L'orsqu'on tue une grenouille par décapitation, la contractilité musculaire peut être mise en évidence par les excitations galvaniques pendant assez longtemps, pendant plusieurs jours, quand la température est basse. Il en est de même de l'irritabilité nerveuse.

Quand on empoisonne une grenouille par le curare, nous avons vu que l'irritabilité nerveuse disparaît tout de suite. Il n'en est pas de même de la contractilité musculaire; vous venez de le voir; je dois ajouter que, dans ce cas, les muscles conservent pendant un temps plus long la propriété de se contracter.

Le curare qui anéantit l'action nerveuse sur les muscles, conserve au contraire plus longtemps la contractilité musculaire. Preuve que ce sont là deux actes bien distincts.

Bien que cette expérience, répétée souvent, nous ait toujours donné les mêmes résultats, savoir, l'augmentation de l'irritabilité musculaire après l'empoisonnement par le curare, on pourrait objecter à nos conclusions que l'inégale excitabilité des grenouilles peut avoir été la cause de la conservation de la contractilité musculaire que nous attribuons à l'action du curare.

Pour nous mettre à l'abri de cette cause d'erreur, nous avons lié sur une grenouille les vaisseaux qui se rendaient à l'une des pattes postérieures; après quoi, nous l'avons empoisonnée avec le curare. L'expérience était la même; seulement le membre lié représentait la grenouille morte par décapitation; l'autre, l'animal empoisonné. Ce que nous avions observé sur

deux grenouilles envisagées séparément, nous l'avons réalisée sur la même. Nos conclusions étaient donc parfaitement légitimes, ainsi que nous allons le voir par les expériences faites il y a déjà longtemps, et que je vais vous rapporter.

Expérience. — Sur une première grenouille, le 6 décembre 1854, on fait la ligature de la veine et de l'artère crurales droites; après quoi, on fait une plaie à la peau du dos, par laquelle on introduit un fragment de curare. Cette opération fut faite à deux heures cinq minutes, et, à deux heures vingt minutes, l'animal est complétement immobile. Quand on lui pince la peau du corps, celle des deux pattes antérieures, celle de la patte droite postérieure, et la patte postérieure gauche, dont les vaisseaux ont été liés, il y a des mouvements réflexes, et l'animal retire ce membre. Mais on remarque, quand on pince la patte antérieure, que la patte dont les vaisseaux sont liés remue seule.

A deux heures et demie, l'animal est dans le même état, et les mouvements réflexes de la patte postérieure deviennent plus évidents quand on l'a laissée reposer pendant quelque temps.

A deux heures quarante minutes, si l'on pince d'abord la patte postérieure intacte, les autres ne remuent pas; mais si l'on pince une patte antérieure, la patte postérieure opérée se meut.

Quand, après quelque temps de repos, on imprime un mouvement à l'assiette sur laquelle se trouve la grenouille, cet ébranlement produit des mouvements dans la patte qui a été opérée. Mais, si aussitôt on remue de nouveau l'assiette, le phénomène n'a plus lieu. Enfin, on laisse reposer la grenouille un quart d'heure, et quand on pince la patte postérieure intacte, l'autre, dont les vaisseaux sont liés, remue. Il en est de même lorsqu'on pince les pattes antérieures.

Après avoir observé ainsi tous ces phénomènes, qui montrent, comme nous le verrons, que les nerfs moteurs seuls sont affectés et les sensitifs conservés, on laissa la grenouille dans l'assiette jusqu'au lendemain. Elle était placée sous une cloche pour empêcher son desséchement par évaporation, la température était de 8 à 10 degrés.

Le 7 décembre, à onze heures du matin, et à deux heures et demie du soir, en pinçant la patte dont les vaisseaux sont liés, on y observe des mouvements réflexes. On laisse la grenouille dans les mêmes conditions que la veille.

Le 8 décembre, quand on pince un membre quelconque, il ne se produit plus d'action réflexe; ces mouvements ont partout disparu. Mais en galvanisant les deux membres antérieurs, sans enlever la peau, on obtient des contractions énergiques. En galvanisant le membre postérieur intact, on a également des contractions énergiques; tandis que, l'orsqu'on galvanise, avec le même courant de la pince électrique, le membre dont les vaisseaux ont été liés, les contractions sont relativement beaucoup plus faibles.

Le 9 décembre, en galvanisant les quatre membres de la grenouille sans enlever la peau, on obtient des contractions dans tous, excepté dans celui dont les vaisseaux sont liés. D'où il résulte que les contractions sont encore très-fortes dans les trois membres dont les muscles ont été empoisonnés par le curare, tandis qu'elles ne sont plus sensibles dans les muscles que le curare n'a pas atteints, en raison de la ligature des vaisseaux.

Le 10, les phénomènes sont toujours les mêmes.

Le 11, de même: les trois membres empoisonnés se contractent, tandis que, dans le quatrième, il n'y a pas de contraction sensible.

Le 12, même état; seulement les contractions, dans les membres, sont moins intenses : le cœur battait toujours.

Pendant trois jours, la grenouille n'est pas observée. Le 15, la grenouille, qui était d'abord d'une couleur noirâtre, est devenue verte, et il y avait une espèce de roideur cadavérique qui avait succédé à la résolution des membres qui existait précédemment. Cette roideur est plus forte dans les membres antérieurs.

On écorche alors la grenouille, et l'on remarque que les muscles de la patte liée sont un peu plus roses, ce qui tient probablement à la ligature des vaisseaux. En galvanisant les muscles mis à nu dans les trois membres empoisonnés, il y a encore de faibles contractions fibrillaires, particulièrement dans les muscles postérieurs et intérieurs de la cuisse. Il y a dans les membres des muscles qui perdent plus rapidement leur contractilité que les autres, et, quand il faut comparer, on doit toujours agir sur les mêmes muscles. Il n'y a plus de contraction du tout dans les muscles non

empoisonnés. Ce qui prouve que c'est bien au poison qu'est due cette persistance, c'est que, dans le membre lié, les muscles sont contractiles au-dessus de la ligature et ne le sont pas au-dessous. Le cœur ne bat plus; l'oreillette est gorgée de sang.

Le 16, la contractilité persiste encore dans le gastrocnémien et dans le muscle droit antérieur de la cuisse du membre postérieur où les vaisseaux n'avaient pas été liés.

On cesse d'observer la grenouille.

Nous voyons, d'après cette expérience, qu'au bout de dix jours, il y avait encore des contractions dans les muscles empoisonnés, tandis qu'au bout de trois ou quatre jours la contractilité avait déjà complètement disparu dans le membre où le curare n'avait pas agi, puisque la ligature l'avait empêché d'y pénétrer. - On voit donc clairement, par cette expérience, que l'action du curare augmente la persistance de la contractilité musculaire.

Expérience. — Le 6 décembre 1854, sur une seconde grenouille, on isole le nerf sciatique N; on passe au-dessous un fil, avec lequel on lie le membre en entier par-dessus la peau (fig. 22). Le nerf se trouve ainsi isolé et en dehors de la ligature.

A deux heures vingt minutes, on introduit un fragment de curare par une incision I faite à la peau du dos: peu à peu la grenouille ressent les effets du poison. Quand on lui pince la patte liée, elle la remue; quand on pince une patte antérieure, elle remue également le membre lié. La grenouille devient peu à peu

insensible dans les trois membres intacts, c'est-à-dire que, lorsqu'on pince ses pattes, elle ne remue pas; mais il en résulte des mouvements dans la patte liée.

A deux heures et demie, on a les mêmes phénomè-

nes; à deux heures quarante minutes, quand on pince la patte postérieure intacte, aucun mouvement ne se manifeste. Mais quand on pince les pattes antérieures, on a des mouvements dans la patte postérieure liée.

Au bout d'un certain temps de repos, lorsqu'on pince la patte postérieure intacte, on observe des mouvements dans la patte postérieure liée; - quand on remue la plaque de liège sur laquelle la grenouille est fixée, il survient des mou-



vements dans la patte liée. On observe alors une différence de teinte singulière dans la peau de la grenouille: la peau de la patte liée est d'une couleur plus claire que celle du reste du corps.

On laisse alors reposer la grenouille pendant un quart d'heure, et après ce temps, quand on vient à pincer successivement les trois pattes empoisonnées, on a toujours des mouvements dans la patte liée, non potson lui-même, ou bien la possibilit sènnosioqme Le 7 décembre, à onze heures du matin, il n'y a plus de mouvements dans la patte liée quand on pince les autres. On découvre les muscles du mollet sur les membres postérieurs droit et gauche; on excite par la pince électrique, et on constate une contraction trèsévidente et à peu près égale dans les deux membres.

On conserve la grenouille dans une assiette, sous une cloche, dans l'amphithéâtre; la température est de 8 à 10 degrés.

Le 8 décembre, les muscles des mollets sont contractiles; mais les muscles du côté de la patte liée le sont plus faiblement que ceux du côté où le curare a agi.

Le 9 décembre, le muscle du mollet de la patte liée n'est plus excitable au courant électrique; l'autre réagit très-énergiquement encore sous un courant de nême intensité.

Le 10, les mêmes phénomènes continuent.

Le 11, également; — le 12, la contractilité du membre empoisonné existe encore, mais saible.

Le 15, toute trace de contractilité a disparu.

Nous voyons, dans cette expérience, le même résultat qui s'est produit sur une grenouille un peu moins vivace: la contractilité a duré pendant six jours dans le membre empoisonné, tandis qu'au bout de trois jours elle avait disparu dans le membre non empoisonné.

Quelle pourrait être la cause de cette durée plus considérable de la contractilité musculaire dans les muscles empoisonnés par le curare? Est-ce l'effet du poison lui-même, ou bien la possibilité qu'ont ces muscles de recevoir encore du sang, grâce à la persistance des battements du cœur, et à la possibilité, peutêtre, de la respiration cutanée de ces animaux? Car ici les muscles non empoisonnés ne recevaient plus de sang, tandis que les autres continuaient à en recevoir.

Pour examiner cette question, nous avons fait l'expérience suivante:

Expérience. — Le 6 décembre 1854, on lie encore la patte postérieure gauche d'une grenouille, sauf le nerf. L'animal est empoisonné par le curare.

Le 7, l'animal ayant été conservé, comme les autres, sous une cloche et à la même température, on découvre les muscles des mollets dans les deux membres. On constate qu'il y a des contractions énergiques des deux côtés.

Le 8, les muscles sont encore contractiles dans les deux membres, mais plus faiblement dans le membre lié que dans l'autre.

Le 9, mouvements énergiques dans la patte empoisonnée, mouvements à peine sensibles dans la patte préservée.

Le 10, mouvements énergiques dans la patte empoisonnée, absence complète de contractions dans la patte liée.

On découvre le cœur, qui bat encore; on l'enlève, de manière à empêcher la circulation dans les muscles.

Le lendemain 11, il n'y a plus de contractions du tout, ni dans le membre empoisonné ni dans l'autre. Il semble donc que, dans cette expérience, l'ablation du cœur, en empêchant le sang d'aller dans les muscles, ait fait cesser leur contractilité, puisque, dans les expériences précédentes, nous avons vu la contractilité durer une fois plus dans les muscles empoisonnés que dans les muscles non empoisonnés. Ici, il n'en a pas été de même, puisque, dès le lendemain, la contractilité musculaire a disparu après l'ablation du cœur.

Il semblerait donc résulter de là que le curare conserverait la contractilité musculaire en conservant plus longtemps les mouvements du cœur. Toutefois, nous verrons plus tard si cette cause est la seule.

Nous avons encore fait une dernière expérience, pour savoir si la destruction des centres nerveux avait une influence sur la durée de la contractilité.

Expérience.— Le 6 décembre 1854, on détruit une partie de la moelle épinière à une grenouille.

Le 10, on s'aperçoit que la moelle épinière n'est pas complétement détruite. — On la détruit alors complétement.

Le 12, les muscles sont encore contractiles sous l'influence du galvanisme.

Le 15, ils le sont encore, mais surtout dans les membres postérieurs; les contractions ont à peu près disparu dans les membres antérieurs.

Il faudra répéter cette expérience pour être autorisé à en tirer des conclusions nettes.

Sous l'influence du curare, il y a donc abolition de toute manifestation nerveuse.

Il y aura cependant lieu, dans cet anéantissement

fonctionel, de distinguer deux effets bien différents, et qui ne se produisent pas en même temps. L'innervation n'est pas détruite en masse.

La motilité et la sensibilité ne disparaissent pas toujours en même temps. Mais comme la manifestation des phénomènes nerveux ne peut pas être comprise sans l'exercice des deux ordres des nerfs, il en résulte que l'animal se trouvera privé de toute manifestation nerveuse dans les deux cas. Ainsi, bien que le résultat soit identique, le mécanisme est différent et du plus haut intérêt à déterminer pour le physiologiste.

Nous entrerons dans l'examen de cette question dans une des prochaines leçons. Mais avant nous devons chercher par quelle voie et par quel mécanisme le curare peut être porté à agir sur le système nerveux.

les muscles, in par action directe sur les neris moteurs, in par action réliexe sur les neris sensitis, bien que les muscles aient conserve toutes leurs propriétés.

Aujourd'hui, nous étudierons le mécanisme de cette action générale du curare.

Je vous ai du, mais sans vous en donner la démoissiration expérimentale, que la mort u est pas nécessairement la conséquence de l'action du curare, que, dans le cas où la dose n'a pas été sensante pour tuer, les effets produits ont semblé se rapprocher de ceux que l'on obtient avec l'etner ou le chloroforme : ce sont, au premier abord, des effets d'anesthésie.

Voici un lapin, de 2 kilogrammes environ, dans la veine jugulaire du uel nous introdussons, avec une pipette, 1/4 de centimètre cube de notre solution faible pette, 1/4 de centimètre cube de notre solution faible