PLASMA CELLS.—By 1901 Unna described the ele-
ments which he called "plasma cells" believing them to be a "new type of granular, connective-tissue ele-
ments" in the tissues of the 3 novelist, particularly in the 3 novelist, and found these elements in the tissues of the 3 novelist and the 3 novelist. Unna's observations were later confirmed by others, notably by Bailey (1904), who found similar elements in the tissues of the 3 novelist and the 3 novelist. Bailey (1904) considered these elements to be a "new type of granular, connective-tissue element" and suggested that they might be responsible for the production of plasma, the fluid in which the plasma was found. Bailey (1904) further suggested that these elements might be responsible for the production of plasma, the fluid in which the plasma was found.

BAILEY (1904) observed that plasma cells were found in the tissues of the 3 novelist and the 3 novelist. Bailey (1904) suggested that these elements might be responsible for the production of plasma, the fluid in which the plasma was found.

PLASMA MALIGNANT MALARIA.—The term "plasma" malaria was first used by Ehrlich (1901) to describe a form of malaria characterized by the presence of large numbers of plasma cells in the circulating blood. Ehrlich (1901) noted that these cells were often located in the liver and spleen, and suggested that they might be responsible for the production of red blood cells. Ehrlich (1901) further suggested that these elements might be responsible for the production of plasma, the fluid in which the plasma was found.

Ehrlich (1901) observed that plasma cells were found in the tissues of the 3 novelist and the 3 novelist. Ehrlich (1901) suggested that these elements might be responsible for the production of plasma, the fluid in which the plasma was found.

Ehrlich (1901) observed that plasma cells were found in the tissues of the 3 novelist and the 3 novelist. Ehrlich (1901) suggested that these elements might be responsible for the production of plasma, the fluid in which the plasma was found.

Ehrlich (1901) observed that plasma cells were found in the tissues of the 3 novelist and the 3 novelist. Ehrlich (1901) suggested that these elements might be responsible for the production of plasma, the fluid in which the plasma was found.
Plasmodium Malariae.

REFERENCE HANDBOOK OF THE MEDICAL SCIENCES

Malaria.

Plasmodium Malariae

...

Phylum:**

...generalized diminishing in number, finally disappear completely. The parasite is small and its assumption with water is

REFERENCE HANDBOOK OF THE MEDICAL SCIENCES

Malaria.

...are shown to have developed the ability to develop in the liver of the animal under study. The parasite is small and its assumption with water is...
The parasites, Fig. 380 (1 to 2), found within the red blood cells (Fig. 380, A and B), are of the genus *Plasmodium*. These organisms, when mature, are characterized by their distinctive crescent shape and are capable of undergoing asexual reproduction within the red blood cells. They are capable of causing malaria in humans and are transmitted by the bite of infected mosquitoes.

The asexual reproductive stages of *Plasmodium* within the red blood cells are illustrated in Fig. 381. The process begins with the invasion of the red blood cell by a single *Plasmodium* parasite, which then undergoes a process of asexual reproduction, resulting in the formation of numerous new parasites within the cell. This process continues until the red blood cell bursts, releasing the mature parasites into the bloodstream, where they can infect other red blood cells and continue the cycle of infection.

The sexual reproductive stages of *Plasmodium* occur within the mosquito, which serves as the vector for the transmission of the parasite. The mature parasites within the red blood cells are ingested by the mosquito during a blood meal, and within the mosquito, they undergo sexual reproduction, resulting in the formation of specialized sexual stages that will eventually be injected into a new human host during the next blood meal. This cycle is essential for the survival and spread of *Plasmodium* and is responsible for the periodicity and periodicity of the clinical manifestations of malaria.

The life cycle of *Plasmodium* is complex and involves both asexual and sexual reproduction stages, which occur within the host and the mosquito, respectively. Understanding the details of this cycle is crucial for the development of effective strategies for the prevention and control of malaria.
Plasmodium falciparum, a flagellated protozoan, is a major cause of malaria, a disease that affects millions of people worldwide. It was first described by Laskey in 1899.

Plasmodium falciparum enters the bloodstream of a human host through the bite of an infected mosquito. Once inside the bloodstream, the parasite migrates to the liver, where it multiplies. The liver then releases new parasites that enter the bloodstream, where they inject their food into red blood cells, causing them to burst open. The released parasites then infect other red blood cells, starting the cycle again.

Reinfection with P. falciparum is common due to the repetitive nature of the cycle. This can lead to severe symptoms, including fever, chills, and vomiting. In untreated cases, the disease can progress to cerebral malaria, which is characterized by neurological symptoms such as seizures and coma.

To combat malaria, researchers are exploring new treatments and vaccines. For example, the drug artemisinin is effective against P. falciparum, and a vaccine candidate that targets the malaria parasite's antigen has shown promise in clinical trials.

In summary, Plasmodium falciparum is a deadly parasite that continues to pose a significant threat to human health. Continued research and development of effective treatments and vaccines are crucial to controlling this devastating disease.