DEUXIÈME LEÇON

Sommaire. — Les êtres unicellulaires sont-ils sujets au traumatisme et aux infections? — Mérotomie des amibes et des infusoires. — Lésions de la Vaucheria. — Épidémie des amibes, occasionnée par la Microsphæra. — Digestion intracellulaire des protozoaires. — Digestion des bactéries. — Épidémies des infusoires : maladie du noyau et du nucléole. — Division des paramécies infectées et leur moyen de se débarrasser du parasite. — Acinétiens. — Chytridinées.

Demandons-nous d'abord si les êtres unicellulaires, si nombreux dans les milieux qui nous environnent, sont sujets aux maladies infectieuses et s'ils sont sensibles aux causes qui provoquent chez nous une inflammation plus ou moins considérable, et examinons ensuite les changements que ces facteurs produisent chez ces organismes inférieurs.

Une lésion traumatique, même peu importante, provoque inévitablement, chez l'homme et les animaux supérieurs, la série des phénomènes typiques de l'inflammation. Chez les êtres unicellulaires, les choses se passent d'une façon bien plus simple. Si on coupe une amibe en deux morceaux, il ne se forme même point de plaie le long de la section, car les bords se réunissent immédiatement après le passage du tran-

chant (fig. 3, 4). Il se produit deux amibes nouvelles, dont celle qui a gardé le noyau primitif continue à croître et à se comporter comme un être normal, tandis que l'autre moitié, privée du noyau, périt au bout d'un temps plus ou moins long (1). Les êtres protoplasmiques inférieurs renfermant plusieurs noyaux,

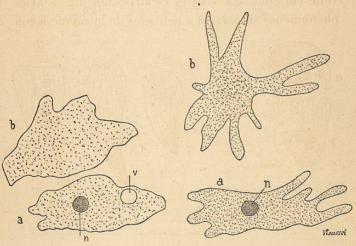


Fig. 3. — Une Amibe immédiatement après la section en deux parties.

a. Moitié avec le noyau n; b. moitié sans noyau; v. vacuole contractile.

(D'après Bruno Hoffer.)

Fig. 4. — La même Amibe cinq minutes après la section.
(D'après Bruno Hofer.)

comme par exemple l'actinophrys, peuvent être divisés en plusieurs morceaux, dont chacun se régénère au bout d'un temps très court, pourvu qu'il se trouve dans son intérieur un fragment du noyau (2).

(2) K. Brandt, Ueb. Actinosphaerium Eichhornii, 1877, p. 30.

Chez les infusoires, qui en général présentent une plus grande différenciation de leur protoplasme, la section par un instrument tranchant provoque une véritable plaie, qui met à nu le plasma intérieur. Mais peu de temps après, les bords de la couche périphérique recouvrent la plaie et, en sécrétant une nouvelle cuticule, achèvent la cicatrisation (fig. 5). Ces phénomènes se passent à peu près de la même façon

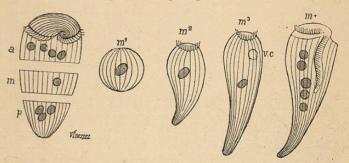


Fig. 5. — Mérotomie du stentor.

a. Tronçon antérieur; m. tronçon médian: p. tronçon postérieur.

m¹, m², m³, m⁴. Stades de régénérescence du tronçon médian.

(D'après Balbiani.)

sur les tronçons munis ou dépourvus du noyau. Seulement chez les premiers la régénération complète s'opère au bout de peu de temps (souvent en moins de 24 heures), tandis que les derniers s'atrophient graduellement et finissent toujours par mourir. M. Balbiani (1), qui a publié un travail important sur la mérotomie des infusoires, pense même que la cicatrisation ne se fait d'une façon complète que chez les tronçons pourvus de noyau, ce dernier exerçant une influence

⁽¹⁾ V. Bruno Hofer, Experimentelle Untersuchungen üb. d. Einfluss des Kerns auf das Protoplasma, dans Jenaische Zeitschrift für Naturwissenschaft, vol. XXIV, 1889, p. 109, pl. IV et V.

⁽¹⁾ Recherches expérimentales sur la mérotomie des infusoires ciliés, dans Recueil zoologique suisse, t. V. 1888.

20

manifeste sur la sécrétion de la cuticule. Chez quelques espèces, comme le *Trachelius ovum*, l'ectoplasma des segments séparés recouvre la plaie immédiatement après la section, et les tronçons, munis de noyau, se régénèrent en moins de cinq heures.

Les plantes unicellulaires peuvent également subir des lésions profondes sans que ces organismes

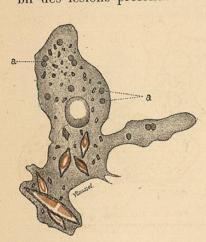


Fig. 6. — Amibe au début de l'infection par la Microsphæra (a).

périssent nécessairement. Ainsi Hansment. Ainsi Hanstein (1) a observé qu'en coupant ou enécrasant une partie de l'algue unicellulaire Vaucheria il n'y a que la partie lésée qui meurt, tandis que le reste de la cellule guérit en sécrétant une couche cuticulaire sur la surface malade et en formant une sorte de séquestre.

Dans ces phénomènes chez les organismes inférieurs, il s'agit donc simplement d'une régénération plus ou moins complète et facile. Mais en dehors du traumatisme, c'est l'infection qui provoque le plus souvent l'inflammation. Or, les maladies infectieuses sont très fréquentes parmi les protozoaires et les plantes unicellulaires. Même leurs représentants les

(1) V. Frank, Die Krankheiten der Pflanzen, 1880, I, p. 91.

plus inférieurs sont quelquefois sujets aux infections.

Ainsi j'ai observé chez les amibes une épidémie produite par un organisme très simple, en forme de cellule ronde, muni d'une mince enveloppe et d'un noyau et capable de se multiplier par division. La grande *Amocba*, à pseudopodes arrondis, qui se nourrit de diatomées, renferme quelquefois, à côté de

ces algues brunes, un petit nombre de ces cellules rondes (fig. 6),
que je désignerai sous le nom
de Microsphæra.
Les mouvements
protoplasmiques,
ainsi que l'attitude générale de
l'amibe, restent
normaux et ne

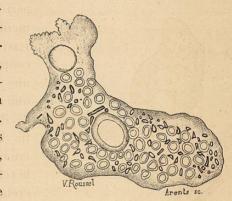


Fig. 7. — Une Amibe mourante, remplie de microsphères parasitiques.

permettent point de soupçonner un état maladif de ce rhizopode. L'observation suivie démontre pourtant que, tandis que les diatomées englobées subissent des altérations digestives, les microsphères se divisent sans entrave dans l'intérieur du protoplasma de l'amibe. Cette dernière rejette les diatomées et devient de moins en moins mobile, manifestant ainsi un état de malaise, tandis que le protoplasma est rempli par les microsphères (fig. 7). Envahie par le parasite, l'amibe périt fatalement.

Le cas est intéressant parce qu'il nous montre

qu'un organisme, composé presque uniquement d'un protoplasma digérant facilement le contenu des diatomées, peut être infecté par un être tout à fait chétif en apparence, mais pourtant capable de résister à l'influence digestive de l'amibe et d'amener sa mort. Pour expliquer ce fait il faut invoquer une propriété du parasite grâce à laquelle il produirait dans l'intérieur de l'amibe quelque substance protectrice pour la microsphère et toxique pour l'amibe.

L'infection s'est donc développée malgré la pro-

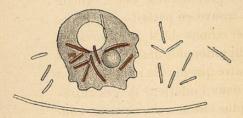


Fig. 8. — Une Amibe vivant au milieu des bacilles, dont elle a englobé un certain nombre.

priété si prononcée de digestion intracellulaire des amibes. Si on observe le monde des protozoaires de plus près, on acquiert la conviction que cette fonction digestive doit jouer un grand rôle dans les relations réciproques des êtres inférieurs. Beaucoup de rhizopodes et d'infusoires vivent dans des milieux peuplés par une foule d'autres organismes unicellulaires et entre autres de bactéries. Ces dernières, qui se multiplient si rapidement, fournissent leur nourriture à beaucoup de protozoaires. Ainsi différentes amibes s'incorporent des bacilles, qui subissent dans leur protoplasma des transformations déterminées. Sans chan-

ger leurs contours, ces bacilles acquièrent la propriété

d'absorber facilement des solutions de vésuvine qui ne colorent point les bacilles vivant dans le milieu extérieur (fig. 8). Puisque des changements tout à fait semblables s'observent aussi dans l'intérieur des vorticelles et d'autres infusoires qui se nourrissent de bactéries, il est évident qu'ils sont dus à une influence digestive du contenu des protozoaires. Cette conclusion se trouve en parfait accord avec les observations de M. B. Hofer (4) sur la digestion des amibes, puisqu'il a démontré que plus la nourriture est altérée dans l'intérieur de ces rhizopodes, plus elle se colore par les couleurs d'aniline.

Souvent on a occasion d'observer comment des monades flagellées englobent des filaments de leptotrix plusieurs fois aussi longs qu'elles-mêmes (fig. 9), et finissent par les incorporer dans l'intérieur de leurs vacuoles digestives (fig. 10). Quelquefois on peut poursuivre dans l'intérieur d'un infusoire tous les changements des bactéries englobées, comme dans le cas de digestion de la sulfobactérie Thio-

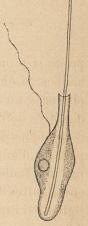


Fig. 9. — Une Monade en train d'englober un filament de Lentotrix

(1) Jenaische Zeitschrift, 1889, t. XXIV, p. 109.

cystis par le Stentor, observé par M. Le Dantec (1).

Il est donc évident que la propriété digestive du protoplasma des protozoaires doit s'opposer à l'invasion de ces animaux par des êtres inférieurs, et que ce n'est que dans des cas tout à fait particuliers que ces derniers peuvent vivre en qualité de parasites dans le corps des rhizopodes et des infusoires. Puisque j'ai déjà mentionné une maladie infectieuse des premiers,

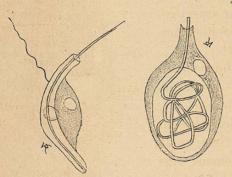


Fig. 10. — Englobement du Leptotrix par une Monade.

je passerai à une affection épidémique des infusoires ciliés.

Depuis longtemps on a signalé dans le noyau de plusieurs espèces d'infusoires, notamment chez les paramécies, la

présence de bâtonnets très minces que J. Muller, qui en fit la découverte, envisagea comme des spermatozoïdes. Étudiés par plusieurs autres observateurs, notamment par MM. Balbiani et Bütschli, ces corps furent reconnus pour des parasites bactériens. En réalité il s'agit ici d'organismes qui se distinguent sûrement des bactériacées et appartiennent à un groupe spécial, composé de plusieurs espèces. Les unes se développent dans le noyau, dont elles

(1) Recherches sur la digestion intracellulaire. Lille, 1891, p. 53.

remplissent tout le contenu, tandis qu'une autre n'attaque que le nucléole (fig. 11). Le parasite dans son état végétatif présente des formes de cellules allongées fusiformes ou en bâtonnets qui se multiplient par division transversale et donnent parfois des bour-

geons. Arrivés à leur état définitif les parasites se transforment en spores bizarres, rappelant par leur aspect général tantôt des bacilles, tantôt des spirilles (4).

Malgré leur abondance dans des organes aussi précieux que le noyau et le nucléole, les infusoires infectés restent capables de se diviser, quoique l'état d'épuisement dans lequel ils tombent les fasse souvent périr. Lors du processus de division de la paramécie infectée, un certain nombre de parasites s'échappe du contenu nucléaire et par-

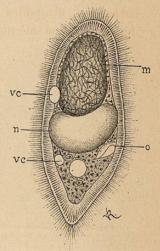


Fig. 11. — Paramécie dont le nucléole est rempli de parasites.

o. Bouche; n. Noyau; m. Nucléole malade; v c. Vésicule contractile.

vient dans le protoplasme de l'infusoire, d'où il est rejeté comme n'importe quel corps avalé et indigeste. En se débarrassant ainsi, à chacune de ses divisions, d'une partie des parasites, la paramécie, placée dans des circonstances exceptionnellement favorables,

⁽¹⁾ Voir le travail de M. Hafkine, fait à mon instigation dans mon laboratoire et publié dans les *Annales de l'Institut Pasteur*, t. IV, 4890, p. 148.

comme dans les expériences de M. Hafkine, produit des générations successives d'infusoires infectés, capables cependant de guérir complètement.

En introduisant des paramécies dans des tubes capillaires contenant des spores de parasite, M. Hafkine n'est jamais parvenu à produire l'infection, parce que

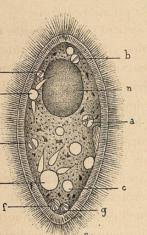


Fig. 12. — Une Paramécie qui a englobé des spores du parasite.

a, b, c, d, e, f, g. Spores entourées par une vacuole; n. noyau; v.c. vésicule contractile.

l'infusoire, qui avalait un certain nombre de spores, les entourait par des vacuoles nutritives (fig. 12, 13), et les rejetait comme n'importe quelle substance excrémentatielle. Il est évidemment nécessaire, pour que la

Fig. 13. — Une Vacuole très grossie, renfermant des spores.

spore puisse germer, qu'elle évite l'action digestive et expulsive du protoplasma de l'infusoire et parvienne à l'intérieur du noyau ou du nucléole, organes incapables de digestion.

Nous voyons donc que dans cet exemple, comme dans la maladie des amibes, le microbe, pour infecter le protozoaire, doit nécessairement lutter contre le pouvoir du protoplasma de rejeter ou de digérer le parasite. Il en est de même dans tous les cas où nous trouvons l'envahisseur logé dans l'intérieur du contenu digestif d'un infusoire.

Parmi les maladies infectieuses de ces protozoaires, le plus grand nombre est sans doute provoqué par le parasitisme d'infusoires suceurs, ou acinétiens, dont j'ai déjà fait mention dans la première leçon.

Malgré la finesse de leur cuticule, ces parasites résistent parfaitement à l'action digestive du contenu de leurs hôtes, dont plusieurs (comme les Stylonychies) se distinguent par leur voracité et la facilité avec laquelle ils digèrent leur proie. Comme nous l'avons déjà mentionné plus haut, les jeunes acinétiens se fixent sur la surface du corps d'autres infusoires et pénètrent dans l'endoplasma de ceux-ci à l'aide de mouvements actifs. Parvenus dans la masse centrale de leurs hôtes les parasites croissent notablement, se divisent et donnent quelquefois un grand nombre (jusqu'à 50 et plus) d'individus jeunes, dont quelquesuns s'échappent du corps de l'infusoire pour en atteindre un autre, après une période de vie libre.

Pour se maintenir dans l'intérieur du protoplasma des infusoires, les acinétiens doivent exercer quelque influence paralysante sur l'action digestive. Il est probable que ces parasites sécrètent quelque substance toxique, parce qu'on a vu souvent divers infusoires tomber dans un état de paralysie et mourir à la suite des attaques des acinétiens libres (1).

⁽¹⁾ Pour le résumé des connaissances actuelles sur les acinétiens, v. Bütschli, Protozoa, dans Bronn's Classen u. Ordnungen des Thier-Reichs, III, 1889, pp. 1823 et 1842.

En végétant dans l'intérieur des infusoires, les acinétiens parasitiques provoquent une dégénérescence du noyau, qui se fragmente en grains ronds. Mais souvent ces parasites n'occasionnent pas la mort de leurs hôtes, qui conservent même leur faculté de se multiplier. Bien plus dangereuses pour les organismes unicellulaires sont les infections produites par les champignons inférieurs du groupe des *Chytridiens*. Seulement ces parasites attaquent le plus souvent les protozoaires, qui ne digèrent point de nourriture solide, mais se nourrissent par voie de diffusion, ou bien

Fig. 14. - Euglène verte, renfermant un Chytridien.

encore les infusoires capables de digestion intracellulaire, mais précisément dans leur état de repos ou kyste, pendant lequel il ne se fait pas de digestion. Les chytridiens intracellulaires pénètrent dans l'intérieur du protozoaire, y prennent la forme d'une cellule ronde, immobile, absorbent la substance de l'hôte, qui finit par mourir, tandis qu'eux-mêmes donnent des zoospores.

Prenons comme exemple le chytridien qui envahit si souvent l'Euglène verte et qui a déjà été découvert par M. Klebs (1). Parmi ces flagellés, qui abondent dans les eaux stagnantes, on rencontre des individus en apparence tout à fait bien portants, qui renferment dans leur contenu un corps rond, muni d'un noyau et

d'une enveloppe très mince (fig. 14). Peu à peu ce corps étranger grandit et se divise en un grand nombre de petites cellules, qui se transforment en zoospores coniques (fig. 15). Les zoospores percent l'eu-

Fig. 15. — Euglène, remplie de zoospores du Chytridien.

glène et s'échappent dans l'eau environnante. Pendant le cours de cette évolution le flagellé présente des signes incontestables de maladie. Les chroma-

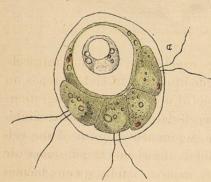


Fig. 16. — Pandorina, dont une cellule est atteinte par un Olpidium.

tophores vertes se résorbent rapidement et l'euglène devient anémique au plus haut degré. Son contenu subit en même temps une dégénéres cence pigmentaire qui s'accuse par la formation de gra-

nulations brunes éparses dont le nombre devient de plus en plus considérable. Après que le parasite a atteint le stade des zoospores, l'euglène périt par suite de cette infection.

L'état de kyste, dans lequel l'euglène verte est en-

⁽¹⁾ Untersuchungen aus d. botan. Institute in Tübingen, t. I, 1883. Voir aussi Hafkine, Annales des sciences naturelles; zoologie, 1886, pp. 330, 336, etc.

veloppée d'une gaine, semble la préserver contre l'attaque du chytridium, car celui-ci ne se trouve que dans les euglènes mobiles. Par contre, les kystes de ce flagellé sont souvent envahis par le *Polyphagus Euglenæ*, représentant d'un autre genre des chytridiacées.

Les flagellés coloniaux sont non moins sujets aux infections, produites également par des chytridiacées.

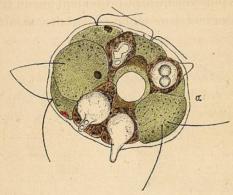


Fig. 17. — Une autre Pandorina avec cinq cellules attaquées.

La Pandorina morum (un représentant des volvocinés) est souvent attaquée par un Olpidium, dont la présence dans l'intérieur du corps du flagellé provoque la sécrétion d'un liquide qui se réunit en une vacuole (fig. 16). La cellule du parasite, petite et transparente, augmente de volume aux dépens de son hôte, et s'imprègne de granulations graisseuses entre lesquelles apparaissent des vacuoles transparentes. Bientôt l'envahisseur pousse un prolongement conique qui perce la cellule de la pandorina (fig. 17, 18) et continue le conduit par lequel s'échappent les zoospores, pro-

duites à la suite d'une segmentation du contenu du parasite. D'autres fois le parasite, sans donner de zoospores, sécrète une enveloppe épaisse et se transformes en kyste.

La cellule envahie subit, comme l'euglène, une dégénérescence pigmentaire et finit toujours par mourir et se déchirer en lambeaux. Par contre, ses alliées, même les plus voisines, ne présentent aucun trouble. Elles conservent leur mobilité parfaite, manifestent

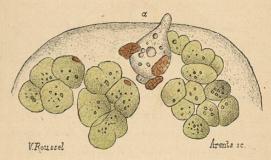


Fig. 18. — Une partie d'une Pandorina atteinte ; et le Zoosporange du parasite a.

la pulsation des vacuoles contractiles et se divisent d'une façon absolument normale (fig. 18). La maladie et la mort d'un et même de la plupart des seize membres de la colonie n'affecte nullement les individus qui ont échappé au parasite.

Cet aperçu des lésions artificielles et des maladies infectieuses des organismes unicellulaires nous montre d'abord l'insuffisance de nos connaissances actuelles sur ces questions. En même temps il nous fournit une base pour apprécier le caractère général de ces phénomènes. Dans ceux qui suivent les lésions c'est surtout la propriété de régénération complète qui nous frappe. Nous avons vu qu'un segment détaché peut acquérir sa forme normale au bout de très peu de temps, quelques heures ou même quelques minutes après la section.

Après ce qui a été dit dans le premier chapitre on peut avancer d'une façon générale que les relations des protozoaires avec les organismes qui les infectent se résument en une lutte entre ces deux êtres vivants. Les parasites ne sont souvent autre chose que des organismes voraces qui, à cause de leurs faibles dimensions, n'attaquent point leur proie directement, mais s'introduisent dans l'intérieur des protozoaires qui leur fournissent la nourriture. Cette étroite parenté des parasites avec des carnassiers s'accuse non seulement chez les acinétiens, mais aussi chez les flagellés parasites, voisins des vampirelles et autres organismes voraces. Seulement, dans les cas d'infection, la lutte se complique et devient de plus en plus indirecte. Le parasite attaque en sécrétant des substances toxiques ou dissolvantes et se défend en paralysant l'action digestive et expulsive de son hôte. Celui-ci exerce une influence nocive sur l'agresseur en le digérant ou l'éliminant de son corps, et se défend lui aussi par les sécrétions dont il s'enveloppe.

Quoique tous ces phénomènes n'entrent point dans le cadre de la lutte pour l'existence dans le sens strictement darwinien (c'est-à-dire de la concurrence entre les individus de la même espèce pour survivre et produire une descendance mieux adaptée), néanmoins ils se rattachent plus ou moins directement à la lutte immédiate entre les représentants des divers groupes d'organismes. Dans cette lutte un rôle important incombe à la digestion intracellulaire, si répandue chez les rhizopodes et les infusoires et qui ne fait même point défaut chez les protozoaires se nourrissant par voie osmotique.