not been determined. Section of the trigeminal on the second day of the disease is almost certain to be the cause of the symptoms in the mouth. Various treatments have been devised for the purpose of relieving the distressing symptoms. Surtax has had some success in relieving the distress in some cases.

F. Stuart Barr.

REFERENCE

PROGRESSIVE PARALYSIS: This condition is often accompanied by symptoms of convulsions and a loss of control over the limbs. It is often confusion and disorientation that are characteristic symptoms of this disease.

REFERENCE

FACIAL HEMIHYPERTRYPHROPH is a term referring to an abnormal condition of one side of the face. The process usually affects the skin, muscles, blood vessels, nerves, and bones. In some cases, the skin may become thick and tough, and it may disfigure the affected area.

REFERENCE

FACIAL HYPERPLASIA refers to an abnormal growth of tissue on the face, which may be caused by various factors such as genetics, hormones, or environmental factors.

REFERENCE

FACIAL HEMIHYPERTRYPHROPH is a term referring to an abnormal condition of one side of the face. The process usually affects the skin, muscles, blood vessels, nerves, and bones. In some cases, the skin may become thick and tough, and it may disfigure the affected area.

REFERENCE

FACIAL HYPERPLASIA refers to an abnormal growth of tissue on the face, which may be caused by various factors such as genetics, hormones, or environmental factors.

REFERENCE

FACIAL HEMIHYPERTRYPHROPH is a term referring to an abnormal condition of one side of the face. The process usually affects the skin, muscles, blood vessels, nerves, and bones. In some cases, the skin may become thick and tough, and it may disfigure the affected area.

REFERENCE

FACIAL HYPERPLASIA refers to an abnormal growth of tissue on the face, which may be caused by various factors such as genetics, hormones, or environmental factors.
arteries which pass through the five pairs of gill arches, the aorta branch into the connective dorsal artery.

The beginning of the anterior end of the filamental gut has been fully described, so that the inner and middle, and lateral and dorsal parts are distinctly visible. The anterior end of the pharynx, with its diverticula, the pharynx, and the gills of the pharynx, are clearly visible in the diagram. The pharynx is subdivided into five parts by the suspensorial septum, from which the five pairs of gill arches are derived. The diverticula of the pharynx are the remnants of the gill arches. The diverticula of the pharynx are the remnants of the gill arches.

The diverticulum of the pharynx is the anterior end of the first arch, and the diverticulum of the gill arches is the anterior end of the second arch. The diverticulum of the pharynx is the anterior end of the pharynx, and the diverticulum of the gill arches is the anterior end of the gill arches.

The diverticulum of the pharynx is the anterior end of the pharynx, and the diverticulum of the gill arches is the anterior end of the gill arches.

The diverticulum of the pharynx is the anterior end of the pharynx, and the diverticulum of the gill arches is the anterior end of the gill arches.

The diverticulum of the pharynx is the anterior end of the pharynx, and the diverticulum of the gill arches is the anterior end of the gill arches.

The diverticulum of the pharynx is the anterior end of the pharynx, and the diverticulum of the gill arches is the anterior end of the gill arches.

Large figures are due to the rapid growth of the brain. The three primary divisions of the brain are more marked and better defined. The frontal lobe, the parietal lobe, and the occipital lobe are more distinctly visible. The neocortex has developed, and the sensory and motor areas are more clearly defined. The primary sensory areas of the cerebral cortex have begun to grow. The sensory cortex forms a thick, well-defined band of nervous tissue. The motor cortex consists of a group of smaller, more compact areas. The motor cortex is where the motor nerves leave the cerebral cortex and enter the spinal cord. The motor nerves control the voluntary muscles.

Large figures are due to the rapid growth of the brain. The three primary divisions of the brain are more marked and better defined. The frontal lobe, the parietal lobe, and the occipital lobe are more distinctly visible. The neocortex has developed, and the sensory and motor areas are more clearly defined. The primary sensory areas of the cerebral cortex have begun to grow. The sensory cortex forms a thick, well-defined band of nervous tissue. The motor cortex consists of a group of smaller, more compact areas. The motor cortex is where the motor nerves leave the cerebral cortex and enter the spinal cord. The motor nerves control the voluntary muscles.

Large figures are due to the rapid growth of the brain. The three primary divisions of the brain are more marked and better defined. The frontal lobe, the parietal lobe, and the occipital lobe are more distinctly visible. The neocortex has developed, and the sensory and motor areas are more clearly defined. The primary sensory areas of the cerebral cortex have begun to grow. The sensory cortex forms a thick, well-defined band of nervous tissue. The motor cortex consists of a group of smaller, more compact areas. The motor cortex is where the motor nerves leave the cerebral cortex and enter the spinal cord. The motor nerves control the voluntary muscles.

Large figures are due to the rapid growth of the brain. The three primary divisions of the brain are more marked and better defined. The frontal lobe, the parietal lobe, and the occipital lobe are more distinctly visible. The neocortex has developed, and the sensory and motor areas are more clearly defined. The primary sensory areas of the cerebral cortex have begun to grow. The sensory cortex forms a thick, well-defined band of nervous tissue. The motor cortex consists of a group of smaller, more compact areas. The motor cortex is where the motor nerves leave the cerebral cortex and enter the spinal cord. The motor nerves control the voluntary muscles.

Large figures are due to the rapid growth of the brain. The three primary divisions of the brain are more marked and better defined. The frontal lobe, the parietal lobe, and the occipital lobe are more distinctly visible. The neocortex has developed, and the sensory and motor areas are more clearly defined. The primary sensory areas of the cerebral cortex have begun to grow. The sensory cortex forms a thick, well-defined band of nervous tissue. The motor cortex consists of a group of smaller, more compact areas. The motor cortex is where the motor nerves leave the cerebral cortex and enter the spinal cord. The motor nerves control the voluntary muscles.

Large figures are due to the rapid growth of the brain. The three primary divisions of the brain are more marked and better defined. The frontal lobe, the parietal lobe, and the occipital lobe are more distinctly visible. The neocortex has developed, and the sensory and motor areas are more clearly defined. The primary sensory areas of the cerebral cortex have begun to grow. The sensory cortex forms a thick, well-defined band of nervous tissue. The motor cortex consists of a group of smaller, more compact areas. The motor cortex is where the motor nerves leave the cerebral cortex and enter the spinal cord. The motor nerves control the voluntary muscles.

Large figures are due to the rapid growth of the brain. The three primary divisions of the brain are more marked and better defined. The frontal lobe, the parietal lobe, and the occipital lobe are more distinctly visible. The neocortex has developed, and the sensory and motor areas are more clearly defined. The primary sensory areas of the cerebral cortex have begun to grow. The sensory cortex forms a thick, well-defined band of nervous tissue. The motor cortex consists of a group of smaller, more compact areas. The motor cortex is where the motor nerves leave the cerebral cortex and enter the spinal cord. The motor nerves control the voluntary muscles.

Large figures are due to the rapid growth of the brain. The three primary divisions of the brain are more marked and better defined. The frontal lobe, the parietal lobe, and the occipital lobe are more distinctly visible. The neocortex has developed, and the sensory and motor areas are more clearly defined. The primary sensory areas of the cerebral cortex have begun to grow. The sensory cortex forms a thick, well-defined band of nervous tissue. The motor cortex consists of a group of smaller, more compact areas. The motor cortex is where the motor nerves leave the cerebral cortex and enter the spinal cord. The motor nerves control the voluntary muscles.

Large figures are due to the rapid growth of the brain. The three primary divisions of the brain are more marked and better defined. The frontal lobe, the parietal lobe, and the occipital lobe are more distinctly visible. The neocortex has developed, and the sensory and motor areas are more clearly defined. The primary sensory areas of the cerebral cortex have begun to grow. The sensory cortex forms a thick, well-defined band of nervous tissue. The motor cortex consists of a group of smaller, more compact areas. The motor cortex is where the motor nerves leave the cerebral cortex and enter the spinal cord. The motor nerves control the voluntary muscles.

Large figures are due to the rapid growth of the brain. The three primary divisions of the brain are more marked and better defined. The frontal lobe, the parietal lobe, and the occipital lobe are more distinctly visible. The neocortex has developed, and the sensory and motor areas are more clearly defined. The primary sensory areas of the cerebral cortex have begun to grow. The sensory cortex forms a thick, well-defined band of nervous tissue. The motor cortex consists of a group of smaller, more compact areas. The motor cortex is where the motor nerves leave the cerebral cortex and enter the spinal cord. The motor nerves control the voluntary muscles.

Large figures are due to the rapid growth of the brain. The three primary divisions of the brain are more marked and better defined. The frontal lobe, the parietal lobe, and the occipital lobe are more distinctly visible. The neocortex has developed, and the sensory and motor areas are more clearly defined. The primary sensory areas of the cerebral cortex have begun to grow. The sensory cortex forms a thick, well-defined band of nervous tissue. The motor cortex consists of a group of smaller, more compact areas. The motor cortex is where the motor nerves leave the cerebral cortex and enter the spinal cord. The motor nerves control the voluntary muscles.

Large figures are due to the rapid growth of the brain. The three primary divisions of the brain are more marked and better defined. The frontal lobe, the parietal lobe, and the occipital lobe are more distinctly visible. The neocortex has developed, and the sensory and motor areas are more clearly defined. The primary sensory areas of the cerebral cortex have begun to grow. The sensory cortex forms a thick, well-defined band of nervous tissue. The motor cortex consists of a group of smaller, more compact areas. The motor cortex is where the motor nerves leave the cerebral cortex and enter the spinal cord. The motor nerves control the voluntary muscles.
a long, narrow tube extending from the hindgut into the unculal fold as far as the cloaca. The wall of this tube is composed of a muscular layer and an inner lining of simple columnar epithelium. The muscular layer is divided into an outer longitudinal layer and an inner circular layer. The inner lining of the tube is thin and consists of a layer of simple columnar epithelium.

The small intestine is the longest part of the alimentary canal, comprising the ileum, the jejunum, and the duodenum. It is responsible for the absorption of nutrients from the chyme. The small intestine is divided into three sections based on the structure and function:

1. Duodenum: The duodenum is the first part of the small intestine and is responsible for the initial absorption of nutrients. It is closely associated with the pancreas and liver, which secrete digestive enzymes and bile into the duodenum.
2. Jejunum: The jejunum is the middle portion of the small intestine and is responsible for the absorption of liquids, vitamins, and minerals. It is characterized by the presence of villi, which increase the surface area for absorption.
3. Ileum: The ileum is the final part of the small intestine and is responsible for the absorption of fats. It is characterized by the presence of fat globules in the chyme, which are absorbed by the villi.

The chyme then enters the large intestine, which is divided into several segments: the cecum, the ascending colon, the transverse colon, the descending colon, and the sigmoid colon. The large intestine is responsible for the final absorption of water and electrolytes from the chyme, as well as the formation of feces. The large intestine is also home to a large number of bacteria, which play an important role in the digestion of complex carbohydrates.

The colon is the main part of the large intestine and is responsible for the storage and transportation of feces to the rectum. The colon is divided into several sections: the ascending colon, the transverse colon, the descending colon, and the sigmoid colon.

The rectum is the final part of the large intestine and is responsible for the storage and expulsion of feces. The rectum is lined with a layer of smooth muscle that contracts to expel feces from the body. The rectum is also responsible for the production of fecal matter from the small intestine.

The anus is the opening at the end of the rectum and is responsible for the expulsion of feces from the body. The anus is lined with a layer of smooth muscle that contracts to expel feces from the body. The anus is also responsible for the production of fecal matter from the small intestine.