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no variation whatever. The figure yielded, whatever it
may be, or whatever phase it may present, will then
remain fixed and invariable as long as the forks are in
vibration.

This fact, as is evident, can be used to advantage in what
has been aptly termed optical tuning. All that is neces-
sary is to have a standard tuning-fork, executing any given
number of vibrations per second. To simplify the work as
much as possible, Lissajous
invented what is known as
an optical comparator, or
vibration microscope. An
improved form of this in-
strument was subsequently
devised by Helmholtz. It
differs from that of Lissajous
in being provided with an
electro-magnet, so that it
can be kept in vibration as
long as may be desired.
Such a comparator (Fig.
190) is before you. It is
composed of an electric fork,
attached to a solid support,
and a microscope. The ob-

FIcG. 190. jective of the microscope is
borne by one of the prongs
of the fork, which makes a right angle with the tube.

When the fork is set in motion the objects visible in the
field of the microscope seem to move in the same direction

as does the fork. If now a second tuning-fork, whose
- prongs are perpendicular to those of the first, be caused

to oscillate, a point on the second fork will appear to de-
scribe a curve, whose form will depend on the vibration-
frequencies ‘of the two forks used. If the intervals of the
fork be perfect, some of the forms seen in Fig. 188 will
appear, and the form first seen will persist as long as the
interval remains undisturbed. If, however, the interval be
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perturbed in any way whatever, by a change in the tem-
perature of the forks, for instance, the figure seen is no
longer constant, It immediately begins to pass through a
cycle of changes, producing some of the various curves in
Fig. 183. The longer the time required for effecting a com-
plete cycle of changes, the nearer the intervals of the forks
are perfect. The vibration-microscope before us is made
to execute exactly 128 vibrations per second. If, now,
the figure yielded by this fork, and a second one sup-
posed to be in unison with it go through a cycle of
changes in ten minutes, it means that our comparator exe-
cutes 10 X 60 X 128 = 76800 vibrations, while the other
fork, during the same period, makes one vibration more or
one vibration less than this number. The percentage of
error in this instance is very slight indeed.

This method of tuning may be applied to any sonorous
bodies whatever, and is incomparably superior to any
other method we have yet seen. It affords us a means
of determining, without any assistance whatever from the
ear, any musical interval with a precision that is virtually
absolute. By this means a deaf person can tune with
almost infinitely greater exactitude than would be possible
for the most delicate and most practised musical ear.

Koenig’s clock-fork, or tonometer (Fig. 191), is a more
claborate form of comparator than Lissajous’ vibration
microscope. As an instrument of precision, it is wellnigh
perfect. It consists of a large tuning-fork, making sixty-
four vibrations per second, which, like Lissajous’ com-
parator, is connected with a microscope. Each prong is
provided with a micrometer screw having a heavy head,
by means of which the rate of the fork can be adjusted
with the utmost precision. Between the prongs is a deli-
cate thermometer for indicating the temperature. The
escapement of the clock, with which the fork is connected,
is so regulated that the tuning-fork performs the same
functions as does the pendulum or balance-wheel in an
ordinary clock. The vibratory motion of the fork is ren-
dered continuous by the impulse it receives from the
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escapement-wheel at each vibration. It was by means of
this marvellous piece of mechanism that Koenig deter-
mined the frequency of the Diapason Normal of the French
Conservatory, and proved that its pitch was slightly differ-
ent from what it was supposed to be. It is this instrument
also that he used in determining the frequencies of many

of the forks that we have been using in the course of these
1 : > ; e
ectu‘les, Hence their unfailing accuracy, — an accuracy
that it would be impossible to secure by any other known
means.

M. Lissajous, in connection with M. Desains, has fut-
nished us with another method of obtaining acoustic fig-
Hres corresponding to any given musical interval. It is
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known as the graphical method, and may be viewed as sup-
plementary to the optical method which we have just ex-
amined. We have already had occasion, especially in the
eighth lecture, to employ the graphical method, so that the
principle involved is quite familiar to you. We shall now
have recourse to a more delicate piece of apparatus than
any we have yet employed when using this method. The
instrument before you (Fig. 192) consists of two large
tuning-forks fastened to a heavy cast-iron base. A prong
of one of the forks carries a piece of smoked glass, while a
prong of the other bears a light style. The forks, which
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are in perfect unison, are now placed at right dngles to
cach other and set in vibration. On moving the fork, to
which the style is attached, along a groove, a beautiful trace,
corresponding to the interval 1 : 1, — unison, — is given on
the smoked glass. Here, as in the optical method, we
have the composition of two rectilinear motions, and the
result is a curve, Fig. 193, which is characteristic for the
interval named. Employing forks whose vibration-fre-
quencies are as 1:2, 1:2+, 5:6, and 15:16, we obtain the
elegant tracings exhibited in the adjoining figure.

All the various methods we have used for elucida-
ting the nature of musical sounds admirably supplement
each other, and unequivocally substantiate all thé deduc-
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tions of theory. In observing the intimate connection
between simple mathematical ratios and musical conso-
nances, we cannot help calling to mind the saying of Pytha-
goras, “All is harmony and number.” The relations
between simple numbers and musical harmony is indeed
so marked as to arrest the attention of even the most cas-
ual observer. There is something of truth, therefore, in
Leibnitz's definition of music, when he says it is “an

occult exercise of the mind unconsciously performing
arithmetical calculations.” ?

F16. 193.

We have frequently, in the course of our lectures, used

the words consonance and dissonance, and spoken of inter-
vals as being consonant or dissonant. It is now time that
we should understand the full signification of these terms,
and inquire into the causes of consonance and dis
and learn why some intervals produce dissonant, a
consonant sensations,
Every one knows, wl
not, that two or

sonance,
nd some

rether he have an ear for music or
more sounds simultaneously produced

o : Lk :
‘Musica est exercitium arithmeti

5o c® occultum nescienti :
iy S S€ numerare
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may in certain instances have a harsh, jarring effect, while
in other cases the result of the combination of several
notes is pleasing and harmonious. This, however, is only
saying that there is such a thing as dissonance as contra-
distinguished from consonance, that certain musical inter-
vals are rough and grating, while others are smooth and
flowing, but it does not offer any explanation of the phe-
nomena observed.

According to the great geometer, Euclid, “ Consonance
is the blending of a higher with a lower tone. Dissonance
is incapacity to mix, when two tones cannot blend, but
appear rough to the ear.” The illustrious Euler, as the
result of profound mathematical investigations, concludes
that the mind is pleasurably or unpleasurably affected
according as the musical intervals heard are simple or
complex. As stated by Helmholtz, *“ Consonance is a
continuous, dissonance an intermittent, sensation of tone.” !
These definitions, however, are little more than statements
of a fact. Even the definition of Helmholtz, often as it has
been quoted, does not give us the desired information.
Indeed, before the investigations of Koenig on the nature
of beats, and the researches of Mayer on residual sonorous
sensations, a philosophical distinction between consonance
and dissonance was an impossibility.2 But strange as it
may seem, the profound and painstaking researches of
these two distinguished physicists seem to be entirely

1 “Consonanz ist eine continuirliche, Dissonanz eine intermittirende
Tonempfindung.”

2 As early as the beginning of the last century, Sauveur had outlined the
true theory of consonance and dissonance, but it was allowed to fall into
oblivion. * Beats,” he tells us, ““do not please the ear because of the ine-
quality of the sound, and it is quite likely that it is the absence of beats
which renders octaves so agreeable. Following out this idea, it:is found that
the chords in which beats are not heard are precisely the ones which musi-
cians treat as consonances, and that those in which beats are heard are dis-
sonances. When a chord is dissonant in one octave and consonant in
another, it is because there are beats in one, and none in the other. Such a
chord is deemed an imperfect consonance ” (“ Histoire de I’Académie
Francaise ” for the year 1700, page 143). Most of the acoustical discoveries
of Sauveur are to be found in the Memoirs of the French Academy of
Sciences. .
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ignored. They were the first to give us quantitative
determinations of the relations between different tones, —
all previous determinations being only qualitative, — and
the first to put us in possession of the facts necessary to
draw the line of demarcation between intervals that are
consonant and those that are dissonant. In their works
we find the key to the solution of the most vexed ques-
tions of musical harmony. And yet, with the exception
of a published lecture by Prof. S. P. Thompson,! and a few
brief notices by Mr. A. J. Ellis? their admirable investiga-
tions and the important laws which they disclose are, by
English readers at least, virtually unknown.

Koenig’s researches, as we have seen, revealed the fact
that beats, when sufficiently numerous, may coalesce so as
to produce a musical note. Hence the beat-tones, which
are commonly known as grave harmonics, differential
notes, resultant notes, etc. Professor Mayer finds, by a
long series of most arduous observations,? extending over
the entire musical scale, that the time during which the
sensation of sound persists in the ear after the vibrations of
air near the tympanic membrane have ceased, varies with
the pitch of the note observed. The results of Professor
Mayer’s experiments are given in the following table: —
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! The Physical Foundation. of Music; being an Exposition of the Acousti-
cal Researches of Dr. Rudolph Koenig of Paris, delivered in the Royal
Institution of Great Britain, June 13, 18g0.

* * See Ellis's Helmholtz.
? See Mie American Journal of Science and Arts, October, 1874,

MUSICAL INTERVALS A4 ND TEMPERAMENT. 425

In Column N are given the names of the notes, and in
Column V their corresponding frequencies. Column B
exhibits the smallest number of beats per second which
the note must make with another note in_order that the two
may constitute the nearest consonant i erval. The dura-
tion of the beats in fractions of 2 second are given in Col-
umn D. Thus the lowest number of beats that C, can give
with another note in order that the sensation may be contin-
uous, is 16. The duration of the residual sensation for C;is
consequently the % of a second. But 04:64 4+ 16=C,:E,,
the interval of a major third, For the next higher octave,
we have, according to the table, 128 : 128 x 26 =C,: EP
In this instance a minor third is the nearest consonant
interval. For the notes C; and C; the nearest consonant
intervals are respectively about § and 1 of a semitone less
than a minor third. C; forms a consonance with a note
that is but a single tone higher, while C, makes a conso-
nance with a note that is separated from it by an interval
which is less than a semitone.

This is certainly contrary to all the generally received
opinions of musicians, who consider the intervals of whole
tones and semitones as invariably dissonant. They admit,
it is true, especially when their attention is called to the
fact, that the dissonance of these intervals is less in the
higher than in the lower parts of the scale. But they will
persist in calling the intervals of whole tones and semi-
tones dissonant, in whatever part of the scale these inter.
vals may happen to be found. Facts, however, are
stubborn things, and Professor Mayer has demonstrated
that intervals universally regarded by musicians as disso-
nant are, at least in the higher parts of the scale, quite
perfect consonances. Similarly, intervals in the lower
parts of the scale that musicians always treat as conso-
nances, Professor Mayer shows are, in reality, dissonances.
Thus, the nearest consonant interval for C,. according to
the above table, is a major third. But both in this part of
the scale and in that below, musicians make use of a r.ninor
third which is demonstrably dissonant.
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The conclusions arrived at by Koenig and Mayer estab-
lish the fact that whenever two notes, whatever their posi-
tion in the scale, are separated by an interval sufficiently
large to allow the beats to blend into a continuous tone, the
result is consonan®. When the beats do not blend, there
is dissonance. The cause of dissonance, therefore, is beats,
which, like a flickering light, give rise to a discontin-
uous sensation. When the sensation is made continuous
by the coalescing of the beats, the result is consonance.
These statements may be regarded as two laws, but laws
that admit of exceptions. We saw in Lecture Eighth that
the same generator may produce, at one and the same
time, both beats and beat-tones of the same number of
vibrations. We learned also that the same phenomenon
is exhibited, especially well, by means of heavy tuning-
forks of high pitch.

I sound the two forks C; and Dj, which form a major
second, and at once, in addition to the notes corresponding
to these two forks, we hear a deep beat-tone identical with
the note produced by a fork, having a frequency of C,. I
do not think that any of the musicians present would
pronounce the effect dissonant; and yet, according to
musical theory, the interval of C; and D; always produces
dissonance. In a similar manner are sounded the forks
Ds and E;, separated from each other by a minor tone.
The beat-tone is the same as before,— C,. In both in-
stances the effect is strange, if you will, but certainly not
dissonant, in the sense in which the term is ordinarily
understood.

We now take the forks E; and Fe, separated from each
other by a semitone. When both are sounded together,
we hear, in addition to the proper notes of the forks, the
deep beat-tone F,, which breaks forth with astonishing
clearness. Again, if we employ the forks B, and C.—
likewise separated by the interval of a semitone — we have
produced, when they are sounded simultaneously, a beat-
tone, Cs, of singular volume and power. Even in these
cases)'where the interval between two generators is only
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a semitone, the result is smooth and continuous. The
sounds of the forks are acute, it is true; but the effect of
the combination is neither harsh nor grating on the ear.
No appreciable beats are heard in either case, and the
interval of a semitone in this region of the scale must be
pronounced a consonance, musical theory to the contrary
notwithstanding.!

Mr. Ellis obtained similar results from two flageolets 2
When one instrument yielded F%;, and the other G, the
beat-tone produced would have been G, had the interval
been pure; but as it was, the beat-tone approximated F,
more closely than G, What is remarkable in this case is
that no beats whatever are perceptible, and the beat-tone
generated is far below any note that the instrument itself
is capable of producing.

All the interesting phenomena which we have just been
examining can be beautifully shown by means of a species
of harmonium now before you? It was specially designed
by Mr. Ellis as an instrument for demonstrating the facts on
which musical theory depends. It is tuned by means of a
set of forks so as to give intervals that are perfectly pure,
It is essentially an experimental instrument, and its range
is too limited for the purposes of practical music.

By sounding simultaneously the two notes constituting
any of the ordinary musical intervals, we at once hear the
corresponding beat-tone burst forth with surprising clear-
ness and strength. Testing some of the notes in the upper
part of the scale, which are separated by a tone or a semi-
tone, we obtain a result that is essentially the same as
those yielded by tuning-forks and flageolets. Both kinds
of intervals yield smooth and distinct beat-tones, and fre-
quently without any perceptible traces of beats. This,
then, is an additional illustration of the fact that the inter-

! T have repeated the foregoing experiments for the distinguished violinist,
Remenyi, and he fully concurs in the views herein expressed regarding the
nature of consonance and dissonance. : &

? Ellis’s Helmholtz, pp. 153 and 173 *
# The violin and violoncello also serve the same purpose admirably.




