are some kinds of berries, usually so called, tyat seem scarcery entitled to the name; in these the pulp is not properly a part of the fruit, but originates from some other organ; thus in the mulberry and strawberry the calyx becomes coloured and very juicy, surrounded by seeds like a real berry. Sorne butanists in describing the strawberry, say that what is commonly called the berry, is but a pulpy receptacle, studded with naked seeds. In the fig, the whole truit is a juicy caly x, or common receptacle, containing in its cavity innumerable florets, each of which has a proper calyx of its own, which be comes pulpy, and invests the seed, as in the mulberry.
372. 9th. Stroblum, a cone; is a Catkin or Ament hardened and enlarged into a seed vessel, as in the pine; this is called an aggregate, or compound pericarp. In the most perfect examples of this kind of fruit the seeds are closely enveloped by the scales as by a capsule. The Strobilum is oblong in the pine, round in the eypress, very small in the alder and birch.
When you eat fruit, as almonds, walnuts, apples, peaches, currants, \&c., you will no doubt be pleased to be able to give them their proper place in the classes you have just been considering.

CHAPTER XV.

We have now traced the plant from the root through all its various organs, until we have arrived at that part, which is a link in the chain of vegetable existence between the old and new plant; if this were destroyed, if the seeds of plants were no longer perfected, what changes would the whole face of nature present!
373. The earth would in one year be stripped of the whole
371. What is saic of the blackberry, strawberry, mulberry, and 6g?
372. Descr.be the strubilum.
373. What appearances would nature present if seeds were no longe. perfected?
tribe of arnual plants; in another the biennial plants would vanish ; the perennial would, year after year, disappear, until (if we could suppose our own lives to be prolonged to the sua age of man,) we should behold the earth one vast scene of vegetable ruin ; occas onally here and there a venerable oak or an ancient pine would stand in solitary grandeur, the mournful an ancient pine would seautiful and fertile vegetable kingd.m 374. But such a sad spectacle the earth will never present, for we have the promise of God himself, that "while the earth remaineth, seed time and harvest shall not cease."
375. We have seen in the progress of our inquiries, that while the present plant is diffusing around it beauty and fragrance and administering to the necessities and luxuries of man, the watchful care of that Being, who never slumbers nor sleeps, is by a slow but certain progress perfecting that part which is destined to continue the various species of plants unwil time shall be no more
til time shal be no more. internal part of the fruit which con-
375. The seed is that tains the complete rudiment of a new plant, similar to that from which it received it 3 existence.
377. The seed consists of three principal parts, viz. the eye. husk, and kernel.
37s. 1st. The Eye, or hilum, is the scar formed by the separation of the membrane or thread which connected the seeo with the pericarp, and conveyed to the former the necessary nourishment. You can see the eye plainly in a bean or kernel of corn.
379. 2d. The Husk, is the outer coat of the seed, which, on iling, becomes separate ; as in peas, beans, Indian corn, \&c. The husk surrounds the kernel; it is essential, as the kernel, which is originally a fluid, could not be formed without its pre-
sence.
380 . 3d. The Kernel, includes all that is contained within the husk; it is also called the nucleus or almond of the seed. The kernel is usually composed of the albumen, cotyledon, ano embryo.
381. Albumen makes up the chief part of some seeds, as the
374. Will the earth ever present such a spectacle?
375. What have we seen in the progress of our inquiries?
${ }_{376}$. What does the seed contain?
37\%. Of how many parts does the seed consist ?
378. Describe the eye.
379. What is the husk ?
380. What is the kernel, and into how many jarts is it divided ? 381 What is said of the albumen ?

Uh. XV. 1
grasses, corn, \&c. ; in the nutmeg, which has very small coty ledons, it is remarkable for its variegated appearance and aromatic quality. It chiefly abounds in plants which have but one entyledon.

382. Fig. 64 represents the garden bean a shows the cotyledons; b and c, the embryo; d shows the petioles or stems of the cotyledons.
383. Cotyledons (from a Greek word, kotule, a cavity,) are the thick fleshy lobes of seeds, which encircle the embryo. In beans they grow out of the ground in the form of two large leaves. Cotyledons are the first visible leaves in all seeds, almost always fleshy and spongy, of a succulent and nourishing substance, which serves for the food of the embryo at the moment of its germinating. Nature seems to have provided the cotyledons to nourish the plant in its tender infancy. After seeing their young charge sufficiently vigorous to sustain life without their assistance, they, in most plants, wither and die. The number of cotyledons varies in different plants; there are some plants which have none.
384. Acotyledons, are those plants which have no cotyledons in their seeds; such as the cryptogamous plants, mosses, \&c.
385. Mono-cotyledons, such as have but one cotyledon, or lobe,
in the seed; as the grasses, liliaceous plants, \&c.
386. Di-cotyledons, such plants, as have two cotyledons;
they include the greatest proportion of vegetables: as the leguminous, the syngenesious, \&c.
387. Poly-cotyledons, those plants, the seeds of which have more than two lobes: the number of these is small; the hemlock and the pine are examples.
388. The Embryo, is the most important part of the seed, as it produces the new plant; all other parts seem but subservient is this, which is the point from whence the life and organizason of the future plant originate. In most dicotyledonous seeds, as the bean, orange, and apple, the embryo may be plainly dıscovered. Its internal structure, before it begins to vegetate, 18

[^14]very simple, consisting of a uniform substance enclosed in ite appropriate bark or skin. When the vital principle is excited to action, vessels are formed, and parts developed, which seenied not previously to have existed. The embryo is usually central, and enclosed by the cotyledons; sometimes it is no central, than a mere point or dot, and in some cases, altozethe, moyible to the naked eye. The embryo emnsists of two parts. invisible to the naked eye. 389 . 1st. The Plume, is the ascending part, which unfords

390. 2d. The Radicle is the descendAt part, which unfolds itself into roots. minating appears the embty the a ger inaing state; a represents the radicle, the plume, c the cord by which the plans, is stil connected with the courishment. nd receives from whe ancient botaist, "the embryo contin"es imprisoned within its seed, and remsins in a profound sleep, until awakened गy germination; it meets the light and air to grow into a plant, similar to its parent."
There are yarious appendages which may, or may not, be present without in ury to the structure of the seed.
391. Aigrette, or egret, sometimes called pappus, is a kind feathery crown with which many of the compound flowers are furnished, evidently for the purpose of disseminating the are furnished, evidenc distance by means of winds; as the dandelion. The egret includes all that remains on the top of the delion. The egret includes all
392. Stipe is a thread connecting the egret with the seed. The egret is said to be sessile when it has no stipe, simpl? when it consists of a bundle of hairs without branches, plamose when each hair has other little hairs arranged along its sides, like the beards on a feather.
389. Describe the plume.
389. Describe the plume.
390. Describe the radicle
391. What is the egret?

392 What is the stype?

Cb XV. 7 THE seeb.

393. In Fig. 66, a represents the capillary, or hair-like egret b the plumose, or feathery egret; c and d show the style remaining, and forming a train, as in the Virgin's bower and Geum; e represents a wing, as may be seen in the fir and maple; and f a sessile egret.

General Remarks upon Seeds.

394. The number of seeds in different plants is variable; some have but one; some, like the umbelliferous plants, have two; some have four, as in the rough-leaved plants; in the order Gymnospermia, of the class Didynamia, there are four lying naked in each calyx. The number varies from these to thousands. A stalk of Indian corn is said to have produced in one season, two thousand seeds. It has been calculated that a single Thistle seed will produce, at the first crop, twenty-four housand, and at the second crop, at this rate, five hundred and seventy-six millions.
395. Seeds are of various sizes, from that of the cocoa-nut, to a fine dust, as in the mosses.
396. The period at which seeds arrive at matarity, marks the decay of annual plants, and the suspension of vegetation in wood $!$ and perennial plants. Nature, in favouring by various means, the dispersion of these seeds, presents phenomena worthy of our admiration, and those means are as varied as the species of seeds which are spread upon the surface of the earth.
397. The air, winds, rivers, seas, and animals, transport seeds and disperse them in every direction. Seeds provided with feathery crowns, (cgrets,) as the Dandelion and Thistle, or with wings, as the Maple and Ash, are raised into the air, and even carried across seas. Linnæus asserted that a certain
398. What is represented by Fig. 66 ?
399. What is remarked respecting the variation ir the number of reeds?
400. What is said of the different sizes of seeds ?
401. What marks the decay of annual plants?
402. How are seeds transported in various directions?
plant of the compound family was introduced into Europe from America, by seeds wafted across the Atlantic Oceas. "Seeds," says Linnæus, "embark unon the rivers which descend rom the highest mountains of Lapland, and arrive at the middle of the plains, and the coasts of the seas. The ocean nas thrown even upon the coasts of Norway, the nuts of the Mahogany, and the fruit of the cocoa nut tree, borne on its waves from the far distant tropical regions; and this wonderful voyage has been performed without injury to the vital energy of the seeds."
performed without imjury to the vital energy of the seeds.
398 . Animals also perform their part in the diflusion of seeds.
403. Animals also pertorm their part in the dills into holes in Squirrels and other anima s carry seeds and nuts into holes in
the earth. The Indians believed that the squirrels planted all the timber in the country: there is no doubt but that they do much towards diffusing different kinds of nuts and seeds; as Chestnut, Oak, Walnut, \&c. Animals contribute also to the distribution of seeds by conveying them in their wool, fur, or feathers.
404. The diffusion of seeds completes the circle of vegetation, and closes the scene of vegetable life. The shrubs and trees lose their foliage-the withered herbs decompose, and restore to the earth the element which they have drawn from its bosom. The earth, stripped of its beauty, seems sinking into old age; but although unseen by us, and unmarked the processes of nature by too many among men, innumerable germs have been formed which wait but the favable warmth, to decorate with new brilliancy this terrestrial scene.
new brilliancy this terrestrial scene. Surface a thousand times 400. So iruitful is nature, that a surface a thousand times more extended than that of our globe, would not be sumfientor the vegetahles which the seeds of one single year would produce, if all should be developed;-but the destruction of seeds is very great, great quantities being eaten by man and beast; or left to perish in unfavourable situations. Those which are preserved, constitute but a small proportion of the whole; they are either carried into the clefts of rocks, or buried beneath the ruins of vegetables; protected from the cold, they remain inactive during winter, and germinate as soon as the early warmth of spring is felt.
405. At this season the botanist who considers with a curi
406. Do animals assist in dispersing seeds?
407. What is remarked of the appearance of vegetation at the time f the diffusion of seeds?
408. Would the earth afford sufficient space for all the seeds which one year produces to vegetate?
409. What are the reflections of the botanist on beholiing the plents which appeat on the return of Spring?

Ch. XVI.]
ous eve the vegetable species with which the eartn begins to be clonned, seeing successively all the types or representations of past generations of plants, admires the power of the Author of nature, and the immutability of His laws.

CHAPTER XVI.

Germination of the Seed

402. We have now considered the various organs of plants, we have traced them through their successive stages of development, from the root to the bud, leaf, and flower, and from the flower to the fruit and seed. We have seen in imagination, the regetable world fading under a change of temperature, the "sear and yellow leaf," a prey to the autumnal blasts; and even the fruits themselves, exhibiting a mass of decayed mat ter. Were this appearance of decay and death, now presented to us for the first time, how gloomy would be the prospect! How little should we expect the return of life, and beauty, and fragrance! No power short of Omnipotence, can effect this miracle.
403. But we are now so accustomed to these changes, that : seeing, we perceive not;" we think not of the mighty Being, who produces them: we call them the operations of nature, and what is nature, or what are the laws of nature, but man festations of Almighty power?
404. The word nature, in its original sense, signifies born o produced; let us then look on nature as a created thing, and beware of yielding that homage to the creature which is due to the Creator. The sceptic, with seeming rapture, may talk of the beauties of nature, but cold and insensible must be that heart, which from the contemplation of the earth around, and the heavens above, soars not,
"To him, the mighty Power from whom these wonders are."
405. How beautifuliy is the re-animation of the vegetable world, used by St. Paul, as an illustration of our resurrection from the dead! The same power, which from a small, dry,
406. Why are mankind so forgetful of the Great Being who froduces the wonderful cnanges which nature presents?
404 What is the meaning of the word nature, and how should we egard it?
407. What should remind us of the resurzection from the dead? 9
and apparently dead seed, can bring forth a fresh and beautifu plant, can also from the ruins of our mortal bodies produce a new and glorious body, and unite it to the mmortal spirit by ties never to be separated.

Germination.
406. The process of the shooting forth of the young plant from the seed is termed Germination.
407. The principal of life contained in the seed does not usually become active, until the seed is placed in circumstances favourable to vegetation.
408. When a seed is committed to the bosom of the earth, its various parts soon begin to swell by absorbing moisture.A. chymical action then commences; oxygen from the air arm of carbonic acid gas.
409. As the carbon of the cotyledons continues to diminish, nd oxygen is produced in excess, a sweet, sugar-like substance is formed ; this is conveged to the embryo, which by its new nourishment is kindled into active life ; from this period we may date the existence of the young plant. Bursting through the coats which surround it, and which are already en feebled by their loss of carbon, the embryo emerges from its reebison the plume rises unprison, We say then that the seed has come up or sprouted.
wards. We say then that the seed has come up or sprount, with
410. Fig. 67 represents a young dicotyledonous plant, with ts radicle, a, developed; its plume, b, is yet scarcely perceptiole; its cotyledons, c, appear in the form of large, succulent sced-leaves.
> 06. What is germination?
> 407. What is necessary for the regetation of the ssed? 408. What changes occur when the seed is placed in the earth 1 109. What kindles the embryo into active life
410. Wtat does Fig. 67 represent?

411. The ralicle, \boldsymbol{o} descending root, is usually first to break through the coats of the seeds, it commences its journey downward, to seek in th. earth nourishment for the future plant, and to fix it firmly in the earth. This constitutes the root, and always takes a downward course, in whateve: situation the seed may have been placed in the ground.
412. A botanist planted in a pot, six acorns, with the points of their embryos upwards. At the end of two months upon removing the earth, he found that all the radicles had made an angle in order to reach down.
waras. it is supposed that if the root met with no obstruction in going downwards, it would always be perfectly straight.

Fig. 68.
413. Fig. 68 is the representation of a germinating seed of the Four
 o'clock; it will be seen that the radicle, a, has made nearly a right angle in turning downwards; the plume is not developed.
a 414. If you put into a tumbler of water some cotton, and place upon it somie seeds of rice or wheat, you will see al the fibres shooting from the seeds, in a perpendicular direction, downwards. It is a very simple and perpendicular direction, downwards.
interesting experiment. Some ascribe this phenomenon to the interesting experiment. Some ascribe this phenomenon to the
laws of gravitation, by which the root is attracted towards the centre of the earth; others say that the radicle, stimulated by moisture, naturally extends itself in the direction from which
411. What direction does the radicle take?
412. What experiment did a botanist make with acorns?
413. Wha. does Fig. 68 represent?
414. What experiment is mentioned, and what are some of the edisice assigned for the downward conrse of the radiule?
the morsture proceeds; while some imagine that the plant is endowed with a kind of instinct, similar to that which appears in animals, leading the little duck to seek the water, and birds to attempt to fly; but let us call this power by what name we attempt to fly, but let us call this pows, we must after al will, or refer it to whatever secondary laws, we must ater an
attribute it to the will and design of Him, who gave the plant a principle of life.
415. After the young root has made some progress, the cotyledons swell, and rising out of the ground, form two green leaves, called seed leaves. You liave no doubt noticed their appearance in the garden bean, when it first appears above the ground 416. When the plume develops its leaves, these seed-leaves, 4ing. no longer needed, wither and decay.
being no longer needed, wither and decay. You will recollect that the embryo or is composed of two parts, the radicle and the plume. The radicle, we have just seen, extends itself downwards. Soon after this part of the germ has begun its downward course, the plume, (so called from its resembling a little feather,) rises upwards, and soon becomes a tuft of young leaves, with which the stem, if there is one, ascends.
118 Some moisture is essential to the germination of the seed, though different plants require different quantities. Waseed, though different plants require dimeres swells the kernel, and ter softens the envelopes of the seed, swells the kernel, and
causes it to burst. Too much water produces a decay or rot in the seed so rapidly, that the living principle is destroyed rather than brought forward; hence it is better to sow seeds in dry rather than wet weather. Earth, though not absolutely essential, is useful, as affording to the vegetable egg a favourable situation where it may receive the influence of the various agents. ion, whe are the offices in the develo its whits. Some plants vegetate without earth. The parasite grows parts. Some plants vegetate without earth. The parate in water, upon the barks of other plants; many seeds vegetate in water, and some, when moistened and placed on cotton, or any other supporting substance.
419. Air is essential to vegetation; under an exhausted receiver a seed will not germinate, although possessing every other requisite. Seeds that become imbedded deeply in the grouna equit veretate unless accidentally ploughed up, or exposed to do not supposed to have lain for centuries, the atmospine. Acoms, sey were raised sufficiently neal have germinated as soon sir You wil recollect
415. When do the seed leaves appear?
416. When do the seed leaves decay?
417. What direction does the plume take 418. What effect has water
4.19 K air jecessary to vegetation 2

Ch. XVI. 1
germination.
hat in the process of germination, oxygen gas unites with the jarben of the seed, and carries it off in the form of carbonic acid. Air furnishes that important agent, oxygen, which is the first moving principle of life.
420. Carbon constitutes the greater part of the substunce o: seed; and this principle being in its nature opposed to purtrefaction, prevent seeds from rotting, previous to their being sown Some seeds having abundance of carbon, are capable of being preserved for ages: while others, in which this element exists but in small proportions, require to be sown almost as soon as ripe; and such as are still more deficient in carbon, lose their vital principle before separating $f_{\mathrm{f}}, \mathrm{m}$ the pericarp.
421. Oxygen is important ti germination, on account of its agency in removing the carbon which holds the living principle of the seed in bondage.
422. The absence of light is unfavourable to the germina tion of seeds; for light acts upon plants in such a manner as to take away oxygen by the decomposition of carbonic acid gas, and to deposite carbon ; now this is just the reverse of the process required in germination, where the carbon must be thrown off and the oxygen in excess.
423. A certain degree of heat is necessary to germination. Seeds planted in winter, will remain in a torpid state; but as soon as the warmth of spring is felt, the embryo emerges into ife. By increasing heat, seeds may be hastened in their vegetating process ; thus the same seed, which with a moderate degree of heat would germinate in nine hours, may be brought to this state in six hours, by an increase of temperature. Too grea heat destroys the vital principle; thus corn which has been roasted can never be made to regetate.
424. There is a great difference in plants as to their time of germinating; some seeds begin to vegetate before they are separated from the pericarp.* In the greater number of vegeta-

- In the month of January, on observing the seeds of a very fine juicy apple, which had been kept in a warm cellar, I saw that they were mollen, and the outward coat had burst; examining one seed by renoving the tegument and separating the cotyledons, I saw by the help -f a microscope the embryo, as if in a germinating state; the radicle was like a tule beak; in the upper part or plume was plainly to be seep the tuft of leaves and the stem.

490. What constitutes the greater part of the substance of the seed 421. Why is oxygen necessary to germinatisn?
491. Is light favourable to vegetation
492. Is heat nesessary to vegetation?
493. What is said of the difference in plants with respect to the 'imo of germination?
bles. however, there is no germination until after the opening oi the pericarp and the fall of the seed. The time at which different species of seeds, after being committed to the earth, beg in to vegetate, varies from one day, to some years. The seeds of ersses, minate within two days. Cruciform plants, such as the radish minate within two days. litile more time. The peach, walnut, and peony, remain in thie earth a year before they vegetate.
ear. All kinds of plants germinate sooner if they are sown 4. kept some time.
494. The seeds of most vegetables preserve their living priniple for years: some lose it as soon as they are detached from heir pericarps. This is said to be the case in the coffee and The seeds of some of the grasses, as wheat, \&c. are said to retain their vital principle even for centuries. It is asserted te mosses, kent for two hundred vears in the herbariums of hatants, have revived by being soaked in water.
botanists, have revived by An American writert says that "seeds, if imbedded in
495. An American writerf says from the influence of air or moisture, might be made to retain their vegetative quality or principle of life for a thousand years." But he adds, "life is a property which we do not understand: yet life, however feeble probscure, is always life, and between it and death there is a and ebscure, is as existence and non-existence."
distance as great as existence and study of botany, when you looked at the trunk of a tree, a little herb, or a leaf, you probably considered it very simple in its structure; you saw it only as one mass; but you now perceive that plants, like animals, consist of, collections of fibres; that they have parts which in some tespects are like our skin, bones, llesh, and blood; that some tespects are living organized beings, and like animals, are subject they are life and death
496. Plants differ from animals, in possessing none of the organs of sense. They can neither see, hear, faste, smell, nor

$$
\text { D }] R B \subset \subset F+\text { B. Barton. } \square \cap D \text { DI }
$$

+B. Barton.
485. Is it better that seeds should be kept sometime before they are
sown 426. Are seeds alike with respect to retaining their living principle I 427. What is remarked by an American writer respecting the life of seeds?
428. Do you regard plants now in the same manner as before you hegan to study them?
429. How do plants differ from animals, and how do they resemble them?
C. . XVII. 1
classification
touch. Some vegetables, however, seem to have a kind ot sen sibility like that derived from the organs of touch in anime ls, they tremble and shrink back upon coming in contact w th other substances; some turn themselves round to the sun, as it enjoying its rays. There is a mystery in these circumstances which we cannot penetrate; and it is not yet fully known at what point in the scale of existence animal life ends, and vegetable life commences.

CHAPTER XVII.

General Principles of Classification-Natural Families of Plants.
420. Ler us now imagine the whole vegetable kingdom, comprising innumerable millions of individual plants, to be spread out before a botanist. Could he, in the course of the spread out before a botanist. Could he, in the course of the shrub, or even each tree? If he could not even count them, much less could he give each one a separate name and description. But he does not need to name them separately, for he sees that nature has arranged them into sorts or kinds.
431. If you were sent into the fields to gather flowers of a similar kind, you would need no book to direct you to put into one parcel, all the red clover blossoms, and into another, the white clover; while the dandelions would form another group. These all constitute different species. Nature would also ieach you that the red and white clover, although differing from each other in some particulars, yet bear a strong resemblance.
432. By placing species together you form a genus, and to this genus you refer all the different kinds of clover. When you ste red, damask, and cimnamon yoses, you perceive they all have such strong marks of resemblance as to entitle them to be placed together in one genus.
433. But yet you know that the seed of a damask rose would never produce a red rose. One species of plants can never produce another species, however near may be their resemblance.
434. The whole number of species of plants which have

43C. Is i i necessary for the botanist to give a particular name u : every plant?
431. Do you leed a bnok to teach you to put flowers of the same wri tog ther?
433. How is \& genus formed?
4.33. Does one species ever produce plants of another specit.al
431. What uumber of species have been discovered?
been named and described, including many wr ch bave been朝 Gu d Hope, is said to be 56,000 .
135. If species of plants were described without any regular order, we could derive no pleasure, and verv little advantage. from the study of praetical botany. If we wished to find out the name of a plant, we should be obliged to turn over the leaves of a large volume, without any rule to guide us in our search.
436. The necessity of some kind of system was so apparent, that many attempts. for the methodical arrangement of plants, were made, before the time of Linnæus; but his system was so superior to all others, that it was no sooner published to the world, than it was adopted by the universal consent of all men of science.
437. This system not only includes within it all known plants, but is founded on such principles as must comprehend within it whatever plants may yet be disconvered. Its autho believed that no plant was destitute of stamens and pistils: bu' at the same time, that there were species in which these organ were so small, soobscure, or of such a singular formation, as tr render it difficult, and sometimes impossible, to be certain o their existence, except by the principle of analogy.
438. Linnæus made two grand divisions of plants, Phenu gamous, such as have stamens and pistils visible, and Cryptn camou- stamens and pistils invisible.
amous, stamens and pis illustration of the divisions in the system of Linnæus

Classes are compared to States.

$\begin{array}{ll}\text { eiders, } & \text { to Towns. } \\ \text { Gienera, } & \text { to Families. }\end{array}$

To Species, $\begin{aligned} & \text { to Individuals. } \\ & \text { 440. You must not forget, while you are studying butauy }\end{aligned}$ hat plants themselves are the only real substances; species hat plants genus, order, and class, are mere abstrach terms, dend although we had never observed them, or given them names.
\qquad
435. What would be the consequence if species were described withsut regularity?
436. Were any attempts at a methudical arrangement of plants made before the time of Linnæus?
437. Does the system of Limnæus provide for the arrangement of plants not yet discovered?
438. What two grand divisions of plants did Linnæus make? QL
439. How may the divisions in botany be illustrated?
440. Whichare the on yreal substances that are consideren in bot anv*

Ch. XVII. $]$
441. An Individual is an organized beng, complete in its parts, distmet and separate from all other beings. An oak, a rose, and a moss, are each of them individuals of the vegetable kingdom.
442. A Species includes such individuals as agree in certain cireumstances of the roots, stems, leaves, and inflorescence. We have no reason to suppose that any new species, either of animals or vegetables, have been produced since the creation. We sometimes see rarieties in plants made by cultivation; the stamens and pistils, from excess of nourishment, expanding into petals. Varieties are also occasioned by strewing the pol len from one species, upon the stigma of another; but these varieties do not produce perfect seed, and therefore cannot reproduce themselves by their seed. Colour, taste, and size, are not considered as marks of specific difference.
443. A Genus comprehends one or more species, grouped together on account of some resemblance in situation, proportion, and connexion of the organs which constitute the flower. Any one species of a genus may be regarded as a type or example of the others; we may easily refer species which we have not studied to their proper genus, by a knowledge of any one species of that genus. Some genera appear to be distinctly marked by nature; the various species of the rose, form a beautiful genus which is known to all, although every one might not be able to describe it to others, in such a manner as to be understood; it is chiefly distinguished by its urn-shaped, fringed calyx.
444. The generic names of plants are derived from various circumstances; in some cases from a peculiarity of form, or colour of the corolla or some property of the plant. Some genera are named from distinguished persons. Iris, (Flag,) is named from Iris the rain-bow on account of its various shades of colour. Digitalis, (Fox-glove,) is named from digitus a finger, on account of the shape of its corolla, like the finger of a glove. Convallaria, (Lily of the valley,) is named from the Latin convallis, signifying valley. The name of the great Linnæus is commemorated in a beautiful but modest and humble flower called the Linncea boreutis.*

- Borealis, signifying northern, has reference to the situation of Sweden, the country which gave birth to Linnæus. T'ie t.annæa corealis is not uncommon ir. New England, and has been ound on qn island near Troy, in the State of New-York.

[^15]
BOTANY FGR BEGINNERB.

ICn. XV
445. Specific names are generally adjectives; generic namer are nouns. The specific name sometimes indicates the number of leaves, as oreris bifolia, (bifolid, signifies two leaves, or the colour of the corolla; as viola tri-color, (three coloured Violet.) or the form of the root; as solanum tuberosum ; (potato with a tuberous ruot.) Specific names are alsn derm the names of persons; thus a species of the genus Bidens is the names or persons, New York.
The name Renssel fria has lately been given to a newly discovered genns; this is called after Mr. Van Rensselæer a distinguished patron of American science.

Natural Method.

446. The natural method consists in bringing together suen lants as seem by nature to constitute one family, resembling each other in general appearances and medicinal qualities; as lilie lilies, herbs, trees, mosses, and ferns. Some of the are evidentfamilies show a similarity in form and quality, and are evident Iy distinct from all others. If the whole vegetale hould need nc sould thus be distributed into natural tribes, we should need ni other system than that of nature. But as we proceed on this俍 plan we soon find dimicuttes; formed with striking marks of lies which nature seems to have fistinctly marked, and we at resemblance, we find others, less distinctly mannot be referred to length see a vast number of plants whice any natural families.
447. It is by their natural characters, ever heard of such a science as zoology, or the classication of animals, are enabled to distinguish ferocious of animals, a entle animals; they see a sheep or a cow withou mestic and gentle anmals, they sual one they may never have any terror, although that individual one consider, that. as re seen before; for nature teaches, which they know to be inof sembling other sheep and cows, which they fensive.
448. This natural character teaches savages to distinguls 440ng the many plants of the forest, those which may admin among the many pland those which would be injurious. ister to their wants, and
449. What is said of specific names? 445. Give some account of what is called in Botany the Naturi Method.
450. Hov do persons ignorant of the science whes
wistinguisi) 1 rocious beasts from domestic animals?
448 . Of what use is the natural character of plants to Savages?
(h. $\mathbf{X V}$ VIIL)
clabsifice tion.
451. F. in the ower grade of animais have this facuty of selecting by natural characters, nutritious substances, and avording noxious ones; thus we see the apparently unconscious mutes luxuriating in the rich pastures prepared for them by a benevolent Creator, cautiously passing by the poisonous weed directed by the curious instinct given them by this same $\mathrm{A}^{\text {. }}$ mighty Benefactor.

CHAPTER XVIII.

Natural Familipa

450. A natural family is composed of several genera of plants which have some common marks of resemblance, and its name is usually founded upon this general character; as Labiate and Cruciform, which are derived from the form of the corollas; Umbellate and Corymbiferous, from the infloresrence; Leguminots, from the nature of the fruit.
451. Natural families resemble artificial orders in being com posed of genera, but the principles on which the genera are brought together, differ widely in the two cases.
452. In many natural families, the classification is such as persons who have never studied botany, might make; thus, dill, fennel, caraway, \&c., belong to the umbellate family, on ace count of the form in which the little stakes, bearing the flower, and afterwards the seed, branch out from one common centre, like the sticks of an umbrella; this general resemblance is observed by all, and it seems very natural to class such plants together.
453. But in the artificial orders, genera which may be verv unlike in other respects, are brought together from the single circumstance of their having the same num:ber of stamens and pistils. Thus, in the first order of the Sth class, we have the Tulip and the Burlish, the Lily of the valley and the Sweetflag. In the second order of the 5th class, we have the Bept and the Elm. You will at once percerve the want of resem-
454. Are animals capable of distinguishing plants oy their natura sharacters?
455. What composes 8 natural family of Plants, and on what is its aame often founded?
456. How do families resemble artificial orders?
457. Could a person ignorant of botany form a classification of plants into natural families?
458. E •т art genera brought together in th* retificia! orda $\boldsymbol{*}$?
459. These are such flowers as have a calyx consisting of four leaves, ard a corolla composed of four petals; each petal is fastened to the receptacle or bottom of the calyx by a narrow part called the claw. In the centre of the flower is a single platil long and cylindrical; the stigma is oblong, and disided into two parts, which are reflexed or bent back on each side. Each petal is placed between two leaves of the calyx ; this alternate position is always seen in flowers where the number of petals equals the number of leaves of the calyx.
460. The cruciform flowers have six stamens, two of which, standing opposite to each other, are shorter than the remaining four, which always stand in pairs. This inequality in theit length determines them to be in the class Tetradynamia.
461. The germ soon becomes a long pod, called a silique, on a short, thick one, called silicula; this difference in the length of the pods constitutes the distinction of the two orders of the class in which they are placed.
462. The plants belonging to this class are herbaceous, the leaves are alternate; the Cabbage, the Mustard, the Radish and Stock-gilly-flower, belong to this family. They are founc on a chymical analysis, to contain some sulphur.

> 461. What are cruciform flotvers?
> 462. What is said of their stamens?
> 43. What is said of the germ?
464. What of the leaves, esc. $?$

10
MA DE NUEVO LEÓN
DE BIBLIOTECAS
54. Can all plants be easily arranged in distinct tribes 455. How are plants arranged in the artificial system?
456. Describe the corolla of liliaceous flowers.
457. What is said of the stamens of tiliaceous plants ?
458. What is said of the germ?
159. Of the root x bulb?

460 Of the calyx, sterns, leaves, \&e, 3
gular corollas are various in their forms; tue papilionaceous seem, as they stand upon their stem, to consist of an upper aud ander part.
468. In examining a flower of this kind, a Pea, for example you should first observe the calyx, this is monosepalous, that is, one entire sepal, ending in five distinct leafy points; the two upper ones wider than the three under ones. The calyx bends tuwards the lower part, as dues also the peduncle, or little stalk which supports it. The peduncle is very flexible; so that the flower readily avoids facing a current of air, and turns its back to the wind and rain.
469. In examining the corolla, you will see that it is polypetalous. The first piece is a large petal covering the others, and occupying the under part of the corolla ; it is called the standard or banner. This petal is evidently designed, to protect the stamens and other parts of the flower, from the injuries of the weather. Upon taking off the banner you will find that it is inserted by a little process, or projecting part, into the side pieces, so that it cannot be easily separated by winds. The banner being taken off, the two side pieces to which it adhered are exposed to view ; these are called the wings; they are strongy inserted into the remaining part of the corolla, and their use appears to be, that of protecting the sides of the flower. Upon taking off the wings, you will discover the last piece of the corolla, called, on account of its form, the keel, or boat. This covers and protects the stamens and pistils.
470. Upon drawing the keel downwards, you will find ten stamens ; they are joined together by the sides of their filaments, appearing like a cylinder surrounding the pistil.
471. One of these stamens, however, does not adhere to the rest; but as the flower fades and the fruit increases, it separates and leaves an opening at the upper side, through which the germ can extend itself by gradually onening the cylinder. In the early stage of the flower, this stamen will seem not to be separated; but by carefully moving it with a pin or needle, its filament will be found uncomected with the other nine
472. Most of the papilionaceous plants belong to the class 1) adelphia, order Decandria. But if the flower, although papilionaceous, should have ten stamens all in one set, it is then placed in the class Decandria. According to this arrangement, a very striking natural family of plants is widely sepa-
468. What are the appearances presented by a pea flower ?
469. What may be seen by examining the corolla of a pea?
470. How many stamens does this flower contain?
471. Do they all adhere together?
472. To what class do most of the papilionaceous fiowers belot??
rated, a part being taken from the 16th class and carried to the 10th.
473. The germ of the papilionaceous plant extends itself in to that kind of pod called a legume. The term Leguminous, which is taken from the fruit, as Papilionaceous is from the Hower, is applied to the family of plants we are considering.
474. In this family we find the fine table vegetables, Beans and Peas, the useful medicinal plant, Liquorice, the fine colourand Pea, the fragrant Clover, so grateful as food to many of ing Indigo, the domestic animals; the splendid Locust tree, , pine, and the delicate and odoriferous Sweet-pea.

CHAPTER XIX.

Natural Families.-Labiate Plants.

475. The flowers helonging to the labiate family are mono etalous, consisting of
476. The term Labiate, derived from a Latin word labia, ips, has been given, on account of the flower appearing to be divided at the top into two parts, resembling the lips of a horse or other animal. See Fig. 47.
477. This natural family is sub-divided intoringent and gap ing, where the entrance into the corolla is open, and personate or masked, where the corolla is closed by a prominent throat or palate.
${ }_{478}$. The labiate flowers have mostly four stamens of unequal 478. The labiate flowers have mosty ch in the upper lip of the rength, standing in pairs, beneath an of ecount of this circumstance, they are ranked in corolla. On account of this circumstance, the class Didynamia. A few of the Labiate plants have Dut two stamens, and on that account, are placed in the class Diandria, as the sage and mountain-mint. Here again the artificial svstem separates a tribe, which nature has made strikingly simisystem separates anine a flower of this family, the Balm or Catmint. you will notice the arched upper lip of the petal covering mint. you will notice the archer lip hangs down so that you can see

[^16]the inside of the corolla. If you pull ont the corolla you will take the stamens along with it, the filaments being attached ic it, as they usually are to monopetalous corollas. The corolla has a small aperture at the base, through which the pistil grew from the receptacle.
479. You have already been informed that the Labiate flowers belong chietly to the class Didynamia. The ringent division of plants belongs to the order Gymnospermia, having four seeds, lying naked in the calyx. The personate division beiongs to the order Angiospermia, having the seeds inclosed in a capsule until they are ripe, when the eapsule opens spontaneuusly and disperses them.
480. The ringent flowers generally grow in whorls or circles and at the upper part of an angular stem, the leaves standing opposite. These plants are never poisonous. Among them we find many aromatic plants, the Peppermint, Lavender, Savory, Maiorum, Thyme, \&c.; also many herbs which are useful in sickness, as Pennyroyal, Catmint, Horchound, \&c.
481. The personate division affords some very splendid flowers, as the beautiful Gerardia, ,r American Foxglove, and the magnificent Bignonia, (Trumpet flower.) The plants of this order seem to be somewhat allied to those of the class Pentandria, in many of these, as in the Snapdragon, (Antirrhinum,) the Pentstemon, \&c., there exists the rudiments of a fifth sta reen, in accordance with the five divisions of the calyx and corolla. Some plants of this division of the Labiate family are poisonous, as the Foxglove and the Snapdragon.

UMBELLATE PLANTS.

482. The plants of this natural family are found in the artificial class Pentandria ; they derive their name from the Latin word umbella, an umbrella, on account of the manner in which the peduncles of the Hower stalks spread out from the main stem. See Fig. 56, b.
483. The umbellate plants are mostly herbaceous, those which grow on dry ground are aromatic, as Dill, Fennel, and Cataway: those which grow in wet places, or the aquatic spezies, are among the most deadly poisons, as Water-Hemlock, \&c. Plants of this family are not in general so beautiful to the

[^17]sight, nor so interesting as many others. The corolla is superior, or over the germ, consisting of six petals, usually with a stamen standing between each petal. From the centre of the fower arise two styles, which ofter, remain permanent upon the fruit.
484. The general figure of the fruit is oblong or oval; it separates perpendicularly into two seeds, as may be seen in the Fennel or Dill. The figure, margin, and angles of the seeds are considered as affording proper characters of the genera; as in the Parsnip they are flat, in the Carrot bristly, in the Hem lock marked with ridges. Among the plants of this family which are used as articles of food, are the Carrot, Parsnip, Celery, and Parsley; the aromatics are Dill, Fennel, Sweet Cicely, Caraway, and Coriander; and among the poisonous Cicely, Caraway, and Coriander; and the Conium, (Poison Hemlock,) Water-Parsnip, ant plants, are the Comium, (Poison
the Cicuta, (Water-Hemlock.)

COMPOUND FLOWERS.

485. The flowers of this family begin to blossom in the latter part of summer, and are found almost bordering upon the verge of winter. The Dandelion is among the earliest flowers on spring, and one of the latest of autumn. The Daisy, in its nafive country, is found in almost every spot which exhibits any marks of fertility; but with us is no where found except in gardens.
486. The Dandelion is not a single flower like a violet ur rose, but a crowded cluster of little flowers. The Sunflower is so large and conspicuous, as doubtless to have frequently attracted your notice. If you examine one carefully, you will find it to be compused of more than a hundred florets or little flowers, each as perfect in its kind as a lily, having its corolla, staers, each as pers, pistils, and seed.
487 . We distinguish the Sunflower into two parts-the disk, which is the middle of the flower, and supposed to have a rewhich is the midale ofle or body of the sun; the ray is the border of the flower, it contains those florets which spread out from the disk as rays of light diverge from the sun. The florets in this, as in other compound flowers, do not all begin to expand at the same time, they usually begin at the disk, and proceed inwards towards the centre.
[^18]Co 8IX. 1
classification.
4ะ8. If you examine with a microscope one of the florets of the disk, you will perceive it to be tubular, containing one pistil, surrounded by five stamens, the styles of which are separarate, but the five anthers grow together, forming a tube around the pistil. It is this union of anthers which gives to compound Sowers a place in the class Syngenesia, which name signifies anthers growing together
489. The florets of the ray are called neutral, having neither stamens nor pistils; the circumstances of its having neutral florets in the ray, places the Sunflower in the order Frustranea of the 17th class.
490. Although the term compound is applied to the flowers of the class Syngenesia, the real circumstance on which the class is founded is not the compound character of the flower, but the union of anthers.
491. A Clover blossom, in one sense, may be said to be compound. as it is a collection of many little flowers compounded or united into one; but each little floret of the clover has its own calyx ; there is no general calyx inclosing the whole, as in most of the Syngenesious plants, but the florets are arranged in such a manner as to form a head; the anthers are separate, the
ilaments are connected at their sides, and this latter circumstance, together with the papilionaceous form of the corolla, places the clover in the class Diadelphia.
492. Most of the Syngenesious flowers are composed of two sorts of florets; they are either tubular, or strap shaped, (ligiohute,) appearing flat like a strap, both kinds are toothed at the edge; the ligulate are sometimes called Semiflorets, or half flowers.
488. What is the appearance of the florets of the disk when exammed by a microscope?
489 . Why are florets of the ray called neutral?
489. Why are florets of the ray enlled neutral?
490. Is the class Syngenesia founded on the compound character of 490. Is the class Syngenesia founded on the comp
flowers?
492. What two sorts of florets are generally fcunc. in Syngenesion: plants?
DE BIBLIOTECAS

Ch. XIX
classification
are tubular (Fig. 71, a) ; they have both stamens and pistuls;
Fig. 70
We have, at Fig. 70, a representation of the Mountain Daisy, we will now consider the appearance of its different parts.
493. 1. The Root, a; you will observe this answers to the description of fibrous, as small thread-like parts issue from the main root, or radix.
494. 2. The Leaves, b; these, you observe spring from the root. and are hence called radical; being undivided, they are called simple. In form they are somewhat oval, with the narrow end towards the stem; this form is called obovate. The leaves are said to be crenate, on accout of their scolloped margins.
495. 3. The Stem, c, is called a scape, because it springs dr rectly from the root, and bears no leaves.
496. 4. The Calix, $d_{\text {, }}$ is said to be hemispherical, or a halt phere, it is common, that is inclosing many florets; the sphere, it is calyx, sometimes called scales, are equal, ur or the same size.
497. 5. The Corolla, e, is compound, having many florets on one receptacle, radiate, having rays; the florets of the disk
493. What kind of root has the daisy?
494. Describe its leaves.
495. What kind of stem has the daisy?
496. Describe its calyx.
497. Describe the corolla.

Fig. 71. they are funnel-shaped, and five
 are funnel-shaped, and ive Fig. 71, Fig. 71, b, are flat, and have pis-
tils without stamens. tils without stamens.
498. 6. The Stamens, c, are five, united by their anthers, forming a tube.
499. 7. The pistil, in the disk florets, through the tube formed by the anthers, d; the stigma is parted into two divisions which are reflexed (bent back); , the pistil in the ray through the tube of the floret.
500. 8. The Daisy has no pericarp, or seed vessel, the seeds grow upon the receptacle, e, they are single and shaped somewhat like an egg; they are also naked, that is, destitute of the downy plume called egret, which is seen upon the dandelion, and many other of the syngenesious plants.
501. 9. The receptacle is conical, or in shape resembles a sugar-loaf. It is dotted with little holes: these are the places in which the seeds were fixed. The appearance of the receptacle, whether naked or chaffy, is very important to be observed in the syngenesious plants; it sometimes constitutes a distinction between genera.
502. The botanical name of the daisy is bellis perennis, [1 belongs to class 17th, Syngenesia, because the anthers are united; order 2d, Superflua, because the pistils in the ray are superfluous, or have no stamens. The generic name Bellis, is perhaps from the Latin word bellus, handsome; the specific name, perennis, signifies that it is a perennial plant, or one whose roots live several years.
503. The common name, daisy, is derived from a property which many of the syngenesious plants possess, of folding up their petals at the setting of the sun, and expanding them witi, its rising. The poet Chaucer, who lived in the fourteenth cenzury, is said to have first noticed this circumstance, and to have

[^19]called the flower Day's-eye. The French name for the dals is la belle Marguerite.

CHAPTER XX.

Class 1st-Class 2nd.

504. You have now been made acquainted with many important principles in the science of Botany. You were first taught the names of the different parts of a flower; then how to find to what class, order, genera, and species, sume particular plants belonged; and after that, all the classes and orders were explained. We then took up the subject of plants generally, and considered them as respects their various organs, as the root, stem, leaf, \&ic. ; this part of the study is often called elementar? Botany, while the study of classes and orders is called syste. matic Botany.
505. The different families of plants, as they seem distinguished by nature, were next considered. It is to be hoped that you now understand clearly the difference between natural families, and artificial classes; viz. that the former, such as the families of lilies, roses, \&c. are distinguished by characters which may be noticed by all observers; while the latter are founded upon circumstances which botanists have agreed to fund their classifications upon.
506. In pursuing the study of Botany, it is necessary that you should have a great deal of practice, in the systematic part; that is, that you should analyze many plants, and be careful to collect and examine flowers. We shall now consider some of the classes and orders in a more particular manner, and give examples of plants which belong to them.
507. What is said of the different principles which you have now been made acquainted with?
508. What do you understand to be the difference between Natural Famulies and Artificial Classes?
509. What is sqid of practice in Botany?

Ch. 8 X .7
CLASSES AND ORDER8
Ci.ass 1.-Monandra.* One stamen.

It contains two orders.
507. The nrst order of the first class is Monogynia, or one pistil. There are few plants in this class ; the genus Hippuris, or mare's tail, which grows in water and marshes, and is therefore aquatic, belongs here. It is considered a perfect flower, because it has a stamen and pistil, though it has neither calys
nor corella.

Fig. 72.

508. Look at Fig. 72, and you wil see at a, that the stem is erect and simple; the leaves linear, acute, and growing in whorls.

At b, is a representation of a flower of this plant as seen through a mi croscope; the germ is egg-shaped; :he style is long and avol-shaped; the stigma is small and pointed; the anther is large, and connected to the germ by a short filament.

You must study the explanations and look at the figure until you can tell the different parts as represented.
509. Southern countries have some very valuable plants of this class; as the Arrow-root, which, when made into gruel, is nourishing to the sick; persons have sometimes lived for weeks upon this; it has been found very beneficial for feeble children who could not bear milk. This substance looks like starch, and is prepared by wetting it first with a little cold water, and then pouring upon it hoiling water in the same manner as for making stareh.
510. The Ginger is botanically called Zinziber, a name

* Here the pupil can consult pages 24 and 25 , where he will find that Monos is the Greek for one, and andria for stamen ; therefore the 1st class is called Monandria, because it has one stamen. For an explanation of the names of the orders, he must look to Chap. V. It is recommenjed to the teacher to examine the pupil closely upon the classes and orders, and especially the derivation of the terms by which thes are designated.

507. What is said of the 1st order of the elass Monandria?
508. Wha: does Fig. 72 represent?
509. Wha is said of the Arrow-root?

510 What is said of Ginger ?
which is said to be of Indian origin, the plant ,eing a native or the West Indies. It is placed in the class and order we are now considering, because it has but one stamen and one pistil Its flowers are beautiful, and highly odoriferous. It is the rool of this plant which affords the ginger powder, so much used in making gingerbread, beer, \&c. The roots are first dried, then ground; but impositions are often practised by mixing some less valuable substance with the ground ginger. It is therefore best to buy it in the root. The fresh root of ginger is made into sweetmeats in the Wes: Indies ; these are often brought to the United States, and kept by nice housekeepers in order to add a United States, and kept by
flavour to other preserves.
511. Order 2. Digynta; this has one stamen, and two pistils. We here find Blitum; it has no corolla. Look at Fig. 72, at cyou will find a representation of this flower; its calyx is deeply three parted; the germ resembles a berry, and is crowned by the two reflexed styles.

Class II. Diandria. Tioo stamens.
 Order Monogynia, one pistil.

512. For an example in this class and order, you have here a representation of the blossom of the Lilac, of which the scientific name is Syringa, said to be derived from a Turkish word signifying pipe, the stems of pipes being sometimes made of the roots of the plant.
513. What is the name of the 2 d order, and what plant is described under it?
514. What plant is spoken of under the 1st order of the class Diandria?

515. Fig. 73, at a, shows a Hower of the lilac; the corolla is salver form having a flat four-parted border, spreading from a tube. You might at first suppose the lilac to consist of four petals; but if you should, in a real flower, attempt to separate them, you would find the whole united, and that it is monopetalous In flowers of one petal, the stamens are generally fastened to the corolla; where there are several petals, the stamens are usually attached to the receptacle. At b the lilac is represented as if eut lengthwise, to show the two stamens standing opposite to each other, and attached to the corolla.
516. The flowers of the lilac are crowded together in that form of inflorescence which is called a thyrse. This flower, although so common, is an exotic. There are two species, which are frequently to be met with in this country; the most common is the vulgaris, which has broad heart-shaped leaves; the persica, or Persian, has lanceolate leaves. The word lilac is derived from the Persian, and signifies a flower. These plants are shrubs, and distinguished by large showy thyrses of fragrant purple or white Howers.
517. The Veronica, or Speedwell, is found in America, though there are here but a few species of it, compared to those of Europe. It has a wheel-shaped corolla, deeply four-cleft, with the lower part somewhat smaller than the others, as may be seen at Fig. 73, c; the two stamens and the pistil may be seen in the picture. The beccabunga is one of the most common American species of this genus; it is found on the borders of brooks and in ditches. The petals are blue, hut very soon turn black; yet althongh this plant does not make a handsome appearance in an herharium, it is desirable to obtain it, as there are so few specimens of this class and order. One species of this genus, the alpina, is common to the Highlands of Scotland; another species is found only upon the Cheviot Hills between Engiand and Scotland. Various species of it abound in Wales and other parts of Great Britain.
518. The Circaea is represented at Fig. 73, d; the calvx s

[^20]morosivalnus, or has but one leaf, it is divided into two parts which are reflexed; the corolla has two petals; the germ is below the calyx. This is a very small perennial plant which grows in shady places; its blossom is white, and remarkable or the symmetry of its parts, having two stamens, two petals, calyx with $t: v 0$ divisions; a capsule with two cells, each of which contains two seeds. Its common name is Enchanter's night shade. this plant is common about the shores of the Cumberland lakes in England, and the Highland glens of Scotland, as well as ia the United States.
517. The Olca, or olive, is said to derive its scientific name from a Latin word signifving oil. This plant is an evergreen rom which grows to the beight of twenty or thirty feet; it is ree which grows to the Eeige and travellers say it is still
 found upon the spot cayled the Mount of shade to our Saviour that the very tree whicu once afforued shade believe that there may be still fiving, since thete is reason to bolize no the are tiees now in existence, of which Pliny, who lived near the inie of Christ, makes mention.
518. Order 2. Digynia; tieo pistils. To illustrate this order we shall mention the Anthoxanthum, or sweet-scemted spring-grass; this blossoms in May, and when drying, diffuses the pleasant and refreshing smell peculiar to new mown hay. This plant is not classed with the other grasses, which are most v in the third class, because it has but two stamens.
519. Order 3d. Trigyna, three pistils. We here find the genus Piper, the name of which is derived from the Hindon word pippul. It is a climbing plant which is supported upoD poles; thas the pepper plantations of the East Indies bear a resemblance to the hop fields of New England. The Piper Nigrum, or black pepper, is that species which is most used in commerce, and which furnishes the spice daily used upon our tables. Black pepper was known in commerce in the most retables. Black peppereks and Romans obtained it from Asia, It has been introduced into the hot region of America; where it grows as well as in its native country.
520. Another species of pepper is the betel; the leaves it
 is plant are used in the eash her purpose of alm nut called the areca nut, thus prepared for the purpose ehewing; the natives of that country esteem it a great luxury
517. Describe the Olive
518. What plant is described under the $2 d$ order? 19. What is described under the 3d order ?

550 . Of what genus is the betel nut?
using it as Americans do tobacco. Those who have read the Lady of the Manor. Stories on the Church Catechism, in I other works of Mrs. Sherwood, as well as those of oise, writers on the manners and customs of the people of InJin wid it collect the betel mut.

CHAPTER XXI.
 Class 3 l-Class 4th.

Class III.-Triandria, three stamens. Order 1st, Monogynia, one pistil.
Fig. 74.
521. This picture represens twa flowers of this class and order. At a is a flower of the genus Ixia, (from the Greek ixios, blue,) the common name of which is blackberry-lily, though the blackberry-lily common in our gardens is of an orange colour; at b is the same flower cut lengthwise to show the tbree stamens; this is not a liliaceous flower, notwithstanding its common name, as such flowers have six stamens. Fig. 74, at c, represents the Nardus, or mat-grass: this flower differs from those of the common grasses in having but one pistil.
522. The Crocus is among our earliest carden flowers; its same is derived from ancient Mythology, which pretended that a youth of that name was transformed into this plant.
523. The species of crocus called vernus (a name which signifies spring) sometimes appears as early as March, and often springs up amidst surrounding snow banks; it is of various coleurs, purple, straw coloured, yellow, and variegated. This is a sulbous plant, with linear leaves, a spatha calyx, and a corolla of six petals.
524. One species of the Crocus, the autumnatis, blossoms late in autumn; the large yellow stigmas, furnish the true saffron which is sold by druggists. The plant commonly know: among us as the saffron, is a compound flower, and belongs is

521. What does Fig. 74 represent?

532. What is said of the Crocus with respect to the derivation of itg ame?
533. Describe the Crocus vernus.
534. Describe the Crocus autimnalis.

Ch. XXI. \rfloor
531 Order 2 Digynia, two pistils. We here find the imporsut family of grasses, of which there are many different genera. They are distributed throughout the globe, and furnish many of the most useful vegetables for man and beast.
532. Among the must useful of the grass family, are wheat rye, barley, oats, Indian corn, and rice, besides meadow-grass and those kinds which are eaten by cattle.
533. Indian corn, though it is ranked with the grasses on ac count of its long and linear leaves, its fibrous roots, and some other particulars, yet it is not placed in the third class, becausn its stamens and pistils are not in the same flower. Rice is placed in the sixth class on account of the number of its stamens. You see that natural families are sometimes separated by the artificial classification; as in the second class two grasses were mentioned, which were placed there on account of having two stamens.
534 . Grasses have fibrous roots, their stems are of that kind called culms, being long, slender, and hollow, and having knots from which arises a long linear or lanceolate leaf surrounding the stem like a sheath.
535. The stems of grasses grow internally, or from the centre outwards; this is the reverse of what appears in the oak, the uew wood of which encircles the old.
536. The flowers of the grasses are found in what is called the ear or head; and consist of a calyx of two green husks called a glume; within this calyx is the blossom, consisting of a husk of two pieces; these husks are the chaff, which is separated from toe seed by threshing. If you observe a blossom ot wheat, or of common meadow grass, you will see three sta mens with large anthers, and two pistils with feathered stig mas.
537. The grasses have no seed vessel, but the seed is con tained within the husks, whicn gradually open and tinrow out their contents; this scattering of the seed is the cause of the very generai distribution of grasses.
538. Wheat, rye, and oats, are annual plants; that is, their pots die every year, and the plant is renewed by means of the
531. What impotant family do we find in the 2idorder of the class Sriandria ?
532. Which are some of the most useful of the grass family?
533. Why are not Indian-corn and Rice classed with tne gla.ses?
534. What is said of the roots of grasses ?
535. What of their stems?
536. What of their flowers?
537. Have the grasses a seed vessel?
638. What grassee are annual, and what are perennau?
$1 i^{*}$

Ch. XXI. 1
it Innocence, of which it is no unapt emblem, others term 1 . Forget-me-not ; but as the latter name is appropriated to severa other flowers, I would recommend the former. This little flower rises but a few inches from the ground; it is surrounded by tufts of leaves clustered around the root; it grows in great luxuriance upon sloping banks, dotting the meadows and sides of rivulets; often appearing in large patches, which form a soft and fragrant bed; it invites the child weary of play to repose on its flowery turf, and thus it becomes associated with recollecions of the playful and happy innocence of early days.
544. A lady of New England, who learned Botany at a dis tance from the scenes of her childhood, though she found a great many splendid and beautiful flowers to examine by the aid of her favourite study, was very anxious to meet with the little pale blue meadow-flower which had flourished in such uxuriance around the home of her infancy ; she examined ooks to find drawings or descriptions of it, and searched the fields for living specimens, but none seemed to answer to the picture in her mind, and she at length gave up the little flower. as a thing of mere fancy, which had mingled with the indistinct recollections of early days. Bat on returning to her na tive place, as she was riding out one fine day in spring, a mossy bank appeared to her delighted eye, bespangled with the flower of Innocence, and presenting the very image she had so often driven from her mind as a creation of fancy. She ahghted, and after feasting her eyes on the sight once so familiar and enjoying the freshness of the flowery turf, she carefully placed in a book some tufts of the little plant, and on going home, sought out its name and place in botanical arrangement.
545. The lady saw that it had four stamens of nearly equal length, and one pistil, and that it must therefore be described under the fourth class, first order; the little calyx was four cleft, it supported a corolla having a small tube, and spreading into a flat border with four petal like divisions, which resembled a cross. The little leaves were ovate and radical; and the stem spread out into small branches, bearing upon them the flowers. Then the lady by examining the different descriptions of plants in this class and order, found that her little favourite was known by botanists by the name of houstona cerulcea,* the generic name being derived from Houston, the person who first describ-

* Pronounced cerulea.

539. Are grasses the best flowers for beginners in totany to analyze 540. What is said of the grass-like pidnts which grow in bogs and mizsles?
540. How does the 4 th class differ from the 13th
541. Wł at does Fig. 75 represent ?
542. What is said of the flower called Innocence?
dover after she had studied Botanv wished to meet with thas lintle
ed $1 t$, and the specific name signifying blue, being the Latur term for that colour.
I should like to tell you more about the flowers of this class, but as you proceed in your analysis of plants, you will find many pretty wild-flowers which belong here, as well as some spleadid green-house plants.

CHAPDER XXII.

Class 5 th-Class 6th.

Class V. Pentandria, five stamens.

Order 1. Monogynia, one pistil.
546. The fifth class is said to include about a tenth part of all known species of plants. The flowers of this class have five separate stamens, while those of the class Syngenesia
have five stamens whose anthers are united. have five stamen. 76.
 547. Fig. 76, shows you, at a, a flow er called Loose-strife; this in Botany is known by the generic name Lysimachua, which is derived from Lysimachus, the discoverer of the medical virtues of an ancient plant so named. You may find several different species of this plant in June and July by the sides of brooks and in low meadow-grounds. The flowers are wheel-form, and generally yellow.
At b, (Fig. 76,) is a picture of the At b, (Fig. 7., is a picture of the trumpet honeysuckle, called Lonicera, from Lonicer, a bota nist of the 16 th century. This flowe. has a very small five-cleft calyx, which is superior or above the germ ; the corolla is monopetalous, and tubular; the tube is oblong, the limb of the corolla is deeply divided into five reis oblong, the limb of the coroll a s inch is separated from the volute parts or segments, one of
others; the filaments are exserted, the anthers oblong.
545. In what class and order did the lady find the lower of Inno cence, and what is its botanical name?
546. What is said of the plants of the fift class?
546. What does Fig. 76 represent?

Ch. XXII.]
C. ASOUS $F \times D$ ORDERS.
548. In the fifth class are to be found some large natural fami hes of plants; of these I shall mention the Asperifolice, from the Latin words asper, rough, and folium, a leaf, signifying rough-leaved plants. In this family are many different genera all of which have hairy or rough leaves ; the Cynoglossum is 60 called from the Greek kuon, a dog, and glossa, tongue, the broad oval leaves being thought to resemble a dog's tongue The common name of the plant is Hound's-tongue. Although this is considered as belonging to the family of rough leaved plants, the hairs of its leaves are soft and downy, like the surace of velvet; it is about two feet high, having paricles of reddish purple flowers. You must not fail to collect specimens of his plant to analyze; it is in blossom about the middle of sumrer, growing by the sides of fences or near roads, and about old buildings.
549. There is a large family of plants in this class, called the Luridae, from lurid, signifying pale or livid, as this is the general appearance of the plant. In this natural assemblage is the Potato, the blossoms of which you will do well to examine; the little green balls which grow from the flowers are the pericarps and contain the seed; but the plant is generally produced from the root.
550 . The botanical name of the genus in which the potato is found is Solanum, from solor, to comfort; because some species in the same genus possess narcotic qualities. You would not expect to find in the same genus with the potato, plants which are highly poisonous, and yet here is the night-shade (Solanu:n dulcamara) whose berries are so injurious to life, that thirty of them once given to a dog, first drove him mad, and then caused his death, in less than three hours. Children should be very careful not to touch these berries, which are red, and might easily be mistah.? for currants, especially as they grow by hedges, where such fruit is often found. It is always unsafe to eat hedges, where such fruit is often found. It is always unsafe to eal
any vegetable production, which is not well known and familiar.
ny vegetable production, which is not well known and familiar.
551 . In the genus Solanum, are the Tomata, or love apple. and the Egg-plant, which in southern countries are much used in soups and sauces. In our climate, although they may be easily cultivated, they do not appear to attain that richness and perfection which is common in southern latitudes.
552. But the most valuable plant in the genus

Solanum i,
Cynoglossut is said of the family called Asperifoliæ, and of the genus ynoglossum?
549. What is said of the farrily called Lurnæ?
550. What is said of the genus which contains the potato?
551. What is said of the Tomata and Egg-plant ?

552 What is the most valuable species in the genus Solanum
the tuberosum, so called from its tuberous root; this is ou common Potato; it was at first obtained from Peru, where II was called batatas. Of the important use now made of thi root of this vegetable, it is unnecessary to remark; as an artile food it is scarcely less valuable than bread itself, anc indeed is often used by poor people as a substitute for this article.
553. In the large family Luridæ, or lurid plants, is the genus Nicotiana, so called from Nicot, who carried it from America to Europe; Ore species of this, Tabaccum, is the Tobacco plant. Here also is found the Datura Stramonium, sometimes plled tharn apple, a larce, nauseous-scented weed, with angulare corolla is funnel-form and five-cleft; lar, dentate lis ore the a portion of the the pericarp is ovate and sper whe the other parts are calys which remains permanent, while the lady of Vernon, in ciduous. In the spring of 1835, a young lady of Vernon, in Vermont, while amusing herself with a walk in the fields, saw some of the last year's pericarps of the Stramonium, and carelessly ate a small quantity of the seeds. She was soon seized lessh and died after a few hours of excruclating agony Had she understood Botany, she might have known, from the general appearance of the plant, that it was of a poisonous general appearance of the plant, t
554. Among the many plants of the fifth class and first order, you will find the mullein, which every child knows by its large woolly leaf, and its high stalk, bearing yellow blossoms in that form which is called a spike. Vrolets you will find in the earliest days of spring to the verge of winter. In the from the earite blue, and yellow violets, and in gardens is fields are white, blue, a the heart's ease, or u ico this class and order; the fruit of the plant is probably more sa miliar to you than the flower, which is small and inconspi cuous.
555. In some species of the grape, the stamens and pistils 550. In some species of and for this reason this plant has are on differen liace in the class Diccia; but as other sometimes been placed in the class species have five stamens and one pistil whole under Pen it is generally thought best to class the whole under P en tandrıa.
553. What other genus is mentioned as belonging to the family called Luridæ?
plants are mentioned as be onging to this clas and order?
555. Why is the grape sometmes placed in the class Dioccia ,
h. XXII. 1

CLASSES AND ORDERS.
556. Order 2, Itgynia, two pistils. In this order of the fifti class is a very large natural family of plants, called Umbellifer. ous, or umbellate, from the manner of t eir inflorescence, which is in the form of an umbel, or umbrella, as you can see in Dill, Fennel, or Carroway.
557. Plants with umbels are to be found every where in summer; such as are poisonous grow in low, wet ground, as the Poison-hemlock, Cowbane, \&c. Some useful table vegetables belong to this family, as Celery, Parsnips, \&c. Some of these plants produce seeds useful in medicine and confectionary, as Anise and Coriander.
558. Order 3, Trigynia, three pistils. You will find here the Elder, a shrub with delicate, white flowers, growing in elusters called cymes ; children very early learn to know this plant, not only by its flowers, but by its dark red berries, with which they sometimes mischievously stain their clothes and fares. The Snow-ball is a very showy, handsome, and ornamental shrub; there is a wild plant which is common in the woods, that is not less beautiful than this; it is a species of the same genus Viburnum, and is well worth being transplanted to cultivated grounds.
559. Order 5, Pentagynla, five pistils. The flax is founa here. Its botanical name is linum, so called from a Celtic word, lin, a thread. The blossom of the flax is very pretty; its colour is pale blue, and it stands upon a straight, erect stalk. This is one of the most valuable of the vegetable productions. There are other orders in the fifth class, but we cannot now stop to consider them; when you have learned what this book contains, your kind parents will be willing to furnish you with the larger volume to which this is an introduction:** in that. rou will find a great many interesting facts with respect to flaats, that could not be mentioned in so small a book as this Class VI.-Hexandria, six stamens.

5mi). Order 1, Monogynia, one pistil. In this class are a 3reat many beautiful exotics; most of which are distingush

— BTB * Familiar Lectures on Botany

55t. What large family of plants do we meet with in the second order of the sixth class?
557. Are these plants common?
555. What plants are mentioned in the 3d order of the class Eent andria?
559. Describe the Fax.
560. What is said oi some of the plants of the 6 th class 3
ed by having bulbous roots, seeds with but one cotyledon, and stems which grow from the centre outwardly, and are therefore called endogenous.

Fig. 77. 561. Fig. 77, represents a flower of
 the sixth class and first order, called by the ancients Asphodel; it was considered by them as sacred to the dead, and made to grow around the tombs.
562 . We find in this class and order the family of liliaceous plants, including the various kinds of lilies, tulips, crownimperial, \&.c. You have already been made acquainted with the characteristies of these plants.
563. The Lily is in Botany called Lilium ; this genus consists of many species. The white Lily (Lilium candidum) is perhaps more admired than any other species; its fragrance is very agreeable, and its corolla of a pure and brilliant whiteness. There are several besides the garden lilies which are much valued by florists. You may find in July and August, growing in meadows, two or three wild lilies; one has large orange flowers spotted with yellow and brown, and another with yellow spotted
564. I will here tell you the distinction between a florist and botanist-the former cultivates flowers for their beauty, and may know nothing of their scientific arrangement; the latter examines them with reference to their various scientific characters, and is often as much delighted with finding a little, obscure wild fluwer, as the florist is when he meets with some splendid extic. It is very strange that all florists should not wish to be botanists.
565. Tulips are usually great favourites with floriste, who de light in producing varieties in their colours by different modes of cultivation, and also in obtaining double flowers by a peculiar method of culture. Although the petals of the tulip in it natural state are but six, yet by care in its cultivation, it may, like the rose, be brought to produce many petals.
566. In this class and order are some tropical plants, whose 566 .

[^21]Ch XXII.|
Musa, affords the Plantain and Banana trees, whose I saves and fruit are of great size. The Plantain trees grow to the height of twenty feet, having leaves about six feet long and two broad. Some of these trees in a plantation will not fail to be in bearing at every season of the year, so that the inhabitants of the couniries which produce them are in no dancer of peristing for want of food. The fruit when used as bread is roasted or boiled; it is also made into pies, or dried and preserved as a sweet meat. Three dozen of plantains are considered as sufficient food for a man during a week, and it is said will support him better than bread
567. The fruit of the Banana is not unlike the cucumber in form and size; when ripe it is soft and pleasant to the taste. It is introduced at desserts at the tables of the rich in the West indies ; and is much used as an article of food among the poorer classes of people. How kind, my dear children, is Providence, in thus causing the earth to bring forth cooling and nourishing fruits and refreshing shades in those parched and burning countries
568. The Aloe belongs to the class and order we are considering; there are a great many species of it; some grow but a few inches high, and others to the height of tall trees. The Aloe is a native of hot countries. The Negroes of the Western coast of Africa, make nets of the fibrons parts of the leaves of this plant; the Hottentots use the stem for their arrows. The people of Jamaica obtain materials from the Aloe plant Tre people of Jamaica obtain materials from the Aloe plan
from which they make fishing nets, stockings, and thread. In from which they make fishing nets, stockings, and thread. In
Mexico, a species of aloe serves for hedges, enclosures, beams for the roofs of houses, and leaves for their covering: its wood and fibres furnish needles and thread, eloth and ropes, while its juices aflord sugar and vinegar. The juice of aloes was used among Eastern nations in embalming their dead. This plant is often spoken of in the Bible, particularly in the Old Testament. It is very usefut in medicine; for which purpose it is prepared by pressing from its leaves a gummy substance of an extremely bitter taste, from whence comes the very common comparison, "as bitter as aloes." The Island of Socotra was the first place where this gum was prepared; hence it was ealled Socotrine aloes, a name which is still in use. Many plants of this genus produce beautiful flowers; some are said aot to blossom until they are 100 years old.
It is necessary to pass over many interesting plants whick
567. What is said of the fruit of the Banana?

568 Repeat what is said of the Alve piant.
we might name here, as the Lily of the Valley. Ifyacinth Scotch hare-bell, \&e
569. Order Digynia, two pistils. We find here the genus Oryza which contains the Rice ; this is a grass-like plant, but, on account of its six stamens and two pistils, is not placed in the same class sith most of the grasses. This is a southern production, and one of great importance; giving food to a great oortion of the inhabitants of hot countries.

CHAPTER XXIII.

Cuss 7th-Class 8th-Class 9th-Class 10th-Class 11th[I) Class 12th.

Order 1. Monogynia, one pistil. \qquad
Ora
570. This picture shows a blossom of the Horse-Chestnut, a plant which was introduced from Asia into Europe in the year 1500. It is a small tree, which produces showy panicles of white and red flowers crowded together in the form of a pyramid. - The botanical name of this plant is Æiseulus, from esca, food; probably from d mistaken idea that its nut might prove valuable as such. The species of Aisculus most common with us, is the hippocastanum, which signifies horsechestnut, being derived from the Greek words of that signification.
571. There are three other orders of the seventh class, but none contain plants which you will be likely to meet with, or which are much celebrated. Belonging to this class and ordet which are much celebl! plant, called chickweed winter green, of Trientalis ; you may find it in woods about the roots of trees Trientalis ; you may find Ine the small white flowers are stellate, and or
569. What plant is mentioned in the 2d order of the class I Iexan tria?
570. Describe the Horse-chestnut.
571. What is said of the Trientalis?
slender peduncles, the leaves are six or seven in a terminal whorl.

Class VIII. Octandria, eight stameas.

Order 1. Monogynia, one pistil.

Fig. 79. 572. This picture shows you a blossom of the P9090 Lady's ear-drop, a very beautiful exotic, whose generic name is Fuschsia, so called from Fusch, a German who discovered it. The part which you would think is the corolla, is the calyx, this is of a beautiful crimson colour; the petals are purple and A rolled around the stamens beneath the calyx.
573. As an example of the eighth class, a.most every garden will afford you the Nasturtion, which was originally brought from South America. In examining this plant, you will perceive it has not that regularity of parts which is found in many. It has eight stamens, while the number of its petals is neither four nor eight, but five. The fruit consists of three seeds. The leaf is of a peltate form

Class IX. Enneandria, nine stamens.
urder 1. Monogynia, one pistil.

574. The picture presents at a, the Butomus umbellatus, or Flowering rush; it has no calyx; its petals are six, and egg-shaped stamens nine; its germs are six, and therefore by some botanists it is placed in the sixth order. This plant blossoms in June, and is usually found near the margins of small lakes and ponds, or in ditches and low wet grounds; it has umbels of pretty rose-coloured flowers. It is spoken of by European botanists as common among them; but it is nol known to be a native of the United States.
575. The genus Laurus belongs to the first order of the ninth
572. Describe the Lady's ear-drop.
573. What is said of the Nasturtion?
574. What is seid of the Butomus umbellatus?
575. What is ed of the genus Laurus? What of the Laurus No bilis?
class; the name may be derived from the ancient Celtic, which signifies green, the leaves of this plant being mostly perennia and evergreen; some suppose it derived from laus, praise, as it was used for crowning victors or poets.
One species, the Laurus nobilis, or noble laurel, is the Bay of the ancient Romans. They considered it as a peculiar fa vourite of Jupiter the thunderer, and some wore it as a protection against his thunderbolts. But this, you know, was a ridiculous superstition, like many other notions of the believers in the Grecian mythology, since there is but one living and true Goá, and to Him all the vegetable creation is equally dear; He has made plants for the support of man and beast, and for the beauifying and refreshing of the earth on which we live-that we should love and cherish these His gifts, is undoubtedly agreeable to him: but if we deserve his frowns, no bough of a plant, nor even the rocks or mountains, can shield us from the effects of His anger-But it was before men had learnt from the Bible to worship one God only, that they thus fell into such foolish errors with respect to the Powers in Heaven ; none in Christian countries now adhere to the superstition of the ancients, although there are some who are worse than the heathen, by retusing to be heve although Goil has revealed himself to men through His Son heve, although God has ola the message deliverc, to them. who sealed with his own blood the message deliverc. to them.
576. The Laurus is an important plant: yor besides the honour and superstitious regard bestowed upon it by the ancients, It now alfords us very important medicines, as well as some of our most valuable spices.
577. The Laurus Camphor is the camphor tree Camphor is oltained from its roots, leaves, and wood.
is The Laurus Cinamomum is the cinamon tree, whose inner bark or liber furnishes this valuable spice.
The Laurus sassafras is the American sassafras treeShildren are fond of the bark of this plant, which is sometimes improperly called saxifa.x.
578. The third order of the ninth class contains the genus Rheum, or the Rhubarb. Fig. 80, at b, represents a flower of this genus. The Rhewm palmatum furnishes the medicina. his whem its thick, vellow roots. The hubarb, which is obtain par Rheum tartaricum, or sour rhubarb, dens, and is a usefal plant for tarts, which are made from its large, thick, and juicy petioles.

[^22]
Class X. Decandria, ten stamens

Order 1. Monogynia, one pistil.

579. This cut represents at a, flower of the genus Ruta, (rut;) its calyx is monosepalous ; it has five petals; the germ is large and superior

At b is a flower of the Saxifraga; one species of this, sometimes called beef-steak geranium, is a very common and hardy green-house plant, with creeping roots and roundish hairy leaves.
At c is a flower of the genus Ledum; this corresponds with the Saxifraga in the number of its petals; it is in some parts of Europe valued as a medicinal plant.
580. In the tenth class, are to be found the wintergreen and the whortleberry ; which are well known to children ; the for mer for its pleasant tasted leaves, and fine red berries, and the latter for its fruit. You must seek for these flowers, they are, very pretty, and easy to analyze.
581. This class has several orders; the second order contains the pink and some other interesting flowers. The tenth ordel has the poke-weed, a high plant, which you find so common by the waysides, with long, broad leaves, and purple berries.
579. What does Fig. 81 at a represent?

580 . What is said of the wintergreen and whortleberry?
58: What is said of the other orders of this elass?

Class XI. Icceandria, more than ten stamens inserted on the calyx.

Order 1. Monogynia, ane pistil.

582. In this class, the number of sta mens is not regarded, so much as then situation. If you remember what was said about the rose in the 4 th chapter, you will understand what is the essential character of this class. The rose, however, does not belong to the first order.
583. In this order we find a genus called Cacrus, one of the species of which is the Prickly-pear. This contains many species; a very splendid one is the Night-blooming Cereus, (Cactus grandiflorus,) having flowers nearly a foot in diameter, with the calyx yellow, and the petals white; the flowers begin to open soon fifter the setting of the sun, and close before its rising, never arain to blossom. Another species, (speciosissimus,) with Howers of the colour of crimson velvet, is said to be still more superb than the grandiflorus. These plants are mostly destitute of leaves, ,ut the stems appear like a series of thick, fleshy leaves, one growing from the top of another.
584. Prunus is the genus which contains the various kinds of the Plum, Cherry, and Sloe: this genus, according to ancient writers, was brought from Syria into Greece, and from thence writers, The Roman poets often notice its fruit. We have into ltaly.
several native species of it.
several native species of 555 The Pomegranate is a shrubby tree, which is a native o.
585. The Pomegranate is a shrubby tree, which is a native o.
Spain. Italy, and Barbary, and flowers from June till September Spain, Italy, and Barbary, and flowers from June till september The Greek writers were acquainted with it, and we are told by Pliny, that its fruit was sold in the neighbourhood of Carthage It is cultivated in England and in the United States; not on acit is cultivated of its fruit, which does not come to perfection so far to the north, but for its large and beautiful scarlet flowers, whick render it an ornamental plant.

[^23]Ch. XXIII.
586. The genus Amygdalus contains the Peach and the Almond. The latter is a native oi warm countries, and seems to have been known in the reinotest times of antiquity.

Order Di-pentagynia, from two to five pistils.

587. The four orders in the class If ssandria which follow the first, are included under one, caller Di-pentagynia, signifying from two to five pistils. We find here the hawthorn, a shrub with deep green foliage, white flowers, and scarlet berries, and with rery large and strong thorns. The genus Pyrus which contains the Apple and Pear, belongs here. The varieties of these fruits are the effect of cultivation, not the produce of different species. By means of grafting, which consists in inserting the sprout of one plant into the body or branches of another, goud fruit may be produced upon a tree which before produced a poorer kind.

Order Polygynia, many pistils.

588. We here find the Rose; this, in its natural state, contams but five petals; it is remarkable for its stamens and pistils shanging to petals by cultivation. Several species of the Rose are indigenous to North America; as the small wild rose, the sweet briar, and swamp rose. Red and while roses are remarkable in English history as emblems of the houses of York and Lancaster; for when those families contended for the crown, in the reign of Henry the Sixth, the white rose distinguished the partizans of the house of York, and the red those of Lancaster.- The Moss rose, Rosa muscosa, has its name from the moss-like substance with which the flower, stem, ant. calyx, are covered; it is in fact a collection of glands, containing a resinous and fragrant fluid. Roses are favourite plants in all countries where thev are found ; but it is remarkable that none have ever been met with growing wild in the southern hemisphere.-Among the ancients, particularly the Egyptians. roses were considered as symbols of silence, for which reason the goddess Isis, and her son Harpocrates, who was the god of silence, were crowned with chaplets of those flowers. The eastern nations, especially the Persian, boast of the beauty and splendour of their roses.
589. The Blackberry, (Rubus,) has a flower resembling the
590. Of the genus Amygdalus?

587 What is said of the order Di-pentagynia, and of some of the p.ants contained in it?
588. What is said of the Rose genus?

439 Of the different species of the Rubus?
ose in its general aspect, there are severa, species of the Ruas, one of which produces the common Blackberry, another , Bed-raspibry prodher Black-raspberry, and another the噱 Dew-berry. One species of the arge and beautiful deep red flowers; the frit is dey, able,
590 . Ta 51. cial order as the Rose; these alled, from the appearance of the natural family, sometimes called, fromes from the fruit, which is a pome, Pomaceæ
The gathering of strawberries in the ficlds, is among those aral enjoyments of childhood, which in after life are recollectruf with plensure, not unfrequently mingled with melancholy reed with pleasure, frections, upon the contrast or often shaded. Such reflecrows with which maturer years are often lines from a late femals tions produced the following beautiful

poet.*

The straweery bloms apon its lowly bed, Plant of n y native soil! The Lime may ting, More potes fragrance on the zephyr's wing: The milky Cocoa richer juices shed, And white Guava lovelier blossoms spread; But not, hike thee, to ond en anding spring. The vanish'd hours of lifes enchan! Short calendar of joys forever hed rise to view Thou bid'st the scenes of chercy loves to trace, The wild wood path which fruit of rosy hue, Where, veiled in leaves, hith modest grace, Lurked on is pliantse would later years renew But, ah! when thought wonld later years re." Alas! successive sorrows crowd the space.

What is said of the Strawberry?
h. XXIII. 7 CLAASES AND ORDERS.

Cuass XII. Polyandria, more than ten stancens inserted on the receptacle.

591. In this class we find the stamens separate from the calyx, and attached to the receptacle or top of the Hower stem. The number of stamens in this class varies from ten to some hundreds. This class does not, like the one we have last examined, contain many delicious fruits, but abounds in poisonous and active vegetables. The mode of the insertion of the stamens is to be regarded in considering the wholesome qualities of plants; it is asserted that no plant with the stamens on the calyx is poisonous; we nnow that many with the stamens upon the receptacle are so.
592. Fig. 83 represents, at a a flower of the Clematis with s many stamens growing on the receptacle; b shows the reeptacle with numerous short styles attached to it, c and d represent a stamen and petal which were inserted on the receptacle below the styles. On account of its many styles, the clematis is placed in the 13th order.

Order 1. Monogynla, one pistil.
593. We find here some flowers of a curious appearance, as the Mandrake, or May-apple. This plant is common in moist, shady places, where you may often see several growing togecher; each stem supports a large white flower and two large peltate palmate leaves; the fruit is yellow, and eaten by many as a delicacy; the root is used in medicine.
594. The Side-saddle flower (Sarracenia) is a very curious and elegant plant; it has large leaves proceeding directly from the root. These leaves form a kind of cup, capable of containing a gill or more of water, with which liquid they are usually filled. The stem is of that kind called a scape, growing to the height of one or two feet, bearing a single large purple flower. This plant is found in swamps; its common name, Side-saddle flower. is given on account of the form of its leaf. It is sometimes call.

591. What remark are made respectug Class Polyandria?

592. Describe Fig. 83.
593. What is said of the Mandrake or May-appie?

594 Describe the sice-saddle flower
ed Adam's cup, in reference to the cup of the leal. The name ed Ade senus Sarracenia, is derived from Mons. Sarrasin, of the genus sars, who wrote about the natural histor/ of CanaFrench physician, who wrote about of curiosity, can exceed this da. No foreign plant, as an object oll worth the trouble of culnative of our own swamps; it is collecting rare plants. tivation by those who are
595 . The White Pond Lily, is a splendid American plant, 595. The White Pond Lily, is a splendan almust any other very fragrant and with a larger lea Lily, thougi less showy, is equally curions in its structure.
may be found in almost every The popey is ant it affords a juice, garden,
which on being dried becomes opinm. Tea plant, (Thea;)
536. In the same class and order is 536. In the same class and order bohea tea (oohea) and the of this there are two species, the evergreen tree or shrub, much green tea (riridis.) It is a small everk coloured bark. The branched, and covered with a rough, dark coloured bark. The flowers are white, the leaves are lanceolate and veined, the cap. sule or seed vessel is three celled, it has three seeds, oblong and sule or seed resserub is a native of China and Japan. Some brown. This shrub is a native teas are taken from the same bosuppiese, that in reality, al be different flavour and appearance of tanical species, and that the dierene soil, the culture, and the them depend upon the nature of
597 . Having mentioned under the first twelve classes some at of the most mportant plans whi if you collect flowers, and preattempt to go farther at present, directions given in the formel pare herbariums according to the directions given in the forme 21 part of this book. you will soon have some spec for your narents lasses:- if you love Botany, you will not wait for your pare will and instructors to ask you to collect and study plants, but seek every suitable opportunity for so domg. Ho in examining the sight of a class of young pupils, engaged to what class Howers, each anxious to be the fre and order they belong; and yet glad to have others and sin where they find difficulties;-For true it is that a real and were love of knowledge, serves to render the disposin cere love of knowledge, serves amiable;-and it is for this purpose, ander by rendering you fa your hearts to commune whe the friend who has laboured to pre miliar with His works, that that you may learn to read and ad pare this took, is so anxious that of which God is the Author. mire the great volume of nature, of which God is the Author.
595. What is said of the Pond Lilies?
596. Give an account of the Tea plant. 597. Why is the person who wrote t?

EXERCISES IN PRACTICAL BOTANY

The following descriptions of Genera and Species have heen selected from "Familiar Lectures on Botany," for the purpuse of furnishing to the Beginner a series of Practical Exercises. ('are has been taken to introduce such plants as Teachers can tasily procure from the gardens and fields for their classes and which are the most simple for analysis.

directions for pronouncing the names of piants.

Botanical names of plants are formed according to the analogies of the ancient languages, chiefly the Latin. Some of the most common terminations of names of Genera and Species are $a, u m, u s$, and is; for example, the generic names, gerarDIA , prifoumg prunus, and iris; and the specific names tirginica, candidum, blandus, and officinalis. A great proportion of Botanical names terminate in a, in which case it has the sound of a in father, as Rosa, Viola, \&c.

The letter e at the end of a word is always to be sounded for example, Anemone, pronounced anemi-o-ne.
The e is long before s when it ends a word, as Bicor' nes oronounced Bicornees.
In words that end in ides, the i is long, as in Hesper' ides.
The vowels ae and oe, are often used as diphthongs, and ther. have the sound of e, as Hepatice, pronounced Hepat'-i-ce, and Di-recia, pronounced Di-e-cia.
C and g, as in English, are soft before e, i, and y, and hard before a, o, and τ. The soft sound of c, is like s, the hard sound like k. The soft sound of g, is like j, the hard sound like g, in the word gave; thus Algae is pronounced Alje. Musci is pronounced Mussi.

The letters $c h$, are hard like k, as in Orchis; pronounced Or-kis.

- Explanation of Letters and Characters.

The letter o, when affixed to the specific description, stand: for the Latin omnibus locis, in all places, meaning that the plant is common ; r denotes that the coluur of the Hower is red. p. purple-y. yellow-w. white-b. blue-g. green-Ap. denotes p. purple-y. yellow-w. whitewer blossoms in April-M. May-J. June-Ju. July -Au. August-S. September -Oc. October-Var. stands for Varzety.
ed Adam's cup, in reference to the cup of the leal. The name ed Ade senus Sarracenia, is derived from Mons. Sarrasin, of the genus sars, who wrote about the natural histor/ of CanaFrench physician, who wrote about of curiosity, can exceed this da. No foreign plant, as an object oll worth the trouble of culnative of our own swamps; it is collecting rare plants. tivation by those who are
595 . The White Pond Lily, is a splendid American plant, 595. The White Pond Lily, is a splendan almust any other very fragrant and with a larger lea Lily, thougi less showy, is equally curions in its structure.
may be found in almost every The popey is ant it affords a juice, garden,
which on being dried becomes opinm. Tea plant, (Thea;)
536. In the same class and order is 536. In the same class and order bohea tea (oohea) and the of this there are two species, the evergreen tree or shrub, much green tea (riridis.) It is a small everk coloured bark. The branched, and covered with a rough, dark coloured bark. The flowers are white, the leaves are lanceolate and veined, the cap. sule or seed vessel is three celled, it has three seeds, oblong and sule or seed resserub is a native of China and Japan. Some brown. This shrub is a native teas are taken from the same bosuppiese, that in reality, al be different flavour and appearance of tanical species, and that the dierene soil, the culture, and the them depend upon the nature of
597 . Having mentioned under the first twelve classes some at of the most mportant plans whi if you collect flowers, and preattempt to go farther at present, directions given in the formel pare herbariums according to the directions given in the forme 21 part of this book. you will soon have some spec for your narents lasses:- if you love Botany, you will not wait for your pare will and instructors to ask you to collect and study plants, but seek every suitable opportunity for so domg. Ho in examining the sight of a class of young pupils, engaged to what class Howers, each anxious to be the fre and order they belong; and yet glad to have others and sin where they find difficulties;-For true it is that a real and were love of knowledge, serves to render the disposin cere love of knowledge, serves amiable;-and it is for this purpose, ander by rendering you fa your hearts to commune whe the friend who has laboured to pre miliar with His works, that that you may learn to read and ad pare this took, is so anxious that of which God is the Author. mire the great volume of nature, of which God is the Author.
595. What is said of the Pond Lilies?
596. Give an account of the Tea plant. 597. Why is the person who wrote t?

EXERCISES IN PRACTICAL BOTANY

The following descriptions of Genera and Species have heen selected from "Familiar Lectures on Botany," for the purpuse of furnishing to the Beginner a series of Practical Exercises. ('are has been taken to introduce such plants as Teachers can tasily procure from the gardens and fields for their classes and which are the most simple for analysis.

directions for pronouncing the names of piants.

Botanical names of plants are formed according to the analogies of the ancient languages, chiefly the Latin. Some of the most common terminations of names of Genera and Species are $a, u m, u s$, and is; for example, the generic names, gerarDIA , prifoumg prunus, and iris; and the specific names tirginica, candidum, blandus, and officinalis. A great proportion of Botanical names terminate in a, in which case it has the sound of a in father, as Rosa, Viola, \&c.

The letter e at the end of a word is always to be sounded for example, Anemone, pronounced anemi-o-ne.
The e is long before s when it ends a word, as Bicor' nes oronounced Bicornees.
In words that end in ides, the i is long, as in Hesper' ides.
The vowels ae and oe, are often used as diphthongs, and ther. have the sound of e, as Hepatice, pronounced Hepat'-i-ce, and Di-recia, pronounced Di-e-cia.
C and g, as in English, are soft before e, i, and y, and hard before a, o, and τ. The soft sound of c, is like s, the hard sound like k. The soft sound of g, is like j, the hard sound like g, in the word gave; thus Algae is pronounced Alje. Musci is pronounced Mussi.

The letters $c h$, are hard like k, as in Orchis; pronounced Or-kis.

- Explanation of Letters and Characters.

The letter o, when affixed to the specific description, stand: for the Latin omnibus locis, in all places, meaning that the plant is common ; r denotes that the coluur of the Hower is red. p. purple-y. yellow-w. white-b. blue-g. green-Ap. denotes p. purple-y. yellow-w. whitewer blossoms in April-M. May-J. June-Ju. July -Au. August-S. September -Oc. October-Var. stands for Varzety.

The following characters denote the duration of a plant. © annual- σ^{\top} bienmal- 4 perennial- h woody.

Accent and quantity.

The marks over the generic and specific names have refereno aot only to the syllable which is to be accented, but to the quantity of the vowel in the accented syllable, as either long or short.

Those syllables over which the single mark is placed have the vovel pronounced long, as in J'ra ga'ri-a; those over which the double mark is placed, have the vowel pronounced short, as in He-pat' $-i$-ca; in the latter case, the stress of voice seems thrown upon the consonant ; the two marks may, therefore, be considered as indicating that the consonant, as well as vuwel, is accented.

The general rule respecting words of two syllables is simple, and renders it unnecessary to prefix to such words the marks fot accent and quantity.

Words of two syllables always have the accent on the first, if the syllable end with a vonvel it is long, as in Cro-cus; if it end with a consonant it is short, as in Cac"-tus.

Nots-It would be well for the teacher to request the pupil to ermmit to memory the directions for pronouncing the name of plartsthe signification of the letrers-and to observe particularlv the marks nsed to point eut accent and quartity.

DESCRIPTION OF GENERA OF PLANTS.

class i. monandria. One Stamen.
Order 1. Monogynia. One pistil.
Salicor" ${ }^{\prime \prime}$. Calyx inflated, entire, 3 or 4 -sided, obconic; corolla 0 ; style 2-cleft ; seed 1, enclosed in the calyx.-(samphire.;

Order 2. Digynia. Two pistils.
Bu'rum. Calyx 3-cleft, or 3-parted, berry-like: corclla 0: seed 1, immersed in the calyx.-(blite.)

class II. diandria. Two Stamens.
Order 1. Monogynia. One pistil.

A. Corolla 1-petaled, inferior, regular; seeds in a drupe or nut.

Cuionan ${ }^{\prime}$ thus. Calyx 4 -parted; corolla 4 -parted, with very long divisions: nucleus of the drupe, striate-fibrous.-(fringe-tree.)*

Exotic.

Jis"minum. Corolla salver-form, 5 to 8 cleft : berry 2-seeded, ea:o eed solitary, arilled.-(jasmine.)
Syrin"ga. Corolla salver-form : capsule 2-celled.-(lilac.)
B. Coralla 1-petaled, inferior, irregular; seeds in capsules. Veron"tca. Calyx 4-parted: corolla cleft into 4 lobes, lower division smaller: capsule obcordate, few-sceded, 2-celled.-(speedwell.) Catal"pa. Corolla 4 or 5 -cleft, somewhat inflated, bell-form: calys -parted or 2-leaved: stigma 2-lipped: capsule cylindric, 2-celled.(catalpa tree.)
C. Corolla 1-petaled, inferior, irregular: seeds naked.

Monar"da. Calyx cylindric, striated, 5 toothed: corolla ringent tabular.- (Oswego tea, mountain mint.)
Sat" VIa. Calyx tubular, striated, 2 -lipped, under hp 2 to 3 -toothed, lower lip 2 -cleft : corolla ringent, upper lip concave, lower lip broad, three-lobed, the middle lobe the largest, notchec stamens with two mprealing branches, one of which bears a one-celled anther; germ four
-This !s an exotic in cur region, but grows wild in the southern states.

The following characters denote the duration of a plant. © annual- σ^{\top} bienmal- 4 perennial- h woody.

Accent and quantity.

The marks over the generic and specific names have refereno aot only to the syllable which is to be accented, but to the quantity of the vowel in the accented syllable, as either long or short.

Those syllables over which the single mark is placed have the vovel pronounced long, as in J'ra ga'ri-a; those over which the double mark is placed, have the vowel pronounced short, as in He-pat' $-i$-ca; in the latter case, the stress of voice seems thrown upon the consonant ; the two marks may, therefore, be considered as indicating that the consonant, as well as vuwel, is accented.

The general rule respecting words of two syllables is simple, and renders it unnecessary to prefix to such words the marks fot accent and quantity.

Words of two syllables always have the accent on the first, if the syllable end with a vonvel it is long, as in Cro-cus; if it end with a consonant it is short, as in Cac"-tus.

Nots-It would be well for the teacher to request the pupil to ermmit to memory the directions for pronouncing the name of plartsthe signification of the letrers-and to observe particularlv the marks nsed to point eut accent and quartity.

DESCRIPTION OF GENERA OF PLANTS.

class i. monandria. One Stamen.
Order 1. Monogynia. One pistil.
Salicor" ${ }^{\prime \prime}$. Calyx inflated, entire, 3 or 4 -sided, obconic; corolla 0 ; style 2-cleft ; seed 1, enclosed in the calyx.-(samphire.;

Order 2. Digynia. Two pistils.
Bu'rum. Calyx 3-cleft, or 3-parted, berry-like: corclla 0: seed 1, immersed in the calyx.-(blite.)

class II. diandria. Two Stamens.
Order 1. Monogynia. One pistil.

A. Corolla 1-petaled, inferior, regular; seeds in a drupe or nut.

Cuionan ${ }^{\prime}$ thus. Calyx 4 -parted; corolla 4 -parted, with very long divisions: nucleus of the drupe, striate-fibrous.-(fringe-tree.)*

Exotic.

Jis"minum. Corolla salver-form, 5 to 8 cleft : berry 2-seeded, ea:o eed solitary, arilled.-(jasmine.)
Syrin"ga. Corolla salver-form : capsule 2-celled.-(lilac.)
B. Coralla 1-petaled, inferior, irregular; seeds in capsules. Veron"tca. Calyx 4-parted: corolla cleft into 4 lobes, lower division smaller: capsule obcordate, few-sceded, 2-celled.-(speedwell.) Catal"pa. Corolla 4 or 5 -cleft, somewhat inflated, bell-form: calys -parted or 2-leaved: stigma 2-lipped: capsule cylindric, 2-celled.(catalpa tree.)
C. Corolla 1-petaled, inferior, irregular: seeds naked.

Monar"da. Calyx cylindric, striated, 5 toothed: corolla ringent tabular.- (Oswego tea, mountain mint.)
Sat" VIa. Calyx tubular, striated, 2 -lipped, under hp 2 to 3 -toothed, lower lip 2 -cleft : corolla ringent, upper lip concave, lower lip broad, three-lobed, the middle lobe the largest, notchec stamens with two mprealing branches, one of which bears a one-celled anther; germ four
-This !s an exotic in cur region, but grows wild in the southern states.
eleft : style thread-shaped, curved; seeds 4 , in the bottom of the ca. yx.-(sage.)
D. Corolla superior.

Crrcesta. Calyx 2-leaved or 2 -parted; corolla 2-petaled; cansuie Circes a. Calyx 2 -leaved oells 1 or 2 seeded, sects obiong.-(enchanter's nightshade.)

Order 2. Digynia. Two pistils.

A nrtoxan'thum. Calyx of two egg-shaped, pointed, concave, Anvhoxan flewered; cornlla of two equal husks, shorter than chatfy scates; l towere back; an internal corvila or nectary, conthe calyx, awned on-shaped minute scales: stamens longer than the sisting of two egg-siaped forked at both ends; germ superior: seed, 1 -(sweet vernal grass.)

CLASS III.

Three Stamens
. Monogynia. One pistil.
A. Flowers superior.

I'Rs. Calyx spatha 2 or 3 -valved : corolla 6 -parted, divisions alterIRis. Caly rexled: stigmas 3 , petal-like: style short: capsule 3 -celler. (flower-de-luce, iris or flag.)

Exotic.

Cro"cus. Spatha radical: corolla funnel form, with a long slender ube ; stigma deep-gashed, crested. - (saffron.)
Ix'1s. Spatha on 3 valved, ovate, short; corolla 6-parted or 6 -pealed; sometimes tubular: stamens strait or incurved; stigmas sub-filiform.-(black-berry lily.)

Order 2. Digynia. Two pistils.
A. Calyx and corolla of a similar texture-flowers in spreading panicles.
Aaros'tis, Calyx herbaceous, 2 -valved, 1 -flowered, valves acute, Aotle less than the corolla: corolla 2-valved, membranaceous, often hairy at the base: stigmas longitudinally hispid or plumose floreis spreading; nectary lateral; seed coated.-(redtop.)
Czlyx and corolla of similar texture-flowers in compact panicles, often spikeform.
Phléum. Calvx hard, 2-valved, equal, sessile, linear, truncate, bicuspidate; corolia enclosed in the calyx, 2 -valved, awnless, trun-cate.-(timothy-grass.)
B. Srikelets 1 flowered; corolla with 1 or 2 abortive rudiments of B. Srikelets 1 flowered; corolla with 1 or

Calyx and sonolle of similar texture.
Puatsis. Calyx membranaceous, 2-valved, valves keeled, nerved. Prala'ris. Calyx membranaceous, 2-valved, valves keel ing, The ecroila is

CLASS I7.
shemer than the calvx and cortaceous: rudiments opposite, seerile, re. sembling vaives : nectary lateral.-(ribbon-grass.)
C. Spikolets many-flowered.
P_{0} A. Spikelets oblong or luear, compressed, many-flowered; cafyx shorter than the florets: corolla herbaceous, awnless, often arachaoid at the base; lower valve scarious at the margin.-(spear-grass.)
Exotic.

Sorg"hum, Florets in pars, one perfect, with a 3-valved corolla, and sessile; the other staminate or neutral, and pedicelled.-(broom corn.)
Dac"tylis. Spikelets aggregated in unilateral heads, many flowered: calyx shorter than the florets, with one large glume, keeled, point ed: corolla with the lower valve keeled, emarginate, mucronate.(orehard grass.)
Ave'Na. Calyx 2 -valved; 2,3, or many flowered: corolla valves mostly bearded at the base, lower one torn, with a twisted awn on the mostly bearded at the base, lower one torn, with a twisted awn on the
back: glumes membranaceous, and somewhat follicle-like; seed coated.-(oats.)
$m m$
D. Flowers in spikes.

Tri'ticum. Calyx 2-valved, about 3-flowered; florets sessile on the teeth of the rachis, obtusish and pointed; glumes beardless, or interruptedly bearded. - (wheat.)
Secatin. Calyx 2 -valved, 2 or 3 -flowered: spikelets sessile on the teeth of the rachis, with the terminal floret abortive: glumes subulate, opposite, shorter than the florets : corolla with the lower valve long-awned.-(rye.)
class f. tetran pria. Four Stamens.
Order 1. Monogynia. One pistil.

A. . Flnoers superior.

(1-petnied.) \qquad
Cbpbalan"tius. Inflorescence in a head: general calyx none, proper calyx superior, minute, angular, 4 -cleft: corolla funnel-form: receptacle globular, hairy : seed solitary, oblong.-(button-bush.) receptacle globular, hairy: seed solitary, obong.- crotlon-basser.)
Hobsto'Nis. Calyx half superior, 4-toothed: corolla salver-form, 4 -clett; capsule 2-celled, many-seeded, opening transversely.-(innocence.) 3 (4-petaled)
Cor"nos. Calyx 4-toothed: drupe with a 2 -celled uat Some species have a 4 -leaved involucrum.-(dogwood, false box.)

Southern.

Lr'com. Corolla tubular, having the throat closed by the beards of the filaments : stamens often 5 : berry 2 -celled; many seeded.-(watrimony.)

Class v. fentandria. Five Stamens.

Order 1. Monogynia. One pistil.

A. Flowe s 1 -petaled, inferior; seeds naked in the bottom of the calyz

Rough Leaved Plants.

Cynogros"sum. Calyx 5-parted: corolla short, funnel-form, vaulu ed ; throat clused by five converging convex processes; seeds depress ed, affixed laterally to the style.- (hound's-tongue.)
Bora'co. Corolla wheel-form, the throat closed with rays.-(borage.)
B. Flowers 1-petaled, inferior; seeds covered.
(Capsule 1-celled.)
Lysimach"ia. Calyx 5 -cleft; corolla wheel-form, 5 -cleft; capsule 1 -celled globular, 5 or 10 -valved, mueronate; stigma obtuse. (In some species the filaments are united at the base.) -(loose-strife.)

$$
\text { (Capsule } 2 \text {-celled-rarely } 3 \text {-celled.) }
$$

Verbas"cum. Calyx 5-parted; corolla wheel-form, 5 -lobed, somewhat irregular, stamens declined, hairy ; capsules 2-celled, 2-valved; what irregular, stamensiech, valves inflexed when ripened, many-seeded.-(mullein.)
valves infexed when ripened, mited with or without 2 bracts; corolla fimnel-form plaited: stigma 2-cleft or double: cells of the capsule 2 or 3 ; each 1 or 2 seeded.-(blind-weed-morning glory.)

$$
\text { (Capsule } 3 \text { to } 5 \text {-relled.) }
$$

Phlox. Calyx prismatic, 5 -cleft; segments converging: coroila sulver-form, 5 -lobed, with a tube somewhat curved; filaments unequal in length, attached to the inside of the tube of the corolla; stigmas 3 -cleft; cells 1 seeded, seeds oblong; concave.-(lichnidia.)

Drtu'r. Calyx tubular, angled, caducous, with a permanent orbjcular base; corolla fumnel-form, plaited; capsule 4 -valved, 2 celled, and each cell half divided; generally thorny.-(thorn-apple.)
(Seed in a berry.)
Sola'sum. Calyx 5 to 10 -parted, permanent; corolla bell or wheel form, 5 -lobed, plaited; anthers thickened, party united, with two pores at the top; berry containing many seeds, 2 to 6 -celled.- (potato, nightshade, bitter-sweet.)

Exotic.

Cap/sicum. Corolla wheel-form; berry juiceless, inflated; antheri converging; calyx angular.-(red pepper.)

Flowers 1 -petaled, superior.

(Seeds in a capsule.)

Campan oun Calyx mostly 5-cleft; corolla bell-form, clused at the butom by valves bearing the flattened stamens; stigma 3 to 5 -cleft cansules 3 to 5 -celled, opening by lateral pores.-(bell flower.)
L)BETiA. Calyx 5 -cleft; corolla irregular, often irregularly slitted; anthers cohering, and somewhat curved; stigma 2-lobed; capsole 2 or ${ }^{2}$-celled - (cardinal flower, wild tobacco.)
Loniutira. Calyx 5-towthed; corolla tubular, long, 5 -cleft unequa.,
tamens exsert: stigmas globose; berry 2 or 3 -celled, distinct; seeds many -(trumpet honey suckle.)

Exolac.

Mira'bilis. Corolla funnel-form, compressed below : calyx mietior; germ between the calyx and corolla; stigma globular.-(four ro lock.)

Flonvers 5-petaled, inferior.

(Seod in a capsule.)
Impátiens. Calyx 2-leaved, deciduous; corolla irregular, spuried, anthers cohering at the top; capsule 5 -valved, bursting elast.cally when ripe.-(touch-me-not, jewel weed.)
Vi'ola. Calyx 5-leaved or deeply 5 -cleft, corolla irregular, with a norn behind; (sometimes it is a mere prominence;) anthers attached oy a membranous tip, or slightly cohering; sapsule 1-celled, 3 -valved. -(violet.)

Celas'trus. Calyx 5-lobed; flat: corolla spreading: capsule obtusely 3 -angled, 3 -celled, berry-like: valves bearing the partitions on their centres; cells 1 or 2-seeded: stamens standing around a glandular 5-toothed disk: style thick: stigma 3-cleft: seeds calyptred or arilled.-(staff tree, false bittersweet.)
E. Flowers 5-petaled, inferwor.

Rt'bes. Calyx bell-form, 5-cleft, (sometimes flat:) corolla and stamens inserted on the ealyx: style 2-cleft : berry many seeded. 36.85 -(currant, goose-berry.)

Order 2. Digynia. Two pistils.
A. Corolla 1-pelalled, inferior.

Gentu'na. Calyx 4 or 5 -cleft : corolla with a tubular base, bell-form, without pores, 4 or 5 -cleft, stiginas 2, sub-sessile, capsule 1-celled oblong: columellas 2, longitudinal: stamens but 4, when the divisions of corolla are 4.- (gentian.)

Exotuc.

Plants umbelliferous : flowers 5-petalled, superior: seeds 2.
(Sceds prickly or hispid.)

DA'ucus. Seeds striate on their joining sides suter sides convex $^{\text {sin }}$ hispid ribs: involucrum pinnatifid; flowers sub-radiated, abortive in the disk.-(carrot.)

Exotic.

Ane'thum. Seeds flat or convex, 5-ribbed: germ lenticular, compressed: calyx and petals entire: involucrums none.-(fennel, dill.) Order 3. Trigynia. Three pistils.

A. Flowers superior.

$\mathrm{V}_{\text {raur' }}$ noms. Calyx 5 -parted or 5 -toothed, small ; corolla bell-form, 5-cleft, with spreading or reflexed lobes; stigmas almost sessile : heriy or drupe 1-seeded.- (snow ball, sheep-berry, high cranberry.) Sambu'cus. Calyx 5-parted or 5-cleft, small; corolla sub-urceolate
 elder.)

L'nom. Calyx 5 -leaved or 5 -parted, permanent; corolla 5 -petaled. nferior, with claws; capsule 5 or 10 -valved, 10 -celled; seeds solitary, ovate, compressed; filaments spreading or united at the base.-(flax.)

Class vi. hexandria. Six Stamens

Order 1. Monogynia. One pistil.

Flowers huving a perianth and corolla, without a spatha. Tradesonn"tua. Calyx inferior, 3-leaved; corolla 3 -petaled; filhments with iointed beards; capsules 3 -celled, many-seeded.-(spiderwort.)
B. Flowers having a spatha or ghume, without a perianth.

Amaryi"Lis. Corolla superior, 6 -petaled, unequal ; filaments unequal in proportion or direction, declined, inserted in the throat of the tabe.-(atamask lily.)

Exotic.

Gatan"trus. Petals 3, concave, superior: nectarines (or inner petals) 3 , small, emarginate; stigma simple.-(snowdrop.)
C. Flowers having no calyx.

Lr'Lum. Corolla liliaceous, inferior, 6 -petaled; petals with a lontudinal line from the middle to the base; stamens shorter than the le stigma undivided; capsule sub-triangular, with the valves constyle; stigma undided by hairs crossing as in a sieve. - (lily.)
Ery hairsum Corolla liliaceous, infeitior, 6 -petaled; petals reEnfand two twercle-form nectaries at the base of the three inner alternate petals; capsule somewhat stiped; seeds vate - (dog-tooth violet, or adder-tongue.)
.
Aspar acs. Corola mex: style very short : stigmas 3 ; berry 3 -celled, visions retexed - (asparagus.)
cells 2 -seeded.

Tu'tips. Coroila 6-petaled, liliaceous, style 5 ; stgma thick; capule oblong, 3 -sided.-(tulip.)
FritiliA'ris. Corolla inferior, 6 -petaled, bell-form, with a nectariferous cavity above the ciaw of each; stamens of the ength of the corolla; seeds flat.-(crown imperial.)

Order 3. Tryginia. Three pistils.
Tri"Lum. Calyx 3 -leaved, inferior, spreading ; corolla 3-petaled Tri" LivM. Calyx 3-leay-clled, many seeded.- (false wake rolin.

class vi. heptandria. Seven Stamens.

Order 1. Monogynia. One pistil.
A's'culus. Calyx inflated; 4 or 5 -toothed; corolla 4 or 5 -petaled ins orted on the calyx, unequal, pubescent; capsule 3 -celled; seeds large, solitary, chestnut-form -(horse chestnut.)

Urder 1. Monogynia. One pistil.

Oenóthera. Calyx 4-cleft, tabular, caducous, divisions reflected petals 4 , inserted on the calyx ; stigma 4 -cleft ; capsule 4 -celled, 4 -val ved ; seeds not feathered, atiixed to a central 4 -sided columella.-(scabish, (r evening primrose.)
Tropesolum. Calyx 4 or 5 -clef, coloured spurred ; petals 4 or 5 , unequal; nuts leathery, sulcate.-(nasturtion)
class ix. enneandita. Nine Stamens.

Order 1. Monogynia. One pistil.

I.aúrus. Calyx 4 to 6 -parted; corolla 0 ; nectaries 3 , each a 2 .hristied or 2 -lobed gland, surrounding the germ; drupe 1 -seeded. Stamens vary from 3 to 14, but they are generally in two series of 6 each, with 3 of the inner series barren-often dicecious. The calyx may be taken for a coroila.-(sassafras, spice-bush.)

$$
\begin{aligned}
& \text { Class x. decandria. Ten Stamens. } \\
& \text { Order 1. Monogynia. One pistil. }
\end{aligned}
$$

A. Flowers polypetalous, irregular, (mostly papilionaccous.)

CAs'sis. Calyx 5 -leaved; corolla 5 -petaled; anthers 3 , lower one: beaked, and on longer incurved filaments; legume membranaceous: cassia.)
B. Floveers polypetalous, regular.

Py'rola. Calyx 5-parted, petals 5 ; styles longer than the stamens, anthers with two pores at the base before, and the top after the opening of the flower; capsule 5 -celled, dehiscent at the angles near the jase.-(shim leat.)
Саімарн"ILA. Calyx 5-parted; petals 5 ; anthers beaked, with 2 pores at the base before, and at the top after the opening of the flower; style immersed; stigma thick, orbiculate; capsule 5-celled, dehiscent at the angles near the summit-(prince's pine, pipsissiwa.)
Exotic.

Ru'ra. Calyx 5 -morted; petals concave; receptacle surrounded ty 10 nectariferous doto; capsule lobed. (Petals sometimes 4, and stamens 8.) -(rue
C. Flowers monopetalous.

EPIGE'A. Calyx double, outer 3-leaved, inner 5 -parted; (or calyx 5 -parted, with 3 bracts;) corolla salver-form; border 5 -parted, spreading; tube villose within; capsule 5-celled, many-seeded ; receptacle 5 -parted.-(trailing arbutus.)
Vacci" nivm. Calyx superior, 5 toothed or 5 -parted, corolla bell epitcher form, 5 -clef, the divisions reflected- filaments insertea on the

CLASS XII

the drupe smooth, with prominent seams at the sutures.-(chery
plain.)

Éxotic.

Amya"dalus. Calyx 5-cleft, inferior; petals 5, drupe with a nut perforated with pores, flowers sessile.- (peach.)
Pailadel"phus. Calyx 4 or 5 -parted, superior, top-form ; corolla ariled.-(false syringa, or mock orange) 5 -celled, many-seeded; seed orange.)
Order 2. Digynia, to Order 5. Pentagynia ; or Dipenta. gynia. From two to five pistil:
Crate'gus. Calyx superior, 5 -eleft; petals 5 ; styles 1 to 5 ; berry Aro'nia. Calyx superior, 5 thorn-bush.)
berry 5 or 10 -celled; cells 1 or, 5 -toothed; petals 5 ; fruit pomaceous flower, choair berry.) cells 1 or 2-seeded; seeds cartilaginous.-(shadPyrus. Calyx 5 .
many-seeded; seeds compressed-ovate corolla 5-petaled; pome 5-celled. any-seeded; seeds compressed-ovate.-(pear, apple, quince.)

Order 13. Pologynia. Many pistils.
Ro'ss. Calyx urn-form, inferior, 5-cleft, fleshy; contracted to wards the top; petals 5 ; seeds numerous, bristly, fixed to the sides of the calyx within. A genus remarkable for the multiplication of its petals, by rich culture.-(rose.)
Ru'bus. Calyx 5 -cleft, inferior; corolla 5 -petaled; pistils numerous; berry composed of many jul $\because y, 1$-seeded acines, on a dry recepFriaíria
corolla 5-petaled; receptacle 10 -cleft ; 5 alternate divisions smaller; mersed in the receptacle, cade ovate, berry-like; acines naked, int.ersed in the receptacle, caducous.-(strawberry.)
Class XII. Polyandria. More than ten Stamens situated on the receptacle.

Order 1. Monogynia. One pistil.

Sanguinárta. Calyx caducous, 2-leaved; corolla about 8 -netaled sugma sessile, twinned, 2 -grooved, cansule pod-like ovate -petaled, -valved, acute at each end; valves caducous; columella 2, perma-nent.--(blood-root.)
PodophyL"Lum. Calyx 3 -leaved, minute; corolla ationt 9 petaled stigma large, crenate, sessile; berry 1-celled, crowned with the stigma, large, many-seeded; columella one-sided.-(wild mandrake.)
Papíver Culyx er Exotic.
Papa'ver. Calyx 2-leaved, caducous; corolla 4-petaled; stigma broad disk, with radiating lines ; capsule 1 -celled, dehiscent by pores ander the jermanent stigma.-(poppy.)
Order 2. Digynia, to Order 5. Pentagynia, or Di-Penta gynia.
Delphínum. Calyx 0; corolla 5-petaled, unequal ; neetary. 2-r let

Phytolac ${ }^{\prime \prime}$ ca. Calyx 9 ; corolla 5 -petaled or 5-cleft, calyx-like, 1 m erior; berry 10 -cell, 10 -seeded. By some authors the calyx is called curolla.- (poke-weed.)

Lass xi. ICosandria More than Ten Stamens situated on the Calyx.
Order 1. Monogynia. One pistil.
Pro'nig. Calvx-cleft, inferior, bell-form ; coroila 5 -petaled; nut of

- Having eight stamens.
horned behind; c ipsules 1 or 3 , pod-like. By some the ecrolla is considered as a coloured calyx. - (larkspur.)
Aquis'Gu. Calyx 0 ; petals 5 , caducous; nectaries 5 , alternating AquLécia. Caly terminating townwards in a spur-like nectary ; with the petals, and terminated with the permanent styles, many-seedcapsules 5, erect; acuminated wichsidered as petals, and the corolla ed. By some the nectaries are con
as a coloured caly. - (columbine.)
as a coloured calyx. Calyx 5 -parted ; divisions equal, sub-ovate; corolla HYPER" ICUM. Calyx 5 -parted; dite the base in 3 or 5 sets; styles 2 to 3. petaled; filaments otten united at tish, with a number of cells equal 5 ; capsules membranaceous, roumdises, of the filaments are often in to the number of slyles.
groups, when they are not united. - (Si.
Peo'vit. Calyx 5-leaved; pelals 5 ; styles 0 ; stigmas 2 or 3 ; cap sules pod-like, many-seeded. Remarkable for the multiplication of petals by rich culture.-(peony.)

Order 13. Polygynia. Many pistils.

A. Pcrianth nome.

Clien" A tis. Petals $3,4,5$, or 6 ; seeds compressed; styles perme Cut becoming long plumose tails. (Some species are diœcious.) (virgin's bower.) By some the corolla is considered a coloured calyx (virgin's bower, Petals 5 to 9 ; seeds numerous, naked.-(wind-flower
Anemo ne. Peta corolla is considered a calyx by some.
rue anemone.) The corolla is consiar capsules numerous, (5 to 10)
Cal Tha, compressed; 1 -celled, spreading; nectaries 0 . (Pisti) variable in number.) - (American cowslip.) By some the corolla i mistaken for a coloured calyx.
B. Having a perianth. Hepat ICA. Calyx 3 -leaved, a little distance belo
tire; pe'als 6 to 9 ; seeds 5 -leaved. petals 5 , with claws, and a necta.
Ranus"culus. Calyx 5 -leaved; petals 5 , whe without tails riferous pore or scale on the
ked, numerous.- (crow-foot.)
class xill. didynamia. Having Four Stamens. Two Sta mens longer than the other two.
Order 1. Gymnospermia. Seeds naked in the Calyx.
A. Calyx 5 -cleft, with the divisions, or teeth, nearly equal.

MEN'THA, Corolla nearly equal, 4 -lobed; broadest division, emar. inate; stamens erect, distant.-(spearmint, peppermint.)

促 Hedeo ma. Calyx 2-lipped, 2 short stamens barren.-(pennyroyal.)

Nep'eta. Calyx dry, striate: corolla with a longish tube; unde: in with the middle division crenate, throat with a reflected margin: stamens approximate. - (catmint.)

Gtiecho'ma. Calyx 5 -cleft ; corolla donble the length of the calys apper lip 2-cleft - lower lip 3 -cleft, with the middle segment emargi
nate; each pair of anthers approaching so as to exhibit the form of ? cross.-(ground ivy, gill-overground.)

Exotic.

Lava $v^{\prime \prime}$ dula. Calyx ovate, sub-dentate ; bracts under-stidded; co rolia resxpinate ; stamens in the tube.- (laven ler.)

> B. Calyx 2-tipped.

Pronel"ha. Calyx with the upper lip dilated; filaments 2 -forked, with an anther on one of the points; stigma 2-cieft-(self-heal, or beal-all.)
Scutbla'ria. Calyx with an entire mouth, which is closed with s helmet-form lid after the corolla falls out ; tube of the corolla bent -(scull-cap.)

Exotic.

THY"Mus, Calyx sub-campanulate, with the throat closed with hairs; corolla with the upper lip flat, emarginate; lower lip longer.-
(thyme.) (thyme.)

Order 2. Angiospermia. Seeds in a capsule.
Antirri'num. Calyx 5 -leaved or deeply 5 -parted; the two lower divisions remote; corolla personate or ringent, spurred, or with a prominent base, the throat closed with a prominent palate; capsule ovate, 2-valved, dehiscent at the apex, with reflexed teeth.-(snap-dragon, toad-flax.)
Ggrar" dia. Calyx 5-cleft or 5-toothed; corolla sub-campanulate, unequaily 5 -lobed; segments mostly rounded; capsule 2-celled, dehiscent at the top.-(false fuxglove.)
Pentste'mun. Calyx 5-cleft or 5-leaved; corolla ringent, inflated; the rudiment of a bearded filament between, and longer than two tallest stamens; anthers smooth; capsule 2-eelled, 2-valved, ovate ; seeds numerous, angular.--beard tongue.)

CLASS XIV. TETRADYNAMIA. Having six stamens- Four sta mens longer than the other two.
 Order 1. Siliculosa. Short pod.
 Exotic.

Luna'ris. Silicle entire, oval, flat-compressed, pedicelled; valve equalling the partition, parallel, flat ; calyx consists of coloured sack like leafets. 39.63.-(honesty, or satin-flower.)

Order 2. Siliquosa. Long pod.
Chetran'thus. Calyx closed, two of the leafets gibbous at the base: petals dilated; silique, when young with a glandular tooth each side stigma 2-lobed; seed flat, sometimes margined.-(stock-july-flower, Wall-flower.)
Sina'pis. Calyx spreading; corolla with strait claws; glands beween the short stamens and the pistil, and between the long stamen,
and the calyx ; partition extending beyond the valves of the silinue insiform ; seeds in a single series.-(mustard.)
Rapha'nus. Calyx closed, silique, terete, not opening by valves, 1 or 2-celled; glands between the short stamens and pistil, and between the long stamens and the calyx.-(radish.)

Exotic.
Bras'sica. Calyx erect, converging; partition extending beyond he valves of the silique; seed globose; glands between the short stamens and pistil, and between the long stamens and calyx. - (cabbage turnip.)

CLASS XV. MONADELPHIA. Stamens united by filaments in one set.
Order 3. Triandria. Three stamens.
Sismyn"chiust. Spathe 2-leaved; perianth 0 ; corolla superior, 6 cleft or 6-petaled, tubular; style 1; stigma 3-cleft; capsule 3-celled. cleft or 6-petaled,
(blue-eyed grass.)

Order $\overline{0}$.
Pentandria.
Exotic.
En 'dium. Calyx 5-leaved; corolla 5-petaled; nectariferous scales 5 , al. mating with the filaments; arils 5 , 1 -seeded, awned, beaked at the base of the receptacle; awn spiral, bearded within.-(stork's bill.)

Order 7. Heptandria. Seven stamens. Exotic.
Pelargóntum. Calyx 5-parted, upper division broader, ending in a capillary nectariferous tube; corolla 5 -petaled, irregular; the two upper petals usually lroader, with coloured veins; filaments 10,3 of them usually without anthers; arils 5, each 1-seeded, awned ; some of the awns spiral.-(stork geranium.)

Order 10. Decandria. Ten stamens.
Gern'nium. Calyx 5-leaved; corolla 5-petaled, regular ; nectariferous glands 5 , adhering to the base of the 5 alternating long filaments; arils 5,1 -seeded, awned, beakel at the elongated top of the receptacle; awn naked or smooth within, straight. 14. 73.-(cranebill, false crow-foot, herb-robert.)

Order 12. Polyandria. Many stamens.

Althe's. Calyx double, outer one 6 or 9 -cleft; capsules many, at anzed circularly, 1 -seeded.-(hollyhock.)
 Mat"va. Calyx double, outer one 3 -leaved, inner one 5 -cleft;
cules manv, arranged cirsular'y, 1-celled, 1 -seeded.-imallows.
el ass xvi. diadelphia. Stamens united by filampents in two sets.

Order 5, to Order 8. Pent-octandria. From 5 to 8 stamens.
Polyga'la. Calyx 5 -leaved, permaneut, unequal, 2 of the leafets wing-like, larger, coloured, corolla irregular (or rather, ca.yx 3 -leaf. ed, corolla imperfectly papilionaceous;) capsule obcordate, 2-celled 2.vaived. Keel of the corolla sometimes appendaged: seeds hairv (srake loot, milk-wort, low centaury, mountain flax.)

Order 10. Decandria. Ten stamens.

Legume without transverse divisions or portzons; seeds numerous

(Stigma pubescent.)

Pi'sum. Calyx with the divisions leaf-like, about equal: banner protruiting 2 folds: style compressed, carinate, villose above: legume without down at the suture.-(pea.)
La'thyrus, Calyx with the two upper divisions shorter: style flat, villose above, broader towards the top. (Stems mostly winged, leafets z or more, terminated by a divided tendril.)-(sweet pea.)

(Stigma not pubescent.)

Phaséolus. Keel stamens and style spirally twisted together legum compressed, faleate; seeds sub-eompressed, reniform.-(bean.) Robínia. Calyx small, bell-form, 4-cleft, upper division 2 -parted: banner .arge, reffexed, roundish, legume compressed, elongated, many
seeded; seeds compressed, small - locust mee) Trifo'num Fompressed, small.-(locust tree.)
not opening by valves, 1 to 4 -seeded. (clover) (clover.)
Lupi'Nus.
gume coriaceons gume coriaceous.-(lupine.)

Class xvir. syngenesia. Anthers united.

Order 1. Polygamia Aiqualis. Disk and ray florets perfect
Leon'rodon. Calyx imbricate, with flexible leafets; receptacle nared: egret stiped.-(dandelion.)
Laftu'ca. Calyx imbricate, cyiindric, with the margin of the scales twembranaceous; receptacle naked; egret simple, stiped; seed smooth. -(lettuce.)
Car"nuus. Calyx ovate, imbricate with prickly scales; recepcacle villone; egret pilose.-(comb-tooth thistle.)

leshy bases, emarginate and pointed; egret plumose, sessilc.-(gardex artichike.)
B. Florets tubulons; flower discoid.

Eups'to'rum. Calyx imbricated (rarely simple) oblong; style long Eups'ro'nus. Caly igret pilose, scabrous, or rough papiliuse; re cloven halfway down - egret pilose, cabdular, 5 striate. - (bonesel ceptacle naked: seed
thoroughwort, joepye.)
Order 2. Polygamia superflua. Florets of the disk perfect
Order 2. Polygama superfia. those of the ray having pistils only.
ULEA. Aloweers discrid; the ray florets being obsolete.
TANACE'TOM. Calyx imbricate, hemispheric; scales acuminate, rays obsolete, 3-clell, egret somewhat marginal; receptacle naked. (Flow. ers corymbed.)-(tansey.)
GNAPHÁLIUM. Calyx imbricate with the marginal scales rounded GNapha Licm. aly , eloured; recepracle naked; egret pilose ut scarious, shornsh, Sometimes all the forets are perfect.- (life everlasting.)
B. Flovers radiate; the ligulate ray florets very manifest.
(Receptacle naked.)

As'ter. Calyx imbricate, the inferior scales generally spreading, Aster egret simple, pilose; receptacle often deep pited. Thre or white, neve: more than 10, except in a few species
yellow.-(star-flower.)
Souns'so. Calyx oblong or sub-cylindric, with oblong, narrow inted straight cole imbricate, closed upon the flower; ray flore: about 2 , and fewer than 10, lanceolate, 2-toothed, equal to, or shoret than the calyx; filaments capillary, very short; style thread form equalling the length of the siacle stigna cent simple, pilose, scabrous; receprad:
seed: oblong ovate.- (golden rod.)
Chiysan'themum. Calyx hemper or a narrw margin.-(0. membratious at the margin ; egret eyed daisy, fever-few.) Exotic.

Bet"Lus. Calyx hemispherical ; scales equai ; egret 0; receptac Benical; seed obovate. - (garden daisy.)
onical ; seed Calyx simple, 1 -leafed, 5 -toothed, tubular: florets of ti, TAGE TES. Calyx 5 , permanent; egret 5 erect awns.-(marigold.)
1ty about 5, permanent, egrtacle chaffy or hairy.)
A v"tremis. Caivx hemispherical; scales with scarious margin
An"themis. Caiyx hemispherical; scales in florets of the ray mo searly equal; egret 0, or a memith a rigid acuminate apex ; seed crow taan 5 ; receptacle chais border or egret.-(may-weed, chamomile.)
ed with a membranous border of the disk per
Order 3. Polygamia Frustrane. Feither stamens nor pistics.
fect, those of the ray having neither stamens lealy; recepra
Frian"тwis. Calyx imbricate, sub-souarrose, leaty ; receptac

4at, chaffy ; egret 2-leaved, chaff-like, caducous.-(sunflower, jerusa .pm artichoke.)
class xvill. gynandita. Stamens growing out of the pistil.

Order 1. Monandria. One stamen.

A. Anther adnate, sub-terminal, not caducmus; masses of poiien affixed by the lase, and made up of angular particles.
Or"chis. Corolla ringent-like, upper petal vaulted; lip dilated, spurred beneath: masses of pollea 2, adnate, terminal.-(orchis.)

Order 2. Diandria. Two stamens.
Cyprips'dium. Calyx coloured, 4 -leaved, spreading; corolla 0 , (by some the calyx is called a corolla;) nectary large, hollow, inflated; style with a lerminant lobe, and petal-like appendage on the upper side.-(lady's slipper.)

Order 5. Pentandria. Five stamens.
Plants bearing seeds in follicles; and pollen in masses called pollinia. Ascléplas. Petals 5, reflected; nectaries 5, concave, erect, containing little horns; each stamen with a pair of pendulous masses of pollen, suspended from the top of the stigma; follicles smooth.poilen, suspended from
(milk-weed, silk-weed.)
rass xix. moneecia. Staminate and pistillate flowers on the same plant.

Order 3. Triandria. Three stamens.

$T \mathrm{r}^{\prime} \mathrm{PH}$. Ament cylindric, dense-flowered. Staminate flowers calyx obsolete, 3 -leayed: corolla 0 ; stamens 3 together, on a chanty or hairy receptacte, united below into one. Pistilate flowers-below the staminate; calyx 0 ; corolla 0 ; seed 1 , pedicelled; the pedicels surrounded at the base with long hairs resembling an egret.-(cat-tail or reed mace.)
CA'rex. Aments imbricate (usually in cylindric spikes.) Staminate flowers-calyx scales single; corolla 0 . Pistillate flowers-calyx scale single; corolia inflated, monopetalous, 2-toothed at the apex stigmas $20^{r} 3$; nut 3 -sided, enclosed in the inflated, permanent corolla which becomes an utriculous-like permanent aril. Sometimes diæci-ous.-(sedge.)

Compto NIA. Staminate flowers-ament eylindric, with calyx seales 1 flowered; corolla 2-petaled or none; filaments 2-forked. Pistillate flowers-spike or ament ovate ; corolla 6 -petaled (the corolla may be called a calyx ; styles 2; not oval, 1-celled.-(sweet fern.)
Zs'a. Staminate flowers-calyx glume 2-flowered, awnless; corolla ghme awnless. Pistillate flowers-calyx glnme 2 -valved (number of
valves increased by cultivation;) style 1 , very leng, filiform, pendu ouus; seed solitary, immersed in an oblong receptacle.-(Indian corn.)

Order 4. Tetrandria, Four stamens.

$\mathrm{Mo}^{\prime} \mathrm{kus}$. Staminate flowers-calyx 4 -parted; corolla 0 . Pistillate flowers-calyx 4 -leaved; corolla 0 ; styles 2, calyx becoming berrylike; seed 1.-(mulberry.)

1 Order 5. Pentandria. Five stamens.

Amira" ${ }^{\text {nthus. }}$ Staminate flowers-calyx 3 or 5-leaved; corolla $0_{;}$ stamens 3 or 5 . Pistillate flowers-calyx and corolla as the stami nate; styles 3 ; capsule 1-celled, opening transversely ; seed 1.--(amaranth, red cockscomb.)

> Order 12. Polyandria. Many stamens.
> A. Stems not woody.

Sagitts'ria. Staminate flowers-calyx 3 -leaved; corolla 3 petaled; filaments mostly 24. Pistillate flowers-calyx and corolla as in the staminate ; germs many; capsules aggregate, 1 -seeded, not opening -(arrow-head.)

Ar'um Spatha cucullate, 1 -leaved; spadix not entirely covered with fructification; being more or less naked above, with pistillate flowers beneath, and staminate in the middle (sometimes a few are staminate beneath; berry mostly 1 -seeded, generally cirrose glandular Beneath.) - (Indian turnip, wake-robin.)
B. Stenns voody.

Quer'cts. Staminate flowers-ament loose; calyx sub 5-cleft; co rol:a 0 ; stamens 5 to 10 . Pistillate flowers-calyx 1 -leated, entire, seabrous, being a woody cup; style 1, stigma 2 to 5 ; nut or acorn 1celled, 1 -seeded, coriaceous, surrounded at the hase by the permanent calyx.-(oak.)
CASTA'NEs. Polygamous. Staminate flowers-ament naked, linear: corolla (or calyx) 1 -eaved, 5 or 6 -parted; stamens 10 to 20. Pistillate corolla (or calyx 5 or $\begin{aligned} & \text {-leaved, (}\end{aligned}$ ma penci-form ; nuls 3 , with coriaceous putamen, enclosed in the calyx, becoming echinate.-(chestmut.)

Order 15. Monadelphia. Filaments united.

$D 1 R \mathrm{~A}$ A. Stems not wooily.
Cuctr'bita. Staminate flowers-calyx 5 -toothed; corolla 5-cleft; flaments 3. Pistillate flowers-calyx and corolla like the staminate; pistil 3 -cleft; pomaceous berry large, 3 to 5 -celled; seeds thickened al the margin.-(gourd, squash, pumpkin, water-melon.)
Ricinos. Staminate flowers-calyx 5 -parted: stamens numerous Pistillate flowers, calyx 3 -parted: styles 3 or 4 -cleft : capsules echinate, h-a!leà, 3 -seeded.-(castor-oil plaut.)

B. Stems woody.

Pi'nus. Staminate flowers-calyx 4-leaved, peltat?; corclla 0 : stamens many ; anthers naked, 2 , sessile, 1 -celled. Pistillate flowerscalyx in strobiles or cones, scales closely imbricaie, x-flowered: Fista 1; nu، with a membranous wing.-(pine.)
hlass xx. digecia. Staminate and pistillate Rowers on dir ferent plants.

Order 2. Diandria. Two stamens.

Si'tux. Staminate flowers-ament cylindric; calyx a 1 -flowered scale, with a nectariferous gland at the base; stamens 1 to 6 . Pistillate dowers-ament and calyx like the staminate; stigmas 2, gene"ally 2 cleft ; capsule 1-celled; 2-valved; seeds many, with egret-like down (willow.)

Order 5. Pentandria. Five stamens.
Hum"ulds. Staminate flowers-calyx 5-leaved; corolia 0; anthers with two pores at the extremity. Pistillate flowers-calyx 1 -leaved entire, oblique, spreading ; styles 2 , seed 1 , within the leaf-ike calyx infloresence strobile-form.-(hop.)
Exatio.

Can"nabis. Staminate flowers-calyx 5-parted. Pistillate flowers -calyx 5 -leaved, entire, gaping laterally ; styles 2; nut 2 -valved, within the closed calyx.-(hemp.)

Order 8. Octandria. Eight stamens.

Po'pulus. Staminate flowers-ament cylindric, calyx a torn scale; corolla turbinate, oblique, entire, supporting 8 to 30 stamens. Pistillate flowers-ament, calyx and corolla like the staminate; stigma 4 or 6 toped: capsule 2-celled, 2 -valved, many-seeded; seed with egret-like hairs. Leaves have a tremulous motion.-(poplar, balnt of Gilead.)
Notr. The 21st Class, Cryp ogamia being too dificult for the ber ginner in Botany to analyze, is omitted.
DE BIBLIOTECAS

AR 0

In threes, ternate, upper ones opposite; leafets gashlcbate and ser-rate-acute; peduncles solitary, l-flowered, elorguted; seed ooiong, wooly, mucronate, in heads, 18 .

NESCRIPTION OF SPECIES OF PLANTS.

ONO

7-1. ESCULUS. (From the Latin Esca, food.)

Exotrc.

Hippocas'tanum, (horse-chestnut, w. J. h) leaves digitate, with akix 7 divisions; corolla 5 -petaled, spreading; flowers in a panicle pyramid. 15. f.
10-5. AGROSTEMMA. (From the Greek Agros, a field, and stemma, a garland.)
Githa'go, (cookle. O. r. J. ©) hirsute; calyx longer than the corolla; petals entire.
3-2. AGROSTIS. (From Ágres, a ficld.)

Tulga'ris, (red-top. O. J. 4) panicle with smoothish branches, spreadTulga'ris, (red-top. O. J. 4) panicle with
ing in maturity; outer valve of the corolla 3 -nerved; stipule short, truncate. 18 . i .

15-13. ALTH ÆA. (From the Greek Altheo, to heal.)
Officina'lis, (marsh mallows. 4) leaves downy, oblong ovate, obsoletely 3-lobed, toothed.
19-5. AMARANTHUS. (From a Greek word signifying not withering.)
Melanchol'ious, (love-lies-bleeding.r. (9)) glomerules axillary, peduncled, roundish; leaves lance ovate, coloured.
$\sqrt{6-1 . A M A R Y L L I S . ~(L a t i n ~ n a m e ~ f o r ~ a ~ n y m v h . ~}$ Ewatic.
Formosis"sima, (jacobea. 4) spatha 1-flowered; corolla ringent-libe; petals declined.
petals decined. 11-1. AMGYDALUS.
Per'sica, (peach. r. M. h) serratures of the leaves all acute, flowers Per"sicn, (peach. r. M.
sessile, solitary. 15. f.
sessile, solitary. 15. f.
Na'na, (flowering almond. h) leaves ovate, tapering to the base, sharp $\mathrm{Na} a^{\prime} n a$, (flowering
ly serrate. 3.f.

12-13. ANEMONE. (From the Greek anemos, the wind.) V'rginia'na, (wind-flower. O. g-w. Ju, 4) stem dichotomous; leaves

Nemoro'sa, (low anemone. O. r-w. M. 2) stem 1 -flowered; cauline leaves in threes, ternate; leafets wedge-form, gash lobed, toothed, acute; corolla 5-6 petaled; seeds ovate, with a short style, hooked. A variety, quinquefolia, has lateral leafets deeply 2-cleft. 6. i.

5 2. ANETHUM.

Exatic.

Grave'olens, (dill.) fruit compressed ; plant annual.
Foni'culum, (fennel.) fruit ovate; plant perennial.
17-2. ANTHEMIS.

Cot' ${ }^{\prime} u l a$, (mayweed. O. w. J. (:)) receptacle conic, chaff bristly, seed naked; leaves 2-pinnate, leafets subulate, 3-parted. 10. i .

Exotic.

No'biles, (chamomile. w. Au. 4) leaves 2-pinnate; leafets 3-parted, linear subulate, sub-villous, stem branching at the base. Fragrant4. i.

8-2. ANTHOXANTHUM. (From the Greek Anthos, a flower, and Xanthus, yellow.)
Oacra tum (sweet vernal grass. O. M. 4,) spike oblong-ovate ; florets sub-peduncled, shorter than the awn. An American variety. altissimum, is larger and of a dark green. An elegant substitute for the Leghorn grass. $10-18$. i.
13-2. ANTIRRHINUM. (From the Greek anti, like, and rin, a snout.)
Lina'ria, (snap-dragon, y. Ju. 4) erect, glabrous; leaves scattered, lanceolate-linear, crowded together; spikes terminal. dense-flowered; calyx glabrous, shorter than the spur. Flowers large-(toan flax.) Naturalized. 12-18. i.
12-5. AQUILEGIA. (From Aquila, an eagle.)

Danaden'sis, (wild columbine. O. r. \& y. Ap. थ) horns straight stamens exsert, leaves decompound. Growing frequently in crevices of rocks. 15.1.

Vilga'ris, (garden columbine. J. थ) horns incurved leafv stem an leaves glabrous; leaves decompound. The nectariferous horm an come numerous by culture; one hollow horn within another. 15 . i.
11-5. ARONIA.

Botrya'rrum (shad bush, june-berry. O. w. Ap. h2) leaves ooiong avai cuspidate, glabrons when mature (when first expanded lanceriate
and downy;) flowers racemed; petas linear; germs puoescent: segments of the calyx glabrous.
19-12. ARUM.

Triphyl"lum, (Indian turnip wild turnip, wake robin, O. p. g. \& w. M. 4) sub-caulescent ; leaves ternate; leafets ovate; acuminate spadix club-form; spatha ovate, acuminate, peduncled with the lamina as long as the spadix. One variety, virens, has a green spa. tha, another, atropurpureum, has a dark purple spatha; another, al bum has a white spatha. 1--3. f.
18-5. ASCLEPIAS. (From Asculapius, the Founder of Medicine.)

1. Leaves opposite.

shri'aca, (common milkweed, O. w. p. Ju. 4) stem very simpt, yriaca, (common mikweed, sub-nodding, downy, 3 to five feet high; flowers in large, close clus-sub-nodding, downy, ters, sweet-scented-pollinia are fly traps. 3-5. f.
Incirma'ta, (O. r. Ju. 4) stem erect, branching ahove, downy; leaves arma'ta, gin; the little horn of the nectary exsert. A variety pulchra is more gin; the litue horn of the nectary exser. A var. Vlabra, almost glabrous. Var. alba, has white flowers. hairy. Var. giabra, almost glabrous. (2)
Damp. 3.
6-1. ASPARAGUS. (A Greek name.)

Exatic.
Jficina'lis, (asparagus, Ju. 4) stem herbaceous, unarmed, sub-erect, terete; leaves bristle-form, soff; stipules sub-solitary. Naturalized in the northern and southern districts. 4. f.
(A Star.)
Leaves entire.

Linariifo"lius, (star-flower O. p. y. Au. 4) leaves thick-set, nerve, less, linear, mucronate, dotted, carinate, rough, stiff, those on the branches recurved; stem sub-decumbent; branches level topped, 1. flowered; calyx imbricate, of the length of the disk; stem rough purplish.
Multifiorus, (O.w-y. Au. to Nov. 2) leaves linear, smoothish; stem very branching, diffuse, pubescent ; branchlets one way; calyx imbricate; scales oblung, scurvy, acute.
Cya'neus, (O. b-p. Au. 4) leaves linear-lanceolate, clasping, smooth; stem wand-like-panicled, very glabrous; branches racemed; scales of the calyx lax, lanceolate, equalling the disk, inner ones coloured at the apex. 3-4. f. Flewers many and large. This is the handsomest of all asters.

Leaves more or less cordate and ovate, serrate, or toothed.
Panicula'tus, (O. b-p. Au. to Nov. 4) leaves ovate-lanceolate, subserrate, petioled, glabrous; radical ones, ovate heart form, seriate, rough, petioled; petioles naked; stem verv branching, glabr jus:
bran th ets pilose; calyx lax, sub-imbricate. 2-4. f. Flowers smal ish, numerous.
Cordifo'lius, (O. w. S. 4) leaves heart-form, pilose beneath, sharp serrate, petroled; petioles winged; stem panicled, smoothish; paticle divaricate ; calyx lax, sub-imbricate. Flowers small.

Leaves lanceolale and óvate, lower ones serrate.

Exotic.

Chinen'sis, (china aster. ©) leaves ovate, thickly toothed, petioled cauline ones sessile, at the base wedge-form; floral ones lanceolate entire ; stem hispid; branches l-flowered; calyx foliaceous. A variety has very full flowers, various coloured, and very short rays. Cultivated.

$$
\begin{aligned}
& \text { 3-1. AVENA. } \\
& \text { Exatic. }
\end{aligned}
$$

Sutt'va, (oats S. ©) panicled; calyx 2-seeded; seeds smooth, one of them awned.
17-2. BELLIS. (Perhaps from the Latin Bellus, handsome.)
Exotic.
Peren'nis, (daisy. w. \& p. Ap. 4) leaves obovate, crenate; scape na. ked, 1 flowered.
1-2. BLITUM. (A Greek name.)

Capita'tum, (strawberry blite. O. r. J. ©)) heads in a terminal spike not intermixed with leaves; leaves triangular, toothed. $15 . \mathrm{i}$.
5-1. BORAGO.

Officina'lis, (borage. b. Ju. ©) leaves a.wernate; calyx spreading. 14-2. BRASSICA.

Exotic.

Ra pa, (turnip. ס) root caulescent, orbicular, depressed, fleshy; radıcal leaves rough; eauline ones very entire, smooth. Var, ruta-baga Olea'cea (common cabbage, in rool.
ture. of root caulescent, including all the varieties caused by cul ture. $\sigma^{\prime \prime}$ root caulescent, terete, fleshy; leaves smooth, glaucous. repand lobate.

12-13. CALTHA. (Latin name for Marygold.)
Palustris, (O. y. Ap. 4) stem erect; leaves cordate, sub-orbicular
acute-crenate. acute-crenate.
5-1. CAMPANULA. (Latin name, meaning a small bell.)
Rotundifo'lia, (flax bell-flower, hare-bell. O. b. J. 4) glabrous; rads cal leaves heart reniform, crenate; cauline ones linear, entire; panicle lax, "ew flowered; flowers nodding.
American'a, (E. b. An. 24) leaves ovate lanceolate, long acuminate, lower ones sub-cordate with the petioles ciliate; flow'ars axillary
nearly sessile, in a terminal leafy raceme; corolla suh-rotate; style exsert. Cultivated. 2. f.

20-5. CANNABIS
Exotic.
Satz'va, (hemp. G. Au. ©) stem piluse; leaves petioled, digitate; leat. ets lanceolate, serrate, pilose; staminate flowers solitary axillary, pistillate ones spiked. $4-10$. f.
5-1. CAPSICUM. (From Greek Kapto, to bite.) Exatic.
$A n^{\prime \prime}$ nuum, (guinea pepper, red pepper, cayenne pepper. y-g. w Au (2) stem herbaceous; peduncles solitary. From South Americs 10-18. i.

$$
17-1 . \text { CARDUUS. }
$$

Pectrna'tus, (comb-tooth thistle, E. p. ठ) unarmed; leaves decurren lanceolate, pectinately pinnatifid; peduncles almost terminal, leaf less, very long, about 1-flowered; flowers nodding, offen discharg ing the pollen; scales of the calyx linear spreading.

19-3. CAREX. (From the Latin careo, to want.)
stor'zilis, (barren sedge. O. M. 4) spikelets in fives, sessile, approxtmate; fruit ovate, acuminate or somewhat beaked, 2 -clef, 3 -sided compressed, scabrous at the margin; equalling the obovate acutish scale. 8. i. Wet.
10-1. CASSIA. (A Latin name.)

10-1. CAssiA. (A La mabrous; leave in 8 pairs, lance oblong, mucronate; flowers in axillary racemes ${ }_{1}$ and in terminal panicles ; legumes linear, curved. River alluvion. 2-4. f.
Chamacrist/a, (cassia, partridge pea. E. y. Au. (3) somewhat glabrous; leaves linear, in many pairs, the glands of the petioles subpedicelled; two of the petals spotted; legumes pubescent. A most pedegant plant. 8-16. i. Dry sand, \&e.
19-12. CASTANEA. (From Castana, name of an ancient City.) America'na, (chestnut. O. g. J. h) leaves lance-oblong, sinuate serrate, with the serratures mueronate, glabrous both sides. Large tree. $\left.)_{2-1, ~ C A T A L P A . ~(A n ~ I n d i a n ~ n a m e .) ~}^{2-12}\right)$
Cordito'lia, (M. w. \& y. h) leaves simple, nordate, entire, by threes: Cordato tia, (M. w. \& y. 22) eaves Grows wild in the Southern States,
flowers in panicles. $40-50$. Grows lowers with us is an exotic.

5-1. CELASTRUS.

Scan'dens, (false bittersweet, staff tree, O. y. w. J. 12) stem twining, scan dens, (false bitterswee, searate; racemes terminal. Retains is scarlet berries through the winter.

4-1. CEPHALANTHUS.

scodenta'lis, (button bush, O. w. Ju. h) leaves opposite and in threes, oval, acuminate. Inflorescence a round head. Swamps. Var. pub, uscens, has the leaves and branchlets pubescent. 4-5. f.
14-2. CHEIRANTHUS. (From the Greek cheir, a hand, and anthos, a flower.)

Exotic.

Crei rt, (wall flower. J. थ) leaves lanceolate, acute, glabrous; branches sngled; stem somewhat of a woody texture.
An $n^{\prime \prime}$ nuus, (stock-july-flower, Ju. (.)) leaves lanceolate, sub-dentate obtuse, hoary ; silique cylindric, with an acute apex.
10-1. CHIMAPHILA. (From cheima, winter, and philos, a lover.) Umbella'ta, (prince's pine, bitter winter-green. O. r. w. Ju. य) leaves sertate, uniformly green, wedge-lanceolate, with an acute base; scape corymbed; filaments glabrous.
2-1. CHIONANTHUS. (From chion, snow, and anthos, a flower.) Virgin"ica, (fringe tree, w. M. h) panicle terminal, trifid; peduncles 3-howered; leaves acute. Var. montanus, leaves oval lanceolate, coriaceous, glabrous; panicle dense; drupe oval. Var. maritimus, leaves ovate-lanceolate, membranaceous, pubescent; panicle very lax; drupe eleiptic. Berries purplish-blue.
17-2. CHRYSANTHEMUM. (From chrusos, gold, and authos, a
Leucan"themum, (ox-eyed daisy. O. J. य) leaves clasping, lanceolate serrate, cat-toothed at the base; stem ereet, branching. 12-20. i. Exotic.
Parthe'nium, (feverfew) leaves petioled, compound, flat; leafets ovate, gashed; peduncles branching, corymbed; stem erect.

2-1. CIRCAEA. (From Circe, name of an enchantress.)
Lutetia'na, (enchanter's night-shade, O. Ang. r-w. భ) stem erect: leaves ovate, remotely toothel, opaque, nearly smooth. $1-2$. f.
12-13. CLEMATIS. (From Klema, a tendril.)
Virgin"ica, (virgin's bower. O. w. Ju. h) climbing; leaves ternate; leafets ovate, sub-cordate, gash-toothed and lobate, flowers panicled, diæcious. 15-20.f.

19-3. COMPTONIA. (Named from Bishop Compton.) Asplenifo'lia, (sweet-fern. O. g. Ap. Ł) leaves long-linear, alternately crenate-pinnatifid. 18-48, i.

5-1. CONVOLVULUS. (From convolvo, to entwine.)

Ke'pens, (field bind-weed. O. w. \& r. J. 24) twining; leaves sag:thate with the apex acute and the lobes truncate, entire (some obtuse; bracts acute, longer than the calyx, and shorter than the middle o
the corrolla: pe duncle angled, exceeding the petiole the crrolla : piduncle angled, exceeding the petiole

Purpu'reus, (common morning glory. b. p. J. (ङ)) pubescent; leaves cordate, entire; pertuncles 2 to 5 flowered; pedicels nodding, thick ened; divisions of the calyx lanceolate; capsules glabrous. Cultivated.

> 4-1. CORNUS. (From Cornu, horn.)

Canaden'ss, (dogweed, low-cornel. O. w. M. భ) herbaceous; eaves
at the top, whorled, veiny, involucres ovate, acuminate; fruit globose. 4-8. i.
Mo'rida, (false box, dogwood tree, w. y. M. h) leaves ovate, acuminate, involucres 4, very large, somewhat obcordate; fruit ovate 15-30.f.

11-5. CRATEGUS. (From kratos, tough.)
Choci'nea, (thorn-bush. O. w. M. 12) thorny; leaves long petioled, ovate, acutely-lobed, serrate, glabrous ; petioles and pubescent ca lyx glandular; flowers pentagynous. Var. viridis, has lance oratn leaves, sub-trilobate; stem unarmed.
3-1. CROCUS.

Officina'lis, (saffron. y. 4) leaves linear, with revolute margins, stig. ma exsert, with long-limear segments. Var. sativus, having violet corollas
19-16. CUCUMIS.

Exotic.
Sati'vus, (cucumber. y. Ju. ©) angles of the leaves straight; pomaco ous berry oblong, scabrous. Brought from Asia.
19-16. CUCURBITA. (Latin word for goard.) Exatic.
$P_{e p^{\prime \prime}}{ }^{\prime}$, (pumpkin. y. Ju. ©) leaves cordate obtuse, sub 5-lobed, denti culate ; prmaceous berry roundish or oblong, smooth. Var. patiro has the iruit more or less flattened. From Asia. citrul'lus, (watermelon. y, Au, ©) leaves o-lobed; the lobes sinuate pinnatifid, obtuse; pomaceous berry oval, smooth. Fruit watery often striped. From Africa and the south of Asia.

17-1. CYNARA.

Exotic.

Scol'ymus, (garden artichoke, O. p. Ju. $\boldsymbol{\gamma}^{\prime}$) very sof-pubescent; leaves broad lanceolate, sessile ; panicled racemes.
CYNOGLOSSUM. (From kuon, a dog, and glossa, tongue.)
Offici'uale, (hound's-tongue. O. p. Ju. ठु) very scit-pubescent; leaves broad, lanceolate, sessile; panicled racemes.
18-2. CYPRIPEDIUM. (From Kupris, name of Venus, and po. dion, a slipper.)
Pubes"cens (yellow lady's slipper. y. M. 4) stem leafy; lobe of the
style oval-cordate, obtuse; nuter netals brcad-oval, obtuse; lip Longer then the petals, split before.

8-2. DACTYLIS. (From daktulos, a finget)

Glomera'ta (orchard grass. E. J. భ) panicle glomerate ; leaves carnate. 2-3. f.
5-1. DATURA.

Sy-amo nuem, (thorn apple. O. w-b. Au. ©) pericarps spinose, erect, ovate; leaves ovate, glabrous, angular-dentate.
5-2. DAUCUS.

Caro'ta, (carrot. w. J. \mathbf{O}^{7}) seeds hispid; petioles nerved underside; de visions of the leafets narrow-linear, acute. 2-3. f.

12-2. DELPHINIUM. (From Delphis, a dolphin.)

Exotic.

Consol"idum, (larkspur. b. Ju. (3)) nectaries 1-leaved; stem sub-div1ded. Naturalized.

10-2. DIANTHUS. (From Dios, Jupiter, and anthos, a flower.)
Arme'ria, (wild pink. r. Ju. ©) flowers aggregate, fascicled; scales o the calyx lanceolate, villose, equalling the tube. I. f.
Exotic.

Barba'tus, (sweet-william. r. \& w. Ju. थ) flowers fascicled; scales \& the calyx ovate-subulate, equalling the tube; leaves lanceolate.
Caryophyl"lus, (earnation or pink, r. \& w. 4) flowers solitary; scalps of the calyx sub-rhomboid, very short; petals crenate, beardless; eaves linear-subulate, channelled. By rich culture the stamens change to petals.*

10-1. EPIG厌A. (From Epi, upon, and ge, the earth.)

Ke'pens, (trailing arbutus. O. r. \& w. Ap. h) stem creeping; branches and petioles very hirsute; leaves cordate-ovate, entire ; corclla cylindric.

15-5. ERODIUM. (From Erodios, a heron.)
Cico'nium, (storkbill geranium. (®) peduncled many-flowered; leaves pinnate; leaflets pinnatifid, toothed; petals oblong, obtuse; stem ascending

6-1. ERYTHRONIUM. (From Eruthros, red.)

America'num, (dog tooth violet, adder's tongue. O. y. Ap. 4) leaves The carnation differs from the common pink only on account of a peculiar mode of culture.
lance-oval, punctate; petals oblong lanceolate, obtuse at the point nner onss 2 -dentate near the base; style clavate; stigma entire (stigmas 3.) 6-8. i.
17-1. EUPATORIUM. (From Eupator, a king of Pontus.)
Perfolia'tum, (boneset, thorough-wort, O. w. Au. భ) leaves connate perfoliate, oblong serrate, rugose, downy beneath; stem villose. 2.4

11-13. FRAGARIA. (From Fragans, sweet smelling.)
Virginia'na, (wild strawberry. O. w. M. थ) calyx of the fruts spread. ing; hairs on the petioles erect, on the peduncles close pressed ${ }_{i}$ leaves somewhat glabrous above

6-1. FRITILLARIA, (From Fritillus, a dice bex.)
Exotic.

Imperia'lis, (crown imperial. r.\&y.M. 4) flowers under a leafy crown, nodding; leaves lance-linear, entire. From Persia.
6-1. GALANTHUS. (From Gala, milk, and anthos, a flower.)
Niva'lis, (snow drop. w. Ap. ४) leaves linear, keeled, acute, radical; scape 1-flowered.

5- 2. GENTIANA. (From Gentius, a king of Illyria.)
Crini'ta, (fringed gentian. O. b. S. 4) stem terete; branches long, 1-flowered; leaves lanceolate, acute; corolla 4-cleft; divisions obo vate, $\mathrm{g} 3 \times \mathrm{h}$ ciliate. 18 , i.
15-10. GERANIUM. (From Geranos, a stork.)
Macula'tum, (crow foot or wild geranium. O. r. \& b. J. ४) erect ; pur bescence reversed; stem dichotomous; leaves opposite, 3 or 5 -pa1ted, gashed; upper cnes sessile; peduncles 2-flowered; petals obovate. 1-2, f.

UNTHSTD

Sanguin"cum, (bloody ceranium. 2) peduncle 1 -flowered leaves 5 . parted, 3 -cleft, orbicular; capsule bristly at the top.

13-2. GERARDIA. (From Gerarde, an ancient botanist.) - Flovers yellow.

Fra'va, (False foxglove, O. y. Ju. 4) pubescent; stem nearly simple, leaves sub-sessile, lanceolate, entire or toothed; lower ones sub-pinnatifid, gashed ; flowers axillary, opposite, sub-sessile. 2-3. f.

13-1. GLECHOMA. (A Greek name.)

Hederaicea, (ground ivy, gill-overground. O. b. \& r. M. 4) leave reniform crenate ; stem rooting. Var, cordata, leaves cordate.

17-2. GNAPHALIUM. (A Greek name.)

Aargarta'ceum, (large flower, life-everlasting. O. y. \& w. Ju. 4) leaves linear-lanceolate, gradually narrowing, acute; stem branching above; rays and yellow disks. $1-2$. f.

13-1. HEDEOMA

Pulegio'ides, (pennyroyal. O. h. J. ©) pubescent; leaves oblong, serrate; peduncles axillary, whorled. 6-8. i.
1i-3. HELIANTHUS. (From Elios, the sun, and antios, flower.) Exatic.
An"nuus, (common sunflower. y. \& w. Ju. 4) leaves al. cordate, 3 nerved ; peduncles thickening upwards; flowers nodding. 6-10.f.

12-13. HEPATICA. (From Hepar, the liver.)
Aoutil' ${ }^{\prime}$ oba, (heart-liverleaf. O. W. \& b. Ap. 4) leaves cordate, 3 to 5 loods ; lobes entire, acute; leaves of the calyx acute. Grows in woods, preferring the north side of hills and mountains. 5. i.
Americu'na, (kidney-liverleaf. O. w. \& b. Ap. 4) leaves heart-renituse. Grows chiefly enire, round-obtuse; leaves of the calyx oband mountains, This is woods, preferring the south side of hills and mountains. This is sometimes called the triloba. 5. i.

1-1. HIPPURIS. (From ippos, a horse, and oura, tail.) Vulga'ris, (mare's-tail. y-g, M. थ) leaves linea c, and lance linear, verucillate.

4-1. HOUSTONIA. (From Houston, a botanist.)
Seru'laa, (innocence, forget-me-not. O. b. \& w. M. \&) stem erect, setaccous, dichotomous; radical leaves spatulate; cauline ones oblanceolate, opposite ; peduncies 1-flowered, elongated. 4-6. i. Verv common in New England.

20-5. HUMULUS

Lu'puirs, (hop. O. g-y. Au. 4) stem twining with the sun; leave.
lubed,
10-2. HYDRANGEA. (From Hudor, water, and angeion, a vessel.) Vulga'ris, (hydrangea. E.w. Au. h) leaves oblong-ovare, obtuse at the base, acuminate, glabruus beneath; cymes naked. 5. f.

12-5. HYPERICUM.

Perfora'tum, (O y. J. 4) erect, branching; stem 2-edged; leaves obong, obtuse, transparentiy punctate; panicle terminal-brachiate, the commals twice as long os he acute, lanceolate calyx. This ia the common St. John's wert, so troublesome to farmers. 1-3. f.

172

L A C

5-1 IMPATIENS. (Signifying impatient, from the elastic cqpsule.)
Pal' tida, (jewel-weed, touch-me-not. O. y. Ju. ©) peduncles solitary, 2 and 4 -flowered; nectary obtusely conic, dilated, shorter than ate, petals; spur recurved, very short; low sp ingly punc
leaves rhomb-ovate, mucronate-toothed. 2-4. f.
Ful'va, has the corollas with crowded spots.

- 1 Exotic.

Bal'samina, (garden lady's slipper) peduncles aggregate, 1 -flowered, leaves lanceolate, upper ones alternate; hooded petal (or neetary) shorter than the other petals; colour various.
VER 3-1. IRIS. (From Iris, the rainbow.)
Verscc"olor, (O. b. J. थ) leaves ensiform; stem acute on one side; capsules oblong, 3 -sided, with obtuse angles. 2-3. f.

Exotic.

Plica'ta, (garden iris. p. w. M. 4) bearded; stem many flowered higher than the leave:; peta.s undulate-plicate, erect ones broadest. 18-24.i.
Pu'mila, (dwarı-flower-de-luce. b. M. 4) bearded; scape 1-flowered; eaves ensiform, glabrous; tube of the corolla exsert; petals ob. nng. obtuse. 6-10. i.
3-9. IXIA. (From Ixia, birdlime.)

Chinen'sss, (blaekberry-fily. y. r. J. 4) corolla about 6 petaled; ster flexnous; leaves ensiform.

2-1. JASMINUM. (From Ion, violet, and osme, odour.)
Frut"icans, (jasmine. y. h) leaves alternate, ternate, simp.e; leafets obovate, wedge-form, obtuse ; branches angled.
(10-1. KALMIA. (From Kalm, a botanist.)
Latifólia, (laurel. E. w. \&r.Ju. h) leaves long petioled, scattered, and in threes, oval, smooth both sides; corymbs terminal, with vistid hairs. 3-20.f.
Angustifo'lia, (sheep laurel. O. J. h) leaves in threes, petioled, oblong obtuse sometimes rusty beneath : corymbs lateral; bracts linear redincles and calyx with glandular hairs. Var. ovata, taller leaves broader, sub-ovate. 2-3. f.

> 17. -1. LACTUCA. (From Lac, milk.)
> Exotic.

Sati'vz, Gettuce. y. Ju. ©) leaves roundish; cauhne ones curdate stem corynbed. Var. romana, has obloug, straight leaves, narruv. ed at the base. Var. laciniata, has the lower leaves pinnatifd, and ψ_{k} upper ones suncinate.

LON

16-10. LATHYRUS. (A Greek name.)
Exotic.
Odora'hus, (sweet pea. J. (3)) peduncles 2-flowered; tendril with 2-ovate oblong leafets; legumes hirsute.

9-1. LAURUS.

Sas"safras, (sassafras tree. O. y. M. 万) leaves entire and lobed on the same plant; flowers mostly dicecious. $10-25$. f.

13-1. LAVANDULA. (From Lavare, to wash.)
Exotic.
Spica, (lavender. Au. 4) leaves sessile, lance linear, with revo.ute margins; spike interruptedly naked.
17-1. LEONTODON. (From Leon, a lion, and odous, a tooth, it allusion to its leaf.)
Tarax'acum, (dandelion. O. y. Ap. 4) outer calyx reflexed; scape 1flowered, leaves runcinate, with toothed divisions. Introduced.

$$
\text { 6-1. LILIUM. }=
$$

Philadel"phicum, (red lily. O. r. y. J. भ) leaves whorled, lance linear ; corolla erect, bell-form, spreading; petals lanceolate, having claws. 1-3. f. Exatic.
Can"didum, (white lily. w. J. थ) leaves lanceolate, scattered, tapering to the base ; corolla bell-form, glabrous within.
Bulb"iferum, (orange lily. y. J. 4) leaves scattered, 3 -nerved; corolla campanulate, erect, scabrous within.
-

5-5. LINUM.

Exotic.
Usitatis'simun, (flax. b. Ju. ©) leafets of the calyx, acute, 3-nervedpetals crenate; leaves lanceolate, alternate; stem sub-solitary.
A 5-1. LOBELIA. (From Lobel, a botanist.)
Cardina'lis, (cardinal flower. O. r. Ju. 4) erect, simple, pubescent; leares lance-ovate, acuminate, denticulate; racemês somewhan one sided, many flowered; stamens longer than corollas. Damp. 1-2. f. Infa'ta, (wild tobacco. O. b, Ju. ©) erect, branching, very hirsute; leaves ovate, serrate ; racemes leafy ; capsues inflated. 12-18. i.
5-1. LONICERA. (From Lomicer, a botanist.)

Sempervi'rens, (E. r. y. M. h) spikes with distant, nakedish whorls; corollas sub-equal; tube ventricose above; leavesovate, and cbovate, glaucous beneath; upper ones connate perfoliate. Leaves perennial.

Exotic.

Capri folium, (honeysuckle. h) corollas ringent-like, terminal; sessile leaves connate perfoliate at the top. 15^{*}

MON

14-1. LUNARIA. (From Luna, the moon.) Exotic.
Redrvi'va, (satin flower. b-p. భ) leaves with mucronate teeth; silhelee tapering to both ends. Flowers odorous.
16-10. LUPINUS. (A Latin name.)

Peren"nis, (wild lupine, O. b. M. h) stem and leaves smoothisn; leaves digitate, with about 8 to 10 leafets, which are oblanceolate obtusish: calyxes alternate, not appendaged; banner emarginal kee, entire. 12-18. i.

4-1. LXCIUM. (From Lycia, a country of Asia.) Exotic.
Barba" rum, (matrimony vine, J. r. y. 12) stem angled; branches eree leaves lanceolate, tapering to both ends; calyx mostly 3 -cleft.
5-1. LYSIMACHIA. (From Lysimachus, an ancient king.)
Nric"ta, (loose strife, O. y. Ju. 4) raceme terminal, very long, lax, leaves opposite, lanceolate, sessile ; peials lanceolate, spreading: 1-2. f.
15-13. MALVA.

Rotundifolia, (low-mallows. O. r. w. J. 2) leaves heart-orbicular, obsoletely 5 -lobed; peduncles bearing the fruit declined; stem prostrate. Very common.

Sylves'tris, (mallows. r-b. I. तो and थ) stem erect; leaves about 7. lobed, acutish; peduneles and petioles hairy.
13-1. MENTHA.

Exotic.

Piperi'ta, (peppermint. p. Au. थ) spilies obtuse, interrupted below; leaves sub-ovate, somewhat glabrous, petioled; stem glabrous at the base. Naturalized. 1-2. f .
Viri'dis, (spear mint. p. Au.) leaves lanceolate, sessile; spikes elonga ted, interruptetl; stamens long. $1-2$. f.

5-1. MIRABILIS. (In Latin, admirable.)

Exotio.

Jal"apa, (four oclocs.r.y. Ju. य) flowers heaped, pedunclea; teavce glabrous.
2-1. MONARDA. (From Monardes, a Spanish physician.)
Thid'${ }^{\prime \prime} \eta m a$, (mecuntain mint. O. r. J. 4) leaves ovate, acuminate, sab cordate, somewhat hairy; flowers in simple or proliterous heads, outer bracts large, coloured, lanceolate. Var. angustifolia, lenves rance-ovate, acuminate, pubescent; stem pubescent. $18-24$ i

PFiL

10-1. MONOTROPA. (From monos, single, and trepo, to turn.) Sniflo'ra, (bird's nest, Indian pipe.C w.J. 4) stem 1-flowered flowez Whole plant irory white erect seales of the stem appreximate Whole plant ivory white at firs' $4-8$. i.

$$
\begin{aligned}
& \text { 19-4. ORUS. } 53 \text {. } \\
& \text { Exatic }
\end{aligned}
$$

Li ha, (white mulberry. M. h) leaves heart-form, whth vilique bases ovate or lobed, unequally serrate, smoothish. From China an
Persia. Naturalized. 15-20.f.

13-1. NEPETA. (From Nepet, a town of Tuscany.)
Fata'ria, (catmint, catnep. O. b-w. 2) hoary pubescent; flowers ir whorled spikes; leaves petioled, cordate tooth ser:ate.
8-1. GENOTHERA. (From conos, wine, and thera, a beast.
Capsules elongated sessic.
Bien"nis, (scabish, evening primrose. O. Y. J. उ) stem villose, sca-b-ous; leares lance-ovate, flat-toothed; flowers sub-spiked, sessile:
stamens shorter than the corolla. 3-5.f.
18-1. ORCHIS

Speckbiltis, (O. r. M. थ) lip obovate, undivided, crenate, retuse, petals straight; lateral ones longest ; spur clavate, crenate, retuse, petals bracts longer than the flowers; stem leafless shorter than the germ;

12-3. PEONIA. (From Paom, an ancient Physician.)
Officina'lis, (peony, r. J. थ) leaves decompound; reafets lobed, lobes broad-lanceolate, capsules downy.

12-1. PAPAVER. (Ola Latin name.)

Exatic.

Somnif'erum, (opium poppy. J. ©) calyx and capsule glabrous; leav
clasping, gashed, glaucous.

> 15-7. PELARGONIUM. (From Pelargos, a stork.) Exotic.
(1. Nearly stemless: root tuberous.

Tris'le, (mourning geranium,) umbel simple; leaves rough-haired p'nnate, leafets bipinnatifid; divisions oblong acute. Fowers dar'z
green.

\&. Leaves simple, not angled.

OZoraths"simum, (sweet scented geranium. h) peduncles sub-b-flowered; leaves round cordate very soft.

> 3. Leaves simple, more or less angled, ar lobed.

Zoms'l (horse shoe geraninm. h) umbels manv-flowerec; eaves hear
orbicular, obsoletely lobed, toothed, with a coloured zone or bald around near the margin.
Quercifolium, (oak-leaf geranit n. 12) umbels sub-maay-flowered: leaves cordate, pinnatifid crena $\%$ sinuses rounded; filaments as. cending at the apex.
13-2. PENTSTEMON. (From Pente, 5, and stemon, a stamen.) ubes"cens, (beard tongue. O. w. p. J. 4) stem hairy ; leaves serrulate ubes"cens, (beard tongue. O. W. p. Jicled; the barren filament beardec
lance-oblong, sessile: flowers panict from the apex 10 below the middle.
3-2, PHALARIS. (From Phalos, shining.)
America'na, (ribbon grass, wild canary grass. E. Ju. थ) panicle oblong, spiked; glames of the calyx boat-shaped, serrulate; corolli unequal ; rudiments hairy. Var, pieta, leaves variously striped This tariety is the ribbon grass of the gardens 2-5.f.
16-10. PHASEOLUS. (From Phaseolus, a ittle boat, from the shape of its pod.)

Exotic.
Valga'ris, (common pole bean. p. w. Ju. (0)) stem twining; rsceme solitary, shorter than the leaves; peduncles in pairs; brac. smalles than the calyx, spreading; legumes pendulous. From the Easi Indies.
Na'nus, (bush bean, six weeks bean. (3) stem erect, smooth; bracts larger than the calyx; legumes pendulous, compressed, rugose. Seeds variously coloured.
11-1. PHILADELPHUS. (From philo, to love, and adelphos, of brother.)
Exotic.
Corona'rius, (mock orange, false syringa. w. J. 万) styles listinct; leaves orate sub-dento

3-2. PHLEUM

Praten"se, (umothy grass, O. J. 4 and ठ) spike cylindric, calyx mu. cronate awned; keel ciliate; awn shorter than the calyx; culs prect. Introduced. 2-3.f.

5-1. PHLOX. (From Phlox, a flame.)

Panicula'ta, (smooth-stem lichnidia, r. w. Ju. 4) glabrcus erect, Panicuiat lanceolate, narrowing gradually fiat; margins rough; co leaves lanceolate, divisions of the corolla rounded; ca.yx awned. Cultivated. 2-3, f .
10-10. PHYTOLACCA (From Phutor, a plant, and Lacca, gum! Decan"dra, (poke-weed. O. w. Ju. थ) leaves ovate, acute at beth ends: flowers racemed; berrics flattened at the ends. 3-6. f.
19-16. PINUS.

Leaves solitary with separate bases.
Sanaden"sus; (hemlock tree. O.M. T2) leaves flat; denticulate, 2-rankec!
strobiles ovate terminal, scarcely longer tuan the leaves. The bark is used in tanning leather.

1f 10. PISUM.

Exolic.
Satr" v wm, (pea. p. w. J. ()| petioles terete; stipules round and crenate at the base; peduncles many flowered. Var. umbellatum, (boquet pea,) has he stipules 4 -cleft acute. Var. quadratum, (quadrate pea,) fruit ash colour, 4 -sided. Var. humile, (dwarf pe3,) stem erect, not climbing; leafets roundish.
3-2. POA.

Praten"sis, (meadow grass. O. J. భ) panicle diffuse; upper leaves much shorter than the smooth sheaths; florets acute, 5 nerved, webbed at the base; stipule short truncate; root creeping. $2-3$. f.
12-1. PODOPHYLLUM. (From pous, a foot, and phullom, a leaf.)
Falta'tum, (wild mandrake, may-apple. O. w. M. 4) stem terminated with 2 peltate palmate leaves; flower single, inserted in the fork formed by the petioles of the leaves. Sometimes the plant is three leaved, and sometimes the flower is inserted on the side of one of the petioles. $1-2$. i .
16-6, POLYGALA. (From polus, much, and gula, milk.)

Paucifo'lia, (flowering wintergreen. O. r. M. थ) small, large flow ered; stem simple, erect, naked below; leaves ovate, acute, glabrous near the top of the stem; flowers crested, terminal, about in threes. 3-4. i.

20-8. POPULUS.

Exotic.

Dilata'ta, (lombardy poplar, Italian poplar, Ap. h) leaves glaorous both sides, acuminate serrate, deltoid, the breadih equal to, or exceeding the length; brauches erect, close to the stem equal to, or ex-
11-13. POTENTILLA. (From potentia, power.)
Leaves digitate in fives, rarely in sevens.

Sanaden'sis, (common five finger. O. y. M. 4) procumbent, sub-ramose, whitish silky ; stipules ovate, gashed; leaves wedge obovalle, gash toothed; stem ascending, and creeping hirsute; peduncles so litary, elongated; divisions of the calyx lance-linear, petals orbicu-
lar, sub-entire, of the length of the calyx.

13-1. PRUNELLA.

Velga'ris, var. pennsylvanica, (heal-all, self-heal. O. J. थ) leaves pettoled oblong-ovate, toothed at the base; lips of the calyx unequal. upper one trua rate, awned; stem ascending. 6-12. i.

12-1. PRUNUS

Flowers in racemes.

Virginia'na, (wild cherry, rum cherry, cabinet cherry. O. w. M. I racemes erect, elongated; leaves ova-ublong, acuminate, unequa 1 Ly serrate, glabroas both sides; petioles generally beating 4 glands In open felds the limbs of this tree spread out into an elegant oval top; butin dense forests it grows to a very great height, with a few coniracted branches.

Ver"asus, (garden cherry. w. r. I_{2}) umbel sub-poiuncted; leave lance. ovate glanrous, conduplicate
Domes'lica. (plum. W. M. h) peduncles sub-solitary; leaves lanse. ovate, convolute; branches thornless.
10-1. PYROL.A. (From pyrus, a pear, from the form of its leaf.) Roluntifo'lia, (shin leaf, pear leaf, wintergreen. O. w. J. 4) style declined; leaves rounded, or broad oval, obsoletely serrulate, sub-coriaceous, shining; petiole about as long as the lamina; scape many flowered. $6-12$. i.

$$
\begin{aligned}
& \text { 11-5. PYRUS. } \\
& \text { Erotic. }
\end{aligned}
$$

Comwu'nis, (pear. E. w-r. M. 12) leavesoyate, serrate, (rarely enture;) peduncles corymbed.
Ma'lus, (apple. E. w-r. M. h2) flowers in sessile umbels; leaves ovateoblong, acuminate, serrate, glahrons; claws of the petals shorter than the caly x; styles glabrous, Var. sylvestris, (wild apple,) leaves ovate serrate; Iruit small, austere.
19-12. QUERCUS.

Alba, (white oak. O.M. 12) leaves oblong, sinuate pinnatifid, pubescent beneath; lobes obtuse, entire, narrowed at their bases, parts. cularly on full grown trees ; fruit peduncled; calyx somewhat bowl form, tubercled, flattened at the base; acorn ovate. The most use. ful timber in America. 70-80. f.

12-13. RANUNCULUS. (From rana, a frog.)
A^{\prime} cres, (crow foot, butter cup. O. y. M. 4) hairs close pressed, leaves 3-parted; many-cleft; upper ones linear; peduncles terete; calyx spreading. 1-2. f.

14-2. RAPEIANUS. 39.63.
Fxatic.
Satr'vus, (garden radish. w. J. (9) leaves lyrate; slique terete; torose, 2-celled. There are several varieties of this species-one has a fusiform, another a globose, another a black root
5-1. RIBES.

Trufor rum, (wild gooseberry. A. g. M. h) spine sub-axillary; leaves g'ahrous, 3-5-lobert, gash-tooihed; peduncles sub 3-flowered, with

8 A G

the pedicels elongated; bracts very short; petas spatulate, undiate; style hirsute, hail 2 or 3 -cleft, exsert; berry giabrous. Berries pale red. 3-4.

Ezotze

Aw'brum, (currant. g. M. h) unarmed; racemes glabrous, nolding corolla flat; petals obcordate ; leaves obtusely 5 -lobed ; slem erect.
Berries red.

19-15. RICINUS.
Commu'ms, castor-oil plant. ()) leaves peltate, palmate; lobes lancea late, serrate; stem with hoary mealiness. 4-6. f.

16-10. ROBINIA. (From Robin, a French botanist.)
Psendo-aca'cia, (locust tree, false acacia. A. w. M. h) leaves pinnate with a terminal leafet; stipules thorny, or a thorn; racemes pen dant; teeth of the calyx unawned; legumessmooth, 30-40. f

$11-13$. ROSA.

Rubrgino'sa, (sweet briar. r. J. h) germ ovate; peduncles ana petioles glandular hispid; petioles somewhat prickly; stem glabrous; prickles scattered, hooked slender; leafets (5 or 7) ovate, serrate. t'ib-glandular beneath. 3-4. f.

Damasce'na, (damask rose. w. r. J. 2) calyx half pinnate; germ ovate turgid, (thickened near its top,) bristly; stem and petioles prickly. leafets ovate, pointed, downy beneath.
Musco'sa, (moss rose. r. Au. ₹) germs ovate; calyx, peduncles, petioles, and branches hispid. glandular viscid, (moss-like;) spines of oles, and branches hispid, glan
the branches seattered, straight
Cinnamo'mea, (cinnamon rose. 12) germs globose; germs and pedur-
chnamo mea, (cinnamon rose. 1) germs globose; germs and pedur-
cles glabrous; stem with stipular prickles; petioles somewhat unarmed; leafets oblong. Stem brown cinnamon colour.
11-13. RUBUS.

Oleus, (garden raspberry. w. M. 12) leaves quinate-pinnate, and ternate; leafets rhomb-uvate, acuminate, downy bel eath; petioles charnelled; stem prickly, hispid flowers sub-panicle. Var. americanus. branchlets nearly gfabrous; stem and petioles te'ete; leaves alt iernate ; pedicels somewhat priekly. 4-6. . .
ndgra'tus, (flowering raspberry. r. J. h) unarmed, erect, viscid, nie
ngra lus, (flowering raspberry. r. J. 2) unarmed, erect, viscid, nic
pid; leaves simple, acutely 3 or 5 -lobed; corymb terminal, spreading. Flowers large; berries rather dry and thin. 3-6.f.
ing. Flowers Jarge; berries rather dry and thin.
$10-1$. RUTA.

Exotic.

Grave'olens, (rue,) leaves more than decompound; .eafets oblong, minal ones obovate ; petals entire.

19-12. SAGITTARIA. (Grom sagutta, an arrw.)
Sagittifo'lia, (arrow head. O. w. Ju. 24) leaves lancriate acute, 3e gittate; lobes lanceolate acute, straight. 1-2. f.

1-1. SALICORNIA. (From an old French word, sqlisur. Herla'cea, (samphire, glasswort. L. Au. ()) herbaceous, spreading joints compressed at the apex, emarginate bifid. Var. virginica, has joints compressed undivided, and the jointed spikes very long. The fructification is very obscure ; but it may be known by is leakess nearly cylindric jointed branches. It grows in salt marshes alone the sea-board, and at Onondaga salt springs. 12-18, i.
20-2. SALIX.
Babyloni'cn, (weeping willow. M. .2) branchlets pendant; leaves lanceolate, acuminate, serrate glabrous, upper and iower sides of different colours; stiputes roundish, connis Supposed to be the willow on time; germs sessile, ovate, glabrous. supposed thive in Babylon. In whica the

> 2-1. SALVIA. (From salvo, to save.)
afficinu"tis, (sage, b. J. 4 or h) leaves lance-ovate, crenulate; whorls few-flowered; calyx mucronate.
5-3. SAMBUCUS.

Canaden"sis, (black-berried-elder. O. w. J. h) branchlets and petioles Canaderous. lafers about in 4 pairs, oblong-oval, glabrous, shining, glabrous;
acuminate; cy SANGUINARIA. (From sanguis, blood.)
Conaden"sis, (blood-root. O. w. Ap. थ) leaves sub-reniform, sinuatelobed; scape 1-flowered. A variety, has linear petals. 6-10. i.
$10-2$. SAPONARIA. (From sapo, soap.) Exotic.
Officina'lis, (soapwort, bouncing bet. w. J. భ) calyx cylindric; leaves lance-ovate, opposite sub-connate, entire. Probably introduced, und naturalized. $10-18$. .
break.) Au. 2) leaves roundish, toothSarmentosa, (beef-strak geranium. w. Auts 2 petals in each flowet longer.

13-1. SCL TELLARIA. (From soutella, a shield.)
aterifto'ra, (mad-iog, scull-cap, hood-wort. O. b. Ju. 4) branching , date ; racemes 1 tteral, leaff. Damp. $1-2$. f.
3-2. SECALE.

Cerea'le, (rye. J givmes and bristles scabrous-ciliate; coroilo smooth. Introduced.
$10-3$. SILENE. (From Silenus, a bacchanalian of ancient times.) acnnsulva'nica, (pirk-catchfly. p. M. J. थ) viscialy pubescent ; Iadicas

TAG
leaves wedge-form; stem-leaves lanceolate; panicles trichotomous; petals slightly emarginate, verv obtuse, sub-crenate. 8-12. i.
14-2. SINAPIS.

Exotic.
Ni'gra, (common mustard. y. J. ©) silique glabrous, 4-angled, close pressec to the stem; leaves at the top lanee-linear, entire, smooth.Naturalized.
15-3. SISYRINCHIUM. (From sus, a hog, and runchrom, a snout.) \& $n^{\prime \prime}$ cops, (blue-eyed grass, O. b. J. थ) scape (or culm) simple, 2-edged or 2-winged; glume-like, spatha of 2 unequal valves, exlending above the flower; petals mucronate. $6-12$. i .
5-1. SOLANUM. (From solor, to comfort.)

Dwleama'ra, (bittersweet. E. p-b. Ju. h) stem unarmed, woody, climbing; lower leaves mostly cordate, glabrous; upper ones mostly gur-tar-hastate, few-flowered; corymbs opposite to the leaves.
Exotic.

Tvbero'sum, (potato. b. w. Ju. h) stem wing-angled, unarmed; leaves interruptedly pinnate; leafets entire; flowers sub-corymbed; roots knobbed-tuberous. Cultivated.
17-2. SOLIDAGO. (From solido, to strengthen.)

Canaden"sis, (canadian golden-rod, O. y. Ju. భ) stem downy; leaves lanceolate, serrate, rough; racemes copious panicled, recurved; rays hardly longer than the disk; stem angular; leaves sessile, three inches long, sometimes nearly entire. 2-5. f.
Laterifo'ra, (side-flowered golden rod. y. Au. 4) stem erect, a little hairy ; leaves lanceolate, slightly 3 -nerved, glabrous, rough-edged; lower ones sub-serrate; racemes panicled, a litle recurved; flowers large, the rays being much longer than the calyx ; stem striated, often purplish, pinnatifid, with numerous lateral flowering branches,
$2-3$. $2-3$. f.
A ${ }^{3-2,}$ SORGHUM. (An Indian name.)
Secchara'tum, (broom-corn. y. g. Au. ©) panicle somewhat whorled, spreading; seeds oval; glumes covered with permanent softish hairs; leaves linear. From the East Indies, $6-8$. f.
2-1. SY RINGA. (From a fabulous nymph, Syrinx, who was chang ed inte a reed, or perhaps more probably from its Turkish name Scrinc. The wood is used by the Turks for making pipe-stems.)
Vulga'ris, (lilac. b-p. w. M, h) leaves cordate; flowers in a thyrse. Per"sica, (persian lilac. b. M. 12) leaves lanceolate, entire and pin natifid.
17-2. TAGETES. (From Tages, a fabulous deity of ancient times. Exotic.
Erec'ta, (afriean matigold. y. Ju. ©) leaves pinnate; leafets lanceo-
late, cilitate serrate; peduncles 1-flowered, incrassate; sub-inflated; calyx angled.

17-2. TANACETUM.
 Exotic.

Vulga're, (tansey. y. Ju. 4) leaves doubly pinnate, gash-serrate. fiw turalized. Var. crispum, (double tansey,) leaves erisped and dense.

13-1. TEUCRIUM. (From 'Teucer, a Trojan prince.)
Canaden"se, (wood sage, germander. O. r. Ju. 4) pubescent; leaves lance-ovate, serrate, petioled; stem erect; spikes whorled, crowded bracts longer than the calyx. Var. virginicum, upper leaves subsessie ; bracts about the length of the calyx. 1-3. f.
13-1. THYMUS. (From thumes, force.)

> Exotic.

Vulga'ris, (thyme. b-p. J. 4, h2) erect; leaves ovate and linear, reva lute; flowers in a whorled spike.

6-1. TRADESCANTIA. (From Tradescant, a botanist.)
Virgini'ca, (spider wort. b-p. M. 4) erect, branching; leaves lanceoirgini colot plabrous-flowers sessile; umbel-compact pubent Cultivated. 1-2. f .
16-10. TRIFOLIUM. (From tres, 3, and folium, a leaf.)
Re'pens, (white clover. O. w. M. 4) creeping; leafets ovate-oblong. emarginate, serrulate; flower in umbelled heads; teeth of the calyx sub-equal; legumes 4 -seeded.
Praten"se, (red clover. O. r. M. 2) ascending, smoothish, leafet ovate, sub-entire; stipules awned; spikes dense-ovate; lower tooth of the calyx shorter than the tube of the corolla, and longer than the othet teeth. $2-3$. f.

Ehec'tum, (false wake robin. O.p. w-y. 4) peduncles erect or erectush with the flowers a little nodding; petals ovate, acuminate, spreading: equalling the calyx; leaves rhomboid, acuminate, sessile. Var. atro nurpurent, petals large, dark purple. Var. album, petsis smallect white; germ red. Var, flavum, petals yellow ; both petals and calyx Whaves longer and narrower. 12 to 18 inches high. Leaves often to 4 inches broad. Peduncles about 3 inehes long. $9-16$. i.

> 3-2. TRITICUM. (From tero, to beat or thresh.)
> Exotic.

Huber"num, (winter wheat. J. ©') calyx glume 4-flowered, tumid, even imbricate, abrupt, with a short compressed point; stipule jagged; co follas of the upper florets somewhat beard a. There are severs varieties of this species which are introdtced by eulture.
\&-1 TRORAOLUM. (From Tropaon, a troply.) Exatic.
Majus, (nasturtion, indian cress. y. \& r. Ju. © \& 4) leaves peltate sub-repand; petals obtuse, some of them fringed.

> 6-1. TULIPA.
> Exotic.

Gesneriu'na, common tulip. M. 24) stem 1-flowered, glabrous; flower variout coloured, erect; petals obtuse, glabrous; leaves ance-ovate.
19-3. ТҮРНА.

Latifolia, (cat tail, reed mace. O. Ju. थ) leaves linear, flat, slightly convex beneath; staminate and pistillate aments close together. Wet. 4-6. f.

10-1. VACCINIUM.

Resino'sum, (black whortleberry. O. p. M. 12) leaves slender, petioled oblong oval, mostly obtuse, entire, bedewed with resinous specks beneath - racemes lateral, 1 -sided; pedicels short, somewhat bracted, eorolla ovate conic, 5-cornered. Berries black. One variety has a yellowish green, and another has a reddish yellow corolla. 1-4. i.

$$
5 \text {-1. VERBASCUM. }
$$

Thap ${ }^{\prime \prime}$ sus, (mullein. O. y. J. उ) leaves decurrent, downy both sides, stem generally simple, though sometimes branched above; flowers in cylindric-spikes. 3-6. f.
z-: VERONICA.

Officina'lıs, (speedwell. b. M. थ) spikes lateral, peduncled; leaves opposite, obovate, hairy, stem procumbent, rough haired. 9-12. i.
5-3. VIBURNUM.

Acerifo'lium, (maple guelder rose, dockmackie. O. w. J. F_{c}) leaves heart ovate or 3 -lobed, acuminate, sharp serlate, pubescent beneath cymes long peduncled. Stem very flexible; leaves broad and submembranaceous. 4-6.f. Leaves applied to inflamed tumours by the Indians.

Exotic.

$\cap p^{\prime \prime} u l u s$, (guelder rose, snow-ball. W. J. h) leaves 3 -lobed, sharp tooth ed; petioles glandalar, smooth; flowers in compact cymes, surround ed with radiating florets. Var. roseum, has the x hole cy me made up of radiating florets.
5-1. VIOLA.

Stemless, or with a subierranean stem.
Leaves more or less reniorm, always cordate, younger eucullate; proper colour of the corolla violet.)
Sucwlla'ta, (O. p. b. M. 4) glabrous; leaves cordate, somewhat acumi
nate, crenate dentate : autumual ones largest, very exactly remiform peduncle somewhat 4 -sided, longer than the leaves; divisions of the caly subulate, acuminate, marginate behind, or very entire; petzis (as in many American species) oblique, veiny, very entire, white at the base, upper one generally naked, glabrous, lateral ones beardeu, and with the upper one marked with a few blue lines. Vat papi lianacea, petioles and peduncles longer; sub-ance ovate; beards of the lateral petals often yellow. Var, tetragona, peduncle strong, exactly 4 -sided; petals azure colour, veinless. Var, villosa, leaves, petals, and peduncles villose. 4-8. i.
(Leaves oblong or avate, never teniform; younger ones cucullate.) Segitta'ta (E. b-p. Ap. 2) plabrous; leaves ciliate, oblong, not acule, sagittalat (ared divaricale teeth;) peduncle somewhat 4 -sided, longer than the leaves: divisions of the calyx lanceolate, acuminate, emarginate belind petals all very entire veiny, white at the base; upper one hind, generaly naked, A variety has the leaves more or leaves more or less villose. Dry. A variety has the leaves moremless.)
Roturdrfo'tia, (0. M. y. थ) glabrous; leaves thickish, appressed to the earth, broad ovate or obicular cordate, crenate; nerves pubescent benenth. sinus closed, peduncle somewhat 4 -sided, as lung as the ieaves- divisions of the calvx oblong, obtuse ; pelals somewhat emarginate; pper onns smatl ; lateral ones somewhat bearded, and with the upper one marked with a few yellowish brown lines; spur verv short.-Woods. 1-3, i.

Caulescent.

Pubes"cens. ($0 . y$ y. U) villose pubescent; atem simple, erect, teiele, leafless below; leaves broad ovate, cordate, dentate; petioles shurt; leafess clarge, ovate, dentate; peduncies 4 -sided, shorter than the sipules arge, petals all very entire, veinless; upper one naked, glabrous latera. petals bearded, and with the upper one, marked with a few blue tines; ones bearded, lower ones otten becoming recdish beaked. Varies in pubescence; leaves are even found glabrous; the capsules are also glabrous at leaves are even lound glabro.
woolly. 4-12. i. rarely-4. f.

Exatic.
Tri'color, (garden violet, heart's ease, pansy. p. y. b-p. M. थ) stem an gular diffuse, divided; leaves oblong, deeply crenate; stipules lyrate pinnatifid.
19-3. ZEA. (An ancient Greek name, perhaps from $\approx a 0$, to live.) Southern.
Yaize. (indian corn. y-g. Ju ©j) leaves lance-linear, enture, keeled.

VOCABULARY,

or

EXPLANATION OF BOTANICAL TERMS

A.

A. in composition, signifies privation, or destitute of; as, acaut Σ_{2}, te ferring to a plant without a caulis or stem.
Abor'tive flower. Falling off without producing any fruit

- stamers, not furnished with anthers.
—— pistil. Defective in some essential part. seed, not becoming perfeet through want of the fertilizing influence of the pollen.
Amupt leaf A pinnate leaf with an odd or terminal leafet.
Acal'yces, (from a, signifying withont, and caly.x, a flower cup.) A class in an ancient method of arrangement, consisting of plants without a calyx.
Acau'les, (froin a, wanting, and caulis, a stem.) Including plants without stems.
Acero'se leaf. Linear and permanent, as in the pine.
Acero se leat. Linear and
Acic'ular. Needle shaped,
A'cinus. A small berry which, with many others, composes the frui of the mulberry and raspberry; the plural is acini.
Acotyled'onous, (from a, without, and cotyledon, a seed lobe.) Plants destitute of seed lobes, and which consequently put forth no seminal or seed leaves, as mosses and ferns.
Aow'leus (from acus, a needle.) A prickle, or sharp point; common to the rose and raspberry. It differs from the thorn, in being a prolonration of the outer bark of the plant, and unconnecled with the wood Prickles have been compared to the nails and claws of animals.
Aou'minate. Abruptly sharp pointed, having the point curved towarde one edge Abruptly sharp polinca, havl.
one edge of the leaf, resembling an awl.
4cute. More gradually sharp pointed than acuminate. An obtuse angle, or
guage. guage.
del'phous, (from the Greek adelphos, a brother or an equal.) Applied to plants whose stamens are united by their filaments, whether in one or two sets.
Adnate. Growing together.
Ad'versifólia, (from adversus, opposite, and folinm, a leaf.) Dlants whose leaves stand opposite lo each other, on the same stem or branch. 16^{*}
nate, crenate dentate : autumual ones largest, very exactly remiform peduncle somewhat 4 -sided, longer than the leaves; divisions of the caly subulate, acuminate, marginate behind, or very entire; petzis (as in many American species) oblique, veiny, very entire, white at the base, upper one generally naked, glabrous, lateral ones beardeu, and with the upper one marked with a few blue lines. Vat papi lianacea, petioles and peduncles longer; sub-ance ovate; beards of the lateral petals often yellow. Var, tetragona, peduncle strong, exactly 4 -sided; petals azure colour, veinless. Var, villosa, leaves, petals, and peduncles villose. 4-8. i.
(Leaves oblong or avate, never teniform; younger ones cucullate.) Segitta'ta (E. b-p. Ap. 2) plabrous; leaves ciliate, oblong, not acule, sagittalat (ared divaricale teeth;) peduncle somewhat 4 -sided, longer than the leaves: divisions of the calyx lanceolate, acuminate, emarginate belind petals all very entire veiny, white at the base; upper one hind, generaly naked, A variety has the leaves more or leaves more or less villose. Dry. A variety has the leaves moremless.)
Roturdrfo'tia, (0. M. y. थ) glabrous; leaves thickish, appressed to the earth, broad ovate or obicular cordate, crenate; nerves pubescent benenth. sinus closed, peduncle somewhat 4 -sided, as lung as the ieaves- divisions of the calvx oblong, obtuse ; pelals somewhat emarginate; pper onns smatl ; lateral ones somewhat bearded, and with the upper one marked with a few yellowish brown lines; spur verv short.-Woods. 1-3, i.

Caulescent.

Pubes"cens. ($0 . y$ y. U) villose pubescent; atem simple, erect, teiele, leafless below; leaves broad ovate, cordate, dentate; petioles shurt; leafess clarge, ovate, dentate; peduncies 4 -sided, shorter than the sipules arge, petals all very entire, veinless; upper one naked, glabrous latera. petals bearded, and with the upper one, marked with a few blue tines; ones bearded, lower ones otten becoming recdish beaked. Varies in pubescence; leaves are even found glabrous; the capsules are also glabrous at leaves are even lound glabro.
woolly. 4-12. i. rarely-4. f.

Exatic.
Tri'color, (garden violet, heart's ease, pansy. p. y. b-p. M. थ) stem an gular diffuse, divided; leaves oblong, deeply crenate; stipules lyrate pinnatifid.
19-3. ZEA. (An ancient Greek name, perhaps from $\approx a 0$, to live.) Southern.
Yaize. (indian corn. y-g. Ju ©j) leaves lance-linear, enture, keeled.

VOCABULARY,

or

EXPLANATION OF BOTANICAL TERMS

A.

A. in composition, signifies privation, or destitute of; as, acaut Σ_{2}, te ferring to a plant without a caulis or stem.
Abor'tive flower. Falling off without producing any fruit

- stamers, not furnished with anthers.
—— pistil. Defective in some essential part. seed, not becoming perfeet through want of the fertilizing influence of the pollen.
Amupt leaf A pinnate leaf with an odd or terminal leafet.
Acal'yces, (from a, signifying withont, and caly.x, a flower cup.) A class in an ancient method of arrangement, consisting of plants without a calyx.
Acau'les, (froin a, wanting, and caulis, a stem.) Including plants without stems.
Acero'se leaf. Linear and permanent, as in the pine.
Acero se leat. Linear and
Acic'ular. Needle shaped,
A'cinus. A small berry which, with many others, composes the frui of the mulberry and raspberry; the plural is acini.
Acotyled'onous, (from a, without, and cotyledon, a seed lobe.) Plants destitute of seed lobes, and which consequently put forth no seminal or seed leaves, as mosses and ferns.
Aow'leus (from acus, a needle.) A prickle, or sharp point; common to the rose and raspberry. It differs from the thorn, in being a prolonration of the outer bark of the plant, and unconnecled with the wood Prickles have been compared to the nails and claws of animals.
Aou'minate. Abruptly sharp pointed, having the point curved towarde one edge Abruptly sharp polinca, havl.
one edge of the leaf, resembling an awl.
4cute. More gradually sharp pointed than acuminate. An obtuse angle, or
guage. guage.
del'phous, (from the Greek adelphos, a brother or an equal.) Applied to plants whose stamens are united by their filaments, whether in one or two sets.
Adnate. Growing together.
Ad'versifólia, (from adversus, opposite, and folinm, a leaf.) Dlants whose leaves stand opposite lo each other, on the same stem or branch. 16^{*}

Astiva'les, (from astas, summer.) Plants which blossom in summsr Afo'ra, (from a, willout, and fores, a door.) Having no doors or valves.
Agamous, (from a, without, and gamos, mariage.) Plants without any visible stamens or pistils, are by French botanists called ugar mous.
A'ges of plants. Ephemeral are such as spring up, blossom, and ripen their seed in a few hours or days; annual live a few months, or one summer
brewnial, spring up one summer, and die the following. perennia', live an indefinite period.
Ag'gregate, (from aggregare, to assemble.) Many springing from g'gregate, (trom aggregare, to assemble.)
the same point: this term was at first applied to compound flowers, the same point: this term was ald division of aggregate flowers; the aggregate, properly so called.
compound,
unbellate,
aymose,
amentaceous
glumose,
spadiceous. Aggregate fower is erected on peduncles or soometimes have one comone common receptacle on the stem ; calyx, and are sometimes separaty furnished with a calyx.
mon calyx, and are
Ai'grelte. See egret. signifying a wing. It is sometimes used to ex-
A'la. A Latin word fla. A Latin word signify the angle formed by them with the branch or leaf. Linneus press the angle formed by the stem with the branch or a membrane aiand some others use the term ala, as the name o wing to raise them fixed to some species of seeds which serves as a
into the air, and thus promotes their dispersilionaceous flower.
$A^{\prime 3}$. 2 . The two lateral or side petals or a papisonaceous, which consti-
dlbu'men. The farinaceous, fleshy, or horny substance, when, rye, \&o
tutes the chief bulk of monocotyledonous seeds; as wheat, rye, es.
Alburnum,, (from albus, white.) The soft white substance, which in
trees is found between the liber, or inner bark, and the wood, and be coming solid, in progress of time is converted into wood. From its colour and comparative softhess, it has been styled the fat of trees It is called the sap wood, and is formed by a deposite of the cambinas or descending sap; in one year it becomes wood; and a new.
of alburnum is again formed by the descent of the cambium.
Al'ge. Flags; these by Linnmus comprise the plants of the ordel Hepatica and Lichenes.
Al'pine. Growing naturally on high mountains.
Alter'nate. Branches, leaves, flowers, \&c. are alternate, when beginAlter'nate. Branches, leaves, flowers, \&c. are alternate, when beginsing at different distances on the srem; opposite, is wen com mence at the same distances, and base stands against base.
Allownately pinnute leaf; when the leafets are arianged alternately on each side of the commion footstalk or petiole.
Atve'olate. Having cells which resemble a honey-comb.
Am'bilus. The outer rim of a frond, receptacle, \&c.
A'ment. Elowers collected on chaffiv scales, and arranged on a threed
or slender stalk; these scales mixed with the flowers, resemole the chaff in an ear of corn; in the willow and poplar, an ament supports both staminate and pistillate flowers on distinct roots. Flowers supported by an ament are generally destitute of a corolla.
implexicau'lis. Clasping the base of the stems.
dnal'ysis. To analyze a plant botonicully, is to ascertain its name, ? observing its organs, and comparing them with scientific descrip-
tions of plants.
Axcip'itul. Having two sharp edges like a sword.
$A n^{\prime} d r i a$. Signifies stamens.
Androg'ynous plants. Such as bear staminate and pistillate flowers on the class Monccia, the class Moncecia.
Angroca pus. Fungi, bearing seeds internally.
Ahgiosper mal, (from angion, a vessel, and sperma, seed.) Plants
whose seeds are inclosed or
Augular. Forming angles; when the
diguar. Forming angles; when the stems, calyxes, capsules, \&c.
have ridges running lengthwise. Angustifo'tius. Narrow-leaved.
An'mul. A plant which
annual, whle the root is perennial one year. The herbage is often be perennial. Annula'ted.
mushrooms having a ring round the capsules, as in ferns; or in Annu'hus. A ring.
Anom'alous, (from a
ever forms an exception to and nomos, law.) Irregular, or whatduther, (from anthos, a flower a general rule.
That part of the stamen which contains the polleng its importance.)
forms, as linear, swl-shaped, which contains the pollen; it is of various 2-celled, \&c.; awl-shaped, heart-shaped, round, \&c.; it is 1-celled, Antherid'ium. ; the anther of the crown imperial has 4 cells.
Antherid ium. A mass of pullen.
ditherif crous. Flowers bearing anthers without filaments.
antaus, (from the Greek anthos.) A flower generally referring to the
petals only. petals only.
Apet'alous, (from a, without, and petalum, a petal.) Having no petals,
such flowers are termed incomer such flowers are termed incomplete; such as are destitute of either stamens or pistils are called imperfect.
spet aba. A class formed by some of the ancient botanists, including
plants restitute of corollas. diper. The top of corollas.
Aphyl'lous, (from a, without, and phyllon, q leaf) Destitute of leaves without leaves name given by an ancient botanist to a class of planis Appen'daged. Having bracts, ther, rush, mushrooms, \&c. ippen'daged. Having bracts, thorns, prickles, \&c.
dupres'sed. Closely pressed; as leaves against the stem, \&c.
doprox'imate. Growing near each other,
doprox imate. Growing near each other,
dp'terms. Without wings,
iptermus. Without wings.
Aquatic, (irom aqua, water.) Growing in, or near water.
Aqpatice, was an ancient
dequtice, was an ancient name lor a class including all plants which
grow in water.

BAR
185
Arbor. A tree; a perenmal plant, which rises to a considerable heigh having a woody stem. Most trees spring from seeds having two me tyledons; they are therefore called dicotyledonousplanis Phe stem, of such plants are said to be exogenous, that is, growing externally, new layers of wood being every year formed are monocotyledonous new eutside of the old wcod. Palm trees are growing internal. plants; their stems are called endogenous, py and pressing upon the outer coass, which bes and herbs ; pact. The ancient botanists divided plants of classification. pack his distinction is toa vague to form the bast lass of plants con
Arthusti'vus, (from arbustam, a shrub.
taining shrubs, as the myrue, Bent like a how.
Arcnarius. Growing in sand.
Arant'cus. Silver coloured.
Arid. Dry.
Ar (arilus.) The external coat or covering of seeds which, drv ing, falls off spontaneously.
ing, alls of spontaneously. A
Aristate, So called from arum, and forming a natural family of Aro'ides.

Plants are said to be armed, when
Arms, (arma.) Offensive weapons. Phorns, \&c.
Aromul' ic. Sweet scented.
Aromatic. Sweet scented. Ar'ron-form. Shaped as in the culm or slem of the grasses Articulita. Joincons, (from arundo, a reed.) Resembling reeds.
Arunizia Growing in cultivated fields.
Ascending. Rising from the ground obliquely.
Asconding. Risnoig leaved
Asperted. Gradually diminished or tapering.
Atum nuted. Gradually dindages resembling ears.
Auric'ulate. Having appendages resemved to one side.
Awl-form. Sharp at the po
Awnh. A short stiff bristle.
Awn. A short stif between a leaf and stem on the upper side
A. Growing out of the axils: leaves are said to be axillan

Ax illary. Growing out of the angle formed by the stem and branch
when they proced from the
B.

An'en is a pulpy pericarp, enclosing seeds withou
capsules, In the raspberry of a seed.
capsules, in the raspberry
Baccif crous. Beanger petal in a mpilionaceous flower.
Ban'ner. The upper petal in a papilionaceous fower.
Barb. A straight pro
Birrba'tus. Bearded, feretables, consisting of several parts, as en Bark. The covering of vegetables, consisting of seve of as many laven ucle, cellular integument, \&c. has years: a new layer being forme as the tree on which in every year, the newest layer of bark is calle from
Bar'ren. Producing no fruit; containing stamens only.

Beak'ea. Terminating by a process shaped like the beak of a bitd Ber ry. A pulpy pericarp enclosing seeds without capsules. See Bacca.
Bi, derived from bis, signifying two
Bicor'nes. Anthers with twe thorns.
Bi dens. Having two teeth.
Bien'nial. Living two years, in the sec, nd of which the flower and $B i^{\prime}$ fid are produced; as in wheat.
Bi'fid. Two parted.
Bilabiate. Corolla with two lips.
Bipru nate. Twice pinnate.
leaves. Iwice ternate. The petiole suplorting three :ernate leaves.
Bi'valve. Two valved.
Border. The brim or spreading part of a corolla.
Bot'rus. A cluster, like grapes.
Brach iate. Branches opposite, and each pair at right angles with the
preceding. preceding.
Bract. Floral; a leaf near the flower which is different from the other leaves of the plant. In the crown imperial the bracts are at the termination of the flower stem; from their resemblance to hair they are called coma.
Branch. A division of the main stem or main root
Branchlel. Subdivision of a branch, a twig.
Brevis. Short.
Bud. The residence of the infant leaf and flower.
Bulbs. A kind of roots; sometimes and flower.
strictly speaking, bulbs are buds, or the winter resing on the stem ture plants. A hulb contains in or the winter residence of the fular to the parent plant. Plants miniature or embryo, a plant simias seeds. Annual plants do not have bulbs; from bulbs as well served by seeds. Bundle. See Fascicle.
C.

Paducons, (from cado, to fall.) Falling early; as the caly= of the Cespitose. Forming tufts, several roots growing together. Caliomus. Reed like.
calcareons. Containing lime; as in the shells of oysters, \&c Calyculated. Having an additional calyx.
Calyptra. The cap or hood of pistillate mor
finguisher set on a candle. Althillate mosses, resembling an exthe corolla of the moss closed. Caly.x. From the moss closed.
incloses, and supports the bottom a flower oup: in most plants it Linnæus to be the termine bottom of the corolla. It is defined by am'bium. The descending san of the outer bark.
of bark and one of wood sap, which every year forms a new layer wood, so that the new wood is descends between the bark and the unternally.

Campan'ulate. Bell-form.
Campes'tris. Growing in uncultivated fields.
canpestris. White or hoary.
capes centry. Hair-form.
Cap'itatc. Growing in heads.
Cap'sule. A litule chest; that kind of holow seed-vessel which be
Cap'sule. A litue chest; that ripe; a capsule that never opens is comes dry and opens wha.
called a samara.
Carined. The keel or lower folded petal of a papilionaceous flower.
Cari'na. The kee or lower folsh pedack like the keel of a vessel.
Carno'se. Of a fleshy consistence.
Carpos. From the Greek Karpos, fruit.
Carpos. From the Greek K corolla, having five petals with long claws, aryopnyl rous. Pet in a tubular calyx.
Cat'kin. See Ament.
Cau'date. Having a tail; as in some seeds.
cau date. The main body of a tree, or root.
Cou'dex. The main body or a tree, or of the peduncle or scapes.
Cau'line Growing on the main stem.
Cau'line Growing on the main stem.
Cau'lis. The main la tige Cell. The hollow part of a pericarp or ance is called a cell. According to carp that contains one or more seear, the number
celled, kc .
Cellular. Made up of little cells or cavities.
Cellular. Made up of little cells or cavities.
Cerealis. Any grain from which bread is made. (From Ceres, godCerealis. Any
dess of corn.
Cer'nuus. When the top only droops.
Cer'muus. When the top only druops.
Chaf fy. Made up of short membranous portions like chaff.
Chaffy. Made up of short membranouslly, with a rounded groove.
Chan'nelied. Hotlowed out longitudinatly wit. a ceed at the time of
Cho'ron. A clear limpid liquor conrained in a seeor becomes a perflowering, After the pollen
fect embryo of a new plant.
fect embryo of a new plant.
Cil'atiate. Fringed with parallel hairs.
Cil'iate. Fringed win ped.
Cine'reous. Ash-coloured.
Cin'gens. Surrounding, girding around.
Cir'rose. Bearing a tendril. From Cir'rus, a tendril or cli.
Clasp'ing. Surrounding the stem with the base ortany. Linnxus di-
class. The highest divisions in the system of Botaw rejected, and the vided all plants into 24 clasises; 3 or hese are now 21 elasses. The plants which they included placed in the ematems, nor classes; they ancient botanists knew neither methodsto syants which appeared described under chapters, or ser by the greatest number of relations. to them connected to each other by the grean at the bottom.
Cla'vate. Club-shaped, larg
Clau'sus. Closed, shut up.
Clau'sus. Closed, shut up. which a petal is inserted.
Claww. The narrow part by which a petal
Claft. Split or divided less than half way.
Clino ing. Ascending by means of tendrils, as grapes; by leaf stalks,
as the Clematis; by cauline radicals or little fibrous roots. as the creeping American ivy.
Tub-shaved. See clavate.
Chustered. See racemed.
Cly'neate. Form of a buckler. See Peltate.
Coad'nate. United at the base.
Coc'cineous. Scarlet coluured.
Coch'leate. Coiled spirally, like a snail shell.
Cor'cum. A grain or seed; tricoccous, 5 -seeded, \&c.
Caru'leus. Blue.
Colli'nus. Growing on hills.
Col'oured, Different from green; in the language of botany, green
is notecalled a colour. White, which in reality is not a colour, is
so called in botany. The primitive colours and their intermediate
shades and gradations, are by botanists arranged as follows:
Water-colour, hyalinus.
White,
Lead-colour, cinereus.
Black,
Brown,
Pitch-blact
Yellow,
Straw-colour, luteus.
Flame-colour, fulvus.
Red,
rubex.
Scarlet,
Purple,
Violet, purpureus.
Blue,

- ̛̀reen caruleo-purpureus.
Wh veruleus.
pring flow most common in roots, sweet berries, and the petals of the petals ors. Black, in roots and seeds. Yellow, in anthers, and and petals of compound flowers. Red, in the petals of summer flowers and acid fruits. Blue and violet, in the petals. Green, in the leaves Columel'la. That which connects the seed to the inside of the pers carp. The central pillar in a capsule.
Column. The style of gynandrous plants; used for columella
Co'ma. A tuft of bracts on the top of a spike of flowers.
Compound foooers. Such as are in the class Syngenesis, having florets with united anthers
leaf. When several leafets grow cm one petiole.
pedun raceme. When several racemes grow along the side of a umbel. Having the peduncles subdivided into peduncles of lesser umbels.
petiole. A divided leaf stalk.
liompres'sed peduncle. A divided nuwne stalk.
Conchol'agy. The science which treats of shells.

Cone. A scaly frust like that of the pine. Sce Strobilum.
Conglom'erate. Crowdec together.
Con'ic. With a broad base, gradually narrowing to the top like a se gar loaf.
Conif'erous. Bearing cones.
Con' ingale. In pairs
Con'nate. Opposite, with the bases united or growing into one for at ing the appearance of one leaf. Anthers are sometimes conrate Connivent. Converging, the ends inclining towards each other.
Contin'uous. Uninterrupted.
Comtarted. Twisted.
Contrac'ted. Close, narrow.
Conver'ging. Approaching or bending towards each other.
Con'vex. Swelling out in a roundish form.
Ton'volute. Rolled into a eylindric form, as leaves in the bud.
Cor'oulum, or Corcle. The embryo or miniazure of the future pioat,
which is found in seeds often between the cotyledons
Cor'date. Heart-shaped, side lobes rounded.
Coria'cuus. Resembling leather; thick and parchment-like
Cor'mut. A horn or spur.
Cornic'ulate. Horn shaped.
Curol'la, or corol, (a word derived from corona, a crown.) Ueualiy encloses the stamens.
Corona'lus, Crowned; as the thistle seed is crowned with down.
Cortex, (from corium, leather, or hide, and lego, to cover.) The rind
or coarse outer bark of plants; the organization of the outer $\mathrm{a}^{2} \cdot d$ in-
ner barks differs ehiefly in the fineness o: thexr texture.
Cortical. Belonging to the bark.
Coryda'lis. Helmet like.
Corymb. Inflorescence, in which the flower stalks spring from differ. ent heights on the common stem, forming a flat top.
Costate. Ribbed.
Cotyl'edons, (from kotule, a cavity.) Seed lobes. The fleshy part of seeds which in most plants rises out of the ground and forms the first leaves, called seminal or seed leaves. These lobes in the greatest
proportion of plants, are two in number; they are very conspicuons
in the leguminous seeds; as beans, peas, \&c. The cotyledons are externally convex, internally flat, and enclose the embryo or principle of life, which it is their office to nourish.
Creeping. Running horizontally; stems are sometimes creeping, as also roots.
Cre'nate. Scolloped, notrhes on the margin of a leaf which da not point towards elther the apex or base. (J) (T) Cre'nulate. Finely crenate.
Cres'cent-form. Resembling a half 1 won.
Crest'ed. Having an appearance sike a cock's comb.
Crini'tus. Long naireu.
Cru'ciform, (from crux, crucis, a cross.) Four petals placed like a cross.
Crusta'ceous. Small crusty substances lying one upon another Cryptoga'mia. Stamens and pistils concealed.

Sw'btt. A measare from the elbow to the end of the muddle finger Croul'late. Hoodec or cowled, rolled or folded in, as in the spatha or the Arvm or wild turnip.
Sucurbita'ceous. Resembling gourds or melons.
Cu'linary. Suitable for preparations of foed
Culm or straw, (from the Greek kalama, s!ubhle or straw; in Latn culmus.) The stem of grasses, Indian corn, sugar cane, \&c.
Culmif'erous. Having culms; as wheat, grasses, \&c.
Cune iform. Wedge-form, with the stalk attached to the point,
Curv'ed. Bent inwards. See Incurved.
Cus'pilate. Having a sharp straight point. (The eye tooth is casp
date.) date.)
Cu'ticle. The outside skin of a plant, commonly thin, resembling the scarf or outer skin of animals. It is considered as forming a part of the burk.
Cya'neus. Blue.
Cy'athiform. Shaped like a common wine glass.
Cylin'drical. A n'reular shaft of nearly equal dimensions throughout
is exten.
Cyme. Flower stalks arising ftom a common centre, afterwards van riously sub-divided.
D.

De'bilis. Weak, feeble.
Decan'drous, Plants wit!
Decaphyll las. Ten leave, ten stamens in each flower
Decid'uous. Falling off in the usual seasun; cpposed to persistent an evergreen, more durable than caducous.
Decli'ned. Curved downwards.
Decomposi'tion. Separation of the chemica elements of bodies.
Decom'pound. Twice compound, composed of compound paus.
Decum'bent. Leaning upon the ground, the base being erect.-Thi
term is applied to stems, stamens, \&c.
Decur'rent. When the edges of a leaf run down the stem or stalk Decu'sated. In pairs, crossing each other.
Deflec'ted. Bent off.
Defolia'tion. Shedding leaves in the proper season
Denis cent. Gaping, or opening.-Most capsples when ripe ar
Der'til Nearly Lombardy poplar.
Demer sus. Under water
lense. Close, compact.
Den'tate. Toothed; edged with sharp projections; Aarger than serrate. Dentic'ulate. Minutely toothed.
D) nu date. Plants whose flowers appear befcre the leaves; appeaning naked.
Deor'sum. Downwards,
Depres'sod. Fiattened, or pressed at the top
Descrip'tions. In giving a complete description of a flant, the order of nature is to begin with the root, proceed to the stem, branches, leaves appendages, and lastly to the organs which compose the flower, and the manner of inflorescence. Colour and size are circumstances

Col

least to de regarded in description
dular hairs, are ailing from left to right, as the bop vine.
Dextrat sum. (from dis, two, and adelphia, brotherhood, ers mosly pa
Diadel'phous, (from dis, two, and two parcels or sels; flowers mostly pa pilionaceous; fruit leguminous.
pi'amond form, See Deltoid.
Dr amond form (from dis, two and anther;) a class of plants including al such as have two anthers.
such as have two anthersiding into two equal branches.
Dichot omous. Forked, ane flower, and pistils in another; whether on Diclin'ia. Stamens in one ferent plants.
the same plant or on two grains of seed.
Dicno cous. Containg two grans odoee or seed lobes.
Dicotyled onous. Wwinned, or double.
Did'ymous. Twinned, or double dunamis, power;) two powers. A Didynn'ma, , (uou the Linnæan classes.
name on wice bent.
When one petiole sends off several leafere Digitate. Like point at its extremity.
from a single pong two pistils.
Digyn'ia. Havinged.
Dimid'iate. Halved. Diec'corts. Having staminate and pistillate flowers on different plant Tice'couts. Havinging a disk without rays.
Disk: The whole surface of a leaf, or of the top of a compound flower msk. The tho its rays.
as opposed to its rays. C.
Dis'perinus, The partition of a capsule
Dissep iment. The parp bursting with elasticity, as the Impatuene Dissil'iens. A pericarp, $\begin{aligned} & \text { Growng in two opposite ranks or rows. }\end{aligned}$
Distichus. Growing in wo opto turn hafrwards.
Divaricate. Diverging, separating widely.
Diver'ging. Spreaus but a day.
Diur nus. Belonsing to the back
Dor sal. Bep Punctate and Perforated.
Dotted. See Punctate and Perford, more than nodding
Droop'ing. Inclimng downward, more stone or nut
Drupe. A fleshy pericaly, or bearing drupes.
Drupa'coous. Re
Dul'cis. Sweet.
Dumo'sus. Bushy.
Dumo'sus. Bushy.
Du'plez.
Duable.

Eared. Applied to the lobes of a heart-form leaf, to the side lobes nea Eared. Applied to the lobes of a heart-10rm leart, the the plants which art the base of some leaves, and ts age into the ear. supposed to resemble the
Ebur'nens. Ivory white.
Echi'nate. Beset with prick or, ribs.
Ecos'tate. Without nerves or ribs bloom.) A term expressive of the Efflorescen'tia, (from effloresco, to bloom.) in which every plant olos precise time of the year, and the month in which every plank old
soms. The tern eflorescence is applied to the puwdering subs ance found on Lichens.
Effolia'tion. Premature falling off of leaves, by means of diseases or some avcidental causes.
Effuse. Having an opening by which seeds or liquids may be poured out.
$E^{\prime \prime}$ gret, or $A i^{\prime}$ grette. The feathery or hairy crown of seeds, as the the cop of the seed atter telions. It inclndes whatever remains on the :op of the seed after the corolla is removed.
stiped. When it is supported on a foot stem.
simple. When it consists of a bundle of simple hairs.
plamose. When each hair has other little hairs arranged along its sides.
Ellip'tic. Oval.
Elon'gated, Exceeding a common length.
Emar gimate. Having a notch at the end, retuse.
Em'bryo, (from embruo, to bud forth,) the germ of a plant; called by
Endog'enous. Applied to stems which grow from the centre outwardly, as in monocotyledons.
Eno'dis. W ithout joints or knots.
En'siform. Sword form, two edged, as in the flag and iris.
Entire. Even and whole at the edge
Entire. Even and whole at the edge.
Entomol'ogy. The science of insects.
Epi. A Greek word signifying upon; often used in composition.
Epi'carp, (from epi, upon, and karpos, fruit,) the outer skin of the se-
Evider'mi
Epider'mis, (from epi, upon, and derma, skin.) See Cuticle.
Epigynous, (from epi, upon, and gynia, pistil.)
$E p^{\prime} i s p s r^{\prime}$, (from epi, upon, and sperma, seed.)
Equinoc'tial flowers. Opening at stated hours each day.
E^{\prime} quitant. Opposite leaves alternately enclosing the edges of each other.
Ereck. Straight; less unbending than strictus.
'ro'ded. Appearing as if gnawed at the edge.
Es'culent. Eatable.
Ev'ergreen. Remaining green through the year, not deciduous.
Excava'tus. Hollowed out.
Exot'ic. Plants that are brought from foreign countries.
Expan'ded. Spread.
Expec'torant, (from expectoro, to discharge from the breast,) medicines
which promote a discharge from the lungs:
Erser'led. Projecting out of the flower or sheath.
Eyy. See Hilum.

F.

Fhelt'tous. Not natura, produced by art, (from fauro, ;o make.) Fhm'ilies. A term in Botany implying a natural union of several
genera into gfoups; sometimes used as synonymous with Natural
Orters
Fal'cate. Sickle shaped. Linear and crooked.

Furi'na, (from far, corn.) Meal or four. A teın given w the glu unous part of wheat ana other seeds, which is obtained by grinding and sifting

It consis s of gluten, starch, and mucilage The pellen is alse called farina.
Fas'cicle. A bundle.
Fascic'ulate. Collected in bundles.
Fascic'ulate. Collected in
Fastig'iate. Flat topped.
F'avo'sus. Resembling a honey comb.
F'aux. Jaws. The throat of the corolla.
Ferns. Cryptogamous plants, with the fruit on the backs of transelv.
or in spikes made up of minute ca
Fer tile. Pistillate, yielding fruit,
Fil'ament. The slender, thread-like part of the stamen.
Filices, (from filum, a thread,) Ferns.
ril'iform. Very slender.
Fimbriate. Divided at the edge like fringe.
ris'tulens. Hollow or tubular, as the leat of the onion.
Flac'cid. Too limber to support its own weight.
Flagel'liform. Like a whip lash.
Filum'neus. Flame coloured.
Fla'vus. Yellow.
Flex'uous. Serpentine, or bending in a zig-zag form
F'o'ra. Considered by the heathens as the goddess of flowers. Boots Fro' Ta . describing flowers are often called Floras.
Flo'ral leaf. See Bract.
Flo'ret. Little flower, part of a compound flower.
Flos'cular. A tubular floret.
Elos cular. A tubuar A term which was formerly applied almost exclu-
sively to the petals. At present a stamen and pistil only are considered as forming a perfect flower.
Flow'er stalk. See Peduncle.
Flow er stalk. Lee
Folia'ceous. Leafy.
Foll'icles. Leafets; a diminutive of folium, a leaf. The smaller Fol licles. Leafes; a tite a compound leaf.
leaves whic Leaves are fibrous and cellular processes of plants; they Fo' 2 ium leal. Leaves are are of different igu
or skinny substance. Fol'licle. A seed vessel which opens of Peduncle and Petiole.
Foot'-stalk. Sometimes used instead or Peding.
Frag-ilis. Breaking easily, and not bending.
Frag'ilis. Breaking easily, and not bending. Frond. The leaf of Cryptogamous plants; tormerly appled each species Frondes'cence, (from froms a leaf.) The time
of plants unfolds its leaves. See Frondose.
(Frondosus.) Leafy, or leaf-like.
Tyrondo'se. (Frondosus.) Leafy, or leat-like.
$c^{\text {chructifica'tion. The flower and fruit with }}$
Fructiferous. Bearing or becoming fruit.
Fruc'ius. The fruit. This is an annual part of the plant whit ade heres to the flower and succeedsi, a itself from the parent plant, and on being placed in language, the fruit parth, gives birth to a nell vegetable. In comut strictly speaking, the
larter only is the fruit, while the former is put the cise or vasse. which contains it.
4\% ${ }^{2}$ utes sent. Becoming shrubby.
Fru'tex. A shrub.
Futcra. Props supports; as the petiole, pedur cle, ken.
Ful'vous Yritowish.
Fun'gi. The plural of Fungus, a mushroom.
Wun'gous. Growing rapidly, with a soft texture lise the Fungi.
run nel-form. Tubular at the bottom and gradually expanded at the
ru'siform. Spindle shaped, a root thick at the top and tapering down. wards.

G.

Ga'lea. A helmet.
Gem'ma. A bud containing a plant seated upon the stem and branches, and covered with scales, in order to defend it from injury. The bud resembles the seed in containing the future plant in embryo; buc this embryo is destitute of a radicle, though if the bud is planted in the earth, a radicke is developed.
Gemma'ceous. Belonging to a bud. Made of the scales of a bud.
Gener ic name. The name of a genus.
Genic'ulate. Bent like a knee.
Ge'nus, (the plural of genus is genera, a family of plants similar in their flower and fruit. Plants of the same genas usually possess similar medicinal powers.
Germ. The lower part of the pistil which afterwards becomes the fruit.
Germina'tion. The swelling of a sped, and the unfolding of its embryo.
Gibibous. Swelled out commonly on one side.
Glabel'lous. Bald, without covering.
Gla'brous. Sleek, without hairiness.
Gland. A small appendage, which seems to perform some rffice of secretion or exhalation.
Gland'ular. Having hairs tipped with little heads or glands
Glaućous. Sea green, mealy, and easily rubbed off.
Gloms. A roundish head of flowers.
Glom'erate. Many oranchlets terminated by little heads.
Glume. The scales or chaff of grasses, composing the calyx ano co Glume. The scales or chaff of grasses, composing the calyx and co-
rolla, the lower ones are called the caly \bar{x}, all others the corolla, rolla, the lower ones are called the calyx, all others the corolla,
each scale, chaff, or husk, is called a valve; if there is but one, the each scale, chaff, or husk, is called a valv
flower is called univalve, if two, bivalve.
Giu'linous. Viscid, adhesive.
Gon, (from gonu, a knee or angie;) as pentagon, five angied; heza gon, six angled; polygon, many angled
Traft'ing. Is the process of uniting the bran thes or buds of two or more separate trees. The bud or branch of one tree, is inserted into the balk of another, and the tree which is thus engr ifled upon se nalled the stock.

17*

Gram'ina. Grasses and grass-like plants. Mostly found in the clas Triand ia.
Gramin'eous. Grass like ; such plants are also cailed culmiferons. Grandi'florus. Having large fluwers,
Granular. Formed of grains, or covered with grains.
Gruve'olens. Having a strong odour.
Gregarious. In flocks, plants growing together in gronps.
Groov'ed. Marked with deep lines
Gymnosper'mia, (from gunınos, naked, and sperma, seed.) Having na led seeds.
Gyman'drous. Stamens growing upon the pistil.
Gyn'ia. From the Greek, signifying pistil.
Habita'tio, or Habitat. The native situation of plants.
Hait The external appearance of a plant, by which it is known a: Habit. The externat regard to botanical distinctions.
Hair'-like. See Capillary.
Harlert-form. See Hastate.
Hand'-form. See Palmate.
Hang'ing. See Pendant.
Has'tate. Shaped like a halbert; it differs from arrow-shaped in na. Has tate. Shaped like a halbert; it differs from arro
ving the side processes more distinct and divergent.
Head. A dense collection of flowe
Heart. See Corculum and Corcle.
Heart. See Corculum and
Heart-form. See Cordate.
Heart'-form. See Cordate.
Hel'met. The concave upper lip of a labiate flower.
Helminthol'ogy. The science of worms.
Hepat'ic. Liver like.
Herb. A plant which has not a woway stem.
Herba'cemus. Not woody.
Her'bage. Every part of a plantexcept the root and iructification. Herba'rium. A collection of dried plants.
Hexag'onal. Six cornered.
Hi'ans. Gaping.
Hi'lum. The scar or mark on a seed at the place of attachment of
the seed to the seed vessel.
Hir'sule. Rough with hairs.
His'pid. Bristly, more than hirsute
Ho'ary. Whitish coloured, having a scaly mealiness, not un ike glaucous.
glaucous.
Holera'ceous. Suitable for culinary purposes. The term is derived from holus, signifying pot herbs. One of the natural orders of Linfrom holus, signirying pot herdes, such plants as are used for the ta. ble, or in the economy of domestic affairs.
Hon'eycup. See nectary.
Hon eycup. See nectary.
Hora'rius Continuing but an hour.
Horizon'tal. Parallel to the horizon.
Horn. See Spur.
Horn. Silis. Low, humble
Husk. The larger kind of glume, as the husks of Indian corn.
\#yberna'hs. Growing in winter
Hy brid. A vegetable produced by the mixture of two species; the seeds of hybrids are not fertile
Hy'po. From upo, under ; much used in the composition of scientifie terms.
Hypocrater iform. Salver shaped, with a tube abruptly expanded into
a fat border. a flat border.
\#ypog'ynurus. Under the stvia.
lathyol'ogy. The science of fishes.
cosan'drous. Having about twenty stamens growing on the calyx
Such plants furnish a great proportion of the most delicious pulpv fruits.
m'bricate. Lying over, like seales, or the shingles of a roof
Imper'fect. Wanting the stainen or pistil
Incarna'tus. Flesh coloured.
Inci'sor. Fore tooth
Inclueded. Wholly received, or containe 1 in a cavity; the opposite of exsert.
Incomplote. Flowers destitute of a calyx or corolla are said to be in-
complete. A term differing from imperfect.
Incras sate. Thickened upward, larger towards the end.
Incum'bent. Leaning upo increase.
Incum'ved. Bent inwards. or against,
Indig'enmus. Native gro
Indig'enous. Native, growing wild in a country, (some exutics after a ume, spread and appear as if indigenous.)
In'durated. Becoming hard.
Inférior. Below; a calyx or corolla is inferior when it comes out
below a germ.
Infa'ted Appe
Infla'ted. Appearing as if blown out with wind, hollow.
Inflex'ed.
Inflex'ed. The same as incurved.
Inflores'cence, (from infloresco, to flounsh.) The manner in which flowers are connected to the plant by the peduncle, as in the whorl,
raceme, \&e. raceme, \&e.
Infrac'tus. Bent in with such an acute angle as to appear broken
Infundibulifor'mis. Funnel form
Infundibulifor'mis. Funnel form.
Inser'ted. Growing out of, or fixed upon
Insi'dens. Sitting upan.
Insi'dens. Sitting upon.
Insignitus. Marked
In'teger. Entire.
Interno'de. The space between joints; as in grasses
Interreptedly-pin'nate. When smaller leafets are interposec amona
the principal ones.
Intortus. Twisted inwards.
Thlrode'ced. Not originally native. Brought from some other country.
Involu'crum. A kind of general calyx, serving for many lowers, ge-
nerally situated at the base of an umbel or head.
Anvolu'cel. A partual involucrum.
h'volute. Rolled inwards.
rides'cent. Reflecting light, (from Iris the rainbow)
Irreg'ular. Differing in figure, size, or prcportion of parts among themselves.
Irrutability. The power of being excited so as to produce contraction ; this power belongs to vegetables as well as animals; sensation is thought to imply the existence of internal properties not possessed by plants; though some have attributed sensation to plants; as wel! as animals.

Jag'ged. Irregularly divided and sub-divided.
Jows. See Faux.
Joints. Knots, or rings in culms, pods, leaves, \&c.
$J u^{\prime}$ gum. A yoke; growing in pairs.
Justa-position, (from juata, near, and pono, to place,) nearness of place. K.

Kecl. The under lip of a papilionaceous flower.
Keelied. Shaped like the keel of a bnat or ship.
$K e r^{\prime}$ nel. See Nucleus.
Kia'ney-shaped. Heart-shaped without the point and broader than long.
Knee. A joint being geniculate.
Knob'bed. In thick lumps, as the potato.
Knot. See joints.
La'biate. Having lips as in the cass Didynamia. La
Lacintale Lartes cent. Yreloog a
red, as in the blood-ro
Lac'tens. Milk white.
Lacus'tris. Growing abo
La'vis. Smooth, even.
La'vis. Smooth, even.
Lamel'iated. In thin plates. Lam'ina. The broad
La'nate. Woolly.
Lance -olate. Spear-shaped, narrow,
Lance'o-vate. A compound of lance
Lat'eral. On one side, (from lakus.)
La'tent. Hidden, concealed, (from lateo, to
Lar'va. The caterpilla
Lax. Limbe:, aaccid.
Lenfet. A partial leaf, part of a compound leaf
Leaf-stalk. See petiole.
Leg'ume. A pod or pericarp having its seeds attached to one side of suture; as the pea and bean
Legu'minous. Bearing legumes.
Lepan'thiums. A term used for a petal-like nectary; like that of the larkspur and monkshood.
Li'ber. The inner bark of plants. Immediately under the cuticle is a succulent, cellular substance, for the most part of a green colour, especially in the leaves and branches. Under this cellular integument,
is the bark consisting of but one layer in plants or ranches onls one year old. In older branches and trunks of trees, it consists of as many layers as they are years old; the innermost and newest being tions are carried on for the lime being that the essential vital funcwards with thed on for the time being, after which it is pushed outwards with the cellular integument, and like that, becomes a life-
less crust. less crust.
Lig neous. Woody.
Lig'ulate. Wood.
Lig'ulate. Strap or ribbon like, flat, as the florets of the dandelion
Lilia'ceous. A corolla with six petals gradually spreading fiom the
base. base
Limb. The border or spreading part of a monopetalous corolla.
Lin'ear. Long and narrow with parallel sides as the leaves of grasses.
Lip. The under petal in a labiate corolla.
Littora'lis. Growing on coasts, or shores.
Lividus. Dark purple.
Lobe. A large division; or distinct portion of a leaf or petal
Loc'ulus. A little cell, from locus a place.
Lo'ment. A pod resembling a legume, but divided by transverse par titions.
Longifoli'us. Long leaved.
Longis'simus. Very long.
Lu'cidus. Bright and shining.
Lu'rid. Of a pale dull colour.
Lu'teus. Yellow.
Ly'rate. Pinnatifid, with a large roundish leafet at the end.
Macula'lus. Spotted.
Marces'cenl. Withering,
Margin. The edge, or border.
Mara'time. Growing near the sea.
hedul'la. The pith or pulp of vegetables. The centre or heart of the vegetable. Various opinions have been entertained respecting the importance of the pith; Linnæus considered that it was the seat of life and source of vegetation: that its vigour was the principal cause of the shooting forth of branches, and that the seeds were formed from it. It is now generally thought that the pith does not perform so important a part in the economy of vegetation as was supposed by Linnæus.
Mellif'erous, Producing, or containing honey.
Mem'branous. Very thin and delicate.
Mid'rib. The main or middle rib of a leaf running from the stem to the apex.
Minia'tus. Scarlet, vermilion colour.
Mola'res. Back teeth, grinders.
Mol'lis. Sof
Mollus'cons. Such animals as have a soft body without bones; as the oyster.
rides'cent. Reflecting light, (from Iris the rainbow)
Irreg'ular. Differing in figure, size, or prcportion of parts among themselves.
Irrutability. The power of being excited so as to produce contraction ; this power belongs to vegetables as well as animals; sensation is thought to imply the existence of internal properties not possessed by plants; though some have attributed sensation to plants; as wel! as animals.

Jag'ged. Irregularly divided and sub-divided.
Jows. See Faux.
Joints. Knots, or rings in culms, pods, leaves, \&c.
$J u^{\prime}$ gum. A yoke; growing in pairs.
Justa-position, (from juata, near, and pono, to place,) nearness of place. K.

Kecl. The under lip of a papilionaceous flower.
Keelied. Shaped like the keel of a bnat or ship.
$K e r^{\prime}$ nel. See Nucleus.
Kia'ney-shaped. Heart-shaped without the point and broader than long.
Knee. A joint being geniculate.
Knob'bed. In thick lumps, as the potato.
Knot. See joints.
La'biate. Having lips as in the cass Didynamia. La
Lacintale Lartes cent. Yreloog a
red, as in the blood-ro
Lac'tens. Milk white.
Lacus'tris. Growing abo
La'vis. Smooth, even.
La'vis. Smooth, even.
Lamel'iated. In thin plates. Lam'ina. The broad
La'nate. Woolly.
Lance -olate. Spear-shaped, narrow,
Lance'o-vate. A compound of lance
Lat'eral. On one side, (from lakus.)
La'tent. Hidden, concealed, (from lateo, to
Lar'va. The caterpilla
Lax. Limbe:, aaccid.
Lenfet. A partial leaf, part of a compound leaf
Leaf-stalk. See petiole.
Leg'ume. A pod or pericarp having its seeds attached to one side of suture; as the pea and bean
Legu'minous. Bearing legumes.
Lepan'thiums. A term used for a petal-like nectary; like that of the larkspur and monkshood.
Li'ber. The inner bark of plants. Immediately under the cuticle is a succulent, cellular substance, for the most part of a green colour, especially in the leaves and branches. Under this cellular integument,
is the bark consisting of but one layer in plants or ranches onls one year old. In older branches and trunks of trees, it consists of as many layers as they are years old; the innermost and newest being tions are carried on for the lime being that the essential vital funcwards with thed on for the time being, after which it is pushed outwards with the cellular integument, and like that, becomes a life-
less crust. less crust.
Lig neous. Woody.
Lig'ulate. Wood.
Lig'ulate. Strap or ribbon like, flat, as the florets of the dandelion
Lilia'ceous. A corolla with six petals gradually spreading fiom the
base. base
Limb. The border or spreading part of a monopetalous corolla.
Lin'ear. Long and narrow with parallel sides as the leaves of grasses.
Lip. The under petal in a labiate corolla.
Littora'lis. Growing on coasts, or shores.
Lividus. Dark purple.
Lobe. A large division; or distinct portion of a leaf or petal
Loc'ulus. A little cell, from locus a place.
Lo'ment. A pod resembling a legume, but divided by transverse par titions.
Longifoli'us. Long leaved.
Longis'simus. Very long.
Lu'cidus. Bright and shining.
Lu'rid. Of a pale dull colour.
Lu'teus. Yellow.
Ly'rate. Pinnatifid, with a large roundish leafet at the end.
Macula'lus. Spotted.
Marces'cenl. Withering,
Margin. The edge, or border.
Mara'time. Growing near the sea.
hedul'la. The pith or pulp of vegetables. The centre or heart of the vegetable. Various opinions have been entertained respecting the importance of the pith; Linnæus considered that it was the seat of life and source of vegetation: that its vigour was the principal cause of the shooting forth of branches, and that the seeds were formed from it. It is now generally thought that the pith does not perform so important a part in the economy of vegetation as was supposed by Linnæus.
Mellif'erous, Producing, or containing honey.
Mem'branous. Very thin and delicate.
Mid'rib. The main or middle rib of a leaf running from the stem to the apex.
Minia'tus. Scarlet, vermilion colour.
Mola'res. Back teeth, grinders.
Mol'lis. Sof
Mollus'cons. Such animals as have a soft body without bones; as the oyster.

Monodel'phous. Having the stamens uniled in a tule at the base. Monuli' form. Gzanulate, strung together lik t beads.
Monocotyl' edons. Having but one cotyledon.
Mona'cious. Having pistillate and staminate flowers on the sams plant.
Monopet'alons. The corolla composed of one petal.
Monophyl' Lous. Consisting of one leaf.
Monosep'alous. A calyx of one piece or sepal.
Monosper'mus. One seed to a flower.
Monta'nus. Growing on mountains.
Moom-form. See Crescent-form.
Mosses. The seconid order of the class Cryptogamia.
Mu'cronate. Having a small point or prickle at the end of an obtuse leaf.
Mul'tiplex. Many flowered, petals lying over each other in two rows Mul'ks. Many.
Mu'ricate. Covered with prickles.

Naked. Destitute of parts usually found.
Na'mus. Dwa: fish, very small.
Nap. Downy, or like fur, tomentose.
Napifor'mis. Resembling a turnip.
Narcotic, (from the Greek word narce, torpor.) A substance which has the power of procuring sleep-Opium is highly narcotic.
Na'tant. Floating.
Nalural Character. That which is apparent, having no reference to any particular methud of classification.
Nectary, (from. The science whe part of a flower which produces honey: this term is applied to any appendage lower which phaces no other name
Nomoro'sus. Growing in groves, offen given as a specific name, as Anemone nemorosa; the ending in a denotes the adjective as being Anemone nemorosa; the ending in a denotes the adjective as in the feminine gender: the adjective in Latin
tion to conform to the g
Nerves. Parallel veins. Nerved. Marked with nerves, so called, the
Nictritans. From a word which signifies to twinkle, or wink; appli. ed as a specific name to some plants which appear sensitive ; as the Cassia nictitans.
Ni'ger. Black.
Nit'idus. Glassy, glittering.
Niv'eus. Snow white.
Nod'ding. Partly drooping.
Node, Nodus. Knot.
No'mer. A name.
Notch'ed. See Crenate.
Nu'cleus. Nut, or kernel.
$N u^{\prime} d u s$. See Nakec.
Nut, Nuc. See Nucleus
Nu'tant. See Nodding, Pendulous,

0.

Ot. A word which, prefixed to other terms, denotes the in sersion of the usual position; as obcor late, inversely cordate.
Obcon'ic. Conic with the point downwards.
obcor'date. Heart-shed with downwards.
Oblance'olate. Lanceolate with the point downwards.
Obli'que. A position between horizose the narrowest.
oblong. Longer than oval, with the sidal and vertical.
Obo'vate. Longer than oval, with the sides parallel.
insertion. inserion
Oosolete. Indistinet, appearing as if worn out,
Obtu'se. Blunt, rounded, not acute.
Odora'tus. Scented, odorous.
the arts. Such plants as are kept for sale as medicinal, or of use in
Did, Oi'des. This termination imports resemblance, as petaloid, like a petal; thalictroides, resembling a thalictrum, \&ec.
opa'que. Not trarsparent.
porpaite Standid which covers the capsules of mosses.
Opposite. Standing against each other on opposite sides of the stem.
racular. Circusar
Orchur'eous. Petals like the orchis, four-arched; the firth longer.
Os A bone. That department of zoology which treats of birds.
05seave A bone. A mouth
os seous. Bony, hard.
before it name sometimes given to the outer covering of the germ,
G'rate Egrosho
O'vate. Egg-shaped, oval, with the lower end largest.
Ovip arous. Animals produced from eggs, as birds, \&c.
vulcs. Litle anss the rudiments of seeds which the germ cont
before its fertilization; after that the ovales ripen into seeds.
Ovum. An egg
Palate. A prominence in the lower lip of a labiate corolla, $(\mathbb{P}$ nearly closing the throat.
Palea'coous See Chaffy
Palmete. Hard-shaped; divided so as to resemble the hand with toe
fingers spread.
Palus'tris. Growing in swamps and marshes.
Pandu'riform. Contracted in the middle like a violin or guitar.
Pan'icle. A loose, irregular bunch of flowers, with sub-divided
branches, as the oat.
Pan'cled. Bearing panicles,
Pcrpil'io. A butterfly.
papizona'ceous. Butterfly-shaped-an irregular corolla consist ngo four petals; the upper one is cailed the banner, the two tide
wines, and the lower one he keel, as the pea. Mostly found in the ciass Diadelphia.
Prpil'lose. Covered with protuberances.
$\boldsymbol{P}_{\text {zppus. }}$. The down of seeds, as the dandelion; a feathery appendage.
See Egret.
Parasit'ic. Growing on another plant, and deriving nourishment irom it.
Paren'chyma. A succulent vegetable substance; the cellular substance; the thick part of leaves between the opposite surfaces; the pulpy part of fruits, as in the apple, \&c.
Partition. The membrane which divides pericarps into cells, cailed the dissepiment. It is parallel when it unites with the valves where they unite with each other. It is contrary or transverse when it meets a valve in the middle or in any part not in its suture.
Parted. Deeply divided: more than eleft.
Patens. Spreading, forming less than a right angle.
Pau'ci. Few in number.
Pec'tinate. Like the teeth of a comb, intermediate between fimbriate and pinnatifid.
Pedate. Having a central leaf or segment and the two side ones which are compound, like a bird's foot.
Ped'icel. A little stalk or partial peduncle.
Pedun'cle. A stem bearing the flower and fruit.
Pellicle. A thin membranous coat.
Pellu'cid. Transparent or limpid.
Peltate. Having the petiole attached to some part of the under side of the leaf.
Pendant. Hanging down, pendulous.
Pen'cilled. Shaped like a painter's pencil or brush.
Peregri'mus. Foreign, wandering.
Peren'nial. Lasting more than two years.
Perfoliate. Having a stem running through the leaf; differs from connate in net consisting of two leaves.
Per'forate. Having holes as if pricked through; differs from punc tate, which has dots resembling holes.
$P_{e^{\prime}} r$ i. Around.
Per'ianth. A sort of calyx.
Per'icarp, (from peri, aronnd, and karpos, fruit.) A seed vessel on whatever contains the seed.
Perig'ynous, (from peri, around, and gymia, pistil.)
Pexisperm, (from peri, around, and sperma, seed.) Around the seed Per'manent. Any part of a plant is said to be permanent when it re mains longer than is usual for similar parts in most plants.
Persistent. Not falling off. See Permanent.
Per'somate. Masked or closed.
Per sonate. The leaf of a corolla, usually coloured.
Pettiole. The stalk which supports the leaf.
Phznog'amous. Such flowers as have stamens and pistils visible, in cluding all plants except the cryptogamous.
Physio'logy, (derived from the Greek.) A discourse of Nature

Phyto agy. The science which treats of the organization of vegeta. bles; nearly synonymous with the physiology of vegetables.
pilcus. The hat of a fungus.
Pillar. See Columella and Column.
Pilose. Hairy, with distinct straightish hairs,
Pilus. A hair.
Pimpled. See Papillose.
Pinna. A wing feather; applied to leafets.
Pinnate. A leaf is pinnate when the leafets are arranged in twe rows on the side of a common petiole, as in the rose.
Pinnat'ifi. Cut in a pinnate manner. It differs from pinnate, in be ing a simple leaf, deeply parted, whle pinnate is a compound of distinct leafets.
Pistil. The central organ of most flowers, consisting of the germ style, and stigma
pistillate. Having pistils, but no stamens

- ith. The spongy substance in the oentre of the stems and roots of most plants. See Merlulla.
Maited. Folded like a fan.
1 lane. Flat, with an even surface.
1 -lica'tus. See Plaited.
l^{2} limula, or Plume. The ascending part of a plant at its first germination.
E.u'rimus. Very many.

Io.t. A dry seed vessel, most commonly applied to legumes and siliques.
Po'dosperm, (from podos, a foot, and sperma, seed.) Pedicel of the seed.
Pointal. A name sometimes used for pistil.
Pollen, (properly, fine flour, or the dust that flies in a mill.) The dust
which is contained within the anthers.
Polus. Many.
Poiyan'drous. Having many stamens inserted upon the receptacle.
Polyg'amous. Having some flowers which are perfect, and others
stamens only, or pistils only.
Polymor'phous. Changew ${ }^{2}$ e, assuming many forms.
Poiypet'alous. Having many petals.
Poiypet' alous. Having many petals.
Polyphyl'lous. Having many leaves.
Polysop'alous. A calyx of more than one sepal.
Pome. A pulpy fruit, containing a capsule, as the apple.
Porous. Full of holes.
Promorse. Ending bluntly, as if bitten off; the same as abrupt.
Pras'inus. Green, like a leek.
Pratensis. Growing in meadow land.
Prickle, differs from the thorn, in being fixed to the bark; the thorn 10 fixed to the wood.
Prosmat'ic. Having several parallel flat sides.
Probos'cis. An elongated nose or snout, applied to projecting varts of vegetables.
Process. A projecting part.
'rocum'bent. Lying on the ground.

Prolif'encus. A flower is said to be proliferous when it has smalles ones growing out of it.
Prop. Tendrils and other climbers.
Prox'imus. Near.
Pseudo. When prefixed to a word, it implies obsolete, or false.
Pubes'cent. Hairy, downy, or woolly.
Pulp. The juey cellular substance of berries and other fruits.
Pulver'ulent. Turning to dust.
$P u^{\prime}$ milus. Small, low.
Punctate. Appearing dotted as if pricked. See Perforated.
Pungent. Sharp, acrid, pierciag.
Purpu'Teus. Porple.
Pusil'lus. Diminative, lew.
Puta'men. A hard shell.
Q.

Quidran'gular. Having four corners or angles.
2uater'nate. Four together.
Quinate. Five logether.
Raceme, (from rax, a bunch of grapes, a cluster.) That kind of inflorescence in which the flowers are arranged by simple pedicels on the sides of a common peduncle ; ast the currant.
Ra'chis. The common stalk to which the florets and spikelets of grasses are attached; as in wheat heads. Also the midrib of some leaves and fronds.
Ra'diate. The legulate florets around the margin of a compound flower.
Radix. A root; the lower part of the plant, which performs the office of attracting moisture from the soil, and communicating it to the other parts of the plant.
Rad'ical. Growing from the root,
Rad The part of the corculum which afterwards forms the rootalso the minute fibres of a root.
Ramif'crous. Producing branches.
Rami Erous. Produc
Ramus. A branch.
Ray. The outer margin of compound flowers,
Receptacle. The end of a flower stalk; the base to which the differ ent parts of the organs of frnctification are usually attached.
Recli'ned. Bending over with the end inclining towards the gromnd.
Rectus. Straight. Rectus. Straight.
Reflered. Bent backwards more than recurved.
Refriperant (from refrigero, to cool.) Cooling medicines. Refriv'erant, (trom refrigero, to cool.) Coolng the point. Re'niform. Slightly serpentine, or waving on the edge. Repand. Slightly s
Repens. Creening.
Repens. Creoping.
Resu'pinate. Upside down.
Resu'pinate. Upside down.
Retifiulate
Veins crossing each other like net-work.

Heluse. Having a slight notes in the end, less han emarginate. Rever'sed. Bent back towards the base.
Rev'alule. Rolled backward or outward.
Rhomooid. Diamond-form.
Rib. A nerve-like support to a leaf.
Rigid. Stiff, not pliable.
Ring. The band around the capsules of ferns
Ringent. Gaping or grinning; a term belonging to the labiate corollas Roottel. A fibre of a root, a little root.
Rose ceons. A corolla formed of roundish spreading petals, withou Rase'ous. Rose coloured short ones.
Rusch. Rose coloured.
the first germination part of the embryo which tends downward at lue first germination of the seed.
Rostrate. Having a protuberance like a bird's beak
Rotate. Wheel-form
Rotun'dus. Round
Rubra. Red.
Rufous. Reddish yellow.
Reigose. Wrinkled.
Run'cinate. Having large teeth pointing backrar
Rupes'tris. Growing arge teeth pointing backwards, as the dandelion. Rupes'tris. Growing among rocks,

Sagit'tate. Arrow-form
Sali'ferous. Bearing or producing salt.
Salsus. Salt tasted.
salver-form. Corolla with a flat spreading border proceeding from
the top of a tube; flower Sam'ara. A winged flower monopetalous.
Sap. The watery furicarp not opening by valves, as the maple.
Sap. The watery fluid contained in the tubes and little cells of vege-
tahles.
Supor. Having taste.
Sarmen'tose. Running on the groand and striking root from the joirt
only, as the strawierry only, as the strawietry
Sir'cocarp, (from sarx, flesh, and karmos, fici) fruit.
Sca'ber, or Scabrous. Rough.
Scandens. Climbing.
Scape. A stalk which springs from the root, and supports flowers and Suit but no leaves, as the dandelion.
Sod'rious. Having a thin membranous margin.
Scultered. Standing without any regular order.
Scions. Shoots proceeding laterally from the roots or bulb of a rooc.
Segment. A part or principal division of a leaf, calyx, or corolla. Sempervi'rens. Living through the winter, and retaining its leaver
Sep'al. A leaf of the calyx. Sep'al. A leaf of the calyx.
Serrate. Notched like the 'eeth of a saw
Ser'rulate. Minutely serrate.

Sessile. Sitting down; placed immediately on the main stem withow a foot stalk.
Seta. A bristle.
Seta'ceous. Bristle-form.
Shaft. A pillar, sometimes applied to the style.
Sheath. A tubular or folded leafy portion including with in it the stem
Shoot. Each tree and shrub sends forth annually a large shoot in the spring, and another in June.
Shrub. A plant with a woody stem, branching out nearer the ground than a tree, usually smaller.
Sic'cus. Dry.
Sic'cus. Dry.
Sil'icle. A seed vessel constructed like a silique, but not longer than it is broad.
Silique. A long pod or seed vessel of two valves, having the seed attached to the two edges alternately.
Simple. Not divided, branched, or compounded.
Sin'uate. The margin hollowed out resembling a bay.
Si'nus. A bay; applied to the plant, a roundish cavity in the edge of the leaf or petal
So'ri, (plural of Soros.) Fruit dots on ferns.
Spa'dix. An elongated receptacle of flowers, commonly proceeding from a spatha.
Spa'tra. A sheathing calyx opening lengthwise on one side, and consisting of one or more valves.
Spat'ulate. Lavge, obtuse at the end, gradually tapering into a stalk at the base.
Spécies. The lowest division of vegetables.
Specific. Belonging to a species only.
Sper'ma. Seed.
Spike. A kind of inflorescence in which the flowers are sessile, or nearly so, as in the mullein, or wheat
Spike'let. A small spike.

Spine lele. A smaped. Thick at top, gradually tapering, fusiform
Spine. A thorn or sharp process growing from the wood.
Spine. A Thornory
Spi'ral. Twisted like a screw
Spi'ral. Twisted like a screw.
Spur. A sharp hollow projection from a flower, commonly the nectary.
Spur'red-rye. A morbid swelling of the seed, of a biack or dark colour, sometimes called ergot; the black kind is cal or new land, is mant ergot. Grain
most subject to it.
Squamo'sus. Scaly.
Squarro'se. Ragged, having divergentscales, founded. That part of the nower on which
found
Stam'inate Having stamens without pistils.
Standard. See Banner.
Stel'late. Like a star.
Stem. A general supporter
Stemless. Having nc stem.
Stemless. Havin
Ster'ile. Barren.

Stag'ma. The summit, or top of the pistil
stupe. The stem of a fern, or fungus; also the stem of the down o seeds, as in the dandelion
Stip'itate. Supported by a stipe.
Str'pule. A leafy appendage, situated at the base of petioles, or leaves Stoloniferous. Putting forth scions, or rurning roots.
Stramin'cous. Straw-like, straw coloured.
trap-form. Ligulate.
Stratum. A layer, plural strata.
Slriate. Marked with fine parallel lines.
Strictus. Stiff and straight, erect.
Shigose. Armed with close thick bristles.
Strob ihtm. A cone, an ament witk woody scales.
Style. That part of the pistil which is between the stigma and the germ.
Styl'ides. Plants with a very long style.
Sua'vis. Sweet, agreeable.
Sub. Used as a diminutive, prefixed to different terms to imply the existence of a quality in an inferior degree; in English, may be rendered by somewhat: it also signifies under.
Subero'se. Corky.
Submersed. Growing under water.
Subterra'neous. Growing and flowering under gronnd
subtus. Beneath.
Sub'acule. Somewhat acute.
Sub'sessile. Almost sessile.
Sub'uiate. Awl-shaped, narrow and sharp pointed. See Awl-form
Suriculent. Jurcy; it is also applied to a pulpy leaf, whether juicy or
not.
Suc'cus. Sap.
Sucker. A shoot from the root, by which the plant may ve propagated. Suffru'ticose. Somewhat shrubby; shrubby at the base; an under shrub. Sul'cate. Furrowed, marked with deep lines.
Super. Above.
Supradecompound. More than decompound; many times sub-dividea.
Superior. A calyx or corolla is superior, when it proceeds from the Superior. A calyx or coro
upper part of the germ.
Supi'mus. Face upwards. See Resupinatus
Swture. The line or seam formed by the junction of two valve of
seed vessel.
Sylvestris. Growing in woods.
Syncarpe, (from sun, with, and larpos, fruit.) A union of fruits.
Syngenesions. Anthers growing together, forming a tabe; such plants
as constitute the class Sygenesia, being also compound flowers.
Synonyms. Synonymous, different names for the same plant.
Synopsis. A cor densed view of a subject, or science.

T.

Taxonomy, (from taxis, order, and nomus, law.) Metnod ot classifica
ion
aegens. Covering

Tegument. The skin or covering of seeds; often lurst off on boiling as in the pea.
Temperature. The degree of heat and cold to which any place is sub ject, not wholly dependent upon latitude, being affected by elevation; the mountains of the torrid zone produce the plants of the frigid zone. In cold regions white and blue petals are more common; in warm regions, red and other vivid colours, white petals, in the autumn more yellow ones.
Tendril. A filiform or thread-like appendage of some climbing plants, by which they are supported by twining round other objects Tenellus. Pender, fragile.
Temuifolius. Slender leaved.
Tenuis. Thin and slender.
Terete. Round, cylindrieal, tapering.
Terminal. Extreme, situated at the end.
ernate. Three together, as the leaves of the clover.
Tetradynamous. With four long, and two short stamens.
Tetrandrous. Having four stamens.
Thorn. A sharp process from the woody part of the plant; considered as an imperfect bud indurated.
Thread-form. See Filiform.
Thyrse. See Panicle.
Tige. See Caulis.
Tinctorius. Plants containing colouring matter.
Tomentose. Downy; covered with fine matted pubescence.
Tonentose. Dedicines which increase the tone of the muscular fibre.
tone of the muscular
Toothed. See Dentate. to vessels supposed to be designed for racesvTrachca. Nistributing air.
Transverse. Crusswise.
Transverse. Crusswise forka'
Trichotomous. Three
Trifud. Three clell.
Trifoliate. Three leaved.
Trilobate. Three lobed.
Trilobate. Three lobed.
Trilocular. Three celled.
Truncate. Having a square termination, as if cut ott.
Truncate. Having a square termie,
Trunk. The stem or bole of a tree.
Tuhe. The lower hollow cylinder of a monetalous corolla
Tube. The lower hollow cylinder of a monopetalous corolia
Tuber. A solid fleshy knob.
Tuberous. Thick and fleshy, containing tubers, as the potato
Tubular. Shaped like a tube, hollow.
Tunicate. Coated with surroanding layers, ss in the onion.
Tasbinate. Shaped like a top or pear.
Twining. Ascending spirally.
Twisted. Coiled.

U.

Tiginosus. Growing in damp places.

Migznosus. Gro from Ane centre, like the sticks of an umbrella.

Umbelliferous. Beaving umbels.
Unarmed Without thorns or prickles.
Incinate. Hooked.
Unctuosus. Greasy, oily.
Indrulate. Waving serpentine, gently rising and fa.ling.
Unguis. A claw.
Unguiculate. Inserted by a claw
Uniflorus. One flowered.
Unicus. Single.
Unilateral. Growing on one side.
Urceolate. Swelling in the middle, and contracted at the tof Ψ. the form of a pitcher.

V.

Valves. The parts of a seed vessel into which it finally separates, also the leaves which make up a glume or spatha.
Variety. A subdivision of a species distinguished by character which are not permanent; varieties do not with certainty produce their kind by their seed. All apples are but varieties of one species; if the seeds of a sour apple be planted, perhaps some will preduce sweet apples.
Vaulted. Arched over; with a concave covering.
Veined. Having the divisions of the petiole irregularly branched on the under side of the leaf.
Ven'tricose. Swelled out. See Inflated.
Vernal. Appearing in the spring.
Ver'rucose. Warty, covered with litule protuberances.
Vertical. Perpendicular.
Vertical. Perpendicular,
Verticillate. Whorled, having leaves or flowers in a circle round the
stem.
Vesic'ular. Made up of celluiar substance.
Vesper'tine. Flowers opening in the evening.
Vesper'tine. Flowers opening in the evening
Vil'lous. Hairy, the hairs long and soft.
Vil'lous. Hairy, the hairs lon
Viola'ceous. Violet coloured.
Viola'ceous. Violet coloured,
Vires'cens. Inclining to green.
Vires'cens. Inclining to green.
Vir'gate. Long and slender. W andlike.
Vir'gate. Long and slender. Wandike.
Vir'idis. Green.
Virgul'tum. A small twig.
Virgul'tum. A small twig.
I'rose. Nauseous to the smell; poisonous
Viscid. Thick, glutinous, covered with adhesive moisture.
Vitel'lus. Called also the yolk of the seed; it is between the albumen and embryo.
Vit'reus. Glassy.
Vivip'arous. Producing others by means of bulbs or seeds germinating while yet on the old plant.
Vul'nerary, (from vulnus, a wound,) medicines wisich heals wounds.
W.

Wedge-form. Shaped like a wedge, rounded at the laige end, obovate with stro4ish sides.

Wheel-shaped. See Rotate.
Whorled. Having flowers or leaves growing in a ring.
1Whorled. Having tiowers or leaves grownceus flower
Wood. The most solid parts of trunks of trees and shruhs.

$$
\mathrm{z}
$$

Zool'ogy. The science which treats of animals.
Zo'ophytes. The lowest order of animals, sometimes called anunal pines. plans, They resemble plants in their form, and exhibit very faint marks of sensution.

Wheel-shaped. See Rotate.
Whorled. Having flowers or leaves growing in a ring.
1Whorled. Having tiowers or leaves grownceus flower
Wood. The most solid parts of trunks of trees and shruhs.

$$
\mathrm{z}
$$

Zool'ogy. The science which treats of animals.
Zo'ophytes. The lowest order of animals, sometimes called anunal pines. plans, They resemble plants in their form, and exhibit very faint marks of sensution.

The infant loves flowers, and the young child when he first goes nto the fields and plucks the luxuriant wild flowers, ϵ xhibits a demio the fields and plucks the luxuriant which the most costly toys cannot impart.
We wil. now give a few examples of attaching sentiments to flowers; and should the young reader become so much interested in this, as to wish to pursue the subject, we will recommend him to peruse the arisle "Symbolical Language of Flowers," in the Familia: Lecthe artacle. "Symbolical Language of lanatic is to be met in "Flors's thres on Botany, and the more iurpexpla,

Acacia, Friendship.
Acanthus, Indissoluble ties
Aconitim, (Monk's-hood,) Decen.
Amuranthes, Unchanging.
Amaryllis, Coquetr
Anemme, Frailty.
Aram, (Wild-turnip,) Ferocrty
Aster, Beauty in retirement.
Asclepias, (Milk-weed,) Hope.
Bachelor's button, Hope, even in misery.
Balm, How : weet is social intercourse!
Brom, Humility.
Broom-corn, Indastry.
Balsamine, (Lady's slipper of the garden, Impatiense.
Bay, I change but in death.
Pox, Constancy.
Bell-flower, Gratitude.
Cardinal flower, High station does not confer happiness.
China asier, 1 return your affection.
Chrysanthemum, (W bite,) Truth needs no protestations.
Cumatis, (Virgin's bower,) Mental excellence.
iock's-comb, Foppery, Affectation.
Cock s-comb, Foppery, Ant.
(Trown amperial, Great but not good.
rhamomile, Blooming in sorrow.
Carnation, Disdain.
Carnation, Disdain.
Daisy, Unconscions beauty.
Dandelion, Smiling on all. Dandelion, Smiling on all.
Heart's-ase, (Garden violet, Forget-me-not.
Heart s-aase, (Garden
Hollyhock. Ambition.
Holyhack, Ambition.
Honcysucke, Fidelity.
Honcysuckle, Finoence.
Howstonza, innocence.
Hydrangea, Boastul.
Jasmine, Gentle.
Iris, A message for you.
Larkspur, Inconstant.
Lily, (White, Purty.
Lilu of the Valley, Delicacy.
Marigold, Cruelty,
Mirabilis, (Four o'elock,) Tımary.
Mignonelte, Beauty in the mind rather than the persun Mick Mange. (Pliladelphus,) Counterieit.

Myrlle, Love.
Narcissus, Selfishness.
Olive, Peace.
Oranye flowers, A bridal.
Parsley, Useful knowler'ge.
Passion floweer, Devotion.
Pink, single, A stranger to art.
Phei, var regated, Refusai.
Femy, Ortentation.
Poppy, Forgetfulness.
Rasemary, Rempmorance.
Rose-tud, A cuntession.
Rose, wuld, Simplicity.
Rose, cinnamon, Without pretenticn.
Sage, Domestic virtues.
Showo-drop, I am not a summer friend.
Straxoberry, A pledge of happiness.
Sweel William, Artinl.
sioeet pea, Departure.
Tulip, Vanity.

Here on this gently sloping bank Of mossy tlowers, I love to lie;
While round, the vernal grass so rant While roumd, the vernal grass so rank, rue placid lake of silver sheen,
Fans with soft breath Fans with soft breath my burning cheek,
While from its bosom ail serene
 While from its bosom all serone,
Sweet, modest plants, condemned toek.
In solitude and lonely shademned to dwell In solitude and lonely shade; That thus obscure your lot is But come with me to fairy bowers, Deck'd by the tasteful hand of att; And ye shall know of brighter hours,
And share the pleasures of my heart
Nymphea" hears my earnest plea,
Meek, white-robed lily of the lake;
And wafting forth a sigh to me, Mertal, orbitioar ! thour knowest not, How idle is thy foolish dream; Nor is our lowly, humble lot,
*The Wbite water-lily.

Zound us the siver trout do glide. Bithe zephyra dance amidst our dowsean And with us insects gay abide, We muke these solitates rejoice, Adotn and bless our parent wave; Atd chould it be her children's choice To leave her, but-to find a grave We should not be in bowers of art,
Blooming and fresh ns we are here Soon would our lovliness depart And wither'd thinge we should appear. See yellow Naphar* now so gay
Blue Pontederiat fresh and fair, Oh, thay workd droop the very day, Oh, thay wortd droop the vary day,
Should take them from their natal alr !

And 1, ahe said, in aecents sweet,
Whose robe of phain and simple whits Is for these shades a garment meet ; Which gandy tulips love no wellOh grant me, Heav'n my little day Untouch'd by pride may pass awas t

Ths Y_{3}, ow water-ill - A benutiful aquatic flower witt bloesonn unckiv erowded upon a spike;BIBEHTE A GENERAI
OE BIBLIOTECAS

$$
00056 \%
$$

[^0]: * Sarracenia purpurea. See Plate III. Lincoln's Botany
 \dagger Carica papaya. See Plate IV. Lincoln's Botany.
 1*
 (5)

[^1]: 11. What finthly?
 12. Huw do the divisions of a house correspond to the divisions in Botanv?
[^2]: Th. What is said of the apple blcssom?

[^3]: 78. Repeat the numerals.
 79. On what are the classes founded ?
 80. On what are the classes founde
 81. How many classes are there?
 82. How many classes are there?
 83. How are the first twelve classes named?
 84. What classes depend on the number of stamens?
 85. What classes depend on the number of stam
 86. Repeat the names of the first Iwelve classes.

 3

[^4]: 139. What are tuberous roots?
 140. What are granulatert roots?
[^5]: 177. What comparison may be made between a bud and an infant1
 178. What is the leaf?

 179 How do leakes inhale and exhale gases?
 180. When do the leaves usually appear?

[^6]: 177. What comparison may be made between a bud and an infant1
 178. What is the leaf?

 179 How do leakes inhale and exhale gases?
 180. When do the leaves usually appear?

[^7]: 198. What is a sagittate leaf?
 199. What is an acerose leaf?
 200. What is observed of trees with acerose leaves?
[^8]: 233. What is a necessary food of plants ?
 234. What is meant by the sleep of plants?
 235. How was Linnæus led to observe the appearance of plants is de night?
 236. What experiment was once made with the sensitive plant? 23\%. What is the defoliation of plants?
[^9]: 250. What is the bract?
 251. Is it always easy to distinguish bracts from leaves ?

 25i. What organs of the plant have we now considered ? 253.

[^10]: 288. What is a liliaceous corolla?

 289 . What is a rosaceous corolla?
 290 What is a papilionaceous corolla?
 291 . When is a corolla said to be anomalous?
 992. What causes the odour of flowers?
 293. What effect has temperature upon the odour of flowers?
 294. Why do flowers appear peculiarly fragrant in the morning nd evening ?

[^11]: 315 Describe the anther.
 316. Describe the pistil.
 317. What are the parts of the pistil?
 318. Describe the germ.

[^12]: 341. Describe the spadix.
 342. What does Fig. 59 represent?
 343. What does Fig. 59 represent ?
 344. What is represented at B. Fig. 59 ?
 345. Why is he Wild Turnip in the class Monœecia, order Polvandria?
 346. What is the receptacle?
[^13]: 364. What does Fig. 62 represent?
 365. What is a folicle?
 366. What is represented by Fig. 63 ?
 367. Describe the drupe.
 368. What is a nut?
 369. What is a pome?
 ${ }^{37}$ 3. Describe the terrv
[^14]: 382. What does Fig. 64 represent?
 383. What are cotyledons?
 384. What plants are called Acotyledons ?
 385. What are Monocotyledons?
 386. What are Dicotyledons?
 387. What are Folycotyledons?
 388. Give an account of the embryo.
[^15]: 441. What is an individual?
 442. What is a species?
 443. What is a genus?
 444. How are the generic names derived?
[^16]: What does the germ of the papilionaceous plants become?
 473. What does the germ of the papilionaceous pla?
 47. What is said of the flowers belonging to the labiate family?
 477. What is said they called labiate?
 477. How is this lamıy sub-divided?
 477. How is this ramuly sub-divided of labiate fiowers, and to what iass do these fowers belong ?

[^17]: 479. What are the orders in this class?
 480. What is said of the ringent flowers?
 481. What is said of the personate division?

 482, In which class are the umbellate flowers found and from Fhence then do they take their name?
 483. Describe these plants.

 10*

[^18]: 484. What is observed of the fruit of the umbellate plants
 485. What is said of the blossoming of compound flowers?

 486 How do the dandelion and sunflower differ from the violet and cose ?
 48%. Inte what two parts would vou distinguish the sunflower?

[^19]: 498. Describe its stamens.
 499. How is the pistil situated?
 500. Where do the seeds grow?
 501. Describe the receptacle of the daisy.
 502. What is the botanical name and clasification of the
 503. Why wav this flower called daisy ?
[^20]: 513. What does Fig. 73 represent?
 514. What farther is said of the lilac ?
 515. Describe the Veronica.

 316 Describe the Circma.
 11

[^21]: 561. What dnes Fig. 77 represent ?
 562. What piants belong to the family of Liliaceous plants? 563. What is said of the Lily?
 563. Wiat is the difference between a forist and a botanis । 565. What flower is a great favourite with florists 565. What tlower is a great antain tree?
[^22]: 576. Why is the Laurus an important plant?
 577. Which are some of the species of the genus Laurus?
 578. Which are some of the species or the genus Laurus
 578 . What plant is mentione? as belonging to the third order of he ninth class?
[^23]: 582. What circumstance is more regarded in the class Icosandria 582. What circumstance namber of stamens?

 583 . What is said of the genus Cactus?
 ${ }_{584}$ What is said of the genus Prunus?
 585. Of the Pomegranate?

