foot is the so-called flat foot. This affection, although so common, is still very imperfectly understood and in order to make progress in its treatment, clear, one must contrive the appearance and the functional ability of such a disabled foot is in the normal member.

The foot is supported by ligaments, by the muscles, and by the strong plantar fascia that connects the great toe with the arch of the foot. In the foot, the ligaments bear the greater part of the weight, and their normal elasticity allows the bearing surface to expand as widely as the arches are slightly depressed. If not understood, however, the ligamentous arch is simply flattened by direct pressure and by elongation of elastic ligaments and fascia. Ligaments and fascia are not elastic and they are not, in the normal foot, over-stretched. The change is one of the effect of normal motion in the joints of the foot, by which it is placed in the least favorable attitude for walking and standing.

Of the changes of posture that with the foot used usual passive support from the one that bears no weight, the most significant is the obliteration of the outward curve of the foot in the weight-bearing part of the arch. The foot is, in fact, a lever without a fulcrum, and the lever is depressed, and downward on the outer side of the foot. It is lifted by the inner side of the foot.

The second function of the foot is to raise the body. The weight seeks to bring the body. The weight is supported by the arch of the foot, the head of the arch is the fulcrum, and the lever is the foot, and the weight is the fulcrum.

In the normal foot, the arch is formed by the bones of the foot, the ligaments, and the muscles.

The weight is supported by the arch of the foot, and the flat foot is one in which the arch is lost.

The foot is raised by the action of the muscles, and the weight is supported by the arch of the foot.

In the flat foot, the arch is lost, and the weight is supported by the foot.

The foot is raised by the action of the muscles, and the weight is supported by the arch of the foot.

In the flat foot, the arch is lost, and the weight is supported by the foot.

The foot is raised by the action of the muscles, and the weight is supported by the arch of the foot.

In the flat foot, the arch is lost, and the weight is supported by the foot.

The foot is raised by the action of the muscles, and the weight is supported by the arch of the foot.

In the flat foot, the arch is lost, and the weight is supported by the foot.

The foot is raised by the action of the muscles, and the weight is supported by the arch of the foot.

In the flat foot, the arch is lost, and the weight is supported by the foot.

The foot is raised by the action of the muscles, and the weight is supported by the arch of the foot.

In the flat foot, the arch is lost, and the weight is supported by the foot.

The foot is raised by the action of the muscles, and the weight is supported by the arch of the foot.

In the flat foot, the arch is lost, and the weight is supported by the foot.

The foot is raised by the action of the muscles, and the weight is supported by the arch of the foot.

In the flat foot, the arch is lost, and the weight is supported by the foot.

The foot is raised by the action of the muscles, and the weight is supported by the arch of the foot.

In the flat foot, the arch is lost, and the weight is supported by the foot.

The foot is raised by the action of the muscles, and the weight is supported by the arch of the foot.

In the flat foot, the arch is lost, and the weight is supported by the foot.

The foot is raised by the action of the muscles, and the weight is supported by the arch of the foot.

In the flat foot, the arch is lost, and the weight is supported by the foot.

The foot is raised by the action of the muscles, and the weight is supported by the arch of the foot.

In the flat foot, the arch is lost, and the weight is supported by the foot.

The foot is raised by the action of the muscles, and the weight is supported by the arch of the foot.

In the flat foot, the arch is lost, and the weight is supported by the foot.

The foot is raised by the action of the muscles, and the weight is supported by the arch of the foot.

In the flat foot, the arch is lost, and the weight is supported by the foot.

The foot is raised by the action of the muscles, and the weight is supported by the arch of the foot.

In the flat foot, the arch is lost, and the weight is supported by the foot.

The foot is raised by the action of the muscles, and the weight is supported by the arch of the foot.

In the flat foot, the arch is lost, and the weight is supported by the foot.

The foot is raised by the action of the muscles, and the weight is supported by the arch of the foot.

In the flat foot, the arch is lost, and the weight is supported by the foot.

The foot is raised by the action of the muscles, and the weight is supported by the arch of the foot.
ed point of the arch, which now supports the greatest burden.

In this change of relation between the bones, the arch heightens and the arch web thickens. The arch appears broader than the foot, even normal, even broader than the front of the foot; the heel projection is flat and the arch is depressed and carries a forward arch, from the position of the body and is curved to the rear. The thick skin and the fat pads are present in the lower part of the foot, and the forefoot is at or a little below the ankle joint. The skin of the foot, from above, is thick and more pronounced, and the skin of the foot, from below, is thin and less pronounced.

The foot should be observed as a whole, as the motion of the foot is the result of the motion of the leg, and the entire foot should be observed as a whole, as the motion of the foot is the result of the motion of the entire leg.

The foot should be observed as a whole, as the motion of the foot is the result of the motion of the entire leg, and the entire foot should be observed as a whole, as the motion of the foot is the result of the motion of the entire leg.

The foot should be observed as a whole, as the motion of the foot is the result of the motion of the entire leg, and the entire foot should be observed as a whole, as the motion of the foot is the result of the motion of the entire leg.

The foot should be observed as a whole, as the motion of the foot is the result of the motion of the entire leg, and the entire foot should be observed as a whole, as the motion of the foot is the result of the motion of the entire leg.

The foot should be observed as a whole, as the motion of the foot is the result of the motion of the entire leg, and the entire foot should be observed as a whole, as the motion of the foot is the result of the motion of the entire leg.

The foot should be observed as a whole, as the motion of the foot is the result of the motion of the entire leg, and the entire foot should be observed as a whole, as the motion of the foot is the result of the motion of the entire leg.

The foot should be observed as a whole, as the motion of the foot is the result of the motion of the entire leg, and the entire foot should be observed as a whole, as the motion of the foot is the result of the motion of the entire leg.

The foot should be observed as a whole, as the motion of the foot is the result of the motion of the entire leg, and the entire foot should be observed as a whole, as the motion of the foot is the result of the motion of the entire leg.

The foot should be observed as a whole, as the motion of the foot is the result of the motion of the entire leg, and the entire foot should be observed as a whole, as the motion of the foot is the result of the motion of the entire leg.

The foot should be observed as a whole, as the motion of the foot is the result of the motion of the entire leg, and the entire foot should be observed as a whole, as the motion of the foot is the result of the motion of the entire leg.
If this slight constancy is replaced by a noticeable convexity when weight is borne, the foot is weak. This change in contour is the earliest and sometimes the only evidence of deformity. The arch of the foot properly positioned may be assumed to be a proper attitude of a foot slightly under weight; there is a slight concavity only, as the sole is thrown more to the inner side of the malleolus line, and if the depression is marked it shows weakness.

Foot. Foot.

The Range of Motion.—The range of motion is next to consider. Weakness of the foot is indicated by limitation in the range of motion. The normal range of motion varies somewhat within normal limits; it is usually greater in childhood than in adult life, greater in the slower than in the active foot, and greater in the foot used properly than in one that is first. The test is applied to simple dorsal and planar flexion: the leg must be fully extended at the knee, the line of strain must be in its normal relation so that the foot is neither abducted nor adducted, and the obliquity of the knee is reduced to that of the true knee angle. The patient should be able to flex the right angle and extend it from forty to fifty degrees beyond the right angle, the range of motion being from forty to fifty to sixty degrees by far the most important test, however, is that of adduction or abduction of the foot. The foot is placed in the natural position of standing or walking. With the leg extended as before, the foot is turned inward as far as possible. The avulsion of its inner border (supination) and the turning in of the heel are shown in the accompanying figure. The actual range of abduction is somewhat difficult to measure, but it is about thirty degrees (Fig. 321). Even the usual and early cases of weak foot usually show some limitation of this most important motion, and in many instances it is completely lost. The pause in the action of the leg is the effort to adduct the foot. The loss of abduction or contralateral movement is evidenced by the extension and abduction of the foot, as the arch is increased. The test of adduction is made as in the former test, except that the foot is placed in the position of standing and walking.

2. The foot which, because of laxity of ligaments or insufficient muscular support, is forced by the weight of the body into an attitude of deformity. The foot when in use falls into an abnormal attitude of abduction in its relation to the shank and in its relation to the leg. In this class, the strength of ligaments allows a depression of that arch, as shown by the imprints left in other positions, although the arch remains constant. This is the flat foot, which shows typical deformity under use and in which the range of voluntary motion is somewhat limited in its depression of plantar motion and abduction. The class of forced motion causes discomfort and pain, showing a certain permanent accommodative change in structure which is not apparent when the foot is not in use. In these slightly greater degrees of disability, the improper use of the foot, the loss of active leverage ("spring") is very evident when examined.

3. The foot which presents typical and permanent deformity, whether it is in use or not, and in which the range of both voluntary and passive motion is much restricted. This limitation of motion is an adaptation to structure to the habitual functional use and to the disability. Such changes are first apparent in the muscle and ligaments; in more advanced cases, the articular surfaces of the bones are altered to accommodate the limitation. Added to this underlying limitation of motion there is a limited and circumscribed degree of voluntary and conscious use in the degree with the local congestion, irritation, and inflammation of the joints and tissues. In the quiescent week it may be slight, but on renewed injury or overwork of the weak structure it again appears. It depends also upon the irritative condition of the overworked and contracted abductor muscles, particularly the group that retains functional power. Thus the spasm, which has been stated in describing the static and partial type of weak foot, is greater after the day’s use and recedes somewhat during the night. The degree of a normal span and rigidity varies with the intensity of the
also, although inverted upon the presented as calcic, is, of course, not phasic-faceted nor is the anterior phalanx under stress. The entire foot is solely held in an attitude of extreme adduction and slight hyperextension by the action of the muscles and is liable to the consequent strain and to be brought to the side of the ground. Such extreme cases are uncommon. They are often the result of injury ("crisper sprain"), and when the deformity is reduced the arch will be found to be exaggerated in depth. Less extreme types of this class are more common, and the deformity is found to be in the most important disability of the weak foot is due to the change from the normal relation between the leg and the foot (valgus) and not to the depression of the arch, which is, in most instances, a secondary deformity.

Milton S. Pinto—As has been stated already and as is well known, there is a type of painless deformity sometimes called post-polio. To the type the term flat foot may be properly applied because the Batson's the foot is of course more noticeable than the other components of the deformity that have been described. This clause is probably the effect of added laterality of the foot or of the foot to become a normal arch was never present. Such a foot controlled under a strong and servile, and it is nevertheless deform. It is doubtful if its presence ever could attain the accent and salutation of pain possible under normal conditions. It is said that a few arches may be normal in some cases, for example the Negro, but it is certain that the American Negro is not exempt from the pain and disability incident to the broken arch, whether his arch was originally low or not. It is evident that the breaking down of a properly developed arch is always attended by greater pain and disability than one in which the arch was originally low and of which the tendencies weak, because it is during the progression of the deformity, and particularly in its early stages, that such sympotoms are most prominent. When the bones of the arch foot upon the ground or when final stability has become assured, pain may cease, and permanent accommodation to the new condition will lessen the liability of the deformed member. Such an adaptation might perhaps be quickly accomplished in the case of the foot which is not only, while the other is in the normal stance, through resting from time to time, might continue during the life of the sufferer.

Weak Foot in Children—There can be no doubt that in many instances the origin of the weak foot may be traced to early deformity. For this reason, the type of foot is not proper attitudes are very common at this period and it is much more likely that they are found than seen. Actual pain from the weak foot is unusual at this age. The child may complain of fatigue and may be weak and awkward, but there is little evidence of any very severe deformity, nor are there any symptoms, that advice as to the use of the foot nor the ease of the first importance. ca.

FIG. 210.—Adduction of the great toe. (Same foot as in Fig. 179.)

In these cases, as in every case, the habitual attitude and use of the foot are of the first importance. ca.

FIG. 211.—Flat Foot in Early Childhood.

In older children prominent or "outgoing" toes often affect the mother's attention; the child may be helped by the insertion of a toes below the point of purchase and is normally in the habit of the foot. In old words, this account is founded upon the errors of the foot, the malady may strike against another mother, "incontinence," and thus there is an uncontrollable progress of the projecting bones from local irritation.

Another type is the long slender foot in which the shapehead bone is prominent because of the strain and pressure upon it by the improper attitude, its position is often shown by the point of wear in the border of the shoe. In the weak foot of childhood, although restriction of voluntary and passive motion may be present, there are, as a rule, but little local tenderness and muscular spasm, and as has been stated, but little pain. This may be due to the nature of the shoe, it being usual for the weak foot in childhood foot subjected to any deformity, and the friction of the increase weight of the body. There is another important theory of the deformity, which is that the weak foot is the result of an effect of the weight of the body upon the arch of the foot, and the condition is known as "flat-footedness." The condition is usual for the weak foot may be the only disability. In childhood, on the other hand, a weak foot is very often a local lesion of general weakness and loss of tone.

The direct effects of the weak and painful foot have been described in detail. It must be borne in mind that the foot are the foundation of the body, and that the more accurate foundation affects the entire mechanism. General functional weakness and awkwardness, the flatness, are the result and not the cause of the deformity. The "lifestyle" of that may be observed as accompaniments or effects of weak foot. And, further, the condition of any form of postural weakness in childhood must include the treatment of the foot as well.

The proper shoe should be extended to the condition of the limb by dislocation of the feet and the weight and attitude of the body. The foot may be weakened by injury or disease; it may be overcompensated by the body weight, or overcompensated by the condition of the foot may be simply one lesion of general bodily weakness. It may be possible to vary the various factors that singly or combined lead to this deformity.

It may be stated, however, that the painful weak foot as seen in adult life is far less frequent than the same injuries are on the foot that the toes are under and on the foot that has been already mentioned. The usual correction to apply to the top of the shoe is to place the foot in a position of fullest extension and to rest upon the toes. As such a correction is an evidence of weakness and is hardly necessary to make a radical distinction between the two.

In the case of the foot, the condition which the patient is very often a local lesion of general weakness and loss of tone, the condition is known as "flat-footedness." The condition is usually assumed at years of discretion. In this regard, the foot suffers more than a woman's, who does more than a man. The girl who may have worn comparatively harmless shoes until the age of ten years or therewith changes suddenly to the high heel and narrow sole and the process of discretion begins, the amount of distortion and the degree of dependence on the matter of work required of the foot, and the girl with whom is associated it is possible that, in the case of the foot, the condition is known as "flat-footedness." The condition is usually assumed at years of discretion. In this regard, the foot suffers more than a woman's, who does more than a man. The girl who may have worn comparatively harmless shoes until the age of ten years or therewith changes suddenly to the high heel and narrow sole and the process of discretion begins, the amount of distortion and the degree of dependence on the matter of work required of the foot, and the girl with whom is associated it is possible that, in the case of the foot, the condition is known as "flat-footedness." The condition is usually assumed at years of discretion. In this regard, the foot suffers more than a woman's, who does more than a man. The girl who may have worn comparatively harmless shoes until the age of ten years or therewith changes suddenly to the high heel and narrow sole and the process of discretion begins, the amount of distortion and the degree of dependence on the matter of work required of the foot, and the girl with whom is associated it is possible that, in the case of the foot, the condition is known as "flat-footedness." The condition is usually assumed at years of discretion. In this regard, the foot suffers more than a woman's, who does more than a man. The girl who may have worn comparatively harmless shoes until the age of ten years or therewith changes suddenly to the high heel and narrow sole and the process of discretion begins, the amount of distortion and the degree of dependence on the matter of work required of the foot, and the girl with whom is associated it is possible that, in the case of the foot, the condition is known as "flat-footedness." The condition is usually assumed at years of discretion. In this regard, the foot suffers more than a woman's, who does more than a man. The girl who may have worn comparatively harmless shoes until the age of ten years or therewith changes suddenly to the high heel and narrow sole and the process of discretion begins, the amount of distortion and the degree of dependence on the matter of work required of the foot, and the girl with whom is associated it is possible that, in the case of the foot, the condition is known as "flat-footedness." The condition is usually assumed at years of discretion. In this regard, the foot suffers more than a woman's, who does more than a man. The girl who may have worn comparatively harmless shoes until the age of ten years or therewith changes suddenly to the high heel and narrow sole and the process of discretion begins, the amount of distortion and the degree of dependence on the matter of work required of the foot, and the girl with whom is associated it is possible that, in the case of the foot, the condition is known as "flat-footedness." The condition is usually assumed at years of discretion. In this regard, the foot suffers more than a woman's, who does more than a man.
show the weight as far as possible on the outer border of the sole of the shoe. The significance of the bulging sole of the shoe in the prevention of deformity has been pointed out to him and how this may be prevented by inclining the weight to the outer side of the foot and by adding the support of the outer border of the shoe to the pressure of the bunion in the case of severe cases by fully extending the big and nipping the head of the first metatarsal bone from time to time. Finally, he must avoid unnecessary movements and shifting of the foot in all instances in order to maintain the healthy condition of the foot. Hence, while he is still under the care of the medical officer, he must be in the habit of walking with his toes pointed forward and placing his heels opposite to the center of the plantar surface of the foot under the first metatarsal bone in order to strengthen the arch of the foot, to accommodate the foot to the shoe, and to strengthen the arches and plantar flexion; thus the foot should be extended, abducted, and supinated over and over again at every opportunity. Tiptoe exercises should always be practiced, particularly the action of the plantar flexors, because the plantar flexor muscles, parallel to another, or better in forward motion, raise the body on the toes from twenty to one hundred times and at the same time fully extending the knee, resting in the intervals on the outer borders of the foot. The best of all exercises is, however, the proper walk, in which case the leverage power of the foot is employed and the position of the leg at all times is actively maintained.

Treatment by massage and special gymnastic exercises is, of course, necessary, if the patient cannot command it, but it is not so necessary as is necessary in cases of genu valgum, because one cannot command the aid of the patient.

The best material support for the weak foot is the nature of the deformity that is to be prevented must be borne in mind. The required flat, for example, is not a direct breaking down of the arch, as is usually taught, but a lateral deviation and sinking—a true valgus deformity, for the purpose of preventing deformity; it may be practically anything but a composite deformity, as has already been described. Thus a brace to be efficient must hold the foot laterally as well as support the arch. In fact, as has been stated, the prevention of


cut to 1290x836.0

[Image 0x0 to 1290x836]