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William Hamilton, Maxwell, Hertz, and others, but above
all by that brilliant young French physicist, Augustin
Jean Fresnel. It was he that put the truth of the wave-
theory of light beyond further question by his celebrated
experimentum cructs,in which he obtained total interference
of luminous rays both by reflection and refraction.

CHAPTER VIIL
BEATS AND BEAT-TONES.

N our last lecture we dealt with vibrations that are so
related to each other that their resultant effect is
either resonance or total interference. We found that
when two sounds are in unison, and in the same phase,
they tend to reinforce each other; and that when the
same sounds are in opposite phases, —their intensity being
equal, — one cancels the other, and silence is the result
Under these conditions we discovered that the result must
always be either augmentation or annihilation of sound, —
no other result being possible.

It is, however, comparatively seldom that we deal with
two sounds that are exactly in unison. We are- more
frequently called upon to consider notes whose rates of
vibration differ from each other by a greater or less
amount. What, then, is the result, when two notes differ-
ing more or less from each other in pitch are sounded
simultaneously? This question—one that is of special
interest to musicians — I shall endeavor to answer in to-
day’s lecture. What we have learned about resonance and
interference has paved the way for our work to-day, — for
the discussion, namely, of what we shall, after Koenig,
designate as beats and beat-tones.

Before you are the two C forks used in our last lecture.
T damp one of them by attaching a small pellet of wax to”
one of its prongs. On exciting it with the bow, you per-
ceive that it gives a slightly lower note than it did before.
The extra load it has to carry retards its motion, and it
executes, in consequence, a smaller number of vibrations
than previously, and a smaller number, too, than is made
by its unencumbered companion.
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If now both forks are sounded simultaneously, what will
be the result? Something entirely different,
apparently, from what was considered in our
last lecture, and, yet, as we shall see, some-
thing closely related to the phenomena then
discussed. You hear peculiar risings and
fallings of sound, peculiar throbbing notes,
disclosing an augmentation of sound resem-
bling resonance, and a diminution that ap-
proaches interference. This, in fact, is what
we actually have, — alternate conditions of
resonance and of total interference. As,
however, the totality of interference lasts but
a very small fraction of a second, the sound
seems to be continuous and to vary only in
intensity.

That extinction of sound actually occurs,
can be demonstrated in various ways. For
the present, however, we shall simply con-
sider the phenomena in the light of sinuous
curves representing the sounds produced.
As before, we shall call the two forks A and
B. Suppose now that A, which we shall
consider as the loaded fork, makes eight vi-
brations, while B executes nine. The differ-
ence in their frequencies, as a matter of fact,
is not so great; but this is immaterial. View-
ing them as vibrating in the ratio of 8: 9, we
construct their curves accordingly. Let the
light continuous curve (Fig. 140) represent

the condensations and rarefactions origi-
nated at the fork A, and the dotted curve
those proceeding from B. By combining

these two curves, as in previous instances,

and remembeting that the perpendiculars of

FIG. 140. the resultant curve are always equivalent to
the algebraic sum of those of its constituents,

we have as a resultant in this case the curve a, b, ¢, d, e, f.
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g, h. In the figure we notice that the two systems of
waves commence and terminate at the same points.
Hence, at'a, b, ¢, d, e, f, g, h, the crests and troughs
will be correspondingly larger. At M, however, crest
meets trough, and at this particular point there can be
no disturbance.

Translated into the language of sound, these curves
signify that when waves of condensation concur, resonance
is the result, and that when condensation meets rarefaction,
silence ensues. Between the points of maximum reso-
nance and total interference, — that is, between A and M,
—there is a gradual diminution of sound; and between
the positions of interference and greatest resonance — that
is, between M and b — there is a corresponding augmen-
tation. Hence the alternate risings and fallings of sound
that are heard when two forks, such as A and B, are
sounded together after their unison has been disturbed by
so loading one of them as to lower slightly its frequency.
Such alterations in the loudness of sounds are called beats,
and, as we shall see, are of the utmost importance in
acoustics, as well as in music.

When the frequencies of two notes differ from each
other by one vibration, there is one alteration of intensity,
and, consequently, one beat per second. If two notes
differ from each other by two vibrations there will be two
risings and sinkings, and, therefore, two beats per second.
And, in general, the number of beats per second arising
from two notes near unison, sounding at the same time, is
equal to the difference of their frequencies.

Let us now apply this knowledge to the determination
of the frequency of the loaded fork A. Unencumbered, it
executes exactly 512 vibrations per second, as does also its
companion B. Loaded, its vibration is something less. Let
us see how much. Exciting A and B simultaneously, you
hear the same loud distinct beats that were perceived in
our previons experiment. Watch in hand, I count the
number of beats heard in ten seconds. The number is
twenty, and the number of beats for one second is, there-
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fore, two. Subtracting this from 512, we have 510 as the
frequency of the fork A as now loaded.

By means of a little wax, a small coin is attached to the
fork A. It is thus damped still more. The number of
beats audible per second is greater than before. Obser-
vation shows that we have thirty-five beats in ten sec-
onds, and, consequently, three and a half in one second.
The frequency of the fork A is now reduced to 508.5
vibrations.

Loading the fork A still more, the intervals of reinforce-
ment and diminution succeed ecach other more rapidly,
until finally the beats become so numerous that it is
impossible to count them directly. We now become con-
scious of an unpleasant sensation, which musicians call
discord. When two sounds near the middle of the scale

give rise to thirty-three beats per second, the discord that
ensues is, according to Helmholtz, at a maximum.
But tuning-forks are not our only means of exhibiting’

the phenomenon of beats. Any two sonorous bodies will,
if slightly out of unison, manifest the same alterations in
intensity when caused to sound simultaneously.

Let us try these two large open organ-pipes. They are
now in unison, each emitting the note C,. By moving
downward the slider at the top of one of them, we
diminish the length of the vibrating column of air, and at
the same time change the pitch of the note emitted. On
causing the two pipes to speak, you at once hear, as in the
case of the dissonant tuning-forks, loud and very marked
beats. .If we move the slider upwards the beats succeed
each other less frequently, until, finally, when the two pipes
sound in unison, they disappear altogether.

We can, however, cause them to break forth again,
without touching the slider. It is sufficient to bring the
finger near the embouchure of one of the pipes, thus
lowering its note, to evoke slow or rapid beats at will.
The number of beats, in this case, will depend on how
much the embouchure of the pipe is covered. Similarly,
by placing the hand on the top of the pipe, and covering
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it more or less, we may lower the note, and thereby obtain
beats of varying degrees .of rapidity.

By means of the pipes furnished with manometric cap-
sules used in our last lecture (Fig. 135), we can observe
with the eye the character of these beat-producing tones.
To this end, we connect the capsules of the two pipes to
the same jet, and ignite the gas that is caused to issue from
it. So long as the notes from the pipes are in unison, the
flame is quiescent. But no sooner is unison disturbed by
moving the slider of one of the pipes, or by putting the
finger before the embouchure, than we have beats that
cause the flame to dance in time with them. If the beats
follow each other quickly, the flame dances with corre-
sponding rapidity. If the beats are slow, as is the case
when the two notes are near unison, the flame at once
declares the fact.

If now the cubical mirror before the flame be rotated, we

have an elongated image of the flame that exhibits most

beautifully its intermittent action, and pictures clearly the
alternations of resonance and interference. The luminous
band seen in the mirror reminds us of the resultant curve
given in Fig. 140; the serrated parts of the band correspond
to the crests and troughs of the curve, and indicate greater
or less coalescence and reinforcement of sound, while the
continuous portion of the luminous ribbon, like the middle
part, M, of the curve, is certain evidence of total interference.

A very pretty and striking method of observing beats is
afforded by means of two singing flames. Before you are
two singing flames. (Fig. 141) in unison. By raising or
lowering a telescopic slider attached to one of the tubes,
we can easily change the pitch of the note emitted by the
column of air vibrating within the tube. As soon as we
thus disturb the unison of the two notes, you hear loud
beats that succeed each other with more or less rapidity, —
just in proportion as we increase or diminish the interval
between the two tones. At the same time you observe
a characteristic flickering of the flame. It dances to the
beats and keeps perfect time with them.

20
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Beats are very marked in pipe or reed organs tuned
according to equal temperament. The so-called tremolo
effects given by certain stops of these instrumcntsk;-u'e due
to beats. But bells give rise to beats more readily, pc:;r—
haps, than other forms of sonorous bodies. This is partic-
ularly the case with large bells, and, as we have learned,
arises from the impossibility of casting them so that they
will be perfectly symmetrical and hmnoge_neous th.rough-
out. When ringing, the bell is divided into sections qf
different sizes, whose periods of vi-
bration differ more or less from
one another.

On the table are two rare antique
Japanese gongs, which either singly
or together give forth beats m a
most remarkable manner. They
are made of bronze, and are quite
thin; but the purity and softness
of the notes which they emit, and
the length of time during which
they continue to vibrate after being

struck, are quite surprising. The

sounding of a number of such bells,

properly tuned, in the ancient tem-

ples of Japan, must have been pro-

ductive of effects that were not only

FiG. 141. pleasing to the ear, but also c.on-
ducive to solemn religious emotion.
The gongs are placed on small, soft mats, to give
.mellowness to the tone; and for a similar reason they are
struck, not with hard hammers, but with padded sticks. I
now strike the large gong, and a delightfully soft and pure
note is the result. The beats engendered succeed each
other in such a way as to produce a tremolo effect rivalling
that afforded by the most perfect musical instrument. On
exciting the smaller gong we secure similar results, the
only difference being that in this case the pitch is higher.

Both gongs, as you observe, are especially rich in upper
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partials. By properly striking the gongs, their first upper
partials can be made to sound quite as loud as their
primes. The primes and first upper partials can now be
heard distinctly in all parts of the hall. :

When both gongs are struck at the same time, we get a
most confused combination of sounds. And the fact that
the gongs, when sounding their primes, are slightly out of
tune, only *intensifies the dissonance when their upper
partials are brought out with any degree of force. When,
then, both gongs are sounded simultaneously, we have the
beats due to each taken separately, and the beats caused
by the interferences not only of the primes with each
other, but also of the upper partials with each other, and
of these partials with their primes. Some of the beats, as
you will perceive by listening closely, are very slow, others
more rapid, and others again so rapid that they give rise
to a rough, rolling noise that is quite painful to the ear.
This harshness is observed in chimes of bells when not
carefully tuned. Tt is more prominent in bells than in the
gongs we have used, because the tones of the former are
more piercing than those of the latter.

Beats furnish us the simplest and the most delicate
means of determining when two notes are in unison. Let
me illustrate. T take the sonometer and place the bridge
as nearly as possible midway between the two supports of
the wire. As nearly as I can judge by the eye, the two
divisions of the string are equal in length. They should,
therefore, give the same note. I excite one section of the
string, and as soon as the note produced is extinguished,
the other section is agitated. As far as the ear can esti-
mate, there is no difference in the two tones. If we now
sound the two divisions of the string together, we at once
hear beats that declare the absence of perfect unison.
The beats are not very rapid, it is true, because there is
very little difference between the frequencies of the two
notes. But this difference, slight as it is, manifests itself
at once.

By means of beats we are able to distinguish from each
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other notes that do not differ from each other in frequency
by more than one fifth of a vibration in a second. Scheib-
ler’s marvellously accurate system of tuning is based on
beats entirely. According to his system, there is no at-
tempt made fo bring the note of a string, pipe, or reed into
unison with a standard of pitch directly. The work is
done indirectly, but with a degree of accuracy that is well-
nigh absolute. For this purpose a specially tonstructed
set of forks is required, giving notes just four vibrations
lower or higher than those which are to be attuned. To
tune a piano, for instance, its note of As is made to give
just four beats per second with a fork that makes exactly
that number with a standard A, fork, whose absolute num-
ber of vibrations is known. We are thus certain that the
piano-string executes the same number of vibrations as
the fork taken as the standard of pitch. By this method
any one who can count beats is capable of tuning.

On the table are two sets of forks, — thirteen in each
set,—one of which gives the tempered chromatic scale
from C, to C,, according to French pitch,—A; = 433
vibrations per second,— while the other furnishes the
same notes heightened by precisely four vibrations, and
generating, consequently, four beats per second.

Allow me to show you how such forks are used. I will
take A of the second set of forks,— these are called

auxiliary forks,—and adjust the string on our sonometer

so that it will generate just four beats per second when
sounded with the fork chosen. A few moments only are
required for the adjustment. When it is once attained,
as we know by counting the beats, we are certain that the
string is executing exactly 435 vibrations per second, and
emitting the note A, of the standard of pitch of the French
Conservatory.

In a similar manner we could, by means of these forks,
tune all the notes of an entire octave —from C; to C,—
of any musical instrument whatever. Musicians, however,
are not so exact. They are satisfied to get the pitch of
one note right, — generally A,, as above, or C,, —and then
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proceed from this one note to tune all the others by ear,
by estimation of the fifths. The accuracy of tuning in
this manner varies, of course, with the delicacy of the
tuner’s ear. For this reason no two persons, except by
chance; would tune exactly alike. And for a similar
reason, no one, who is thus guided solely by his ear,
could tune in succession two instruments that would be
perfectly in unison.

For perfect tuning, one of Scheibler's tonometers is
indispensable. The two sets of forks before you are
sometimes called tonometers, because Scheibler’s method
is used in connection with them. But the tonometers
which were devised and used by Scheibler consisted “of
a series of forks not only extending over a whole octave,
as do those on the table, but also giving four beats for
every possible note within the octave. Thus, one of his
tonometers intended for the octave A, to A, German
pitch, — that is, from 220 to 440 vibrations per second, —
embraced fifty-six tuning-forks. Beginning with A, of 220
vibrations, each fork in succession of this tonometer was
tuned exactly four beats higher than the one preceding.

Koenig makes, on Scheibler’s principle, superb tonome-
ters of sixty-seven forks for the octave from C, to C,. In
addition to this, he has, with the expenditure of infinite labor
and skill, constructed a like tonometer, as we saw"in our

second lecture, for the entire compass of musical sounds.

By means of this unique instrument one may determine
with ease the absolute pitch of every note from C—, to F..

By means of one of Lissajous’ apparatus, as modified by
Mercadier and constructed by Duboscq, I am able to give
you a most telling optical ill l

ustration of the phenomenon
of beats. The apparatus consists of two tuning-forks (Fig.
142), one of which is provided with a coil so that it may
be kept in vibration electrically. The fork A carries a
style on one of its prongs, while one of the prongs of the
fork B bears a piece of smoked glass. This latter fork s
also furnished  with sliding weights, by means of which it
may be made to give various intervals with the fork A.
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The ends of both forks, with style just touching the
smoked glass plate, is adjusted over the condenser of the
lantern. The fork B is now set in vibration by passing
an electric current through the coil fastened between the
two prongs.” This causes the style of the fork A to
inscribe a straight line on the smoked glass.

If now the fork A is also caused to vibrate, it will tend
to make this straight line longer or shorter, according as
it moves in the same direction as the fork B, or in an

Fi16. 142.

opposite direction. When, then, the two forks are in
umison, they will reinforce or enfeeble each other accord-
ing as they are in the same or in opposite phases. This
reinforcement or enfeeblement will be indicated by the
line traced on the glass, which will be longer or shorter
when the two forks are simultaneously acting than when
only one is in motion. When the fork A is moved in a
line parallel to its axis, the straight line on the glass will
change into a beautiful sinuous curve like those shown in
the second lecture.” The objective and the right-angled
prism at the top of the lantern enable me to project on
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the screen all the figures that the style of one fork may
inscribe on the glass of the other.

I disturb the unison of the two forks by moving the
sliding weights on the fork B. When both forks are at
rest the result of this disturbance of unison is to cause the
line inscribed on the glass plate to alternately lengthen
and shorten, as we see by the image on the screen. The
number of alterations in any given time will depend on the
number of beats per second made by the two forks; and
the number of beats, as we have seen, depends on the
difference of the frequencies of the forks. If there is only
one beat per second, the alterations in the length of the
line will occur once every second. If there are two or
more beats per second, the lengthening and shortening of
the line will take place correspondingly often. Under
these circumstances, if the fork A is moved slowly and
uniformly to the left, —that is, in a direction parallel to
its axis and to the-length of the plate, —we observe a
sinuous line as before, but one whose indentations have
a varying amplitude from a maximum to zero. This vari-
ation in the amplitude of the curves shown on the screen
exhibits to the eye the difference in the rates of vibration
of the two forks, while their beats declare the same thing
to the ear.

I now adjust the sliding weights again, and while the
two forks are in vibration I move A to the left, as before,
and you have the result on the screen as a beautiful undu-
lating curve, which tells more clearly than,K words the
nature of the combined motion of the two forks. The
forks used are not tuned to give any particular note, nor
are they constructed to give a very loud sound; but if you
will listen attentively, you will be able to perceive beats
succeeding each other at the rate of about two per second.
And if you compare the number of beats with the rhythmic
action of the image on the screen, you will find that the
beats produced synchronize perfectly with the formation
of the spindle-shaped segments of the sinuous curve on
the screen.
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M. Lissajous has taught us how to vary this experiment
so as to obtain the same results in an equally striking and
pleasing manner. His method is so beautiful, and its
applications are so general and of such importance, that
every one interested in acoustics should be familiar with it.
We are again indebted to M. Mercadier for devising for us
a modified form of Lissajous’ original apparatus, Merca-
dier’s apparatus is more convenient than the one Lissajous

used, and enables me to show Lissajous’ figures, as they
are called, to a large number of persons at the same time.

We use two tuning-forks similar to those used in the
preceding experiment. Both ‘are mounted, so as to be
kept in vibration at will by an electric current. The only
respect in which the forks now used differ from those iuts‘t
employed is that the style and vibrating plate are rep]a_ced
by polished steel mirrors attached to the ends of the
prongs of each fork. One of the forks (Fig. 143) is $0
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placed that its mirror receives a beam of light coming’
from the lantern to the left. The light is then reflected
from this fork to the mirror on the second fork, and thence
reflected to the screen, through a lens, supported on an
appropriate stand. One Grenet cell is connected with

1:2
TN AN AN AN AN AN AN AN AN A ANANA DN PARA RN,
12

AN A A g

1:)
PPN AT NSNS DN e bl NP

2:3

WA\ AN AN AN AN A L

J:é

A AN PANNAAAANNANNAANAANAANNANSA

4:5 :
A NN AN NS AANNAAS AN A ANAAAN

S:8

VAN NANNANAMNANAPNSAARAANNANA

24:25

NWW‘"JWWU\M\N\J\.ﬂ‘W\N‘J'\’W‘J“‘“’U\W\JuM‘.P‘\AJ\r'\J\\f"uP‘!,'F\.|‘u‘?ﬂ’k’»’vﬂ'u‘-w\ﬁ-.}‘- WA

do. 41
PP e e RPN \ Jﬂmdnurhl\bj’ltﬂur\ ﬁ J.\ JI" A ”U'UJI JW KA

VWUV

Fic. 144.

each fork, which is thus kept vibrating as long as may be
desired. When the two forks are in unison, they tend
to reinforce or to weaken each other, according as they
are in the same or in opposite phases.

When the forks are so adjusted that they vibrate in the
same plane, the image of light seen on the screen can be
made to go through all the various changes, and in the
same manner, as the inscriptions on the smoked glass in




