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frequencies of whose notes is 4: 5: 6. When agcurrent of
air is directed against the holes composing this chord, and
the disk is caused to revolve, the harmony at once bursts
forth pure and clear, Whether the disk move slowly or
rapidly, whether the pitch of the notes be high or low,
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the character of the chord, as you perceive, remains
unchanged.

But let me make you acquainted with a more elaborate
and a more available instrument than the siren of Oppelt.
Before you (Fig. 175) is a double siren devised by Helm-
holtz. . It is composed of two of Dove’s polyphonic
sirens, connected by a common axis. Dove’s siren differs
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from the siten of Cagniard de la Tour in having two or
more circles of holes, — that of Cagniard de la Tour hav-
ing, as you remember, only one. The Dove sirens used
in the instruments before you have each four series of
holes, disposed in concentric circles. The lower disk pre-
sents four series, of 8, 10, 12, and 18 holes; the upper
disk has four others, of g, 12, 15, and 16 apertures. If,
therefore, the circle having 8 holes yields the note C,, the
siren, at the same velocity of rotation, will give the notes
Cu Ei, Gy, D, for the lower disk, and the notes 1 6G0B,
and C, for the upper. The instrument, consequently, is
competent to produce all the more important intervals
and chords we have been considering, and serves admi-
rably to bring out all the characteristics of the diatonic
scale. :

The orifices 4 and B are connected with an acoustic
bellows by means of an India-rubber tube. When air is
urged into 4, the upper siren alone sounds. When air is
admitted into the lower siren, it only becomes vocal. If
however, air be admitted iinto both orifices simultaneously,
both sirens become sonorous. The number of revolutions
made by the sirens is recorded by the clock-work CD.
The keys at a and & correspond each to a series of orifices
in the parts of the air-chambers opposite the openings 4
and B. By means of a toothed wheel and pinion at £,
not only the disk of the upper siren, but also the air-
chamber above the disk, can be made to rotate both for-
wards and backwards. Both the upper and lower sirens
are surrounded by brass boxes, divided into halves so as
readily to be attached to or removed from the instrument.
One half the box is removed from the lower siren, while
both halves are seen enclosing the one above. These
boxes act as resonators, and their office is to augment the
volume of the prime, while the upper partials of the com-
pound tone of the siren are correspondingly damped.
The moment the tone of the siren is in unison with that
of the box, the note emitted bursts forth with extraor-
dinary purity and power.
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When air is simultaneously urged into both Wind-chests,
with the two circles of twelve apertures open, we have per-
fect unison. If, now, a series of 8 holes in the lower, and
I6 in the upper siren be opened, we obtain the interval of
an octave. Opening the series of 9 in the upper and 18
holes in the lower siren, the same interval is given, although
the absolute rates of vibration have been increased. But
the ratio of the two rates remains the same, being in both
cases as I:2. Opening a series of 10 apertures in the
lower, and 15 in the upper siren, or of 12 holes in the
upper and 18 in the lower, we have, in both instances,
the interval of the fifth, because in both cases the ratio of
the rates of vibration is as 2: 3. By opening the series
of 9 and 12, or of 12 and 16, — in both of which cases the
ratio is 3 : 4,— we obtain the interval of a fourth, Simi-
larly the two series of 8§ and 10, and 12 and 15, yield the
interval of a major third, expressed by the ratio 4:5. In
like manner the series 10 and 12, or 15 and 18, give the
interval of a minor third, whose frequency-ratio is 5:6.
When we open the series having 8 and 9 apertures, we
obtain the interval of a major tone. The series g and 1o,
for a like reason, give the interval of a minor tone. The
series whose orifices number 15 and 16 respectively yield,
when sounded at the same time, the interval of a major
semitone.

The last three intervals, when the siren is moving at an
ordinary velocity, are remarkably dissonant The reason
of this is because of the beats, which are very loud and
distinct. We can, however, so increase the velocity of the
siren as to cause the beats corresponding to the intervals
8:9 and 9: 10 to coalesce and give rise to pure, clear
beat-tones. The harshfess of the interval is now far less
than it was before. This experiment succeeds particularly

well with the interval corresponding to a major tone, 8: .
The beat-tone in this case is three octaves below the lowest
constituent of the interval, but it is sufficiently loud to be
heard throughout the hall. ;
Helmholtz’s siren affords us a simple means of illustrat-
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ing the phenomena of beats and interference. If we open
the two series of twelve orifices each, and urge air through
the sirens, we have, as just seen, perfect unison. The
sound from one siren reinforces that from the other, and
the result is a much greater volume of tone than either
one, singly, is competent to produce. This, however,
holds true only when the apertures in the sirens have the
same motion with reference to the orifices in the wind-
chests. But, as we have seen, we are able, by means of the
wheel and pinion, £, to turn the upper cylinder either in
the same direction in which the siren moves, or in the
direction opposite. When the cylinder is rotated so that
its orifices meet those of the siren, the apertures pass each
other more rapidly than when the cylinder is motionless.
The pitch of the note of the upper siren is thus rendered
higher than the pitch of the note from the lower one, and
the result, as declared by the powerful beats, is interfer-
ence. For every complete revolution of £ there are pro-
duced four beats, for the prime tone of the instrument. If
the motion is reversed, the orifices of siren and cylinder
pass each other less frequently, and the result is that the
pitch of the note emitted by the upper siren is lower than
the pitch of the note from the lower siren. Again, we
have interference, and beats are heard as before If one
revolution of £ towards the right give rise to four beats,
and heightens the pitch of the upper siren by four vibra-
tions, a single revolution to the left will lower the pitch by
the same amount, and the tone of the upper siren will have
four vibrations less than the tone of the lower one. It is
obvious that we have here another illustration of Doppler’s
principle, which was discussed #n exfenso in our third
lecture.

So far, we have been studying musical intervals acousti-
cally. But we can also study them mechanically and
optically. Indeed, paradoxical as it may appear, the most
delicate and most accurate means at our disposal for
examining musical intervals is the optical method. We
shall consider this presently. As an introduction to it
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we shall investigate the nature of the vibratiéns of the
compound pendulum devised by Professor Blackburn, of
Glasgow, in 1844.

A modified form of such an instrument (Fig 176) is
before you. The bob is a thick disk of lead, into which is
fitted a glass funnel filled with fine sand. Instead of a
single string, as is used in an ordinary pendulum, we have
here an arrangement calculated to give a much more com-
plicated motion. When
the pendulum, as shown
in the figure, oscillates
in a direction at right
angles to the cross-piece
from which it is sus-
pended, its length is
equal to the distance
from the lower part of
the cross-piece to the
centre of the disk. If,
ho(vcver, the pendulum
move in a direction par-
allel to the line joining
the two upright pieces,
its length will then be
measured from the point
#— a small ring of metal
—to the centre of the
disk. If moved in either
direction, as stated, the
motion will be in a straight line, — the direction in one
case being perpendicular to what it is in the other, But
if the pendulum is started from the point 2, which is in
a line making an angle of forty-five degrees with the line
joining the two uprights, we get quite a different result.
In this case, the sand from the funnel will trace a curve
instead of a straight line, the nature of the curve depend-
ing on the relative lengths of the two pendulums. 1 say
twe pendulums, for that in reality is what we have. The
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point of support for the shorter pendulum is the metal
ring 7, and the point of support of the longer one is the
lower part of the cross-bar.

If the shorter curve is one fourth the length of the longer
one, the former will execute twice the number of vibrations
that the latter will in the same period of time. This is in
accordance with the law that the times of the vibrations of
any two pendulums vary inversely as the square roots of
their lengths. But the bob cannot move in two directions

Fourth,

Major Third,

at the same time. It will, consequently, move along a
path intermediate between the two straight lines just
spoken of, and the resultant due to the combination of the
two vibrations is a parabola, — 4 (Fig. 177). The rates
of vibrations of the two pendulums in the case just con-
sidered are as 1:2. But this ratio also expresses the
interval of the octave. The fisure A therefore is the
curve that corresponds to this interval.

If we change the position of the ring » so as to alter the
relative lengths of the two pendulums, and start the bob
from D, as before, we shall obtain an entirely different
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figure from the one just exhibited. Making the lengths
of the two pendulums as 4:9, the sand from the funnel
will describe figure B. But the square roots of 4 and g
are 2 and 3 respectively. While, therefore, the longer
pendulum makes two vibrations, the shorter one executes
three. But the ratio 2: 3 expresses the interval of the
fifth, and hence figure B may be considered as the visible
expression of this interval.

Making the relative lengths of the two pendulums 9 and
16, — the square roots of which are 3 and 4,— we obtain
figure C, corresponding to the interval of the fourth,
Similarly, if we make the lengths of the pendulums as
16: 25, we shall obtain figure D. The square roots of 16
and 25 are respectively 4 and 5. But these ratios express
the vibration ratio of the major third. Figure D, con-
sequently, corresponds to this interval. In the same
manner, by changing the relative lengths of the pendu-
lums, ‘we could obtain figures corresponding to all the
intervals in music. We should find that the figures
expressing the intervals become more complex as the
numbers representing the intervals become larger.

The figures just given are produced only when the bob
starts from the point D, or from some point similarly sit-
uated with reference to the straight line between the two
uprights and the one intersecting it at right angles. If the
bob be made to start from points other than those men-
tioned, entirely different figures will be produced.

Mr. Tisley has invented a compound pendulum, which,
for the variety, beauty, and delicacy of the figures it is
competent to produce, is in every way superior to the one
we have been using. Such a one, connected with a ver-
tical lantern, is now before you. It consists of two pendu-
lums, P P', balanced on knife-edges at 4 4'. From the
points ¢’ ¢ project two brass arms ¢ and ¢'p, which, when
the pendulums are at rest, are at right angles to each other.
These arms are given perfect freedom of motion in every
direction by being connected with the pendulums by ball-
and-socket joints at ¢ and ¢, By means of the threads ¢
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and ¢, connected with delicate adjustable springs attached
to the arms cp and ¢/ p, the tracing point at p may be readily
lowered and raised with-
out in any way affecting
the vibrations of the pen-
dulums. Sliding brass
plates are attached to the
pendulum rods, and are
intended to receive the
weights, which serve the
purpose of bobs, The
sum of the weights ordi-
narily varies from five to
twelve pounds. The rel-
ative lengths of the two
pendulums are altered
at will by placing the
weights at  different
heights. W is a smaller
weight sliding along the
pendulum ‘' rod, and is
counterpoised by the
weight 7. These small
weights enable one to
adjust the pendulums
very accurately, and to
change, if need be, their
rates of vibration even
while in motion.

On the condenser of
the vertical lantern rests
a plate of glass black-
ened by camphor-smoke.
The pendulums are so Fic. 178.
adjusted that one of them
vibrates twice while the other executes three vibrations.
If, then, they be both made to oscillate simultaneously,
they should cause the tracing-point, p, to describe a curve
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corresponding to the musical interval of a fifth. The pen-
dulums are started, and instantly there flashes out on the

FiG. 170.

screen, where all was darkness
before, a beautiful bright curve,
which becomes more and more
complicated. Finally, the trac-
ing-point has returned to its
starting-point, and the curve
delineating the interval of a
fifth is complete. But as the
pendulums continue to vibrate
there is inscribed on the plate
a second figure within the first.

"Both are identical in all re-

spects except size. The reason
of this is due to the gradually
decreasing amplitude of oscil-
lation of the pendulums. Thus,
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plex than that corresponding to a fifth. As before, we
have a series of curves within curves (Fig. 180), as elegant
in form as they are marvellous in regularity, By suitably

adjusting the relative lengths of
the pendulums, it is manifest that
we could secure an infinite number
of tracings, corresponding not only
to all the intervals used in music,
but also answering to all possible
rates of vibration.

In Fig. 181 we have a tracing
that is quite different from any-
thing that we have yet seen. A
slight change in the relative lengths
of the pendulums is all that is re-

Fi1c. 181

quired to transform some of the simpler figures we have
been studying into others of bewildering intricacy. And
yet, notwithstanding the maze-like complexity of these

by allowing the pendulums to vibrate for some moments,
a number of figures, equally beautiful and equally sym-
metrical, are inscribed on the
glass plate, one within the other
We have now on the screen a
visible expression (Fig. 179) of
the sonorous vibrations com-
posing the interval of a perfect
fifth. By sliding the weight, ¥
up or down the rod, we should
disturb the perfection of the
interval, and introduce corre-
sponding changes in the figure.
Only a moment is required
to adjust the pendulums for
the interval of a fourth. Sub-
stituting a new glass plate for Fi6. 180;
the one now on the lantern, and
setting the pendulums going as before, we have designed
for us a figure that is even more beautiful and more com-

Fic. 182.

tracings, they are, one and
all, as faultlessly symmetri-
cal as they are novel and
exquisite.

In 1827 Wheatstone de-
vised a simple little contriy-
ance for showing the figures
corresponding to the various
musical intervals, that repro-
duces admirably all the va-
rious curves afforded by the
pendulum. To this little
piece of apparatus he gave
the name of “caleidophone.”
It is nothing more than an
elastic rod of steel (Fig. 182)
attached to a firm support.

If the rod be cylindrical, and its flexural rigidity for all

transverse directions be the same, it will, when set in vi-

btation, move in one plane, like a simple pendulum. But
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if the flexural rigidity be unequal, either through lack of
homogeneity of the material of the rod, or on account of
its form, there will be a composition of two rectangular
vibrations that are, as in the compound pendulum, mu-
tually perpendicular. Thus, if Obda
(Fig. 183) be the cross-section of a
prismatic rod, the rod will tend to
vibrate more rapidly in the direction
Oy than in the direction Ox. If, how-
ever, the rod be flexed to some point
intermediate between the lines Oy and
Oz, and then set free, it will no longer
vibrate in a single plane, but will execute a curve varying
as the ratio of the sides @ and 4. If @ : 4 as 1 : 2, the curve
due to the compounding of the two rectilinear vibrations
will be that corresponding to the interval of the octave.
The rod before us is made to give the figure of the octave.

Y

Fic. 183.

F1G. 184.

At its upper extremity is a small, highly polished mirror,
which reflects a beam of light coming from our lantern.
On the ceiling is depicted the curve of the figure 8, an-
swering to the curve of the octave.

If, in place of the rod just used, we were to take others,
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in which @:6=2:3, 3:4, 4: 5, or §: 6, we should obtain
curves corresponding to the fifth, the fourth, the major,
and the minor thirds respectively. On the table is a small
stand in which are fixed six rods (Fig. 184) so constructed
that they give all the common intervals
from unison to the minor third.
The rods, so far employed, are com-
petent to describe curves corresponding
only to a single interval each. But Lip-
pich has devised a universal caleidophone
(Fig. 185), with which we are able to ob-
tain figures answering to any interval
whatever. It consists of a long strip of
steel fastened at its lower end to a solid
support. To the upper end of the strip
is attached a similar strip of steel, the
direction of the greater cross section of

‘the latter being perpendicular to that of

the former. The two pieces of metal
are so connected that the upper one is
capable of being adjusted so that its
length may bear any desired ratio to that
of the lower strip. The bright bead at
the upper extremity of the adjustable
strip reflects light in the same manner as
the similar apparatus that we have just
used. It is manifest, from what has been
said, that this form of caleidophone, sim-
ple as it appears, is capable of yielding
as great a variety of curves as the com-
pound pendulum. The results of the one beautifully cor-
roborate those of the other, and both fully respond to all
the requirements of theory regarding the composition of
the rectangular vibrations of pendulums and elastic rods.
But, you may ask, where is the connection between the
figures we have been studying and the musical intervals to
which they are said to correspond? Neither the pendu-
lums nor the rods emit any sound whatever. The latter

Fic. 18s.
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may, indeed, in some cases, yield notes, but they are at
best very faint. It is important, therefore, to establish a
connection that cannot be gainsaid between the various
curves given, and the musical intervals that they are said
to represent. The optical method of M. Lissajous, dis-
covered in 1857, shows the connection in a most remark-
able manner, and at the same time affords the most
delicate method of tuning sonorous bodies that is known
to science.

We have already had occasion to see something of
Lissajous’ method, but not precisely in its bearing on

Fic. 186.

musical intervals. This method, which is now so cele-
brated, and which is now always employed when it is
desired to have intervals of tuning-forks, or other instru-
ments, absolutely exact, is, in principle, only a modification
of Wheatstone’s discovery. In place of rods, Lissajous
used tuning-forks, to one of the branches of which are
attached small mirrors.

For the sake of illustration, I shall use the simplest form
of apparatus. A beam of light from our lantern passes
through the lens Z (Fig. 186), and impinges on the
mirror 7z of the upright fork D. Thelight is reflected from
the mirror, 72, of the fork D to the mirror 47, and thence to
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the screen.  While the fork is quiescent, only a bright spot
of light is seen on the canvas. As soon, however, as the
fork is set in motion, the spot of light, 7, becomes a vertical
line, 7 7', parallel to the branches of the fork. If, now,
the mirror, 47, be rotated about its vertical axis, the straight
line is transformed into a beautiful sinuous curve, ' 41
This change of a luminous point into a straight line, and
then into an undulating curve of light, is, as you know,
due to the persistence of impressions made on the retina.

Let us now substitute for the mirror M a second fork,
D', whose plane of vibration is perpendicular to that of
the fork D. If the fork D remain in quiescence, and D'
be caused to oscillate, the point of light on the screen will
describe a horizontal line which is parallel to the branches
of the fork. This line is perpendicular, therefore, to that
made by the fork D. Both forks are excited, and we have
now on the screen a curve (Fig. 187), which, we have
said, corresponds to the interval of an octave. But how
do we know this? Because, aside from the fact that the
frequencies of the forks are stamped on their stems, we
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can, on listening to them, hear that one yields a note
exactly an octave higher than that emitted by the other.

By taking forks whose frequenciesareas 1:1, 1: 2, 1:

-~
=

2:3:3:4,3:5,4:5,and 5: 6, we may obtain all the curves
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exhibited in Fig. 188. There can be no doubt about the
figures corresponding to the intervals named, because,
when the forks are sounded, the ear tells us at once what
the intervals are, and these, we find, always correspond to
certain characteristic curves. In Fig. 188 there are five
curves — for unison, the curves may become straight
lines —for each interval corresponding to the different
phases in which the forks may happen to vibrate. As a
matter of fact, if the intervals are not absolutely exact,
there is an indefinite number of forms for the curve
distinguishing each interval,

and there is a constant change,

while the forks are vibrating, of

one form into the other. Thus,

when two forks are in perfect

unison, their characteristic curve

is a circle. It may also be an

ellipse, or a straight line, depending on the phases of
vibrations of the forks. But if the unison be disturbed,
even never so slightly, we immediately observe a change,
more or less rapid, from a circle into an ellipse, from an
ellipse into a straight line, and from a straight line back
into a circle. At one time the ellipse, as also the straight
line, is inclined to the right; at another, to the left. Each
cycle of changes shows all possible forms intermediate
between a straight line and a circle. What has been said
of the transformation undergone by forks whose unison is
disturbed may be iterated regarding the changes that may
characterize any of the intervals whose curves are given
in the adjoining figure.

In Fig. 189 we have two phases of a more complicated
curve, —that corresponding to the interval of a major
second, — whose vibration-frequencies, as you remember,
are 8: 9.

By using Mercadier’s electric forks, which we have had
occasion to employ more than once heretofore, we can, by
means of the movable weights on the branches, have the
intervals so accurately adjusted that the curves will suffer
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