dermal principally from the posterior rays of the skin.

10. Bunanaus, and Su. Semen. They seem to correspond to

the point of origin of the terminal branch of the posterior

dorsal artery. His "long fibres" belong to the direct and

cutaneous nerves of the posterior, and the "short fibres"

to the cutaneous nerves of the anterior. The distribution

of the skin and subcutaneous tissues has been described

in detail by Dr. Clark's correspondence to the third

dorsal nerve. In these regions, the point of origin of the

posterior cutaneous nerves after termination of the cord

appears to be the same as the point of origin of the
dorsal nerves of the anterior. It might be noted that the

fibres described by Dr. Clark's correspondence to the

third dorsal nerve and posterior cutaneous nerves may

be considered as the same fibres, corresponding in their

distribution to the posterior region of the body. They

could be described as the "long fibres" described by Dr.

Clark's correspondence to the third dorsal nerve.

The superficial nerve, however, extends over the entire

surface of the body, and is continuous with the post-

erior cutaneous nerves described by Dr. Clark's corres-

pondence to the third dorsal nerve. It corresponds to

the posterior part of the body, and is continuous with the

posterior cutaneous nerves described by Dr. Clark's

correspondence to the third dorsal nerve. The dermal

fibres described by Dr. Clark's correspondence to the

third dorsal nerve and posterior cutaneous nerves may

be considered as the same fibres, corresponding in their

distribution to the posterior region of the body. They

could be described as the "long fibres" described by Dr.

Clark's correspondence to the third dorsal nerve.

The superficial nerve, however, extends over the entire

surface of the body, and is continuous with the post-

erior cutaneous nerves described by Dr. Clark's corres-

pondence to the third dorsal nerve. It corresponds to

the posterior part of the body, and is continuous with the

posterior cutaneous nerves described by Dr. Clark's

correspondence to the third dorsal nerve. The dermal

fibres described by Dr. Clark's correspondence to the

third dorsal nerve and posterior cutaneous nerves may

be considered as the same fibres, corresponding in their

distribution to the posterior region of the body. They

could be described as the "long fibres" described by Dr.

Clark's correspondence to the third dorsal nerve.
REPRESENTATIVE HANDBOOK OF THE MEDICAL SCIENCES

Spinal Cord.

The spinal cord is the continuation of the spinal column. It is composed of nerve fibers that transmit signals between the brain and the rest of the body. The spinal cord is divided into the cervical, thoracic, and lumbar regions.

REFERENCE HANDBOOK OF THE MEDICAL SCIENCES

- **Spinal Cord.**
 - The spinal cord is the continuation of the spinal column. It is composed of nerve fibers that transmit signals between the brain and the rest of the body. The spinal cord is divided into the cervical, thoracic, and lumbar regions.
 - The spinal cord is connected to the brainstem through the medulla oblongata, which contains the motor and sensory tracts.
 - The spinal cord is protected by the vertebrae and the meninges.

On the Anatomy of the Spinal Cord.

The spinal cord is the continuation of the spinal column. It is composed of nerve fibers that transmit signals between the brain and the rest of the body. The spinal cord is divided into the cervical, thoracic, and lumbar regions.

REFERENCE HANDBOOK OF THE MEDICAL SCIENCES

- **On the Anatomy of the Spinal Cord.**
 - The spinal cord is the continuation of the spinal column. It is composed of nerve fibers that transmit signals between the brain and the rest of the body. The spinal cord is divided into the cervical, thoracic, and lumbar regions.
 - The spinal cord is connected to the brainstem through the medulla oblongata, which contains the motor and sensory tracts.
 - The spinal cord is protected by the vertebrae and the meninges.
The spinal cord is described as having fascicles approaching the surface of the cord. The fascicles have different orientations, with some being direct fascicles and others being indirect fascicles. The orientation of the fascicles varies depending on their distance from the surface of the cord. The fascicles have different directions, and the spinal cord is described as having a complex fascicular arrangement.

The fascicles of the spinal cord are organized into different types, including direct fascicles and indirect fascicles. The direct fascicles are those that extend straight through the cord, while the indirect fascicles are those that have a more oblique orientation. The fascicles are organized into a series of columns, with each column containing a specific type of fascicles. The columns are arranged in a specific order, with the direct fascicles forming the outermost layer and the indirect fascicles forming the innermost layer.

The fascicles are further distinguished by their orientation, with some being parallel to the surface of the cord and others being perpendicular. The fascicles have different thicknesses and are composed of different types of axons. The fascicles also have different functions, with some being involved in motor control and others in sensory processing.

The fascicles of the spinal cord are crucial for the function of the nervous system, as they allow for the transmission of signals between the brain and the rest of the body. The fascicles are organized in a way that allows for efficient and effective communication between different parts of the body, enabling the nervous system to perform a wide range of functions, including movement, sensation, and voluntary control.
Spiral-Cord Diseases, Acute Ascending

Spiral Cord Disease

Do not hallucinate.

REFERENCE HANDBOOK OF THE MEDICAL SCIENCES

of the tegumentum (posterior wall of the spinal cord, and having crossed the region of the ventral horn on the side of the spinal cord to which it is connected, the ventral root leaves the spinal cord by emerging through the foramen magnum and entering the cranial cavity, where it passes through the foramen magnum to reach the brainstem, and finally reaches the posterior part of the spinal cord by passing into the spinal canal through the intervertebral foramina. The ventral roots are formed by the union of the anterior horn cells of the spinal cord with the ventral nerve roots. The ventral roots are the efferent nerves of the spinal cord, and they carry motor impulses from the brainstem to the muscles of the body. The ventral roots are also called the anterior nerve roots. The ventral roots are formed by the union of the anterior horn cells of the spinal cord with the ventral nerve roots. The ventral roots are the efferent nerves of the spinal cord, and they carry motor impulses from the brainstem to the muscles of the body. The ventral roots are also called the anterior nerve roots.