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P R E F A C E . 

TH E present volume has grown out of a course of 
lectures given last year in the Catholic University 

of America at Washington, D. C. Yielding to numerous 
requests to have the lectures published, my first intention 
was to give them to the press substantially as they were 
first delivered. When, however, I came to revise them, I 
soon found myself making many alterations and additions; 
and by the time the task of revision was complete, I 
became aware that I had practically written a new work. 
The object in view was to give a more complete expo-
sition of the subject treated than had been possible in the 
lectures actually delivered, and to make the volume now 
offered to the public embrace in greater detail all the 
latest results of acoustical research. I have been led to 
retain the lecture form, as being more "animated and 
picturesque, and as being more in keeping with the char-
acter of a work which deals so largely with apparatus 
and experiments. 

The main purpose of the book is to give musicians 
and general readers an exact knowledge, based on ex-
periment, of the principles of acoustics, and to present 
at the same time a brief exposition of the physical basis 
of musical harmony. Both in Europe and in this country 
musical conservatories are beginning to exact of students 
a theoretical as well as a practical knowledge of music; 



8 PREFACE. 

and hence a work like the present cannot be considered 
as altogether untimely. 

To enable the reader more readily to understand the 
various topics treated, illustrations of many of the instru-
ments used in the lectures have been inserted in the text. 
Some of these were prepared expressly for this work, 
while others are to be found only in some of the more 
recent French and German treatises on sound and music. 
For the majority of the illustrations, however, I am under 
obligations to Dr. Rudolph Koenig and M. G. Masson, 
of Paris. 

My most grateful acknowledgments are due to my 
distinguished scientific friends Professor Alfred M. Mayer 
and Dr. Koenig for invaluable assistance in preparing the 
work for the press. The former made a critical revision 
of the manuscript of the entire work; while the latter 
read all that pertained to his own inventions and dis-
coveries. I am also indebted to my brother, Professor 
Albert F. Zahm, for a careful reading of the manuscript, 
and for many useful and practical suggestions that have 
enhanced materially any merit the book may possess. I 
have likewise to thank Mr. Frederick E . Neef, one of 
my students, for many of the drawings which adorn the 
volume. 

If this contribution to the Science of Music shall in 
any way lead to a better understanding of the art, or to 
a more intelligent appreciation of the beauties and won-
ders of musical harmony, I shall feel that T have achieved 
all that I had in view in its publication. 

J . A . Z. 
NOTRE DAME. IND. 

May, 1892. 
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God spoke, and through the soundless realms of space 
The keynote of created music rolled; 
And time felt harmony within its hold, — 

The pulse-beat of eternity's embrace. 
The Infinite in finite hearts we trace, 

As ages strike the chords by Love controlled; 
The earth is vibrant, and with rhythm untold, 

All sounds in Nature's orchestra find place. 
O Sound! thou art the echo of a word 

That broke the primal stillness by command, — 
An echo, through whose strains our souls have heard 

A promise of the choral raptures grand, 
That, voicing love and praise, forever rise 
In Music's natal home beyond the skies. 

S O U N D A N D MUSIC . 

C H A P T E R I. 

P R O D U C T I O N A N D T R A N S M I S S I O N O F S O U N D . 

AS a period of remarkable intellectual activity in every 
department of natural and physical science, the lat-

ter half of the nineteenth century must ever remain mem-
orable. Never in the world's history has so much been 
accomplished in the same space of time. The fauna 
and flora of every continent and of every sea have been 
studied and compared; the forms of life of the dim and 
distant past have been unearthed and assigned their places 
in the scheme of creation. Aided by appliances he never 
dreamed of a few decades ago, the astronomer has pene-
trated the depths of stellar space, and can now literally 
unfold to us the story of the heavens in the light of the 
radiant orbs that are the constant objects of his nightly 
vigils. Worlds of untold magnitude and atoms of incon-
ceivable minuteness — the infinitely great and the infinitely 
small —• arc alike the subjects of earnest quest and patient 
investigation. It would be difficult indeed to say in which 
department of knowledge the most work has been accom-
plished, and in which line of research the most energy has 
been expended. The facts observed and the discoveries 
made are almost incredible to one who has not made 
an attempt to keep abreast with the advance of science; 
and they show, in a most striking manner, what can be 
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accomplished by unity of action and persistence in prop-
erly directed effort. 

We may also state of the different branches of the va-
rious sciences what can be said of the sciences themselves. 
Marvellous strides have been made in every direction. 
This is pre-eminently true of the science of physics. The 
forces of heat and light, of magnetism and electricity, have 
been studied by thousands of investigators; and many 
contributions, of the utmost practical as well as theoretical 
importance, have been made to our pre-existent store of 
physical knowledge. Sound, too,—a subject which one 
would think musicians had exhausted ages ago, — has, in 
the hands of modern research, proved almost equally with 
the other forms of energy to be prolific in results of the 
greatest value both to music and science. 

It is, indeed, only recently that the science of music 
became possible. The art, it is true, had been cultivated 
from the earliest times; but the physical principles under-
lying this art were unknown. While the fundamental facts 
of musical science were unknown it was obviously impos-
sible to formulate anything like a true theory of sound or 
of music. The two go together, — the elements of music 
as a science, and a correct theory of that form of energy 
which in physics is known as sound. 

And here we have a most interesting illustration of the 
intimate connection that may sometimes exist between art 
and science. The art of music and the science of sound 
— Acoustics — are so correlated that it is impossible to 
give an explanation of the simplest cases of musical har-
mony without a knowledge of the nature and laws of 
sound. The conviction of the truth of this is becoming 
so strong, especially in England, that in some of the best 
schools of music a course in acoustics is demanded from 
all candidates for musical degrees. 

The relation, then, of acoustics to the most popular 
and the most universal of the arts, — music, — its intrinsic 
interest and importance no less than the wonderful advance 
it has made as a branch of science during the last few years, 

will, I am sure, be a sufficient reason for selecting it as a 
subject upon which to address you. 

It is scarcely thirty years since the appearance of the 
work which completely revolutionized the subject of 
acoustics. I refer to the masterly " Die Lehre von den 
Tonempfindungen " of Professor Hermann Helmholtz, one 
of the most illustrious of German physicists. In this 
noble monument of profound thought and marvellous ex-
perimental research, Professor Helmholtz laid the founda-
tions of musical science, and gave us, for the first time, a 
rational explanation of many of the most complicated 
forms of musical composition. It has been truthfully said 
that this great work has done for acoustics what Newton's 
" Principia" did for astronomy. 

In the course of the lectures I shall deliver before you, 
I shall endeavor to follow Helmholtz as closely as possible 
in what pertains to the philosophy of musical sounds, and 
to give you experimental illustrations of his most impor-
tant discoveries. It would be impossible to follow him in 
detail, as that would require far more time than I have at 
my disposal. 

But while sounding the praises of Helmholtz, I must 
not forget to speak of another distinguished scientist, — 
one who, not excepting even the eminent German philos-
opher just mentioned, has contributed more than any 
other person to the advancement of the science of acous-
tics. The one to whom I refer is the celebrated acoustic 
mechanician of Paris, Dr. Rudolph Koenig. Dr. Koenig's 
book, bearing the modest title of " Quelques Expériences 
d'Acoustique," is, indeed, a necessary appendix to Helm-
holtz's learned work. It explains what Helmholtz failed 
to make clear; it supplies his omissions, and corrects 
a number of errors that, in such difficult problems as 
the German professor grappled with, were almost, if not 
entirely, inevitable. To be unacquainted with Dr. Koenig's 
contributions to acoustics is to be ignorant of some of the 
most important facts and discoveries that go to make the 
science what it is to-day. 



It is not, however, simply as an investigator of the nature 
and laws of sound that Dr. Koenig merits recognition. He 
has probably a greater claim on students of acoustics 
throughout the world for enabling them, by means of deli-
cate and exquisitely finished apparatus of his own design, 
successfully to pursue their researches in the realms of 
sound, and also to verify the results of preceding inves-
tigators. Were it not for Dr. Koenig, I should not attempt 
to give the present course of lectures on sound before such 
an audience as the one that now greets me, as I should 
feel that I could not do so with any degree of satisfaction 
either to my hearers or myself. With Dr. Koenig's appa-
ratus around me, however, I can always be assured that I 
have the means of entertaining you, and of illustrating, in 
a way that would otherwise be impossible, the most salient 
facts and phenomena of sound. Indeed, before accepting 
the invitation to lecture before you, I made sure that Dr. 
Koenig would supply me with all the more delicate and 
important instruments. It was not that I could not get 
similar apparatus from other makers of acoustic instru-
ments, but because I know from experience that for some, 
at least, of the experiments I shall make for you, the only 
apparatus that can be depended upon for exactness and 
never-failing operation are those made by the learned and 
painstaking Dr. Koenig. The making a perfect instru-
ment— especially if that instrument be a tuning-fork or a 
wave-siren — is for Dr. Koenig a labor of love. It is for 
this reason that the tuning-forks which bear his stamp are 
so universally sought, and, when secured, are so highly 
prized. In our collection here we have tuning-forks of 
all forms and sizes, yielding from the lowest to the high-
est audible notes. Their importance as instruments of 
research we shall see as we advance. 

I have hastened to make you acquainted with Professor 
Helmholtz and Dr. Koenig, not only because they are our 
two greatest authorities on the subject of sound, but also 
because I shall have occasion to make frequent references 
to them in the course of our investigations and experi-

ments. It is important, therefore, that at the outset you 
should have a just appreciation of their standing in the 
world of science, and particularly in that realm of science 
in which they have won such distinction. 

We are now prepared, without any further preamble, to 
enter upon the elucidation of the subject of to-day's 
lecture, — namely, " The Production and Transmission of 
Sound." 

What is sound? How is it produced? How is it trans-
mitted? We shall endeavor to answer these questions 
experimentally, — the only way in which they can be 
answered with any degree of satisfaction. " The nature of 
sounds," writes Lord Bacon, " hath in some sort been 
inquired, as far as concerneth music, but the nature of 
sound in general hath been superficially observed. It 
is one of the subtilest pieces of Nature." 

For the majority of people sound is still what it was 
for the scientific student of Bacon's time, — something 
that is ill understood, something that may truthfully 
be reckoned as " one of the subtilest pieces of Nature." 

The subject of sound has engaged the attention of 
philosophers from the earliest times, and the ideas enter-
tained by them regarding its nature and production are 
often such as to surprise us for their exactness. They 
show us that the views of the philosophers of Greece and 
Rome concerning sound were in many respects very 
nearly identical with those which obtain among students 
of science in our own day. 

Thus Aristotle, who seemed at times to have almost an 
intuitive knowledge of science and of the nature of the 
phenomena that constitute the subject-matter of . physics, 
declares that " Sound, in act, is always produced by a 
body towards another and in another. It is a shock that 
determines i t . " 1 

Seneca asks, " What is the sound of the voice if it be not 
the disturbance of the air occasioned by the movement of 

1 riper« 8 ' b tcar' e'pepyeiap tpo<pos del tivos irpos ri /cal ep TIP«' I T X J J y i p 
¿itTIP t] -noiovaa. — The Soul, viii. 2. 



the tongue? . . . And to come to details: What song 
could be heard were it not for the elasticity of the air? 
And are not the sounds of horns and trumpets and 
hydraulic organs also explained by the same elastic 
force of the a i r ? " 1 

Locke, referring to this subject, says: "That which is 
conveyed into the brain by the ear is called sound, though 
in truth, until it come to reach and affect the perceptive 
part, it is nothing but motion. The motion which pro-
duces in us the perception of sound is a vibration of the 
air caused by an exceedingly short but quick, tremulous 
motion of the body from which it is propagated, and 
therefore we consider and denominate them as bodies 
sounding." 

The English philosopher makes here a distinction we 
cannot too carefully bear in mind, — namely, the distinction 
between sound as a sensation, which is merely subjective, 
and exists only in the brain, and sound as a mode of 
motion, which is objective, and the physical cause of 
sensation. Physiologically, then, or psychologically, if 
you prefer it, sound is a sensation excited in the brain, 
through the organ of hearing, by the vibratory motion of 
bodies external to the ear. Sound, therefore, as a sensation 
has no objective existence, — does not and cannot exist 
independently of the brain and auditory nerve. As a 
sensation, it is comparable with the sensations excited 
through our other senses, — to wit, taste, smell, sight,— 
although entirely different from them. There is nothing-
external to any of our senses that corresponds to 
the sensations experienced. Neither is there anything 
capable of causing sensation except matter and motion. 
Touch, taste, and smell are generally excited by matter in 
direct contact with the nerves of these special senses. In 

! Quid enim est vox nisi intensio aeris, ut audiatur, linguas formata 
concussu ? . . . Ad minora veniamus. Quis enim sine intensione spiritus 
cantus est ? Cornua et tuba et ea quse aliqua pressura majorem sonitum 
reddunt, quam qui ore reddi potest, nonne aeris intensione partes suas 
explican! ? — L . ANNVEI SENEOE Qucest. Nat., ii, 6. 

the case of smell, matter must be in the gaseous state, or in 
a state of fine subdivision, and in the case of taste it must be 
in the liquid state, ora solid in solution. But matter is not, 
in any of these cases, the same as the sensation produced. 
Matter is the stimulus, sensation is the result. In the case 
of sight and hearing, however, it is not matter, but motions 
of matter, which are the stimulating agent.1 Physically 
then, and externally to the ear, sound is merely a mode of 
motion, and nothing more. But the kind of motion that is 
competent to stimulate the optic nerve has no effect what-
ever on the auditory nerve. We cannot see a sound, and 
we cannot hear a color, not because the motions producing 
sound and color are different in kind, but simply because 
the auditory and optic nerves are of different degrees of 
sensibility. The motions giving rise to the sensation of 
light are too minute to originate the sensation of sound; 
and, conversely, motions capable of producing sound are 
too gross to generate light. Both light and sound, ex-
ternally to the ear, are only modes of motion, but modes 
of motion that require specially adjusted organs, and 
organs of different degrees of sensitiveness, for their 
transmutation into the sensations of light and sound. 

If then sound, considered apart from the brain and ear, 
be only a mode of motion, it follows that if there were no 
ears and brains in the world, sound, as a sensation, would 
be impossible. This may appear paradoxical, and yet it 
is literally and absolutely true. The motions of matter, 
the vibrations, as they are called, would be the same as 
they are now, but all would be silence, — a silence so com-
plete and universal that nothing in our experience can give 
us any adequate idea of its character. 

Sound, then, is produced by motion. The kind of 
motion, however, that goes to produce sound is not that 
of masses of matter precisely, but rather of the molecules, 
or ultimate particles, of which matter is composed. When 

1 Dr. William Ramsey, in his admirable " E s s a y on Smell," has advanced 
the hypothesis that the sense of smell is excited by vibrations of a lower 
period than those which give rise to the sensations of light and heat. 



the state of equilibrium of an elastic body is disturbed by 
a shock or by friction, it tends to regain its condition of 
equilibrium, but does so only after a greater or less num-
ber of vibrations, or oscillatory movements, of the mole-
cules of which the mass of the body is composed.' 

We are now prepared to show that in all cases where 
the sensation of sound is produced, motion is a necessary 
antecedent, and is always the efficient cause. Before 
going any farther, however, permit me to explain a few 
terms of constant recurrence. The term vibration has 
been used several times, and this term must be defined 
first of all. It is, too, more frequently used than any 
other, and when employed in connection with sound it 
has a very precise and definite signification. 

A movement of a particle, or molecule, to and fro con-
stitutes what is called a complete or double vibration, and is 

the kind of vibration I shall 
a A 

_.-''"'•* always speak of, unless 
\ / otherwise stated. In France, 
\ / however, a movement of a 
\ / particle to or fro is called a 
i ; vibration. This we should 

denominate a single, or semi-
vibration. It is also called 
an oscillation. Newton meas-
ured by double vibrations, 
whereas Chladni always used 
single, or semi-vibrations. 

Let me illustrate. In a 
vice, E (Fig. i ) , is fastened 
an elastic steel strip or bar, 
B C A. Drawing the free 
end aside to a, and letting it 
go, the elasticity of the strip 
will carry it back to its orig-

inal position A ; but the energy now stored up in it will 
cause it to move onward to a!, nearly as far from A as a is. 
At a and a' the motion, as is evident, will be nil, while at 

A, intermediate between a and a1, its velocity will be at a 
maximum. At points between aA and Aa' the velocity 
will be accelerated or retarded, according as the strip 
moves to the right or the left. 

Once started, the bar will continue to move to and fro 
for some time, the distance through which it passes grad-
ually decreasing, until it finally comes to rest. The motion 
from a to a' constitutes a single vibration; that from a to 
a! and return, is a complete vibration. The time required 
for executing a complete vibration is called its period} and 
when a motion always returns to the same condition after 
equal intervals of time, it is said to be periodic. The dis-
tance through which any particle of the bar moves, as 
from a to a', is called the amplitude of vibration. The 
movements themselves are of the kind called vibratory. 

The period of the successive vibrations of an oscillatory, 
or sounding, body, like those of the pendulum, are equal. 
The term used to express this equality of periodic vibra-
tion is isochronous? Thus two or more vibrations, exe-
cuted in the same time, are said to be isochronous, and 
the motions themselves are said to synchronize. In the 
case before us, the vibrations, by reason of the length of 
the strip, may be perceived by the eye. As the strip is 
shortened, however, the amplitude of the vibrations is 
lessened, and they also become so rapid' as to be no 
longer visible. But if we cannot see them, we can hear 
them. A musical sound is the result of the vibratory 
motion communicated to the strip, and you will observe 
that as the length of the strip is shortened, the pitch of 
the sound it emits becomes higher and higher. 

In the experiment just made, you have seen how a 
vibrating body may generate sound. In the place of a 
straight strip, or bar, let me take a bent one mounted on 

1 Mersenne appears to have been the first to employ this term — Latin, 
periodus — in the sense here indicated, in his Harmonicorum Libri. 

2 This is the word — laoxpovoi — used by Mersenne, Harm. Lib. ii., Prop. 
29, in which the law of synchronism is discussed. It is from the Greek '<ros, 
equal, xp°"05- time. 
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a box (Fig. 2). The bar thus fashioned is called a tuning-
fork, and is the most useful instrument the student of acous-

tics has at his command. 
The box reinforces the 
sound produced by the 
fork for a reason we 
shall see later on.1 

When a violin-bow is 
drawn across the end of 
one of the prongs of the 
fork, a loud, clear note 
is produced. You can-
not, however, see the 
motion of any part of 
the fork, although every 

part of it, as well as of the box, is in a condition of -violent 
oscillation. By touching one of the 
prongs, or even the box, one can feel 
the tremors that agitate them and give 
rise to the sound that fills the room. 
Permit me now to give you a simple 
proof of the existence of these unseen 
vibrations. 

Close beside one of the prongs of 
the fork (Fig. 3) is suspended a small 
pith ball. Exciting the fork as before, 
you again hear the sound emitted, and 
you remark at the same time that the 
pith ball is thrown aside with consider-
able force. Every time it comes in 
contact with the fork it is violently re-
pelled. Here, as in the case of the 
vibrating bar, sound is a concomitant of motion. And 
although the rapidity and small amplitude of the vibrations 

1 The tuning-fork was invented by John Shore, a trumpeter in the ser-
vice of George I. of England, in 171 1 , —nearly two hundred years ago. The 
resonant case was added subsequently by a French instrument-maker 
Marloye. 
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prevent them from being directly perceived by the eye, 
the repulsion of the ball, when it comes in contact with 
the fork, leaves us in no doubt 
as to their existence. Hold- jl 
ing a lead pencil against one J^jff 
of the prongs gives the same V 
results. The loud clatter that \ 
follows, assures us of the re- \ • 
ality of the motion of the % ^^f^^^ML 
sonorous body. » 

We may now go a step far- Hfci" ' - • « i g 
ther. Instead of a bar of steel — ^ 
I shall take a circular plate of v"' • • g C ^ c 
brass (Fig. 4), mounted on a ^ g S M m T 
heavy iron support. On agi-
tating the plate with the bow, 
a very marked sound is heard, FIG. 4. 
and, in the case of the lowest 
sounds that may be produced, the motion of the plate 
is visible to the eye. When, however, the higher notes 
which the plate is competent to yield are sounded, the 
motions of the plate are lost to the unaided vision. But 
there is a way of showing their presence in a most sim-
ple yet most beautiful and striking manner. Strewing 
some find sand upon the plate, and drawing the bow across 
one of its edges, we not only evoke a musical sound, but 
call into existence, as if by magic, a figure of the most 
exquisite design and symmetry. The mirror behind the 
plate enables you to see the figure by reflection. Each 
note, as we shall see in its proper place, has its characteristic 
figure. 

It would be easy to fashion this plate into a bell, as a 
tuning-fork is made, by bending, out of a straight bar. 
Instead of taking a metal bell, it will answer our present 
purpose much better to have one of glass. Almost in 
contact with the edge of the large bell, A (Fig. 5), is sus-
pended, from a convenient support, a small ball of cork, B. 
On drawing the bow across the edge of the bell, a loud, 



FIG. 5. 

pure sound is emitted. But observe: directly the sound is 
emitted, the ball is violently agitated, and keeps up a rapid 

— oscillatory motion as 

long as the sound lasts. 
This experiment should 
convince any one that 
the molecules of the 
glass bell are in a state 
of tremor; but it is easy 
to vary the experiment 
so as to demonstrate the 
same fact in an equally 
conclusive manner. 

We may do this by 
removing the cork ball 
and pouring a little 

water mto the bell. By causing it to vibrate as before, 
beautiful ripples play over the surface of the 
water, and if the bow is vigorously drawn, the | I M 
water is projected as spray from the 'por- H i 
tions of the bowl where the quivering motion 
is greatest. If a little more force were ap-
plied to the bow, the bell would shiver into 
fragments. H | l 

Every one is familiar with the fact that 
when stringed instruments like the violin, 
piano, or harp emit a note, the string pro-
ducing the note is in a state of greater or 
less vibration. Frequently the vibrations can 
be seen; they can always be felt. 

We have in the apparatus before us (Fig. 6) 
a simple and effective means of showing' the 
vibrations of strings. It consists of a black 
board, and a white string passing over two 
bridges, A and B. The tension of the string 
is regulated by the peg C. When stretched 
but slightly and plucked, one is able without difficulty to 
follow its to-and-fro motion on either side of its position 

FIG. 6. 

of equilibrium. As the tension is augmented, the vibra-
tions become more rapid. The string now appears as an 
airy, transparent spindle. Increasing the tension still more, 
the vibrations become sufficiently rapid to generate an 
audible sound, while the motion of the string remains as 
marked as before. But when the vibratory motion of the 
string ceases, the sound due to this motion becomes extinct. 

With the organ-pipe the case is different. One may, 
it is true, by the sense of touch become aware of the 
vibratory motion in an organ-pipe, but the invisibility of 
air prevents our seeing the condition of the particles con-
stituting the aerial column. As it is the vibration of the 
column of air within the pipe, and not the pipe itself, 
which chiefly gives rise to the note of an organ-pipe, it is 
well that we are able to render evident to the eye that this 
motion actually exists. This can be done very easily 
indeed. Into an organ-pipe, one of whose sides is of 
glass, is lowered a thin membrane stretched on a frame 
and strewn with fine sand. As soon as the pipe is made 
to speak, the sand is violently agitated, as may be seen by 
one who is near, and the rattling noise produced by the 
grains of sand dancing about on the membrane is suf-
ficiently loud to be heard some distance away. 

The existence of the vibratory motion of a column of air 
in a sonorous tube can be shown still better by another 
method. Before the condensers of the lantern is placed a 
glass whistle, the inside of which is strewn with a very 
light powder such as amorphous silica. As soon as the 
whistle is sounded, the powder forms groups of thin 
vertical plates, which are now projected on the screen. 
As long as the sound persists, the powder retains its 
present position. When it ceases, the powder falls to 
the bottom of the tube. 

But it may be urged that the agitation here produced 
is really due to a current of air from the mouth, and not to 
a vibratory motion of the particles of the aerial column. 
The form and the grouping of the vertical plates of powder 
should convince any one who reflects on the matter that 



this is impossible. To remove all doubt, let us modify 
the experiment somewhat, and excite the air column in 
another way. Taking the mouthpiece away from the 
whistle, we have left only a glass tube, stopped at one end. 
Let us now excite this tuning-fork, which emits the same 
note as the vibratory column of air within the tube. As 
soon as the fork is sounded, the powder springs up into 
groups of plates as before, and that notwithstanding the 
fact that the fork is several feet away from the tube. The 

vibratory motion of the fork, it is 
obvious in this instance, is communi-
cated to the air enclosed within the 
tube through the medium of the air 
separating the fork from the tube. 
When the sound of the fork dies out, 
the agitation of the air in the tube 
ceases, the powder becoming quiescent 
as before. 

Supported on a suitable stand, we 
have a large glass tube, A B (Fig.' 7), 
about three feet in length and two 
inches in diameter. Its lower extrem-
ity is covered by a brass cap, in the 
centre of which is a circular orifice 
whose diameter is equal to the thick-
ness of the cap. If we fill this tube 
with water and allow it to issue from 
the orifice below, striking at w, we shall 
hear a low, variable note of great purity 

It is produced by the intermittent flow 
of the water through the aperture, the rhythmic action of 
the flow communicating a vibratory motion to the entire 
liquid column above. This experiment is due to the dis-
tinguished French physicist, Felix Savart, to whom, as we 
shall learn, we are indebted for many interesting apparatus 
and methods of research in acoustics. 

Let me now show you how sound can be generated by 
a motion different from any we have yet considered. 
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and sweetness. 

Before you, mounted on a rotator, is an instrument 
(Fig. 8), called, from its inventor, Savart's wheel. It is 
nothing more than a toothed wheel 
made of brass, and is very like a small 
circular saw. There are in reality four 
of these wheels attached to the stand, 
but we shall for the present employ 
but one of them, — it is immaterial 
which. When the wheel is turned, and 
the teeth are allowed to strike against 
a card, you hear at first a succession of 
taps. But by giving the wheel a more 
rapid motion,, these taps coalesce and 
form a continuous sound, — a sound 
that can be rendered so loud and shrill 
as to become actually painful to the 
ear. A circular saw rapidly revolving FIG. 8. 

in the air, or cutting wood, produces a 
similar sound, and for the same reason. A circular saw, 
as we shall soon learn, gives a louder sound than the 
serrated wheel we have just used, because of the greater 
force applied, and a higher pitch, on account of its more 
rapid revolutions. 

FIG. 9. 

In this connection permit me to show you a still more 
remarkable way of producing sound by taps. The instru-
ment used consists (Fig. 9) of a peculiarly shaped brass 
bar and a block of lead. It is named Trevelyan's rocker, 
from Mr. Trevelyan, who invented it and first gave an 



explanation of its mode of action. The brass bar is made 
so as to move from side to side, under the influence of 
slight impulses. The rocker is heated, and on placing it 
upon this cold lead block, you at once hear a musical 
note. By pressing on the rocker with the point of a 
pencil the pitch of the sound is made higher, and any 
variations in the pressure, however slight, give rise to a 
corresponding change in pitch. 

The origin of this singular sound is not difficult to ac-
count for. As soon as one side of the heated bar touches 
the lead, it induces, by communication of heat, sudden 
expansion of the part touched, which causes a tilting of 
the bar itself. This process is repeated from side to side, 
giving the bar a sufficiently rapid rocking, or vibratory 
motion, to produce the sound emitted. The sound may 
be made to vary with the size, form, weight, and arrange-
ment of the bar, but it is in all cases the result of a more 
or less rapid oscillatory motion. 

I turn now to an entirely different method of producing 
sound. In this case the motion required for the eliciting 
of an audible note takes the form of a rapid succession of 
puffs of air. On the rotator just used there is, in addition 
to Savart's wheel, a disk of brass having near its circum-
ference a number of equidistant orifices. The instrument 
in this form was designed by Seebeck, and with it, under 
various forms,, he made many interesting experiments. A 
modified form of the siren, together with the tuning-fork, 
will, as you shall see in our subsequent lectures, constitute 
our most efficient aids in elucidating the mysteries of 
sound. Bringing the nozzle of a small tube, connected 
with an acoustic bellows, over the circle of perforations of 
the disk, and causing the disk to revolve, you hear, when 
the air escapes from the bellows through the tube, first a 
succession of puffs, and then, as the wheel revolves more 
rapidly, the sound becomes more shrill, and reminds one 
of the weird wailing of the wind on a dark wintry night. 

I hold in my hand a little instrument called the mill-siren 
of Cagniard de Latour. It is essentially a cvlindrical tube 

of brass, at the end of which is a revolving fan. When 
one blows into the mouthpiece the fan is made to revolve. 
The fan thus renders the current of air intermittent, and 
we have produced, therefore, the vibratory motion which, 
as we have seen in the preceding experiments, is the ne-
cessary precursor of sound. 
By increasing the blast of ^ l ^ g s ^ g g ^ -
air the speed of the fan is 

the siren just used. .J. ..' H^M^n-i^r" 
There is but one step from 

the mill-siren to a very sim-
ple and primitive instrument, to which I wish now to direct 
your attention. I show it to you to emphasize what I 
have thus far been insisting on, — namely, that sound ex-
ternally to the ear is merely a mode of motion, and that 
when motion is properly timed, sound is always the result. 

The instrument referred to is 
called a musical sling, and con-
sists of simply a thin plate of 
metal (Fig. 10) about three by 
six inches in size, and attached 
to a string. I take hold of the 
string and give the plate a whir-
ling motion, making it describe 
a circle in the air. The resist-
ance of the air causes the plate 
rapidly to revolve around its 
longer axis, and to give forth, 
first a flutter, and then the more 
acute musical sound which is 
distinctly audible in every part 

IMBf n i g 0 f t] i e room. 

F l G u A more interesting way of 
throwing the air into periodic 

pulsations is by means of a jet of burning gas, preferably 
hydrogen. On introducing an ignited jet of this gas into a 



glass tube (Fig. 1 1 ) there is at once heard a note of singu-
lar purity and power. By causing a cubical mirror to re-
volve near the tube, we can see that the flame is rapidly 
extinguished and rekindled; and this rapid extinction and 
rekindling it is that causes the aerial column within the 
tube to vibrate so as to emit the sound you all hear. 
Such a flame is called a singing flame, and we shall have 
occasion to investigate it more in detail in a subsequent 
lecture. 

Wertheim has taught us how we may vary our experi-
ments by using electricity as an agent for producing the 
vibratory motion necessary to generate sound. We have 
here (Fig. \2) an iron bar firmly clamped in the middle to 
a solid metal stand. Around one of the ends of the rod 
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is placed a coil of insulated copper wire, through which 
may be sent a current of electricity. We allow a current 
from a battery to pass through the coil, and then intercept 
its flow by breaking the circuit. Every time the circuit is 
closed or broken, a faint sound is the result. When the 
current is passing through the bobbin the bar is mag-
netized ; but as soon as the current ceases to flow, on ac-
count of the conductor being disconnected, the bar loses 
its magnetism. The alternate magnetization and demag-
netization of the bar throw its molecules into such a state 
of vibratory motion that it at once becomes perceptible 
as sound. 

A still more interesting sound-producer is the radio-
phone, a simple form of which is before you. In a 
test-tube is placed a small tube of brass covered with 
lampblack. Through the perforated disk on the rotator, 

intermittent flashes of heat, converged by a concave re-
flector from the gas jet, are allowed to impinge on the 
soot-covered brass tube. This, by producing rapid 
changes in temperature, causes corresponding expansions 
and contractions in the metal tube, and a continuous sound 
follows in consequence. The pitch of the sound depends 
on the number of flashes made to impinge on the tube. 
The more rapid the revolution of the disk, the greater the 
number of flashes of radiant energy, the higher the pitch 
of the resulting note. 

M. Mercadier has devised a more elaborate instrument 
(Fig. 13) , by means of which we can get the four notes of 
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the perfect major chord 1 by pressing on suitable keys at 
C, connected with 11. By converging a beam of light 
through 0 U, from a powerful electric lamp on the soot-
covered brass tube R, and reinforcing by a trumpet-shaped 
resonator, S T, the notes emitted, we can, by rotating, by 
means of the pulleys, P P\ the perforated wheel, D, with 
sufficient velocity, elicit notes that can be perceived at a 
considerable distance from the instrument. 

In the experiments so far made we have seen a few of 
the many ways in which sound may be generated. In 
some cases it is directly caused by friction, as when a bow 

1 See chapter x., on Intervals, etc. 
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is used. In other instances it is produced by taps or puffs, 
as when Savart's wheel or the siren is used, or by a series 
of rapid explosions, as was observed in the singing flame. 
In others, still, the sounds elicited have their origin in 
rapid molecular motions induced by the intermittent action 
of heat or electricity. 

In all cases motion precedes and accompanies sound. 
It appears sometimes as segmental mass-motion, when a 
part or a whole of the sound-producing body, divided into 
a greater or less number of segments, is seen to be in a 
state of rapid oscillation. More frequently, the motions 
which give rise to audible notes are nearly or entirely in-
visible. In the latter cases it is molecular rather than 
mass-motion — the motions of the molecules or ultimate 
particles of the vibrating body, rather than those of the 
vibrating body, considered as a whole — that is the cause 
of sound. We may not, however, separate the two motions, 
as they are always, to a greater or less extent, concomitant 
in all cases where sound is produced. Molecular motion 
gives rise to mass motion, and vice versa. In all cases 
under discussion one necessarily depends on the other. 
When, for instance, the tuning-fork is excited by the 
bo\<r, the whole mass of the fork is set in periodic vibra-
tion, — a motion which would be impossible, were it not 
for the elasticity of the steel, — and at the same time 
there is a corresponding tremor of the smallest particles, 
the molecules, of which the fork is composed. 

The physical cause, then, of sound is motion, — in all 
cases motion. If this one fact is duly appreciated, a great 
advance is made towards properly understanding what 
will follow. 

We are now prepared to answer a question that 
must have suggested itself to all of you ere this; that, 
is, " What is the difference between a musical and a non-
musical sound, between a musical sound and noise?" 
As a sensation, every one can, under ordinary circum-
stances, distinguish one from the other. The extremes 
of musical and non-musical sounds are easily separated. 

But there are many instances in which the separation is 
not so easy. 

Physically, musical sounds, as Helmholtz tells us, are 
always produced by periodic vibrations, noises by non-
periodic vibrations. 

But musical sounds may be so combined as to produce 
a noise. If, for instance, one were to sound simultaneously 
all the eight notes of the gamut on a piano or harmonium, 
the result would be designated as a noise, although each 
of its components, taken separately, is recognized as a 
musical note. Similarly, what is usually regarded as a 
noise may be shown to be, in reality, a distinct musical 
sound. In my hand is a small piece of wood, which I let 
fall on the table. Certainly no one would think of calling 
the sound musical. And yet it does possess quite a marked 
musical character when one's attention is properly directed 
to it, and when the sound is compared with others of the 
same kind in a proper sequence. 

When the same piece of wood is dropped again, and, in 
succession, seven others of gradually decreasing size, you 
at once recognize the notes of the gamut. Choosing three 
from the number, and allowing them to fall on the table as 
before, you distinguish a series of sounds that constitute, 
in music, the perfect major chord. If all three are let fall 
at once, the sound is still agreeable. 

The sounds thus generated are not, if you will, as pure 
as those furnished by the harp or the flute, but they must 
be classified as musical, and are, indeed, used in music. 
The instrument known as a xylophone is made up of 
just such pieces of wood. Substituting metal bars for 
wood, we have the well-known instrument called the metal-
lophone. Pieces of glass or compact stone, like slate, might 
be used, and these would give us what are known as glass 
or rock harmonicons. The Chinese, in an instrument 
called the king, use pieces of flint suspended from cords, 
and by striking the flints they manage to elicit from 
them quite agreeable music. The • well-known "Anvi l 
Chorus" is another illustration of how what are ordinarily 



reckoned as noises, may be made to do service as 
music. 

But we may go still farther. When a cork is drawn 
from a bottle you hear a quick, explosive report. Surely 
no one would call this a musical sound. Let us compare 
it with a proper sequence of similar sounds. Drawing 
corks from these three bottles, whose sizes vary according 
to a fixed ratio, we have three sounds of different pitch 
produced. Every one near recognizes the same sequence 
of sounds as was produced with the three wooden bars. 
The sounds are unmistakably those of the major chord. 
With a sufficient number of properly tuned bottles a skil-
ful performer could, by merely withdrawing the corks, 
easily evoke a simple melody that every one would 
recognize. 

Koenig has devised an interesting piece of apparatus 
(Fig. 14), in which 
sounds are elicited in the 
manner just illustrated. 
Here, instead of bottles, 
we have four brass tubes 
attached to the same 
base, and furnished with 
accurately fitted pistons. 
When these are with-
drawn in succession,you 
hear the notes C3, E 3 , 
G3, C4, constituting the 
perfect major chord.1 

From these experi-
ments it is obvious that 

the line of demarcation between musical sounds and noises 
is not so easily drawn as one might imagine. Dr. Haughton 
gives an excellent illustration of the truth of this statement. 
" The granite pavements of London," he says, " are four 
inches in width, and cabs driving over this, at the rate of 

1 See Appendix I. for value in musical notation of the notes here 
mentioned. 
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eight miles an hour, cause a succession of noises at the 
rate of thirty-four in the second, which corresponds to 
a well-known musical note that has been recognized 
by many competent observers; and yet nothing can be 
imagined more purely a noise or less musical than the 
jolt of the rims of a cab-wheel against a projecting stone. 
Yet if a regularly repeated succession of jolts takes place, 
.the result is a'soft, deep, musical sound that will bear com-
parison with notes derived from more sentimental sources." 

So, too, we may hear musical notes in the plashing of 
a fountain, the roar of a cataract, the murmur of a river, 
the howling of the wind, the hum of machinery, the rum-
ble of a railway train passing over a bridge or through 
a tunnel, and in the complex result occasioned by the 
manifold noises of a neighboring city. Carlyle, therefore, 
tells a profound truth when he says, " See deep enough, 
and you see musically; the heart of Nature being every-
where music, if you can only reach it." Byron expresses 
the same idea still more elegantly when he sings, — 

" T h e r e ' s music in the sighing of a reed ; 
There ' s music in the gushing of a r i l l ; 
T h e r e ' s music in all things if men had ears, — 
Their earth is but an echo of the spheres." 

Equally true, and almost equally beautiful, are the 
following lines of another poet: — 

" We have not heard the music of the spheres, 
The song of star to star ; but there are sounds 

That Nature uses in her common rounds, — 
T h e fall of streams, the cry of winds that strain 
The oak, the roaring of the sea's surge, might 
Of thunder breaking off afar, or rain 
That falls by minutes in the summer's night: 
These are the voices of earth's secret soul, 
Uttering the mystery from which she c a m e . " 1 

We do not hear many of the musical sounds that keep 
the atmosphere in a state of constant tremor, because we 

1 Archibald Lampman, in " Scribner's Magazine." 



do not give ear to them, or because we are not in the 
habit of expecting musical sounds except from musical 
instruments. It is true that musical instruments afford us 
the most agreeable tones, but there are instruments used 
in music that emit sounds which are far from pure, and 
frequently anything but agreeable. Among these are 
drums, tom-toms, cymbals, castanets, timbrels, tambour-
ines, harmonicons, triangles, and others of the same class. 
They are, for the most part, used for keeping time, 
and the tones produced, are fortunately so modified 
by accompanying sounds that they lose most of their 
harshness. 

From what has been said, and frofh the experiments 
made, we must conclude that the popular distinction be-
tween sound and music is singularly vague. Helmholtz's 
distinction, however, is always literally true. Periodic 
vibrations, whatever the source of sound, whatever the in-
strument used, always yield musical notes. They are 
smooth and agreeable to the ear, while, on the other hand, 
noises, or non-periodic vibrations, produce on the tym-
panic membrane a kind of jolting sensation, — a sen-
sation of irregularly recurring shocks. A noise thus 
affects the auditory nerve painfully, just as a flickering 
light gives rise to a painful sensation in the nerves of 
sight. 

But the motion, periodic or non-periodic, of sonorous 
bodies cannot be apprehended as sound except through 
the intervention of some medium connecting these bodies 
with the organ of hearing. This medium is, ordinarily, 
the air. Any other substance, however, solid, liquid, or 
gaseous, may serve as a transmitting medium. 

Let us then inquire into the mode of the propagation of 
sound. If we can picture this clearly to our minds we 
shall have made a second important step in our investiga-
tions. That air or some other medium is indispensable 
for the transmission of sonorous vibrations has been known 
from the earliest stages of physical inquiry. We have seen 
how Seneca considered the elasticity of air as essential to 

the production and transmission of sound. That some 
medium was necessary was evident, but it was not possible 
to demonstrate experimentally the necessity of a medium 
until the invention of the air-pump by Otto von Guericke, 
in 1650. It was then shown by the inventor of this most 
useful instrument that sound cannot travel in vacuo, — that 
air or some other medium is always necessary for its 
propagation from one point to another. 

We may here repeat the experiment of the illustrious 
burgomaster of Magdeburg, which is no less instructive 
than interesting. Thanks to improved forms of apparatus, 
we can now secure much better results than were possible 
in Von Guericke's time. 

On the plate of our air-pump (Fig. 15 ) is placed a 
piece of clockwork, H, C, which causes a small hammer, a, 
to strike a bell, T. The clockwork 
is now wound up and set going. 
The bell-glass is next placed on 
the plate, and covers the clock-
work; but still you hear the bell 
with almost undiminished intensity. 
A few turns of the crank of the 
pump are, however, sufficient to 
exhaust the air in the receiver to 
such an extent that the sound now 
audible becomes comparatively fee-
ble. A few more strokes of the 
piston produce almost a perfect pIG. I5. 

vacuum, and the sound is now so 
faint as to be inaudible even to those who are nearest 
the instrument. The hammer is still striking the bell, 
as you may observe, but it is entirely noiseless. To se-
cure this result we have isolated the clockwork from the 
plate of the pump by interposing a layer of non-conduct-
ing material. Had the mechanism operating the bell been 
in contact with the plate, the strokes of the hammer would 
have been communicated to the outside air by the material 
of the plate itself. 



As soon as air is re-admitted into the receiver, the sound 
of the bell again breaks forth, so as to be heard by every 
one in the room. 

Let us now admit hydrogen gas into the receiver instead 
of air, and note the result. Hydrogen is about fifteen 
times lighter than air, and sounds generated in such a 
medium are more feeble than they would be in a denser 
medium. Although the receiver is now filled with this 
gas, the sound of the bell is, as you remark, much weaker 
than when the receiver was filled with air. Exhausting 
the receiver as before, the sound disappears more rapidly, 
and becomes inaudible sooner than it did when air was 
used. This experiment shows that the more attenuated 
the medium, the less competent it is to convey sonorous 
vibrations to the ear. We might experiment with other 
gases or vapors, and we should find that the intensity of 
the sounds heard would in all cases depend on the density 
of the media employed. 

Later on, in 1685, Papin repeated Von Guericke's 
experiment before the members of the Royal Society in 

London. As a source of sound, he 
used a whistle instead of a bell. In 
1705, Hawksbee made the experiment 
in a somewhat modified form, using a 
simple bell suspended by a string in-
stead of one operated by clockwork. 

By means of a large glass globe 
(Fig. 16), in which is suspended a little 
bell, we may repeat Hawksbee's ex-
periment in a very pleasing and effec-
tive way. Swinging the globe back 
and forth while full of air, the bell is 
made to ring so as to be clearly heard 
throughout the hall. Connecting it 

by means of the metallic part, A B, with our pump, we 
withdraw the air from it, and then close the tube by the 
stopcock R. Now, on agitating the bell anew, we find that 
the sound is so faint as to be barely perceptible. 

These experiments, then, prove conclusively that sono-
rous vibrations cannot be propagated in a vacuum; some 
medium is necessary. Ordinarily it is air, but all elastic 
bodies are capable of transmitting sound, and some of 
them, as we shall see, with much greater readiness and 
velocity than others. 

From the foregoing experiments we should infer that in 
a vacuum there is absolute silence, and that, if we could 
exist in vacuo, we should be able to hear nothing, not 
even the most powerful detonations. Balloonists, in the 
higher regions of the atmosphere, encounter conditions 
which afford an approximation to this utter silence. Those 
who have ascended very high mountains have noted a sim-
ilar circumstance. The sensation is strange, indescribable, 
awe-inspiring, almost startling. It is so entirely different 
from any experience that one can have near the earth's 
surface, where there is always more or less sound, even 
when everything is apparently in perfect quiescence. 

I had some years ago an opportunity of experiencing a 
sensation of this kind on the summit of the volcano of 
Popocatapetl. This peak, as you know, has an elevation 
of nearly eighteen thousand feet above sea-level. The 
feeling that then came over me is something I shall never 
forget. The silence there is " the silence that is in the 
starry sky," — a silence where no sound is uttered, where 
no sound may be, a silence that — 

" Pours a solitariness 
Into the very essence of the soul." 

And here again it will be interesting to know what opin-
ions the early physical investigators entertained regarding 
the subject we are now discussing. We are often wont to 
imagine, and without any warrant for so doing, that the 
theories of the ancient philosophers in matters of physical 
science were entirely futile, and that their consideration is 
simply a loss of time. But the truth is that their views 
on many subjects in physics are often nearly identical with 
our own. They seemed at times to have had an almost 
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intuitive conception of the truth. The wonder is how 
they were able to acquire such exact notions about 
matters that even now are not easily understood. Nothing 
indeed can be more interesting or instructive than to 
observe their gropings after truth, and to see how closely 
they anticipated, in many instances, the discoveries and 
generalizations of modern science. It is simple justice to 
these old students of Nature to give them credit for what 
they have achieved, and to admit that many of the theories 
and doctrines that are usually regarded as the fruits of 
modern research, had, in reality, their starting-point in the 
observations and hypotheses of those who labored and 
thought long ages ago. If there is evolution in the organic 
world, there is evolution also in the world of science; and 
the grand intellectual achievements of our own time owe 
not a little of their lustre to the glory of the distant but 
brilliant past. 

We have a striking illustration in the question before 
us, — the mode of propagation of sound. Aristotle in his 
treatise on "Sound and Hearing" says: "Sound takes 
place when bodies strike the air, not by the air having a 
form impressed upon it, as some think, but by its being 
moved in a corresponding manner; the air being con-
tracted and expanded and overtaken, and again struck by 
the impulses of the breath and the strings. For when the 
air falls upon and strikes the air which is next to it, the 
air is carried forward with an impetus, and that which is 
contiguous to the first is carried onward; so that the same 
voice spreads every way as far as the motion of the air 
takes place." 

In reading this we could almost fancy we are perusing 
some modern treatise on sound, so nearly does the view of 
the illustrious Stagyrite coincide with that now held by all 
men of science. Indeed, as Whewell truthfully observes: 
" The admirers of antiquity might easily, by pressing the 
language closely, and using the light of modern discovery, 
detect in this passage an exact account of the production 
and propagation of sound." 
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Let us take another opinion, — that of Vitruvius, the 
celebrated Roman architect. His views regarding the 
motions of the air which give rise to sound, and the illus-
tration which he uses, seem more like those found in a 
modern text-book on physics than those of an author who 
wrote two thousand years ago. He says: " Voice is breath 
flowing and made sensible to the hearing by striking the 
air. It moves in infinite circumferences of circles, as 
when, by throwing a stone into still water, you produce 
innumerable circles of waves, increasing from the centre 
and spreading outwards till the boundary of the space or 
some other obstacle prevents their outlines from going 
farther. In the same manner the voice makes its motion 
in circles. But in water the circle moves breadthways 
upon a level plain, the voice proceeds in breadth, and also 
successively ascends in height." 1 

Let us now, in the light of modern research, investigate 
the condition of the air when under the influence of vibra-
tory motion. And that we may better understand this 
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motion, let us suppose an elastic strip to vibrate at one of 
the extremities of a cylindrical tube (Fig. 17). A little 
reflection will make it apparent that each time the strip 
moves from L to L" it will impress on the vertical layer 
of air, X, a series of condensations whose intensity increases 
during the first half and decreases during the last half of 
its excursion. Every time, however, that the strip moves 
in the opposite direction — that is, from U to L — the 
layer X will be subject to a series of rarefactions whose 
intensity increases during the first half, and decreases dur-
ing the last half of its swing. And as long as the strip 
continues to vibrate, this terminal layer X will be subject 

1 Quoted in Whewell's " History of the Inductive Sciences," ii. 25. 



alternately and periodically to similar conditions of con-
densation and rarefaction. 

But these condensations and rarefactions are not con-
fined solely to the terminal layer X. They are com-
municated in succession to all the succeeding layers, and 
affect the entire mass of air enclosed in the tube. As the 
vibrations of the elastic strip are periodic and isochronous, 
so also are the pulses of condensation and rarefaction 
periodic and isochronous. Condensations and rarefactions 
of equal length alternate with one another, and persist as 
long as the strip continues to vibrate. A simple vibration 
of the strip — that is, an excursion to or fro — generates 
a single wave of condensation or rarefaction. A complete 
vibration of the strip—that is, an excursion to and fro — 
produces a complete wave, one, namely, that is composed 
of both a condensation and a rarefaction. 

Fig. 17, as we see, exhibits the condition of the aerial 
column after the elastic strip L has executed five single 
vibrations. We have, accordingly, five single sonorous 
waves, of the same length, abutting one another. These 
waves, composed of alternate condensations and rarefac-
tions, are graphically represented by a continuous curve, 
which cuts the axis of the tube at the points X, D, C, B, 
A, X'. The portions of the tube above the axis are con-
ventionally considered to represent waves of condensation, 
of which we have here three, while the parts below the axis 
represent waves of rarefaction, of which two are exhibited. 

Arrows indicate the direction of movement of the air 
particles constituting the condensed and rarefied pulses. 
The direction is always the same for pulses of the same 
kind, but opposite in condensed from what it is in rarefied 
pulses. 

The perpendiculars to the points Z and M represent the 
degrees of condensation and the velocities of movement of 
the air-particles at these points. Similarly, the ordinates 
at the points Z] and M represent the amount of rarefaction 
and the relative velocities at the points intersected. At 
the points where the continuous curve cuts the axis of the 

tube the air is in a state of equilibrium, and there is neither 
condensation nor rarefaction, and consequently no move-
ment. But even at the points of maximum condensation 
and rarefaction the amount of displacement for any deter-
minate particle is extremely small. 

The time required for the bar L to execute a complete 
vibration is, as we have learned, called its period. The 
time required for a particle of air set in motion by the 
vibrating bar to make a complete vibration is called its 
period. The periods of both the bar and the air-particles 
excited by the bar are obviously equal. The wave-length 
is the distance from one condensation to the next conden-
sation, as from X to C, or from one rarefaction to the next 
rarefaction, as from D to B. or from any one given particle 
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to the next particle in a like position and moving in the 
same direction. 

The wave always moves one wave-length in the time 
required for a particle to make one complete vibration. 
Any two points separated by one or more wave-lengths 
are in similar conditions, and are said, therefore, to be in 
the same phase. If any two points are separated by an 
interval greater or less than one or more complete wave-
lengths, they have phases which are different Thus in 
Fig. 18 the points where M, M\ M", cut the continuous 
curve are in the same phase. Similarly the points cut by 
the ordinates N and N' are in the same phase. M and N, 
or M' and JV are in different phases. 

In Fig. 19 we have a very instructive graphic represen-
tation of sonorous waves. It must, however, always be 
borne in mind that it is only an arbitrary representation, 
a symbol, and not a picture, of a sound-wave that is indi-
cated by such curves and lines. From what has been said, 
the figure needs but little explanation. The portions of 
the curve above the horizontal line correspond, as has been 



said, to pulses of condensation, while those below repre-
sent pulses of rarefaction. The letters n, c, and r, in 

(i), and n, e, d, in 

n ^ 12) (2), indicate respec-
t i v e l y the n o d a l 
points where there 
is no motion, and 
the points of great-
est condensation and 
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rarefaction, or elevation and depression. 
So far we have been considering sonorous waves that 

move in one direction only. Ordinarily, however, sound 
is propagated in many, or in all directions, simultaneously. 
When a skylark, for instance, is singing in the air, the 
sonorous pulses which it originates are propagated in all 
directions. Spherical waves or shells are thus formed, 
which recede from the centre of disturbance with the 
velocity of sound, alternate condensations and rarefactions 
being generated precisely in the same manner as when the 
sound-pulse travels only in one direction. 

This is well illustrated by the accompanying diagram 
(Fig. 20). A is the source of sound. During the first half-
vibration, motion is 
communicated to the 
entire sphere, P Q, 
whose centre is A and 
radius A R. During 
the time of the next 
half-vibration, all the 
space between P Q and 
P' Q is set in move-
ment. Thus in the sec-
ond interval of time a 
sphere of twice the 
radius of the first is 
made to vibrate. In 

the third interval of time the space between P' Q and 
P" Q" has been set in vibratory motion. The volume of 
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air, therefore, which is agitated augments in proportion as 
the spherical sound-wave recedes from the centre of dis-
turbance. The amount of air set in vibration at any given 
instant varies directly as the surface of the sphere, or as 
the square of the radius of the sphere. And as the inten-
sity of sound, as we shall learn, depends on the amplitude 
of motion of the sonorous body, its intensity, in any given 
case, will vary inversely as the square of the distance from 
the centre of agitation. This is illustrated by the curve 
ARST, which represents the condition of the air at a deter-
minate instant in the direction AM. The amplitude of 
movement at any given point of the curve would, as you 
know, be represented by a perpendicular drawn from that 
point to the horizontal line AM. The wave-lengths are all 
equal, being independent of the amplitude of movement 
and of their distance from the origin of motion. The in-
tervals of time are also equal, because the vibrations con-
sidered are of the class called isochronous. 

It is now apparent, I think, that our modern notions re-
garding the propagation of sound are only a natural devel-
opment of theories held by Aristotle, Vitruvius, and others 
of their time. We have simply cleared up their conceptions, 
but have not, I venture to say, introduced any essential 
modifications. We can state their theory more accurately 
than it was possible for them to do, and, thanks to our mod-
ern delicate instruments of research, we are able to demon-
strate experimentally what they were able only to infer. 

We must, then, view sound as conveyed by waves or 
pulses. Newton tells us in his " Principia " that " Sounds, 
since they arise in tremulous bodies, are no other than 
waves—pulsus — propagated in the air." It is a motion 
that is transmitted, not a substance. There is a transference 
of a condition, or a system of conditions, of matter, but no 
transfer of matter itself. The waves that strike on the drum 
of the ear are similar to those that are excited in the sono-
rous body, but they are not the same. The sonorous body 
communicates its vibratory motion to the air-particles 
nearest to it, and these in turn deliver their motion to the 
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particles adjoining. Motion is thus conveyed from particle 
to particle, until it finally reaches the organ of hearing, 
where it is taken up by the auditory nerve and transmitted 
by it to the brain, which converts or translates it into the 
sensation which we call sound. 

A simple illustration will show you how a transfer of 
motion, like that which obtains in the case of sound, is 
possible. 

Before you is an apparatus devised over two hundred 
years ago by the distinguished French physicist, Abbé 
Mariotte, one of the ablest and most successful investi-
gators of his time. On a stand (Fig. 2 1 ) are suspended 
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seven elastic balls of lignum vitas, each of which almost 
touches its neighbor. Drawing the ball A aside from its 
position'of rest and allowing it to impinge against the one 
nearest to it, you observe that directly the first ball touches 
the second, it is stopped in its course, and its motion im-
parted to the second. This, in turn, transfers its motion 
to the third, which gives it up to the fourth; and so on 
until the motion reaches the seventh ball, C, which at once 
flies off to the right, while the other six remain motionless. 
What then has taken place? The motion which was pri-
marily imparted to the first ball was communicated to 
the succeeding six, but only the last of these showed 
the visible effects of this motion. 
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Were it not for the elasticity of the balls, this transfer of 
motion, as just shown, would be impossible. If the balls 
were perfectly elastic — they are far from it — the motion 
of the seventh ball would be equal to that given to the 
first. By using ivory balls, or, better still, glass balls, the 
loss of motion would be less, as ivory and glass are more 
elastic than is lignum vitae. 

Imagine, now, these wooden balls replaced by particles 
of air. Imagine also the particle of air nearest a sounding 
body taking up the motion of that body and imparting it 
to the adjoining particles in the direction of the ear, and 
imagine further this motion transferred in succession to all 
the particles intervening between the sonorous body and 
the ear, and you have a true picture of what actually takes 
place in nature when vibratory motion is propagated in 
straight lines through air or any other medium whatever, 
and perceived as sound. 

Let us take another illustration, which shows even more 
strikingly the mode of propagation of sonorous vibration. 
I hold in my left hand one end of a brass wire-spiral, twenty 
feet long, made of the best spring brass. The other end 
of the spiral is attached to a small box. With my right 
hand I grasp the spiral about six inches from my left, and 
pulling the turns of the spiral some distance apart, I sud-
denly relax my hold with the right hand. In virtue of the 
elasticity of the wire the turns that were separated from 
each other tend to return to their orignal position. At 
the same time, however, a vibratory motion, or pulse, is 
sent through the whole length of the spiral, and announces 
its arrival at the other end by a loud rap on the box. This 
pulse on reaching the box is reflected immediately, and 
quickly returns to its starting-point at my hand. Thence 
it again returns to the box, repeating the tap you heard 
beforehand is again reflected to my hand. This oscillatory 
motion is repeated several times, each time becoming 
weaker, until it entirely disappears. 

When the pulses are first produced they can not only 
be heard, but seen as well. To and fro you see them 
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move, each pulse making the excursion from one end to 
the other of the spiral in the same period of time. 

if we examine closely the condition of the spiral as the 
pulses pass along its length we shall find that, at a given 
instant, some of the coils are farther apart than others. As 
the pulse first starts forward towards the box we observe 
that at the end I hold in my right hand, several coils are 
closely pressed together, followed by others more widely 
separated from each other. As the pulse is carried on-
ward, the condition of compression and separation is seen 
to be propagated from one end of the spiral to the other. 
On reaching the box these same compressions and separa-
tions are reflected back to their starting-point, and this 
motion is repeated as long as the pulse continues its for-
ward and backward motion. 

This, as has been stated, is exactly what takes place 
when sound is transmitted through the air. When a 
tuning-fork, for instance, is excited, its prongs, in moving 
away from each other, crowd together the air particles in 
contact with their outside surfaces. These air-particles 
compress those in front of them, whilst those first com-
pressed by the tuning-fork tend, by reason of their elas-
ticity, to return to their normal condition. But the return 
of the prongs of the fork to their original position pulls the 
particles that were at first crowded together farther apart . 
from each other, and farther apart even than they were 
before the fork was set in vibration. 

As in the wire spiral some of the coils were closer to-
gether than others, so when sound is transmitted through 
the air we have the air-particles alternately compressed 
and separated. This condition of compression and dila-
tion, as in the spiral, is carried forward from the source of 
sound until the motion gradually dies away, or until it 
encounters some obstacle, when it is reflected back in its 
path, as in the spiral, or off in some other direction. 

Mariotte's apparatus illustrates how one particle of mat-
ter can communicate its motion to a contiguous particle. 
The wire spiral exhibits the transfer of motion by the for-
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mation of pulses of compression and dilation. Mach, 
however, has provided us with an apparatus which beau-
tifully exhibits both of these phenomena simultaneously. 
Such an instrument is before you (Fig. 22). It is about 
ten feet long and four feet high, and, taken altogether, is 
by far the best means yet contrived for showing the nature 
of all kinds of vibratory motion, both transversal and longi-
tudinal. As you observe, twenty-one white metal balls 
are suspended from the cross piece cd of a frame pagb. 
On a long bar, st, are fixed a number of pegs, at different 
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distances from each other. These pegs are so placed as 
to represent one complete sonorous wave, composed of 
one condensed and one rarefied pulse. When the balls 
are held in position by these pegs, the former as well as 
the latter exhibit a complete sound-wave. If, now, when 
the balls are in this position, the bar is suddenly with-
drawn, they will commence to swing in the same plane, 
and while swinging they will retain the same relative posi-
tions with reference to each other which they had before 
they were put in motion. They are now oscillating all in 
the same plane and in the same period. But in addition 
to the excursions made by each individual ball, you see, 
in a most striking manner, a transfer of pulses of conden-



sation and rarefaction from one end of the series of balls 
to the other. This is exactly what takes place in every 
sonorous wave, and we could have no better illustration of 
the character of sonorous vibrations than that here given. 
It gives us in a moment a more exact idea of the nature 
of condensed and rarefied pulses than could be obtained 
by hours of the best-directed efforts of the unaided imag-
ination. Indeed, we could scarcely desire a better instance 
than this of the capability which a well-devised and well-
executed experiment possesses of furnishing us with a 
clear mental picture of certain physical processes that 
otherwise would remain quite obscure, if not unintelligible. 

The motion of each ball in the experiment just made is 
like that of the bob of a pendulum. The motion of each 
particle of air agitated by the ball is the same. Such 
motions are accordingly called pendular motions. They 
are also known as simple harmonic motions. We shall use 
either term indifferently. The motions of each particle of 
a medium, transmitting a sonorous wave, are always in a 
direction parallel to the line of propagation of sound. In 
this respect they differ from the motions of the individual 
particles of a water wave, which are always at right angles 
to the direction of the wave itself. Sound-vibrations are 
likewise different from light-vibrations, for the latter, like 
vibratory motions of particles of water, are always trans-
verse to the line of propagation of luminous rays. 

What has been said of the mode of the propagation of 
sound in air applies with equal truth to all other media, 
whether gaseous, liquid, or solid. Sound is transmitted 
in pulses. Whatever the media, then, by which sonorous 
vibrations are carried from one point to another, we must 
regard the molecules of this media as being the active 
agents in the transfer of the motion impressed on it. 
While conveying sound the molecules are in a state of 
invisible, but most energetic tremor, and when this tremor 
ceases, the sensation of sound ceases also. 

How wonderfully the mechanical action of these infini-
tesimal molecules, the physiological action of the organ of 

hearing, and the psychological action of the brain are 
related to each other! Who can tell us how they are 
connected, or how one gives rise to, or influences, the 
other? No one. Such questions are "above the reach 
and ken of mortal apprehension." They bring home to 
us with telling force the fact that there are mysteries in the 
natural as well as in the supernatural order, — mysteries 
that only an angelic, possibly only the Divine, mind can 
fathom. 
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C H A P T E R II. 

LOUDNESS AND PITCH. 

MU S I C A L sounds differ from each other in three ways, 
— in loudness, in pitch, and in quality. To-day we 

shall discuss the subjects of loudness and pitch, and reserve 
that of quality for a subsequent lecture. 

In speaking of the loudness of sound we must carefully 
distinguish between the sensation of loudness and the me-
chanical action that gives rise to it. Generally speaking, 
there is no measure for the loudness of sounds, so far as 
sensation is concerned. Acute sounds, even when of the 
same mechanical intensity as grave sounds, seem louder 
than the grave ones. A bass note, therefore, to sound as 
loud as a treble note, must be executed with proportion-
ally much more force. The reason of this is that the ear 
is not equally sensitive to all sounds. 

Mechanically considered, the loudness of sound depends 
upon the energy of vibration of the sonorous body. I 
draw a bow across the prong of a tuning-fork, and you hear 
a loud, clear note. At the same time those of you who 
are sufficiently near can see that the prongs are actually 
in motion. Gradually, however, the sound dies away, and 
simultaneously, and at the same rate, the vibratory motion 
of the fork disappears. From this experiment we learn 
that the loudness of sound for any given note depends 
upon the amplitude of vibration of the sonorous body. 
The greater the amplitude, the louder the sound. As the 
result of many careful experiments, it has been found 
that the intensity or loudness of sound varies as the 
square of the amplitude of the oscillations of the vibrat-
ing body. 

Here are two tuning-forks, A and B, that are made to 
give exactly the same note. If A could be caused to 
vibrate with an amplitude of exactly one fifth of an inch, 
and B with an amplitude of one tenth of an inch, A would 
have twice the width of swing of B, and would give rise to 
a sound just four times as loud as B. 

The loudness of sound varies also with the distance of 
the sonorous body from the ear. A little consideration 
will enable us to determine the law that governs the rate 
of variation. Exciting the tuning-fork before me, it gives 
off sonorous waves in all directions. But the amount of 
matter put in motion at a distance of one foot from the 
centre of disturbance is, as geometry t e ,If lk s> o n l y o n e 

fourth of that which is agitated at a d i s t a J ^ j f two feet, 
and only one ninth of the amount causecMft ibrate at a 
distance of three feet. In other w o r d s , J g F learned in 
our last lecture, the amount of m a t t e r S H n vibration 
increases directly as the square of the r a ^ g o f the shell 
affected. But as the volume of air put i n ^ j j l g ^ increases, 
the loudness of the sound decreases, and f j j p ; same pro-
portion. The rate of diminution is put in the form of a 
law by stating that the loudness of sound varies inversely as 
the square of the distance of the sonorous body from the ear} 
At this rate, to one standing twenty feet away from the 
fork just used, the sound would be only one fourth as loud 
as to one but ten feet away. It would, however, be diffi-
cult to compare accurately the relative degree of loudness 
in this way. The experiment could be made more satis-
factorily in another way. If one tuning-fork were to be 
placed ten feet away, and four others, giving exactly the 
same pitch and intensity as the first, were to be placed 
twenty feet off, we should find that the sound emitted by 
the fork ten feet distant equalled in loudness the aggregate 
sound of the four other forks twice the distance away. We 
thus see that doubling the distance reduces the loudness of 
the sound to one fourth. Trebling the distance would 

i Mersennj gives this law in Prop. 14, lib. i-, Harm. 



reduce it to one ninth, and quadrupling it would, for the 
same reason, bring down the intensity to one sixteenth. 

Loudness of sound is also modified by the density of the 
air in which it is excited. We saw in our last lecture the 
effect of rarefied air in diminishing the intensity of vibra-
tions set up by a sonorous body. Using hydrogen gas, 
which is about fifteen times lighter than air, we obtained 
a similar result. In a heavier gas, like carbonic acid, the 
loudness of sound is augumented. The effect of air of 
slight density in diminishing the loudness of sonorous 
vibrations is illustrated in a very marked manner on the 
summits of very high mountains. Here the report of a 
pistol, as has frequently been remarked, sounds much like 
the discharge of a small fire-cracker. 

Again, the loudness of sound produced by a sonorous 
body is strengthened by the proximity of other bodies 
capable of vibrating with it. I hold in my hand a small 
tuning-fork. It is unlike those hitherto used in that it is 
not mounted on a resounding box. When it is struck 
against the table and set in vibration, the sound is so feeble 
that it is scarcely audible; but when its base is placed 
upon the table, it immediately breaks forth into a clear, 
powerful note. The board on which the fork rests is also 
thrown into a state of vibration, and hence the increased 
loudness of sound as a result Later on, we shall study 
more in detail this phenomenon of co-vibration, — reso-
nance, as it is called, — and we shall see what an important 
part it plays in reinforcing sound in many of the more im-
portant instruments of music. It is sufficient here to allude 
to it as one of the important factors that materially aug-
ment the intensity of sonorous vibrations. 

We have said that there is no measure for the loudness 
of sound as far as its sensation is concerned. Prof. A. M. 
Mayer has, however, attempted to determine the mechan-
ical equivalent of a given sonorous aerial vibration, though 
much yet remains to be done in this direction. He found 
that the sonorous air vibrations produced by a C8 fork, 
placed before a suitable resonator during ten seconds, was 

equivalent to the mechanical energy necessary to lift 54 
grains one foot high. Joule's mechanical equivalent of 
heat, or thermal unit, being 772 foot-pounds, the intensity 
of the sonorous vibrations of the fork used was, therefore, 
only about the ^ f o n T P a r t of a Joule unit IJrofessor 

Mayer's investigations are interesting, because, among 
other reasons, they indicate a universal method for the 
exact determination of the relative intensities of sounds of 
different pitch. Some method, like the one referred to, is 
quite a desideratum, and, when discovered, will enable the 
acoustician to solve many problems that constantly present 
themselves to him in the course of his researches.1 

We come now to consider the second characteristic of 
sound,— its pitch. In some of the experiments made in 
the last lecture with Savart's wheel and Seebeck's siren, 
we were given a hint as to what constitutes pitch. 

Galileo seems to have been the first to suspect the 
true cause of pitch. He noticed that in passing a knife 
over the milled edge of a coin, a musical sound was pro-
duced, and that the pitch of the sound was higher as the 
number of serrations passed over in a given time was 
greater. 

But the first one to investigate thoroughly the cause of 
pitch, and the first to determine the pitch of a known 
musical note, was the illustrious French ecclesiastic, 
Father Mersenne, of the order of Minims. Père Mersenne, 
as he is usually known, is justly called the Father of 
Acoustics. He did for the science of musical sounds what 
Galileo did for mechanics, and what Copernicus and 
Kepler achieved for astronomy. He put it on a solid 
scientific basis, and by the number and variety of his ex-
periments, in almost every department of acoustics, he 
made the way easy for subsequent investigators. Besides 
being an excellent musician, he was one of the most 
eminent mathematicians of an age of great mathemati-
cians. He was the intimate friend and correspondent of 
Descartes, and was the real founder of the French 

1 See the American Journal of Science and Arts, No. 47. vol. viii. p. 365-



Academy of Sciences. He translated and made known in 
France the works of Galileo, and made many discoveries 
in mathematics and physics. But the greatest monument 
of his genius is his work on sound and music, the first 
edition of which appeared in French in 1636, and is called 
" Harmonie Universelle." A later edition, in Latin, revised 
and corrected, is entitled " Harmonicorum Libri XI I . " 1 

It is to this edition that I shall always refer. In this 
admirable but little known work, the learned author gives 
evidence, on nearly every page, of his skill as a clever and 
industrious experimenter and profound thinker. Indeed, 
many of the laws governing sonorous vibrations are to-day 
given in almost the same language in which he first 
formulated them. Mersenne, Chladni, — of whom more 
anon, — Helmholtz, and Koenig may be considered as 
the four great pillars of the science of acoustics, as they, 
by the number and originality of their experiments, have 
contributed more to its advancement than any other four 
that could be mentioned. 

To establish the fundamental law regarding the pitch of 
sound, Mersenne stretched a hempen rope over ninety 
feet in length, so that the eye could easily follow its 
displacements. It did not then emit any sound, but one 
could easily count the vibrations it made in any given 
time. He then shortened the cord by one half, and found 
it then made twice the number of vibrations in the same 
length of time. In reducing it to a third or a fourth of the 
original length, he observed that the oscillations became 
three and four times as rapid. He also made similar ex-
periments, with like results, with a brass wire. He thus 
established the law that, all other things being equal, the 
number of vibrations of a cord is inversely as its length. 
When the cord was sufficiently shortened it gave forth 

1 The full title of the "Editio Aucta," published in 1648, of this extraor-
dinary, but almost forgotten, work is, " Harmonicorum Libri X I I , in quibus 
agitur de Sonorum Natura, Causis, et Effectibus: de Consonantiis, Disso-
nantiis, Rationibus, Generibus, Modis, Cautibus, Compositione, Orbisque 
totius Harmonicis Instrumentis." 

a sound, and this sound became higher in pitch in pro-
portion as the cord was further shortened. In this, manner 
he proved that the pitch of sound depends upon the 
number of vibrations made, and is heightened exactly in 
proportion as the number of vibrations is augmented.1 

This law being once established, it is obvious that know-
ing the length of a string and the note emitted by it when 
in vibration, it is an easy matter to calculate the note that 
would be given by another string of the same size and 
material, and under the same tension, but of different 
length. Thus Mersenne " took a musical string of brass 
three quarters of a foot long, stretched it with a weight of 
six and five eighth pounds, which he found gave him by 
its vibrations a certain standard note in his organ; he 
found that a string of the same material and tension, 
fifteen feet, that is, twenty times as long, made ten re-
currences in a second; and he inferred that the number of 
vibrations of the shorter string must also be twenty times 
as great; and thus such a string must make in one second 
of time two hundred vibrations." 2 

The next one, after Mersenne, to attempt to determine 
the pitch corresponding to a given sound was Sauveur, 
about the year 1700. He endeavored to solve the problem 
in two ways: first, by the method known as that of beats, 
and secondly, by the application of mechanical principles 
to the vibrations of strings. Both of these methods, 
although indirect, gave quite accurate results; but they are 
rather too recondite for discussion here, f t will there-
fore be sufficient simply to refer to them, without entering 
into details. 

In 1681, Robert Hooke improved on the experiment of 
Galileo by using a serrated wheel of brass instead of a coin. 
He found that on striking the teeth of such a wheel a 
distinct musical sound was emitted. Stancari repeated a 
similar experiment before the Academy of Bologna in 
1706, and showed that the pitch of the sound produced 
increased with the velocity of rotation of the wheel; and 

1 Harm., lib. ii. Prop. 18. 2 Op. cit., lib. ii. Prop. 21. 



the number of teeth being known, it was easy to compute 
the number of vibrations per second corresponding to a 
determinate note. 

About the beginning of the present century, Chladni 
endeavored to determine the pitch of sounds by means of 
vibrating bars similar to the one shown in Fig. I of our 
last lecture. The vibrating portion of the bar was at first 
sufficiently long to enable him to count the number of 
vibrations in a given time. By a scries of carefully con-
ducted experiments, Chladni found that the number of 
vibrations per second varied inversely as the square of the 
length of the bar. When the bar was made sufficiently 
short, it emitted a musical note, the pitch of which became 
higher as the bar was made shorter. 

It is obvious that Chladni proceeded in essentially the 
same way with vibrating bars as did Father Mersenne with 
vibrating strings. In practice, however, it has been found 
that the results yielded by bars were not so exact as those 
afforded by strings; and for this reason the determinations 
made by Chladni have not the same accuracy as those 
made by his distinguished predecessor. 

Let us take Savart's wheel again, which was used in our 
last lecture, and push our experiments a little farther. By 
pressing a card against the wheel, sound is at once pro-
duced, as before. Turning the wheel more rapidly, a 
more acute sound is the result; and the more rapidly the 
wheel is rotated, the shriller, as you observe, the sound 
becomes. Evidently, then, pitch depends upon the num-
ber of vibrations produced in a given time. The time 
spoken of in experiments of this kind is always one 
second. When we wish to determine the pitch of any 
sound, we find out how many vibrations it makes per 
second. With the wheel before us this is an easy matter. 
It is only necessary to count the number of teeth, and the 
number of revolutions the wheel makes per second, to 
know the number of vibrations produced. As one vibra-
tion is made by each tooth, the entire number of vibrations 
will obviously be equal to the product obtained by multi-

plying the number of teeth in the wheel by the number 
of revolutions it makes in one second. 

We have here the means of showing in another beauti-
ful way that pitch depends on the number of vibrations. 
On the rotator before you are four of Savart's wheels, 
with 48, 60, 72, and 96 teeth respectively. Placing a card 
against the wheel having 48 teeth, and then against the 
one with 60, you observe that the latter gives the higher 
note, although the rate of revolution of the wheel has re-
mained unchanged. The musicians present will notice 
something more. They will remark that the two notes 
emitted, whether sounded in succession or simultane-
ously, constitute what is called a major third. The third 
wheel has 72 teeth, and the fourth 96. By turning the 
rotator at the same speed as before, and touching the 
wheels with the card, you hear notes that 
are more acute than either of the two 
sounded previously. The fourth wheel, 
with 96 teeth, gives just twice the number 
of vibrations that the first with 48 teeth 
makes. Sounding the two notes together, 
we have the interval called in music the 
octave. Sounding all four wheels together, 
we have the perfect major chord. 

But let us compare the results given by 
Savart's wheels with those obtained from 
Seebeck's siren. In the siren we shall now 
use (Fig. 23) there are four concentric 

.series of holes. The first circle has 48 
holes, and the next three 60, 72, and 96, 
respectively. The number of holes in the 
four circles of the siren corresponds exactly 
with the number of teeth in the four toothed wheels. At 
the same rate of revolution, therefore, the siren should give 
the same number of vibrations as the wheels. Let us try. 
Taking a small bent tube, bringing it over a point in the 
circle having 48 holes, blowing through the tube, and 
turning the rotator, you hear a note which you recognize 

FIG. 23 . 



to be in unison with the one that is given by the wheel 
having 48 teeth. Sounding in succession the four notes 
of the siren, beginning with the lowest and going to the 
highest, you notice not only a rise in pitch, but also that 
the pitch of the notes emitted corresponds exactly with 
that given by the four serrated wheels. 

The siren and the toothed wheels prove, therefore, con-
clusively that pitch depends 011 the rate of vibration of the 
sonorous body, although the sounds emitted are compara-
tively feeble, and are accompanied with so much noise 
that a great part of their musical nature is lost. 

FIG. 24. 

It is now time to make you acquainted with an instru-
ment that is capable of yielding much louder and purer 
tones, and of giving much more satisfactory results. It is,, 
in reality, only a modified form of Seebeck's siren, but is 
in every way a superior instrument. It is known, from its 
inventor, as the siren of Cagniard de la Tour. It was 
called a siren because it can be made to sing under 
water. The notes are not, however, such as we are wont 
to associate with the songs of the sirens of Homer. 

As you will observe, the instrument (Fig. 24) is com-
posed of a cylindrical wind-chest, HH, in the top of which 
are fifteen holes equidistant from each other, and equidis-

tant from the centre of the . c i r^ J^^ch they form. Above 
the wind-chest is a disk, B7>, attached to an axis, D, to keep 
it in place. Like the wind-chest, the disk is pierced with 
fifteen holes, those of the latter being immediately above 
those of the former. In both, the orifices, a and b, are 
inclined to the perpendicular, those of the disk being in-
clined opposite to those of the wind-chest. When air is 
urged through /-"from the wind-chest of a bellows, it passes 
through the apertures in AA, and impinges against the 
sides of the holes in the disk, and with sufficient force to 
cause it to revolve,— the rapidity of the revolution de-
pending on the pressure of the air. When the disk makes 
one revolution, fifteen puffs of air are given off, and fifteen 
vibrations are the result. Air is now admitted from the 
bellows into the siren, and immediately the disk begins to 
revolve. At first the movement is so slow that the puffs 
can be counted. Gradually they succeed each other more 
rapidly, and soon the puffs blend into a continuous sound. 
Augmenting the air pressure, the sound gradually rises in 
pitch until the notes becomes so loud and piercing as to 
be positively painful. By diminishing the pressure of air 
or placing the finger on the disk, the pitch is instantly 
lowered, showing, as in the preceding experiments, that 
pitch depends solely on rapidity of vibration. 

By means of clockwork, R S, in A B, which can be con-
nected with an endless screw, V K, on the axis which car-
ries the revolving disk, we can determine, by merely looking 
at the dials, r s, the number of vibrations corresponding to 
any given sound. It is, indeed, just such an instrument as 
this that some of the most distinguished scientists have 
employed in their researches on the pitch corresponding 
to various notes, and as given by different sonorous bodies. 
The eminent French physicist, M. Lissajous, had recourse 
to it in his very difficult and delicate task of determining 
the pitch of the standard tuning-fork of France, — the 
" Diapason Normal" of the French Conservatory of Music. 

Let me now give you an idea of how the work is done. 
One cannot make any pretensions to great accuracy in a 



lecture experiment, as exact results would require greater 
time and more attention to many details than can be given 
now. In an illustration, however, exactness is not neces-
sary. It is only the method we wish to understand, and 
not the great delicacy of which it is susceptible. 

In one of the orifices of the wind-chest of the acoustic 
bellows is placed an organ-pipe, near that occupied by the 
siren. We now cause air to enter both pipe and siren at 
the same time. The tone of the organ-pipe comes out at 
once, loud and clear. The siren starts with a succession 
of puffs, and gradually reaches the same note as is emitted 
by the pipe. When the siren gives exactly the same note 
as the pipe, it is said to be in unison with it, and when it 
is in unison it gives the same number of vibrations. And 
what is true in this particular case is true universally. 
When two or more instruments give the same note, they 
are in unison, and when they are in unison, their fre-
quency — that is, the number of vibrations they execute 
in a given time — is the same. 

As soon as the siren is in unison with the organ-pipe, the 
clockwork is set in motion and kept going for some time, 
— say ten seconds. If the siren can be kept steady,— 
and this is not an easy matter, — we have only to read off 
from the dials of the clockwork the number of revolutions 
made by the rotating disk of the siren. Multiplying the 
number of revolutions by the number of apertures in the 
disk, we have the number of vibrations made by the siren 
in ten seconds. Dividing this product by ten, we have the 
number of vibrations made by the siren in one second. 

But as the two sounds were kept in unison during these 
ten seconds, it follows that the number of vibrations we 
have found for the siren answers also for the number of 
vibrations of the pipe. In a similar manner, we could find 
the pitch of the human voice, or of a musical note emanat-
ing from any sonorous body whatever. 

This method of determining, by means of the siren, the 
number of vibrations corresponding to any given sound, 
is, you will say, quite satisfactory. So it is. It is simple 

and ready, and, with proper precautions, capable of giving 
results that are correct to a fraction of a vibration. Surely, 
one might think, this ought to be sufficiently near the 
truth to satisfy any one. Scientific men, however, are 
very exacting, and demand a more certain and more 
delicate instrument than even the most perfect form of 
siren. 

Such an instrument is before you. It is ordinarily called 
the vibroscope of Duhamel. It can be used for several 
most delicate and most interesting experiments. The 

apparatus we shall now employ is, as you may observe, 
composed of a cylinder, E F (Fig. 25), mounted on an 
axis, VD, on which a screw is cut in such a manner as to 
permit axis and cylinder to move endwise when the crank 
attached to the axis is turned. Around the cylinder is 
gummed a sheet of smoked paper, and in front of it is 
fastened an elastic strip of metal, B T, to the end of 
which is attached a light style, A. The end of the style is 
made just to touch the smoked paper. By moving the 
style along a line parallel to the axis of the cylinder, a 
straight line is traced. On turning the cylinder when the 
style is at rest, the latter will again inscribe a simple 

5 
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straight line on the smoked paper, but at right angles to 
the axis of the cylinder. By bowing the elastic strip it is 
set in vibratory motion; and if at the same time the cylin-
der is turned, we get as a resultant of the double motion, 
a beautiful wavy line instead of the straight one we ob-
tained before. By this means the elastic strip writes out 
its own motion, and tells, in a manner that cannot mis-
lead, the exact number of vibrations it executes in a given 
time. 

Instead of the thin elastic bar just used, let us make 
the same experiment with a tuning-fork. This can be 
done very simply, by attaching a light point, b, to the fork, 
A (Fig. 26), and passing under it a plate of smoked glass, 

A 

F I G 26. 

B B. If the fork is quiescent, and the plate is moved in 
the direction of the arrow, the point attached to the prong 
will inscribe a simple straight line, cd. But if the fork is 

• set in vibration, and the plate is moved as before, a sinuous 
curve will be formed, similar to the one traced by the 
vibrating elastic bar. The movement of the plate being 
uniform, divisions of equal lengths on the straight line, cd, 
would correspond to equal periods of the vibrating fork. 
We might, in a similar manner, cause a string vibrating 
under the influence of molecular forces only to write out 
the story of its motion, and the curve obtained would be 
identical with those just examined. Vibrating plates and 
membranes will also, under proper conditions, give the 
same curve. The air particles in an organ-pipe, vibrating 
between fixed nodal surfaces, likewise yield just such 

curves. Mach has devised an instrument — which, how-
ever, cannot be used here — whereby they can be made 
to give a record of their motion. 

If, again, we were to cause a plate of smoked glass, like 
the one used in Fig. 25, to pass, with uniform motion, 
under an oscillating pendulum in such a manner that the 
line c d should move in a direction at right angles to the 
plane in which the pendulum swings, we should obtain a 
sinuous curve in all respects similar to those afforded by 
the tuning-fork and the vibrating bar. 

Let us now examine the record that has been made in 
the cases considered, because it is important, before going 
farther, that we should become acquainted with this form 
of writing. We shall frequently have occasion to study it 
hereafter, and if we understand how to decipher its mean-
ing, it will tell us many and wonderful things. Indeed, 
some of the most striking conclusions in the science of 
sound have been deduced from a close study of similar 
undulating inscriptions. 

The motion in all these cases is, as already stated, called 
pendular motion, because it is like that of a pendulum. It 
is also, as you will remember, called simple harmonic mo-
tion. The curve traced by the pendulum, and by the other 
vibrating bodies referred to, is called the curve of sines, a 
sinusoidal curve, a sinusoid, or, better still, a harmonic curve. 
In Fig. 25 there is a series of such sinusoids, or harmonic 
curves. As one complete vibration traces out a complete 
curve of the sort we are now studying, we have in Fig. 25 
six harmonic curves connected with one another so as to 
exhibit a continuous undulating line. When considered as 
a symbol of wave-motion, the indentations, or portions of 
the curve above the straight line cd, are called crests, while 
those below are called troughs. A trough and a crest form 
a complete wave. A succession of waves, as in Fig. 25, 
constitutes an undulation. The distance the wave travels 
in one period is one wave-length. 

Water-waves and sound-waves are alike in this, that there 
is no transference of matter by the waves in either case. 



In the case of water-waves, the progressive motion of the 
masses of water that constitute the wave is only apparent. 
The individual particles of water in each wave have nothing 
more than an up-and-down motion at right angles to the 
line of progression. It is ordinarily said that these parti-
cles move in straight lines perpendicular to the direction of 
the wave's motion; but this is not strictly true. Each par-
ticle in reality describes a curve — a circle or an ellipse — 
in a plane in the line of progression. In the case of sono- ^ 
rous waves, however, the particles composing the waves ' 
have, as we now know, a motion parallel to the direction 
of propagation of the wave. The motion of the particles, 
then, is simply a to-and-fro motion, one of advance and 
retreat; and the results, as already explained, are con-
ditions of compression and dilation known as waves, or 
pulses, of condensation and rarefaction. 

Like the motions of the pendulum, the periods of 
sonorous vibrations are independent of their amplitude. 
Whether the width of swing of a sonorous body, or of the 
air particles excited by a sounding body, be great or small, 
the pitch of the sound remains the same. The amplitude 
of vibrations may change, as they do when this tuning-fork 
is excited with the bow and then left to itself, but the pitch 
of the sound remains unchanged. Whether the pitch of 
the sound be'strong or weak, you recognize it as the same 
note. A change in amplitude of vibration, then, means 
simply a change in loudness or intensity, and nothing 
more. The period, therefore, of sound-vibrations, as well 
as of pendulum-vibrations,1 is independent of amplitude. 

The knowledge of these facts will enable us still better 
to understand the sinuous line our tuning-fork has described 
for us. In the particular figure we have been studying, we 
observe that the lengths of the waves remain the same. 
This depends, if you will, on the uniform motion of the 
glass plate during the production of the figure; but were 
there any change in the pitch of the note emitted, the 

' The period of pendulum-vibrations is independent of their amplitude 
only when the arc through which the pendulum oscillates is small. 

wave-length would vary, notwithstanding this uniform 
motion. The pitch remains the same because the wave-
lengths remain the same. This, however, is only another 
way of stating what has already been said; namely, that 
the vibrations of any given continuous sound are periodic, 
and they are periodic because the wave-lengths remain 
unchanged. 

By counting the number of indentations, or sinusoids, 
made by the fork in one second, — and this is a very simple 
matter, — we at once obtain the vibration-number, or what 
is more appropriately called the frequency} of the fork. 
By this method we can determine with great accuracy, not 
only the number of the vibrations of the fork we are now 
using, but also that of any other sonorous body whatever. 

In a small vice is fastened an elastic steel rod whose 
point just touches the smoked paper around the vibro-
scope. Near by a tuning-fork is so placed as to register 
its vibrations alongside those of the steel rod. Exciting 
the rod and the fork by means of a bow, we cause them 
both simultaneously to trace their sinuous curves on the 
revolving cylinder. The number of vibrations made by 
the tuning-fork has been determined by the maker, and 
knowing the frequency of the fork, it is an easy matter to 
calculate that of the rod. The fork we are now using 
makes one hundred vibrations per second. Counting the 
number of vibrations registered by the fork and the rod on 
the paper during the same time, we find that while the fork 
writes out indentations corresponding to 75 vibrations, the 
rod inscribes 125. Now, as the tuning-fork makes one vi-
bration in the Tl«j part of a second, it will make 75 vibra-
tions in f f o o f a second. But during this time the rod 
makes 125 vibrations, or one vibration in the T O T ^ T T S

 o f a 

second. In one second, therefore, it makes or 
i66| vibrations. This method of determining pitch, 
known as the graphical method, is due to Dr. Thomas 
Young, and is competent to give very accurate results. 

Let us now replace the fork we have been using by 

1 This is the term —in Latin frequentia - employed by Mersenne. 



another which is kept in vibration by a current of electric-
ity. The advantage of such a fork is that it can keep in 
motion indefinitely, and thus we can secure records ex-
tending over periods of time longer than would be possi-
ble with a fork actuated by a violin-bow. By allowing the 
fork to vibrate for one hundred seconds, for instance, and 
counting the sinuosities produced, we can get the average 
rate of vibrations per second, by dividing the total number 
of sinuosities by 100. This is known as the electrographic 
method, and is even more accurate than the graphical 
method just described. 

Prof. A. M. Mayer has, by ingenious additions, so modi-
fied the electrographic method and improved its efficiency 
that it is now almost all that could be desired. 

Let us now see if we can determine the number of vibra-
tions produced by a given note of the human voice. To 
do this it will be necessary to make use of some appliance 
that will take up the vibrations of the voice in such a 
manner that they can be recorded. 

Such an instrument (Fig. 27) is before you. It is the 
Phonautograph, as devised by Scott and improved by 
Koenig. As its name indicates, it is a self-registering 
sound apparatus. It is a modification of the cylinder and 
tuning-fork we have been using, with an attachment for 
collecting sound-waves of whatever character, or however 
delicate. As you will notice, this attachment, A, is in the 
form of a concave paraboloid. This particular form is 
chosen because it possesses the property of reflecting all 
parallel waves to a point called the focus, near the smaller 
end. Just at this point is stretched a delicate membrane 
on a frame, D. All the waves that enter the paraboloid 
impinge on this membrane and throw it into vibration. 
On the side of the membrane next to the cylinder is at-
tached a very fine and light style, which faithfully inscribes 
on the smoked paper around the cylinder the slightest 
motion given to the membrane. By means of a small 
adjustable clamp, G, held in position by a screw, F, it is 
possible, with a second screw, V , to regulate at will the 

can be determined with the greatest ease and precision. 
The process is identical with that used a few moments ago 
in estimating the rate of vibration of an elastic rod. We 
have traces of both the sounds made on the smoked paper; 
and knowing the frequency of the fork, we have only to 
count the number of sinuosities of each sound correspond-
ing to any given distance on the paper, when a simple pro-
portion will give us the number of vibrations made per 
second by the sound collected by the paraboloid and 
recorded by the style attached to the membrane. 

Let some one now sing a prolonged note into the open 

tension of any given point of the membrane. In this way 
we can obtain a record of any sonorous wave that enters 
the paraboloid. By this instrument we find that each 
sound traces out its own characteristic curve, — writes out 
its own distinguishing autograph. Some sounds give in-
dentations much like those of the tuning-fork, while others, 
like those of the human voice, give rise to sinuosities of 
much greater complexity. 

By means of a tuning-fork, which is kept in vibration 
simultaneously with the style, the frequency of any sound 



end of the reflector. On turning the cylinder we have 
the curve peculiar to this note, and at the same time we 
have the sinuous line produced by the tuning-fork. Let 
us next count the number of vibrations made by the voice 
for any given length of time, and suppose we find that the 
voice makes one hundred and eighty sinuosities while the 
fork makes seventy. What is the frequency of the note 
sung, that of the fork being one hundred? When the fork 
makes seventy vibrations, the voice makes one hundred 
and eighty; when the fork executes one hundred vibra-
tions, the voice executes * vibrations. Putting this in the 
form of a proportion, we have, 70: 180 : : 100: x, from which 
we find the value of * to be 257^ which corresponds 
almost exactly with middle C of the pianoforte. 

To give you an idea of the variety and beauty of the 
tracings obtainable, I will project on the screen 1 a number 
of them as produced by the various notes and combina-
tions of notes of organ-pipes of different frequencies. 

The upper sinuous line (Fig. 28) in each pair of un-
dulating tracings was inscribed by a tuning-fork making 
two hundred and fifty-six vibrations per second. The 
numbers at the left hand of the figures indicate the rela-
tive frequencies of the notes used. Thus the second 
si-nuous line was produced by the joint action on the 
membrane of the phonautograph of two notes whose 
relative frequencies were as 4: 5. Near the middle of the 
figure is a curve resulting from the combination of three 
notes, whose relative frequencies were as 4 : 5 : 6 . The low-
est curve was generated by the sonorous pulses proceeding 
simultaneously from four organ-pipes whose relative fre-
quencies were 4 : 5 : 6 : 8 . 

After some familiarity with these and similar curves, 
1 Professor Mayer uses an excellent and ingenious means of obtaining traces 

from a rotating cylinder on a transparent surface. He takes a band of thin 
mica, and binding it around the cylinder, fastens it down with rubber bands. 
It is then smoked with camphor smoke. The trace having been made on it, 
it is taken from the cylinder, and thin white negative varnish is flowed over 
the lampblack. It may then be mounted between plates of glass for the 
lantern projection. 

one can see at a glance whether the sounds that produce 
them are simple or complex. Not only this, one can also 
tell how the constituents of complex sounds are related 
to each other, and discover, with equal readiness, their 
comparative intensities. 

F I G . 28. 

The experiments just made have familiarized you with 
some of the principal methods employed by physicists 
for determining the pitch of sounds. There are indeed 
many others, some of which are more difficult and com-
plicated than those just illustrated, but we have not time 
to consider them now. And even if we had the time, 
some of them are of such a character as to preclude 



the possibility of their being introduced in lecture 
experiments. 

In his very exact determination of the pitch of the Dia-
pason Normal, which Lissajous intended should give 435 
vibrations, at 15o C., Koenig used a large fork connected 
with clockwork, the whole acting as a single system. 
This clock-fork, as Koenig calls i t— and a most elaborate 
apparatus it is — was kept vibrating in a practically con-
stant temperature for many hours at a time, and the ex-
periments extended over a period of several months. The 
result obtained is probably as near an approximation to 
the truth as it would be possible to obtain. By this means 
it was found that the Diapason Normal at 15o C., or 59o F., 
executed 435-45 instead of 435 vibrations per second. This 
is a very slight difference, you will say; but it is only one 
among many instances of the accuracy with which modern 
scientific apparatus is constructed, especially by such a me-
chanician as Koenig. Of the large number of forks made 
by him, which you see here, all are, I dare say, tuned with 
equal care, and all will give exactly the number of vibrations 
which his stamp, affixed to each fork, says they will give. 

Indeed, nothing is better or more accurate for determin-
ing pitch than a carefully constructed set of tuning-forks. 
And strange though it may seem, the first one to' propose 
and construct a tuning-fork tonometer — an instrument for 
determining pitch — was a silk manufacturer, J . Heinrich 
Scheibler, of Crefeld, Germany. In one of the tonometers 
constructed by him, there were as many as fifty-six tuning-
forks, all tuned with the utmost care and accuracy. The 
tonometers made by Scheibler were long used as the stand-
ard for similar sets, and nothing comparable to them was 
attempted until some decades later, about i860, when 
Dr. Koenig began his marvellous career as an acoustic 
mechanician. 

Dr. Koenig has made many sets of tuning-forks similar to 
those designed by Scheibler, having in his larger tonom-
eters as many as sixty-seven forks. But his most wonder-
ful work is a tonometer commenced in 1877, and now very 

near completion. It consists of one hundred and fifty forks 
of exquisite workmanship, and tuned with infinite care and 
skill. It embraces the entire range of audible sounds, and 
extends from 16 to 21845-3 vibrations per second. For the 
compass of sounds employed in music, the forks are so ad-
justed that no fork differs from the one that precedes or suc-
ceeds it by more than four vibrations. For the lower sounds 
the difference is only one half of a simple vibration.1 

By means of this extraordinary instrument, the frequency 
of any note can at once be determined with absolute ac-
curacy. No such work has ever been essayed by any one 
before, and it is quite safe to assert that no such herculean 
task will ever again be undertaken by any one else. Only 
untiring patience, exceptional skill, and a phenomenal love 
for his work could ever have enabled Dr. Koenig to ac-
complish a task demanding such care and time and labor. 
It is a most remarkable achievement of industry and genius, 
and a monument of which any man might be proud. 

If now it can only be secured by some musical organiza-
tion that will take proper care of it, it could be used for a 
long time as a standard about whose accuracy there could 
be no question. And furthermore, if the musicians of the 
world would only agree to take this for an international 
standard, it would be a happy solution of many difficulties 
that have beset musical composers, performers, and manu-
facturers of musical instruments for several generations 
past. Nothing better could be desired, and certainly noth-
ing more complete has ever been carried into execution. 
The musical world has no standard of pitch,2 and this mar-
vellous tonometer would answer the purpose admirably, 
and with due care would last for all time to come. The 
standards of weight and measure of France and England 
have been worked out with all the nicety and delicacy that 

1 The largest forks, which are about five feet in length, are provided with 
great cylindrical resonators of copper. The largest resonator .s an .mmense 
affair ' It is twenty inches in diameter, and nearly eight feet >n length All 
the resonators are adjustable in length, so as to be used for notes of Afferent 
pitch. 

2 See note on following page. 
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human ingenuity could suggest; but I do not think they 
are any more exact in their sphere than is the grand tono-
metre universal on which Dr. Rudolph Koenig has spent 
so many of the best years of his life. 

I have spoken of the desirability of having a standard of 
pitch that would be universally recognized. One would 
imagine that such a standard would have been agreed 
upon long ago; but when one thinks of the various and 
often imperfect standards of measurement that obtain in 
other branches of science and art, one is not surprised 
that musicians also are behindhand in this respect. The 
French, it is true, have done something in this direction, 
for in the Diapason Normal, already referred to, they have 
a national standard. But even in France this standard is 
not universally employed. The Government has no power 
to enforce it except in the schools, theatres, and conserva-
tories which it subsidizes. In churches, private theatres, 
conservatories, concerts, and orchestras, the pitch of the 
instruments used is far from being uniform. 

So it is elsewhere. The pitch varies, not only in different 
countries, but in different cities of the same country, and 
even in the different theatres of the same city. 

But more than this. The pitch varies not only in place, 
but also in time. It is quite different now from what it 
was a century ago. Then it was comparatively low. Since 
then it has been growing higher and higher, until the 
opinion begins to prevail, almost everywhere, that it is 
time to call a halt. And to avoid the constant fluctations 
of pitch that have obtained so long and so extensively, it is 
felt now more than ever that an international standard of 
pitch is almost, if not quite, a necessity. The first step in 
this direction was made by an international conference of 
musicians held in Vienna in 1885, when the French pitch 
was unanimously adopted.1 So far, however, this adop-

1 The French pitch was adopted by Russia in i860, by Spain in 1879, and 
by Belgium in 1885. The Royal Academy of England accepted it as the 
standard, June 20, 1885,'and a few months subsequently, Feb. 12, 1886, it 
was formally adopted by the English Society of Arts. Italy, having sent 
representatives to the Congress of Vienna, adopted French pitch in 1885. 

tion has amounted to nothing more than an acceptance 
in theory, that the French pitch is desirable, and should 
therefore be adopted. A s yet little or nothing has been 
done towards carrying out in practice what the conference 
deemed not only advisable but necessary.1 

The French standard of pitch, the Diapason Normal, 
which is preserved in the Musée du Conservatoire in Pans, 
was designed to make 435 vibrations per second, but 
actually makes, as we have seen, 435-45-

The starting-point for pitch in music is the second open 
string of the violin, which gives the tuning note for 
orchestras. It corresponds to A 3 above middle C ot 

the pianoforte, which in musical notation is written 
A 3 of a vibration-number of 435. was chosen in 1859 as 
thè result of a report made by a special commission ap-
pointed to determine a standard pitch. Previously to this 
date in 1834, the German Society of Physicists, assembled 
as Stuttgart, had adopted as a standard of pitch a note 
which had a frequency of 444- Physicists employ a fork 
whose frequency is much lower, - their A 3 having a vibra-
tion-number as low as 426.6. This is very near the 
frequency of the A 3 fork used by Handel m 1 7 5 1 ; ^ 
vibration-number was 422.5. Mozart s pitch was a little 
less, being As 421-6-. The lowest church pitch in 
Mersenne's time ( 1648) , was A 3 3737- J h e so-called 
chamber pitch, at that date, according to Mersenne, was 

A s£ce 9 Mersenne's time, as is apparent from the fore-
going numbers, the rise in pitch has been very great in-
deed! But without going back any farther than the days 
of Mozart and Handel, we find that the rise in pitch has 

, U „ c w r i t t p n " T h e P i a n o M a n u f a c t u r e r s ' A s s o c i a t i o n ' 

t r i " * x T r i ^ 

, h i decided that this resolution should go into effect July , , .892. 
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been so great as frequently to make it difficult to sing and 
play the works of these great masters with proper effect. 
In England, for instance, in spite of all the efforts that 
have been made to keep it down to A3 444, orchestra and 
pianoforte pitch has risen higher and higher, until it now 
runs from A3 449.7 to A 3 454.7. In some parts of the 
United States, especially in New York, pitch, in some 
instances, has gone up as high as A3 460.8. A Chickering 
piano is tuned by a standard fork which gives A 3 451.7, 
and a piano by Steinway is tuned to A3 458. Between 
Mozart's pitch and that used by Chickering and Steinway 
there is, therefore, a difference of between thirty and 
thirty-one vibrations, amounting practically to three 
fourths of a tone. • 

The disadvantages, especially to vocalists, consequent 
on such a rise of pitch, are apparent. Music written by 
Mozart, Handel, Beethoven, and Haydn must be sung 
more than a semitone higher than it was intended to be 
sung. For the higher notes this is often difficult without 
straining the voice. Besides, the effect produced by this 
elevation of pitch is often entirely different from that 
which was aimed at by the composer, and which would be 
secured if the music were sung at the pitch for which it 
was written. 

Orchestras and military bands are, in the main, respon-
sible for this undue elevation of pitch. Wind instruments 
especially have more brilliancy of tone when tuned to 
this high pitch, and, for this reason, popular taste has 
demanded from the manufacturers of such instruments 
that they should give them the high pitch which now 
prevails. 

The " tuning note " for orchestras, as above stated, is A3 

of the frequencies already given. For pianos', however, 
the tuning note is the first C above A3, namely, C4. This C4, 
according to the old theoretical pitch, which is that now 
used by physicists, has a frequency of 512. In French 
equal temperament, with A 3 435, C4 has a frequency of 
517.3. The pitch of C4 of the English Society of Arts, 

based on the German standard pitch, A3 440, is 528. In 
modern concert pitch the frequency of C4 is still higher, 
being 540. 

The frequency, 512, of the standard C4 of the physicist, 
is the nijith power of 2, and gives, consequently, vibration-
numbers to all the C's which are powers of 2. This number 
was proposed by the distinguished acoustician Sauveur, 
and subsequently, in 1830, adopted by Chladni. It has 
above all others the advantage of simplicity. For this 
reason, although considerably lower than other pitches in 
use, it is almost universally employed by physicists and 
acousticians. All the forks that we shall employ in our ex-
periments, unless otherwise specified, are tuned to this 
standard of pitch. In musical notation this note C4, of 

512 vibrations, would be written - • 

To get C5, an octave above this, it is only .necessary to 
multiply 512 by 2, which gives 1024. Dividing 512 by 2 
will give C3, the octave below having 256 vibrations. In 
general, by doubling the number of vibrations correspond-
ing to any given note we obtain a note an octave higher, and 
by halving it we get a note an octave lower. Having the 
notes, then, of one octave of what is called the diatonic 
scale, we can readily obtain all the others used in music 
by simply multiplying or dividing by 2 or a multiple of 2. 

The notes of the gamut are variously designated in dif-
ferent countries. In France the first six notes still bear 
the names given them by the monk Guy of Arezzo in 
1026. They are the beginnings of words which occur in a 
hymn to Saint John the Baptist,1 and are as follows: ut, re, 
mi, fa, sol, la. The seventh syllable, si, was added in 1684 
by Lemaire. In Italy do has been substituted in place of 
ut, because more easily pronounced in singing. In 
England the notes are named after the first letters of the 

1 The words are, — 
" Ut queant laxis «sonare fibris 

Mirz gestorum/¡zmuli tuorum, 
So/we polluti /abii reatum, 

Sancte Joannes." 

/ 



alphabet, and are called C, D, E , F , G, A , B. In Germany 
H is substituted for B. 

But we must go farther. The letters and syllables just 
given distinguish the notes of an octave from each other, 
but it is necessary besides to have a means of designating 
the different octaves of any musical instrument. In Ger-
many and England this is ordinarily done by using capital 
letters, one unaccented, and the others variously under-
accented or under-lined for the lower octaves, and small 
letters, one likewise unaccented and the others over-ac-
cented or over-lined, for the higher octaves. The C's of 
the eight octaves of the organ, when accented or lined, are 
usually written as follows: — 

C„- C' C c c' c " c" ' c " " c ' " " 

C C C c c c c c c 

The French method of designating the same notes is the 

following: — 

Ut_ 2 , Ut - j , Ut 1 ( Ut2, Ut3, Ut4, Ut5, Ut6, Ut7. 

The tuning-forks that we shall use give for these notes 
the following frequencies, unless stated otherwise: 16, 32, 
64, 128, 256, 512, 1024, 2048, 4096. A s we shall have 
occasion to refer frequently to these notes, octaves, and 
vibration-numbers, and as it is important that we should 
be able to locate them at once, it is desirable to give them 
as written in musical notation, together with their names 
and frequencies. 

In this manner we may recognize them at a glance. 
German: C " C, C c c' c " c ' " c " " c'"" 

French: Ut_ 2 Ut_ x Utx Ut2 Ut3 Ut4 Ut5 Ut6 Ut7 

Frequency: 16 32 64 128 256 512 1024 2048 4096 

C_2 C—j Cx C 2 C 3 C4 C 5 C6 C7 

The last line is a partial combination of the French and 
the German systems, and is, in many respects, more con-
venient than either. For this reason we shall adopt it in 
preference to either of the other two. I shall frequently 
have occasion to speak of higher notes and higher octaves 
than those used in any musical instrument, and with this 
last system one can indicate any given note with the great-
est facility and accuracy. Thus C,„ one of the forks of a 
series on the table, gives a note just two octaves above C7, 
the highest note of the organ. F9 designates a fork of the 
same series four notes higher. G10, the highest note for 
which any tuning-fork has yet been made, is full three 
and a half octaves above the highest note used in music. 
Its relation to a corresponding note of any of the lower 
octaves is seen as soon as one knows the frequency of the 
fork. 

The notes of the diatonic scale, with their corresponding 
vibration-numbers, for what is known as the " two-foot" or 
" one-stroked " octave, are in musical notation as follows: 

c' d' e' f ' g' a' b' c " 
C3 D3 E3 F3 G3 A3 B3 C4 

256, 288, 320, 341-3. 384. 426.6, 480, 512. 

By multiplying or dividing the vibration-numbers of the 
notes of this octave by 2, or some power of 2, we can, 
as just stated, readily determine the frequency of any note 
of any octave, high or low. 

The subject we have been studying has prepared the 
way for a question of considerable experimental interest; 
namely, what are the limits of audible vibrations? Very few 

6 



persons, I fancy, have any idea of the many and apparently 
conflicting answers given to this question. 

According to Sauveur's experiments with organ-pipes 
the lowest audible sound corresponds to I2¡ vibrations 
per second. Biot's and Chladni's experiments with strings 
raised the number to 16. Savart in his investigations used 
a rotating rod striking through a narrow slit, and came to 
the conclusion that 8 vibrations were sufficient to pro-
duce a continuous sound. By means of a specially con-
structed sounding-box, over which a string was stretched, 
Helmholtz finds that the lowest limit for grave tones is 
about 30 vibrations. " A t B _ V ' he says, "with 29± 
vibrations in a second, there was scarcely anything audible 
left; " and he concludes with the statement that " although 
tones of 24 to 28 vibrations have been heard, notes do not 
begin to have a definite pitch until about 40 vibrations are 
performed in a second." 1 According to Mr. Ellis's obser-
vations with a large tuning-fork, the lowest audible sound 
was in the neighborhood of 30 vibrations. " For 30 vibra-
tions," he observes, " I could still hear a weak drone; for 
28 scarcely a trace." With the • same instrument Prof. W. 
Preyer, of Vienna, was able to hear a continuous sound at 24 
vibrations. But by using specially loaded tongues in reed 
pipes made by the acoustician Herr Appunn, of Hanau, he 
declares that he was able to hear tones as low as 15 vibra-
tions. Preyer's conclusions are that no musical tones are 
produced by less than 15 vibrations, that air-pulses begin 
to coalesce into a tone at about 20 vibrations, and that the 
musical character of bass tones is perceived only when 
their frequencies exceed 24 vibrations per second. Ac-
cording to Despretz, the lowest limit of audible sounds is 
16 vibrations, — the note that is given, or supposed to be 
given, by the thirty-two foot organ-pipe. There is grave 
doubt among experimenters whether the thirty-two foot 
organ-pipe actually gives a continuous note of 16 vibra-
tions, or whether the sound heard is not in reality due to 

1 See Mr. A. J . Ellis's admirable translation of Helmholtz's "Tonempfin-

dungen," chap. ix. 

what are called " upper partials," which we shall consider in 
the sequel. According to Helmholtz, the vibrations' of this 
pipe can always be heard as separate pulses, and never 
blend into a continuous sound. Its value, then, depends 
entirely on its power of reinforcing the notes of the octaves 

• above it, and on the so-called upper partials, which are 
always produced simultaneously with the note having 16 
vibrations, which it is supposed to produce. 

Regarding the limits of audibility of acute sounds, there 
is the same diversity of opinion. Sixty-four hundred 
vibrations, according to Sauveur, constitute the highest 
perceptible note. Chladni made the number 8,192, and 
Walloston 25,000. By means of a large toothed wheel, 
similar to the one used here, Savart showed that it was 
possible to hear a sound corresponding to 24,000 vibra-
tions. Using tuning-forks tuned for him by Marloye, 
Despretz was able to obtain sounds whose frequencies 
were over 36,000 vibrations. Employing a very large See-
beck siren, Preyer heard a sound produced by 24,000 vibra-
tions, although this sound was quite inaudible to other 
persons present. The highest tuning-fork made by Koenig 
gives 21,845 vibrations, but he makes a set of short steel 
cylinders, of which the shortest is calculated to give 32,768 
vibrations per second. This note corresponds to C10. 
Herr Appunn makes a set of thirty-one tuning-forks, the 
highest of which is G10, which makes 49,152 vibrations per 
second. One of these G10 forks I hold in my hand. As 
you see, it is exceedingly diminutive. It is about half an 
inch long, two fifths of an inch wide, and its tines are but 
one eighth of an inch thick. Many persons have been able 
to hear the note yielded by this fork; but a question may 
arise whether it really gives a note of the high pitch claimed 
for it. Without here e n t e r i n g into an explanation of the 
manner in which the pitch of such forks is determined, I 
may observe that Herr Appunn, in a letter to me about 
this and other forks of very high pitch which he furnished 
me, states that he can guarantee that the frequencies of 
the forks correspond absolutely with the numbers stamped 



on them. No one can doubt the s k i l l of Herr Appunn as 
a mechanician, and the delicacy of his ear for very acute 
sounds is, according to the testimony of all who are ac-
quainted with him, something quite astonishing. It would 
probably be impossible for one with a less delicate ear to 
tune such, a fork, even if he were familiar with the method • 
of tuning employed in such cases. We are consequently, 
by the very necessities of the case, compelled to accept 
Herr Appunn's estimate as that of an expert and that he 
is an expert in his specialty no one can gainsay. 

Only ears that are specially sensitive to acute sounds are 
capable of perceiving the notes of such tiny forks. For 
most persons, especially those advanced in years, the limit 
of audition is ordinarily below C9, giving 16,384 vibrations 
per second. 

Such acute sounds, however, are anything but agreeable 
to the ear. Thev have a peculiar grating, rasping effect that, 
at times, becomes extremely painful. In other cases they 
produce a peculiar indefinable feeling of discomfort, which 
persists for some time. Dr. Koenig has often told me that 
he does not like to experiment with these high notes, as 
they frequentlv continue to ring in his ears for days, and 
even weeks afterwards. Prof. W. Preyer, who has distin-
guished himself by his experiments on the limits of the 
perception of tone, speaks also of the disagreeable char-
acter of the higher notes. In describing his experience 
with the notes above C9, he says they affected him " as if a 
thin wire were drawn through both ears towards the middle, 
and thence towards the top of the head." 

Permit me now to illustrate experimentally the subject 
we have been discussing. As you already understand how 
Savart's wheel and Seebeck's siren can be used to deter-
mine the limits of perceptible sounds, whether grave or 
a c u t e , — h a v i n g seen these instruments used in other e x -

periments,—we shall have recourse to other and more 

exact instruments. 
For investigating the limits of grave sounds we have here 

a very large fork (Fig. 29), made by Koenig, and similar 

to the ones used by Mr. Ellis in his researches. It is 
mounted on a heavy cast-iron base, and to its prongs, 
which are nearly thirty inches long, are attached two slid-
ing weights about three inches in diameter, by means of 
which the pitch of the fork can be raised or lowered. The 
range of the fork is from C_2 to G_2 ; that is, from 16 to 
24 vibrations. There is a scale along each prong to show 
where the weights are to be adjusted 
in order to produce the different vi-
brations marked thereon. 

Clamping the weights at the top of 
the prongs, at the place marked for 
16 vibrations, we now cause the fork 
to vibrate; but although you can see 
that the prongs are in motion, I am 
quite sure that no one present is able 
to perceive the sound corresponding 
to 16 vibrations. You may, when 
the fork is first excited, hear a deep 
musical note; but this is one of the 
upper partial tones to which allusion 
has been made. It is an octave higher 
than C_2, and is not, therefore, the 
note for which we are seeking. In 
working with the fork, the ear is 
brought as close as possible to one 
of the sliding weights, which, on ac-
count of their great surface, act as 
But notwithstanding numerous experiments which I have 
made with many persons having an acute ear for mus.cal 
sounds, I have never yet been able to find even one who 
could detect what would be denominated a pure musical 

note. r . 
I brin°" the weights down to the bottom of the prongs, 

to the tone marked 24 vibrations, and again agitate the 
fork The result is practically the same as before. You 
can see the vibratory motion of the fork, but you cannot 
hear the note G _ „ that answers to the 24 vibrations. It, 

an aid to hearing. 



however, the ear is placed as close as possible to one of 
the sliding disks, it is possible for some persons to hear a 
kind of low drone, probably the nearest approach to a 
musical note,— at least with such apparatus. 

Tuning-forks are also the best means for determining the 
limit of acute sounds. Reeds have been used, as well as 
sirens of various kinds; but the results obtained by these 
means are not so trustworthy as those given by well-tuned 
forks. Before you is a superb series of forks for the notes 
from C7 to F9. They are so arranged on a support that 
it is easy to excite them in succession by merely drawing 
a violin-bow across their prongs. 

C7 corresponds to the highest note of the organ, and 
when excited by the bow, its tone comes out clear and 

FIG. 30. 

loud. Setting the others in vibration in the order of their 
pitch, the sound becomes correspondingly higher and 
more piercing. As we approach C9 the sounds will die 
out for some of you, while they will remain unpleasantly 
painful for others. The nearer the forks are to the ear, 
the more these effects are intensified. Above C9 the forks 
will, I think, be inaudible to most of you, no matter how 
vigorously I draw the bow across them, or how near you 
may be to them. We have reached the border-land of 
acute sounds, and by the most perfect means that science 
has thus far at its command. 

Koenig employs another method for showing the limit 
of perceptibility for acute sounds, which may be illustrated 
here, as it possesses considerable interest and is capable 
of giving quite reliable results. 

The instrument used for this purpose consists of twenty-
two cylindrical steel rods (Fig. 30), giving notes as high as 
Cin, making 32.-768 vibrations per second. The lowest 
note, C9, is given by the longest cylinder, and the notes 
become higher in proportion as the cylinders are made 
shorter Striking the longest cylinder with an ivory ham-
mer, made for the purpose, you at once perceive a clear, 
penetrating sound that almost quenches the sound of the 
hammer itself. When we strike in succession the shorter 
bars, the musical note becomes more acute and the shock 
of the hammer comparatively louder. With the shor es 
rods the notes due to their vibrations become almost, it 
not entirely, inaudible, and one hears only the s o u n d s -
percussion when the hammer comes in contact with the 
cylinders. With such cylindrical rods, Gs is heard with 
difficulty by ordinary ears, and C9 marks the limits of audi-
tion for' elderly persons generally, while even the most 

sensitive ear scarcely ever reaches G9. . 
By means of a small whistle (Fig. 3 O Captain Douglas 

Galton has been able to obtain sounds which are said to 
be as acute as any of those 
we have been considering, 
if indeed they are not more 
acute. Such a whistle I hold 
in my hand. The air is sup- F i g- 3*-
plied by a little rubber bulb, 
and the vibrating column of air, by means of a scale at-
tached to the whistle, can be accurately shortened by 
such a small amount as the 5 ^ t h of an inch. When the 
whistle is made to sound, you hear a very high note, re-
sembling somewhat that emitted by some of the smaller 
mammalia. The sharp, attenuated notes of white mice, 
which probably many of you have heard, are not unlike 
some of the notes we can evoke from this whistle when 
it is properly adjusted. 

By means of this simple little contrivance, one may 
readily estimate the pitch of very acute sounds. W, h it 
I have been able to determine the pitch of a creaking 



door, which yielded a note full two octaves above the 
highest note used in music. 

From the foregoing we learn that the range of audition 
extends somewhat over eleven octaves. 

Light, like sound, is due to a mode of vibratory motion, 
and the various colors, like notes of different pitch, have 
their origin in different rates of vibration. The extreme 
red of the spectrum corresponds to the gravest musical 
notes, while the more acute sounds correspond to the 
extreme violet. Intervening colors correspond to the 
notes between the most grave and the most acute. But 
the range of perception for the different rates of vibration 
is much less for the eye than it is for the ear. For the 
former it is at most an octave and a half; for the latter it 
is nearly eight times as much. The frequency of the ex-
treme violet is never more than three times that of the 
lowest red, — ordinarily it is not much more than twice as 
great, —whereas the frequency of GIn of Appunn's fork is 
over three thousand times that of the note of the thirty-
two foot organ-pipe.1 

Only an exceptional ear, as we have seen, has a percep-
tion extending over the entire eleven octaves of sound. 
But no human ear, however acute or well trained, is able 
to separate all audible sounds from each other. It re-
quires a good ear to distinguish the lower notes from each 
other, but it is a far more difficult matter to discrimi-
nate the higher notes from each other after they rise 
above C6. 

Experimentally we have been dealing with sounds hav-
1 " Assuming, then," — I quote from Ellis, — " that the yellow of the 

spectrum answers to the tenor C in music, and Frauenhofer's ' line A ' cor-
responds to the G below it, Professor Hemholtz, in his ' Physiological Op-
tics,' gives the following analogies between the notes of the piano and the 
colors of the spectrum : — 

Ft, End of the Red, e, Yellow, f t , Violet, 
G, Red, ct, Green, g, Ultra-violet, 
Gt, Red, d, Greenish-blue, gt, Ultra-violet, 
A, Red, dt, Cyanogen-blue, a, Ultra-violet, 
At, Orange-red, e, Indigo-blue, at, Ultra-violet, 
B, Orange, / , Violet, b, End of the Solar Spectrum." 

ing a compass of something over eleven octaves. The 
largest organ never has more than eight octaves, the 
ordinary small organ never more than seven; the piano, 
as usually constructed, embraces from seven to seven and 
one half octaves. The violin has three and one half oc-
taves, and the compass of some other instruments is still 
less. On the organ and the piano, neither the lowest nor 
the highest octave, as compared with the intervening ones, 
is much used; this reduces the practical range of these 
instruments to about five octaves. 

In tempered instruments, like the organ, piano, and 
harmonium, for instance, the number of notes available 
for each octave is also limited. Counting white and black 
keys, there are only twelve notes to each octave. This 
gives for the five octaves employed in ordinary music only 
sixty different notes, — sixty notes out of the fifty thousand 
different rates of vibration whicli we have been considering! 
In the case of the violin only about forty different notes are 
used, _ less than the - j - ^ t h P a r t o f t h e number with which 
the acoustician deals. 

In the human voice the range is much less than that of 
any of the musical instruments just named. For the ordi-
nary voice the compass, or register, as it is called, is about 
two octaves. In extraordinary cases the register may em-
brace two and a half octaves, and in a few phenomenal 
instances an octave more. 

The average human voice, therefore, in singing a solo, in 
which the key remains unchanged, does not ordinarily use 
more than twelve or fifteen different notes; and yet, with 
these few notes, it is able to execute those marvels of 
melody that so charm the ear. 

The human voice has well been compared to the viol 
family, which embraces four different instruments, — bass, 
tenor, alto, and soprano. Besides these there are also two 
intermediate voices, baritone, between bass and tenor, and 
mezzo-soprano, between soprano and alto. 

Male voices are known as bass, baritone, and tenor, and 
female voices are classed as alto, mezzo-soprano, and 



soprano. The ordinary compass of these various voices 
is indicated in the following musical notation: — 

Bass. Baritone. Tenor. Alto. Mezzo-Soprano. Soprano. 

Amongst phenomenal voices were those of Gassner and 
the brothers Fischer, who were at the court of Bavaria in 
the sixteenth century, all of whom were able to sing as 
low as F_,. The voice of Forster, the Dane, had a com-
pass of three octaves. The highest voice on record was 
undoubtedly that of Lucrezia Ajugari,who sang for Mozart 
in Parma in 1770. She could sing as high as C0, and de-
scend as low as G2, and had therefore the marvellous com-
pass of three and one half octaves. But with all this, her 
voice, even in its highest tones, remained, according to the 
testimony of Mozart's father, as pure as a flute. Nilsson 
and Patti have also attained marvellous heights. The 
voices of Catalani, Farinelli, and the younger of the sisters 
Sessi were extraordinary for their depth and compass, 
having in each case a range of three and a half octaves. 

The greatest observed compass of the human voice, from 
the lowest bass to the highest soprano, is, then, fully five 
and a half octaves, extending from F_„ of 43, to Cc of 
2,048 vibrations per second. This range, expressed in 
notes, is as follows: — ^ 

-rfWS 

The compass of the wonderful voices of Sessi and Fari-
nelli is indicated by the following notes : — 

Sessr. Farinelli. 

The lowest note used in the orchestra is C_i, and is 
given by the double bass. As usually made, it gives 33 
vibrations per second. The highest note employed in 
orchestral music is the D7 of the piccolo-flute, giving, 
according to the physicist's pitch, 4,608 vibrations per 
second, but a much higher frequency according to the 
standard of pitch at present in use. The lowest note, A_2, 
on a grand piano, is made to give about 27 J vibrations per 
second. The highest note, C„ has a frequency of about 
4,200 vibrations per second. 

In our experiments we have discovered that the range 
of hearing varies greatly with different persons. One will 
be astonished at the extent of this variation when he comes 
to examine the matter with a little attention; he will find, 
to his surprise, that there are many sounds in nature that 
are very unpleasant to some, but are entirely beyond the 
perception of other ears. There are many to whom the 
multifarious sounds of insect life are inaudible, while these 
same sounds are disagreeably shrill and piercing to others. 
There are those, even, who are capable of enjoying music, 
who cannot hear the upper notes of the piano or organ, or 
distinguish in the lowest octave one note from another. 

Some savages have remarkably acute powers of hearing, 
but only for certain sounds. Their range of audition is 
frequently as limited as their perception of some sounds 
is acute. 

Then, again, the sensitiveness of the ear varies greatly 
for the different notes. It is not as marked for high or 
low notes as it is for those which are intermediate. Strike 
in succession the notes of the highest or the lowest octaves 
of the piano, and' you will find that there is not by any 

.means such a marked difference in pitch between the con-
secutive notes as there is in the intervening octaves. I 
have known a piano-tuner, for instance, who was an expert 
in tuning all the octaves except the lowest. In this octave 
he lost completely his perception of pitch and intervals, 
a n d — w h a t was more remarkable, in his case — h e was 
utterly unconscious of his lack of musical appreciation in 



this part of the scale, and could not be brought to believe 
that his ear was less sensitive to low than to high notes. 

But notwithstanding all this, the ear is a wonderfully 
comprehensive instrument. A s compared with the eye, 
it is vastly superior in the extent of the sensations it is 
capable of experiencing. The eye possesses barely an 
octave and a half of sensations, whereas the average ear, 
as we have seen, has a range of six or seven, while more 
acute ears have a compass of fully eleven octaves. 

And then the ear is a wonderfully accurate instrument, 
and capable of appreciating minute differences that would 
be wholly impossible in the case of the eye. According 
to Dr. W. H. Stone, " an architect or draughtsman who, 
between two lines neither parallel nor in one plane, made 
an error of estimation by eye not exceeding one thirtieth, 
would gain credit for unusual precision. But in the ear 
one thirtieth amounts to a quarter of a tone, and by ear 
one forty-fifth of a tone is easily determined." A skilful 
pianoforte-tuner can do much more. He is called upon, 
for instance, to distinguish between a true and an equally 
tempered fifth, where the difference is only the one hun-
dredth of a tone. He should, accordingly, be able to 
recognize at least six hundred different sounds in an 
octave. More than this, according to the investigations 
of Professor Mayer, it is possible, under specially favorable 
conditions, and for sounds whose pitch is near that of C3, 
to distinguish from each other notes which do not differ 
by more than the T ^ t h of a semitone. 

In the rapidity of its appreciation the ear is equally 
remarkable. In a fraction of a second it can accurately 
refer any note to its place in the scale, and can just as 
easily and as quickly separate from each other several 
widely different notes. According to recent investigations, 
the ear is capable of hearing a sound when only two vibra-
tions are made. It should therefore hear the middle notes 
of the pianoforte in the two or three hundredth part of a 
second. It requires more time, however, for the ear to 
distinguish the full characteristic of a note. To do this, 

according to the experiments of Exner, Auerbach, and 
W. Kohlrausch, from 2 to 20 vibrations are necessary. 

With proper training and practice the organ of hearing 
can be rendered remarkably sensitive and accurate. There 
is rarely any physical defect in the ear itself. The defects 
ordinarily noticed and spoken of are such as can be easily 
remedied by cultivation. It may, it is true, never be able 
to attain the remarkable range of audition we have spoken 
of above, it may never become so " apprehensive and dis-
criminant" as the ear of Mozart; but its delicacy can be 
increased and its general appreciation of musical sounds 
wonderfully improved. This is especially true if the work 
of instruction is begun in childhood, when the organ of 
hearing is naturally most sensitive and most readily sus-
ceptible of cultivation. 

In making experiments with rods and tuning-forks giv-
ing very acute sounds, I have frequently been struck with 
the very great difference in the ability to perceive such 
sounds as manifested by young and old persons. Even 
when the latter were trained musicians they were incapable 
of hearing sounds that were quite audible to children who 
had no musical training whatever. This fact, like many 
others that might be adduced, is a striking commentary 
on the necessity of beginning early the training of the 
young, when eye and ear, not to speak of the other senses, 
are ever on the alert, and quick to detect sounds and forms 
and colors which at a later period would entirely escape 
their observation, or that of one who had never been taught 
the wonderful powers and capabilities of the five senses 
when properly educated. 



C H A P T E R III. 

V E L O C I T Y , R E F L E C T I O N , A N D R E F R A C T I O N OF S O U N D . 

SOUND, as every one knows, requires an appreciable 
time for its transmission from one point to another. 

The earliest observers were cognizant of this fact. Thus 
Aristotle, whose observation nothing seems to have es-
caped, remarks that one sees a boatman strike the water 
with his oar a second time before the sound of the first 
stroke reaches the ear. In another place he observes: 
" The flash of lightning succeeds the noise of the thunder, 
but is perceived before it, because the sense of sight is 
quicker than that of hearing." 1 

Lucretius, who has preserved for us, in exquisite Latin 
verse, so much of the physical knowledge of the old Greek 
and Roman philosophers, refers to the same illustration as 
that last quoted from Aristotle; and then adds another, 
that has been used and paraphrased until the present time. 
Permit me to repeat what he says: — 

" T h e n earlier see we, too, the rushing blaze 
Than hear the roar, since f a r the fluent films 
Of sight move speedier than of laggard sound. 
A s , when the woodman fel ls some branch remote, 
It drops conspicuous ere the bounding blow 
Strike on the ear, — so the keen lightning far 
Anticipates the thunder, though alike 
Reared from one cause, f rom one concussion reared." 2 

1 riceroi 8e fx(Ta tt]v ir\T)y)jv, ko! uirrepor tt/s ffpovrrjs' a\\a (palferai irp6-
repov SID Tb tt)v oipiv -npoTcpctv rijs aKo?)S. — A R I S T O T L E : II. Meteor. 

2 Sed tonitrum fit utei post auribus adcipiamus, 
Fulgere quam cernant oculei, quia semper ad aureis 
Tardius adveniunt, quam visum, qua: moveant, res. 
Id licet huic etiam cognoscere ; csedere si quem 

The rate at which sound travels in a unit of time is called 
its velocity. The unit of time ordinarily employed is one 
second. But no attempt to make anything like an accurate 
determination of the velocity of sound was undertaken until 
about two hundred and fifty years ago, when the matter was 
taken up by the illustrious Father Mersenne. 

" Light," says Mersenne, " spreads through the sphere 
of its activity in an instant, or if it require time, it is so 
short as not to be observable. Sound, on the contrary, 
requires time to fill the sphere of its activity, the duration of 
which time is in proportion to the distance of the sonorous 
body from the ear. This has been proved experimentally 
in several ways. Thus, it has been observed that the axe 
of the woodman will have struck a second blow before the 
first is heard, when he is distant six hundred paces or 
thereabout." 

He then describes experiments by which one may deter-
mine the velocity of sound. Among these he mentions 
that of counting the beats of the pulse from the moment 
one sees the flash of the musket, or of a piece of artillery, 
until the sound is heard. Although the observations which 
had been made by others, and to which he refers, gave 
quite discordant results, Mersenne held that the velocity 
of sound was not so great as that of a ball from an arque-
bus. And he bases his opinion on the fact that " birds 
are often seen to fall dead from the branches of trees before 
the sound of. the arquebus is heard, although it be quite 
close at hand." 

Mersenne's measurements of the velocity of sound were 
based on the phenomenon of reflection known as an echo. 
By means of a pendulum he had determined that seven 
syllables could be pronounced in a second. But he found 

Ancipiti videas ferro procul arboris auctum 
Ante fit ut cernas ictum, quam plaga per auras 
Det sonitum ; sic fulgorem cernimus ante, 
Quam tonitrum adcipimus, pariter qui mittitur igni 
E simili causa, concursu natus eodem. 

T . LUCRETII CARI : De Rerum Natura, 
Lib. vi. 163 et seqq. 



that an echo at the distance of 519 feet would give back 
seven syllables. It requires one second to pronounce 
them, and they are heard coming back the second second. 
Sound then travels 519 feet in going, and the same dis-
tance in returning, that is, 1038 feet, in one second. " W e 
may therefore," says Mersenne, "consider this as the 
velocity of reflected sounds, which I have always found to 
be the same, whether the sound proceed from trumpets, 
arquebuses, stones, or voices, acute or grave." This result, 
considering the means employed, is a remarkably close 
approximation to the value now received as correct. 

About the same time that Mersenne was carrying on his 
researches on sound, the Academy of Florence took up 
the vexed question of the velocity of sonorous vibrations. 
In this instance the experiment was made by noting the 
time that elapsed from the appearance of the flash of a 
cannon until its detonation was heard. The result obtained 
was about 1,148 feet per second, — a value that is con-
siderably higher than that assigned by Mersenne. 

It was necessary, however, before any reliable results 
could be obtained, to employ more precise methods of 
measurement than any yet indicated. This was not done 
until nearly a century later, when in 1738 the matter was 
taken up by the French Academy of Sciences. A com-
mission composed of Cassini de Fleury, La Caille, Maraldi, 
and a number of associates, chose as stations from which 
to make their observations the Observatory of Paris, the 
Pyramid of Montmartre, the Mill of Fontenay-aux-Rose, 
and the Chateau de Lay, at Montlhery. Cannons at 
Montlhery and Montmartre were fired alternately, and the 
observers at the four stations noted, by means of pendu-
lums beating seconds, the time that elapsed between the 
arrival of the flash and the report of the guns. As the 
average of many observations they found that the velocity 
of sound at a temperature of 6° C. was 1,106 feet per 
second. As the velocity of sound increases almost two 
feet for every degree centigrade, this would make the 
velocity at o° C., 1,094 feet per second. 

The conditions under which the above observations were 
made were such as to show the effect that wind has on 
the propagation of sound. The velocity of sound is accel-
erated when its direction is the same as that of the wind, 
and retarded when wind and sound move in opposite direc-
tions. When the wind blows obliquely to the direction of 
propagation of sonorous waves, the velocity of sound is 
augmented or diminished according to the angle subtended 
by the lines along which wind and sound are carried. 
When, however, the wind is at right angles to the direc-
tion of propagation of sound, its influence is nil. The 
same observations likewise demonstrated that the velocity 
of sound in air is independent of atmospheric pressure, 
and that sonorous waves always pass over equal distances 
in equal times. 

Subsequently, numerous other observations, with a sim-
ilar object in view, were instituted in various other parts 
of the world. Observations were made by La Condamine 
at Quito and Cayenne; by Espinoza and Banza at Santiago 
in Chili; by Köstner and Müller at Göttingen; by Ben-
zenberg near Düsseldorf; and by the English astronomer 
Goldingham at Madras. As a mean of eight hundred 
observations, the latter observer found the velocity of 
sound at a temperature of o° C. to be 1,089.9 f e e t-

In 1822, at the instance of Laplace, the Bureau de Longi-
tudes undertook to measure anew the velocity of sound. 
The commission appointed to do the work embraced some 
of the ablest mathematicians and physicists of the time. 
Among them were Arago, De Prony, Humboldt, and Gay-
Lussac. The stations selected were Montlhery and Ville-
juif, distant from each other nearly twelve miles. The 
observers were provided with the most accurate chro-
nometers obtainable, recording from the tenth to the 
sixtieth of a second. As in 1738, cannons were used 
at both stations, and the time intervening between the 
arrival of the flash and the report of the guns was accu-
rately measured. As a mean of numerous observations, 
after making due allowance for wind, temperature, and 



moisture, it was calculated that the velocity of sound at 
0° C. would be 1,086.1. According to Arago, the prob-
able error in this result, due to mistakes in measuring the 
distance between the stations, and in the estimation of 
time, cannot amount to more than four feet. It is probably 
less. 

The year following, two Dutch physicists, Moll and Van 
Beck, as a result of a carefully conducted series of experi-
ments, in which the influence of the wind, whose velocity 
and direction were indicated by good anemometers, was 
noted, calculated the velocity of sound at 0° C., in dry 
air, to be 1,089.4 feet per second. This result agrees 
closely with that which had been obtained by Goldingham. 

All the preceding observations were made at stations 
that had practically the same elevation above sea-level. 
Besides, the direction of sound in all these cases was hori-
zontal. But would the results be the same were sound 
to be transmitted in a direction oblique to the horizon? 
Theory answers this question in the affirmative. 

According to Newton, who made the first theoretic in-
vestigations into this subject, the velocity of sound, as 
propagated in the air, depends both on the elasticity and 
the density of the air. The result at which he arrived is 

best expressed by the formula, V= j / ^ , 1 in which V repre-
sents the velocity of sound, e the elasticity, and d the den-
sity of the air. This means that the velocity of sound in 
air is proportional to the square root of the ratio between 
the elasticity and the density of the air. But as, according 
to the law of Mariotte,2 the elasticity of the atmosphere 

1 This formula, which is the one usually given, for the sake of simplicity, 
does not specify the value of e. e, according to Newton, is = A. H. g., 
which, expressed in C- G. S. units, gives A = 13.596 = density of mercury. 

H = normal barometric height = 76 cms. f = d e t J t y ' o f 3 i r = .0012932. The 

formula thus corrected is subject to calculation and is written V= • 

2 In England usually called Boyle's law. As a matter of fact the law was 
discovered by Mariotte and Boyle independently and about the same date. 
Their discoveries were published in the early part of the latter half of the 

varies as the pressure to which it was submitted, and the 
density varies also as the pressure, it follows that density 
and elasticity vary in the same proportion, and that the 
ratio between elasticity and density, for the same temper-
ature, will always remain constant. Hence the velocity of 
sound will be the same in all directions. It will therefore 
be the same whether its direction of propagation be oblique 
or parallel to the horizon. 

Two Austrian physicists, Stampfer and Myrbach, in 
1822, were the first to demonstrate this experimentally. 
Twenty-two years later, in 1844, two French philosophers, 
Bravais and Martins, repeated the experiments in the Ber-
nese Alps. They found that the velocity of sound from 
the base to the summit of the Faulhorn was the same as 
that from the summit to the base. According to their 
computations, this velocity at o° C. in dry air was 1090.3 
feet per second. 

But the formula, V — expressing the results of New- ^ 

ton's theoretical investigations, requires a correction to 
tally with the results of experiments. Newton himself was 
aware of the necessity for such a correction, but was not 
able to supply it. Basing his calculations on the known 
elasticity and density of the air, he found the velocity cor-
responding to the temperature of 0° C. to be 916 feet per 
second. The result thus obtained was about one sixth less 
than it was proved to be by observation. He offered a 

seventeenth century. In strict justice the law should be known as the law 
of Mariotte and Boyle. 

Mariotte, like ¡lis distinguished countryman. Merse'nne, is not known as 
well as he should be, considering the great services he has rendered to 
science. A perusal of his published works, embracing two massive tomes 
in quarto, would show that we are indebted to him for many of the experi-
ments and laws found in our modern works on physics. He, like Mer-
senne, was a monk, and like him, too, was one of the original members 
of the French Academy of Sciences. Condorcet in speaking of him says • 
" Mariotte was the first one in France who introduced into physics a 
spirit of observation and doubt, and who inspired that scrupulousness and 
caution so necessary to those who interrogate Nature and interpret her 
responses " 



conjecture as to the cause of the discrepancy, but it was 
reserved for the illustrious French mathematician, Laplace, 
to point out the true cause of the great difference between 
theoretic and observed results. This difference, as Laplace 
proved, was owing to changes of temperature produced by 
the sonorous wave itself. Compression, it was shown, aug-
mented the temperature and, consequently, the elasticity 
of the air, while dilation caused a diminution of the tem-
perature ; but the net result of these changes in the temper-
ature of the sound-wave was to cause an acceleration of 
velocity. 

" Laplace," says Lord Rayleigh, who summarizes the 
question with characteristic lucidity, " considered that the 
condensations and rarefactions concerned in the propaga-
tion of sound take place with such rapidity that the heat 
and cold produced have not time to pass away, and that, 
therefore, the relation between volume and pressure is sen-
sibly the same as if the air were confined in an absolutely 

.non-conducting vessel. Under these conditions the change 
of temperature corresponding to a given condensation or 
rarefaction is greater than on the hypothesis of constant 
temperature, and the velocity of sound is accordingly 
increased." 

" T h e only question," as Lord Rayleigh well observes, 
"which can possibly be considered open, is whether a 
small part of the heat and cold produced may not escape 
by conduction and radiation before producing its full 
effect. Everything must depend on the rapidity of the 
alternations. Below a certain limit of slowness the heat in 
excess or defect would have time to adjust itself, and the 
temperature would remain sensibly constant." In this case, 
the relation between pressure and density would be that 
which leads to Newton's value of the velocity of sound. 
On the other hand, above a certain limit of quickness the 
gas would behave as if confined in a non-conducting vessel, 
as supposed in Laplace's theory. Now, although the cir-
cumstances of the actual problem are better represented 
by the latter than by the former proposition, there may 

still, it may be said, be a sensible deviation from the law of 
pressure and density involved in Laplace's theory, entail-
ing a somewhat slower velocity of propagation of sound." 1 

According to the hypotheses both of Newton and La-
place, there is no dissipation of energy during the propaga-
tion of sonorous undulations. Sound-waves do not generate 
heat. No work, therefore, is consumed. If there were such 
a conversion of sonorous vibrations into heat, — if work 
were done, — the distance to which sound could travel 
would be very limited indeed. Adding Laplace's correc-
tion to Newton's formula, it is found that theoretic and 

observed results agree exactly 
According to the experiments just referred to, the veloc-

ity of sound, in dry air, at a temperature of o° C„ would 
be, in round numbers, 1,090 feet per second. More recent 
observations by Le Roux and Regnault, in which all the 
refinements of modern experimental science were brought 
into requisition, show that this figure is probably too high, 
and that a nearer approximation to truth, for the velocity 
of sound at o° C. is 1,083 feet per second. Le Roux esti-
mates that this result, making allowances for all sources of 
error, is true to within six inches at most. As Le Roux 
and Regnault made independent observations and em-
ployed different methods, and give as their results the' 
average of a large number of painstaking experiments, 
their figures may be accepted as substantially correct. 

I have spoken thus at length of the experiments made 
to determine the velocity of sound to give you an idea of 
the immense amount of labor required to establish with 
certainty a single fact in science. And in what has been 
said, your attention has been called to a few only of 
the many experiments that have been made during the 
past two hundred years in various parts of the world. 
No one, who has not reflected on the matter, has any idea 
of the amount of energy expended on investigations of this 
nature, and of the ingenuity displayed in eliminating all 
possible sources of error. And what has been said con-

1 Theory of Sound, vol. ii. pp. 19. 24 



cerning observations made to determine the velocity of 
sound, may, with equal truth, be asserted regarding every 
fact that now constitutes a part of that very comprehensive 
branch of knowledge which we call physical science. We 
shall have several equally striking illustrations of the truth 
of this statement during the course of our investigations in 
the domain of sound. What are now accepted as simple 
facts, often, apparently, of slight importance, represent, 
each one of them, weeks, months, yea, years, of labor on 
the part of one "or more of the enthusiastic students of 
Nature and Nature's laws. 

From the foregoing we have seen that the velocity of 
sound is independent of the density of the air, and, con-
sequently, of its pressure, but that it is modified by tem-
perature, moisture, and the direction of the wind. The 
question may now be asked, Is the velocity the same for 
all sounds, grave or acute, feeble or intense? 

It is within the experience of every one that all sounds 
travel equally fast, whatever their pitch. If this were not 
so, a melody played on a musical instrument, and heard at 
a distance, would undergo alteration in the order in which 
the different notes follow each other ; but such is not the 
case. Biot demonstrated this conclusively by his experi-
ments on the velocity of sound in iron pipes. He caused 
a well-known air to be played on a flute, at one end of 
a pipe over three thousand feet in length, and, stationing 
himself at the other end, he found that the notes bore the 
same relation to each other, and that their sequence was 
the same, at one end of the pipe as at the other. From 
this and other observations, he' concluded that all sounds, 
whatever their pitch, travel equally fast. And what is true 
for one instrument is equally true for any number of 
instruments. Thus the music of an orchestra or brass 
band remains unaltered whether the hearer be hard by or 
farther away. 

It is proper to state here that Biot's observations require 
a slight correction. The correction, however, applies only 
to what might be called exceptional cases. Regnault's 

experiments prove that very intense sounds, especially 
when passing through gases in pipes of small diameter, 
travel more rapidly than feeble sounds. But it is only 
when this difference in intensity is very marked that any 
variation in velocity is discernible. For ordinary sounds, 
under ordinary circumstances, no perceptible difference is 
ever observed. 

When the velocity of sound in air is known, it is, 
obviously, an easy matter to compute the distance of any 
source of sound. As the velocity of light is so great, — 
about 190,000 miles per second, — its time of transmission, 
in all experiments on the velocity of sound, is so in-
finitesimal that it may be neglected. Counting, for in-
stance, the number of seconds elapsing between the 
lightning's flash and the peal of thunder, and multiplying 
this number by the velocity of sound in air, according to 
its temperature, we have at once the distance of the point 
of discharge. It is only when the lightning's flash and the 
thunder's peal are nearly simultaneous that any danger from 
lightning is to be apprehended. In a similar manner the 
distance of any other source of sound can be computed. 

The velocity of sound in gases may be determined both 
directly and indirectly. Regnault filled long tubes with 
gas, and thus measured the velocity of sounds directly. • 
The results he arrived at agreed remarkably well with those 
required by theory, as expressed in Newton's formula, cor-
rected by Laplace. Dulong, acting on a suggestion given 
by D. Bernouilli,-measured indirectly the velocity of sound 
in air and various gases, by means of organ-pipes. I will 
not go into the details of his experiments, but simply 
tabulate the results at which he arrived: — 

Velocity of sound in gases at the temperature of 0° C. 
_ Velocity. 

Air . . . . ' I 0 9 2 f e e t 

Oxygen I 0 4° 
Hydrogen 4164 
Carbon dioxide 85s 

Carbon monoxide 1107 
Nitrous oxide . . • • • • 859 
defiant Gas • • • • '03° 



given liquid can always be determined experimentally, it is 
an easy matter, by using Newton's formula, to calculate 
the velocity of sound in any liquid whatever. And since 
Wertheim's method is almost equally comprehensive in its 
application, it is evident that the results arrived at by the-
two methods can serve as checks for one another, and that 
in no case can the calculations made vary from the truth 
by any considerable quantity. 

In solids the elasticity, as compared with the density, is 
usually greater than in liquids, and hence the rate of trans-
mission of sounds is correspondingly greater. 

Biot determined the velocity of sound in cast iron by 
means of an iron pipe over three thousand feet in length. 
One end of the pipe was struck by a hammer, and an ob-
server stationed at the other end heard two sounds, one 
transmitted by the air, the other by the metal. It was thus 
found that iron transmitted sound about ten and one half 
times as rapidly as air. 

By calculations based on their coefficients of elasticity, 
which may be experimentally determined, Wertheim was 
able to deduce the velocity of sound in the solids named 
in the following table : — 

Velocity of Sound in Metals at 20° C. 

Lead 4,030 feet Gold . . . . 5.717 feet 
Silver 8,553 Copper . . 11,666 
Steel Wire . . 15,470 Iron . . . 16,822 

Velocity of Sound in Wood along the Fibre. 

Pine 10,900 feet Oak 12,622 feet 
Ash !3>3'4 Elm. . . . 13,516 
Fir 15,218 Aspen . . . . 16,677 

From the preceding tables we observe that the solids in 
which the velocity of sound is greatest are iron and steel 
for the metals, and fir and aspen for the woods. Accord-
ing to Chladni's measurements, however, the velocity in fir 
is much greater than that given in the table. His experi-
ments gave for this wood a velocity of 19,685 feet, — fully 

twelve times the rapidity of transmission of sonorous pulses 
in air.1 

It is to be noted that the rate of propagation of sound-
vibrations is not the same in all directions in wood. The 
figures above given are true only when the direction of 
transmission is along the fibres. When sound is made to 
pass parallel or across the rings of the wood, its velocity 
is very much less. 

It is to be remarked, also, that augmentation of temper-
ature in metals has not the same effects which it has in 
gases and liquids of increasing the velocity of sound. The 
result, except in the case of iron between 20° and ioo° C., 
is just the opposite. Increase of temperature entails a cor-
responding decrease in velocity. Iron is an exception to 
the rule which obtains with other metals, by reason, very 
likely, of some peculiar molecular structure; for it has 
been observed that iron and steel, prepared in different 
ways — iron and steel as wire and cast steel, for instance — 
do not transmit sound-waves with the same velocity. 

Chladni and Kundt have devised two beautiful methods 
of calculating the velocity of sound in different solids, 
which I shall dwell on more at length when we come to 
study the vibrations of rods.2 Interference of sound also 
affords us an interesting way of computing the rate of 
propagation of sound-vibrations in air and gases. But we 
shall see more of this in the sequel. 

Many methods have been devised for measuring the 
velocity of sound at short distances. The best and sim-
plest of these is, probably, that contrived by Bosscha. His 
method depends on the principle of coincidence of two 
sounds coming to the ear from points at different dis-
tances. The apparatus required consists essentially of two 
electric sounders, A and B (Fig. 33), which, under the 
influence of a vibrating spring, beat exactly ten times a 

1 Prof. A. M. Mayer has recently made a very accurate determination of 
the velocity of sound in clear white pine (American), thoroughly seasoned. 
This wood had a density of -395- and the velocity in it at 24° C. was >7,260 
feet per second. 

4 See chapter v. 



second. When the two sounders are placed side by side, 
as they are now on the table, they sound as one, because 
as the sounds of both reach the ear, 0, at the same time, 
it is impossible to distinguish one from -the other. As 
soon, however, as the instruments are separated the sounds 
they emit cease to coincide. You now hear twenty instead 
of ten strokes per second, — ten from each sounder. The 
reason of this is that the sounds emitted by the instrument 
farthest'from the ear are behind those emitted by the 
nearer one. If the sounders were to be so placed that one 
should be about 1 12 feet farther from the ear than the 
other, then the sounds coming from the two sources would 
again coincide. The explanation of this is to be found in 
the fact that at the temperature of this hall, 1 1 2 feet is the 
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distance that sound travels in one tenth of a second. For 
a similar reason the sounds from the two instruments would 
be coincident whenever the distance separating them is 
any multiple of 1 12 feet. It is obvious that the same 
appliance could be used for measuring the velocity of 
sound both in gases and liquids. 

The vibrating spring is, as you see, provided with a 
mirror, as is also a tuning-fork making forty vibrations per 
second, which forms a part of the apparatus. B y means 
of a discovery of Lissajous, of which we shall see more in 
its place, the spring can be so adjusted as to close and 
break the circuit exactly ten times per second, and thus 
cause the sounders to strike with unfailing regularity the 
tenths of a second as long as may be desired. This is not 
an apparatus for giving rigorously exact measurements, 
and yet the results obtained are probably more reliable 
than those obtained by any other instrument for measuring 
the velocity of sound at short distances. 

Sir Charles Wheatstone, to whom the sciences of acous-
tics and of optics are indebted for many beautiful inven-
tions, has devised a means of exhibiting, in a most pleasing 
manner, the transmission of sound through solid bodies. 
On the table is a music-box wrapped in several layers of 
felt. Although the instrument is now in operation, not the 
slightest sound is perceptible. I hold in my hand a rod of 
fir three feet long, the lower end of which is now brought 
into contact with the lid of the music-box. Still, no sound 
is heard. On the top end of the rod is now placed a guitar, 
and all at once it appears to be animated with the spirit 
of music. The harmony that was buried in the manifold 
layers of felt has now found a means of making itself au-
dible. Through the fir rod the sounds in the box are 
carried to the guitar, and this, acting as a sounding-board, 
— it does nothing more, — communicates to the air, in per-
fect rhythm and cadence, all the most delicate shades of 
harmony that have their origin in the complex mechanism 
in the box below. So faithfully is every note and every 
chord of the piece that is being played reproduced, so per-
fect is the illusion as to the real source of sound, that it is 
difficult at first to realize that the sweet sounds to which 
you are listening are issuing from a shapeless mass of felt, 
and not from the guitar itself. 

The rod that connects the box with the guitar might be 
of any other wood as well as of fir, or might be made of 
metal, and the result would be the same. Or, instead of 
being only three feet long, it might be several hundred 
feet in length, and still the result would be unchanged. 
Instead of a music-box, we might use a piano, or any 
other musical instrument, and in lieu of a guitar we might 
substitute a violin, mandolin, or simply a resonant box. 
The only purpose served by the musical instrument, or 
box, placed on top of the rod, connected vyith the music-
box, is, by exposing to the air a large surface, to distribute 
to it all the tremors which the revolving cylinder and steel 
tongues of the instrument engender. The rod alone is 
incompetent to render the sounds of the box audible, be-



The preceding table affords a remarkable experi-
mental confirmation of theoretical results. According to 

theory, as expressed in Newton's formula, V = j / i , the 

velocities of sound in any two gases are inversely pro-
portional to the square roots of their densities. The 
density of hydrogen is, to that of oxygen, as I is to 16. 
Hence, according to theory, the velocity of sound in the 
former should be to its velocity in the latter as 4 is to I. 
The velocity in oxygen being 1,040, the velocity in 
hydrogen, according to the law indicated, should be 4,060. 

FIG. 3 2 . 

Experiments, as made by Dulong, fix the velocity of 
sound in hydrogen at 4,164. 

The velocity of sounds in liquids may also be deter-
mined both directly and indirectly. Beudant, at Marseilles, 
was the first to measure the velocity of sound in water. 
But the most exact determination of the velocity of sono-
rous waves in water was made by two French physicists, 
Colladon and Sturm, in 1827, in the Lake of Geneva. 
The method adopted was similar to that employed by 
Beudant. The two observers stationed themselves on 
boats (Fig. 32), at opposite sides of the lake. The source 
of sound was a submerged bell, C, attached to one of the 
boats. The signal, announcing when the hammer, B, 
moved by the lever, L, connected with a torch, M, struck 

the bell, was a flash of gunpowder, P. On the other boat 
the observer was provided with a peculiarly shaped ear-
trumpet, 0 M, the bell of which was held in the water, and 
a good stop-watch, by means of which he was able to 
register exactly the time of the arrival of the sound-pulse 
through the water. As an average of many observations, 
it was found that the velocity of sound in water, at a 
temperature of 8.1° C., was 4,707 feet per second, -
more than four times greater than it is in air. 

By means of a specially constructed apparatus, that need 
not be described here, Wertheim was able to measure indi-
rectly the velocity of sound in other liquids as well as 
water. The following table gives the velocity in feet per 
second obtained for the liquids mentioned at the temper-
atures given: — 

Temperature Velocity 

River Water (Seine) 1 5 c 4.7M 
30 5,oi3 

Sea Water (artificial) 20 4,768 
Solution of Common Salt 18 5>'32 

Solution of Sulphate of Sodium 20 5,194 
Solution of Carbonate of Sodium 22.2 5,230 
Solution of Nitrate of Sodium 20.9 5,477 
Absolute Alcohol 23 3,804 
Ether 0 3-8OI 

The velocity of sound in liquids, as in gases, increases 
with the temperature. But the changes of temperature, 
which are due to the condensations of sonorous undula-
tions in water, are so insignificant as to affect no appreci-
able change in the medium. For this reason we may apply 

Newton's formula, V = without Laplace's correc-

tion, for calculating the velocity of sounds in liquids, and 
the results given closely approximate to those obtained by 
experiment. Thus by direct measurement the velocity of 
sound in water was found to be 4,708 feet per second ; by 
Wertheim's indirect method it was found to be 4,714 feet; 
and by the application of Newton's formula a velocity of 
4,671 feet is given. As the elasticity and density of any 



cause of the small amount of surface it exposes to the air. 
But I shall not forestall what properly belongs to the sub-
ject of resonance, which will be considered in another 
lecture. 

The toy called the string telephone, with which every 
one is familiar, is another pretty illustration of the facility 
with which solids transmit sounds. The telephones before 
you are composed of two brass tubes, the smaller ends of 
which are covered with a thin membrane. The centres of 
these membranes are connected with each other by a light 
cord, and by this simple means sounds, otherwise inaudible, 
can be heard at a distance of a thousand feet or more. 

A simple experiment will show the capacity that liquids 
have for transmitting sounds. On this resonant case is 
placed a long, narrow jar filled with water, and into the 
water at the top of the jar is placed the foot of a tuning-
fork. As soon as the fork touches the water a loud, clear 
note is heard, where before all was silence. Any other 
liquid would answer the purpose as well as water. 

Here I must call your attention to an interesting prop-
erty of sound which was first pointed out by Doppler in 
1842, in a remarkable memoir on the colors of double 
stars. If an observer approach a source of sound it 
is obvious that the number of sonorous pulses which 
will reach his ear will be increased in proportion to his 
rate of motion. The pitch of the sound, therefore, will 
be heightened. If he recede from the sonorous body, 
the number of sound-waves that will reach him will be 
diminished in proportion, and the sound, consequently, 
will appear more grave. The same results will be observ-
able if the hearer remain stationary and the sounding body 
be put in motion. Thus, if one could move with nearly 
the velocity of sound towards a brass band playing a piece 
of music, its pitch would be so greatly augmented that, 
although the performance would still be in time, its char-
acter would be entirely altered, and it would be nearly, if 
not quite, inaudible except to ears specially sensitive to 
very acute sounds. If, on the contrary, one were to move 

away from such a musical source with a velocity approach-
ing to that of sound, the sounds heard, if at all audible, 
would be proportionally flattened. If, further, the observer 
were to recede from the band with a velocity greater than 
that of sound, a piece of music commenced after he had 
started would never reach him, but " sounds previously 
executed," as Lord Rayleigh observes, " would be gradually 
overtaken, and heard in the reverse of the natural order." 1 

And, finally,.if the observer's velocity were to be twice that 
of sound, he would " hear a musical piece in correct time 
and tune, but backwards." 

An illustration of the effect of motion on the pitch of 
sound is afforded by the whistle of the locomotive as it 
approaches or recedes from the observer. In the former 
case the pitch is augmented, in the latter it is diminished. 
Thus, for a train moving at the rate of thirty-eight miles 
an hour, the velocity is about fifty-five feet per second. 
This, calculation shows, is sufficient to raise the pitch of 
the whistle a semitone as it approaches the observer, and 
to lower it by the same amount as the locomotive retreats. 
Thus, if, when both locomotive and observer were station-
ary, the whistle were to give the note Av it would, with 
the velocity above mentioned, give the note as it ap-
proaches, and A&, as it leaves him. Just at the moment 
of passing by the observer there would be a change of 
a whole note, that is, from A%y to By doubling the 

velocity of the train the whistle would be augmented by a 
whole tone when approaching, and diminished by a whole 
tone on leaving. If two express trains, each going at the 
rate of thirty-eight miles an hour, were to pass each other, 
the whistle of the engine of one train would appear, when 
approaching an observer in the other train moving in an 
opposite direction, to be a whole tone higher than when 
whistle and observer were both stationary. After the two 
trains had passed each other the note of the whistle would 
appear a whole tone lower than it would if both observer 
and whistle were stationary. At the instant of passing 

1 Theory of Sound, vol. ii. p. 240. 



there would be a change of a major third, or of two whole 
tones. If instead of thirty-eight miles the velocity of the 
two trains were to be equal to that which is now frequently 
attained by some of our limited express trains, there would 
be, at the instant of passing, a transition equivalent to an 
interval greater than a fourth, and approximating to a 
fifth.1 

Doppler's principle, as it is called, at first only a theory, 
has, in its application to sound, been experimentally veri-
fied by Buys-Ballot and Scott Russell, by means of musi-
cal instruments carried on locomotives, whose pitch was 
determined by musicians stationed along the road over 
which the engines passed. 

By applying the same principle to luminous vibrations, 
astronomers have been able to determine, not only the 
direction of motion, but also the velocity of many of the 
stars as they approach or recede from the earth. 

A simple laboratory instrument for showing the influ-
ence of motion on the pitch of sonorous bodies has been 
devised by Mach. It is composed of a tube six feet in 
length, mounted on a stand, and turning about an axis at 
its centre (Fig. 34). At one end of the tube is fixed a 
reed, which is sounded by forcing air into the tube through 
an aperture at its axis of rotation. If, while the tube is rota-
ting, an observer stand in the prolongation of its axis of 
rotation, he will hear a note of constant pitch. If, on the 
other hand, he be stationed in the plane of rotation, he 
will hear a note which alternately rises and falls in pitch 
according as the sonorous body approaches or retreats 
from him. 

1 Designating by 11 the number of vibrations of the sonorous body when 
at rest, by V the velocity of sound, by V the velocity of the sonorous body 
when approaching or receding from the observer, and by n' the number of 
vibrations corresponding to the sound perceived by the observer, we have 
the two following formulae : — 

n ( j/ 4 y\ 
n' — -p. '- as the sonorous body approaches observer. 

„iy— y\ 
n' =. — as the sonorous body recedes from observer. 

Koenig illustrates this phenomenon in another way 
equally striking. For this purpose he employs a pair of 
tuning-forks mounted on resonant cases, like those 
now before you. The frequency of one of them Is C 
of 512 vibrations, and that of the other is exactly four 
vibrations higher. They thus, when stationary and 
sounding together, give four beats per 
second. If now I excite the two forks, 
and leaving the more acute one on the 
table, move the graver one towards it, 
in a line joining my ear and the station-
ary fork, over a distance of about two 
feet, — approximately the wave-length 
of the fork, — in a second I thereby 
lower the pitch of the graver fork by 
one vibration. This increases the dif-
erence between the forks to five vibra-
tions, and gives rise to five beats per 
second. A movement in the opposite 
direction would, for a like reason, pro-
duce three beats a second. Thus by 
properly timing the movement of the 
graver fork between the ear and the fork 
on the table, we have alternately three 
and five beats per second,—three beats 
as the fork is brought towards the ear, 
and five beats as it moves away. By 
this means, also, it is evident one can determine approxi-
mately both the wave-length and the pitch of a sound. 

A modification of this experiment will enable you all 
to see at a glance the effect of motion on the frequency 
of sonorous vibrations. For this we shall use two forks 
on cases that are exactly in unison with each other. And 
in this experiment I shall anticipate, to some extent, what 
I shall have to say on the subject of resonance and sym-
pathetic vibration. When one fork is agitated, the other, 
although at some distance, immediately begins to vibrate, 
as you see by the small pith ball that is projected away 
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from the prong against which it was suspended. This 
happens, however, only when both forks are stationary. If 
now one of them is moved rapidly backwards and for-
wards in a line connecting the two forks, the perfect unison 
that previously existed between them is destroyed. For 
from what has been said, when one of the forks approaches 
the other, the pitch of the fork in motion is heightened, 
and when it recedes the pitch is lessened. And as in this 
experiment perfect unison is necessary in order that one 
fork may excite sufficient vibratory motion in another to 
produce the effects noted, we see at once in the absence 
of such motion what influence the movement of one fork 
towards or away from the other has on the pitch of the 
sonorous vibrations in question. 

In a homogeneous medium sonorous waves are propa-
gated in the form of concentric spheres. When, however, 

the homogeneity of the medium is dis-
turbed, or an obstacle is encountered, 
sound-waves suffer partial or total re-
flection. In this respect they obey the 
same laws as those which govern rays 
of light and radiant heat. If, in Fig. 
35, MN represent a fixed elastic sur-
face, a sound produced at C will be 
heard by an observer at 0 both directly 
in a straight line, and by reflection from 
the point /. The sound in the latter 
instance appears to come from / or 
from C', a point in the line 01 pro-

duced. Making P I perpendicular to the reflecting sur-
face MN, and calling CI the incident, and 10 the reflected, 
ray 1 of sound, it is found that in all cases the angle of 
incidence, CIP, is equal to the angle of reflection, P10. 

1 A ray of sound, as is obvious from what has been said concerning the 
nature of sonorous vibrations, must be considered as a simple abstraction, 
and nothing more. In explaining the laws of reflection and refraction 
of sound it is a convenient term to use, and for this reason only is it 
introduced. 

It is found also that the incident and reflected rays are 
always in the same plane, and that this plane is perpen-
dicular to the reflecting surface. 

When concentric sound-waves encounter a fixed obstacle 
they return upon themselves, as if emanating from a second 
centre on the opposite side of the obstacle. Thus, in Fig. 
36, the sonorous waves whose source is O, on arriving 
at'the fixed surface A B, are reflected in such a manner 
that they seem to proceed from the point O' on the other 
side. A single ray of sound from 0, impinging against 
the point /, would be reflected to the point M, along the 

F I G . -36. 

line I M . This line may be regarded as a continuation of 
that drawn from 0 ' , the virtual centre of the waves 
reflected from the surface AB. 

It is an easy matter to show experimentally the reflec-
tion of sound. Before you are two curved mirrors on 
metallic supports, A and A\ about six yards apart. These 
mirrors — which are shown in section in Fig. 37 —have 
the property of converging parallel rays of light, heat, or 
sound, to a point called the focus. When, however, the 
rays start from the focus and are reflected from either 
mirror, they are given off in lines that are parallel. In 
the focus, F of one of the mirrors, M, is suspended a 



watch, and at the focus, F, of the other mirror, M', is a 
small funnel, which is connected with my ear by means of 
a rubber tube. By a special effort I am able to hear the 
ticking of the watch with the unaided ear; but by means 
of these two mirrors I can hear its ticking with remarkable 
distinctness. The sound-rays from the watch strike 
against the mirror adjacent, and by it are reflected to the 
one more distant; and by this last the rays are con-
centrated at a single point, which, by means of the tube, 
is now in direct communication with my ear. By this 
means the ticking of a watch can be distinctly heard at 
a distance of two or three hundred feet, whereas the 

M M ' 

unaided ear would be unable to detect the slightest sound 
at. a very small fraction of this distance. Good results 
may likewise be obtained from one mirror, as can be easily 
demonstrated. Leaving the watch suspended as it is, 
I turn the adjacent reflector so as to direct the sound-
rays towards the audience. With a little attention I think 
that even those in the most distant part of the room can 
hear the ticking of the watch, when the reflector is so 
adjusted that the reflected sonorous waves shall strike 
directly the tympanic membrane of the ear. 

Mr. Cottrell has devised a very ingenious instrument for 
exhibiting the reflection of sound and showing that the 
angles of incidence and reflection are equal and in the 
same plane. It consists (Fig. 38) of a tube, R B, by 

means of which the acute sound of a small reed is directed 
against a mirror, M, by which it is reflected into another 
tube, AF, carrying at its extremity a sensitive flame. The 
axes of the two tubes can be turned towards the mirror at 
any angle, and the support is so graduated that the 
angles of inclination of the tubes to the normal of the 
mirror can be read off at a glance. 

When the angles are equal and the reed is sounded, the 
sonorous pulses are reflected from the mirror into the tube 
bearing the sensitive flame. The flame, as you observe, 
is now violently agitated, and this disturbance persists as 
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long as the sound continues. If, however, the angles are 
unequal, the sensitive flame will remain quiescent. I now 
make the angle of reflection greater than the angle of 
incidence, and sound the reed as before; the flame re-
mains perfectly quiet. Nothing could be more sensitive 
than the flame, when properly adjusted, or illustrate more 
clearly the laws governing the reflection of sonorous rays. 

But it is not by any means necessary to have a solid 
surface, such as this mirror, for a reflector. Liquids and 
gases have also the power of reflecting sound. Every one. 
may recall instances of the reflecting power of liquids, 
especially the water at the bottom of wells or under the 
arches of bridges. But the power which gases have of 
reflecting sounds is not so well known. It can neverthe-



less be strikingly exhibited by the apparatus which we 
have just been using. Substituting a jet of burning coal-
gas for the glass mirror, and proceeding as before, we 
find that the sonorous pulsations coming from the vibrat-
ing reed are reflected so as powerfully to agitate the 
sensitive flame. By lowering the flame and causing the 
sound-waves to impinge against the sheet of heated air 
which arises from the flame, the result is unchanged. 
Substituting a red-hot bar of iron for the gas jet, the 
sensitive flame is still agitated. The stream of hot air now 
rising from the bar is the reflecting surface, although 
entirely invisible. 

These last experiments explain many facts concerning 
the behavior of sound under circumstances that, until 
recently, were an enigma to all investigators. .Humboldt, 
indeed, suspected the action of non-homogeneous air on 
the transmission of sonorous waves, and offered an expla-
nation of a fact that is within the experience of every one; 
namely, that sounds are heard with greater distinctness at 
night than during the day. Speaking of the sound due to 
the Great Falls of the Orinoco, in South America, he says: 
" During the five days we passed in the neighborhood of 
the cataract we remarked, with surprise, that the noise of 
the river was three times as loud during the night as dur-
ing the day. The same thing, it has been observed, holds 
true for all the waterfalls of Europe. What can be the 
cause, in a-wilderness, where nothing disturbs the silence 
of nature? It must probably be sought in the current of 

. hot air which ascends during the day, and which arrests 
the propagation of sound, but which ceases during the 
night, when the earth is cooled." Air rising from rocks or 
the bare ground would be more heated than that which 
rises from soil covered with water or vegetation. We 
should thus have produced air-columns of different tem-
peratures, and, consequently, of different densities. In 
passing through such an atmosphere, sound would under-
go successive reflections, which would entail a corre-
sponding diminution of intensity. During the night, when 

the homogeneity of the air is restored, such reflections are 
absent, and sound reaches the ear with proportionally 
augmented intensity. The admirable observations and 
experiments of Tyndall have cleared up all doubts regard-
ing this matter, and what Humboldt and others only 
suspected, is now received as one of the established truths 
of science. 

The familiar phenomenon of resonance, or echo, is due 
to the reflection of sound. If one speaks in a moderately 
large room with bare walls and little or no furniture, the 
sound-waves reflected from the walls and ceiling of the 
room reach the ear shortly after the direct waves, and both 
combine in such a manner as to augment the resultant 
sound Such an augmentation is known as resonance. If 
the room be larger, the direct and reflected waves reach 
the ear in appreciably different times, and the result is 
that the words spoken appear to be doubled, and, for this 
reason, confused, and distinguished with difficulty. 

But when the reflecting surface is about 1 10 feet dis-
tant from the speaker, he hears twice each syllable he 
p r o n o u n c e s , - o n e directly, and the other by reflection. 
The latter sound is known as a simple echo. If the re-
flecting surface is 220 or 330 feet away, the speaker will 
hear two or three syllables by reflection. Such a phenom-
enon is called a polysyllabic echo. The farther away the 
reflecting surface is, the greater the number of syllables 
that one may hear. Dividing the distance of the obstacle 
throwing back the sound by J 1 0 will give approximately 
the number of syllables which an echo will furnish. I say 
approximately, because I proceed on the assumption that 
one can pronounce distinctly only five syllables per second. 
As sound at the ordinary temperature of the air travels 
about 1 100 feet per second, this would allow about 220 
feet for each syllable, or the half of this number for the 
distance of the object from the speaker. When sound is 
reflected from several different objects at suitable distances 
or when it undergoes a series of reflections from parallel 
walls, for instance, we have what are called multiple echoes. 



One of the most remarkable multiple echoes ever known 
was one formerly heard in the Château of Simonetta, near 
Milan. According to Father Kircher, a sound was here 
reflected no less than forty times. An echo in Woodstock 
Park, in England, repeats a sound seventeen times during 
the day, and twenty times at night. All European trav-
ellers are familiar with the celebrated echoes at the Gap 
of Dunloe, at Killarney, and that which is heard between 
Bingen and Coblentz, where the waters of the Nahe flow 
into the Rhine. The most remarkable echoes I know of 
in this country are found in the canons of the Rocky 
Mountains. These deep chasms, as one might imagine, 
by reason of their precipitous and oftentimes parallel cliffs, 
are particularly well adapted to reflecting sound and to 
furnishing echoes of all kinds. I have also heard in the 
Grand Canon of the Colorado River, in Arizona, some 
most extraordinary echoes, comparable, I think, with any 
that are to be heard elsewhere. 

In whispering-galleries we have another illustration of 
the peculiar effects produced by reflected sounds. Some-
times the sound is greatly augmented, as in the crypt of 
the Panthéon in Paris, where a slight clapping of the 
hands gives rise to reverberations of great power and vol-
ume. In the large chambers and long passage-ways of 
the Great Pyramid of Gizeh the reverberations excited 
by the slightest noise are equally striking. 

Large domes, like those of St. Peter's in Rome or of 
St. Paul's in London, are interesting examples of the per-
fect manner in which sound is reflected by curved surfaces. 
In both cases the slightest whisper is conveyed by reflec-
tion, or by a . series of reflections, from one side of the 
dome to the other, without any appreciable enfeeblement 
of sound. Two persons stationed at opposite sides of the 
d^me can, without any difficulty, carry on a conversation 
that is almost, if not quite, inaudible to bystanders only a 
few feet distant. The dome of the Capitol in Washington 
is an almost equally good place for reflecting sounds and 
augmenting them by resonance. But perhaps the most 

remarkable building for reflections and echoes to be found 
anywhere is the curiously designed Mormon Tabernacle 
in Salt Lake City, Utah. It is in the form of a semi-ellip-
soid, and is capable of seating over ten thousand people. 
The speaker, as I can testify from personal experience, 
can be heard distinctly, and without the slightest effort on 
his part, in every part of this vast edifice. When the hall 
is empty, a whisper at one end of the building is easily 
heard at the other. Indeed, two persons may here carry 
on a conversation in a whisper, although over two hundred 
feet apart, so perfect is the reflection from the curved sur-
faces of the walls and ceiling. I do not think there is any 
other place in the world where a speaker can make himself 
heard by so many and with so little exertion. The acous-
tic properties of the building are certainly extraordinary, 
and as unexampled, I think, as the architectural style of 
the structure is unique. 

Strange as it may appear, architects are still in the dark 
as to the laws governing the acoustic properties of build-
ings. For places of assembly, like public halls, theatres, 
churches, one would think that, by this time, architects 
would be able to determine, at least empirically, the best 
form to give to a building of determinate size ; but they are 
not. Success is a matter of accident. There are many 
halls in this country that, from an acoustic point of view, 
are all that a speaker or singer could desire ; while, as is 
well known, there are many others that are almost useless 
for the purpose for which they were designed. And what 
is said of the defectiveness of halls may be predicated 
more particularly of churches, especially those that are at 
all large. Gothic churches seem to suffer most in this re-
spect, and it would appear that the Gothic style of archi-
tecture is incompatible with good acoustic effects. 

Even in ordinary halls several expedients must frequently 
be resorted to in order that a speaker or singer may be 
heard to advantage. It is observed, for instance, that in 
certain halls there is too much resonance, — so much, in-
deed, as to interfere materially with a distinct perception of 



what is said or sung; and the only remedy is to dampen 
the sound by draping the walls, or to make the surface of 
walls and ceiling so irregular that resonance and echo are 
so diminished as not to be appreciable. Public speakers 
all know the difference in resonant effect observed in speak-
ing in an empty hall and in one crowded with people. 
In the former case the resonance may be so great, and the 
direct and reflected sounds so interfere with each other, 
that what is uttered is indistinguishable. The presence of 
an audience in a hall in which such a difficulty is observed, 
is often sufficient to dampen this excess of resonance so 
that every word spoken or sung can be heard and under-
stood. There is certainly much yet to be learned in the 
science of acoustics as applied to the construction of build-
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ings, and the one who shall supply even a part of the in-
formation still needed will confer a boon both on hearer 
and speaker. 

Among the practical applications of the laws of re-
flected sounds may be mentioned speaking-tubes and 
speaking and ear trumpets. Sound, as every one knows, 
is conveyed to a much greater distance in tubes than in 
the open air. Hence their adoption in buildings and other 
places where it is desirable to carry 011 a conversation at 
any considerable distance. The smoother the interior, 
and the more elastic the material of such tubes, the less 
rapidly is the intensity of sound diminished, and the far-
ther, consequently, is it carried. 

A speaking-trumpet is usually of metal, conical in form 
(Fig . 39), with a mouthpiece at its smaller end, and 
a wide opening, called the bell, at the end opposite. 
Experience shows that the bell renders the trumpet more 

effective; but the office it performs is not yet understood. 
By means of a series of reflections in the interior of the 
trumpet, the sonorous rays are rendered more or less par-
allel, and, hence, capable of being transmitted to much 
greater distances than would otherwise be possible. The 
loudness of the sound produced is most likely due to 
resonance. 

An ear-trumpet is just the reverse of a speaking-trum-
pet. The smaller end is inserted in the ear,-and the sound 
to be heard is produced at the larger end. By a series of 

reflections the sonorous waves are condensed as they enter 
the tube, and, on arriving at the tympanic membrane, are 
of sufficient intensity to excite the sensation of a sound 
that the unaided ear could not perceive. Although the 
general principle obtaining in all ear-trumpets is identical, 
many forms have been devised. A few of these are shown 
in Fig. 40, the modus operandi of which is apparent. 

Sound, like light and radiant heat, when passing from one 
medium to another of different density, or from one point 
to another in the same medium, when it lacks homogeneity, 
deviates more or less from a direct course. It is then said 
to be refracted. From theoretical considerations, based 
on the different velocities of sound in media of different 



\ 

d e n s i t i e s , Poisson and Green demonstrated that sonorous 
waves are subject to laws of refraction similar to those 
that prevail for light and heat. 

Sondhaus was the first to demonstrate this experimen-
tally by means of lenses of peculiar construction, and 
Hajech, shortly afterwards, showed that the same results 
are obtained by using suitable prisms filled with gases or 
liquids of different densities. A lens (Fig. 4 1 ) similar to 
the one employed by Sondhaus in his researches is before 
you. It is made of a broad brass ring, to the two sides 
of which are attached sheets of thin India-rubber, A. 

FIG. 4 1 . 

Through a stopcock, 0 or 0', carbonic-acid gas is ad-
mitted into the apparatus until the sheets are sufficiently 
distencted, and have the form of a double convex lens. 
As carbonic-acid gas is more dense than air, a sound pro-
duced in the surrounding air has its velocity retarded 
while passing through the heavier gas in the lens. The 
result is that sonorous rays, which were divergent before 
entering the lens, are made to approach each other when 
leaving the lens on the opposite side and to converge to 
a focus.' Suspending a watch in the axis of the lens on 
one side, the sound-pulses are collected at a point on the 
axis on the other side. Bringing the ear to this point, the 

ticking of the watch is far more distinctly heard than 
would be possible with the unaided ear. 

This concentration of sound-rays by means of a lens can 
also be exhibited in another way devised by Sondhaus. 
At the point occupied by the ear is placed a small cylin-
drical box, F, covered with a thin membrane, B, strewn 
with fine sand, and a funnel which collects the sound-
rays and conveys them to the interior of the case. When 
a note of suitable pitch and of some intensity is sounded 
at 5 (Fig. 4 1 ) , the sonorous pulses are concentrated at 
the other side of the lens, and cause the sand to dance 
about on the membrane as long as the sound lasts. To 
prove that there is really a refraction of sound in this in-
stance, it is only necessary to remove the lens, when the 
movement of the sand subsides. 

Refraction and reflection explain many phenomena con-
nected with the propagation of sonorous waves that would 
otherwise remain unintelligible. The investigations of 
Prof. Joseph Henry and Professor Tyndall on the audi-
bility of fog-signals have disclosed many facts before 
unknown regarding the transmission of sound-waves; but 
there are many apparently abnormal acoustic phenomena 
which are far from being understood. Henry seems to 
think that the very capricious action sometimes observed 
in fog-signals can in almost all cases be explained by 
refraction. Tyndall lays more stress on reflection; and 
the experiments made in support of his views are, in at 
least some instances, apparently conclusive as to the 
truth of his theories. We have shown experimentally 
that a sheet of heated air or gas is capable of reflecting 
sound, and according to Tyndall, a heterogeneous con-
dition of the atmosphere is competent to produce reflec-
tions of sufficient power to produce an echo. In Tyndall's 
opinion the reverberations of cannon and thunder are in 
many, if not in all, cases due to limiting surfaces of strata 
and columns of heterogeneous atmosphere, and not, as 
has been long supposed, to clouds or other reflecting 
surfaces. 



If sound-waves encounter an obstacle in their path, and 
this obstacle be large in comparison with the length of the 
waves of sound, it will give rise to what is aptly called a 
sound-shadow. The sound behind the object is much less 
intense than that in front of it, and if the object be suffi-
ciently large, the sound may be quenched entirely. But 
if the obstacle encountered is small, as compared with the 
length of the sound-wave, the wave will pass around it, 
and there will consequently be no sound-shadow. This 
property which waves of sound, like waves of water and 
light, have of bending around obstacles in their path, is 
known as diffraction. 

It is ordinarily supposed that both sound and light rays 
travel only in straight lines; but this statement requires 
modification. Both luminous and sonorous rays are ca-
pable of diffraction; that is, of being bent round opaque 
bodies, to a greater or less extent. With diffraction of 
light we are not at present concerned; but it were an easy 
matter to instance numerous examples of sonorous diffrac-
tion. A railway train passing through a tunnel and around 
hills is a familiar example of the variation in the intensity 
of sound due to diffraction. In a mountainous country like 
Colorado, where the curves are sharp and the cuttings deep, 
and where there are numerous castellated buttes facing the 
road along which the train passes, the effect is particularly 
striking. All visitors to Manitou, the great summer resort 
of the Rockies, must have observed the peculiar and re-
markable effects produced by the train on the " Midland 
Railway " as it passes around the base of Pike's Peak, now 
going through tunnels and deep cuts, now behind knolls 
and hillocks and immense masses of rock that have been 
detached from the mountain high overhead. A more in-
teresting and instructive example of the diffraction of 
sound could not be found. 

A remarkable illustration of diffraction is afforded when 
a person in motion puts between himself and a brass-band, 
playing some distance away, objects of varying sizes. The 
result is that the notes played are differently diffracted 

according to their respective wave-lengths. In some in-
stances the objects passed may give rise to more or less 
perfect sound-shadows for the notes of higher pitch, 
while the graver notes bend round the object with but 
little diminution in sonorous intensity. The result is that 
the acute notes seem very much feebler comparatively 
than the grave ones, and there is, consequently, a change 
in the quality of the music that no one could fail to ob-
serve. For this reason, in order to hear music to the best 
advantage, one should always be in full view of the per-
formers, where there will be no danger of sound-shadows 
for any of the notes played. 

Diffraction also explains the peculiar behavior of some 
of the great dynamite and powder explosions that have 
taken place in the country during the last few years. It 
has often been remarked as strange that the windows on 
all sides of the houses near where these explosions have 
occurred have been forced inwards by the terrible concus-
sion which was occasioned. The reason is simple. The 
sonorous waves in coming from the centre of disturbance 
encircled the houses, in which the phenomena referred t-o 
were observed, with a wave of condensation of such power 
that the windows on all sides of the houses were forced 
inwards at practically the same moment. Were it not for 
diffraction, — the property that sound-waves have of bend-
ing around obstacles, — such results as those indicated could 
not have occurred. And furthermore, were it not for dif-
fraction, sound produced on one side of an object could 
not be heard on the side opposite, except by transmission 
directly through the obstacle, which in nearly all the cases 
alluded to would have been impossible. 

The distance to which sound travels is often very great. 
Of course the distance to which it will be conveyed in 
any given case will, as we have seen, depend on circum-
stances,— on the elasticity and temperature of the medium 
through which it is transmitted, on the intensity of the 
sound itself, and on a number of other factors which need 
not now be indicated. 



Thus, in 1762 the cannonading at Mayence was heard 
at Timbect, a village 148 miles distant. The booming 
of the cannon which preceded the taking of Paris in 
1814 was heard at the distance of 132 miles, and the firing 
at Waterloo was audible at Dover. The cannonading at 
Antwerp in 1832 was, we are told, heard in the mines of 
Saxony, about 370 miles from the scene of action. Ac-
cording to Humboldt, the report of the volcano of St. 
Vincent was heard at Demerara, 750 miles off. In respect 
of distance, this would be the same as if an eruption of 
Vesuvius were heard in the north of France At the time 
of the great eruption of Cotopaxi, in 1774, subterranean 
detonations were heard at Honda, on the Magdalena. 
The distance between these two points is over five hundred 
miles, and their difference of level is nearly 18,000 feet. 
Besides this, they are separated by the colossal mountains 
of'Quito, of Pasto and Popayan, and by valleys and 
ravines without number. Evidently, then, sound in this 
case was not transmitted by the air, but by the earth, and 
at a very great depth. 

It would appear from the last two examples, in which 
there can be no doubt that the earth was the medium by 
which sonorous vibrations were propagated, that the range 
of sound, under favorable circumstances, is very great 
indeed. But it may be asked, Is the reach of sound ever 
thus great in air? We have no means of answering this 
directly; but certain facts recorded by competent and 
trustworthy observers show that sound in air is some-
times,'even under unfavorable circumstances, transmitted 
to almost incredible distances. 

Chladni, for instance, tells us of meteors whose explosion 
was not heard until ten minutes after the appearance of the 
luminous globe. This would indicate that the meteor had 
an altitude of at least 125 miles at the time of the explo-
sion. A meteor observed in the south of France in 1864 
exhibited the same peculiarity, and the observers noted 
an interval of full four minutes between the appearance of 
the flash and the hearing of the detonation. Speaking of 

this subject, M. Daubree declares that " in order that an 
explosion produced in air so rarefied may give rise at the 
earth's surface to a report of such intensity, and over such 
an extended area, we must admit that its violence in these 
high altitudes far exceeds anything with which we are 
acquainted here below." 

The amount of matter, solid, liquid, and gaseous, put 
into a state of tremor by the explosions just referred to is 
measured by hundreds of thousands and millions of cubic 
miles. But although we may make some attempt to ex-
press in numbers the magnitude of the disturbance, the 
mind fails to grasp their full significance. No better illus-
tration could be asked of the elasticity of the different 
kinds of matter which compose the earth's crust and its 
circumambient atmosphere, nor could we desire stronger 
evidence of the extreme sensitiveness of the auditory ap-
paratus capable of appreciating, at such distances, vibra-
tory motion that must, for individual particles, be all but 
infinitesimal. 

In all the cases cited, however, sonorous waves are origi-
nated by titanic forces. But even when the source of sound 
is quite insignificant, the amount of matter set in motion 
is simply amazing. Thus the lark, as it rises in the air 
and breaks forth into its morning carol, may put into 
vibration many millions of cubic feet of the medium in 
which it warbles its notes of gladness. 

But far more remarkable for their ability to impart 
vibratory motion to large masses of air are certain crick-
ets, locusts, and grasshoppers. " The stridulation pro-
duced by some of the locustidas," says Darwin, " is so loud 
that it can be heard at night at the distance of a mile." 
Calculation shows that it thus excites, according to the 
condition of the atmosphere, sonorous tremors in no less 
than from five to ten million tons of matter. And yet the 
insect that accomplishes this extraordinary work does not 
weigh more than a quarter of a pennyweight. 

Facts like these bring us face to face with phenomena 
that seem to elude the equations and the formulae of the 
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mathematician, and to defy all attempt to bring them 
within the range of mathematical analysis. In the instance 
last given the magnitude of the volume of matter set in 
motion by a tiny, insignificant insect is something calcu-
lated to excite our astonishment. But more wonderful 
still, when we come to think of it, is the fact that notwith-
standing the small amplitude of movement of the air 
particles a mile distant from the stridulating locust, the 
vibratory motion excited by this insignificant little insect 
is still competent to excite the sensation of sound. We 
know, indeed, that very slight, almost infinitesimal, peri-
odic tremors are sufficient to generate sonorous pulses. 
Lord Rayleigh has shown that sound-vibrations may be 
produced when the amplitude of movement is not more 
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tions and calculations, far from detracting from the 
marvellous in the case we are considering, tend only to 
enhance it and to place it in a brighter light. Nothing 
could give us a better idea of the transcendent delicacy 
of the °ear, nor could we have a better example of the 
perfect conservation and correlation of force, than that 
afforded by the illustration just given. But here I must 
close. We have again come into contact with more of 
those innumerable mysteries of the natural order which 
hitherto have baffled all attempts at their solution, and 
which will, most likely, ever remain as they are at present, 
— fascinating, yet inscrutable. 

C H A P T E R IV. 

MUSICAL STRINGS. 

RE V I E W I N G the ground over which we have thus far 
travelled, we shall find that we have been dealing 

with only the more general laws and phenomena of sound. 
We are now prepared to consider, in greater detail, the 
laws and phenomena that are observed in connection with 
special forms of sonorous bodies. Most of our attention 
will, naturally, be given to such vibrating bodies as are 
used in music. Chief among these are strings, wires, 
reeds, bars, plates, bells, membranes, and various forms 
of sonorous tubes. 

To-day we shall occupy ourselves in studying the very 
interesting phenomena which characterize the vibration 
of wires and strings. By the term string, in acoustics, 
we mean " a perfectly uniform and flexible filament of 
solid matter stretched between two fixed points." It thus 
includes wires as well as strings properly so-called. An 
acoustic string, however, is quite ideal, as no string is per-
fectly elastic or perfectly uniform. The most that is ever 
realized in the strings employed in musical instruments 
is a more or less close approximation to the ideal 
string which the mathematician has in view in all of his 
calculations. 

From the earliest times strings have been used in the 
construction of musical instruments, for we have records 
of them that date back to the twilight of fable. Figures 
of what are evidently primitive forms of the harp and the 
lute are to be found on Egyptian monuments all along 
the Nile valley. Similar instruments were used by the 
earliest inhabitants of western Asia, as is evidenced by 
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inscriptions found among the ruins of the great at.es that 
once -raced the plains of Chaldea and Mesopotamia. The 
favorite instrument of the H i n d o o s - t h e vina, resembling 
somewhat the g u i t a r - w a s given to mankind we are told 
by Sarasvati, the benevolent consort of Brahma. And 
then we must recall other stringed instruments scarcely 
less ancient , - the kinnor and hasur and psaltery of the 
Israelites, and the lyre and cithar of the Greeks, no to 
speak of many similar instruments employed by o her 
nations of antiquity. According to the Greeks, the lyre 
was invented by Apollo, while the Hebrews tell us that a 
similar instrument was devised by Jubal. The Egyptians 
attribute the glory of a like invention to Mercury. The 
Nile" says Apollodorus, "af ter having overflowed the 
whole country of Egypt, when it returned within its 
natural bounds left on the shore a great number of dead 
animals of various kinds. Among the rest was a tortoise, 
the flesh of which being dried and wasted by the sun, 
nothing was left within the shell but nerves and cartilages. 
These,'being braced and contracted by dessication, were 
rendered sonorous. Mercury, in walking along the banks 
of the Nile, happening to strike his foot against the shell 
of this tortoise, was so pleased with the sound it produced 
that it suggested to him the first idea of the lyre. This 
he afterwards constructed in the form of a tortoise, and 
strung it with the sinews of dead animals." 

No attempt was made to inquire into the scientific basis 
of music until the time of Pythagoras, the seventh century 
B. C. Of this distinguished philosopher and mathematician 
it is said that — 

" A stream 
Of song divine stole on his raptured ears, 
And round him burst the music of the spheres." 

To illustrate his theory of musical harmony, as based on 
numbers, he invented the monochord, — an instrument 
that is still employed in many investigations regarding the 
nature and mysteries of the tonal art. 

MUSICAL STRINGS. 

A modified form of the instrument devised by the Greek 
sage is before you. It is known as the differential sonom-
eter of Marloye, who invented it, and it differs from the 
monochord in that it has two strings instead of one, and is 
available for a greater number of experiments. We shall 
have frequent occasion to use it during the course of this 
lecture, as with it can be illustrated all the leading laws of 
vibrating strings. As you will observe (Fig. 42), it is con-
structed of a long resonant case of fir, M N , on which are 
stretched two wires. One of the wires, a d, is stretched 
between two pins, by means of a piano key, p, the other, 
b, R, passes over a movable pulley, and is stretched by a 
weight, P, which can be varied at pleasure. Near their 
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extremities these wires rest upon fixed bridges, B and B'. 
A movable bridge, C, rests under the wires, and permits a 
variation in the lengths of the vibrating parts. A scale 
divided into millimeters is fixed on the top of the box, and ^ 
gives the length of the strings between the bridges. 

I now pluck one of the strings and cause it to vibrate as 
a whole. It gives the lowest note it is capable of yielding 
with the tension to which it is at present subjected. The 
lowest note emitted by any sonorous body musicians call 
the fundamental, or the prime. By means of the movable 
bridge, the string is now divided into two exactly equal 
parts. Plucking either one of the halves, we get a note 
that the musicians present will recognize as the octave of 
the fundamental. That a string sounding an octave is ^ 
only one half the length of a string emitting its funda-
mental, is one of the first discoveries made by Pythagoras 



with the monochord. By placing the movable bridge so 
that the string is divided into two parts whose lengths are 
as the numbers 2: 3, he found that the sounds yielded are 
those that are separated by the interval known as a fifth. 
Thus, if the longer string gives the note C3, the shorter 
one will give G'3. Continuing his experiments, he divided 
the string in such a way that the relative lengths of the 
two parts were as the numbers 3 : 4. Such strings he 
found gave the interval known as the fourth. As before, 
if the longer string were to sound C3, the shorter would 
emit F?. 

Although the Greek philosopher made many other ob-
servations with his monochord and designed several other 
instruments, among which was his famous tetrachord, he 
does not appear to have discovered any other intervals 
used in modern music. If he did make such discoveries, 
he certainly did not employ them in his system of music. 
One of the most pleasing intervals in modern music was 
not introduced till the fifteenth or sixteenth century. It is 
known as the major third. It is obtained on the mono-
chord by causing two strings to vibrate whose lengths are 
to each other as 4 : 5. In this instance if the longer string 
yields C3, the shorter will give E s . In lieu of this interval, 
Pythagoras employed one much more complicated. It is 
called, after its inventor, the Pythagorean third. The rela-
tive lengths of the vibrating strings in this interval are 
64: 81. True, the difference between this interval and our 
major third is small, — so small as scarcely to be recognized 
in ordinary music. 

As a result of his investigations, Pythagoras discovered 
the law that the simpler the ratio of the two parts into 
which the vibrating string is divided, the more perfect is 
the consonance of the two sojmds. But no explanation of 
this relation of simple whole numbers to musical harmony 
was given until the appearance of Helmholtz's great work, 
" D i e Lehre von den Tonempfindungen," in 1859. The 
school of Pythagoras made the fact simply the basis of 
fantastic mathematical and philosophic speculations, the 

most famous of which was their theory regarding " the 
harmony of the spheres." 

Full two thousand years elapsed after the time of 
Pythagoras before any other notable advance was made in 
the science of musical harmony. The subject was then 
taken up by. ond of the ablest experimenters and most 
profound thinkers of modern times. I allude to the 
illustrious Franciscan friar, Père Mersenne, who has 
justly been called the " Father of Acoustics." 

Taking up the investigations of Pythagoras, he found 
that the simple harmonic intervals above mentioned de-
manded not only that the lengths of the strings should 
bear a simple ratio to each other, but also that the ratio of 
vibration of these strings should be equally simple. Thus , 
he found that the octave vibrated with twice the rapidity 
of its fundamental; 1 that the fifth vibrated three times, 
while its fundamental vibrated twice ; and that the rate of 
vibration of the fourth to its fundamental was as 4 to 3. 
In a similar manner he discovered that the same law held 
good for all intervals whatever. In other words, he first 
laid down the all-important law that the number of vibra-
tions in any case is inversely proportional to the length of 
the string. Moreover, he was the first to demonstrate the 
fact that pitch depends on the rate of vibration ; that the 
greater the number of vibrations per second, the higher the 
"pitch. Going still farther, he proved that this law regard-
ing pitch applied not only to vibrating strings, but to all 
sonorous bodies whatever. This was indeed a gigantic 
step forward, and threw new light on the mystical numbers 

of the Pythagoreans. 
Pythagoras had made some observations on the effects 

of tension on vibrating strings, but does not seem to have 
arrived at any definite results. Mersenne took up the 
problem and determined the law as it now stands; 
namely, the number of vibrations per second of a string 
is proportional to the square root of its tension,2 This 
means that if a string stretched by a weight of one pound 

1 Op. cit., lib. i. Prop. 15; and lib. ii. Prop. 6. 2 Op. cit., lib. ii. Prop. 8. 



gives forth a certain note, it will yield a note an octave 
higher if the weight be four pounds. By making the 
weight nine pounds, the string will execute three times 
the number of vibrations, and the note produced will 
be the fifth of the second octave above the note emitted by 
the string stretched by a weight of one pound. Similarly, 
a weight of sixteen pounds would cause the string to vibrate 
four times as fast, and the resultant note would be two 
octaves higher than the first. Thus, if the same string be 
successively under a tension of one, four, nine," and sixteen 
pounds, and the note given by the string with one pound 
be C t h e note given by the string with the other weights 
will be C3, G3, and C4. This means that if C2 give 128 
^vibrations per second, C3, Gs, and C, will give 256, 384, 
and 512 vibrations respectively. 

Continuing his experiments with strings of different 
thicknesses, but of the same tension, Mersenne found that 
any given string must be twice as thick as another in order 
that the thicker string may yield a note an octave lower 
than that emitted by the thinner one.1 

From this and similar observations is deduced the law 
that the number of vibrations varies inversely as the thick-
ness of the string. Thus, if two strings of the same 
material, length, and tension have diameters which are to 
each other as 2 to I, the thicker string will execute one 
half the number of vibrations of the thinner one. If one 
string be three or four times as thick as another, it will 
vibrate three or four times more slowly than the one of 
smaller diameter. 

A fourth law, which the preceding seems, in a measure, 
to indicate, is that, the length, thickness, and tension being 
the same, the mimber of vibrations of a string is inversely 
proportional to the square root of its density. Thus, other 
things being equal, if two strings, A and B, whose 
densities are respectively as 1 : 4 , be set in vibration, A 
will execute twice the number of vibrations made by B. 
If the ratio of the densities of the two strings be 1 : 9, the 

1 Lib. ii. Prop. 7. 

lighter one will vibrate with three times the rapidity of the 
heavier one. The specific gravities of aluminum and 
copper are respectively 2.6 and 8.9, and hence their 
relative densities are as 1 : 3.46, nearly as 1 : 4. If, there-
fore, two wires, one of aluminum and one of copper, be 
caused to vibrate, the aluminum wire will vibrate with 
very nearly twice the rapidity of the copper one. Catgut 
and brass have specific gravities that are to each other 
approximately as 1 : 9. Hence, the relative frequencies 
of the notes yielded by two strings, one of catgut and one 
of brass, both being of the same length, diameter, and 
tension, will be as 3 : 1, — the catgut string vibrating three 
times as rapidly as the one of brass. 

All the foregoing laws can be roughly illustrated by ^ 
any stringed instrument. For their more exact verifica-
tion an instrument like the sonometer is necessafy. With 
such an apparatus, we can regulate the length and tension 
of the strings with the greatest ease and accuracy. 

The laws of vibrating strings have been determined ma-
thematically as well as experimentally. The first one to 
attempt a mathematical solution of the problem involved 
was the English mathematician, Brook Taylor, in 1715. 
His solution, however, was incomplete. Later the problem 
was attacked, in turn, by the ablest mathematicians in 
Europe. Among these were John and Daniel Bernouilli, 
D'Alembert, and Euler. The celebrated mathematician 
Lagrange eventually completed the work at which the 
others had so indefatigably labored. 

But it was soon discovered that the results of theory 
and experiment did not agree. As early as 1736 Mersenne 
recognized the existence of this discrepancy.1 Thus, when 
a string is divided into two parts, each part does not when 
set in motion give exactly the higher octave of the note 
emitted by it when vibrating as a whole. The higher 
note is flat by about a quarter of a tone. And the shorter 
the string, and the greater the diameter, the more pro-
nounced the difference between theory and experiment. 

1 Lib. ii. Prop. 8. 



When one string is twice the thickness of another, this dis-
crepancy for the law of diameters may amount to as much 
as a half tone. N. and F . Savart attempted a solution of 
the difficulty ; but although they employed every refine-
ment in their experiments that ingenuity could suggest, 
and devised many special forms of apparatus in the course 
of their investigations, they were utterly unable to make 
the results of their experiments agree with the formula of 
the mathematician. Finally, it was pointed out that it was 
impossible for the experimenter to have such a string as 
the mathematician assumed in his calculations, — one, 
namely, that is perfectly flexible. All strings used by the 
experimenter are more or less rigid, and their rigidity, 

#and this alone, supposing the strings to have the same 
diameter and homogeneity throughout, accounts for the 
differences observed between experiment and theory. 
When, however, the experiments are made with the re-
quisite amount of care, these differences are ordinarily so 
small as to be scarcely recognizable. 

This instance, and it is only one among many, well 
illustrates the difficulties, inherent in the nature of the 
materials at his disposal, that the man of science meets 
with in his investigations, and in his attempts to make the 
results of his experiments agree with those of calculation. 
Our conclusions, indeed, when based solely on experi-
ments, are in many cases only approximately true at best, 
and it is impossible in the nature of things to make them 
other than approximate. In such cases as those under 
consideration our experimental results approach more 
nearly to truth just in proportion as they more nearly co-
incide with the demands of theory. If the experimenter 
could have at his disposal a perfectly flexible, uniform, 
and homogeneous string, he could without doubt make 
his observations conform with the formula of Lagrange; 
but not otherwise. 

All the foregoing laws of vibrating strings are applied 
in the construction of the various forms of stringed instru-
ments. Thus, in instruments like the harp and pianoforte, 

the strings designed to give acute sounds are short, light, 
and thin. Those calculated to produce graver tones are 
proportionately longer, heavier, and thicker. To avoid 
increasing the thickness of a string or making it inconve-
niently long, it is sometimes loaded. In the violin, for 
example, three of the strings are of catgut of different 
thicknesses, and subject ordinarily to different tensions. 
The fourth string is rendered heavier by a spiral of silver 
wire. This device obviates rigidity, and at the same time 
renders the notes emitted as grave as may be required. 
Similarly, those strings of the harp and pianoforte that are 
designed to sound the lower notes are weighted by being 
wrapped with wire. 

The tensile force with which the wires of a modern . 
pianoforte are stretched is quite surprising. It varies all 
the way from one to five hundred pounds. The aggregate 
tension of a Broadwood instrument is equal to about 
eighteen tons weight, while the total stress of a Steinway 
Grand is fully twice that amount. It is found by ex-
periment that the greater the tension and the longer 
the string, within certain limits, the richer and more 
harmonious the tones produced. This great increase of 
tension necessitates a heavy framework, and hence the 
massiveness of our modern pianofortes. 

In the pianoforte there is a separate string, or group of 
strings, for each note. In the harp the notes are arranged 
to yield the notes of the diatonic scale. These, however, 
can be sharpened or flattened by means of pedals. In the 
banjo and guitar there are only a few strings, but as the 
length of these may be varied by pressing them against 
the frets with which such instruments are provided, a com-
paratively large number of notes may be elicited from 
them. The violin and violoncello have only four strings, 
and yet their compass is remarkably great. In such 
instruments the performer must be guided by his judg-
ment and his ear and by practice as to the amiunt by 
which a string is to be shortened for the production o f . 
any given note. He has no mechanical aids like those 



afforded by the guitar and the banjo, whose frets serve 
as a guide as to how much a string is to be shortened for 
any determinate case. 

Besides the note which a string of any given length 
emits when vibrating as a whole, and which is called its 
fundamental note, it also gives forth certain superior tones, 
which are sometimes called natural harmonics. Mersenne 
makes special mention of them in his great work.1 He 
tells us that he was able to perceive tones corresponding 
not only to the first and second octave above the 
fundamental, but also the fifth of the second octave, the 
major third of the third octave, and the major second of 
the fourth. Supposing that the string gave as its funda-
mental the note C, the superior tones, or natural har-
monics, heard along with their fundamental by Mersenne, 
would in musical notation be written as follows: — 

Cx C 2 G s C 3 E 3 D4 

* — r F " J f 1 -frk 1 ~ -W 1 
— ! — 

We now know — what was unknown but probably sus-
pected in the time of Mersenne — that a string emitting a 
musical note rarely, if ever, vibrates as a whole without at 
the same time vibrating in segments which are aliquot 
parts of the whole. The motion of these segments is 
usually superposed on that of the string vibrating as a 
whole. For this reason harmonics — a term introduced 
by Sauveur —are more properly called upper partial 
tones, or, considering the compound nature of the note 
composed of the fundamental and upper partial tones, as 
simply partial tones. In this case the fundamental would 
be the first partial of the compound tone, the octave the 
second, the fifth of the second octave the third, and so 
on. The fundamental is, of course, ordinarily more 
prominent than are any of the other partial tones. Never-
theless, in certain exceptional cases some of the upper 

• 1 Harm., lib. ix. Prop. 33. 

partials may sound louder than the prime. The pitch of 
the compound note heard is gauged by that of its funda-
mental; the quality of the tone is determined, as we shall 
see later on, by the number and relative intensity of the 

concomitant upper partials. 
Mersenne's observations have been verified and ex-

plained by a number of subsequent investigators, chief 
among whom are D. Bernouilli, Riccati, Rameau, Sauveur, 
and Chladni. Rameau in 1722 attached so much impor-
tance to upper partial tones that he made them the basis 
of his system of musical harmony. Chladni gives a de-
tailed explanation of. them and shows that they are found 
in nearly all sonorous bodies, and that they are especially 
marked in organ-pipes, wind instruments and bells. 

Sauveur in 1701 appears to be the first to give a 
satisfactory explanation of the existence of upper partíais 
He attributes them to the string vibrating in parts while 
at the same time vibrating as a whole. After showing 
how this can take place, he declares that « each half, each 
third each fourth part of a string has its own special vibra-
tions while at the same time the string vibrates as a 
whole" And then, after enumerating the successive 
partials that accompany the fundamental note of a string, 
he observes: " I t seems, therefore, that whenever 
Nature makes for herself, so to speak, a musical system, 
she employs only such sounds. Nevertheless, they have 
so far not been received in musical theory." 

While speaking of Sauveur, I must not fail to mention 
what you will surely regard as a striking circumstance, 
l ie is justly regarded as one of the founders of the science 
of acoustics. He first applied the word acoustics to desig-
nate the science of sound. And yet he was mute until the 
aoe of five years, and remained almost deaf during his en-
tire life Hüber was blind when he carried on his wonder-
ful investigations regarding the nature and habits of bees 
which have made him one of the greatest authorities on 
the subject treated. Plateau, who was so ^st.nguished 
o his wonderful discoveries in optics and molecular 



mechanics, did most of his work while deprived of sight. 
But even their achievements, astonishing as they are, seem 
to pale before those of Sauveur, who, although deprived 
almost entirely of the sense of hearing, was yet able to 
contribute more to the science of sound than any one of 
his age, and to detect the existence of tones that even 
.cultivated musical ears did not recognize. 

The number of upper partials that may accompany any 
given tone depends upon circumstances and upon the 
nature of the sonorous body itself. Sometimes only three 
or four may be detected; occasionally we may be able to 
demonstrate the existence of fifteen or twenty. They 
sometimes occur in the order of all the natural numbers, 
I, 2, 3, 4, 5, etc.; at other times in the order of the odd 
numbers only. In the former case the first sixteen 
partials, beginning with Ci, as a fundamental, succeed 
each other as follows: — 

A4 B'?4 B34 C5 

1 2 3 4 5 6 7 8 9 io i i 12 . 13 14 15 16 

64 128 192 256 320 384 44S 512 576 640 704 76S 832 896 960 1024 

The seventh, eleventh, thirteenth, and fourteenth partials 
are, as will be observed, indicated by crotchets, while the 
positions of the others are shown by minims. The former 
do not occupy exactly the position marked, as they have 
not the pitch of any note used in music. Their positions, 
therefore, can be indicated only approximately in the 
ordinary musical notation. 

The second row of figures below the staff shows the 
frequencies of the corresponding partials. Inspection will 
show that the frequency of each partial is some multiple 
of that of the fundamental. 

Only the lower partials, however, are usually considered 
in music. Ordinarily no importance is attached to those 
above the fifth or sixth. As a rule they diminish in 

intensity as they ascend. Nevertheless, as we shall see, 
in some special cases, particularly in bars, bells, and 
tuning-forks, the higher upper partials may be so loud as 
to be unpleasantly sharp and piercing. 

The first six partials, counting the fundamental as one, 
constitute in ordinary musical instruments a compound 
tone that is perfectly harmonious. To these may be 
added the eighth, tenth, twelfth, fifteenth, and sixteenth, 
without impairing in the least the harmony that charac-
terizes the tone due to the combination of the six first. 
The seventh, eleventh, thirteenth, and fourteenth do not, as 
we have seen, belong to the musical scale. The eleventh 
and the thirteenth, together with the ninth, — D4, — are 
discordant, and cannot be combined with the first-men-
tioned partials without marring the harmony which these 
latter yield alone. In an instrument tuned in pure into-
nation,—a harmonium, for instance, — the seventh and 
fourteenth partials, contrary to what musicians usually 
maintain, may be added to the six first partials, and give 
a compound tone of superior richness, brilliancy, and 
harmony. 

The relative intensity of the various partials constituting 
a compound tone depends chiefly on the nature of the 
stroke, the point struck, and the rigidity, density, and 
elasticity of the string. 

The same string will give a different sound according 
as it is struck or plucked or bowed. The harp and the 
guitar are plucked with the finger, and give a sound that is 
characterized by softness, richness, and the predominance 
of the lower partials. The zither and the mandolin are 
plucked with a point of wood or metal very much in the 
same manner as the ancient varieties of the harp were 
excited by the plectrum. The tones of these instruments 
are distinguished from those of the guitar and harp by the 
number and intensity of their upper partials; the sound 
is therefore shriller and more tinkling in character. The 
strings of the pianoforte are struck with soft elastic ham-
mers of felt, and yield the pure, rich tones that contribute 



much to make this instrument so popular. In the best 
instruments, particularly when new, the first six partials 
predominate, to the exclusion, almost, of all higher ones. 
The strings of the violin family are bowed. This method 
of exc-iting vibration brings out a large number of partials, 
both high and low, and we have, in consequence, the 
sharp, full, brilliant tone of the " most perfect" of musical 
instruments. 

The point struck or bowed always determines the pres-
ence or absence of a certain number of partials. In the 
pianoforte the string is struck in such a manner as to 
allow the formation of the first six partials, and to exclude 
or weaken those which are higher, — especially the seventh 
and the ninth, the latter of which is very discordant. To 
secure this result, the hammers are made to strike the 
string at from one seventh to one ninth — preferably one 
ninth — the distance from the end of the vibrating length 
of the string. The reason for this we shall see presently. 
Eliminating or weakening all partials above the sixth, there 
are left only such tones as enter into the formation of the 
major chord, because in the first six partials we have only 
octaves, fifths, and major thirds of the fundamental. 

Again, the force and number of upper partials are 
greatly modified by the thickness and material of the 
string. Thick strings, by reason of their rigidity, do not 
permit the formation of very high partials, while very thin 
strings yield them quite readily and in great numbers. On 
a string of very fine iron wire Helmholtz was able to 
isolate the eighteenth partial tone. These high partials, 
however, form a series of very dissonant tones.' The 
reason of this is because they lie so close to each other in 
the scale that the intervals formed are highly inharmonious. 
Above the eighth they are less than a whole tone apart, 
and above the fifteenth they are separated by an interval 
which is less than a semitone. 

Every one has observed the difference in quality of 
tones emitted by metal and catgut strings. Other things 
being equal, a string of catgut, on account of its greater 

lightness, should produce higher partial tones than one of 
metal. But by reason of the inferior elasticity of the 
former, its higher partials are sooner damped than those 
of the latter. Hence the acute tinkling sounds that 
frequently characterize thin metal strings, as in the 
mandolin, and the comparative softness of the tones of 
strings of catgut, as in the harp or violin. 

All the phenomena we have been discussing can be 
beautifully illustrated by the sonometer. But before going 
farther, we must examine more particularly the manner in 
which strings vibrate, and the way in which they sub-
divide so as to yield the partial tones we have been 
considering. 

Mersenne had observed that when a string was set in 
vibration, a neighboring string in unison with it would also 
vibrate, although it might not have been touched. And 
he found this to be the case not only when the strings 
were in unison, but also when the second is an octave or a 
twelfth below the first. The same observation was after-
wards made by Noble and Pigott at Oxford, and commu-
nicated byWallis to the Royal Society in 1674. They 
showed that when the second string was two or three 
times the length of the first, it was divided into two or 
three equal vibrating segments, each segment being sepa-
rated from the one adjacent by a point at rest, and each 
being of the same length as the vibrating portion of the 
first string. The existence of these points of rest was 
cleverly shown by placing paper riders along the string. 
Those on the vibrating segments were instantly thrown 
off, whereas those on the points of rest remained un-
disturbed. The tones excited by the first string in the 
second one are what are known as sympathetic tones, and 
we shall learn more of them later. What we are now 
more particularly interested in is the formation of the 
vibrating segments, and the points of rest discovered by 
Noble and Pigott. 

In 1701 Sauveur, without any knowledge of the discov-
eries of the" English investigators, made the same experi-
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ment in a somewhat different way. Instead of using two 
strings he employed but one. Bowing a string so as to 
cause it to emit its fundamental, and to vibrate, therefore, 
as a whole, he touched it with a feather at points one half, 
one third, and one fourth its length from one of the ex-
tremities, and he then heard the octave, the twelfth, and 
the second octave of the fundamental. He made evident 
to the eye the subdivisions of the string by means of 
riders, some of which were white, others black. The for-
mer were placed at the points of rest, which Sauveur called 
nodes, and the latter on the vibrating segments which he 
named ventres. 

All the laws and phenomena that we have been dis-
cussing can be clearly and accurately illustrated by the 
sonometer. 

To repeat Sauveur's experiment exhibiting the nodes 
and ventres, I damp the middle of one of the strings 
by pressing a feather gently against it, and draw the bow 
across one of the halves. Immediately the other half is 
set in vibration, as is evidenced by the paper rider being 
at once thrown off. In this instance we have two ventres, 
or ventral segments, as we shall call them, and one node 
which is an immovable point in the centre of the string. 

Damping the string at one third of its length from one 
of its extremities, and exciting it as before, we have formed 
three ventral segments separated by two nodal points. 
Placing red riders on the ventral segments, and white 
ones on the nodes, and bowing the string as before, the 
red riders are cast off, while the white ones remain 
undisturbed. 

When the string is damped at one fourth of its length 
from one of the fixed bridges, and the shorter segment is 
set in vibration, the longer one is immediately divided into 
three equal parts, separated by two nodes. The whole 
string is now made up of four ventral segments separated 
from' each other by three nodal points. As before, the 
red riders on the ventral segments are all rejected, while 
the white ones on the quiescent nodes retain their places. 

In like manner the string might be divided into five, six, or 
more segments, separated from each other by nodal points, 
and the existence of both segments and nodes could be 
shown in the same way as before. 

If the string is sufficiently tense, and we listen to the 
notes emitted by these successive subdivisions, we shall 
find that they are the upper partials of which we have 
been speaking. Thus, one half of the string yields the 
second partial, or the octave of the fundamental, one third 
of the string gives the twelfth, one fourth the second oc-
tave, while the fifth and sixth subdivisions give the major 
third and the fifth of the second octave. More minute 
subdivisions would of course give higher partials. 

By simply striking the string with a pencil or a small 
metal bar, we can evoke all these partials in such a man-
ner as to be distinctly audible to all who are near the in-
strument. In this case, however, we have not only the 
individual partials distinct and alone, but also their funda-
mentals, and a number of other tones due to various sub-
divisions of the string. Striking the string in succession at 
the centres of the ventral segments corresponding to the 
various partials, we elicit the corresponding notes with the 
greatest ease. You hear others, it is true, but the partials 
specially excited come out with greater purity and force 
than any of the others, except, it may be, the fundamental, 
which is always present with considerable power. If the 
string is struck sharply at points one half, one third, one 
fourth, one fifth, one sixth, and one seventh of its length 
from one of its extremities, and then in the inverse order 
at the same points, the notes referred to come out from 
the general mass of sound in a way that is quite surprising. 
With a little practice, one could thus play a simple melody 
on a single string, without changing its tension or its 
length. 

A series of experiments made by Young in 1800 enables 
us to account for the absence or the prominence of the 
partial tones that we have been considering. He demon-
strates that 'if a string be excited at its middle point, the 



octave and all the evenly numbered partíais that have 
nodes at this point vanish from the compound tone that 
is emitted. This results in a note that is hollow and nasal 
in character. In like manner, when the string is excited at 
a distance of one third its length from either of its points 
of attachment, the third partial is quenched, as are also 
the sixth, ninth, and .higher multiples of the third. The 
tone is still hollow, but less so than when the even partíais 
were absent. The more nearly the point of excitation 
approaches the end of the string, the more pronounced be-
come the higher partíais, and the poorer and more tinkling 
the quality of the sound produced. In general, according 
to Young, there are always wanting in any given com-
pound sound, all those upper partíais that have their nodes 
at the point of excitement. According to the researches 
of Ellis and Hipkins, however, this principle enunciated 
by Young seems to require some modification, at least 
for the higher partíais. They found that when a piano-
forte string is struck by a soft or hard hammer at a node, 
the corresponding partial, especially if it be one of the 
higher ones,—the eighth, for instance,—is not necessarily 
extinguished. So far, no one seems to have offered a 
satisfactory explanation of this singular phenomenon.1 

In speaking of the upper partial tones as existing in 
any compound sound, I have spoken of theip as having 
frequencies related to the fundamental, as the natural 
numbers 2, 3, 4. 5. etc., are to 1. This is the general im-
pression both among musicians and acousticians. It was 
because he believed they were so related that Sauveur 
gave to these partíais the name they still bear, harmonics. 
But it is quite rarely that the upper partíais bear such re-
lations to their fundamental. Instead of having their fre-
quencies related to that of the fundamental as the whole 
numbers 2, 3, 4. 5. etc., are to 1, upper partials have, in 
the majority of cases, frequencies whose .ratios to that of 
the fundamental cannot be expressed in whole numbers. 
This is particularly true of bars, plates, and bells, as we 

1 Sensations of Tone, pp. 545- 546-

shall learn in our next lecture. When the succession of 
partials as to their frequencies differs from the order of 
the natural numbers, we have what are called inharmonic 
partials, as contradistinguished from harmonic partíais, 
whose frequencies are to those of the fundamental exactly 
as 2, 3, 4, 5, etc., are to 1. 

In organ-pipes, open or stopped, and in vibrating strings, 
although the upper partials are not so inharmonic as those 
formed in bars, plates, and bells, they are far from being 
perfect. 

Wertheim found, during his researches, that the partial 
tones of pipes are higher than the theoretical harmonics. 
Koenig, in experimenting with a certain open organ-pipe, 
discovered that the eighth partial tone —he calls it a sound 
of subdivision — was nearly a whole major tone higher 
than the true harmonic, and that, consequently, it almost 
coincided with the theoretical ninth harmonic partial. 

In the case of strings, the upper partials would corre-
spond to true harmonic partials, if we could have a string 
uniform in thickness and homogeneous in texture, and 
entirely devoid of rigidity. But such an ideal string can-
not be obtained. In the catgut strings of a violin the 
irregularities in form and density are so great that one 
often finds a difference of a semitone, or even of a whole 
tone, in the notes emitted by the halves of the same 
string. 

The difference between harmonic and inharmonic par-
tials cannot always be detected by the ear, especially when 
these differences are very small; but by means of the 
graphical method of registering vibrations, it can always 
be shown to have a real existence in fact. Koenig, in Fig. 
43, gives a graphic trace furnished by a steel wire in 
which had been simultaneously excited the fundamental 
and its octave. These two tones were but very slightly 
separated from the true interval of an octave, but though 
the difference was but slight, it was indicated by the con-
tinually changing form of the successive waves. The 
upper partial, as disclosed by the trace, was sharper, by 



one wave in 180, than a perfect harmonic octave. The 
record is divided into five parts, in order to be more easily 
inscribed in the text. Had the two notes constituted the 
interval of a theoretic harmonic octave, the waves would 
have remained unchanged, and the wavelet due to the 
upper partial would have retained the same position on 
the larger wave denoting the fundamental, from one end 
of the record to the other. 

By the graphical method just illustrated, we have the 
means of making clear to the eye the amount by which 
the interval in question deviates from a true interval, while 
it would be difficult, if not impossible, to appreciate such 
difference by the ear. 
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Free vibrating reeds, unlike strings and organ-pipes, 
may, and in most cases do, generate true harmonic par-
tials. In the case of reeds, however, we have not such 
subdivisions as occur in strings and other sonorous bodies. 
Reeds vibrate as a whole, and their vibrations, so far as the 
most careful observation can determine, are perfectly sim-
ple and pendular. But strange as it may appear, these 
same simple pendular vibrations have the power of ex-
citing the air in such wise as to generate compound tones. 
Such compound tones, as G. S. Ohm has demonstrated, 
the ear has the power of analyzing and resolving into a 
series of simple tones, each simple tone corresponding to 
a simple pendular vibration of the air transmitting the 
sound. 

Some sonorous bodies—tuning-forks, for instance, which 
have long, thin prongs, and execute vibrations of great 
amplitude — may generate both harmonic and inharmonic 
partials. Koenig has recognized as many as five harmonic 
partials in tuning-forks of this kind, in addition to the 
usual inharmonic partials found in all forks. Long, thin 
strings, executing vibrations whose amplitude is very great 
compared with the thickness of the string, may also give 
rise both to harmonic" and inharmonic partials. The in-
harmonic partials are due to subdivisions of the string, 
whence the name Koenig gives them of sounds of sub-
division. The harmonic partials are constituents of a 
compound tone corresponding to a compound vibration 
made up of a certain number of pendular vibrations. 
The fact, then, that there is such a marked difference 
between these two kinds of tones, and the further fact 
that they frequently coexist in the same sonorous body 
and accompany the same fundamental, show clearly the 
necessity of carefully discriminating between them. The 
majority of sounds, then, employed in music have partials 
which, instead of being harmonic, are inharmonic. This 
is contrary to what is usually supposed and taught by those 
who are eminent both in the art and science of music, and 
by those, too, who are distinguished as teachers of the 
science of acoustics.1 

And while speaking of this subject, it must be observed 
that harmonic partials, or harmonics, — as the term was 
understood by Sauveur, and as it is generally employed 
in acoustics, — are not identical with harmonics as ordi-
narily designated in music. Tn acoustics, the term har-
monics is used to designate simple tones only,— tones, 
namely, that enter into the composition of a determinate 
compound tone. In music, on the contrary, harmonics 
are in nearly all cases compound tones. In the violin and 
harp, for example, the notes yielded when some of the 
aliquot parts of a string vibrate, are said to be harmonics of 
the notes emitted by the same string vibrating as a whole. 

1 Compare Koenig, Quelques Expériences d'Acoustique, pp. 218 el seq. 



Let me illustrate. Suppose that under a certain tension 
the string on this sonometer gives the note Q as a funda-
mental. Its first sixteen partials, including its fundamen-
tal, will, as we have learned, be written in musical notation 
as follows: — 

I. M 
1 2 3 

=á S i 
4 5 6 7 

f r r i r 
9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 

Taking one half the string, its partials, with fundamental, 
would be written thus: — 

1 4 1 6 

Proceeding in the same manner with one third the string, 
we should obtain: — 

I I I . m 
15 

One fourth the string, for a similar reason, would give: 

I V . 
-¡S"-—i2 += 1 

'S' i 
1 2 1 6 

Inspection of I. and II. of the preceding diagrams will 
show that when only one half of a given string is set in 
vibration, its partials correspond only with the even par-
tials yielded by the string vibrating as a whole. Thus, of 
the sixteen partials entering into the composition of the 
compound tone (tone emitted by thè string vibrating as a 
whole), only those, as indicated, which in I. are numbered 

2, 4, 6, 8, 10, 12, 14, 16, are found in II. When one third 
the string is caused to vibrate, only the odd partials of 
1, as shown in III., constitute the components of the 
resulting compound tone. When one fourth of the string 
vibrates, we have, as seen in IV., only half of the evenly 
numbered partials of I., namely, 4, 8, 12, and 16. IV., as 
will be observed, bears the same relation to 2, as the 
latter bears to I. I. has sixteen partials, II. has eight, III. 
has five, and IV. has four. Each note in I., II., III . , IV., 
answers, as you remember, to what we have called a par-
tial tone; or, to distinguish it from an inharmonic partial, 
each note is an harmonic partial. And all the upper par-
tials, that is, all the partials exclusive of the fundamental, 
are what Sauveur called harmonics, and what many acous-
ticians still denominate harmonics. 

But the musicians' harmonics are quite different. They 
discard all partials, and consider only fundamentals. Thus 
C2, in II. . is the first harmonic of I., G, is the second har-
monic, and C3 the third harmonic. But as in these cases 
we cannot separate the partials from their fundamentals, 
the harmonics musicians actually refer to are compound 
tones, and not simple tones, as their language would seem 
to imply. Such being the case, the first harmonic of C! 
would not be simply C2, but all the partials, as seen in II., 
which accompany this note. For a similar reason, the 
second harmonic would be G.2 and its four upper partials; 
and the fourth harmonic would be C3 and its three upper 
partials. For the sake of simplicity, I have taken no ac-
count of any sounds that might be due to subdivisions of 
the string. These, as is obvious, would simply add other 
partials to the harmonics of which the musician speaks, 
and make them proportionally more complex. 

To avoid all confusion, I shall therefore adhere to the 
terms harmonic partials and inharmonic partials, as already 
defined. This is important, as we shall avoid many errors 
and misconceptions that arise from confounding the two 
meanings so frequently given to the unqualified term 
harmonic. 



It is now time to answer a question that must have 
already presented itself to your minds; and that is, " How 
can one and the same cord give rise to several sounds 
simultaneously?" In the case of a string, for instance, 
the segmental vibrations, which, alone, would yield certain 
partial tones, are superposed on that of the string vibrat-
ing as a whole; and those corresponding to its various 
segments are so combined as to yield a compound motion 
as a resultant. In Fig. 44 we have represented two of the 
simplest cases of this kind. The string AMB,ACB, when 
vibrating as a whole, emits only its fundamental, and while 
doing so does not undergo any subdivision. The string 
A' M' B' yields simultaneously its fundamental and its first 
partial. In this case it assumes the form A' C' B'. indicated 

FIG. 44. 

by a continuous line, — that is, while vibrating as a whole, 
it at the same time divides itself into two parts, A' C and 
C' B\ each of which vibrates with twice the rapidity of the 
whole, as would strings having one half the length of the 
whole. The same string, represented in A" M" B", gives 
simultaneously its fundamental and its third partial. It then 
assumes the form A" D M" D' B"; which means that while 
vibrating as a whole, it is at the same time subdivided into 
three segments, each of which has a rapidity of motion 
three times as great as that of the whole string, and there-
fore vibrating as rapidly as would a cord one third of the 
length of the whole. In the latter two cases, the funda-
mental is represented by dotted lines, while the result-
ant compound tone is represented by lines which are 
continuous. 

If a larger number of partíais were superposed on the 
fundamental, a more complex tone would result, and the 
form assumed by the vibrating string in yielding such 
compound tone would depend on the number and relative 
intensity of the partíais present. And if in addition to the 
harmonic partíais, inharmonic partíais were added, as is 
sometimes the case, the movements of the string would be 

still further modified. 
Thus far we have been employing the sonometer in 

elucidating the laws of vibrating strings. We can, how-
ever, investigate them with other apparatus and from other 
points of view. The experiments to which your attention 
is now invited, beautifully corroborate those already made. 
They also add materially to our knowledge of the laws of 
vibrating strings, inasmuch as they enable us to see clearly 
and in a different light what we have seen only imper-
fectly in our experiments with the sonometer. 

Chief among the phenomena to which I wish to direct 
your attention is that which concerns the formation of 
nodes and ventral segments. The illustrations so far have 
been on only a small scale, and none of you, except those 
very near the sonometer, have been able to see the nodes 
and ventral segments referred to, unless indirectly by the 
device of the riders employed. 

There are various methods of rendering visible at a dis-
tance the nodes and ventral segments of vibrating strings. 
The first one we shall have recourse to is merely 
mechanical, but it is none the less instructive or 
beautiful. 

In my hand I hold one end of the brass spiral which we 
used in illustrating the propagation of sound through the 
air or other media. The other end of the spiral is 
fastened to a hook in the wall at the other side of the 
room. By properly timing the motion of my hand, I can 
cause the spiral to vibrate as a whole, giving, as you see, 
one long vibrating segment. Doubling the rapidity of 
motion of my hand, the spiral also is made to vibrate with 
twice the rapidity it did before. This time, however, it 



does not vibrate as a whole, but divides itself into two 
ventral segments, separated from each other by a stationary 
node. Trebling or quadrupling the rapidity of motion of 
the hand causes the spiral to divide itself into three or 
four segments, separated by a corresponding number of 
nodes. By moving the hand yet more rapidly, I can still 
further increase the number of subdivisions. There are ten 
of them now, each segment presenting the appearance of 
a gauzy spindle, and separated from its neighbor by a dark 
and apparently motionless node. 

I say " apparently motionless," because, as a matter of 
fact, the node is never a point of no motion, otherwise the 
formation of vibrating segments would be impossible. 
But the amplitude of vibration of the node, in comparison 
with that of the ventral segment adjoining, is ordinarily so 
small that the node seems to be a point of absolute 
rest. By moving my hand through a very small dis-
tance, an inch or so, I can give to the ventral segment of 
the spiral an amplitude of motion equal to a foot or more. 
The same result might be accomplished if the part held in 
the hand were to have a transverse motion of only the 
fraction of an inch. The motion at the point clasped by 
the hand soon accumulates at the ventral segments to 
such an extent that their amplitude of vibration far 
exceeds that of the point held by the hand. And what 
holds true of the part grasped by the hand — which is in 
reality a node — holds true of the various nodes separat-
ing the ventral segments from each other. 

At the end of the wire attached to the hook in the wall 
is also a node, for it is customary to regard both ends of a 
vibrating string as nodes. At the fixed end of the wire, 
however, no motion is necessary, for the-pulse sent along 
the spiral from the hand is, on reaching this point, reversed 
in position and direction, and returned to its starting-point 
in accordance with the laws of reflection. 

But in all cases, be it observed, the period of my hand 
must be the same as that of the vibrating spiral. If it is 
not so, if the impulses given are not properly timed, if the 

period of the hand does not synchronize with that of the 
spiral, it will be impossible to produce the subdivisions 
alluded to, or to secure the perfectly uniform motion and 
beautiful results you have just witnessed. With a little 
practice, however, one can so time the motion of the hand 
as to bring out with comparative ease and readiness the 
various segmental motions that we have been illustrating. 

Instead of imparting motion by the hand we might im-
part it by any mechanical contrivance whatever. But by-
far the most interesting and instructive method is that due 
to M. Melde, of Marburg. Tuning-forks were employed 

FIG. 45-

by him to generate the initial impulses necessary for the 
production of the vibrating motions which we have just 
been studying. And as his method at the same time 
illustrates in a most striking manner the formation of 
nodes and ventral segments, it affords us a new means of 
verifying the different laws of vibrating strings as deter-
mined by the sonometer. 

Before you are four tuning-forks, C3, C3, G3, C4, whose 
frequencies are 128, 256, 384- and 512 vibrations per 
second. Their relative rates of vibration are therefore as 
the numbers 1, 2, 3, 4- To the prong D of C, (Fig. 45) 
is fastened, by means of a small hook, one of the ex-
tremities of a small silk cord, 0 0 ' . The other extremity 
passes over a pulley, P , and has attached to it a scale-pan, 



T, for carrying weights, which can be increased or de-
creased at pleasure. Setting the fork in vibration, its 
motion is communicated to the string, and it is found 
that with a certain tension and a determinate length of 
string, the string vibrates as a whole. 

Substituting the fork C3, for C2, and keeping the 
stretching weights the same, we find that the .length of 
the string that will now vibrate as a whole is only one half 
of what it was for C2. Employing in turn the forks G:i and 
C4, and retaining the same tension as before, we discover 
that the length of the strings required are respectively 
one third and one fourth of what was necessary for C2. 
The relative frequencies of the forks, as stated, are as the 
numbers I, 2, 3, 4. The relative lengths of the strings set 
in vibration by these forks are, as we have just seen, the 
reciprocals of these numbers, namely, 1, \. Hence, 
by this novel method we have corroborated experimentally 
the truth of the law already established, which is that the 
number of vibrations is inversely proportional to the length 
of the string. 

We may now repeat the experiment in another way. 
This time we shall keep the tension constant, as in our 
previous experiment, and instead of varying the length of 
string for the various forks as before, we shall retain the 
same length of string for the four forks. With the fork 
C2, the string vibrates as a whole, and gives, as you see, 
but one segment (Fig. 44). With the fork C3, however, 
the case is different. The vibrations of this fork being 
twice as rapid as those of C2, the cord must divide into 
two segments, as in Fig. 46, I, in order that it may 
synchronize with the increased number of vibrations by 
which it is actuated. Substituting G3 for C2, the string, 
in order to accommodate itself to the period of the fork, 
breaks into three segments, separated by two nodes, as in 
Fig. 46, II. In like manner, and for a similar reason, 
the fork C4 would cause the string to vibrate in four seg-
ments, separated by three nodes. The number of ven-
tral segments of the string is therefore in proportion to 

the number of vibrations of the fork with which it is 

connected. 
The number of ventral segments may also be varied by 

retaining the same fork and length of string, and changing 
the weights. If with any given weight the string vibrate 
as a whole, it will, with one fourth of this weight, divide 
itself into two segments, and with one ninth the weight it 
will form three segments. And in general, whatever the 
diminution of the weight, it will always be found that the 
number of ventral segments will be inversely proportional 
to the square root of the tension. 

I - — 
11 
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Taking again the forks C2 and C3, let us attach to them 
two strings of the same length and diameter. Stretching 
the string fastened to C2 with a weight of one gram, it 
vibrates as a whole. Making the tension of C3 equal to 
four grams, it also vibrates as a whole. The number of 
vibrations of C3 is, as you know, just twice that of C2, and 
yet in both cases we have but one ventral segment. But 
to obtain this result the tension of C3 must be four times 
that of C„. Hence the law established by the mono-
chord: the number of vibrations of a string is propor-
tional to the square root of its tension. 

So far we have been considering the case of vibrations 
oiven to the cord by motions of the fork which are 
parallel with the length of the cord. Here we have the 



longitudinal vibrations of the fork changed into transverse 
vibrations in the cord. A brief examination of the manner 
in which the fork communicates its motion to the cord 
will reveal how this change of longitudinal into transverse 
vibration is effected. By referring to Fig.' 45 one will 
see that when the prong D of the fork moves towards the 
pulley P, the cord will relax and reach the position 0 . 
When, however, the prong of the fork returns to its 
original position, the cord will do the same. A second 
excursion of the prong of the fork towards the pulley will 
cause the cord to move to 0 ' , and when the prong returns 
to the point from which it started, the cord will again go 
back to its position midway between O and 0 ' . The fork, 
therefore, executes two complete vibrations while the cord 
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makes only one. If, then, the cord could emit a tone, 
such tone would be an octave below that produced by the 
fork. 

If now we turn the fork through a right angle, as in 
Fig. 47, the vibrations will be executed in a direction 
transverse to that of the cord. Each time the fork moves 
backward or forward, it is followed by the cord. The num-
ber of vibrations of the latter are, in consequence, the same 
as those of the former. And if the frequency of the vibra-
tions were high enough to render them audible, the notes 
given by the fork and the cord would be in unison. 

To exhibit these phenomena we shall use a large elec-
trically mounted fork devised by Mercadier. The advan-
tage of using such a fork is that we can have vibrations 
of uniform amplitude continued for any length of time 
desired; and then, by regulating the strength of the cur-

rent, we can obtain ventral segments of great or small 
width of swing, as may best suit our purpose. 

Such a fork is before you. Attached to one of the 
prongs are two silk cords, one of which, A, is in the direc-
tion of the vibrations of the fork, and the other, B, is per-
pendicular to this direction. Both cords pass over pulleys, 
and are stretched by weights of equal mass. I now deter-
mine by trial what length the string A, with the tension to 
which it is subjected, must have, in order to vibrate as a 
whole. After some adjusting, I find the length is five feet/ 
The vibrating portion of the string B is also made five 
feet in length. The forks are now set in vibration by 
causing the current from a good-sized Grenet cell to pass 
through the electro-magnet that is held in place between 
the two prongs of the fork. Immediately both cords take 
up the motion imparted by the fork. But behold ! while 
A vibrates as a whole, and forms only one ventral seg-
ment, B undergoes instantaneous subdivision, and forms 
two segments, each of which is just one half the length of 

that furnished by A. 
If we diminish the tension of A until a certain point, the 

string will form two segments in place of the one it had 
before. Lessening the tension of the string B in the same 
proportion, we have four segments in place of two. When 
we relax both strings still further, keeping the weights the 
same in both cases, A is thrown into three, and B into six, 
segments. Continuing to decrease the stretching weight 
of&the two cords, we get in succession four, five, six, and 
more, ventral segments for A, and always, simultaneously, 
just twice the number of segments for B. 

If now we attach a third cord, C, to the same prong to 
which the other two are fastened, and give it the same 
length and tension which A and B have, and place it mid-
way between the two latter,-having it thus make an angle 
of forty-five degrees with its fellows, - it will, on being 
made to vibrate, have a compound motion made up of 
vibratory movements which characterize A and B. If the 
cords A and B vibrate in such a manner as to form one 



and two segments respectively, one being the octave of 
the other, C will vibrate with a motion which is the result-
ant of the other two components. I, II, I I I (Fig. 48), ex-
hibit some of the forms which the string C assumes when 
under the joint influence of the movements which actuate 
A and B. 

If instead of having one and two segments, as in the 
previous case, A and B have respectively one and three 
segments, the superposition of these two motions, as seen 

. in C, would have a new form. Such a form would dis-
tinguish the interval of the twelfth, as the preceding forms 
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do that of the octave. In both cases the forms produced 
disclose the two component motions. With some experi-
ence, one could readily unravel forms of much greater 
complexity. 

Before you is a most ingenious apparatus, contrived by 
M. Schwedoff, of Odessa, for illustrating the motions of 
cords such as we have just been investigating. It is far 
more convenient for the purpose than anything else with 
which I am acquainted, and besides it is universal in its 
action. As you will observe (Fig. 49), it is composed of a 
heavy metal stand supporting a board P, at one end of 
which is an electro-magnet, E. Above the board is a black 

graduated bar of wood one metre in length. ' In front of 
the bar is stretched a white silk cord attached to C and 
to the little spring armature of the electro-magnet E. By 
means of a milled-headed screw, T, the tension of the 
cord can be modified with the greatest facility. 

The current from a small Grenet cell near by is now 
allowed to pass through the magnet, and at once the little 
spring is set in vibration. In its present position the 
motion of this spring is parallel to the length of the string, 
and consequently the frequency of the spring is one half 
that of the vibrating armature. By loosening the screw 
that holds the magnet to the board P, and turning the 
magnet through an angle of ninety degrees, which can be 
done without changing the length of the cord, the vibra-
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tions of the spring become perpendicular to the length of 
the string. This is at once revealed by the number of 
ventral segments, which is just twice what it was before. 

Loosening or tightening the screw P, the number of 
segments is augmented or diminished at will. With the 
tension now applied to the string it vibrates as a whole. 
Gradually relaxing the tension, the number of segments 
increases, until there are now twelve or fifteen. Only 
with certain tensions, however, do we get perfectly defined 
segments. When the string has not the required tension, 
there is only an irregular flutter distinguishable, in place 
of the beautiful gossamer spindles and the stationary 
nodes otherwise observable. 

By moving the magnet so as to give it a position inter-
mediate between the positions which it occupied before, 



we get the compound motion afforded us by the large 
electric tuning-fork with which we were experimenting 
a few moments ago. 

But the beauty and complexity of the forms now pro-
duced are much greater than any we have yet seen. By 
modifying the tension of the cord, or the position of the 
magnet, or both, we are able to produce an almost endless 
variety of gauzy forms of the most marvellous symmetry 
and delicacy. 

Placing the magnet in such a position that it gives sim-
ple, well-defined ventral segments, and loading one section 
of the cord with a small white bead, we have at once a 
beautiful illustration of the effect of augmenting the den-
sity of" the string. It vibrates in segments as before; but, 
as you will observe, the weighted segment is much shorter 
than the one that has no extraneous load to carry. Adding 
another bead, or replacing the one now on the string with 
a heavier one, would make the ventral segment which car-
ries it still shorter. The relative lengths of the loaded and 
unloaded segments can be read off at a glance on the 
graduated metre scale before which the cord vibrates. 

By means of our little white bead we are able also to 
make another interesting observation in connection with 
the manner in which strings vibrate, especially when under 
the influence of two or more vibratory movements. 

When the string vibrates in a direction parallel to that 
of the cord, the latter moves almost in a vertical plane. 
When the spring's motion is at right angles to the length 
of the cord, the vibrations of the latter are in a plane that 
is nearly horizontal. Looking at the bead, brightly illu-
minated, when the cord is vibrating either in a vertical or 
a horizontal plane, its path is found to be a simple straight 
line. Turning the magnet around, however, so as to com-
pound the cord's parallel and transverse motions, we get 
quite different results. Instead of moving in a straight line, 
the bead now describes curves of various forms and de-
grees of complexity. Sometimes we have circles, some-
times ellipses, sometimes the figure 8. These curves are 

modified by the superposition of smaller vibrations on 
that answering to the vibration of the string as a whole, 
and then their outlines are broken by loops and sinuosities 
which give rise to constantly changing figures of indescrib-
able beauty. 

These figures were first observed by Dr. Thomas Young, 
who obtained them by allowing a ray of sunlight to strike 
a wire on the pianoforte. The point thus illuminated de-
scribed, when the wire was caused to vibrate, figures which 
were in many cases identical with those obtained with the 
apparatus before you. Some of the curves given under 
such circumstances are shown in Fig. 50. We shall see 
in the sequel that the quality of tone depends on the form 
of the sonorous wave. It is manifest, then, that even when 

FIG. 50. 

the tension, length, and material of a vibrating string re-
main the same, the tones elicited from it may vary in 
quality, just as its vibratory motions may vary. This is 
strikingly illustrated by the tones obtained from a violin 
by a beginner and by a virtuoso. Although the string 
emitting a given note may remain unchanged as to tension, 
length, and material, the sound produced is in the one 
case peculiarly rasping and scratching in character, while 
in the other case it is remarkable for great purity, steadi-
ness, and volume. The bowing, and the motions of the 
string consequent on the bowing, are the sole causes of 
the great difference in the quality of the tones in 
question. 

Thus far we have been considering the transverse 
vibrations of cords. We may now study their longitu-



dinal vibration, and learn in what respect one kind differs 
from the other. 

The sonometer affords us a ready means of obtaining 
and examining these longitudinal vibrations. Taking a 
piece of chamois leather on which is strewn some fineiy 
powdered resin, and passing it to and fro along the wire, I 
cause it to yield a loud pure note. Placing the movable 
bridge in the centre of the wire, and rubbing one of the 
halves of the'wire, I elicit a note that is an octave higher 
than that elicited when the string was excited as a whole. 
Rubbing in succession one third and one fourth the length 
of the wire, we obtain the twelfth and the fifteenth (or 
second octave) of the fundamental. We thus find that 
the law for longitudinal vibrations is the same as that for 
transverse vibrations; namely, that their number is in-
versely as the length of the vibrating string. 

Let us change the tension of the string first by augment-
ing, and then by diminishing, the stretching weight. This, 
as you observe, has no appreciable effect on the pitch of 
the note emitted. The reason is that longitudinal vibra-
tions do not depend on the tension applied to the wire, un-
less the tension be very great, but on the elasticity of 
the wire itself. The tone, moreover, within certain limits, 
at least, is independent of the diameter of the wire or 
string. These facts can be well illustrated with the three 
catgut strings of a violin. Passing the bow successively 
along the direction of these strings, we observe no appreci-
able difference in the pitch of the tones produced. And 
unless the tension is very greatly modified, it is impossible 
to detect any difference of pitch due to tension. Thus the 
E4 string of the violin gives, when set in longitudinal 
vibration, a note approximating F s . If now the tension 
of the string be so diminished that the note due to its 
transverse vibration becomes E3 , — a fall of an octave, — 
we shall find that the pitch of the note due to the longitu-
dinal vibration of the string is almost the same as it was 
before. As a matter of fact, the fall is hardly equal to a 
comma, — the smallest interval used in music. 

From the fact that a cord cannot execute transverse 
vibrations without undergoing a change in length, it is 
obvious that such transverse vibrations must in all cases 
be accompanied by longitudinal vibrations. These lon-
gitudinal vibrations may sometimes be recognized in the 
A string of the violoncello. 

More than this. It is found that in addition to the 
transverse and longitudinal vibrations executed by all 
strings, whether bowed or plucked, they likewise have a 
third motion, which Chladni called turning or rotary. 
The vibrations peculiar to this motion are executed 
through a small arc of a circle around the axis of the 
string, and are alternately in opposite directions. They 
are ordinarily known as torsional vibrations, because they 
are due to a greater or less twisting of the string. But 
such vibrations have a mathematical rather than a musical 
interest. 

As will be remarked, the notes due to longitudinal are 
much more acute than those due to transverse vibrations. 
Hence the importance on the part of the violinist of using 
the bow in such a manner as to produce only transverse 
vibrations; as in the event of his exciting longitudinal vi-
brations simultaneously with the former, the result would 
in most cases be in the highest degree discordant. 

From what has been said regarding the vibration of 
strings it is manifest that there may be an infinite variety 
of tones evoked from the same string. But as these tones 
differ from each other so slightly, the majority of them 
appeal even to the most sensitive and highly cultivated 
musical ears as one and the same sound. It is as im-
possible for the musician to distinguish the various tones 
produced as it is for the geometer to analyze the amaz-
ingly complex curves to which this infinitude of tones 
corresponds. 



C H A P T E R V. 

VIBRATION OF RODS, P L A T E S , AND B E L L S . 

T N our last lecture we considered the laws which govern, 
and the phenomena which characterize, the vibrations 

of strings. To-day we shall devote the time at our dis-
posal to the discussion and illustration of the vibrations 
of rods, plates, and bells. And as the subject is so very 
comprehensive, we shall be obliged to confine ourselves 
chiefly to the examination of such matters as are con-
nected directly or indirectly with the science of music, and 
of special interest, therefore, not only to those who are 
interested in the science of music, but also to those who 
desire information regarding certain mysterious points 
bearing on the art of music. 

It is still a moot point as to which were the first forms 
of musical instruments used by our race. Stringed instru-
ments, as we saw in our last lecture, were employed at a 
very eany period. Playing on pipes probably antedated 
the use of stringed instruments. Nevertheless, if we may 
judge by analogy based on the customs of the barbarous 
nations of our own time, we should infer that instruments 
of percussion were first introduced; that these were fol-
lowed by wind instruments; and that stringed instru-
ments were the last in the order of time with every 
people, whether ancient or modern. 

Pieces of bone and bars of wood and metal readily lend 
themselves to the production of musical notes, and for 
this reason the first musical instruments invented by pre-
historic man were probably not unlike the various rude 
harmonicas which are in vogue in our own day in different 
parts of Asia and Africa. In some places pieces of bone 

or rock are employed, in others pieces of wood or metal. 
In Java the principal music of the natives is produced by 
various forms of harmonicas and gongs. When the rods 
of such harmonicas are .made of the outer silicious layers 
of the bamboo, and reinforced by resonators, as is fre-
quently the case, the notes yielded are wonderfully full 
and pure. And what is true of Java applies in great 
measure to Siam, China, and Japan. Here instruments 
of percussion predominate over all other kinds. Tom-
toms of all forms and sizes, cymbals, wooden clappers, 
bars and plates of wood or metal, and gongs of every 
shape or design, are the chief instruments that go to make 
up the ordinary orchestra of these semi-barbarous nations 
of the Orient. ' The deep booming thunder of their large 
drums, and the sharp rattle of their smaller ones, seem to 
possess a charm for Chinese and Japanese ears which 
makes them prefer instruments of percussion to either 
stringed or wind instruments. 

The vibrations of rods, like those of strings, have been 
very carefully studied both mathematically and experi-
mentally. D. Bernouilli in 1741 was the first to attemp't 
a mathematical solution of the problem involved in the 
transverse vibrations of rods. Nevertheless it was reserved 
for the illustrious mathematician Euler to give the first 
satisfactory answer to the difficulty propounded. Later 
on, the problem was taken up and further developed 
by other mathematicians scarcely less eminent. Among 
those whose mathematical contributions to the subject are 
especially notable were Riccati, Poisson, Cauchy, Strehlke, 
Lissajous, and A. Seebeck. 

The first one to attack the problem experimentally with 
any success was one who has immortalized himself by his 
experiments and researches in the domain of acoustics. — 
Ernst Florens Friedrich Chladni, a German physicist, 
whose work, " Die Akustik," published in 1802, is still justly 
regarded as a classic. We shall learn more of the charac-
ter of his achievements when we come to study the nature 
of vibrating plates, to which, for many years, Chladni gave 
especial attention. 



In studying the laws governing the transverse vibrations 
of rods, we must carefully distinguish the various ways 
in which such rods may be held or supported. There 
are six cases, all told, which may present themselves. 
Either one end may be fixed and the other free; or one 
end may be supported and the other fixed; or one end 
supported and the other free. Or, again, both extremities 
of the rod may be supported or fixed in a holder of some 
sort, or free. Of these six cases, however, we shall con-
sider only the first and the last; . namely, that of rods 
having one extremity free, and the other fastened to a 
support, or that of a rod having both extremities free. I 
choose these two cases, as they are the only ones that 
have been utilized in practical music. 

The first case, then, that shall occupy our attention is 
that of a rod fixed at one end and free at the other. In 
a vice we have strongly clamped a rod like the one used 
in our first lecture (Fig. i ) to illustrate the nature of 
vibratory motion. I draw the free end of the rod from its 
position of equilibrium to the point a. On being liberated 
it oscillates about its former position of equilibrium, and 
executes a series of perfectly isochronous vibrations of 
gradually diminishing amplitude. The vibrations in this 
case, unlike those of strings, are not sustained by external 
tension applied to the rod, but by the elasticity of the 
material of the rod itself. The rod is now so long that 
the vibrations it executes may easily be counted. As 
they are only three or four per second, they are of course 
inaudible. But if the length of the vibrating portion of the 
rod is diminished, the number of oscillations is augmented. 
They are now sufficiently numerous to yield a distinctly 
audible sound. By means of the graphical method of 
registering the number of vibrations, or by means of the 
siren or a tuning-fork, we could determine exactly the num-
ber of oscillations the rod is now executing. Let us sup-
pose that the number is 32, corresponding to the note C_i. 
If, now, we diminish the length of the rod by one half, and 
again excite it, you observe that a note much higher in 

pitch than the last is the result. If we were to determine 
the rate of vibration of the rod by any of the methods just 
mentioned, we should find that it is now making four times 
as many vibrations as it did before. The note yielded is 
consequently the second octave above C_„ and corre-
sponds to C2, 128 vibrations per second. Making the rod 
one third as long as it was when it gave the note C_1} the 
number of vibrations is rendered ninefold greater. The 
note now emitted is D3, of 288 vibrations. If one fourth 
the rod were caused to vibrate, it would execute sixteen 
times as many vibrations as before; if one fifth entered 
into vibration, the number of oscillations would be twenty-
five times greater than it was when it emitted the first 
note. 

According to theory, the number of vibrations per 
second is inversely proportional to the square of the 
length of the vibrating part of the rod. Acting on the 
supposition that theory and experiment agreed in this 
case, Chladni constructed a tonometer made of bars, 
whose rates of vibration were determined as above. With 
this he hoped to be able to determine the rate of vibration 
of any sonorous body whatever. More exact investiga-
tions, however, have shown that the results given by ex-
periment only approximate those demanded by theory. 
Chladni's tonometer, therefore, could not be relied upon 
when it was desirable to make anything like exact 
measurements. 

In another vice near the one I have been using, there 
is fastened a strip of steel terminating in a disk at its free 
end, which beautifully illustrates the principle of Chladni's 
tonometer. It was made for me by Herr Appun, of 
Hanau, and is designed for determining the lowest audible 
number of vibrations. The vibration-numbers marked-on 
the strip run from 4 to 24. But the vibrations correspond-
ing to any given length of the strip were determined 
by means of some of the exact measurements above in-
dicated, and not by the method proposed by Chladni. 

' The results afforded by this little strip are as satisfactory 



as the instrument is simple. For the purpose of deter-
mining the lowest limit of audible sounds it replaces 
admirably the more costly and complicated apparatus 
which were employed in the second lecture. 

Small rods, fastened at one end and free at the other, 
are used in the construction of the so-called nail-fiddle, 
or violon de fer. Such an instrument is on the table 
before you. As you observe, it is composed of a number 
of rods of steel arranged in the form of a semicircle on 
a resonant case. Their lengths are so regulated, according 
to the law just enunciated, that when excited by a bow 
they give the notes of the gamut. The tones emitted are 
far from being disagreeable, and with a little practice one 
could make this homely little instrument yield fairly good 
music. 

Music-boxes are constructed on the same principle. In 
them, however, the rods of the violon de fer are replaced 
by plates or tongues of steel. These are placed side by 
side like the teeth of a comb on a common base, and are 
of various lengths, according to the notes they are de-
signed to produce. Those which yield the lowest notes 
are loaded with some extraneous material, so that they 

• may thereby vibrate more slowly. A cylinder provided 
with teeth suitably arranged is kept in motion by clock-
work. Each tooth raises one of the steel tongues and sets 
it in vibration. The air played will obviously depend on 
the manner in which the teeth are distributed on the 
cylinder's surface. 

The reeds used in harmonicas, concertinas, mouth-har-
monicas, accordions, organs, and other instruments of 
music, operate in essentially the same manner as the 
tongues of the music-box and the rods of the nail-fiddle. 
In all these instruments the vibrating element is free at 
one end and fixed at the other. They vary simply in 
length, thickness, and the manner in which they are set 
in vibration. 

The guimbarde, or "jews-harp," instead of a reed or 
tongue, has a long spring, which is set in vibration by 

striking its free end with the forefinger. The fundmental 
note it yields is modified by the various forms assumed 
by the cavity of the mouth; hence the peculiar variations 
of tone which characterize the instrument. 

In none of the instruments thus far spoken of has any 
reference been made to any other notes than the funda-
mental. True, like the notes of most other sonorous 
bodies, the tones of the rods, tongues, and reeds spoken 
of are more or less compound tones; but in all cases it is 
the fundamental that determines the pitch of the note 
heard. 

It is now time for us to turn our attention more directly 
to the consideration of the upper partial tones that rods and 
bars are competent to produce. Our first experience will 
show us that there is a very marked difference between 
these tones and those afforded by vibrating strings. In the 
case of strings, as you remember, the order of the partial 
tones was practically that of the natural numbers 1, 2, 3, 4, 
5, 6, etc., and for this reason, as was stated, they are called 
harmonic partíais. The upper partíais of vibrating rods 
follow quite a different order, and have anything but a 
harmonious relation to their fundamental. Hence, as said 
before, they are termed inharmonic partíais. • 

The frequency of a rod vibrating as a whole as com-
pared with that of its first subdivision — that is, the fre- . 
quency of its fundamental as compared with its first upper 
partial — is very nearly as the square of 2 is to the square 
of 5, or as 4: 25. After the first subdivision of the rod. the 
rates of vibration, and consequently the frequencies of 
the notes produced, are approximately as the squares of 
the odd numbers 3, 5, 7. 9. e t c- F o r t h i s r e a s o n t h e 

pitch of the upper partíais in rods rises far more rapidly 
than does that of the partíais of vibrating strings. 

Supposing the rod vibrating as a whole to yield the 
note C_i, Chladni gives for the first six partials, including 
the fundamental, the following series of notes, together 
with their relative rates of vibration and the order in which 
they occur :— 
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According to theory, partial tones, commencing with the 
third, succeed each other exactly in the order of the 
squares of the odd numbers, the relative frequency of 
the fundamental being (1.194)2, and that of the second 
being (2.9S9)2. 

The minus sign after D5, and the plus sign after FG, 
indicate that the number of vibrations in these two cases 
does not correspond exactly with any fixed musical notes. 
In the former case the number of vibrations is less than 
C3, and in the latter greater than F6. A little arithmetical 
computation will show that the theoretic and observed 
values above given are by no means identical. In some 
instances, indeed, they differ by quite an appreciable 
quantity. But this should not surprise us, as we have 
found in other similar instances how difficult it is to get 
the results of experiment to coincide with those required 
by theory. 

Chladni viewed the tuning-fork as vibrating like an ordi-
nary bar free at both ends. The only difference between 

• the two, in his estimation, was that the former was bent, the 
latter straight. But the law of succession of the upper 
partial tones and the absolute number of vibrations of the 
fundamental of a tuning-fork show that its mode of vibration 
resembles rather that of a rod fixed at one end and free at 
the other. When the fork vibrates so as to emit its fun-
damental tone, it forms two nodes, one at the base of each 
branch, as shown in Fig. 51 . Each of these nodes repre-
sents exactly the point of attachment of a rod fixed at one 
end and free at the other. The part of the fork inter-
mediate between the two nodes, to which the stem is 
attached, vibrates in unison with the two branches, and 
when fixed to a resonant case sets it in vibration also. 
When a fork emits its first upper partial, whose frequency, 
as in a rod fixed at one end, is 6{ times that of the fun-
damental, it has four nodes, as shown in the second diagram 

of the subjoined figure. But when the fork vibrates so as 
to yield its third partial, it possesses six nodes, and the 
frequency of the partial, as indicated in the figure ex-
hibiting its mode of division, is \-]\ times that of its fun-
damental. The nodes and ventral segments in all the 
three cases illustrated in the figures are precisely the same 
as those of simple vibrating rods yielding the same partials. 
The upper partials of a tuning-fork, then, succeed each 
other according to the law which governs the same notes 
in the case of a simple fixed rod, and the frequencies of 
these upper partials, in both cases, have the same ratios to 
their primes. 

It would nevertheless be a mistake to infer from what 
has been said that the upper partials of tuning-forks have 
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always the same pitch "as compared with their fun-
damentals. Such is by no means the case. In a number 
of forks examined by Helmholtz, the first inharmonic 
partial executed between 5.8 and 6.6 as many vibrations in 
a given time as the fundamental. The number will vary 
slightly, according to the form of the fork and the material 
of which it is made. 

Before you are three tuning-forks mounted on resonant 
cases. The largest one, which we shall here regard as the 
fundamental, is C2, executing 128 vibrations per second; 
the second one is G*, the sixth partial of C2, making 768 
vibrations per second; and the third one corresponds 
to the seventh partial, and executes 896 vibrations per 
second. 



The larger fork is now struck so as to elicit its first 
upper partial. You hear it loud and clear. The second 
fork, G4, is next excited, so as to yield its prime tone, and 
you will perceive that its pitch is very nearly that of the 
upper partial of the large fork. But there is a difference 
of several vibrations, as is disclosed by the beats that are 
heard. The prime tone of the third fork is compared in a 
similar manner with the upper partial of the first fork, and, 
as before, we get very distinct beats. But now they are 
much more numerous than with the other fork. This 
shows that the first upper partial of the large fork more 
nearly approaches the note emitted by the fork G4 than 
that yielded by the fork giving the seventh harmonic 
partial of C2. In other words, the frequency of the first 
upper partial of the large fork is more nearly six than 
seven times the frequency of its fundamental. By counting 
the number of beats made by the fork G4 when sounding 
with the first upper partial of C 2 ,— and this could be done 
with little difficulty, as the beats are not rapid, —we could 
determine exactly the frequency of the first partial of the 
fork C2 as compared with its prime. 

Again, two forks which are identical in appearance, and 
yvhose fundamentals are in perfect unison, may, and gen-
erally do, give rise to beats when the same upper partials 
are educed. Here are two forks, each making exactly 
512 vibrations per second, and therefore in perfect unison. 
If we excite the forks in such a way as to bring out their 
first upper partials, beats are at once heard, due to a want 
of unison on the part of these upper partials. The second 
set of upper partials might be excited in a similar manner, 
and the results would be the same. 

Ordinarily when a tuning-fork is set in vibration, one 
hears in addition to the prime tone, one or more of its 
upper partials. But these are in most instances very 
evanescent as compared with the fundamental. If, how-
ever, the fork is excited at a point near the centre of the 
ventral segment corresponding to the first upper partial', 
this partial will be generated with exceeding purity and in-

tensity. In like manner the second partial maybe brought 
out so as almost to quench all other tones. By means of 
the graphical method it is easy to show the co-existence 
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of these partial tones of a tuning-fork. In Fig. 52 we 
have traces corresponding to the fundamental and its first 
upper partial, as also to the fundamental and its first two 
upper partials. 

The second case in which bars and rods are used in 
music is where they are free at both extremities. Fig. 
53 shows how such bars may be supported. As will be 
noticed, the bar CD rests on two triangular pieces, A and 
B, which are ordinarily 
of wood or cork. The ""---...N>--""' „ c ..v. .--A;.. D 

simplest division of the --'" — 
bar, corresponding to A 

its gravest note, — its F l G 53-
fundamental, — is here 
represented. The two nodes, A7" and N , are situated at 
the points of contact of the two supports. Dotted lines 
indicate the ventral segments of the bar when in a state 
of vibration. As will be observed, the bar, when vibrating, 
divides itself into three segments of unequal lengths, the 
two extremities being a little less than one half as long as 
the middle segment, or 2 : 5. The two ends vibrate about 
the nodal points, N and N'. The intervening portion ex-
ecutes a movement of totality, as would a cord if attached 
at the points N and N'. Besides the one indicated, the 



bar can also assume other subdivisions, to each of which 
will correspond a higher partial tone. The number of 
nodes in such a vibrating bar, beginning with the funda-
mental note, are in the order of the numbers 2, 3, 4, 5, 6, 
7, etc. Chladni was the first to determine the musical 
relation of the partial tones corresponding to the different 
modes of subdivision of a bar or rod. The following table 
gives the result of his investigations : — 

Number of nodes, 2 3 4 5 6 7 
Frequencies of the notes , 

emitted — correspond- I 
ing a p p r o x i m a t e l y ' to V (3)'2 (5) 2 (7)2 (9)9 { « ) * ( 
the s q u a r e s of the odd | 
n u m b e r s ' 

The laws of vibration of a rod free at both ends, and of 
one free at one end and fixed at the other, are identical 
for all the partial tones except the fundamental. The 
prime of a rod free at both ends is higher than that of the 
same rod fixed at one end, in the ratio of 25 : 4. 

Rods or bars free at both ends are used in the construc-
tion of an instrument called by the French a claque-bois. 

It is also known as a xylophone. 
Such an instrument (Fig. 54) is 
before you. It is, as you see, com-
posed of a series of bars, a b to a' b\ 
of wood of different lengths and 
thicknesses, and so tuned as to yield 
the notes of the gamut. The bars 
are held together by two cords, c d 
and c'd', passing through their two 
nodes. The notes which the bars 

F i g 54 are capable of yielding are educed by 

striking them with a small hammer. 
Near by is a larger and more elaborate instrument, made 

of pieces of harder and more resonant wood. In this case 
the billets of wood are supported at their nodes on ropes 
made of straw, whence the name " straw-fiddle," which the 
instrument sometimes bears. Metal and glass rods and 

strips, and even bars of slate or other compact varieties 
of rock, are occasionally substituted for bars of wood. On 
the table are two instruments, in which the sonorous bars 
are made of steel. They are known as metallophones, 
and are sometimes employed to give brilliancy and color 
to band and orchestral music. When pieces of glass or 
rock are used as the vibrating material, the instruments are 
called glass or rock harmonicas. 

The xylophone is apparently becoming more popular 
daily. It is frequently employed in orchestras for short 
solos with pleasing effect. Mozart introduced it into his 
opera of " Die Zauberfiote " to imitate the sound of bells. 
The metallophone, unlike the claque-bois, on account of 
the intensity and piercing character of its upper partials, 
could never be used alone; but when it is used with 
other instruments, these penetrating tones are so far 
quenched as to be no longer disagreeable, and the funda-
mental note, which has a bright, clear, bell-like tone, often 
contributes materially to the beauty and richness of the 
general mass of sound. 

The partial tones of rods and bars are, as we have 
learned, of the kind denominated inharmonic. They do 
not all, by any means, form discordant intervals, but, unlike 
true harmonic intervals, their rates of vibration do not rise 
in the order of the natural series of whole numbers. Many 
of the intervals, it is true, are eminently discordant, and 
hence the unfitness of rods and bars for use in musical 
instruments, especially when played alone. But it must 
not be forgotten that tuning-forks, although vibrating as 
a bar fixed at one end, yield, as has been before stated, 
not only inharmonic partials, but also harmonic ones. So 
far, tuning-forks have never been used as musical instru-
ments, although they may, as you know, be made to emit 
tones of exceeding purity and volume. 

Let us now pass from the transverse to the longitudinal 
vibrations of a rod. An apparatus devised by Koenig 
(Fig- 55) enables us to demonstrate in a most striking 
manner the existence of longitudinal vibrations. A rod 



of brass mounted on a support is clamped at its middle 
point, and from the support an ivory ball is so suspended 
as just to touch the end of the rod. I now set in vibration 
the half of the rod farthest away from the ball, by rubbing 
it with a piece of resined leather. The point at the clamp 
is a node; but the vibrations imparted at the half of the 
rod which is being rubbed are at once communicated to 
the other end, as is evidenced by the tremulous motion of 
the ball. Rubbing the rod more vigorously, the vibrations 
become so intense that the ball is repelled violently when-
ever it touches the end of the rod. 

By being clamped, the middle point of the rod is made 
a node. Here all the molecules are at rest. At the ex-

FIG. 55 . 

tremities of the rod, on the contrary, the molecules have 
great amplitude of motion, as is attested by the experi-
ment just made. By means of a spherometer, Savart 
measured the amount of elongation of a rod of brass, 
about an inch and a half in diameter and four feet long, 
under the influence of longitudinal vibrations. The strain, 
he found, was equivalent to that of a tensile force of over 
eighteen tons. The relatively feeble impulses thus com-
municated to the molecules of the rod may thus develop 
an enormous force. This is explained by the cumulative 
character of the motions imparted. A number of feeble 
impulses, properly timed, may, therefore, produce effects 
that a much superior force applied once could not effect. 
The elongations due to this vibratory motion frequently 
become so great as to cause the rupture of the strongest 

materials. Engineers and architects must take this fact 
into consideration in calculating the strength of materials. 
The cables of bridges are sometimes snapped 
by the longitudinal vibrations produced by the 
measured tread of soldiers crossing them. An 
accident of this kind befell a regiment of sol-
diers while crossing a bridge in France some 
years ago. 

We owe to Savart an experiment which illus-
trates in a most striking manner the nature and 
intensity of the force developed by longitudinal 
vibrations. By clasping a glass tube with one 
hand, and rubbing it with a wetted cloth held 
in the other (Fig. 56), it is possible to develop 
such amplitude of motion in the molecules of 
the tube as to shatter its lower portion into 
fragments. The forms of the fragments are, 
as might be inferred from the character of the 
vibrations producing them, always annular, and 
the line of fracture is at right angles to the axis 
of the tube. 

If a rod, ab, is held at its middle point, B, 
as in Fig. 57, and caused to vibrate by rubbing, as at A, 
one of its halves, it will emit its fundamental note. The 
rod in this case has a node at its centre, while the points 
of maximum vibration are at its extremities. If the same 
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rod be held at N, I (Fig. 58), at a fourth of its length 
from the end A, and if the part A N be then excited, a 
node is spontaneously formed at N', at a point such that 
N' B = A N. IV N, therefore, equals A N, and N' B 
equals The rod is thus divided into one whole ven-



tral segment, N' N, and into two half ones, A N, N B. 
The note emitted is now an octave higher than it was be-
fore, and the number of vibrations is double what it was 
when there was only one node. The arrows in the figure 
indicate the direction of motion of the direct and reflected 
pulses. 

If the rod be now fixed at N, II, of the adjoining figure, 
and caused to vibrate as before, it at once forms two other 
nodes, one at N and one at IV1', — points so situated that 
NB = AN, and that N"N = N"N= A N + N"B = 
These four divisions vibrate in unison, and constitute three 
complete ventral segments of equal lengths. The number 
of vibrations executed in this case is three times that corre-
sponding to the fundamental when the rod is fixed at the 

centre. If the rod be 
j ^ > ^ < —in divided into four com-

— * < plete ventral segments, 
j, > + it will produce a note 

I I w . |B whose pitch is four 
times that of the fun-
damental, and so on 

for higher subdivisions. Hence the notes emitted by a 
rod vary directly as the number of complete ventral seg-
ments, and inversely as the length of these segments. 
The frequencies of the notes yielded follow each other 
in the order of the harmonic partials and according to 
the series of the whole numbers I, 2, 3, 4, 5, etc. The 
law is, therefore, the same as that which we have seen 
obtains for a string vibrating longitudinally, and the 
same, as we shall learn, as that which governs the vibra-
tions of air in open organ-pipes. Another similarity be-
tween a rod free at both ends and an open organ-pipe 
is that in both cases the nodes occupy the same relative 
positions. 

When the rod just used is fixed at one end and free at 
the other, the number of vibrations that it will execute in 
a given time is different, as is also the order of occurrence 
of the upper partials which may be produced. 
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Suppose the rod A B (Fig. 59), fixed at A, and free at 
B. When vibrating in its simplest way, so as to yield its 
prime tone, there is necessarily a node at A, and the 
centre of a ventral segment at B. I say the centre of a 
ventral segment because the rod, when vibrating so as to 
emit its fundamental note, is only a half ventral segment 
in length. Such rods, like those which are free at both 
ends, execute vibrations whose frequencies are inversely 
proportional to their lengths. A rod fixed at one end, 
and yielding its fundamental note, is different in length 
from a rod of the same length and material when free at 
both ends and emitting its prime tone. The note yielded 
by the former is an octave lower than that produced by 
the latter. In order that the notes may be in unison, the 
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rod free at both ends should have twice the length of the 
one free at only one extremity. 

Like rods free at both ends, those fixed at one end 
admit of subdivisions into segments while under the in-
fluence of vibratory motion. These divisions must always 
take place in such a manner that the fixed point is a node, 
and the free extremity the centre of a ventral segment. 

When but one node is formed in the rod, it exists at N 
(Fig. 60), I, and divides the rod into two vibrating parts 
such that NB is one 
half A N, and one j f p A — - N ^ _ v 
third A B. We have 1 | J j — 
in this case a half ven-
tral segment, NB, and „ |\ J A ? ^ _ 
a complete one, A N. C^J -<- * 
The number of vibra- FIG. 60. 
tions corresponding to 
the note emitted in this case is three times that executed 
by the rod when emitting its prime. 



When two nodes are formed in the rod II of Fig. 60, 
the vibrating part N' B is one fifth the length of A B. The 
rod is now divided into three vibrating parts, one half-
ventral segment, N' B, and two whole ones, A iVand N' N'. 
The number of vibrations now executed is five times as 
great as when the rod sounds its fundamental. 

From the foregoing it will be seen that the order of the 
notes developed in a rod fixed at one end is that of the 

unevenly numbered har-
monic partials, — that is, 
they succeed each other 
as the odd numbers 1, 3, 
5, 7, etc. The same law, 
as we shall learn later on, 
applies in the case of notes 
yielded by a stopped or-
gan - pipe. Furthermore, 
rods fixed at one end and 
stopped organ-pipes have 
their nodes in the same 
relative position. The only 
instrument in music based 
on the longitudinal vibra-
tions of bars is one devised 
by Marloye. Such an in-

1 strument (Fig. 6 1 ) is be-
fore you. It is, indeed, 

FIG. 61. more of an acoustical curi-

osity than anything else. 
It is composed of twenty rods, firmlv fixed at one end on 
a solid support. The white rods yield the notes of the dia-
tonic scale, while the colored ones answer to the semitones 
of the chromatic scale. By rubbing them with resined 
fingers, a series of quite pure, sweet tones may be educed, 
and a simple melody might be played on them which the 
ear would find quite agreeable. Substituting rods of glass 
for those of wood, the smoothness and volume of the tones 
elicited would be considerably enhanced. 

In elastic rods the number of longitudinal vibrations 
varies, as we have seen, inversely as the length of the 
rods, or the vibrating segments. The diameter and form 
of their transverse section have ho effect on the number 
of vibrations executed by rods of the same length and 
material, provided their length is very great in comparison 
with their width and thickness. This is easily shown by 
experiment. 

On a suitable support fixed to the table are clamped 
two steel rods (Fig. 62), each being one metre in length. 
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The lower one is cylindrical, the upper one prismatic. 
Passing a resined piece of leather in succession over the 
two, the same notes, as you hear, are elicited from both. 
I now replace the prismatic rod by a cylindrical one of 
greater diameter than that just used. We have now two 
cylindrical rods of quite different diameters, and yet, when 
they are thrown into vibration by rubbing them, they both 
emit the same note. Substituting a rod of one half metre 
in length for either one of those now clamped to the sup-
port, we have two rods, one of which is just twice the length 
of the other. Passing the resined leather over both of them, 



we find, as we have already learned should be the case, 
that the shorter rod yields a note which is just an octave 
higher than that produced by the longer one. Taking in 
place of the rod one half metre in length another one 
measuring one third of a metre, and causing it to vibrate 
with the rod below it, which is three times its length, we 
obtain notes whose frequencies are as 3: I. The short rod, 
as was to be expected, emits a note which is exactly a 
twelfth above that sounded by the longer one. 

These experiments beautifully corroborate the results 
already obtained by causing rods to vibrate in segments 
and verify the law previously enunciated; namely, the num-
ber of longitudinal vibrations is inversely proportional to the 
lengths of the vibrating segments, or, when rods of the same 
material but of different lengths are employed, the number of 
vibrations executed per second is inversely as the lengths of 
the rods. 

If now we use rods not of the same, but of different 
material, we shall find ourselves in a position to determine 
in a very simple way the velocity of sound in different 
solids. Fixing a rod of steel and one of copper in the 
support just used, and causing them to vibrate, you notice 
that the steel rod gives a more acute sound than that given 
by the copper one. The reason is found in the superior 
elasticity and lesser density of the steel, which permit the 
sound-pulse to travel through it more rapidly than it does 
in copper. If, instead of having rods of equal lengths as 
we now have, we were to use a steel rod seventeen inches 
long, and a copper one eleven inches long, we should, on 
causing them to vibrate, obtain notes that have approxi-
mately the same pitch. But the lengths of the rods em-
ployed are to each other very nearly as the velocities of 
sound in the two metals. The velocity of sound in steel 
and in copper is, in round numbers, 17,000 and 11,000 
feet respectively. By simply making the rods of different 
materials of such lengths that they will yield the same 
note, we at once have an approximation to the relative 
velocities of sound in these materials, and knowing the 

velocity of sound in air, we can easily determine their 
absolute velocities. 

Instead of steel and copper, let us take oak and fir. 
Cutting the rods to such a length that they both emit the 
same note, we find that the lengths are twenty-five inches 
for the oak, and thirty inches for the fir rod. But the ratio 
of the lengths of these rods, 25:30, = 12.5: 15, is very 
nearly that of the relative velocities of sound in oak and 
fir. In the former the velocity of sound is a little more 
than 12,500 feet, and in the latter it is slightly in excess of 
16,000 feet per second. 

This method of determining the velocity of sound in 
solids was first suggested and applied by Chladni. The 
results he obtained for various substances correspond very 
closely with those arrived at by more refined methods of 
measurement. Its simplicity certainly commends it to 
the investigator who desires only approximate values.1 It 
is applicable to all solids which can be fashioned into rods 
capable of executing longitudinal vibrations competent to 
yield a definite musical tone. Measuring the length of the 
sonorous rod, and estimating its pitch, both of which are 
exceedingly easy, are all that is required to enable one to 
calculate with a fair degree of approximation the velocity 
of sound in any given material. 

A beautiful experiment, due to Biot, enables us to in-
vestigate, better than any other means at our disposal, the 
conditions of the molecules in various parts of a bar or rod 
when in a state of longitudinal vibration. It has been 
stated that the particles constituting the nodes of any 
vibrating body are quiescent, while those which compose 
the ventral segments are always in a condition of greater 
or less vibratory motion. In a rod free at both ends and 
emitting its prime tone, there is, as we have learned, but 
one node, which is at the centre, while on either side of 
the node there is a semi-ventral segment. In this case the 

1 According to recent investigations by Prof. A. M. Mayer, as yet un-
published, Chladni's method of determining the velocity of sound in solids 
is capable of giving more exact results than any other known method. 



molecules that have the greatest amplitude of motion are 
at the extremities of the rod. At the node there can be 
no motion, because here the opposite sonorous pulses 
meet. There are, however, alternations of strain and 
pressure, and hence alternations in density. While, there-
fore, the node is characterized by absence of movement, 
and by variations of density due to pulses of condensation 
and rarefaction, which alternately meet at this point, the' 
ends of the rod, corresponding to centres of ventral 
segments, are distinguished for great amplitude of move-
ment, while the density remains always the same. 

To the front of our lantern (Fig. 63) is attached a Nicol 
prism that gives a beam of polarized light. If now a 
second Nicol be placed in front of the first, in such a 
manner that the directions of vibrations in both are 
parallel, the beam will pass through the second prism 
also, as is evidenced by the luminous disk on the screen. 
But if the two prisms are so adjusted that their directions 
of vibration are at right angles to each other, the polarized 
beam from the first Nicol will not pass through the second, 
although both prisms are perfectly transparent. The light 
is quenched almost as completely as if it had been inter-
cepted by a body perfectly opaque. 

Light thus polarized is remarkable for its behavior with 
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respect to bodies in a condition of strain or compression. 
I take a narrow strip of plate glass and introduce it 
between the two prisms so that it is inclined to their 
direction of vibration. There is as yet no change on the 
screen. As soon, however, as the glass strip is bent, there 
is induced a condition of pressure on the concave and one 
of strain on the convex surface. The moment such 
change is effected, the light flashes out on the screen, If 
a similar condition of stress be caused by other means, 
by heat, for instance, or by sound-pulses excited in the 
molecules of the glass, a like result is obtained. 

Adjusting the strip of glass in a vice in such a manner 
that the ray of polarized light can pass through its node, 
and sweeping over one of its halves a moist woollen rag, 
there is heard an acute note due to the longitudinal vibra-
tions of the glass. Simultaneously with the production of 
the sound a brilliantly illuminated disk flashes out upon 
the screen. When the vibrations cease, the light is ex-
tinguished. But each time the cloth is passed over the 
crlass the luminous disk is restored. Here, as is evidenced 
by the flashes of light on the screen, we induce changes 
of d e n s i t v — alternate states of condensation and rare-
faction—in the node of the glass strip, precisely like 
those developed by heat or mechanical stress of any kind. 

If now the glass strip is so placed that the beam of 
polarized light passes through it near either of its ex-
tremities, and it is thrown into vibration as before, no 
effect whatever is produced. The reason is that at these 
points of the glass bar there is no variation of density, due 
to alternations of strain and pressure, although the width 
of swing, or amplitude of movement, of the oscillating 
molecules is here at its maximum. 

Like strings, rods may also execute torsional vibrations. 
If a rod be clamped at one end in a vice, and a violin bow 
be drawn around it, it will be caused to twist and untwist 
itself around its axis so as to execute vibrations that are as 
isochronous as transverse or longitudinal vibrations. Ac-

• cording to Chladni, the pitch of a note due to the torsional 



vibration of a rod is about one fifth lower than that of 
a note produced by the longitudinal vibrations of the same 
rod having the same number of segmental divisions. 

Like strings, rods may also execute very complex vibra-
tions, in which transverse or torsional vibrations, or both, 
are compounded with longitudinal vibrations. 

Savart was the first to elicit simultaneously from the 
same rod two notes, one of which is due to transverse, and 
the other to longitudinal vibrations. Since his time 
Terquem 1 and Koenig have studied these joint vibrations 
more closely, and, thanks to their investigations, we now 
know not only the laws which govern such compound 
vibrations, but also under what circumstances they may 
most easily be produced. 

Clamping this steel rod, one metre long, in the support 
which we have just been using, I rub one of its halves 
vigorously with a piece of resinous leather. The rod is 
thrown into longitudinal vibration as in the preceding 
experiment, and a loud, clear note is the result. But 
in addition to the fundamental tone of the rod, you hear 
another note equally pure, and almost equally loud, which 
is exactly an octave lower. This is due to the transverse 
vibrations, which are developed simultaneously with and 
by those which are longitudinal. Such a grave tone is 
called by the French son rauque,—a raucous sound,— and, 
as Terquem has shown, is produced only when the rod is 
of such a length that the note it emits when vibrating 
transversely is sensibly identical with a note that is an 
octave lower than that yielded when the rod vibrates 
longitudinally. Koenig has further found that the first 
upper harmonic partial due to longitudinal vibrations 
may, like the prime tone, excite transverse vibrations that 
will yield a note an octave lower than such partial. The 
vibrations thus developed in rods are, therefore, quite 
analogous to those which we have witnessed in Melde's 
experiments, in which a tuning-fork vibrating in the direc-

1 See his " Etude de Vibrations longitudinales des Verges prismatiques 
libres aux deux Extrémités." 

tion of the length of a string causes the string to execute 
transverse vibrations whose number in a given time is just 
one half that executed by the fork itself. 

We are now prepared to pass to the vibrations of plates. 
They are far more"complex than those of rods, but at the 
same time they are, by reason of the figures to which they 
may give rise, far more interesting. Chladni was the first 
to study experimentally the modes of subdivision of plates 
when under the influence of vibratory motion, and to him 
and F. Savart we owe most of our knowledge concerning 
the experimental part of this subject. Napoleon Bona-
parte,1 who had witnessed some of the experiments of the 
German philosopher, was so impressed by them that he 
had the French Institute offer a prize to the one who 
would offer a satisfactory theory of the phenomena ob-
served. A lady mathematician, Mademoiselle Sophie 
Germain, gave a solution of the problem involved, for 
which she was especially honored by the Academy. Sub-
sequently the theory of vibrating plates was discussed by 
the ablest mathematicians in Europe. Chief among these 
were Lagrange, Poisson, Cauchy, and Kirchhoff. And yet, 
notwithstanding the great work accomplished by these emi-
nent analysts, much yet remains to be learned regarding 
the mode of vibration of plates, especially square plates 
whose edges are free. In the case of circular plates, 
theory and experiment 'are more concordant. The vibra-
tory motions of such plates have been analyzed so thor-
oughly that the mathematician can now determine in 
almost any given case the number and kind of nôdal 
lines, and calculate with the greatest exactness the series 

of sounds that will be produced. 
By means of the vertical lantern and suitable plates, I 

shall now give some illustrations of the character of this 
vibratory motion. A square glass plate is clamped above 
the condensing lens of the lantern, and then strewn with 

i On the dedicatory page of the French edition, "Traité d'Acoustique " 
of Chladni's great work is written, " Napoléon le Grand a da,gne agreer^ la . 
dédicace de cet ouvrage après en avoir vu les expériences fondamentales. 



fine sand. The image of plate and sand is now distinctly-
focused on the screen. Placing my finger at the middle 
point of one of the edges of the plate, so as to form a 
node there, and drawing the bow along the edge near 
one corner, the sand immediately begins to dance about 
on the plate, and arrange itself along two nodal lines, 
which are at right angles to each other, parallel to the 
sides of the plate, and intersecting each other in the 

centre. These lines, in fact, constitute a cross, 1 ,1 (Fig. 
64), dividing the plate into four equal rectangular seg-
ments. Placing my finger at the corner of the plate, 
and drawing the bow across the middle point of the edge, 
two nodal lines are formed as before, but their position is 
different, being along the diagonals of the plate as in 2,0 
of the adjoining figure. Clamping the plate about mid-
way between the centre and one of the edges, and bowing 
it at the proper point, we obtain a still different design, 
like 2,1 in the figure, composed of two parallel straight 
lines intersected by a third straight line at right angles. 
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These figures are named after their discoverer, and are 
known as Chladni's figures. They have been of invaluable 
service in studying the nature of vibratory motion in solid 
bodies, as they reveal at once the positions occupied by 
nodes and ventral segments. An almost indefinite num-
ber and variety of designs can be obtained from one and 
the same plate, and to most of these designs correspond 
sounds of different pitch. 

A square plate yields its fundamental tone when it is 
divided into four equal squares, as in 1 ,1 . The notes 
corresponding to 2,0 and 2,1 of Fig. 64 have a higher 
pitch. If the prime tone of the plate be C u the notes 
corresponding to the -two diagonals will be a fifth higher, 
that is G 1 ( while the note corresponding to the third fig-
ure, 2,1, will be a major third of the octave above the 
fundamental, namely, E.2. 

The pitch of the note emitted by a vibrating plate in-
creases with the number of nodal lines formed, and the 
complexity of the figures developed. The designs in the 
accompanying diagram (Fig. 64) are a few of the multitu-
dinous patterns that may be produced. Experiment shows 
that for plates of the same material, shape, and dimen-
sions, thè same figure always answers to the same sound. 
Different figures, however, under certain circumstances, 
may correspond to the same sound. With a little prac-
tice one can locate the position of the nodes, and deter-
mine the form of the figure that will be produced, with 
comparative ease and precision. 

Wheatstone in 1833 was the first to give an explanation 
of these curious figures as formed on square plates. Koe-
nig subsequently took Wheatstone's theory up and applied 
it to rectangular plates. Our knowledge of the transverse 
vibrations of rods will now be of use to us. 

Suppose we have (Fig. 65) two rectangular plates of 
the same material and thickness, one having the length 
abed, the other the length efghk; and let us further 
suppose that these are in unison when the former has two 
nodes, b and c, and the latter three nodes, f , g, and h. 



If we now superpose one on the other, we shall have a 
plate with a width abed, and a length efghk. Such a 
compound plate will admit both systems of nodes given by 
the plates separately, because the nodes are independent 
of the width of the plates, and will, while having the same 
system of nodes, emit the same sound. Knowing, then, 
the number and direction of the nodes given by two dis-
tinct plates, we can foresee what figures would result from 

FIG. 65. 

their superposition. The segments on the opposite sides 
of a nodal line, as is evident, must move in different direc-
tions, otherwise the formation of nodal lines would be 
impossible. 

The parts of the plate that move upward are considered 
positive, those that have a downward motion, and are 
below the average position of the plate when at rest, are 
called negative. In the adjoining figure the negative parts 
are represented by dark spaces, while the positive ones 

are indicated by cross lines. In the first and second hori-
zontal series of the figure are shown plates of various 
sizes and of different systems of nodal lines. In the third 
series are shown the nodal lines that theoretically should 
result from a superposition of the corresponding plates of 
the first two series. A little reflection will make it ap-
parent that when the first two plates of the two upper 
series are superposed, the resultant nodal curve must pass 
through the points /, m, n, o,p, q, which are the points of 
intersection of the nodal lines of the plates taken sepa-
rately. At these points only do the positive vibrations of 
one system neutralize the negative ones of the other sys-
tem, and induce the condition of rest indicated by the nodal 
curve, — a condition that can result only from movements 
or vibrations which are equal and opposite in direction. 
In the various figures of the fourth horizontal series are 
exhibited some of the sand figures obtained by Koenig, 
showing the perfect agreement of theory and experiment. 

Let us now study the effect of vibratory motion in cir 
cular plates. And in order to make the Chladni figures 
visible to all of you, I will, as before, project them by 
means of the vertical lantern. Clamping a glass circular 
plate above the condenser, and strewing it with sand, 
we throw it into vibration by bowing it. Damping any 
given point of the edge by touching it, and drawing the 
bow across the edge at a point forty-five degrees from 
the finger, two rectilinear nodal lines are formed, at right 
angles to each other and intersecting at the centre of the 
plate. There are now four equal segments, and the note 
emitted is the lowest note the plate is capable of yielding. 
Drawing the bow across the edge thirty degrees from the 
point damped, six vibrating sectors are formed, separated 
by as many nodal lines. Agitating the plate at points 
gradually approaching the one damped, we obtain in suc-
cession eight, ten, twelve, and more vibrating sectors, the 
number of sectors in all cases being an even one. 

As in the case of square plates, the pitch of the notes 
evoked increases with the number of nodal lines that are 



produced. When these nodal lines are all rectilinear and 
intersect each other at the centre of the plate, thus mak-

ing lines which are dia-
y metrical, the pitch of 

(H. the notes emitted varies 
I I directly as the square 
1/1 of the number of diam-
I I eters produced. Thus 
I with 2, 3, 4, or 5 diam-

eters, the correspond-
- ing notes would have 

ml. 1 frequencies represented 
W S S ^ m m S . by 22, 32, 42, 52. If 

then the prime tone of 
the plate corresponding 
to two diameters be C, 
that for 3, 4, and 5 

^ y . diameters will be re-
° j P J spectively D.„ C3, G^. 
« F [ g ^ By supporting a plate 

at three points equidis-
tant from the centre, as in Fig. 66, and drawing the bow 
across the edge, we 
get a single nodal 
curve, which in the i : U - / t 1 
present instance is ( / ¡^Ic^^" ' ' ' 
a circle. Exciting 7 
the plate A B by / 
drawing a resined /' (j! 
string b c through 
its centre, we obtain j if 
two circles, as in " V / P C " 
Fig. 67. Support- \ 
ing a plate as in 
Fig. 68, and damp-
ing and bowing it at F i g 6? 

appropriate points, 
we elicit a much more complex figure, composed both of 
diameters and circles, as p, i, c; g, n, i; and p, g, a; m, n, b. 

If the fundamental note of the plate, corresponding to 
its division into two diameters, be Q, theory gives for a 
figure answering to one circle and no diameter Gjf1+. A 
circle with one diameter yields B.,_, with two diameters 
G ^ , and with three diameters D4 + . The signs + and 
— indicate, as previously, that the results given do not 
correspond exactly with any musical notes, + or —showing 
that they are to be slightly sharped or flatted. Two 
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circles with no diameters would, under the same circum-
stances, give GS3+. 

The pitch demanded by theory, and that obtained by 
Chaldni for the different figures, approximate very closely. 
But, as will appear on inspection, many of the partials 
are inharmonic, and hence the discordant character of 
the sounds of cymbals, tom-toms, and different kinds of 
plates. 

Damping the plate at certain points in the circum-
ference, and exciting it at the centre, we may obtain the 



so-called "festoon figures" (Fig. 69), which have been 
known since the time of Chladni. The theory of such 
figures is imperfectly, if at all, understood. Employing 
larger plates, there may be produced simultaneously 
several different sonorous figures. Sometimes the cir-
cumference is divided into a greater number of parts than 
the central portion. In such a case, several tones, some 
of which may be in unison, are produced. Fig. 70 shows 
a complicated subdivision of this character. 

If in lieu of sand a very light powder, like lycopodium, 
be strewn on a vibrating plate, the aspect of the figures 
produced will be entirely unlike those given by sand. 
The powder, instead of arranging itself along the nodal 
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lines, as sand does, is collected in little heaps at the points 
of greatest agitation. Experimeters from the time of 
Chladni tried to account for the phenomenon, but it was 
reserved for Faraday to offer an explanation, as simple as 
it is natural. According to this illustrious physicist, the 
light powder is held in the centre of the ventral segments, 
where the motion is greatest, by little whirlwinds of air 
which are excited by the rapid and violent movements of 
the plate. The 'sand, on the contrary, in virtue of its 
greater density, is able to escape from these miniature 
cyclones, and hence if the plate be strewn with sand and 
powder at the same time, the two will be separated as soon 
as the plate is set in vibration. The sand collects along 
the nodal lines, and the lycopodium gathers at the points 
of greatest motion. That Faraday's theory is correct is 

proved by making the experiment in vacuo (Fig. 7 1 ) . 
Here the plate is placed in a bell-glass from which the air 
has been exhausted, and is set in vibration by rubbing with 
a resined cloth the wooden rod to which it is attached. 
Immediately the plate is excited, 
sand and lycopodium alike are col-
lected along the nodal lines and 
curves. 

Before you (Fig. 72) is a large 
brass plate mounted on a strong sup-
port, and above it is fixed a resonant 
tube, so adjusted that it can be 
lengthened or shortened at will. 
Sprinkling the plate with lycopo-
dium powder, and setting it in vi-
bration, we get the same results as 
with the plate we have been using. 
Where the violin-bow is drawn across 
the edge of the plate is obviously 
the centre of a ventral segment, and 
the corresponding radial nodal lines 
are on either side of this point of 
maximum vibration. By shifting the 
bow to the right or the left of this 
point we evidently cause the nodal 
lines also to move in a similar man-
ner. This is evidenced by the move-
ments of the little heaps of lycopo-
dium powder, and also by variations 
in the intensity of the tones emitted FIG. 71. 

by the plate; for if the resonant 
tube is adjusted, as it now is, so that its note is in unison 
with that yielded by the plate, an augmentation of sound 
is produced every time a ventral segment passes under the 
tube. When, on the other hand, a node passes under the 
tube, there is a corresponding diminution of sound. 

These oscillations and turnings of the ventral segments 
and nodal lines, and the consequent variations in the 



intensity of the tone, produced in the manner indicated, 
are what might have been predicted without making the 
experiment. But Savart discovered that a similar dis-
placement of the nodal lines may take place when the 
vibrating plate is left to itself. When, after the plate is 
excited, the violin-bow is quickly withdrawn, the nodal 
lines are observed to oscillate on either side of their 
original position. If now the plate be bowed strongly, and 

always at the same point, the 
amplitude of these oscillations 
may become so great that the 
nodal lines may be carried to 
the middle of the segments 
which separate them in their 
primitive position. Under such 
circumstances, an additional 
stroke of the bow will cause 
the nodal lines to pass this 
point and to assume the posi-
tions at first occupied by con-
tiguous lines. A vigorous ap-
plication of the bow. always at 

S-jjfci. J M ^ v the same point, will now enable 

* US to keep up this displacement, 
m a n d to cause the nodal lines to 

travel around the entire circum-
. FIG. 72. ference of the plate. But such 

a displacement can take place 
only in circular plates in which the pitch of the note 
emitted is independent of the position occupied by the 
nodal lines. 

Instead of using lycopodium to show the movements we 
have been studying, we may, like Savart, employ a beam 
of light. Our lantern is now so adjusted that a beam from 
it is reflected from the polished surface of the plate, and 
we thus have an enlarged image of the plate on the screen. 
Setting the disk in vibration as before, we see the image 
on the screen transformed into a species of star, the rays 

of which correspond to the nodal lines of the plate. If 
the nodal lines on the plate are made to oscillate or to 
turn, the rays of the image on the screen oscillate or turn 
in a similar fashion. By means of a very vigorous use of 
the bow it is possible to make these rays turn so rapidly 
that, owing to the persistence of vision, they will coalesce 
and give a luminous image on the screen like that which is 
afforded when the disk is at rest. 

Savart attributes this curious phenomenon to the lack 
of homogeneity in the plate employed. No matter how 
carefully the plate may be wrought, it is nearly, if not 
quite, impossible to fashion it so that it will be perfectly 
homogeneous. It will therefore, according to Savart, have 
two diameters, corresponding respectively to its maximum 
and its minimum resistance to flexure. If the point 
of excitation by the bow be properly chosen, the nodal 
lines will arrange themselves along these diameters, and 
remain stationary. If, on the contrary, the disk is attacked 
at some other point, the amount of flexure on either side 
of the bow,' by reason of the difference of elasticity in 
these two points, will not be the same in both cases. The 
nodal lines will accordingly oscillate about the point 
of excitation, or, if the amplitude of oscillation be suffi-
ciently great, they will, as we have witnessed, make an 
excursion around the entire circumference of the plate. 

Although much yet remains to be learned regarding the 
laws of vibrating plates, Chladni has made us acquainted 
with those which depend on the thickness and diameter of 
the plates employed. Before you (Fig. 73) are six brass 
plates, three of which are circular, and three square. In 
these plates those of the same size have their thicknesses 
in the ratio of 1 :2 , while those of the same thickness have 
diameters which are likewise in the ratio of 1 : 2 . Excit-
ing two of the circular plates of the same diameter, one of 
which is twice as thick as the other, you will observe that 
two sounds are produced, that due to the thicker plate 
being an octave higher than the other. Hence Chladni's 
firs.t law, which says that for two plates of like form and 

r 



similar subdivision, as disclosed by the figures produced, 
the numbers of vibrations are directly proportional to the 
thickness of the plates. 

Exciting another pair of plates, either square or circular, 
of the same thickness, but having diameters which are as 
1 :2 , we find that the smaller plate yields a note just a 
double octave above that emitted by the larger plate. 
Hence the second law, which declares that for twu plates 
of the same thickness, but of different diameters, the figures 
produced being the same, the numbers of vibrations vary 
inversely as the squares of their diameters. 

From these two laws we may deduce a third. If the 
thicknesses, as is here the case with two of the plates, are 

•proportional to the other dimensions, that is, if the plates are 
similar solids, the numbers of vibrations are inversely as 
the homologous sides. Taking a plate, either square or 
circular, .having twice the thickness and twice the diam-
eter of another, the larger plate will emit a note that is an 
octave below that given by the smaller plate. 
• The last law holds true equally for solids, liquids, and 
gases, and must, therefore, be considered as a general ex-
pression for the laws of vibratory movement. Savart 
has shown that for bars of the same material and of similar 
form, the number of vibrations, as in plates, is inversely 
as the homologous sides. For spheres of the same sub-
stance, or cubes, or cylinders, or other solids of compar-
able dimensions, the law is equally true. Before you are 
suspended two spheres of iron, — one six inches, and the 
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other three inches in diameter. Striking them so as to 
elicit their fundamental notes, we find that the larger 
sphere yields a note an octave below that emitted by the 
smaller. 

Mersenne discovered that the number of vibrations 
executed by drums of similar form, but of different sizes, 
is inversely as their homologous dimensions.1 This phi-
losopher, as we shall see in our next lecture, also remarked 
that the same law obtains for sonorous tubes, both open 
and stopped. It was reserved for Savart, however, to give 
an experimental proof of the law. This he did by excit-
ing vibratory motion in masses of air contained in cases 
and tubes of various forms and sizes. 

Causing two cubical boxes, whose linear dimensions are 
in the ratio of 2 : 1 , to speak, we shall find that the note 
emitted by the larger box is an octave below that emitted 
by the smaller one. Employing sonorous cases of spher-
ical, cylindrical, or tetrahedral form, the result would be 
the same; namely, that the notes emitted by masses of air in 
vibration are in all cases inversely as the linear dimensions 
of the cases in which the air is contained. We shall re-
serve the experimental illustration of this law for our next 
lecture, where it will find an appropriate place. 

It is but a step from plates to bells. A disk is to a bell, 
essentially what a rod is to a tuning-fork. In both disks 
and bells the mode of subdivision is the same. The num-
ber of vibrating segments is always even, and the prime 
note, in both instances, always corresponds to a division 
into four segments. As in disks, so in bells, the move-
ments of adjacent segments must at any given time be in 
opposite directions. Under no other circumstances could 
the intervening node be formed. 

The existence of nodes and ventral segments in bells is 
beautifully shown by this large glass bell (Fig. 74), around 
the edge of which are suspended four ivory balls. When 
the bell is excited by a violin-bow in such a manner that 
the balls touch the nodes, the motion is very slight. 

1 Harm., lib. xii. Prop. 18. 
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/the bell, as well as of the water, is at a maximum — are at 
the points a, b, c, d. A few vigorous sweeps of the bow 
across the edge of the bell would develop vibrations of 
such amplitude as to shatter it into fragments. 

The least number of segments in which a bell can vibrate 
is, as has been stated, four; and this division always obtains 
when the bell is yielding its lowest, or ground, tone. The 
next subdivision would be into six segments, and then in-
to eight, ten, twelve, etc.; the number of segments, as in 
disks, being always even. 

If a bell were perfectly regular and homogeneous through-
out, the frequencies of the notes corresponding to 2, 3, 4, 
5 meridianal nodal lines would be as the squares of these 

When, on the other hand, they are near the centre of 
ventral segments, they are forcibly repelled. 

Filling a similar glass bell, A (Fig. 75), with water, and 
exciting it, as before, so as to yield its fundamental tone, 
the mode of vibration of the bell is disclosed by the con-
dition of the water within. The surface of the liquid 
shows two nodal lines, f e and g h, which cut each other in 
the centre at right angles. Between these nodal lines 
the water is more or less agitated, as is evidenced by the 
ripples and crispations that play over its surface. The 
centres of the ventral segments — where the motion of 

numbers; that is, as 22, 32, 42. 52- Supposing the prime 
note of the bell to be C„ its first three upper partials 
would be D2, C3, Gi?3. The vibration numbers would thus 
follow the same law as governs circular plates having 
similar subdivisions. Such a bell would, like a disk, be 
characterized by many inharmonic partials, and would not 
answer the purpose for which bells, especially large ones, 
are ordinarily employed. Hence the^empirical form — a 
sort of truncated conoid — in which 'large bells are now 
always cast. 

The best form was found only after many ages of study 
and experiment, and the form aimed at was one that would 
bring out the fundamental tone and such of the upper par-
tials as would harmonize with the prime. The diameter 
and height of the bell, the thickness and width of the 
sound-bow, its weight and size as compared with the rest 
of the bell, the material used (ordinarily copper and tin, 
in varying proportions), the relative weight of the clapper, 
— all these are problems that must be worked out, not 
theoretically, but experimentally, before the casting of 
your modern large, harmoniously toned bells can be at-
tempted. Van den Gheyn (1550) a n d Hemony (1650) are 
the princes of the art of bell-founding. To them we are 
indebted for the types and models that are now followed 
by all bell workers. They have done for bells what Amati 
and Stradivarius did for violins. They have not only 
supplied us with models, but they have produced the 
most perfect work of their kind that the world has yet 
seen. 

According to Hemony, a good bell should have three 
octaves, two fifths, one major and one minor third. The 
great bell of the cathedral of Erfurt, celebrated, not only 
for its size, but also for the fine quality of the metal from 
which it was cast, has E, for its prime, and this is accom-
panied by the following upper partials: E2 , Gft>, B2, E 3 , 
G3S, B3, CiS. I give in musical notation the approximate 
pitches of the compound note of three large bells that arc 
widely celebrated: — 
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The loudest notes are indicated by minims, the weaker 
ones by crotchets. The wavy lines following some of the 
notes are to. show that the notes vary in pitch. 

Two of the bells of the peal at Terling, examined by 
Lord Rayleigh, give partials that are more inharmonic 
than those we have been considering. In musical notation 
the partials of the compound tones of these two bells 
would be written as follows: — 

g p f l 

The signs -f and —, as in the previous instances, signify that 
the notes after which they occur are to be slightly sharped 
or flatted. 

It is rarely, if ever, that a bell can be cast so as to be per-
fectly symmetrical and homogeneous throughout. When, 
therefore, it is set in vibration, it frequently, by reason of 
its lack of homogeneity, divides itself into segments 
that emit two distinct sounds differing from each other 
slightly in pitch. This difference in pitch gives rise 

to the beats, or the risings and fallings of sound, that are 
noticed in most bells, especially when their tones are 
dying out. 

Small bells do not yield such pure tones as larger ones, 
because of the presence of many inharmonic upper partials. 
In large bells, as we have seen, such inharmonic partials 
are weakened or entirely eliminated by the form in which 
the bells are cast. For this reason small bells, like hand-
bells, and even such as are ordinarily used for carillons, 
are poorly adapted to purposes of music. They are 
frequently employed, it is true, but the inharmonic 
partials, which are always prominent in greater or less 
numbers, render the music produced by them dissonant in 
the highest degree, and all but unendurable. 

The number of vibrations of bells of similar form varies 
inversely as their homologous dimensions. Thus bells of 
the same form, but of different sizes, will vary inversely as 
their diameters. Two bells, whose diameters are as 2 : 1, 
would consequently yield notes an octave apart, the smaller 
bell emitting the higher note. It has also been found that 
the notes emitted by bells vary inversely as the cube roots 
of their weights. Working in accordance with these two 
laws, the bell-founder can cast a peal of bells that will 
approximate to any intervals that may be required. I say 
approximate to, as it is impossible in this instance, as in so 
many others, to carry out in practice exactly the indications 
of theory. 

Membranes are closely related to plates in their modes 
of vibration. The chief difference is that the former are 
thinner and more flexible than the latter. They are 
ordinarily of paper, sheet rubber, or gold-beater's skin, and 
are stretched on a wooden frame with a tension uniformly 
distributed in all directions. They, like plates, have been 
carefully studied both theoretically and experimentally. 
They may be caused to vibrate either by percussion or by 
sounding near them a note in unison with their proper 
period of vibration. They exhibit Chladni's figure* 
readily, and the resemblance of these figures to those 



excited on plates of the same form and size is very 
marked. The laws which govern the formation of the 
figures are apparently different in the two cases, and in 
some respects, indeed, these laws are as yet but imperfectly 
understood. 

The mathematical researches of Poisson, Euler, Kirchhoff. 
Clebsch, and Mathieu, and the experimental investigations 
of Savart, Bourget, and Bernard, show that for the order 
of succession of the nodal lines of membranes, and their 
successive transformations, calculated for the same sound, 
there is a striking agreement between the results of theory 
and experiment. The law governing the intervals be-
tween the various possible notes of a membrane requires 
further examination. So far the intervals given by ex-
periment are always greater than those required by theory, 
and the difference is more pronounced as the membrane is 
thinner, and as the sounds approach more nearly to the 
fundamental. 

" In the following table, taken from the memoir of M. 
Bourget, are given the theoretical notes corresponding to 
the simpler nodal lines of circular membranes. In the 
illustrations given, Fig. 76, the nodal lines are either 
circles, or diameters including equal angles, or combina-
tions of circles and diameters equally inclined towards 
each other, according to theory. When the membrane is 
properly stretched, the figures are perfectly regular, and 
present exactly the dimensions required by theory. The 
first figure represents a membrane vibrating as a whole, 
and yielding its prime. Supposing its fundamental to be 
Ct, its first upper partial with one diameter will be Giif_, 
the ratio of whose vibrations to those of the prime is, as 
the numbers show, 1.594: 1.000. When the membrane 
vibrates so as to form two diameters, it emits the note C2i> 
whose frequency is 2.136 times that of the fundamental; 
and when it develops three diameters, the note yielded is 
F2_, with a frequency 2.653 times that of its prime. By 
inspecting the table, one can tell at a glance the notes and 
rates of vibrations that appertain to the different figures 
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given. The signs 4- and — have the same signification as 
in other parts of the lecture. 

On examining the preceding table it will be found that 
the higher upper partials succeed each other very closely, 
and that the interval separating them is in some cases less 
than a semitone. Hence we infer that within certain 
determinate limits a membrane is capable of vibrating in 
unison with any note whatever. This is especially true 
of the tympanic membrane of the ear. Here, however, 

owing to the chain of ossicles connected with the tym-
panum, and the ligaments which bind the ossicles together, 
the tension of the auricular membrane can be varied with-
in quite wide limits. For this reason the tympanum re-
sponds with such readiness to all notes, from the most 
grave to the most acute. 

' The same phenomenon is observed in the disks and 
diaphragms of telephones and phonographs. Such dia-
phragms, in addition to responding to vibrations of a 
certain determinate period, depending on the nature and 
form of the disks, have also a general resonance in vir-
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tue of which they are sensitive to any vibratory motion 
whatever. By reason of this general resonance, which 
they possess, and their competency to respond to vibra-
tions of different periods, the telephone and phonograph 
are capable of transmitting and recording all sounds within 
the limits of ordinary audition. 

The audiphone is another illustration of the same fact. 
As shown in Fig. 77, it is a fan-shaped sheet of hardened 
india-rubber, the upper part of which is held against the 
teeth of the upper jaw. Owing to its general resonance, 
it vibrates in unison with all sounds. The sounds thus 
collected, as it were, are transmitted by the teeth and 

FIG. 77 . 

bones of the head to the auditory nerve. By this means, 
deaf persons who suffer from some disease or malforma-
tion of the external ear, but whose auditory nerves are 
intact, are able to hear with comparative ease and satis-
faction. Chladni's figures excite our admiration and won-
der. But these designs, complicated as some of them are, 
are excited by comparatively simple vibrations. The vibra-
tory motions induced in the audiphone and in the disks of 
the telephone and phonograph are infinitely more complex 
and varied, and calculated, when we reflect on the matter, 
to excite our sense of wonder far more than anything dis-
closed by the experiments of Chladni, Savart, or Bourget. 
And yet further. The equations of the mathematician, 



and the experiments of the physicist, may tell us some-
thing about the laws governing the simpler vibrations of 
plates and membranes, but no mathematical tour de force, 
however transcendent, no experiment, however ingenious 
or refined, will ever be competent to unravel the infinitude 
of motions — changing as they do with the slightest mod-
ifications in pitch, intensity, and quality of tone — which 
characterize that most marvellous and most sensitive re-
cipient of vibratory movement, the tympanic membrane 
of the human ear. 

C H A P T E R VI. 

S O N O R O U S T U B E S . 

IN the two preceding lectures we studied sounds gen-
erated by solid bodies. In all the instances con-

sidered, the air served simply as a medium for the 
transmission of the sonorous waves to the ear. To-day 
we shall devote our attention to the investigation of 
sounds which have their origin in the vibrations of the 
air itself, and for which the air, as in the case of solids, 
serves also as the medium for transmission* 

All musical instruments in which a vibrating column of 
air serves as the sonorous body are known by the general 
name of wind-instruments. They, like the other instru-
ments we have been studying, are of great antiquity. 
This is especially true of some of the simpler forms of 
wind-instruments, such as the syrinx, or pandean pipes, 
the flute, and the trumpet. 

According to Diodorus Siculus, their invention is to be 
ascribed to some shepherd who had studied the whistling 
of the wind among the reeds, and who endeavored to 
reproduce what he found in nature. Lucretius expresses 
the idea beautifully when he says, — 

" And Zephyr, whistling through the hollow reeds, 
Taught the first swains the hollow reeds to sound ; 
Whence woke they soon those tender-trembling tones 
Which the sweet pipe, when by the fingers prest, 
Pours o'er the hills, the vales, and woodlands wild, 
Haunts of lone shepherds and the rural g o d s . " 1 

1 Et Zephyri, cave per calamum, sibila primum 
Agresteis docuere cavas inflare circutas. 
Inde minutatim dulceis didicere querelas, 
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That a sound can be produced from a vibrating column 
of air independently of the material of which the pipe 
enclosing the air is made, may be shown by a very simple 
experiment. 

I have here a brass tube about twenty inches long and 
an inch and a half in diameter. Holding it longitudinally 
with one hand, and striking one of its open ends with the 
palm of the other hand, the enclosed air is set in vibration 
with sufficient force to yield a distinct musical note. If now 
the hand is quickly withdrawn from the end of the tube, 
another note is heard; but its pitch is an octave higher 
than that first emitted. In the former case the air vibrates 
as it does in a stopped pipe; and in the latter case it 
obeys the laws governing the vibrations of aerial columns 
in open pipes. We shall study these laws subsequently. 
In both instances, it must be remarked, it is the air that 
vibrates and produces the sound heard, and not the 
material of the tube which encloses the air. 

That such is the case, is easy of demonstration. Strik-
ing the tube with my finger, or with a small billet of wood, 
so as to evoke the prime tone of the metal, we have a note 
that is much more acute than either of those produced 
when the enclosed air was in a state of tremor. We thus 
learn that the air-column within a tube may be caused to 
vibrate independently of the tube itself, and that the notes 
emitted by the former are entirely different in pitch from 
those that may be elicited from the latter. 

We may vary the experiment by using pipes of different 
materials. Here are three different pipes, — one of brass, 
one of wood, and one of cardboard. Causing them to 
" speak " successively, you perceive that the pitch of the 
note in the three cases is identical. If the materials of 
which the pipes are made had any influence on the 

Tibia quas fundit, digitis pulsata canentum, 
Avia per nemora ac sylvas saltusque reperta, 
Per loca pastorum deserta, atque otia dia. 

De Rerum Natura, lib. v. 1381 et seq. 

See also Ovid, Fab. x v . , " Syrinx changed into Reeds," and Virgil, Eclogue 
ii. 32, 36. 

number of vibrations, the pitch in these three instances 
would be different. But the pitch of the three pipes being 
the same shows that the frequency of the notes generated 
is independent of the materials of the pipes, and is due 
solely to the length of the enclosed column of air, which 
in the instances now under discussion is itself the true 
sonorous body. 

If instead of air the three pipes just used were filled with 
gases of different densities, the result would no longer be 
the same. If we were to fill one with air, another with 
hydrogen, and the third with carbon-dioxide, we should 
find that there would be a very marked difference in the 
pitch in the three cases. We saw in our first lecture that 
the velocity of sound varies for the different gases, and 
that it is less for carbon-dioxide and greater for hydrogen 
than-it is for air. As pitch varies directly as velocity, 
and as the velocity of sound in hydrogen is almost four 
times as great as in air, the note emitted by the pipe 
filled with this gas would be very nearly two octaves 
above that produced with the pipe containing air. For a 
similar reason, the note yielded by the pipe containing 
carbon-dioxide would be graver than that in which air is 
the sonorous body. 

There are many ways of exciting an air-column so as to 
make it yield a musical note. A 
simple and instructive way is by 
means of a tuning-fork. The col-
umn of air in the glass cylinder, C 
(Fig. 78), is thus acted upon by a 
tuning-fork, D, to one of the prongs 
of which is attached a disk, A, of 
the same diameter as the cylinder. 
By means of the disk the vibra-
tions of the fork are communicated 
to all the particles of air at the 
opening of the tube. By pouring 
mercury into the tube, the proper sound of the air-column 
can be made to synchronize with that of the tuning-fork. 

F I G . 78-



a 

The moment when the two notes are in unison is declared 
by a remarkable augmentation of sound. We shall study 
this phenomenon more attentively when we come to in-
vestigate the nature and cause of resonance. Suffice to 
say now that a column of air is always most strongly 
reinforced when its period is perfectly isochronous with 
that which throws it into vibration. 

Wind-instruments used in music are rendered sonorous 
by mouthpieces or by reeds. Hence their division into 
mouth-instruments and reed-instruments. 

Here (Fig. 79) are two organ-pipes, 
one made of wood and prismatic in 
form, the other of metal and cylindrical 
in form. The first is open at the top, 
and the latter closed. Hence the 
names used, — open pipes and stopped 
pipes. The air is admitted through 
the foot, P, into the chamber, K, 
whence it escapes through a slit, c. 
The sharp bevelled edge, a b, is called 
the lip. The space between the slit, c, 
and the lip, a b, is called the mouth, or 
embouchure. 

The precise manner in which vibra-
tions in such pipes are executed seems 
still to be but imperfectly understood. 
According to the view which generally 
obtains, when a current of air enters 
the embouchure a fluttering or hissing 
noise is produced. This fluttering, like 
most noises, is made up of a large 

number of discordant sounds. From the mass of confused 
sounds the tube R R selects one which it strongly rein-
forces. It can, however, reinforce that note only whose 
period synchronizes with its own. We have, then, re-
peated here, but in another form, the experiment of the 
tuning-fork and the glass cylinder. In the cylinder the 
air-column was excited by a tuning-fork vibrating in uni-
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son with it. In the organ-pipe the vibrations are set up 
by the current of air which issues intermittently from the 
embouchure. 

According to a more recent theory, advocated especially 
by M. Cavaille-Coll, Herr Schneebeli, and Mr. Hermann 
Smith, the vibrations excited in the aerial column within 
the pipe are produced by the sheet or blade of air issuing 
from the slit acting as a reed. Cavaille-Coll styles this 
air-blade a free aerial reed ( " anche libre aerienne"); 
Herr Schneebeli calls it a " Luft-lamelle," an aerial lamina; 
while Mr. Smith denominates it an " aero-plastic reed," or 
simply an " air-reed." Novel as it may appear, this view 
seems to have a solid foundation in fact, and the many and 
ingenious experiments made in support of the theory are 
apparently inexplicable on any other assumption. Ac-
cording to Mr. Smith, the air-reed, on issuing from the 
slit, does not strike the edge of the lip, as the old theory 
maintains, but passes very near its outer surface. Like a 
metal reed, whose action we shall study presently, the 
air-reed oscillates backwards and forwards, and generates 
in the air-column within the pipe the alternate con-
densations and rarefactions which are essential to the pro-
duction of a musical note. Judging by the experiments 
appealed to in corroboration of it, —time forbids our 
discussing them here, — it would appear that the new 
theory is virtually established, and on a basis that is unas-
sailable. As a working hypothesis, i think we are justi-
fied in regarding it the more probable of the two theories 
which now generally prevail. 

Organ-pipes like those which we are now using are called, 
indifferently, mouth-pipes, flute or flue pipes. All parts 
of the mouthpiece are fixed, and ordinarily the pipe is 
designed to yield but one note. For this reason they are 
said to be of constant pitch. In instruments, however, 
like the flute or flageolet, which act on the same princi-
ple as an ordinary organ-pipe, a number of notes may-
be produced, and hence they are said to be of variable 
pitch. 



The locomotive whistle is but a modified form of the 
organ-pipe. Inspection of Fig. 80 will show that the 

former differs from the latter in having a 

# circular instead of a rectilinear embou-
chure, a a, above which is placed the 
sharp edge, b b, of the bell, T. The mode 
of action in both cases is essentially the 

Daniel Bernouilli was the first to estab-
lish the laws which govern the notes 
emitted by organ-pipes. For their more 
elaborate experimental verification we are 
indebted to Mersenne, Savart, Wertheim, 

FIG. 80. , . R . 

and koenig. 
The first law is that the K 

pitch of the note is in-
versely as the length of 
the tube. Placing three 
similar tubes, K, A'', A " , 
on the wind-chest, A B, of 
the. acoustic organ (Fig. 
81), and admitting air in-
to them, they are found to 
give notes that are sepa-
rated from each other by 

• an exact octave. The 
largest tube sounds the 
note C2, the next C3, and 
the shortest one C4. By 
selecting tubes, with diam-
eter of cross section very 
small compared to the 
length of tube, whose rel-
ative lengths are as the 
numbers 1, f , f ,we should, 
as in the case of vibrating 
strings, obtain notes con-
stituting the perfect major FlG- 8l-

chord. Supposing the lowest note" to be C3, the other two 
would be respectively E;i and G3. 

Let us now choose eight pipes whose lengths are to 
each other as the wave-lengths of the different notes of 
the diatonic scale, beginning with C2. Placing them in the 
apertures t, t, t, etc., and forcing air into them, we find on 
touching in succession their corresponding keys 
that we have all the notes of the gamut between C2 

and C3. The result obtained here is identical with 
that obtained with vibrating strings. As with 
strings, the number of vibrations varies inversely 
as the length of the string, so with tubes the num-
ber of vibrations varies inversely as the length of 
the columns of air which they enclose. 

But a mass of air in vibration may, like solids, T 

generate several partial tones in addition to its 
fundamental. Mersenne remarked that one may 
easily elicit from a harmonic trumpet the tonic, 
the octave, the twelfth, and the double octave, but 
no intermediate notes. Sauveur made a similar 
observation; but it was Daniel Bernouilli who first . 
discovered the law governing the succession of har-
monic partials both in open and in stopped pipes. 

The experimental illustration of these laws is quite 
simple. For this purpose we require a long tube 
of small diameter (Fig. 82), provided at the bottom . 
with a stopcock, R. The tube, which is open at the } 
top, is placed in one of the apertures of the wind- ^ , a 
chest of the acoustic organ, and the air is allowed f 
to enter through T T\ from the bellows, R R S. FIG. 82. 
When, the stopcock is partially open and the pres-
sure is suitably regulated, a deep, pure tone is produced. 
The note you now hear is the fundamental, the lowest the 
tube is capable of yielding. But by admitting more air, and 
especially bv increasing the pressure, — which is effected by 
bearing down on the rod D C, or the pedal D, - we obtain 
a note an octave higher than the one you have just heard. 
Augmenting the pressure, a still higher note is produced. 



The musicians present will recognize this as the third har-
monic partial, or the fifth of the second octave. By increas-
ing the pressure still more, and turning the stopcock so as 
to admit a full blast of air, we elicit still higher notes. We 
now have the second octave above the fundamental,— 
now the third of the second octave, — and now the fifth. 
You are familiar with the order of occurrence of these 
notes; we have adverted to them many times before. They 
are, in fact, the harmonic partials which succeed each other 
as the numbers I, 2, 3, 4, 5, 6. 

With the pipe before us, we have readily obtained six 
partial tones, and might, if it were desirable, elicit several 
others. The theoretic number of such partial tones has, 
indeed, no limit. Experimentally it is possible to demon-
strate the presence of at least twenty. But to do this, 
special appliances are required. 

The experiments just made enable us to formulate a 
second law for sonorous tubes; namely, that an.open tube 
is competent to execute vibrations whose relative numbers 
are to each other as 1 : 2 : 3 : 4 : 5 : 6 . The notes thus gen-
erated constitute the complete series of harmonic partials. 
As you will remember, we have the same order of succes-
sion of notes for the transverse and longitudinal vibrations 
of strings, and for the longitudinal vibrations of rods that 
are free at both ends. 

. We now replace the tube just used with a stopped pipe 
of the same length and diameter. Proceeding as before, 
we educe the fundamental and a series of higher notes. 
But now the order of succession of the upper partials is 
different. The first note above the prime is not the 
octave, as in the open pipe, but the fifth of the second 
octave. We thus have, as the first note heard above the 
fundamental, the third instead of the second partial. The 
next higher note audible is not the fourth partial, as be-
fore, but the fifth; and the one following, as is found by 
experiment, is not the sixth, but the seventh in the order 
of the harmonic series. Hence the partials in stopped 
pipes succeed one another in the order of the odd num-

bers 1, 3, 5, 7, etc., and not as they do in open pipes, 
where the whole series of partials is found. This fact, as 
we shall learn later on, will account for the marked differ-
ence of quality which distinguishes the two classes of 
pipes. 

We now fix in the wind-chest, side by side, the two 
tubes with which we have been experimenting, and upon 
causing them to speak,'we observe another fact which dis-
tinguishes an open from a closed pipe. Although both 
pipes are of the same size, the pitch of the notes is not 
the same. The sound yielded by thé open pipe is just an 
octave higher than that produced by the closed one. This 
is a general law, — an open pipe yielding its prime tone is 
always an octave higher than a stopped one of the same 
length and diameter. 

You cannot fail to remark the difference in the quality 
of sound which characterizes the pipes. That of the open 
one is full,-rich, and brilliant; that of the stopped one is, 
in comparison, jejune, poor, and dull. 

Like solids, vibrating air-columns admit of subdivision, 
as is evidenced by the formation of upper partials, which 
we have been studying. They have, consequently, nodes 
and ventral segments, or points of maximum and mini-
mum motion. The vibrations of the air particles as to 
their direction of motion follow the same laws as govern 
the longitudinal vibrations of strings and rods. They 
make their excursions to and fro parallel to the axis of 
the tube in which the air is enclosed. Their nodes are, 
therefore, points of no motion, but of varying density ; the 
centres of their ventral segments are points of maximum 
motion, but of a density which is constant, being the same 
as that of the air external to the tube. 

In Fig. 83, I, II, HI, IV, we have represented the sub-
divisions of an open pipe when emitting its fundamental and 
first three upper partials. In I, corresponding to the prime 
tone of the pipe, there is but one node, N, which is at 
the centre. At both ends of the pipe are centres of ven-
tral segments, V V . It is obvious that such must be the 



case, as the air at these points, being in communication 
with the external atmosphere, must be always of the same 
density. The arrows indicate that the paths of movement 
on opposite sides of a node are always in opposite direc-
tions, and the perpendicular lines reveal the position of 
the nodal planes. The symbolic wave-forms show that 
when an open tube yields its prime tone, it divides into 
two semi-ventral segments, making thus one complete 
ventral segment for the fundamental. When the pipe 
emits its first upper partial, as the wave-form indicates-, it 
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is divided into four semi-ventral, or two complete ventral 
segments. Similarly, for the second and third upper par-
tíais, there are six and eight semi-ventral or three and four 
complete ventral segments. The nodes increase in num-
ber according to the same ratio. There is one node, which 
is in the middle of the pipe, for the fundamental. For the 
first upper partial, or second partial simply, we have two 
nodes, each of which is one fourth the length of the pipe 
distant from its corresponding extremity. Similarly for 
the third and fourth partials there are respectively three 
and four nodes. The pitch of notes in open pipes is, con-

sequently, directly proportional to the number of nodes, 
or the number of complete ventral segments. 

In the case of stopped pipes it is different. Instead of 
yielding notes according to the order of the natural num-
bers, they emit, as we have seen, notes corresponding only 
to the odd numbers. Inspection of Fig. 84, I, II, III, IV, 
will make apparent the reason for this difference. 

The open end of a stopped pipe, for the same reason 
that obtains in an open pipe, must be the middle of a 
ventral segment. It is here that the direct pulses are 
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originated, and for this reason it must be a point of maxi-
mum vibration. At the closed end, on the contrary, there 
must necessarily be a node, because longitudinal vibra-
tions of the air-particles are here impossible. The 
simplest way, therefore, in which a stopped pipe can 
vibrate is that indicated in I, in which the open end 
answers to the middle of a ventral segment, V, and the 
closed end to a node, N. The pipe in this case, as is evi-
dent, forms only a semi-ventral segment, and is one half 
the length of an open pipe yielding the same note. In an 
open pipe the wave-length corresponding to the prime tone 
is, as the symbolic curve shows, twice the length of the 



pipe. In a closed pipe, however, the wave-length is four 
times the length of the pipe. 

A little reflection will show why this is so. A con-
densed pulse, starting from the mouthpiece of an open 
pipe, is reflected from the other end as a rarefied pulse. 
This change from condensation to rarefaction is due to 
the lesser density of the air on the outside of the tube as 
compared with that of the condensed pulse within. When 
a condensation arrives at the open end of the tube, there 
is a sudden expansion, which gives rise to a rarefaction 
that is propagated back through the pipe. A condensa-
tion, accordingly, is reflected as a rarefaction, and a rare-
faction, for a similar reason, is reflected as a condensation. 
A condensed pulse, starting at the mouthpiece, and re-
flected at the opposite end as a rarefied pulse, will, on its 
return to the mouthpiece, be reflected a second time, and 
will, for the same reason as before, undergo a change of 
density. It accordingly starts forward a second time as a 
condensed pulse, and is therefore in its initial state. A 
complete wave-length, then, in an open pipe is equal to 
twice the length of the pipe, and the period of vibration 
required for such a pipe is the time required for propa-
gating a pulse through twice its length. 

In a stopped pipe the propagation of the sonorous pulse 
follows a different law; for if a condensed pulse excited 
at the embouchure be propagated to the closed end. it will 
there, owing to the resistance offered, be reflected un-
changed. It will accordingly return to its starting-point 
as a condensed pulse, but on arrival there will be reflected 
a second time. This time, however, the condensed pulse 
will be changed into a rarefied one, and for the same reason 
as a similar change is effected in an open pipe. On reach-
ing the closed end the rarefied pulse will be reflected 
again, but reflected as a rarefied pulse. Arriving at the 
mouthpiece a second time, another change of density 
occurs, and the rarefied pulse once more becomes a con-
densed pulse. It is now in its initial condition. We have 
a complete vibration, but only after the pulse has travelled 

four times the length of the pipe. In pipes of the same 
length, therefore, the wave-length of a stopped pipe is 
twice that of an open one, and the pitch of the former is 
an octave lower than that of the latter. 

The vibrations of the air-columns of pipes, like the 
vibrations of strings, give rise to stationary undulations. 
In both instances they are produced by the combination of 
direct and reflected waves, which are equal and similar to 
one another. In the production of upper partials the air-
column always subdivides itself into a greater or less 
number of such stationary undulations, separated by a 
corresponding number of nodal surfaces. At equal dis-
tances on opposite sides of the nodal plane the air-particles 
have equal and opposite velocities. For this reason the 
air at a node is always subjected to equal and opposite 
forces, and hence remains unchanged in position. 

As the air of a vibrating segment sways to and fro, and 
as the motions of any two adjacent segments are opposite 
in direction, it follows that any two consecutive nodes 
must always be in opposite conditions of condensation and 
rarefaction. As in the stationary undulations of strings, so 
also in those of air-columns, the middle points of ventral 
segments are where the amplitude of motion is greatest. 
But while the amplitude of motion at these points is great-
est, the variations of density, as has been observed, are 
least. The density of the air at these points is the same 
as it is at the open ends of pipes, where variations of 
density are precluded by free communication with the 
atmosphere outside. 

These considerations follow naturally from the demands 
of mathematical theory. But the conditions which theory 
demands can all be shown by experiment to have an 
actual existence. 

Savart has taught us a simple method of determining 
experimentally the position of nodes in sonorous pipes, 
whether open or closed. A little wooden ring, 5 , to the 
bottom of which is attached a thin membrane, is suspended 
by a string inside an open organ-pipe, T (Fig. 85), when 
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emitting its fundamental tone. A little fine sand is strewn 
over the membrane, and as soon as it is introduced into the 
pipe, you hear the sand dancing about on the membrane; 
and if you were near enough you could also see, through the 
glass side of the pipe as the ring descends, that the agita-
tion of the sand becomes less and less until it reaches the 
centre of the pipe, —which, as we have learned, is a nodal 

point, — where it becomes entirely qui-
escent. On lowering the membrane 
still further, the sand becomes more 
and more agitated until it approaches 
the embouchure, when the agitation, as 
at the upper end of the pipe, attains a 
maximum. This, as we have seen, is 
what should occur. The two ends of 
an open pipe yielding its prime are 
centres of ventral segments, and conse-
quently places of maximum movement, 
while the middle of the pipe, where the 
direct and reflected pulses cross each 
other, must be a point where there is 
no motion whatever. 

By increasing the pressure of the air 
so as to elicit from the pipe some of its 
upper partials, we should by the same 
simple means be able to locate the posi-
tions of the nodes and ventral segments 
of such partials as readily as we have 

found those corresponding to the fundamental. 

Fixed in the wind-chest are two organ-pipes, one 
stopped and the other open. The former is one half the 
length of the latter. But, as we have learned, they should 
both emit notes of the same pitch. Causing the pipe to 
speak, we find that such is the case. 

The same fact may be more strikingly illustrated by the 
pipe, T, Fig. 86. By means of the slide, A S, which has 
a large hole in one end and moves in a groove in the 
middle point of the tube, the pipe may be made to speak 
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as an open pipe or as a closed one of half the length of 
the open pipe. Arranging the slide so that the hole in it 
permits the two semi-ventral segments corre-
sponding to the prime tone of the pipe to be 
in communication with each other, the pipe 
is caused to yield its fundamental. The slide 
is now moved in so as to make a stopped 
pipe of one half the length of the open one. 
The note is still the same. Keeping the pres-
sure of the air the same, the slide is moved 
to and fro several times in rapid succession, 
and the pitch of the notes corresponding to 
the open pipe and the closed one of one half 
the length, remains unchanged. You note, 
however, a difference in the quality of the 
sound, that yielded by the open pipe being 
brighter and richer than that emitted by the 
stopped one. 

If a hole is made in the side of a pipe at a point 
occupied by a node, such a point is thereby changed at 

once into the centre of a ventral segment. This 
is well illustrated by the open pipe, Fig. 87, in 
one of the sides of which, at the middle point, 
is a hole which can be opened or closed by a 
small button. When this opening is closed and 
the pipe emits its fundamental note, there is a 
node at this point. As soon, however, as the 
button is turned to one side, this point becomes 
the centre of a ventral .segment, as is evidenced 
by the change in the pitch of the sound now 
yielded. The reason is obvious. The middle 
point of the pipe is now in free communication 
with the external air, and hence there can be no 

F i g 8? variation in density, and consequently 110 nodal 
point where before there was one. But instead 

of one nodal point we now have two, — one midway be-
tween the aperture and the upper extremity of the tube, 
and the other at the same distance on the opposite side of 



the opening. The note emitted under these circumstances 
should be an octave higher than that yielded by the pipe 
in the first instance. The musicians present can vouch 
for the fact. 

A simple experiment will remove all doubt regarding 
the matter. A second open pipe, one half the length of 
the one with the aperture in it, is now mounted on the 
wind-chest, and both pipes are made to speak simul-
taneously. As was expected, the notes are in unison. 
Under the conditions of the experiment the small pipe 

yields its prime, and the larger one its first upper 
partial. This shows conclusively that the wave-
length, and consequently the pitch, of the first 
upper partial of a pipe, A, is the same as that of 
the fundamental of a pipe, B, of one half the 
length of A. 

But we may carry our illustration still farther. 
Instead of using a tube with but one aperture in 
the side, let us take one in which there are four 
such openings. Fig. 88 shows such a tube. If 
the pressure of the air in the bellows be now so 
regulated that the pipe shall yield its third partial," 
the middle points of its corresponding ventral seg-
ments will be, as indicated, at the points v and v. 
These points may be put in communication with 
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 a ' r by opening the holes at v and v, 

and the pitch of the note will remain unaffected. 
If, however, the apertures at a and b are uncovered, the 
nodal points are changed, and there is immediately pro-
duced a note of higher pitch. This same method is appli-
cable in determining the positions of nodes and ventral 

. segments in stopped as well as in open pipes. 

From what has been said it is manifest that when a tube 
yields one of its upper partialsthe air-column within uhder-

. goes spontaneous subdivision into aliquot parts, each of 
which vibrates independently, but in unison with each of 
the others. 

Let us, for instance, cause the long open pipe, called 

the flute of Bernouilli (Fig. 89), to emit its fourth partial. 
The air-column within must now, according to what has 
been said, be subdivided into four columns of equal 
length, each of which, vibrating separately, would | 
give the fourth partial, which you all hear. The , 
centres of the ventral segments corresponding to j j 
the partials now sounding, are at v, v, v. If now Q v 
the first, second, and third upper sections of the 
pipe are detached in succession, you will remark 
no change in the pitch. The lower section of the | y 

pipe alone yields the same note as was emitted by jj 
the whole pipe, or by a pipe whose length is twice 
or thrice that of each section taken separately. To I 

show that this is the case, we may reverse ! | u 

the order of the experiment just made. 
While the lower section is yielding its funda- & 
mental note, we add in succession the three 
upper sections, and if the pressure of air is |j 
properly regulated, the pitch of the note FIG. 89. 
will remain unchanged throughout. 

The same fact can be shown in another manner. 
If we take, as did Bernouilli, a long tube, T (Fig. 
90), and close its upper extremity by the piston,/, 
we shall have a stopped pipe. If now the tube is 
made to yield one of its upper partials, and the 
piston is slowly moved downward, you will observe 
a gradual change of pitch. But when the piston 
reaches one of the nodes corresponding to the par-
tial first produced, the original note comes out 
loud and clear. We thus show that the same law 
obtains for the partials of stopped as for those of «open pipes. 

We are indebted to Dr. ICoenig for a still more 
beautiful and delicate method of analyzing the con-

F l G 0 dition of the air in sonorous tubes. For this pur-
' r"9° ' pose we use what is called a manometric flame. 

The apparatus for producing such a flame consists of a 
small wooden capsule (Fig. 9 1 ) . o n e s i d e o f w h i c h i s 



closed in with gold-beater's skin or a thin sheet of caout-
chouc. Two openings are made in the capsule, — one at 

a, and the other at b. To the aper-
ture a is attached a rubber tube, T, 
through which is admitted illuminating 
gas. At b is fastened a small gas-
burner, at the end of which the jet of 
gas may be ignited. 

If now the gas be maintained at a 
uniform pressure, it is evident that its 
escape will be modified by any motion 
that may be imparted to the mem-
brane, m. If the membrane is forced 
inwards, the gas will escape more rap-
idly, and the flame will be proportion-

ally elongated. If the membrane move outwards, the gas 
will escape more slowly, and the flame will be correspond-
ingly shortened. If the membrane be very suddenly and 
violently agitated, the flame will be extinguished. Such 
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being the case, it is evident that this little apparatus af-
fords a very delicate means of rendering visible the varia-
tions of pressure to which the gas within the capsule may 
be subjected. To render the device still more delicate, 

the flame is looked at in a cubical mirror which revolves 
in front of it. The use of such a revolving mirror in ob-
serving vibratory flames is due to Wheatstone 

As long as the pressure in the capsule is uniform, the 
image of the flame reflected from the mirror is in the form 
of a luminous ribbon, I (Fig. 92), of constant width and 
equal to the height of the flame. With rapid variations of 
pressure, however, the image becomes indentated, like I I 
of the adjoining figure, each denticulation indicating an 
augmentation of pressure within the capsule. 

To an open organ-pipe, A B (Fig. 93), 
mounted on the wind-chest, are attached 
three manometric capsules, b, a, c, com-
municating with a common reservoir, 
D D, into which illuminating gas is ad-
mitted through the tube, T. The cap-
sule « is nearly at the middle of the 
pipe, and at the nodal point, therefore, 
of the pipe when sounding its funda-
mental. The capsules b and c are at the 
nodes corresponding to the second par-
tial, or octave of the fundamental. 

When air from this wind-chest is ad-
mitted into the pipe and the pipe yields 
its prime, there is, as we have learned, a 
variation of pressure in the vibrating air-
column. This pressure is greatest at 
and diminishes on either side towards b 
and becoming zero at the open ex-
tremities. When the light from a is re-
flected from the revolving mirror, you 
observe a luminous band with deep in-
dentations. Here the pressure is at a maximum. The 
indentations afforded by b and c are, by reason of the 
less pressure at these points, much less strongly marked. 
When the jet is small and the sound very intense, the 
agitation is sufficient to extinguish the flame. 

If we cause the pipe to yield the octave above the fun-
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damental, the nodes are changed. They are now at b and 
c, a being the centre of a ventral segment where there is 
no variation of pressure whatever. This is indicated 
clearly by the action of the flames, that belonging to the 
capsule a being perfectly quiescent, whereas those at b 
and c give the same strong indentated ribbons as were 
seen at a when the pipe sounded its fundamental. 

Let us now try a stopped pipe, A B (Fig. 94), provided 
with manometric flames. It is similar to 
the open one we have just employed, but, 
for reasons you are already familiar with, 
the nodes in this case occupy different 
positions from those of an open pipe. 
The stopped end of a pipe being always 
a node, one of the capsules is fixed at b. 
When the pipe yields its second partial 
it has a node both at b and at c, while a 
is then the middle of a ventral segment. 

Causing the pipe to speak its funda-
mental, we observe in the reflected images 
that all the three flames are in a state of 
vibration. That at b, the nodal point cor-
responding to the prime tone, is most agi-
tated ; the agitation at a is less, and that 
at c is less still. At the embouchure, 0, 
where the vibrating column is in contact 
with the external air, is the centre of a 
ventral segment, and here, consequently, 
a manometric flame would show that the 
pressure is constant, being always that 

of the atmosphere. 

When the pipe sounds its second partial, a becomes the 
centre of a ventral segment. Here again, as declared by 
the motionless flame, the air is quiescent, because there 
are no variations of density. At b and c, on the contrary, 
the flames vibrate strongly, because at these points are the 
nodes corresponding to the second partial, which is now 
sounding. 

Desiring to secure more accurate results than those 
afforded by the manometric pipes with which we have 
been experimenting, Dr. Koenig constructed one on a 
much larger scale. Such a one is now before you (Fig. 95). 

FIG. 95. 

It is over seven and one half feet in length, and about 
five inches in depth and width. It is brought to a per-
fectly horizontal position by means of levelling screws in 
the feet of the support. Its prime note is Ci. Figure 96 
exhibits a cross section of the 
pipe. A narrow, cleft-like 
opening extends the whole 
length of the bottom of the 
pipe. This is to permit the 
exploring tube, a c d b, at-
tached to the support, m n, 
to be moved at will to any 
point along the axis of the 
pipe. The opening of the 
pipe is closed by partially 
filling the trough, in which it 
rests, with water. The upper FIG. 96. 

side of the pipe is made of 
glass, so that the observer can see what is going on 
within. 

Passing the exploring tube along the length of the pipe, 
while it is emitting a note, and bringing the end, b, of the 



tube into communication with the ear, we are apprised of 
an augmentation of sound at the nodes, and of a diminu-
tion of it at the middle of the ventral segments. What is 
surprising is that it is easier to locate exactly the centre of 
a ventral segment than the position of the nodes. At the 
former points the sound disappears suddenly, so that we 
can determine the middle points of the ventral segments 
with the greatest ease and exactness. 
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Connecting a manometric capsule with the end, b, of the 
exploring tube, and employing a short flame, we get 
results, if anything, more exact than those afforded by 
observations with the ear. At the centre of each ventral 
segment the flame suddenly becomes very luminous, while 
at all other points it is quite bluish and but faintly visible. 
Fig. 97 shows the appearance of the flame at the node, N, 
at the centre V, of a ventral segment, and at intervening 
points. 

With this pipe Koenig showed, as Wertheim had de-

monstrated by other means, that the indications of theory 
as regards the vibrations of pipes are not realized by ex-
periment. It is the old story over again, — the discrepancy 
between the observations of the experimenter and the 
demands of the mathematician. 

The length of a pipe, whether open or stopped, emitting 
its fundamental note is less than that assigned by theory. 
Again, when a pipe yields one of its partíais, it is found 
that the nodes next the embouchure, and the end opposite, 
in an open pipe, are nearer the e'xtremity than theory calls 
for, and that the same discrepancy obtains for the middle 
of the ventral segment next to the closed end of a stopped 
pipe. It is nearer the end of the pipe than it should be 
according to theory. These variations are due to what 
are called terminal perturbations. For these reasons the 
prime note of a pipe is graver than that which the length 
of the pipe calls for. 

Again, as Koenig has demonstrated, the partial sounds 
of an ordinary pipe do not follow the law of harmonic 
partials. According to his observations, the eighth partial 
may in any moderately large pipe have very nearly the 
same pitch as the ninth partial. Wertheim had previously 
remarked that in endeavoring to determine the fun-
damental of an organ-pipe by means of one of the upper 
partials he always obtained a value that was greater than 
that indicated by theory, in proportion as he employed 
a higher partial. 

Savart has shown, however, that when the pipe is long 
and of very small diameter, and set in- vibration by an 
oscillating plate, the number of vibrations is, as theory 
indicates, inversely proportional to the length of the pipe. 
In each case, too, the node corresponding to the funda-
mental is sensibly at the middle of the pipe, and the 
proper sounds of the pipe are true harmonic partials of 
the fundamental. 

When, as in the case of ordinary pipes, the length is 
between six. and twelve times the diameter, there is a 
slight divergence of experimental from theoretic values; 



but as the transverse section increases, this divergence 
augments very rapidly. 

By simply increasing the diameter of a pipe, and leav-
ing its length unchanged, Mersenne succeeded in lowering 
the fundamental by seven whole tones. Taking a pipe 
seventy-two lines1 in length, which we will suppose yielded 
the note C, — the note in fact would be many octaves 
higher,— and varying the diameter, he was able to get 
the results indicated in the following table: 2 — 

Diameter in lines, 3 6 12 18 25 51 
Notes emitted, C A_ X G_x E - x C3_j A j_ 2 

The law governing the vibrations of similar pipes was 
discovered by Mersenne. It was afterwards verified by 
Savart, and extended to pipes of the most diverse forms. 
" If," says Mersenne, " we give to a pipe one foot in 
length a diameter of three digits, it will make exactly an 
octave with a similar pipe two feet in length and six digits 
in diameter." 

The law of Mersenne and Savart may be expressed as 
follows: Two similar pipes having similar embouchures 
emit notes whose pitch is inversely proportional to their 
lineal dimensions. Thus, for instance, the prime tone of 
a square prismatic pipe twelve inches long and four inches 
wide will yield a note an octave lower than a similar pipe 
six inches long and two inches wide. 

On the wind-chest of the acoustic organ are fixed eight 
pipes, of the forms shown in Fig. 98, the larger of which 
is in each case just twice the dimensions of the smaller. 
Causing them to speak, you observe that the smaller one 
in each instance gives a note an exact octave above that 
emitted by the larger ones. The law just enunciated was 
adverted to in our last lecture. We then learned that it 
was universal, and applied to all vibrating systems, solid, 
gaseous, or liquid. 

In the manufacture of organ-pipes this law is of special 
practical value, as it enables the artisan to produce pipes 

1 A line is the one twelfth of an inch. 2 Harm. lib. xi. Prop. 9. 

which are in perfect accord. Their consonance is not 
changed by variations of temperature, inasmuch as pipes 
of different dimensions would be equally affected in pro-
portion to their size. 

Owing to the difference between the observed and the 
theoretic length of an organ-pipe for any determinate note, 
organ manufacturers have recourse to an empirical law 
which meets their wants and is found to hold true within 
quite wide limits. M. Cavaillé-Coll, the celebrated organ-

FIG. 98. 

builder of Paris, employs in the construction of open 
pipes the following formula: — 

For rectangular pipes of a depth p, L' = L — 2 / 
For cylindrical pipes of a diameter d,L' = L — \ d. 

In both these formula L' denotes th& actual, and L the 
theoretic length of the pipe for any given note. Similar 
empirical laws govern the manufacture of stopped pipes, 
and of pipes of varying depth, but of the same length. It 
is found that in pipes of the same length but of different 
widths, the pitch of the note is the same, — provided the 
embouchure extends across the entire width of the pipe. 
The only difference then observed in notes yielded by 
pipes of the same length and depth, but of different width, 
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is one of intensity, the wider pipe emitting the louder 
note. 

Two pipes of equal length and depth, but of different 
widths, are now mounted on the wind-chest, and when they 

are made to speak, you are unable to distinguish 
any difference in the notes emitted, save the one 
mentioned. The larger pipe yields a note con-
siderably louder than that emitted by the smaller 
one, but the pitch in both cases is identical. 

Instruments like the flute, fife, piccolo, and 
flageolet yield, in addition to the harmonic 
partials, a number of intermediate notes. The 
former, as we have learned, are produced by 
varying the pressure of the wind, thereby sub-
dividing the air-column within the tube into 
a greater or less number of segments. The 

latter are obtained by a number of lateral orifices closed 
or opened by the fingers or suitable keys. 

The flageolet (Fig. 99) has, as you see, a mouthpiece, 
E B , like an ordinary organ-pipe. The lateral openings 
are shown at m, n, p, q, r. 

In the flute (Fig. 100), the embouchure is 
an oval opening, A, at the side. The player 
places his lips above the orifice, and at a short 
distance from its sharp edge, which answers to 
the lip of a mouthpiece. 

. Taking, then, an instrument like the flute, 
whose fundamental is C3, and which has six 
lateral openings between its open extremity 
and its embouchure, we produce by opening 
the holes in succession an effect analogous to 
that which would result from shortening the 
tube by cutting off in succession those por-
tions between its open end and the different 
apertures, beginning with that which is farthest 
away from the embouchure. Thus, the prime 
tone being C8, we obtain by opening in succes-
sion the six holes, beginning with the one nearest the 
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open end of the tube, the notes D3, E3 , F3 , G3, A3, B3. By 
closing all the lateral orifices and increasing the pressure 
of the wind, we get C4, an octave above the prime, and by 
opening the holes as before, we get the notes of the sec-
ond octave. In a similar manner we elicit those of the 
third octave. The flats and sharps of the chromatic scale 
are obtained by suitable keys, which open and close holes 
intermediate between those yielding the notes of the dia-
tonic scale. And what is here said of the flute applies to 
all instruments of its class. 

We come now to the consideration of reed-pipes prop-
erly so-called. We have seen that flute-pipes may be 
considered as reed-pipes, and that the aerial column with-
in them may be caused to vibrate by means of the ". Luft-
lamelle," or air-reed; but it is probably better, in order to 
avoid confusion, to retain the old name of flute or flue 
pipe. 

A reed-pipe may be defined as any kind of wind instru-
ment in which the aerial column is excited by the vibra-
tory motion of an elastic body called a reed. Under the 
action of this reed the air within the pipe forms pulses of 
condensation and rarefaction, as in flute-pipes. Nodes 
and ventral segments are also developed according to the 
laws which we have already considered. 

In organs, harmoniums, concertinas, harmonicums, accor-
deons, and similar instruments the reed is made of metal, 
usually brass. The reeds of the clarinet, oboe, and bas-
soon are of thin cane. The vocal cords answer to reeds in 
the human larynx, while in such instruments as the horn, 
trumpet, trombone, and brass instruments generally, the 
work of reeds is performed by the lips. The vocal cords 
and the lips are, hence, frequently classed as membranous 
reeds. In the clarinet and organ and in all instruments 
generally in which metal reeds are employed, we have 
what are called single reeds; that is, there is only a single 
vibrating lamina for each pipe or note. The bassoon and 
the oboe have what are denominated paired or double 
reeds. 



Again, reeds are distinguished as free or striking reeds. 
A and 5 (Fig 1 0 1 ) show in perspective and in section 
a free reed such as is used in harmoniums As you will 
remark, the reed which is technically called a tongue, 
or vibrator, is attached to a metal b l o c k , a , m which there 
is an opening a trifle larger than the tongue. When at 
rest, it occupies the position shown in A. When in motion 
the tongue occupies alternately the positions shown at * 
and ^ B. In the former position there is an opening lor 
the admission of the air, as indicated by the direction of 
the arrow. In the latter, the stream of air is cut off 
entirely, when, in virtue of the elasticity of the tongue, it 
returns to its former position, zv 
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From the foregoing it appears that the action of a reed 
is essentially the same as that of a siren. The principal 
difference lies in the manner in which the orifice which 
admits the air is opened and closed. In the siren this is 
effected by the rotation of a delicately balanced disk. In 
the reed it is accomplished by the oscillatory movement 
of the tongue. The function of the reed is purely me-
chanical. It merely serves the purpose of determining the 
period of vibration of the air, which is itself the sonorous 
body, and not the reed, as is sometimes supposed. 

A and B (Fig. 102) show the kinds of reeds used in con-
nection with organ-pipes. In the former is a free, and in 
the latter a striking reed. The length of the tongue, and 
consequently its pitch, is in both cases adjusted by a mov-
able wire, d, called a tuning-wire. The note of A is rein-

forced and its quality modified by a conical tube.1 The wind 
is driven into an air-chamber,//. Thence it passes into the 
semi-cylindrical tube, rr, fastened to the block, ss. The 

A 
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tongue is thus caused to execute a series of oscillations 
which determine the pitch of the vibrating air-column. 
Pushing down the tuning-wire would, as is obvious, shorten 

1 In organs, the reed-pipes are made to yield notes of different qualities 
according to the form and length of conical and pyramidal pipes, — " cor-
nets," — with which they are connected. 

16 



the tongue, and consequently heighten the pitch. Raising 
the wire would lengthen the tongue and lower the pitch. 

Helmholtz has demonstrated that the point of a pipe at 
which a reed is inserted is to be considered a node. This 
is readily understood when we reflect that the variations 
of air-pressure, by reason of the peculiar vibratory motion 
of the tongue, are here at a maximum. A pipe, therefore, 
with a reed at one of its extremities is to be considered in 
the light of an ordinary stopped pipe of the same length. 

The law governing the production of the 
fundamental and the upper partials is in 

f both cases the same. For this reason a cy-
f " lindrical tube, like the clarinet (Fig. 103) , is 
JF competent, when emitting its proper notes, 
f to yield only the odd partials of the prime 
^ tone. B y orifices made in the side of the 

tube, and opened and closed by the fingers 
or keys, all the notes of the chromatic scale 
may be obtained. The annexed figure shows 
how the reed, C, is attached to the mouth-
piece, B. The lips of the performer regu-
late the length of the reed here, as does 
the tuning-wire in the case of the ordinary 
reed-pipe. 

The oboe and bassoon, as has been stated, 
differ from the clarinet in having a double, 

FIG 103. instead of a single, reed. But there is, be-
sides, a more important distinction. Owing 

to their conical form,1 they are competent to yield all the 
upper partials of the fundamental, - the even as well as 
the odd. The bassoon differs from the oboe in that the 
tube of the latter is of greater volume than that of the 
former. The lowest note of the bassoon is a twelfth below 

1 Mr. Ellis says, " T o o much has been attributed to the cylindrical bore 
for producing only the unevenly numbered partials " He quotes Mr. Her-
mann Smith, who, having given the subject special study, states that an oboe 
reed fixed on the clarinet tube gives oboe pitch of tone and oboe part.als 
(Ellis's Helmholtz, p. 553). 

the gravest tone of the oboe'. For this reason the bassoon 
is to the oboe what the violoncello is to the violin. 

In the heavy metal tongues of the harmonium and the 
organ, the notes emitted have sensibly the same pitch as 
would be yielded by the isolated vibrating tongues. There 
must, therefore, in these cases be at least one tongue for 
each note. 

The lighter reed-tongues of the clarinet, oboe, and bas-
soon, on the other hand, are capable of yielding a large 
number of notes. The reason is that the vibrating column 
of air in these instruments has sufficient force to control 
the vibration of the tongue, and compel it to yield notes 
corresponding in pitch to the proper notes of the tube. 
As a consequence, the tongue is made to execute vibra-
tions whose period is much greater than those which it 
would make if isolated. As a matter of fact, the proper 
notes of the tongue are never used in music, because they 
are too high and piercing, and because it is impossible to 
give to them any degree of steadiness. 

Instruments like the French-horn, cornet, ophicleide, 
and other brass instruments of this class, differ from those 
of which we have been speaking, not only 
in their form and in the quality of the tone 
that characterizes them, but especially in 
the form of mouthpiece employed. As is 
seen from those I have in my hand (Fig. 
104), they are conical, or cup-like, in shape. FIG. 104. 
Such mouthpieces are known as embouchures 
de cor, or horn mouthpieces. Connected with resonant 
tubes, they are applied to the lips, which then act just as 
reeds. The air from the lungs sets the lips in vibration, 
and with them the column of air in the instrument. The 
rapidity of oscillation depends on the pressure of the air 
and the tension of the lips, or the force with which the 
performer presses them against the embouchure. It is 
the proper adjustment of the wind pressure and the ten-
sion of the lips that make playing on these instruments 
so difficult. 
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According to Mr. D. J. Blaikley, quoted by Ellis, " the 
lips do not vibrate throughout their whole length, but 
only through a certain length, determined by the diameter 

of the cup of the mouthpiece. 
Probably also the vibrating length 
can be modified by the mere 
pinch, — at least this is the sen-
sation I experience when sound-
ing high notes on a large mouth-
piece. The compass — about 
four octaves — possible on a 

0-iven mouthpiece is greater than that of any one register 
of the voice, and the whole range of brass instruments 
played thus with the lips is about one octave greater than 
the whole range of the human voice, from basso profundo 
to the highest soprano." 

Before you (Fig. 105) is one of the older 
forms of the French-horn, which corre-
sponds to the Waldhorn, or German hunt-
ing-horn. As you see, it is a long coiled 
conical brass tube, E T T, terminating in a 
wide " bell," P. As it has no side-holes, or 
keys, it can yield only its prime and the 
corresponding harmonic upper partials. 
According to Zamminer, the tube of such a 
horn is 13.4 feet long. Its fundamental note 
is This, and the first upper partial 

•E>,, are never used. Only the higher par-
tials are employed in music. These, begin-
ning with the third partial, are B^ , E?2, G2, 
b C d > , - E , F3 , Ab3+, B>,, etc., and supply 
most of the tones of the scale. Those which 
are missing are partially elicited by placing 
the closed hand in the bell of the horn, thus 
more or less closing it at this point. For this reason such 
notes arc sometimes called " hand-notes." 

The trombone (Fig. 106) is a modified form of the horn. 
It is composed of a fixed part, EFGHP, and a movable 

»H|< 
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part MN by means of which the player can vary the 
length of the aerial column, and thus, also, the pitch of 

the notes emitted. 
The trumpet belongs to the same class p 

as the trombone; indeed, the latter is the 
natural bass of the former. The trumpet 
speaks in an octave higher than the French-
horn, of which it possesses the first eleven 
open notes. On all these instruments, ow-
ing to the absence of fixed notes, it is 
possible, as with instruments of the violin 
family, to play in pure intonation. For 
this reason, they are capable, in the hands 
of expert players, of yielding musical ef-
fects that, with keyed instruments, are quite 

impossible. 
The ophicleide, E P (Fig. 107), is also 

a long conical tube, but it differs from the 
French-horn and the trombone in having a 
certain number of openings along its side. 
These can be closed and opened by means 
of keys, and thus the number of notes 
which the instrument is capable of yield- FIG. 107. 
ing is greatly augmented. 

The cornet-a-piston (Fig. 108) is an improved form of 
the trombone, just as the trombone is a modification of the 
French-horn. Like its prototypes, the cornet-a-piston is 

provided with a bell, P , 
and an embouchure, E. 

i Parallel to the principal 
tube of the instrument 
are placed smaller tubes, 
B, C, D. These latter 

F l G I o g are put into communi-
cation with the former 

bv means of the cylinders, M, N, P, in which pistons con-
nected with the rods, m, n, fi, are made to open valves. 
This is equivalent to lengthening the tube so as to make 



it yield notes one, two, or three semitones flatter. The 
valve-action in the cornet thus serves the same purpose as 
the sliding-tube in the trombone. These instruments, like 
clarinets, are made of various sizes and pitches, and are 
especially employed in military bands. 

In instruments like the flute, clarinet, and similar keyed . 
instruments, the acoustic length of the tube — that is, the 
portion which chiefly determines the pitch of the note 
emitted — is that part between the embouchure and the 
nearest open aperture. Opening or closing the six holes 
in such an instrument is tantamount to lengthening or 

shortening the tube, and, conse-
quently, to raising or lowering the 
pitch of the notes emitted. In 
brass wind instruments, on the 
contrary, the acoustic length of 
the tube is, as we have seen, more 
generally regulated by valves and 
sliding-tubes, which determine the 
length of the aerial column actu-
ally in vibration. It would, how-
ever, be a misstatement of fact to 
say that the opening of the side-
holes of wind instruments has pre-

' cisely the same effect as shortening the tube. Such is not 
the case; and for the simple reason that the reflection of 
the sonorous pulses from such lateral opening is not ex-
actly the same as that at the open end of the instrument. 
The theory of the side-holes of wind instruments is very 
complicated, and strange as it may appear, there is much 
about it that still requires explanation. 

In the human larynx we have the most perfect of all 
musical instruments. It yields the sweetest and richest 
tones, and admits of variations of pitch, intensity, and 
quality that in other instruments are quite impossible. 

A model of the larynx in its simplest form is shown in 
Fig. 109. This is a modified form of that first devised by 
the illustrious comparative anatomist, Johann Muller. It 

is nothing more than a short glass tube, across one of the 
ends of which are stretched two bands of india-rubber so 
as to form a narrow slit through which air may be urged. 
When in vibration each of the strips of rubber acts as a 
reed, and as there are two of them, this simple device is 
nothing more than a double-reed instrument. 

* The same may be said of the organ of the voice; it is 
nothing more than a double-reed instrument. 1 he trachea, 
or windpipe, corresponds to the glass tube in the model in 
my hand, and the vocal cords to the strips of india-rubber. 

The vocal cords are caused to vibrate by air issuing 
from the lungs, and the variations in the pitch of the notes 
emitted are determined by modifications in the tension and 
length of the cords, as well as by the length and width of 
the intervening aperture called the glottis. 

The quality of the tone depends partly on the structure 
of the larynx itself, and on the form and size of the vocal 
cords, and partly on the form and size of the oral and 
nasal cavities, which perform the office of resonators. As 
ail parts of the larynx, and its adjoining resonant cavities, 
are perfectly and readily adjustable, we have in the organ 
of the voice an instrument that is suscept.ble of every 
shade of modulation, and of the most marvellous variations 

of quality and power. 
So far we have been speaking of sonorous tubes which 

are set in vibration by a blast of air from a bellows, or 
that which serves the same purpose, the lungs. The air-
columns of tubes may, however, be excited by other 
means. Anything competent to impart a periodic im-
pulse to the air within a tube, is sufficient to cause the 
generation of a musical note. 

A jet of ignited gas may, under suitable circumstances, 
o-ive rise to a loud, pure tone. A simple means of illus-
trating this fact, as we saw in our first lecture (Fig. 10), 
is afforded by the chemical harmonicon. The apparatus 
used consists, as you remember, of a Woulfe bottle, in 
which are placed the materials for generating hydrogen 
aas. In one of the openings of the flask is fixed a safety O 



tube, and in the other a small glass tube drawn to a fine 
point, through which the hydrogen issues. On igniting 
the gas, and holding over the flame a glass tube of suitable 
size, you at once hear a clear, musical note. 

Faraday was the first to demonstrate that the note is 
due to a series of rhythmic explosions whose periods syn-
chronize with the rate of vibration of the aerial column 
enclosed by the tube. Chladni showed that the glass tube 
in this case acts exactly like an open organ-pipe, and that 
by properly adjusting the size of the flame and its position 
in the tube, one can not only get a note corresponding to 
the fundamental of the pipe, but also elicit at least two of 
its upper partials. 

With a larger apparatus than the one just used we evoke 
much louder tones and a greater number of partials than 
were obtained by Chladni. We have here a large copper 
cylinder, in which hydrogen is condensed under high pres-
sure. Near by is a number of glass tubes of various sizes, 
from two to six feet in length, and from one to two inches 
in diameter. Among these are eight which are of the 
same diameter, but whose lengths are so adjusted that 
they give, when placed in succession over the flame, the 
eight notes of the diatonic scale. Measuring the length 
of these tubes, we find that they are inversely as the pitch 
of the notes they respectively emit. They therefore con-
form to the same law as the other forms of sonorous tubes 
which we have been investigating. 

Taking one of the larger tubes, and holding it over a 
larger flame, we get a louder and deeper note than any we 
have yet heard.. The tube is now yielding its prime tone. 
Lowering the flame, a note of higher pitch is heard. This 
is the octave of the fundamental. Diminishing still more 
the size of the flame, we obtain the twelfth, or the third 
partial. In a similar manner, by regulating the size of the 
flame and its position in the tube, we should be able to 
elicit a number of higher partials. 

It has been said that the notes produced by such flames 
are due to a series of explosions. Wheatstone has shown 

us how we can prove this experimentally. Taking the 
cubical mirror, which we have used in studying Koenig's 
manometric flames, and rotating it before the singing flame, 
we see that it is immediately resolved into a chaplet of 
luminous images. The images are at a greater or less 
distance from each other according to the greater or less 
velocity of rotation of the mirror. Reducing the flame to 
silence, we have reflected from the mirror a continuous 
band of light. The band remains continuous as long as 
the flame is in a state of quiescence. But as soon as it 
is made to sing, the ribbon of light seen in the mirror 
becomes discontinuous as before. 

It is an easy matter to determine the number of explo-
sions per second corresponding to the note which is being 
produced. All that is necessary is to obtain the pitch of 
the note. This can be done approximately by measuring 
the length of the sonorous tube, and dividing this length, 
multiplied by 4, into the velocity of sound per second. 
It would obviously be necessary in this case, in order to 
have anything approaching an exact result, to make cor-
rections* for the high temperature of the aerial column, 
and for the amount of aqueous vapor present. We can, 
however, estimate approximately the pitch of the note by 
ear. But our tuning-fork tonometer stands us in good 
stead now. A few trials will enable us to determine almost 
exactly the pitch of the note now sounding. We find that 
it approximates closely that of the fork I now hold in my 
hand, F s , which executes 348 vibrations per second. As , 
therefore, each explosion is equivalent to a single vibra-
tion, we conclude that the tone of the flame now singing 
is produced by a series of rhythmic explosions which num-
ber about 350 per second. 

Instead of using glass tubes, let us take this brass tube 
supported on a solid stand. The tube is over three inches 
in diameter, and about eight feet long. And instead of 
the small jet hitherto employed, we shall use that issuing 
from a large rose burner. The gas is now ignited, and 
placed in position within the tube. Regulating the pres-



sure so as to secure a large flame, we obtain the fundamental 
tone of the tube, which, as you perceive, is one of extraor-
dinary volume and power. So intense are its vibrations 

that they excite corresponding tremors in the floor and 
the windows and the furniture of the room. Ordinary 
illuminating gas might be used instead of hydrogen, but 
it cannot be made to sing so readily, and requires more 
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care in securing the right pressure. The experiments of 
Count Schaffgotsch and Tyndall have greatly extended 
our knowledge of the origin and nature of singing flames 
of all kinds. 

Singing flames so far have been of no practical value in 
music? although several instruments have been devised in 
which'such flames were used. The first of these was con-
structed by Wheatstone. More recently M. Kastner has 
made a much more elaborate instrument, which he calls a 
pyrophone. A picture of this quaint instrument (Fig. 
n o ) is projected on the screen. It is, as you see, a sort 
of pipe organ, which has twin singing flames in each pipe. 
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The notes are elicited by placing in each of the tubes at a 
point one third of their length from the lower extremities 
two small flames in contact. As long as the flames are 
together they are quiet, but when separated they begin to 
sin- By the use of suitable keys it is possible to unite 
and separate the flames so that a simple melody can be 

played with comparative ease. 
Closely allied to singing flames are what are known as 

sen=itive flames. They were first observed by Professor 
John Le Conte in I857- BUT it is to the researches of 
Govi, Tyndall, Barry, and Geyer that we owe the very 
sensitive flames we now have at our disposal. 

When ordinary illuminating gas is allowed to issue from 
a common bat-wing burner at the usual pressure, it burns 



with a steady flame of the form shown in the left of Fig. 
i l l . In this condition it remains unaffected by any sounds 
that might be produced. If, however, the pressure is so 

increased that the flame is just ac the point 
of flaring, it is sensitive to certain sounds, 
although uninfluenced by others. When 
more gas is turned on, and the flame is on 
the point of roaring, it is very sensitive in-
deed. A sound of proper pitch from an 
organ-pipe or a flageolet will at once cause 
it to assume the tongued appearance exhib-
ited at the right of the adjoining figure. 

The degree of sensibility of a flame de-
pends on a variety of circumstances. It is 
modified by the size and form of the nipple 
employed, by the diameter of its orifice, and 
by the diameter of the tube connected with 
it. It is likewise affected by the pitch of the 
notes that are sounded; for it has been dis-
covered that such a flame is most sensitive 
to notes that it is itself competent to yield, 
or is on the point of emitting. 

Before you (Fig. 112), and issuing from 
a steatite burner, is a much more sensitive 
flame than the one we have just been using. 
It is upwards of twenty inches long, and is 
sensitive to the slightest noise. Walking 
across the floor, tearing a sheet of paper, 
shaking a bunch of keys, or whistling, will 
set it in commotion. Certain sounds cause 
it to change its length and form, others will 

FIG. 112. make it roar, while others still will cause it 
to drop down to a short non-luminous flame 

like that shown on the right of the accompanying figure. 
It is particularly sensitive to acute notes and to noises that 
contain acute notes. It is also affected in varying degrees 
by the different vowel-sounds. Those which, like a, e, and 
i, are characterized by high upper partials, agitate it much 

more than 0 and u, in which the higher partials are totally 
absent. 

By interposing a wire gauze between the burner and the 
flame, Mr. Barry, of Ireland, was able to get a more sen-
sitive flame than any we have yet 
seen. Mr. Geyer, of Stevens' Insti-
tute of Technology, greatly enhanced 
the delicacy of Barry's experiment 
by covering the flame with a tube of 
suitable size, which rests on the 
gauze. Such an apparatus stands 
before you (Fig. 1 13 ) . 

We have now a luminous flame 
about seven inches long, which is 
specially sensitive to acute sounds. 
By elevating the gauze and tube, 
the flame is gradually shortened and 
rendered less luminous, until it finally 
becomes violently agitated and breaks 
forth into song. The note it at pres-
ent emits may be maintained indefi-
nitely. It is not now affected by 
external sounds. By gradually low-
ering tube and gauze until the flame 
just ceases to sing, it becomes a sen-
sitive musical flame of extraordinary 
delicacy. It is at present quiescent, 
but the least noise will start it into 
song. Tapping on the table, whist-
ling, hissing, crumpling paper, causes 
it to sing and to continue its note as 
long as the noise endures. Indeed, 
so sensitive may it be made by care-
ful adjustment that it is affected by sounds that are almost, 
if not quite, inaudible. For this reason, a flame like this, 
as well as the others which we have been studying, can be 
used as detecters of sonorous vibrations whose presence 
could not be discovered by other means. 

F I G . 1 1 3 . 



The seat of sensitiveness of the flames we have been 
examining is, as has been demonstrated, at their root, or 
the points at which they issue from the burner. The gas 
in passing through the orifice of the burner suffers fric-
tion, which, when the pressure of the gas is properly 
regulated, sets the flame in vibration, and induces flaring. 
But when the flame is just on the point of flaring, ex-
ternal vibrations, if properly timed, are competent to pro-
duce the same effects as an increase of pressure. The 
action in this case is analogous to that which obtains in 
sympathetic vibrations generally, of which we shall see 
more in our next lecture. We shall then learn that bodies 
in a state of vibratory motion, whose periodicity is the 
same, are capable of yielding results which, under other 
conditions, are impossible. 

If the sensitiveness of a flame does not depend on the 
flame itself, but on the friction of the gas as it issues from 
the orifice of the burner, it is obvious that the same phe-
nomena should accompany gases which are unignited as 
well as those which are burning. Such has been found 
by experiment to be the case. Unignited coal-gas, hydro-
gen, air, and carbon-dioxide may be made to yield the 
same results as does the most sensitive flame. By asso-
ciating smoke or the fumes of sal-ammoniac with the gas 
as it issues from its orifice, we can render the jet and its 
motions visible, and thus experiment with it as well as 
with a flame. 

A long, delicate smoke-jet (Fig. 1 14) is now issuing 
from the orifice of our steatite burner. The slightest 
noises disturb it, and cause it to assume different forms 
and lengths. But the pitch which will most strongly agi-
tate this smoke-jet is lower than that which depressed our 
long flame. By sounding a note of the proper pitch the 
jet now so long becomes at once short and bushy at the 
top, as shown at the right of the figure. 

But this marked sensitiveness to vibrations of notes of 
certain pitch is not confined to gaseous jets only. Savart 
has shown that liquid veins, or jets, are equally sensitive, 

and the effects produced 011 such veins are fully as inter-
esting and remarkable as anything we have yet witnessed. 
Lack of time, however, precludes our giving any illustra-
tion of the action of liquid veins under the influence of 
sonorous vibrations. Suffice it to say that 
the cause which gives rise to the phenom-
ena observed is the same in one case as in 
the other; viz., an equality of periodicity 
on the part of the sonorous body, and the 
jet or vein which is affected. 

Having made ourselves familiar with the 
laws of vibration of sonorous tubes, we are 
now able to appreciate a very interesting 
method of determining the velocity of 
sound in air and in various gases. We 
have learned that owing to terminal pertur-
bations there is a difference between the 
theoretic and the actual length of an organ-
pipe of a determined pitch. But by a 
series of very careful experiments VVer-
theim has been able to ascertain' the con-
stant quantity by which the length of a 
pipe yielding its fundamental is to be aug-
mented in order that it may equal the 
theoretical length. Once knowing the the-
oretical length of any given pipe, we may 
determine the velocity of sound in any 
gaseous medium by the simple formula 
L — y. L here equals the wave-length of 
a given sound, N the number of vibrations 
per second, and F t h e velocity of sound in . 

the medium employed. If we take an 
. 1 . . . . F I G . 1 1 4 . 

open organ-pipe emitting its prime tone, 
the length of, the pipe increased by Wertheim's constant 
gives one half the theoretical wave-length. The full wave-
length is, therefore, equal to 2 L. The value of TV may be 
ascertained by any of the various methods employed for 
determining the pitch of sounds. This gives us the two 



known quantities, 2 L and N, from which the third, V, is 
easily deduced. 

By the application of the formula V — 2 L N, Dulong 
and Wertheim were able to determine very accurately the 
velocity of sound in the various gases on which they ex-
perimented. Indeed, the values usually given for the 
velocity of sound in different gases have been obtained 
by this method. 

Kundt has greatly extended and elaborated thè method 
just indicated by rendering visible the subdivisions of a 
tube corresponding to any given note. He has, in fact, 
accomplished for sonorous tubes what Chladni did for 
vibrating plates. 

If a light powder, like lycopodium, amorphous silica, or 
finely sifted cork filing, be distributed over the inner sur-

face of a glass tube, 
and the tube be set in 
v i 5 r a t i o n b y r u b b i n g . 

FIG. 115. it with a moist cloth, 
we shall see the pow-

der within arranging itself as in Fig. 115. At the nodes, 
NNNN, as you perceive, are small circles, and along the 
ventral segments are transverse lines. A glass tube filled 
with air and yielding its fundamental note would exhibit 
sixteen such segments; only four are shown in the figure, 
showing at once that the velocity of sound in glass is six-
teen times as great as it is in air. 

We have here a series of four tubes of the same size, 
and filled with air, carbon-dioxide, illuminating gas, and 

. hydrogen. When rubbed with a moist cloth so as to yield 
their octave, the powder within forms like figures, but the 
number of segments is different for the various gases. For 
air we have 32, for carbon-dioxide 40, for illuminating gas 
20, and for hydrogen 9. The velocity of sound in the 
gases named is inversely as the numbers. Taking air as 
unity, the velocity of sound in the four gases in the order 
given would be 1, .8, 1.6, 3.56. Thus with a single sweep of 
the cloth we are able to tell the relative velocity of sound 

in the different gases, and knowing the velocity of sound 
in air, we can readily calculate the absolute velocities. 

But in order to secure more accurate results, Kundt 
found it necessary to modify somewhat his method of 
procedure. Instead of rubbing the tube containing the 
powder to be excited, he excited the air within by means 
of a smaller tube. 

Before you is a glass tube, A B (Fig. 1 16) , six feet long 
and nearly two inches in diameter. The end, A, is closed 
by a movable stopper, while the end, B, is closed by a 
cork, through the middle of which passes the small glass 
tube, CD. This tube is held at its centre, E, by a vice. 
The end, C, of the small tube is closed with a cork, a part 
of which is just large enough to fill loosely the bore of the 
larger tube. The interior of the larger tube between A 
and C is coated with siliceous powder. When now a moist 

cloth is drawn along the smaller tube between E and D, 
it is thrown into longitudinal vibrations, and yields its 
fundamental note. 

But in order that the vibrations of the air between A 
and C may synchronize with those of the small glass tube, 
it must subdivide itself into segments whose lengths will be 
to those of the glass tube inversely as the velocity of sound 
in these two substances. This is exactly what is seen to 
occur. If the length of the glass tube from C to D were 
equal to the aerial column, A C, the number of ventral 
segments formed between A and C would be sixteen. This 
would show that the air-column, in order to accommodate 
itself to the rate of vibration of the glass tube, must divide 
itself into segments which are sixteen times shorter than 
the vibrating segments of glass. This means that the 
velocity of sound in glass is sixteen times as great as it is 
in air. 



Instead of using glass to impart vibrations to the aerial 
column within the larger tube, we might substitute rods of 
wood or metal. The results would be the same, with this 
difference, that the number of segments formed by the 
powder would vary with the velocity of sound in the mate-
rials employed. 

The result given for the velocity of sound in glass in the 
experiment just made is only approximate. It will of 
course vary with the quality of the glass used. Instead of 
being, as stated, exactly sixteen times as great as in air, 
the velocity of sound in glass has been found by the very 
careful experiments of Kundt to be 15.25 times greater in 
the latter than in the former medium. Similar experi-
ments with steel, brass, and copper rods give for the ve-
locity of sound in these metals —that in air being taken as 
unity—the numbers 15.34, 10.87, and fi-9^- These values, 
however, are only approximately correct. Kundt's method 
does not give exact measures of velocity because the rod 
is loaded, the cork rubs against the sides of the tube, 
and finally because the velocity of sound in tubes of small 
diameter is unknown. Old Chladni's method is the best, 
now that we have, thanks to Koenig, the means of getting 
the absolute number of vibrations of a tuning-fork at any 
given temperature. 

In order that there may be perfect synchronism between 
the vibrations of the smaller glass tube, C B, and the seg-
ments of the air-column, A C, it is necessary that the 
length of the air-column, C A , be an exact multiple of the 
half-wave-length of the sound in air. When the tube 
C D yields its fundamental, the wave-length of the cor-
responding note is, as you know, equal to twice the 
length of the tube. The wave-length corresponding to 
this note in air will therefore be equal to twice the length 
of one of the dust segments in the interior of the tube, as 
one of these segments is but a half wave in length. The 
proper adjustment of the length of the aerial column is 
made by means of the movable stopper at A. The aspect 

. of the dust figures tells us when the cork is in the right 

position, i he powder seeks the nodes, n, 11, n, etc., and 
etc., more completely, and the nodal lines are more 

perfect, in proportion as the adjustment is more exact. 
When the air-column is an exact multiple of a half-wave 
length, the silica leaves the ventral segments entirely, and 
collects in tiny well-defined heaps at the nodes N, N, N, N 
(Fig. 1 1 5 ) . By measuring the distance between any two of 
these heaps we have at once the value of a half-wave length 
of the note in air. The length of the tube, CD, when sound-
ing its fundamental, is equivalent to the half-wave length of 
the same note in glass. A simple proportion, then, 'L — 
gives the ratio of the velocities of sound in air and glass. 
The same proportions, as is obvious, would apply to any 
other solid as well as glass. 

Inasmuch as the vibrations of liquid columns obey the 
same laws as the vibrations of columns of gas, several 
attempts have been made to determine the velocity of 
sound in liquids by enclosing them in suitable tubes, and 
applying to them the same mode of procedure as we have 
found to be so effectual with gases and solids. So far, 
however, notwithstanding the many ingenious contrivances 
resorted to in the experiments made, the results attained 
have been unsatisfactory. But the difficulties encountered 
seem rather to exist in the apparatus employed than to be 
inherent in the method itself. Whether or not these diffi-
culties can be overcome by other and improved forms of 
apparatus, or by experiments conducted under different 
and more favorable conditions, time alone can disclose. 



C H A P T E R VII. 

R E S O N A N C E AND I N T E R F E R E N C E . 

C O far we have been dealing with single, individual 
0 sounds. We have, it is true, had occasion to listen 
incidentally to two or more sounds simultaneously pro-
duced ; but I have reserved a more detailed account of 
such concomitant sounds for the present lecture. To-day 
1 shall speak of what is known as resonance, and its correl-
ative, called interference, of sound. Some of the most 
practical and important consequences to musicians follow 
from the first of these phenomena, and some of the most 
interesting and paradoxical results arise from the second. 

To understand the nature and effect of resonance, it is 
important at the outset to appreciate properly the cumu-
lative effect of feeble impulses, when suitably timed, in 
moving comparatively large masses of matter. We have 
before had occasion to employ various contrivances to 
illustrate by slow mechanical motions the much more rapid 
movements of sonorous bodies; and a similar procedure 
now will enable us better than anything else to compre-
hend the full import of the various and striking phenom-
ena embraced under the general head of resonance. 

On a strong wooden frame is suspended by a cord a 
good-sized cannon-ball. Attached to the ball is a fine 
cambric thread, which is capable of supporting only a 
small fraction of the weight of the ball. I give the string 
a very gentle pull, and by this means there is imparted a 
slight, almost an imperceptible, motion to the ball. By 
properly timing these slight pulls, always pulling when the 
ball is coming towards me, and never when it is moving 
in the opposite direction, I can cause the ball to swing 

through quite a large arc. The pulls, however, must be 
isochronous; that is, they must be of the same period as 
the ball which oscillates as a pendulum. Should I attempt 
to pull the string when the ball is moving r.way from trie, it 
would at once snap in twain. The force now stored up in 
the moving ball is so great that it can only be overcome by 
using a much stronger cord, or by gradually counteracting 
it by slight periodic pulls with the cambric thread when 
the ball is receding. This experiment shows us that quite 
large masses of matter can be put in motion by very slight 
impulses, and that these same slight impulses, when peri-
odically applied, are sufficient to bring again the moving 
mass to a standstill. 

We may vary the experiment by imparting gentle im-
pulses in a different manner. Instead of using fine thread, 
we have recourse to slight periodic puffs of air from the 
mouth. "But , " you will exclaim, "such an insignificant 
force is utterly inadequate to move such a heavy mass." 
So it seems. But let us try. 

Having found out by the foregoing experiment the period 
of the ball, I know how to direct my breath against it. I 
blow against it once, and again, and still again, and there 
is scarcely any perceptible movement. I continue to di-
rect little puffs of air against it, and in a few moments 
the motion becomes very considerable. Should the im-
pulses directed against the ball be improperly timed, the 
effect produced would be little, if anything at all. And, 
as in the first experiment, I can bring the ball to rest by 
little puffs of air impinging against it every time it comes 
towards me. 

Allow me to modify the experiment still further. In-
stead of the cannon-ball we may now use a smaller ball, also 
of iron, as a pendulum. Close to it, and from the same 
support, is suspended by the same length of string another 
ball identical in size and material. But the size and mate-
rial of the balls is not of so much importance as that the 
strings supporting them should be of exactly the same 
length. We have here what are in reality two pendulums 



whose periods of vibration are isochronous. When one of 
them is made to swing to and fro, observe what takes place. 
The other one remains at rest for a moment; but soon you 
perceive a slight oscillation, which eventually becomes as 
great- as that of the first ball. 

How do we explain this? Is there an invisible string or 
breath of air to cause the first to act on the second? No ; 
but the vibratory movement of the one is communicated 
to the other in a no less effective manner. In this case the 
vibrations — they are very slight, it is true — are conveyed 
through the beam that acts as the common support. The 
vibrations are so slight as to be imperceptible to sight or 
to touch, but they are none the less real and operative. 

Clock-makers have long known of these forced vibra-
tions. They were first observed by the famous Huygens, 
the inventor of the pendulum clock, over two hundred 
years ago. It is well known, for instance, that two clocks, 
whose rates are slightly different, will, when brought near 
together on the same table or other support, keep the same 
time. The pendulum of the more rapid clock forces up 
the speed of the slower one, and compels it to move at the 
same rate. But while the speed of the latter is advanced, 
that of the former is retarded correspondingly. If, how-
ever, there is any material difference in the rates of vibra-
tion of the two clocks, this effect will not take place. This 
fact can be easily illustrated by means of the two pen-
dulums with which we have been experimenting. 

We will lengthen the string of one of them, and then set 
it in vibration. As you perceive, it has no effect on the 
other. But if the string be still more elongated, and made 
twice or three or more times as long as the string of the 
other pendulum, the result will be different. By setting the 
longer pendulum in motion, it will after some time cause 
the shorter one to vibrate also. In this case the former 
imparts an impulse to the latter, not at every swing of the 
latter, but at every second or third swing, according to its 
length. The number of impulses communicated being 
then only one half or one third as numerous as when the 

pendulums were of equal length, the amount of motion set 
up in the shorter pendulum will be proportionately less. 

In the preceding experiments a large ball was moved by 
a small string or by small puffs of air. A similar effect to 
that just produced by one pendulum acting on another of 
different length, would be obtained by pulling the ball or 
blowing against it every second or third vibration. But 
the result secured would obviously be correspondingly less 
than when the motion is accelerated at each vibration. In 
all these experiments, however, the important fact to bear 
in mind is that the impulses communicated, whatever their 
nature, and whatever their number, must be of the same 
period — or multiple or submultiple of the period — as that 
of the vibrating bodies themselves, and must take place in 
the same phase. 

There are many familiar instances of synchronous motion 
produced by regularly recurring impulses. The aerial 
pulses generated by certain organ pipes shake the win-
dows and pews and columns of a church. A large bell 
set swinging by the properly directed efforts of a single' 
boy will in turn convey a very marked vibratory move-
ment to a massive tower or belfry. We have all observed 
how a six or seven story building may be caused to vibrate 
from cellar to garret by the passage of a carriage over the 
cobble-stones of the street. A company of soldiers in 
crossing a bridge is made to break step, in order to pre-
vent the injurious results that might follow from forced 
vibrations. Hence also the reason of the prohibition to 
drive over a bridge " faster than a walk." 

Lord Rayleigh, in his admirable Theory of Sound} re-
marks that " illustrations of the powerful effects of isochro-
nism must be within the experience of every one. They are 
often of importance in very different fields from any with 
which acoustics is concerned. For example, few things 
are more dangerous to a ship than to lie in the trough of 
the sea under the influence of waves whose period is 
nearly that of its own natural rolling." Indeed, so great 
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may be the cumulative effects of periodic impulses, how-
ever feeble, that a distinguished English physicist has not 
hesitated to declare that he could, with a suitable appli-
ance, break an iron girder by projecting against it ordi-
nary pith-balls. 

We are now prepared to pass from the visible mass-
motions with which we have been dealing, to the invisible 
molecular motions, and the almost invisible segmental 
mass-motions which generate sound. 

On the table are two tuning-forks, A and B, on a resonant 
case,-each fork giving exactly the same number of vibrations 
per second, 512. The forks are placed a foot apart, with 
the openings of the resonant boxes facing each other, and 
one of the forks is then excited by a violin-bow. But no 
sooner is one, A, set in vibration than we hear the other, B. 
This is a most startling result; and yet only what should 
have been expected after our experiments with pendulums. 

But how does one fork convey its tremors to the other? 
Not through the material of the table, as the vibrations of 
one pendulum were conveyed to the other through their 
common support, because, as you will notice, the resonant 
cases are so constructed that this is impossible. Attached 
to the bottom of each case are two caoutchouc tubes that 
effectually destroy any vibrations that might otherwise pass 
from one fork to the other through the material of the 
table. The only means of communication therefore is the 
air. But can the air transmit impulses with such force as to 
give rise to the loud sound you have just heard in the second 
tuning-fork, B ? Yes ; but only under the same conditions 
under which one pendulum can cause another to oscillate. 

The first condition is that the two forks must be in uni-
son. When A, then, is set in vibration it generates a 
series of air-pulses which are conveyed to B, and these, im-
pinging against it, throw it into vibration. From the fact 
that the forks are isochronous, each impulse from A strikes 
B when it is in the same phase; that is, in the same posi-
tion and moving in the same direction with reference to its 
point of departure. A then generates in the air waves of 

condensation and rarefaction, and the air-pulses thus 
formed impinge against B at the rate of 512 per second. 
These aerial impulses taken separately are very feeble; 
they may be all but infinitesimal; but the number and 
absolute periodicity of the impulses are capable by their 
cumulative effect of producing results that would be 
deemed incredible, if not impossible. 

The forks are separated still more, one of them now 
being full twenty feet away from the other. The bow is 
again drawn across A, and its distant companion at once, 
responds. Indeed, so quick is the answer that B is heard 
almost as soon as A. We might separate them a hundred 
feet or more, and the result would still be the same. 

•A. With two similar tuning-forks executing 128 vibrations 
per second, and placed with the open ends of their reso-
nant cases facing the opposite ends of the conduit of St. 
Michel, in Paris, Dr. Koenig was able, by exciting one, to 
cause the other to resound very distinctly, although more 
than a mile distant. When we reflect that the density of 
steel is more than six thousand times that of air, the fact 
that it can be thrown into sonorous vibration, and at such 
a distance, by such insignificant impulses as are brought 
to bear on it, is truly marvellous. 

But one fork will not only set another into vibration, it 
will also communicate its vibratory motion so completely 
that the latter can be made to resound as loud as the 
former, and in some cases even louder. This, however, 
will take place only when the two forks are perfectly 
isochronous. 

N Retaining the two forks, A and B, which we have been 
using, it is easy so to vary the experiment we have just 
made as to secure a more surprising result than any we 
have yet witnessed. I cause A to vibrate as before, and 
then immediately damp it by placing my fingers on the 
prongs. You now hear B vibrating alone. I take my 
fingers off A, and it is again excited by the vibrations of 
B. I damp B, and A is now heard vibrating as before, 
but with diminished intensity. I again damp A, and once 



more B is heard. I can thus cause A and B to communi-
cate to each other their vibratory motion several times in 
succession, the sounds continuing quite audible, though 
the two forks may be at different ends of the room, or at 
even more considerable distances from each other. 

This remarkable property that one sonorous body has 
of impressing its vibratory motion on another sonorous 
body is called resonance, or consonance. Resonance is the 
term more generally employed, as consonance is also used 
to designate the harmonious effect produced by the simul-
taneous sounding of two or more musical notes. When 
the notes produced are in perfect unison, as is the case in 
those generated by the tuning-forks A and B, the sound 
excited in B by A is sometimes spoken of as a sympathetic 
sound, being caused by what are called sympathetic vibra-
tions. The German word Mitschwingung, co-vibration, ex-
presses admirably the character of the vibratory motion 
that gives rise to resonance, or sympathetic sounds. 

I would not, however, have you conclude from what has 
been said that resonance requires absolute periodicity in 
the source of sound and in the body in which the sound 
is originated by influence or co-vibration. To obtain such 
marked responsive effects as you have just witnessed in 
the forks A and B perfect periodicity is of course essential. 
But if these forks differed from each other by a very few 
vibrations, resonance could still be excited in B by sound-
ing A. The response, however, would be much slower 
and much feebler. Any great difference in the frequency 
of the forks, barring an exception I shall presently speak 
of, would destroy resonance entirely. N 

Let me illustrate. Before you is a glass jar (Fig. 1 1 7 ) 
twenty inches in depth. I hold over it a tuning-fork, C3, 
making 256 vibrations per second, but as yet no sound is 
audible. Water is slowly poured into the jar, and soon 
you perceive a gradual augmentation of sound. When, 
however, the water reaches a certain height the note of ' 
the fork attains its maximum intensity. If now more water 
is poured into the jar the sound rapidly dies away, until it 

becomes quite inaudible. Pouring out some of the water, 
and thereby lengthening the air-column, the sound is again 
reinforced. It is found, however, that for this particular 
fork the water must always be at the same height in the 
jar in order that the reinforcement of sound may be at its 
maximum, or, what amounts to the same thing, in order 
that we may have the most perfect resonance. If we dimin-
ish or increase the amount of 
water, we do not at once destroy 
resonance completely, as is so 
often asserted, but we lessen it 
in a very marked manner. Be-
yond certain limits it entirely 
disappears. 

By means of a series of care-
fully made experiments Koenig 
has shown that the limit of de-
parture from unison at which 
the reciprocal action of two tun-
ing-forks ceases to be percepti-
ble is proportional to the fre-
quencies of the forks. Thus the 
intensity of resonance for the 
forks C3, C4, C5, CB, C7, was 
about the same when they dif-
fered from unison by 2, 4, 8, 
16, 32 vibrations per second, 
— that is, when they differed 

from unison by I vibration to every 128 vibrations per 
second. 

Let us now try another fork, C4, making 512 vibrations 
per second. Bringing it over the mouth of the jar, we find 
that the greatest resonance is obtained'when the air-column 
is just one half the length of that which responded with 
greatest intensity to C3. Trying C5, whose frequency is 
1024, the vibrating air-column must again be divided by 
2 in order to secure the greatest augmentation of sound. 
We might try any number of forks with different rates of 
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vibration, and we should find that in each case only one 
certain length of air-column in the jar would be capable of 
exciting the maximum of sympathetic resonance. 

Measuring the lengths of the air-columns resounding the 
loudest to the forks C2, C3, C4, we find them to be 13, 6V2, 
and inches, respectively. These measurements agree 
very closely with what calculations, based on the known 
rates of vibrations of the forks, and the velocity of 

sound in air at the tempera-
ture of this room, should 
lead us to expect. They 
show also that the lengths 
of the most effective reso-
nating air-columns are in-
versely proportional to the 
frequencies of the tuning-
forks used in our experi-
ments. 

If we examine the matter 
with a little attention, we 
shall find that we have here 
exactly the same condition 
of things as obtained with 
the two unisonant tuning-

Fig. 118. forks. The air-columns in 
the glass jar resound most 

perfectly to the different tuning-forks only when their 
periodic vibrations are the same as those of the forks. 

While the prong of the fork is moving from a to b (Fig. 
1 18) , the condensation produced runs down to the surface 
of the water, and is reflected back to a just as the fork is 
ready to return to b. The accompanying rarefaction fol-
lows the condensation in the same manner, but in a reverse 
order; viz., going downwards while the condensation is 
coming upwards. The waves both of condensation and 
rarefaction are so timed that their upward and downward 
motion are in perfect unison with those of the fork. If 
there should be a slight difference in the periods of the air-

column and the fork, a consequent diminution of resonance 
would be the result, just as we saw is the case when two 
tuning-forks differ from each other by a few vibrations. 

The foregoing experiment affords an explanation of the 
office of the resonant boxes attached to many of the tuning-
forks before you. It is to heighten resonance, and it does 
so the more effectually the more nearly the periodic times 
of fork and box are in unison. As a matter of fact, the 
resonant chamber is not, as a rule, constructed so as to 
be perfectly in unison with its accompanying fork, for the 

FIG. 1 1 9 . 

reason that when perfect resonance exists, the sound of 
the fork dies away much more rapidly than when there 
is a slight difference in the periods of vibration. 

The cause of this is obvious. When the resonant case 
and the air contained within it vibrate in perfect unison 
with the fork, the amplitude of the vibratory motion both 
of air-particles and box is at its maximum. But this in-
tensity of vibration is kept up only in virtue of the energy 
imparted to it by the vibrating fork. The greater the 
resonance, therefore, and the closer the approximation 
of the periods of fork and resonant case, the greater the 



amount of energy required, and the shorter the duration of 
the sound produced. 

Savart has devised a very beautiful apparatus for exhibit-
ing the phenomena of resonance. It consists of a bell, 
T,P, mounted on a stand, D,F, C (Fig. 119), accompanied 
by a resonant tube, A, B, in which there is a movable 
piston. Agitating the bell by means of a resined bow, it 
at once bursts forth into sound. When the opening of 
the resonator is brought close to the rim of the bell, the 
sound is considerably intensified. By moving the piston 
in the tube, the sound is made to vary in loudness accord-

ing to the position which the 
piston occupies. When it 
reaches one certain point, 
however, the sound comes 
forth with extraordinary vol-
ume and power, and then re-
sonance is most complete. 
This climax of sonorousness 
indicates, as you are now 
aware, that the vibration pe-
riods of bell and resonator 
are equal. 

Vibrating plates can also 
be made to illustrate very 

beautifully the phenomena of sympathetic vibration. 
Before you are two square brass plates (Fig. 120), one 

of which is mounted on a cast-iron support, while the 
other is attached to a simple handle. They are so con-
structed that when they give the same figure the notes 
emitted are as nearly as possible in unison. Fine sand is 
strewn over both plates, and grasping the one with the 
handle, I excite it with the bow. At once a characteristic 
Chladni figure is formed. Holding this plate, while yet in 
vibration, above the other, a figure is designed on the 
lower plate that is an exact duplicate of the one on the 
plate in my hand. The periods of the two plates being the 
same, one takes up the vibrations of the other even when 
some distance apart. 

FIG. 121. 

Membranes are particularly susceptible of co-vibration, 
on account of their lightness, extent of surface, and facility 
of subdivision. They are especially sensitive to shrill 
sounds. The note of a whistle 
or of a small bell will throw a 
membrane into violent agitation 
even when several yards distant. 
Sand strewn on the membrane 
at once shows the existence of 
vibrating*segments similar to those exhibited by vibrating 
plates. 

An elliptical bell, like Fig. 121 , emitting a very strident 
note, is a most convenient instrument for the production 
of figures on membranes. Thus a circular India-rubber 

membrane (Fig. 122), which can 
be readily adjusted to various de-
grees of tension, is now tuned to 
the note given by the bell. On 
strewing the membrane with sand, 
and drawing the bow across the . 
edge of the bell, a harsh, creaking 

sound is heard, which causes the sand immediately to 
arrange itself in the most complicated patterns. 

Mr. Sedley Taylor has devised a clever method of show-
ing the manner in which sound affects liquid films. The» 
apparatus used consists of an 
air-chamber (Fig. 123) that may 
be covered with metal plates, in 
which are circular, square, or 
triangular openings. A tube 
through which sound-pulses may 
enter is attached to the side of 
the air-chamber. If now a soap-
film be stretched over the open-
ings in either of the plates, and 
projected on a screen, we obtain, by speaking or singing 
into the resonant cavity of the apparatus, the most gor-
geous kaleidoscopic effects conceivable. Every note, and 
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every vowel sounded on the same note, instantly evokes 
the most marvellous figures, tinted with all the delicate 
hues of the rainbow. There is nothing iii the whole range 
of physics more beautiful than the phenomena here ex-
hibited, — nothing that discloses more strikingly the com-
plicated nature of sonorous vibrations, and portrays more 
clearly those infinitesimal differences of quality of sound 
that entirely elude even the most sensitive ear. The forms 
and patterns that rapidly succeed one another, with all the 
varying changes of tone, are as exquisite in design as they 
are magnificent in chromatic display; and the agent em-
ployed in the experiment, an ordinary soap film is as 
simple as the exhibition is superb. 

• It is resonance that gives to musical instruments all the 
value they possess. Without a resounding body in con-
nection with the origin of sound, the note produced would 
be scarcely audible. In violins, harps, and pianos, for 
instance, the sounds are excited by vibrating strings; but 
as they come forth from the strings alone, they are almost, 
if not entirely, imperceptible. It is only when they are 
reinforced by suitable sounding-boards that they acquire 
sufficient volume for the purposes of music. 

You will observe, however, that the resonance of the 
sounding-boards of musical instruments has a much wider 

•range than that of the resounding bodies of which we have 
been speaking. Unlike the glass jar, and the resonant 
case of the tuning-fork, which respond to only one note, 
the sounding-boards of musical instruments reinforce all 
the notes within their compass. But besides this general 
resonance for all notes there is a particular resonance cor-
responding to some one special note. And, strange as it 
may seem, this special resonance in musical instruments is 
something that is, as a rule, passed unnoticed even by the 
most accomplished musicians. 

Thus the proper tone of the violin is C3, as can be shown 
by blowing across the " / holes," or by sounding in their 
widest part a properly tuned fork. The viola and the 
violoncello have likewise proper tones, which can be 

evoked in the same manner. Fortunately, however, these 
proper notes, on account of the peculiar construction of 
these various instruments, are not so prominent as one 
would expect them to be. If they were, they would very 
seriously affect the quality of the scale, as played on 
stringed instruments. As it is, special attention must be 
directed to them in order that they may be heard at all. — 

Sounding-boards enhance the volume of sound emitted 
by musical instruments by exposing a larger vibrating sur-
face to the air, and, in many instruments, by simultaneously 
throwing into vibration a large mass of air contained within 
the resonant body. The process in all cases is somewhat 
complex. In the violin, for instance, the string is first 
excited by bowing. Its vibrations are then communicated 
by the bridge and post to the belly and back of the instru-
ment, and to the mass of air intervening between these 
two highly sonorous pieces of wood. The body of the 
violin and the contained air being thus agitated as a 
whole, the vibratory motion superinduced is finally com-
municated to the circumambient air. 

There are still other instances of resonance as illustrated 
by musical instruments to which I must advert. They are 
as interesting as they are instructive, and so simple that 
they can be studied by any one. 

Press down gently one of the keys of a pianoforte so as 
to raise the damper, without, however, causing the hammer 
to strike the wires, and sing loudly the corresponding note. 
At once the note is echoed back with surprising distinct-
ness. That it has been generated by the sympathetic 
vibration of the uncovered string is proved by allowing the 
damper to fall back, when the sound is immediately extin-
guished. Raise the damper again, and pluck sharply one 
of the three strings that combine to produce the note 
before sounded. After a few seconds damp this wire with 
the finger, and you will hear the other two continuing the 
same sound. They have been thrown into sympathetic 
vibration by the first, which has been tuned in unison with 
them. We can easily assure ourselves of this fact by 

18 



touching them with our fingers, when we may feel the 
motion, or by putting little paper riders on the wires, 
when those not occupying nodes are thrown off forthwith. 
Similarly, if any two strings of two violins, M and N, are 
in unison, it is easy to excite sympathetic vibrations in the 
string of N by sounding that of M. 

This fact can be beautifully illustrated by the monochord. 
On it are stretched two wires in perfect unison. As soon 
as one of them is plucked, sonorous vibrations are excited 
in the other. If the unison of the wires is disturbed by 
changing, even slightly, the tension of one of them, the 
resonance is less marked. By varying the tension a little 
more, the resonance disappears entirely. 

Instead of thus producing resonance in a wire by agitat-
ing another in proximity to it, we can do it just as well by 
means of a tuning-fork. If the wire should be in unison 
with the fork employed, we have only to bring the foot of 
the fork down on one of the nodes of the wire, when sym-
pathetic vibration will at once be established. If the wire 
and the fork are not unisonant, they can be made so by 
changing the tension of the wire. 

But even this is not necessary. If the wire should give 
a note that is graver than that of the fork, we can easily 
find one in unison with it by placing the foot of the fork 

* on the wire, and moving it along it until a point is found 
at which a part of the wire is heard to respond most loudly. 
This part of the wire, measured from the foot of the fork 
to its point of attachment, will give a note exactly in 
unison with that yielded by the fork. The same result 
could be obtained with a violin or any other stringed 
instrument. 

; Professor Helmholtz has availed himself of this prop-
e r t y of sonorous bodies in the construction of his reso-

nators for analyzing sound, or for detecting the existence 
of sounds that would otherwise be inaudible. They are 
generally made of metal, but glass or any other rigid 
material would answer. The one I hold in my hand is, 
as you observe (Fig. 124), a spherical shell, R, with two 

projections opposite to each other, one of which, a, is 
somewhat larger than the other, b. In each projection is 
an aperture corresponding in diameter to that of the 
projection itself. By means 
of the smaller opening, the 
resonator is connected with 
the ear, while the other serves 
for the admission of sonorous a. 
vibrations. 

On the table is a series of 
ten resonators similar to the 
one first examined, and ac-
curately tuned to as many F l G ' I24' 
different notes. Like all resonators, they vary in size 
inversely as the pitch of the sounds they are intended to 
reinforce. If the nipple of the resonator accorded to the 
note C3, for instance, be inserted in the ear, and the corre-
sponding fork be set in vibration, one should at once hear 
a note that would sound much louder than it could without 
the resonator. 

In the case of weak sounds thus reinforced, the results 
are still more striking. Even when there is apparently 
perfect silence, we can hear, by means of these wonderful 
sound-collecting globes, a whole series of musical notes, . 
corresponding to those to which the resonators are attuned' * 
The atmosphere is always in a condition of tremor, the 

result of countless vi-
brations proceeding 
from every conceiva-
ble source. Occasion-
ally these tremors are 
apprehended by the 
unaided ear as a noise 

FIG. 125. or as a gentle hum; 
but more frequently, 

especially at night, they are, for most persons, at least, 
entirely inaudible. 

Sometimes a resonator is so constructed that it is capable 



of reinforcing several distinct notes. As constructed by 
Koenig, it is made of metal and is almost cylindrical in 
form (Fig. 125), and is composed of two tubes, one of 
which is accurately fitted into the other. The resonator 
is thus capable of being adjusted for several notes, which 
are stamped on the inner tube. The compass of such a 
resonator admits* of considerable extension, as the notes 
which will be reinforced depend almost solely on the 
length of the tube. 

4 Here is another adjustable resonator (Fig. 126), of still 
different form, due to M. Daguin. It is designed for rein-
forcing a greater range of sounds than any we have yet 
seen, and for this reason is better adapted for certain classes 
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of experimental work. It is composed of three parts, P, b, a. 
The last of these parts, shaped so as to fit into the ear, 
may be made to slide into b, and b in turn may be made 
to slide into P by means of a rack and pinion, m, 0, c. 

Such an instrument is admirably adapted for singling 
out the notes, which, as we have learned, constitute those 
confused and disagreeable sounds ordinarily denominated 
noises. By its use we can resolve into elementary tones 
the sound of a waterfall, the whistling of the wind, the 
rumbling of a carriage over the pavement, and the con-
fused murmur of the multitude speaking with every varia-
tion of pitch and quality of voice. More than this. We 
can show that the quiescent atmosphere, even during the 
still hours of night, is always more or less vocal, and that, 
without knowing it, we are ever in a medium in which 

" A thousand trills and quivering sounds 
In airy circles o'er us fly." 

Coleridge, then, spoke more wisely than he knew when 
he said, — 

'• The mute, still air 
Is music slumbering on her instrument." 

M. Daguin has also designed an instrument similar in 
form to the foregoing, and although nothing more than a 
special form of resonator, it gives what at first would 
appear to be very paradoxical results. It 
is a simple straight cornet (Fig. 127), in the n 

side of which are three small apertures that 
may be opened or closed with the fingers. 
This instrument M. Daguin calls a melodia-

• phone, which, in the language of the in-
ventor, " permits one to obtain the singular 
result of hearing a melody that does not 
exist, by means of an instrument that emits 
no sound." 

When, however, one understands the func-
tion of one of Helmholtz's resonators the 
mystery of the melodiaphone disappears. 
The melody that does not exist is then found 
to have its origin in the almost inaudible 
noises that continually fill the air, and the 
instrument that emits no sound is so de- FIG. 127. 
signed that certain of the notes that go to 
make up these noises arc rcinforced, to the exclusion of 
all others. The instrument is used by inserting the small 
end, 0, in the ear, when, on closing and opening the aper-
tures with the fingers, one will hear in musical sequence 
the notes that correspond to the different lengths of 
vibrating air-columns in the tube. The instrument is, 
in fact, a resonator that is adjusted, not by changing its 
length, but by opening or closing one or more of its aper-
tures, thereby changing the length of the aerial column 
that resounds to correspond with some note in the confused 



maze of very feeble sounds which unceasingly keep the 
atmosphere in a state of greater or less perturbation. 

The singular power possessed by the melodiaphone can-
not fail to recall to one's mind the story of the " Lost 
Chord." Here, as in so many other cases, fact and fancy, 
science and fiction, may find a common trysting-place. 

Most persons are familiar with many similar phenomena, 
without, however, having any knowledge of their cause. 
A common instance is afforded by an ordinary conch or 
cowry shell. One can always hear a characteristic sound 
on bringing either the one or the other close to the ear. 
Such shells are popularly supposed to re-echo the sounds 
of the sea; but, as is evident, they are nothing more than 
peculiarly shaped resonators, which sift out and intensify 
some one of the many tones existing in the atmosphere. 

Some of the most beautiful verses Wordsworth ever 
wrote have reference to these curious shell-tones; and I 
must ask your permission to quote from them. I would 
fain introduce a few lines here, if for no other reason than 
to give a little color to the plain and unvarnished facts of 
science: — 

" I have seen 
A curious child, who dwelt upon a tract 
Of inland ground, applying to his ear 
The convolutions of a smooth-lipped shell, 
To which, in silence hushed, his very soul 
Listened intensely; and his countenance soon 
Brightened with joy ; for from within were heard 
Murmurings, whereby the monitor expressed 
Mysterious union with its native sea . " 1 

The external auditory passage of the human ear has 
the same power which ordinary resonators possess of 
selecting certain sounds for reinforcement. The sounds 
thus specially intensified are, according to Helmholtz, 
those that lie between E®, and G6, and embrace between 
2,640 and 3,168 vibrations. This fact explains a phe-
nomenon that musicians are often at a loss to account for; 
namely, the peculiar sharp, cutting effect of certain notes 

1 The Excursion, book iv. 

in the neighborhood of F6. The note producing such an 
effect is the one whose .frequency is most nearly in unison 
with that of the aural passage, and which, consequently, 
is more strongly reinforced than any other note within the 
whole range of the instrument. If we lengthen this pas-
sage by inserting a small tube in the ear, the cutting effect 
at once disappears for this particular note, but some lower 
note more in tune with the elongated auditory passage 
breaks forth instead with the same cutting effect. The chirp 
of the cricket is so grating on the ear because it is so nearly 
the proper tone of the air-passage. A small tube applied 
to the ear weakens this strident sound at once. Dogs 
also, as most persons may have remarked, are extremely 
sensitive to certain sounds. In their case, too, the notes 
that most affect them are those which are most strongly 
reinforced by the auditory canal. According to Madame 
Seiler, they are especially sensitive to E0 of the violin. 

So far I have been giving examples of resonance in 
which the responsive vibration is of the same period as 
that which excites it. But there are other cases of sym-
pathetic sounds that are even more interesting than those 
which obtain when both notes are in unison. When ex-
perimenting with pendulums, we found that a pendulum 
was capable of imparting motion, not only to another 
pendulum of the same period, but also to pendulums 
whose rates of vibration were two or three times as great. 

The same thing precisely holds good in the case of 
musical sounds. Any given note, will excite not only one 
in unison with it, but also other notes whose rates of vibra-
tion are some multiple of its own. Thus, take a fork A, 
and it will cause, not only one of the same frequency to 

. resound with it, but also several of its upper partials. 
Let me demonstrate experimentally the truth of this 

statement. On the table is a series of twelve perfectly 
tuned forks mounted on resonant cases. The fundamental 
is C2, with 128 vibrations per second. The others have 
the same number of vibrations multiplied by the whole 
numbers 2, 3, 4, etc., up to 12, respectively. 



The smaller forks are placed in close proximity to the 
larger, C2, and then the latter is strongly bowed. After allow-
ing it to sound for a few seconds it is damped, when you hear 
a very pleasing sound of higher pitch. Some of the other 
forks are vibrating, but it is impossible to distinguish by 
the unaided ear just how many and which particular forks 
are sounding. By exciting C3, C4, and the other forks in 
succession by the large fork C2, we can easily determine 
exactly how many of the upper partials respond to their 
fundamental. By experimenting in this manner it could 
be shown that C2 is capable of exciting all its upper par-
tials as far as C0 inclusive. This means that C2 is capable 
of impressing its motion, not only on another fork in uni-
son with it, but also on seven others whose frequencies are 
in the ratio of its first seven multiples. 

The resonance that a fundamental calls forth from its 
upper partials is, however, by no means so strong as that 
which it evokes from one with which it is in unison. 
According to Koenig, the amplitude of C2 when in vibration, 
being taken as i, that of its first upper partial, C3, will 
be Above this the amplitude decreases in succession by 
one half, being for G3 for C4 ^ and so on to 
for C5. Now, the intensity of sound, as we know, is pro-
portional to the square of the amplitude of vibration. 
There is, therefore, a very rapid and marked diminution in 
the loudness of the resonance as we pass from the lower to 
the higher upper partials. The octave responds loudly 
and clearly; the twelfth and the second octave are also 
distinctly heard, whereas the notes above these, although 
perceptible, require, especially for the last two, all the 
attention the ear is capable of bestowing. 

But tuning-forks are not the only means we have of ex-
citing sympathetic resonance in upper partials. Many other 
sonorous bodies are capable of doing this equally well, 
and some of them in an equally striking manner. Stringed 
instruments are particularly well adapted for this purpose.1 

1 Mersenne was quite familiar with the principal facts of sympathetic 
resonance. He gives them detail in Props. 37,38, and 39," Harm. Lib." iv. 

A simple and instructive illustration is afforded by raising 
all the dampers of a pianoforte and singing loudly any 
given note, when a whole series of notes will be returned, 
by way of response. If C2 is sung, the upper partials will 
answer in the- same order as did those emitted by the 
tuning-forks. The number and intensity of the partial 
tones in this case will depend on the voice, — its loudness, 
the tuning, and the resonant qualities of the pianoforte 
itself; both voice and instrument, as is obvious, being, ac-
cording to circumstances, of varying degrees of strength 
and perfection.1 

Before dismissing the subject of sympathetic vibrations 
I must introduce to your notice a novel little instrument, 
devised independently and al-
most simultaneously, by Prof. 
A. M. Mayer and Dvórák.2 Pro-
fessor Mayer calls it a sound-
mill. It is also known as a sound-
radiometer, or an acoustic reac-
tion-wheel. As made by Koenig, 
it is composed of four small re-
sonators, Fig. 128, open at one 
end only, and attached to the ends of a small cross. This 
cross is carefully balanced, and supported at its centre 011 
the point of a vertical stand. The resonators are made 
of aluminum, on account of the lightness of this metal, 
and each is very accurately tuned to C4. When this 
apparatus is placed, as it is now, before the opening of a 
resonant box of a fork sounding C4, the wheel at once 

1 The reader will not fail to note that there is a difference in the way in 
which sympathetic notes are excited by the human voice and by a tuning-
fork. The former, yielding a compound note, would evoke from the piano 
those notes which are in unison with the partial tones of the voice, even if 
the fundamental tone did not possess the power of exciting upper harmonic 
partials. 

- Professor Mayer read a paper on the sound-mill, and exhibited the instru-
ment before the New York Academy of Sciences, May 22, 1876. A descrip-
tion of it was published in a report of this meeting in the "Scientific 
American," July 8, 1876. Dvórák's account of a similar instrument was 
published in "Pogg. Annalen," Band III . , No. 3, Nov. 19, 1877. 



commences to rotate, and continues in motion as long as 
the sound lasts. 

In most other sonorous bodies we see how mechanical 
movement is transformed into sound. This little contri-
vance shows us that it is possible to reverse the process, 
and cause sound vibrations to generate mechanical motion. 

Does not this experiment remind you of the stories told 
of Orpheus and Amphion? We have not, indeed, the 
power of Orpheus, because, we are told, he, — 

" With his lute made trees, 
And the mountain tops that freeze, 

Bow themselves when he did s ing ; 
T o his music plants and flowers 
Ever sprung ; as sun and showers 

There had made a lasting spring." 

We cannot, like " Amphion the divine," by the magic 
power of sound alone, build the walls of a great city like 
Thebes ; for at the sound of his lyre, it is said, the stones 
came together and placed themselves one upon another.1 

But we can show that sound is indeed competent to put 
matter in motion, and that there is in the Greek legend 
just quoted an element of truth, slight though it be, that 
may not be disregarded. We have here another instance 
of truth and fiction meeting upon a common ground, — a 
striking illustration of the fact so frequently commented 
on, namely, that poets often have visions of things that are 
revealed to men of science long generations after they have 
been embalmed in immortal verse. 

The experiment with the sound-mill is a most inter-
esting one, and shows better than anything else the abso-
lute necessity of perfect periodicity to secure the maximum 
effect of which the instrument is capable; for if the 
resonators are not perfectly tuned to the fork there will 
be no rotary motion whatever. A sound from any other 
source, if sufficiently intense and in perfect unison with 
the resonators, will cause the wheel to revolve as well as 

1 " . . . Agitataque saxa per artem 
Sponte sua in muri membra coisse ferunt." 

a tuning-fork. By means of a fork actuated by elec-
tricity (Fig. 129), the motion of the wheel can be kept up 
indefinitely. Turning on the current from a single Grenet 
cell, the wheel at once begins to revolve, and after it is 
once started, the motion will remain uniform as long as the 
electric current retains the same strength. 

The explanation of the singular performance of this 
reaction wheel is to be found in the fact that the mean 
pressure of the air at the node of a stationary vibration in 
a column of air is superior to the pressure of the air in a 
state of rest, provided the vibrations be not infinitesimally 
small. In the resonators 
employed in this instance 
the nodes are found at their 
closed ends, as is the case 
in a stopped organ-pipe. 
If then the air in the re-
sonators vibrate with suffi-
cient force to produce in 
their interior, at the closed 
end, a mean pressure that ,';'. 
is greater than that of the 
free air at the end oppo-
site, rotary motion will, 
under the circumstances, Fig- ,29-

be the natural result. 
We come now to the opposite of resonance; namely, 

interference of sound. We can best elucidate this subject 
by constructing curves representing wave-systems of 
different periods, amplitudes, and phases. 
V In Fig. 130, A and B, let the two dotted curves repre-
sent two wave-systems of the same period and phase, but 
of different amplitudes. The resultant of these wave-
systems will be indicated by the heavy lines. In this, as 
in all cases where two curves corresponding to two or 
more wave-systems are combined, the perpendiculars of 
the resultant curve are equal to the algebraic sum of the 
ordinates of its constituents. In A, the two wave-systems 



acting in the same direction, and having consequently the 
same phase, tend to reinforce each other. In B, on the 
contrary, the wave-systems are in opposite phases, and 
one of them, therefore, as indicated by the resultant curve, 
partially annuls the effects of the other. In C we have 
represented two wave-systems of equal period and ampli-
tude, but of opposite phase. When one forms a crest, or 
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a condensation, the other forms a trough, or a rarefaction. 
Their joint effect, therefore, is zero. One wave-system 
entirely destroys the effect of the other. This is an 
illustration of a case of complete interference of wave-
motion. 

If, as in D, the two wave-systems indicated by the 
dotted lines do not cut the horizontal line at the same 
point, but differ from each other by a quarter of a wave-

length, the resultant wave-system will be represented by 
the heavy line. The two wave-systems in this case do 
not start off from the same point at the same time, and 
the resulting difference in phase, as shown in the figure, 
may be considered as due to the horizontal displacement 
of one of the curves, which, in this instance, is the one 
of lesser amplitude. D differs from B only in the fact 
that in the former there is a displacement of the smaller 
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curve by a quarter of a wave-length, while in the latter 
it amounts to a half wave-length. In each case partial 
interference is the result. 

If two wave-systems, whether of the same or of different 
amplitudes, differ from each other in point of departure 
by anything less than a half wave-length, we shall always 
have a corresponding difference of phase, and a con-
sequent partial interference. When they differ from each 
other by a half wave-length, or any odd number of half 
wave-lengths, and the waves are of equal periods and 



amplitudes, there will always be complete interference, and 
the body acted upon will remain in a state of rest. 

If the periods should be different, — that is, if the waves 
should be of different lengths, — then the resultant wave 
would be represented by a curve obtained in the same 
manner as the foregoing; namely, by taking the algebraic 
sum of the ordinates of the component curves to form 
their resultant. But we should find that the form of such 
curve would be quite different from that of those we have 
been examining. This is shown in Fig. 1 3 1 , E, where 
the wave-lengths of the two systems are as 1 :2, and where 
they are regarded as originating at the same point. In F 
of the adjoining figure we have the same wave-systems 
represented in which the shorter wave shows a horizontal 
displacement of one fourth of a wave-length. In G and 
H the horizontal displacement amounts to one half and 
three fourths of a wave length respectively, — equivalent, 
therefore, to a difference of phase of one half and three 
quarters of a wave-length. 

The difference in the forms of the resultant curves in 
these four cases is very marked. Any similar variation in 
period, amplitude, or phase of wave-systems would give 
rise to correspondingly different resultant curves. By 
taking three or more curves of varying period, amplitude, 
and phase, we could obtain an endless variety of curves 
corresponding to the endless variety of complex wave 
systems. 

The curves we have been studying are graphical repre-
sentations of what takes place in the formation of water 
and other liquid waves, and likewise of what obtains in the 
compounding of simple sound and light waves. 

If a pebble be thrown into a body of still water, a series 
of expanding waves is at once formed, which are equi-
distant from each other, and which decrease in amplitude 
as they recede from their centre. If a second pebble be 
thrown into the-water so as to strike its surface some dis-
tance from where the first pebble fell, a similar set of 
waves will be set up around the second centre of disturb-

ance, and will eventually meet those generated at the first 
centre. At some points where the two wave-systems 
meet, crest will be superposed upon crest, and the resultant 
wave will be equal to the sum of its component waves. 
In other places trough will meet trough, and there will 
be a correspondingly greater depression. In still other 
places crest will coincide with trough, and if the two 
waves are of equal size, the result will be total interference, 
and the water will remain undisturbed. If, on the con-
trary, the waves are unequal, the interference will be only 
partial, and the amount of disturbance will be equal to 
that produced by the difference of the two opposing 
forces. This is an experiment any one can make, and it 
is as instructive as it is simple. 

Observations on water waves, then, teach us that mo-
tion added to motion may produce rest. The question 
now arises, have we anything comparable to this in the 
case of sound? In other words, can sound added to sound 
ever give silence? 

If you will recall what has been said about the origin 
and nature of sound, you will be able to answer the ques-
tion without hesitation. Sound, mechanically considered, 
is, as we have seen, in all cases, due to vibratory motion, 
and if the vibrations generating two sounds be of equal 
intensity and period, but of opposite phases, silence will 
invariably be the natural result. 

Partial interference of sonorous vibrations is quite com-
mon, as we shall see in our next lecture, but total inter-
ference is more rare, and, except in a few cases, more 
difficult to illustrate experimentally. And yet one of 
these few cases enables us to show the phenomenon of 
complete interference most satisfactorily. The only in-
strument needed in this instance is an ordinary tuning-
fork. But I have known musicians to use tuning-forks 
for years, and, strange as it may appear, never be 
aware of this fact of interference until their attention was 
especially directed to it. This shows how very striking 
phenomena, that daily appeal to our senses, may some-



times escape our mind, unless our attention be particularly 
drawn in their direction. 

I hold a tuning-fork in my hand, and on turning it 
round near my ear I find that there are four positions of 
maximum loudness, and four positions in which no sound 
whatever is audible. Sounds are heard when the faces of 
the fork or the sides are turned towards the ear, and silence 
— interference — ensues when the intermediate points or 
edges of the fork are directed towards the auditory pas-
sage. At the points between those where sound attains 
the maximum of intensity and those where it entirely 
ceases, there is partial interference, and consequently a 
variation of sound from its maximum to zero. 
• These phenomena, first remarked by the celebrated 
Dr. Thomas Young, can be shown more strikingly, and in 
such a manner as to be audible throughout the room, by 
reinforcing the sound by means of a resonator accurately 
tuned to the period of the fork. As the fork I hold in my 
hand is revolved before the large aperture of this resona-
tor, you notice the varying changes in the intensity of the 
sound, now loud, now medium, now quite imperceptible. 
During each revolution, as you observe, there are four 
periods of maximum intensity of resonance, and similarly 
four periods of absolute silence. 

It is easy to show that this variation of intensity is pro-
duced by interference of sonorous vibrations. All that is 
necessary to do this is to cover one of the prongs of the 
fork with a small paper tube, which partially destroys the 
undulations from that prong, and consequently prevents 
their interference with the vibrations of the other prong. 
At once the sound bursts forth loudly, where before 
there was no sound at all. Uncovering the prong, the 
sound immediately dies away, and all is silence. Experi-
menting in a like manner with the other prong, we should 
obtain a similar result. Thus we demonstrate the exist-
ence of a most paradoxical fact, — the fact that under cer-
tain conditions sound added to sound gives silence. The 
demonstration in this case is complete. Sonorous vibrar 

tions in different phases are mutually destructive, and 
when of equal period and intensity have no effect on the 
tympanum of the ear, and consequently excite no sensa-
tion in the brain. 

In the experiments hitherto made you have observed 
that the sound is very feeble when the fork is made to 
vibrate alone. This is, in part, due to interference, as an 
examination of Fig. 132 will make evident. This pictures 
the tuning-fork as seen from above, the extremities of the 
prongs being represented by a and b. During their out- • 
ward swings towards c and e, waves of condensation are 
formed by the prongs at a 
and b, which move in op- /'i 
posite directions. At d \ / • 
and f the sonorous im-
pulses are always in the 
same phases, and sound / * ' 
here is at a maximum. 0 " j U K l ^ e 

The arrows indicate the —/ > < \ -
alternate and the opposite 
movements of the prongs / f 
of the fork. Waves of 
rarefaction are generated ^ 
in the space between the FIG. 132. 
prongs of the fork; and as 
both the condensed and the rarified waves have the same 
velocity, they will meet along the dotted lines g, h, i, k; 
and since they are of equal period and intensity, one will 
exactly annul the effect of the other. Hence along these 
lines, which Weber has shown to constitute equilateral 
hyperbolas, there is total interference, and no effect what-
ever is produced in the organ of hearing. 

That the air under such circumstances remains in a state 
of rest can be most conclusively proved by several cleverly 
devised experiments. . ) 

As one of the proofs, I shall first show you a very ^ 
striking experiment devised by Hopkins. For this pur-
pose we may employ one of the round brass disks used in 
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exhibiting Chladni's figures, and a forked metal tube, Fig. 
133, which is supported above the disk. The tube C is 
adjusted to a given note produced by the disk, and as 
soon as the disk is set in vibration we obtain, on strewing 
it with sand, a characteristic figure. When the prongs, 
D E, of the fork are above two alternate sections, like A 
and A', or B and B', the air in the tube is violently 
agitated, as is shown by the action of the sand strewn on 
the membrane on the top of the tube. When, however, 
the two branches of the tube are over adjacent sectors, as 
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A and B, or A' and B', the air in the tube is at rest, for in 
this case there is not the slightest vibration imparted to 
the membrane, as the sand remains undisturbed. 

The reason for these opposite effects is obvious. When 
the branches of the fork are over alternate sectors the 
vibrations excited in them are in the same phase, and 
the vibrations of the air-column in the tube are equal to the 
aggregate vibrations of the two branches. But when the 
fork is so placed that its branches are over adjacent sectors, 
the vibrations excited are in opposite phases. One sector 
of the plate moves upward, while the other moves down-
ward; hence a condensed and a rarefied pulse enter the 
tube simultaneously, — one neutralizing the effect of the 

other. Thus the result, as might have been expected, is 
total interference. 

Lissajous, to whose ingenuity we are indebted for so 
many beautiful experiments in acoustics, illustrates the 
same phenomenon in an equally interesting manner. In-
stead of a forked tube, he employs a disk (Fig. 134 B) , 
cut into sectors, the number of sectors being one-half as 
great as those formed by the vibrating plate, A, used in 
connection with it. If the upper disk, for instance, has three 
sectors, and the one underneath, as indicated by the sand 
figures, is divided into six, then 
the pulses emanating from three 
of the alternate sectors of the 
lower disk will be quenched by 
the corresponding sectors of the 
upper disk. In this wise, con-
densations and rarefactions are 
prevented from neutralizing one 
another, and a strongly reinforced 
sound is the consequence. Only 
vibrations in the same phase are 
permitted to enter the ear, those 
of the opposite phase being sup-
pressed. By rotating the upper 
disk, we at once hear risings and 
fallings of sound, according as the 
proper ventral segments of the vibrating plate are covered 
or exposed. 

Interference can also be shown by means of organ-pipes. 
On a small wind-chest are mounted two unisonant pipes 
(F ;g- US), giving the note C3. When the wind-chest is 
connected with the bellows, and air is admitted into one of 
the pipes, you hear a full mellow note. I next allow air to 
pass into the second pipe also. Now, it would seem that 
when both pipes are connected with the wind-chest, we 
should have a sound of double the intensity of that emitted 
by either pipe alone. Such, however, is not the case. 
The fundamental note of each pipe has been so weakened 



that at a short distance they are inaudible. All that you 
now hear is a rustling noise due to the escape of air from 
the embouchures of the pipes, and the octave of the funda-
mental, which still remains unaffected. The cause of this 
is that the wind in the wind-chest, by reason of the varying 
pressure in the pipes, passes into the two pipes alternately, 
and thus produces condensation in the one, and rarefaction 
in the other. These condensations and rarefaction's being 
equal in intensity and opposite in phase, neutralize each 
other as respects their action 011 the surrounding air, and 
the result is that it remains at rest, and no sound is 
heard. 

^ By means of Koenig's mano metric flames we are able to 
prove beyond a doubt the existence of these conditions of 
condensation and rarefaction which alternate with each 
other in the pipes. The two pipes just used are replaced 
by two similar ones (Fig. 135), provided with manometric 
capsules at their middle nodes. These capsules are con-
nected by rubber tubes to two jets placed one above the 
other in a vertical line and arranged in such a manner that 
when the gas is ignited, both flames will be reflected from 
an adjacent revolving mirror. When the mirror is rotated, 
and no sound is issuing from the pipes, we perceive two 
continuous bands of light, one above the other. As soon, 
however, as air'is admitted into both pipes, these bands 
become at once similarly serrated, except that the eleva-
tions and depressions of the two bands alternate, the tooth 
of one corresponding exactly to the indentation of the 
other. Thus the evidcncc of the existence of pulses of 
condensation in one pipe, while opposite pulses of rare-
faction prevail in the other, is as conclusive as the ex-
periment on which it reposes is beautiful. 

But supposing that while air is forced into both pipes, 
as in the preceding experiment, we connect the two cap-
sules with a common jet, what will take place? A little 
reflection will tell us that there will be no agitation of the 
flame, for the simple reason that the pulses reaching the 
jet are in opposite phases, and therefore neutralize one 

another. We make the necessary changes in the connec-
tions, and on admitting air, as before, into the two pipes, 
and revolving the mirror, the result is just as was antici-
pated,— perfect quiescence on the part of the flame, as 
indicated by the continuous band of light pictured in the 
mirror. The physical basis of sound, as we have learned, 

is motion. Here, as is evidenced by the aspect of the 
flame-image, there is no motion, therefore no sound. 

Norremberg, acting upon a suggestion given by Sir 
John Herschel, demonstrated the existence of interference 
in a still different manner. He caused sonorous vibrations 
to enter a tube with two branches of different lengths, 
which afterwards reunited. Here is shown a simple form 
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of this apparatus (Fig. 136), as modified by Quincke. A 
sound-wave enters one end, 0, of the apparatus, and on 
reaching the two branches of the tube at b, is divided, to be 
again united on reaching the other end,*. If the branches 
are of equal length, the ear placed at one end, s, will hear 
undiminished any sound emanating from the other end. 
If, however, one of the branches, cp q f , is longer than the 
other, ad, by a half wave-length of the sound passing 
through it, then the sonorous waves, on reuniting at e, 
will meet in opposite phases, and the ear placed at the 
end, s, of the tube, nr, opposite that at which the sound 
enters, will hear nothing 

<1 
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One may have a pleasing modification of this experi-
ment by availing himself of Kundt's device, with which 
you are familiar, of showing, by means of a light powder, 
the presence of sonorous vibrations in tubes. The instru-
ment employed for this purpose is before you (Fig. 137). 
It is essentially a combination of Kundt's tube with 
Quincke's apparatus. If the branches, hgc and hofnc, 
of the tube are so adjusted as to differ from each other by 
exactly a half wave-length, or some odd multiple of a half 
wave-length, a sound excited by friction of the rod, b a, in 
one end, d, of the instrument will not give rise to any dis-
turbance of the light powder in the other end, hk, of the 
tube. But should they, by sliding the tube / from 0 n to 
0'n', be made to differ from each other by more than a 
half wave-length, or some even multiple of a half wave-

length, the characteristic dust segments will at once appear, 
with greater or less distinctness, at the end of the tube op-
posite to that at which the sound-vibrations are generated. 
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But probably the most elaborate and comprehensive 
method of exhibiting interference is that employed by 



Koenig. It is essentially the same in principle as that 
proposed by Herschel, but in accuracy of results obtained 
is immeasurably superior to anything of which this great 
philosopher ever dreamed. Such an instrument is before 

you (Fig. 138). With it the manometric flame fulfils the 
same function that is assigned to the ear in Quincke's 
apparatus, and subserves the purpose of the powder in 
Kundt's tube; but its indications are far more delicate 
than either ear or powder. 
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The tube and its branches are of metal, and divided into 
millimetres, i. e. twenty-fifths of an inch. By means of a 
draw-tube at its topmost part one of the branches is capable 
of being lengthened or shortened at will. In order to pro-
cure a proper tone, a tuning-fork with its resonator is used 
as the source of sound. To the end of the tube opposite 
to that at which the fork is stationed, is attached a mano-
metric capsule. This, in turn, is connected with a gas-jet, 
which is supported before a revolving mirror. When both 
.branches of the tube are of equal length, the sound issuing 
from the fork and passing through the tube declares its 
presence at the capsule end by the beautiful serrated band 
of light, which is seen when the mirror is rotated. But if 
one of the branches of the tube is made longer than the 
other by just a half wave-length of the sound emitted by 
the fork, then we have complete interference of the sound-
waves, as is evidenced by the quiescent state of the mano-
metric flame. For now, when the mirror is rotated, you 
no longer see a serrated band of light, indicating the exis-
tence of vibratory motion in the capsule, and the end of 
the tube to which it is attached, but we have, instead, 
a continuous ribbon, which is proof positive of total 
interference. 

In order to render simultaneously visible the condition 
of vibratory motion at the end of each branch taken sepa-
rately, and the result produced when the two tubes are 
combined, we may, after Koenig, attach a capsule to the 
end of each branch, and provide each capsule with two 
rubber tubes. These tubes are connected with three sepa-
rate jets, all mounted on the same stand, and one placed 
immediately above the other. The middle jet is connected 
with both capsules as in the foregoing experiment, while 
the lower and upper jets are joined one to each capsule 
independently. 

If now the sound of the tuning-fork be made to act on 
the three flames, when the branches of the tube are of the 
same length, the upper and lower jets, as viewed in the 
revolving mirror, are seen to give two similar indentated 



bands of light, a and b (Fig. 139), whilst the central jet 
gives a like serrated ribbon. But the latter being acted 
upon by the sum of the pulses affecting the upper and 
lower flames, its indentations, a + b, of the same figure, are 
correspondingly deeper. By so lengthening one of the 
branches that it differs from the other by an exact half 
wave-length, the result manifests itself instantly. The 
upper and lower flames, being, as before, under the influ-
ence of like but separate vibratory motions, remain un-
changed, as is shown by the upper and lower flame-images 
at the right-hand side of the figure. The middle flame, on 
the contrary, as the middle image on the right of Fig. 139 
declares, does not betray the slightest quiver. The contrast 
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presented shows most strikingly the perfect interference 
that now prevails. 

The same ingeniously fashioned apparatus is available 
for exhibiting interference of sonorous waves proceeding 
from other sonorous bodies as well as from those generated 
by tuning-forks. 

It can also be utilized for measuring the velocities of 
sound in air and in gases. When we wish to employ it 
for determining the velocity of sound in air, we have 
only to secure perfect interference by properly adjust-
ing the branches of the tube when a simple tone of a 
given number of vibrations is passing through it. The 
wave-length is twice the difference of the lengths of the 
paths travelled by the divided sonorous pulses. This, 
multiplied by the known rate of vibration of the fork, is 

the velocity of sound in the air at the temperature of the 
atmosphere at the time of the experiment. 

By means of the little stop-cocks fitted into the top part 
of the branches we can fill the tube with any gas we 
choose, and determine its velocity in the same manner as 
we find that of air. In this instance, however, we shall 
have to take the precaution of preventing the escape of gas 
at the ends of the tube, or at the joints, — an emergency 
that is neatly provided for in the construction of the instru-
ment. Having done this, we shall find, in adjusting the 
branches so as to insure total interference, that the differ-
ence in the lengths of the branches of the tube will vary 
according to the gas with which the tube is filled, and, as 
a consequence, that as the length of the branches for the 
different gases varies, so will the'velocity of sound in these 
gases vary. 

It may be stated, in conclusion, that the phenomena of 
reinforcement and interference of vibratory motion apply 
to all kinds of wave-systems. They obtain in heat and 
light as well as in sound. Our experiments have shown 
us that sound added to sound may produce silence. 
Similarly, light added to light may cause darkness, and 
heat rays may interfere with each other in such wise as to 
cause a diminution of temperature. All that is necessary 
in either case is that the heat or light vibrations should 
meet each other in opposite phases. 

More than this. According to Hertz's experiments, 
electric and magnetic vibrations may similarly interfere 
with cach other as completely as those of light or of sound. 

Nothing shows better than the experiments we have just 
witnessed the nature of these various forces, or proves 
more conclusively that they are, one and all, simply modes 
of motion. The germ of this grand generalization, — a 
generalization demonstrated experimentally, step by step, 
— is to be found in an experiment on the diffraction of 
light made by a Jesuit philosopher, Grimaldi, over two 
hundred years ago. This germ has been developed by 
the researches of Huygens, Young, Arago, Dr. Lloyd, Sir 



William Hamilton, Maxwell, Hertz, and others, but above 
all by that brilliant young French physicist, Augustin 
Jean Fresnel. It was he that put the truth of the wave-
theory of light beyond further question by his celebrated 
experimentum cruris, in which he obtained total interference 
of luminous rays both by reflection and refraction. C H A P T E R VIII . 

BEATS AND BEAT-TONES. 

IN our last lecture we dealt with vibrations that are so 
related to each other that their resultant effect is 

either resonance or total interference. We found that 
when two sounds are in unison, and in the same phase, 
they tend to reinforce each other; and that when the 
same sounds are in opposite phases, — their intensity being 
equal, — one cancels the other, and silence is the result. 
Under these conditions we discovered that the" result must 
always be either augmentation or annihilation of sound, — 
no other result being possible. 

It is, however, comparatively seldom that we deal with 
two sounds that are exactly in unison. We are more 
frequently called upon to consider notes whose rates of 
vibration differ from each other by a greater or less 
amount. What, then, is the result, when two notes differ-
ing more or less from each other in pitch are sounded 
simultaneously? This question — one that is of special 
interest to musicians — I shall endeavor to answer in to-
day's lecture. What we have learned about resonance and 
interference has paved the way for our work to-day, — for 
the discussion, namely, of what we shall, after Koenig, 
designate as beats and beat-tones. 

Before you are the two C forks used in our last lecture. 
I damp one of them by attaching a small pellet of wax to' 
one of its prongs. On exciting it with the bow, you per-
ceive that it gives a slightly lower note than it did before. 
The extra load it has to carry retards its motion, and it 
executes, in consequence, a smaller number of vibrations 
than previously, and a smaller number, too, than is made 
by its unencumbered companion. 
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If now both forks are sounded simultaneously, what will 
be the result ? Something entirely different, 
apparently, from what was considered in our 
last lecture, and. yet, as we shall see, some-
thing closely related to the phenomena then 
discussed. You hear peculiar risings and 
fallings of sound, peculiar throbbing notes, 
disclosing an augmentation of sound resem-
bling resonance, and a diminution that ap-
proaches interference. This, in fact, is what 
we actually have, — alternate conditions of 
resonance and of total interference. As, 
however, the totality of interference lasts but 
a very small fraction of a second, the sound 
seems to be continuous and to vary only in 
intensity. 

That extinction of sound actually occurs, 
can be demonstrated in various ways. For 
the present, however, we shall simply con-
sider the phenomena in the light of sinuous 
curves representing the sounds produced. 
As before, we shall call the two forks A and 
B. Suppose now that A, which we shall 
consider as the loaded fork, makes eight vi-
brations, while B executes nine. The differ-
ence in their frequencies, as a matter of fact, 
is not so great; but this is immaterial. View-
ing them as vibrating in the ratio of 8: 9, we 
construct their curves accordingly. Let the 
light continuous curve (Fig. 140) represent 
the condensations and rarefactions origi-
nated at the fork A, and the dotted curve 
those proceeding from B. By combining 
these two curves, as in previous instances, 
and remembering that the perpendiculars of 
the resultant curve are always equivalent to 
the algebraic sum of those of its constituents, 

we have as a resultant in this case the curve a, b, c, d, e, f. 
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g, h. In the figure we notice that the two systems of 
waves commence and terminate at the same points. 
Hence, at a, b, c, d, e, f, g, h, the crests'and troughs 
will be correspondingly larger. At M, however, crest 
meets trough, and at this particular point there can be 
no disturbance. 

Translated into the language of sound, these curves 
signify that when waves of condensation concur, resonance 
is the result, and that when condensation meets rarefaction, 
silence ensues. Between the points of maximum reso-
nance and total interference, — that is, between A and M, 
— there is a gradual diminution of sound; and between 
the positions of interference and greatest resonance — that 
is, between M and b — there is a corresponding augmen-
tation. Hence the alternate risings and fallings of sound 
that are heard when two forks, such as A and B, are 
sounded together after their unison has been disturbed by 
so loading one of them as to lower slightly its frequency. 
Such alterations in the loudness of sounds are called beats, 
and, as we shall see, are of the utmost importance in 
acoustics, as well as in music. 

When the frequencies of two notes differ from each 
other by one vibration, there is one alteration of intensity, 
and, consequently, one beat per second. If two notes 
differ from each other by two vibrations there will be two 
risings and sinkings, and, therefore, two beats per second. 
And, in general, the number of beats per second arising 
from two notes near unison, sounding at the same time, is 
equal to the difference of their frequencies. 

Let us now apply this knowledge to the determination 
of the frequency of the loaded fork A. Unencumbered, it 
executes exactly 5 12 vibrations per second, as does also its 
companion B. Loaded, its vibration is something less. Let 
us see how much. Exciting A and B simultaneously, you 
hear the same loud distinct beats that were perceived in 
our previous experiment. Watch in hand, I count the 
number of beats heard in ten seconds. The number is 
twenty, and the number of beats for one second is, there-



fore, two. Subtracting this from 512, we have 510 as the 
frequency of the fork A as now loaded. 

By means of a little wax, a small coin is attached to the 
fork A . It is thus damped still more. The number of 
beats audible per second is greater than before. Obser-
vation shows that we have thirty-five beats in ten sec-
onds, and, consequently, three and a half in one second. 
The frequency of the fork A is now reduced to 5 0 8 . 5 

vibrations. 
Loading the fork A still more, the intervals of reinforce-

ment and diminution succeed each other more rapidly, 
until finally the beats become so numerous that it is 
impossible to count them directly. We now become con-
scious of an unpleasant sensation, which musicians call 
discord. When two sounds near the middle of the scale 
give rise to thirty-three beats per second, the discord that 
ensues is, according to Helmholtz, at a maximum. 

But tuning-forks are not our only means of exhibiting* 
the phenomenon of beats. Any two sonorous bodies will, 
if slightly out of unison, manifest the same alterations in 
intensity when caused to sound simultaneously. 

Let us try these two large open organ-pipes. They are 
now in unison, each emitting the note C2. By moving 
downward the slider at the top of one of them, we 
diminish the length of the vibrating column of air, and at 
the same time change the pitch of the note emitted. On 
causing the two pipes to speak, you at once hear, as in the 
case of the dissonant tuning-forks, loud and very marked 
beats. If we move the slider upwards the beats succeed 
each other less frequently, until, finally, when the two pipes 
sound in unison, they disappear altogether. 

We can, however, cause them to break forth again, 
without touching the slider. It is sufficient to bring the 
finger near the embouchure of one of the pipes, thus 
lowering its note, to evoke slow or rapid beats at will. 
The number of beats, in this case, will depend on how 
much the embouchure of the pipe is covered. Similarly, 
by placing the hand on the top of the pipe, and covering 

it more or less, we may lower the note, and thereby obtain 
beats of varying degrees of rapidity. 

By means of the pipes furnished with manometric cap-
sules used in our last lecture (Fig. 135), we can observe 
with the eye the character of these beat-producing tones. 
To this end, we connect the capsules of the two pipes to 
the same jet, and ignite the gas that is caused to issue from 
it. So long as the notes from the pipes are in unison, the 
flame is quiescent. But no sooner is unison disturbed by 
moving the slider of one of the pipes, or by putting the 
finger before the embouchure, than we have beats that 
cause the flame to dance in time with them. If the beats 
follow each other quickly, the flame dances with corre-
sponding rapidity. If the beats are slow, as is the case 
when the two notes are near unison, the flame at once 
declares the fact. 

If now the cubical mirror' before the flame be rotated, we 
have an elongated image of the flame that exhibits most 
beautifully its intermittent action, and pictures clearly the 
alternations of resonance and interference. The luminous 
band seen in the mirror reminds us of the resultant curve 
given in Fig. 140; the serrated parts of the band correspond 
to the crests and troughs of the curve, and indicate greater 
or less coalescence and reinforcement of sound, while the 
continuous portion of the luminous ribbon, like the middle 
part, M, of the curve, is certain evidence of total interference. 

A very pretty and striking method of observing beats is 
afforded by means of two singing flames. Before you are 
two singing flames (Fig. 141) in unison. By raising or 
lowering a telescopic slider attached to one of the tubes, 
we can easily change the pitch of the note emitted by the 
column of air vibrating within the tube. As soon as we 
thus disturb the unison of the two notes, you hear loud 
beats that succeed each other with more or less rapidity, — 
just in proportion as we increase or diminish the interval 
between the two tones. At the same time you observe 
a characteristic flickering of the flame. It dances to the 
beats and keeps perfect time with them. 

20 



Beats are very marked in pipe or reed organs tuned 
according to equal temperament. The so-called tremolo 
effects given by certain stops of these instruments are due 
to beats. But bells give rise to beats more readily, per-
haps, than other forms of sonorous bodies. This is partic-
ularly the case with large bells, and, as we have learned, 
arises from the impossibility of casting them so that they 
will be perfectly symmetrical and homogeneous through-
out. When ringing, the bell is divided into sections of 

different sizes, whose periods of vi-
bration differ more or less from 
one another. 

On the table are two rare antique 
Japanese gongs, which either singly 
or together give forth beats in a 
most remarkable manner. They 
are made of bronze, and are quite 
thin; but the purity and softness 
of the notes which they emit, and 
the length of time during which 
they continue to vibrate after being 
struck, are quite surprising. The 
sounding of a number of such bells, 
properly tuned, in the ancient tem-
ples of Japan, must have been pro-
ductive of effects that were not only 
pleasing to the ear, but also con-
ducive to solemn religious emotion. 

The gongs are placed on small, soft mats, to give 
.mellowness to the tone; and for a similar reason they are 
struck, not with hard hammers, but with padded sticks. I 
now strike the large gong, and a delightfully soft and pure 
note is the result. The beats engendered succeed each 
other in such a way as to produce a tremolo effect rivalling 
that afforded by the most perfect musical instrument. On 
exciting the smaller gong we secure similar results, the 
only difference being that in this case the pitch is higher. 
Both gongs, as you observe, are especially rich in upper 
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partials. By properly striking the gongs, their first upper 
partials can be made to sound quite as loud as their 
primes. The primes and first upper partials can now be 
heard distinctly in all parts of the hall. 

When both gongs are struck at the same time, we get a 
most confused combination of sounds. And the fact that 
the gongs, when sounding their primes, are slightly out of 
tune, only'intensifies the dissonance when their upper 
partials are brought out with any degree of force. When, 
then, both gongs are sounded simultaneously, we have the 
beats due to each taken separately, and the beats caused 
by the interferences not only of the primes with each 
other, but also of the upper partials with each other, and 
of these partials with their primes. Some of the beats, as 
you will perceive by listening closely, are very slow, others 
more rapid, and others again so rapid that they give rise 
to a rough, rolling noise that is quite painful to the ear. 
This harshness is observed in chimes of bells when not 
carefully tuned. It is more prominent in bells than in the 
gongs we have used, because the tones of the former are 
more piercing than those of the latter. 

Beats furnish us the simplest and the most delicate 
means of determining when two notes are in unison. Let 
me illustrate. I take the sonometer and place the bridge 
as nearly as possible midway between the two supports of 
the wire. As nearly as I can judge by the eye, the two 
divisions of the string are equal in length. They should, 
therefore, give the same note. I excite one section of the 
string, and as soon as the note produced is extinguished, 
the other section is agitated. As far as the ear can esti-
mate, there is no difference in the two tones. If we now 
sound the two divisions of the string together, we at once 
hear beats that declare the absence of perfect unison. 
The beats are not very rapid, it is true, because there is 
very little difference between the frequencies of the two 
notes. But this difference, slight as it is, manifests itself 
at once. 

By means of beats we are able to distinguish from each 



other notes that do not differ from each other in frequency 
by more than one fifth of a vibration in a second. Scheib-
ler's marvellously accurate system of tuning is based on 
beats entirely. According to his system, there is no at-
tempt made to bring the note of a string, pipe, or reed into 
unison with a standard of pitch directly. The work is 
done indirectly, but with a degree of accuracy that is well-
nigh absolute. For this purpose a specially Constructed 
set of forks is required, giving notes just four vibrations 
lower or higher than those which are to be attuned. To 
tune a piano, for instance, its note of A s is made to give 
just four beats per second with a fork that makes exactly 
that number with a standard A3 fork, whose absolute num-
ber of vibrations is known. We are thus certain that the 
piano-string executes the same number of vibrations as 
the fork taken as the standard of pitch. By this method 
any one who can count beats is capable of tuning. 

On the table are two sets of forks, — thirteen in each 
set, — one of which gives the tempered chromatic scale 
from C3 to C4, according to French pitch, — As = 435 
vibrations per second, — while the other furnishes the 
same notes heightened by precisely four vibrations, and 
generating, consequently, four beats per second. 

Allow me to show you how such forks are used. I will 
take A of the second set of forks, — these are called 
auxiliary forks, — and adjust the string on our sonometer ' 
so that it will generate just four beats per second when 
sounded with the fork chosen. A few moments only are 
required for the adjustment. When it is once attained, 
as we know by counting the beats, we are certain that the 
string is executing exactly 435 vibrations per second, and 
emitting the note A3 of the standard of pitch of the French 
Conservatory. 

In a similar manner we could, by means of these forks, 
tune all the notes of an entire octave — from C„ to C4 — 
of any musical instrument whatever. Musicians, however, 
are not so exact. They are satisfied to get the pitch of 
one note right, — generally A3, as above, or C4, —and then 

proceed from this one note to tune all the others by ear, 
by estimation of the fifths. The accuracy of tuning in 
this manner varies, of course, with the delicacy of the 
tuner's ear. For this reason no two persons, except by 
chance, would tune exactly alike. And for a similar 
reason, no one, who is thus guided solely by his ear, 
could tune in succession two instruments that would be 
perfectly in unison. 

For perfect tuning, one of Scheibler's tonometers is 
indispensable. The two sets of forks before you are 
sometimes called tonometers, because Scheibler's method 
is used in connection with them. But the tonometers 
which were devised and used by Scheibler consisted of 
a series of forks not only extending over a whole octave, 
as do those on the table, but also giving four beats for 
every possible note within the octave. Thus, one of his 
tonometers intended for the octave A2 to A,, German 
pitch, — that is, from 220 to 440 vibrations per second, — 
embraced fifty-six tuning-forks. Beginning with A2 of 220 
vibrations, each fork in succession of this tonometer was 
tuned exactly four beats higher than the one preceding. 

Koenig makes, on Scheibler's principle, superb tonome-
ters of sixty-seven forks for the octave from C3 to C4. In 
addition to this, he has, with the expenditure of infinite labor 
and skill, constructed a like tonometer, as we saw in our 

'secqnd lecture, for the entire compass of musical sounds. 
By means of this unique instrument one may determine 
with ease the absolute pitch of every note from C-2 to F„. 

By means of one of Lissajous' apparatus, as modified by 
Mercadier and constructed by Duboscq, I am able to give 
you a most telling optical illustration of the phenomenon 
of beats. The apparatus consists of two tuning-forks (Fig. 
142), one of which is provided with a coil so that it may 
be kept in vibration electrically. The fork A carries a 
style on one of its prongs, while one of the prongs of the 
fork B bears a piece of smoked glass. This latter fork is 
also furnished with sliding weights, by means of which it 
may be made to give various intervals with the fork A. 



The ends of both forks, with style just touching' the 
smoked glass plate, is adjusted over the condenser of the 
lantern. The fork B is now set in vibration by passing 
an electric current through the coil fastened between the 
two prongs.' This causes the style of the fork A to 
inscribe a straight line on the smoked glass. 

If now the fork A is also caused to vibrate, it will tend 
to make this straight line longer or shorter, according as 
it moves in the same direction as the fork B, or in an 
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opposite direction. When, then, the two forks are in 
unison, they will reinforce or enfeeble each other accord-
ing as they are in the same or in opposite phases. This 
reinforcement or enfeeblement will be indicated by the 
line traced on the glass, which will be longer or shorter 
when the two forks are simultaneously acting than when 
only one is in motion. When the fork A is moved in a 
line parallel to its axis, the straight line on the glass will 
change into a beautiful sinuous curve like those shown in 
the second lecture. The objective and the right-angled 
prism at the top of the lantern enable me to project on 

the screen all the figures that the style of one fork may 
inscribe on the glass of the other. 

I disturb the unison of the two forks by moving the 
sliding weights on the fork B. When both forks are at 
rest the result of this disturbance of unison is to cause the 
line inscribed on the glass plate to alternately lengthen 
and shorten, as we see by the image on the screen. The 
number of alterations in any given time will depend on the 
number of beats per second made by the two forks; and 
the number of beats, as we have seen, depends on the 
difference of the frequencies of the forks. If there is only 
one beat per second, the alterations in the length of the 
line will occur once every second. If there are two or 
more beats per second, the lengthening and shortening of 
the line will take place correspondingly often. Under 
these circumstances, if the fork A is moved slowly and 
uniformly to the left, — that is, in a direction parallel to 
its axis and to the length of the plate, — we observe a 
sinuous line as before, but one whose indentations have 
a varying amplitude from a maximum to zero. This vari-
ation in the amplitude of the curves shown on the screen 
exhibits to the eye the difference in the rates of vibration 
of the two forks, while their beats declare the same thing 
to the ear. 

I now adjust the sliding weights again, and while the 
two forks are in vibration I move A to the left, as before, 
and you have the result on the screen as a beautiful undu-
lating curve, which tells more clearly than words the 
nature of the combined motion of the two forks. The 
forks used are not tuned to give any particular note, nor 
are they constructed to give a very loud sound; but if you 
will listen attentively, you will be able to perceive beats 
succeeding each other at the rate of about two per second. 
And if you compare the number of beats with the rhythmic 
action of the image on the screen, you will find that the 
beats produced synchronize perfectly with the formation 
of the spindle-shaped segments of the sinuous curve on 
the screen. 



M. Lissajous has taught us how to vary this experiment 
so as to obtain the same results in an equally striking and 
pleasing manner. His method is so beautiful, and its 
applications are so general and of such importance, that 
every one interested in acoustics should be familiar with it. 
We are again indebted to M. Mercadier for devising for us 
a modified form of Lissajous' original apparatus. Merca-
dier's apparatus is more convenient than the one Lissajous 
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used, and enables me to show Lissajous' figures, as they 
are called, to a large number of persons at the same time. 

We use two tuning-forks similar to those used in the 
preceding experiment. Both are mounted, so as to be 
kept in vibration at will by an electric current. The only 
respect in which the forks now used differ from those just 
employed is that the style and vibrating plate are replaced 
by polished steel mirrors attached to the ends of the 
prongs of each fork. One of the forks (Fig. 143) is so 

placed that its mirror receives a beam of light coming' 
from the lantern to the left. The light is then reflected 
from this fork to the mirror on the second fork, and thence 
reflected to the screen, through a lens, supported on an 
appropriate stand. One Grenet cell is connected with 
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each fork, which is thus kept vibrating as long as may be 
desired. When the two forks are in unison, they tend 
to reinforce or to weaken each other, according as they 
are in the same or in opposite phases. 

When the forks are so adjusted that they vibrate in the 
same plane, the image of light seen on the screen can be 
made to go through all the various changes, and in the 
same manner, as the inscriptions on the smoked glass in 



our last experiment. The forks are now so adjusted that 
they differ by a semitone, — that is, their rates of vibration 
are as 24: 25. The result is the beautiful curve (Fig. 144) 

now on the screen. If we diminish the interval so that the 
relative frequencies of the two forks are as 80: 81, we get 
a smaller interval, known to musicians as a comma. As 
seen on the screen, — see adjoining figure, — its image 
resembles that corresponding to the interval of a semi-
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tone, except that the number of sinuosities is greater for 
the comma, while their amplitude is less. Fig. 144 also 
shows a number of curves corresponding to simpler in-
tervals. In Fig. 145' are several beautiful and complex 
curves obtained by Koenig from the altered harmonic in-
tervals indicated at the left-hand side of the figure. 

Nothing can give us a better idea of the nature of beats 
than the figures we have just been studying. The swell-
ings and contractions of the indentations seen on the 
screen are the exact counterparts of the condition of the 
atmosphere in this hall. The reinforcements and inter-
ferences of sound so beautifully depicted in the different 
figures we have seen, tell us how the atmosphere that sur-
rounds us is alternately agitated and quiescent, and why 
it is that we perceive in rhythmic order the varying 
periods of resonance and silence. 

These experiments are made specially to appeal to the 
eye. I shall now make an experiment that will appeal 
with equally telling effect to the ear. 

Before you (Fig. 146) is a superb instrument designed 
by Dr. Koenig, by means of which we are enabled to 
study the phenomena of beats with more satisfaction than 
with any other instrument we have yet seen. It is a 
powerful C2 tuning-fork, actuated by electricity, and fixed 
before a large adjustable copper resonator. Both branches 
of the fork are hollow, having been bored by a drill of 
small diameter. These borings unite with each other in 
the stem of the fork, where they communicate with a 
small reservoir of mercury. The mercury can be made to 
move up and down the branches of the fork by means of 
a small piston that works in a cylindrical piece of steel, 
which serves as the reservoir. By raising the mercury, 
the number of vibrations of the fork is lessened, and its 
note lowered in proportion. By lowering the mercury, the 
note is correspondingly raised. We thus have the means 
of readily changing the frequency of the fork within a 
comparatively wide limit, and of having a note whose 
intensity remains unchanged. Dr. Koenig appropriately 
calls this a fork of variable pitch. 



Beside it stands another fork exactly similar, except 
that it is not provided with the arrangement for changing 
its frequency. The pitch of this second fork is constant. 
By properly adjusting the height of the mercury in the 
fork of variable pitch, we can bring it into unison with the 
fork of constant pitch. If we now connect each fork with 
a single Grenet cell, the forks are at once set in vibration. 

You hear little or no sound as yet, because the resonators 
are closed. One is now opened, and then the other, when 
you hear notes of exceeding purity and volume. At pres-
ent the two forks are in unison, and the notes produced 
seem to proceed from a single source of sound. By 
raising or lowering the mercury, we can disturb the uni-
son. The slightest movement of the piston is sufficient to 
change the relative frequencies of the two forks, and to 
induce beats. 

The beats are now very slow, because the piston has 
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been moved but slightly, and the rate of vibration of the 
fork has been affected but little. You can, however, per-
ceive a rising and falling of the sound, although each beat 
persists for several seconds, because of the extraordinary 
power of the sounds that engender these beats. The notes 
emitted are as nearly simple tones as may be, for the forks 
have been so constructed that all the upper partials have 
been quenched. We have, then, nothing to consider ex-
cept the primes, and the beats to which, by virtue of their 
different rates of vibrations, they give rise. 

Changing the position of the mercury in the fork still 
more, we can hear several beats a second. Watch in 
hand, I count the number now heard in ten seconds. 
There are thirty; that is, three for each second. I have 
all along been raising the mercury in the bores of the 
fork. This has been equivalent to weighting its prongs, 
and causing them to move more slowly. The number of 
vibrations has consequently been reduced, and the note 
correspondingly lowered. The number of beats tells us 
exactly the extent of this change. C2 executes 128 vibra-
tions per second, and the fork of variable pitch makes, 
therefore, three less ; namely, 125 per second. 

Raising the mercury still higher in the fork, the beats 
become so rapid that it is difficult, if not impossible, to 
count them. It is, indeed, difficult to count beats when 
there are more than four per second ; and their enumera-
tion is almost equally difficult when the number falls below 
one a second. It requires practice to count them with 
any degree of accuracy when there are two each second. 
Their enumeration is easiest when there are three or four 
per second. 

The tuning of musical instruments, as now used, is 
effected solely by counting, or at least by estimating the 
beats generated by various notes that are successively 
sounded two by two. Proficiency in tuning requires not 
only an accurate ear, but also long years of practice dur-
ing several hours each day. Without the aid of beats, 
any approximation to correct tuning with the unassisted 



ear would be impossible. Without beats, it is hardly pos-
sible for even the most accurate ear to tune just intervals, 
not to speak of the more complicated intervals employed 
in our so-called tempered instruments. 

Mr. Ellis, in referring to this matter, says: " B u t few 
ears could be trusted to tune a succession of perfect fifths 
and fourths. Herr G. Appunn " — the brother of Anton 
Appunn, who made some of the high-pitch forks used in 
our second lecture — "told me that it cost him an im-
mense labor to tune thirty-six notes, forming perfect fifths 
and fourths, upon an experimental harmonium, and he 
had the finest ear for the appreciation of intervals that I 
ever heard of. The accumulation of almost insensible 
into intolerable errors besets all attempts to tune by a 
long series of similar intervals. Even octaves are rarely 
tuned accurately through the compass of a grand piano-
forte." 

In the early part of the lecture it was stated that the 
number of beats engendered when two slightly dissonant 
notes were sounded, is equal to the difference of the fre-
quencies of the notes. This is true ; but it would be mis-
leading to have you left under the impression that beats 
are produced only when two notes are near unison. But 
this is just what is taught by most writers on sound and 
music, and by those especially who follow Helmholtz. 
Koenig, however, by a most exhaustive series of experi-
ments over almost the entire compass of sound, has dem-
onstrated, by means of the most perfect instruments that 
mechanical ingenuity could devise, that the generally ac-
cepted theory of beats must be materially modified to 
correspond with the results of his investigations. Xo one, 
I think, will question the accuracy of the statements of 
one who is known to be so careful as Koenig, and who is 
recognized as an expert of the greatest eminence in all 
that concerns the science of acoustics. 

According to Koenig, beats are produced not only 
when the intervals are small, but also when the frequencies 
of the generators of sound are widely separated from each 

other. In his experiments he was able to distinguish 
beats made by disturbed harmonic intervals up as far as 
the eighth and tenth partial. Thus, by taking C! of 64 
vibrations as the prime, and C4, making 512 vibrations, and 
three octaves above C,, he was able, by slightly altering 
the frequency of either fork, to obtain beats. And al-
though C4 is the eighth partial of Q, the beats were quite 
distinct, but not so loud as those yielded by two forks 
nearly in unison. More than this, under favorable circum-
stances he succeeded in obtaining beats with the intervals 
Gj: D4— 64: 5 76, or 1 : 9,— and C, : E4 — 64: 640, or 1 : 10. 

Helmholtz and others have imagined that these beats 
were due to the upper partials of the forks used, or to the 
resultant tones, about which we shall see more presently; 
but Koenig took care to use forks that gave no upper 
partials whatever. Throughout his admirable investiga-
tion " On the Sounding of Two Tones at the Same Time," 1 

he studiously eschewed the use of forks that gave other 
than simple tones. Upper partials and resultant tones, 
therefore, cannot afford any explanation of the facts ob-
served ; namely, that two simple tones, of widely separated 
frequencies, give rise to beats as well as those which are 
only slightly removed from unison. 

But this is not the only discovery made by Koenig 
concerning the production of beats. He has also demon-
strated that two simple tones, called generators, are com-
petent to excite two sets of beats that are quite different 
from each other. These be'ats he distinguishes as upper 
and lower beats. Their frequency for any given interval 
may be determined from the following law, which in all 
cases agrees with the results of experiment: — 

The frequencies of the beats are equal to the differences 
between the number of vibrations of the upper generator and 
the vibration-numbers corresponding to the two multiples of 
the lower generator, between which the vibration-number of 
the upper generator is found. 

Thus, according to this law, for the interval 2 : 5, with the 
1 Quelques Experiences d'Acoustique, pp. 87 et seq. 



notes Q : E3 , giving respectively 128 and 320 vibrations 
per second, the upper number, 5, of the interval ratio lies 
between 4 and 6. But these numbers are the second and 
third multiples of the lower number, 2, T h e frequencies 
of the two sets of beats will, therefore, be found by sub-
tracting 4 from 5, = I, for the lower beat, and 5 from 6, = I, 
for the upper beat. The ratio, then, of the frequency of 
the lower generator to that of the lower beats will be 2 : 1 , 
or, taking the vibration-number, 12S, of the generator, the 
beat-frequency, as compared with it, will be 64. Similarly, 
the ratio representing the frequency of the upper generator 
and that of the upper beats will be 5 : 1 , or 320 :64. The 
frequencies both of the lower and upper beats in this case 
are equal. 

If, however, we take the interval 3 : 8 for the notes C2 : 
F3, with vibrations equal to 128: 341.3, we shall find that 
the frequencies of the upper and lower beats are different. 
Thus, taking the interval ratio, 3 : 8, of the two generators 
named, we find that the number 8 of the upper generator 
lies between 6 and 9, the first and second multiples of the 
number expressing the relative frequency of the lower 
generator. The relative frequencies, accordingly, of the 
upper and lower beats will be 8 — 6 = 2, and 9 — 8 = 1. 
That is, the frequency of the lower beats will be to the 
lower generator as 2 : 3, or, as the number of vibrations 
of the lower generator is 128, the number of beats will be 
85.3. In like manner, the ratio of the relative frequency 
of the upper generator and the upper beats being 8 : 1 , 
their absolute frequencies will be 341.3:42.6. The fre-
quency of the upper beats, in this instance, is just one 
half that of the lower beats. 

But it would be a mistake to infer, from what has been 
said, that both upper and lower beats are heard in every 
instance in which beats are produced. Such is not the 
case. More frequently only one set of beats is audible. 

In going from unison, 1 : 1, to the octave, 1.: 2, or from 
the octave, 1 : 2, to the twelfth, 1 : 3, we shall find that the 
lower beats extend a little over the lower half of each 

interval, and the upper beats over a little more than the 
upper half. Over a short space near the middle of each 
interval, both sets of beats are heard with varying degrees 
of distinctness. In higher periods of intervals, as from 1 : 3 
to 1 : 4 , from 1 : 4 to 1 : 5 , etc., the audibility of both 
upper and lower beats has a more limited range. This is 
explained by the fact that in each period the upper béats 
are more feeble than the lower beats.» As a consequence, 
the intensity of both upper and lower beats diminishes 
from period to period in proportion as we ascend from 
lower to higher periods. 

Illustrations showing the order of occurrence of lower 
and upper beats, and of their occurrence together, are 
easily found. Thus the interval, 8: 9, according to what 
has been stated, should give only lower beats. Taking 
the notes Ci : Di, whose vibration-numbers are 64: 72, we 
have only lower beats, whose frequency, 8, is equal to the 
difference between the frequencies of the two generators. 
With the interval 8: 15, we have only upper beats, the rela-
tive frequency of which is 1 • 8 2 = 16. 16 — 15 = 1. 
Choosing the interval C, : B„ whose vibration-ratio is 
64: 120, we obtain upper beats having a frequency of 8. 
According to the rule just given, we double the frequency 
of the lower generator, 64, which gives us 128, and sub-
tract from this the vibration-number, 120, of the upper 
generator, whereby, as above, we have 8 as a remainder. 
With C2 : F2, whose vibration-ratio is 128: 170.6, giving an 
interval 3 : 4, and near the middle of the octave, we have 
both upper and lower beats. 170.6— 128 gives us 42.6 
as the frequency ot the lower beats; and 128 X 2 = 256, 
and 256 - 170.6 = 85.4, gives us the frequency of the 
upper beats. But when two generators separated by an 
interval of a fifth are employed, — that is, when their fre-
quencies are as 2 : 3, —then the frequencies of the upper 
and lower beats are invariably equal. 

The frequency of the beats, as we have seen, increases 
as the generators depart from unison. At first their fre-
quency is very low, and can easily be counted. Gradually 
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it becomes more and more rapid, the beats changing into 
a roll, and then into a confused rattle. 

The question now arises, "Can beats link themselves 
together so as to give rise to a continuous sound? " La-
grange and Dr. Thomas Young, the latter of whom gave 
the subject much attention, thought they could. Helm-
holtz and his followers say No. Koenig takes up the sub-
ject, and by a long series of the most careful observations, 
with large tuning-forks especially constructed for the pur-
pose, comes to the conclusion that beats can and do 
change into sounds when their number attains a certain 
limit. We shall take a hurried review of Koenig's investi-
gations, when, I think, you will be content to accept his 
views as, in the main, correct. 

In 17 14 Tartini, the celebrated Italian violinist and 
musical composer, discovered that when two notes were 
simultaneously sounded on the violin with sufficient inten-
sity, they gave rise to a third note distinct from both. He 
called them tersi suoni, — third sounds. They are often 
called, after their inventor, Tartini's tones. They are like-
wise variously denominated differential, resultant, and com-
binational tones. Koenig calls them beat-notes, or beat-
tones. Tartini made his discovery the basis of a new 
system of music,— a system which he developed in his 
" Trattato di Musica, Secondo la Vera Scienza dell' 
Armonia," published in 1754, and in a second work on 
"De i Principii dell' Armonia Musicale," published in 1767. 

Helmholtz distinguishes two kinds of combinational 
tones, — viz., differential and summational tones. The for-
mer are called differential tones, because their frequencies 
are equal to the difference of the vibration-numbers of 
the generating tones. The latter are designated summa-
tional tones, because their frequencies are equal to the sum 
of the vibration-numbers of their generators. For reasons 
that will appear as we go along, I shall, after Koenig, call 
both of these tones beat-notes, or beat-tones. 

For the ordinary harmonic intervals, — that is, those 
comprised between unison and a major sixth,— it is quite 

true that we obtain tones whose frequencies are equal to 
the difference of their primaries. But it is only these few 
intervals that afford a basis for the name differential tones, 
and the various theories with which they have been asso-
ciated. In the following table are exhibited the beat-tones 
— the so-called differential tones — of the more common 
musical intervals: — 

Intervals. R a t l ° o f Difference T l l e B e a l - ' ° " e >s deeper than the 
Frequencies. Lower Generator by 

Octave . . . . 1 : 2 I O 
F i f t h 2 : 3 I An octave 
Fourth . . . . 3 : 4 1 a twelfth 
Major third . . 4 : 5 1 Two octaves 
Minor third . . 5 : 6 1 Two octaves and a major third 
Major sixth - . 3 : 5 2 A fifth 
Minor sixth . . 5 : 8 3 A major sixth 

Putting this result in musical notation, showing the gen-
erating tones as minims and the beat-tones as crotchets, 
we have, — 

— 1 — p H 
tJ 

—1——i — 1 — 
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ê 
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By means of the tuning-forks before you it is easy to 
render these beat-tones audible. Taking the two forks, 
C4 and G4, whose interval is 2 : 3 , and whose frequencies 
are 5 r2 and 768 respectively, we obtain, on exciting the 
two forks, a loud and distinct beat-tone, Cs, whose fre-
quency is 768 —512 = 256. By sounding simultaneously C, 
and F4, — interval-ratio 3 : 4 , and frequencies 512 :682.6,— 
we have a beat-note which, as above indicated, is a twelfth 
below the lower generator; namely, F., of 170.6 vibrations. 
In like manner, C4 and E 4 — interval 4: 5, frequencies 512 : 
640—-give us C2 of 128 vibrations as a beat-note. Pro-
ceeding in like manner, it would be easy to render audible 



the beat-notes due to all the other intervals of the above 
table. 

The rule for determining what are the beat-tones for any 
two generators is precisely the same as that given for cal-
culating the number of beats produced by two sources of 
sound. The law governing both beats and beat-tones is 
identical. This is what might be expected if Koenig's 
theory, that beats when sufficiently numerous change into 
beat-tones, is true. Beats are best observed with grave 
notes, where the difference in frequency is necessarily 
small. Beat-tones, on the contrary, are best studied with 
the higher notes, whose vibration-numbers give a corre-
spondingly greater difference of frequency. According to 
Koenig, beats are best heard with tuning-forks below C, of 
512 vibrations. Above C4 all the intervals, except those 
very near unison, give rise to beat-tones of greater or less 
intensity. 

"But , " you will say, " i f the law governing beats and 
beat-tones be the same, we should have upper and lower 
beat-tones as well as upper and lower beats?" And so 
we have. And it is precisely these upper beat-tones, 
whose existence is not explained by Helmholtz's theory, 
that, with many other stubborn facts, contribute to render 
his theory untenable. Thus, for the intervals above con-
sidered, C4 : G4 ; C4: F 4 ; C4 : E4, we have, in addition to the 
lower beat-notes, C3, F2, C2, also the upper beat-notes, C3, 
F3 , and G3. When the two beat-notes coincide, as the 
lower and upper beat-notes C3, they tend to reinforce each 
other, and generate a proportionally louder sound. When 
they differ by an octave, as F2 and F3, they give rise to a 
note in which each seems to predominate alternately. 
The effect of the beat-tones C2 and G3 sounding together 
is the same as would be produced by two weak primaries 
of the same interval sounding at the same time. 

For the intervals given in the table on page 323, the the-
ory of differential tones may apply; but there are many 
other intervals where the beat-tones are not equal to the 
difference between the frequencies of their primaries. 

The same difficulty obtains with summational tones. We 
can show experimentally the existence of beat-tones which 
are entirely different from summational tones, and which 
Helmholtz's theory is incompetent to explain. 

Koenig's law regarding beat-tones is best illustrated with 
heavy forks emitting acute sounds. On the table is a set of 
twelve such forks, ranging from C5 to Cr. With these forks 
we are able to get beat-tones that are extraordinarily loud 
and pure. We take two 
of them and clamp them 
in a heavy iron support, 
specially constructed for 
the purpose (Fig. 147)-
When sounded, they yield 
the notes C8 and B6, — 
interval 8 : 1 5 , frequen-
cies 2048:384c»,—whence 
we get, as an upper beat-
tone, C3, of 256 vibra-
tions. Taking the fre-
quencies of the notes in 
question, we have, ac-
cording to Koenig's law, 
2048 X 2 = 4096 ; 4096 
— 3840 = 256. But there 
is no differential tone 
here. The differential 
tone, if one existed, should, in this case, be a note having 
a frequency of 1792, — a number obtained by subtracting 
2048 from 3840, — and would, consequently, have a pitch 
equal to the seventh partial of the note actually heard, 
256 X 7 = 1792. 

With the forks C5 :D6 , — intervals 4 :9, frequencies 1024: 
2304, — we have only a lower beat-tone, C3, — 1024 X 2 = 
2048; 2304 — 2048^=256 = 03. The differential tone in 
this case, if such existed, should be 2304— 1 0 2 4 = 1280 = 
E.5, — a major third above the lower generator ; but no 
such tone is audible. 
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The forks C5 and F6 — interval 3 : 8, frequencies 1024: 
2730.8 — give both upper and lower beat-tones; but, again, 
there is no differential tone. The beat-tones in this case 
are F 3 and F 4 ; the differential tone, if any existed, should 
be Ay Here the upper generator, 8, lies between the sec-
ond and third multiples of the lower generator, 3 ; that is, 
between 6 and 9. By subtraction we have the differences 
2 and 1 ; 8 - 6 = 2, and 9 - 8 = 1 . The lower beat-note 
thus forms with the lower generator the interval 2 : 3 , and 
the former is, consequently, a fifth below the latter. The 
upper beat-note makes, with the upper generator, the in-
terval 1 :8, which throws the beat-note three octaves below 
F6, and makes it, as above, F „ of 341.3 vibrations, as 
against 2730.8 vibrations of F6. 

VVe have seen how two primary tones may give rise 
to beats and beat-tones. The question may now arise, 
Can these beat-tones give rise to other beats and beat-, 
tones in the same manner as primary tones do? For 
the sake of distinction we shall call the beats and beat-
tones produced by two given generators primary beats and 
beat-tones. Can, then, primary beat-tones, like their gen-
erators, give rise to beats and beat-tones also? They can. 
And the beats and beat-tones thus produced are called 
secondary beats and beat-tones. The great merit of Koenig's 
investigations is that he has been able to establish the law 
by which such beats and beat-tones are generated. I have 
not time to illustrate it in detail. It is sufficient to say that 
it is essentially the same as the law governing primary 
beats and beat-tones. 

A little consideration will make it evident that secondary 
beats and beat-tones can be heard only when the sounds 
of the generators are very acute and very intense. I will 
pass by the secondary beats, and give you two examples of 
secondary beat-tones. For this purpose I shall employ for 
the first example two forks having the interval 8 : 1 1 , and 
executing respectively 2048 and 2816 vibrations per sec-
ond. The first fork corresponds to C6, and the second 
emits a note between F c and Gc. The note it gives is, in 

reality, the eleventh partial of C3, — the frequency of C3 

multiplied by 11 giving 2816, the frequency of the fork in 
question. 

When, therefore, these two forks are set in vibration, 
there are produced the primary lower beat-tone, G4, of 768 
vibrations, and the primary upper beat-tone, E6, of 1280 
vibrations. But besides these two beat-tones we may hear 
clearly a third note, C4, of 512 vibrations. This is the 
secondary beat-tone, and is equal to the difference between 
the frequencies of the two primary beat-tones, G4 and E 5 ,— 
1280 — 768 = 512. 

I now take two similar forks, whose interval is 8 : 1 3 , and 
whose frequencies are 2048 : 3228 vibrations. These forks 
answer to C6, as in the preceding instance, and the thir-
teenth partial of C3, — 256 X 13 = 3328. The lower primary 
beat-note yielded in this case is E3. 3328 — 2048 = 1280 = 
E5. The upper primary beat-note is G4, of 768 vibrations. 
'2048 X 2 = 4096. 4096 — 3328 = 768 = G4. The difference 
between the frequencies of these two beat-tones, as in the 
case of the first two forks, is 512, — 1280 — 768 = 512 = C4. 
You will observe that the secondary beat-tones for both 
the intervals assumed, — 8 : 1 1 and 8 : 13, — give rise to the 
same note, C4. The primary beat-tones for both intervals 
are likewise the same, namely, G4 and E5. They, however, 
occur in an inverse order for the two intervals. In the 
interval 8 : 1 1 , G4 is the lower beat-tone, while E 5 is the 
upper; whereas in the interval 8 : 13, E5 is the lower, and 
G4 the upper beat-tone. 

But we may go farther. If the primary beat-tones can 
originate beats and beat-tones, we might expect that the 
partials of any two prime tones would similarly produce 
beats and beat-tones. Koenig maintains that the partials 
of compound tones do produce such beats and beat-tones, 
and that they have the same frequencies as have Helm-
holtz's summational tones. For this reason, he concludes 
that there are no summational tones, as called for by 

• Helmholtz's theory, and, for reasons based on facts ad-
duced in the foregoing experiments in connection with 



primary and secondary beats, he rejects altogether the. 
theory of differential tones. He sums up in one sentence 
the results of his admirable investigations on these subjects, 
by stating that " so far we have no experimental demonstra-
tion of the existence either of differential or summational 
tones!' 

Beat-tones cannot be explained on Helmholtz's theory, 
for the reason, as we have seen, that in many cases they 
have different frequencies from those of differential and 
summational tones, whereas differential and summational 
tones can in all cases be accounted for on Koenig's theory 
of beat-tones, whether produced directly by generators, or 
by primary beat-tones, or by partials in the case of com-
pound tones. And although as yet Koenig's conclusions 
are not concurred in by all investigators, I have no doubt 
that they will be eventually accepted as the only satisfac-
tory solution of the facts to which they refer. 

So far we have been using tuning-forks for the produc- ' 
tion of beats and beat-tones. They have been employed 

• because they are so constructed as to give absolutely 
simple notes, and because, having their vibration-numbers 
stamped on them, we can always be sure of the intervals 
with which we are working. Most, if not all, of the prime 
tones, beats, and beat-tones, were, I think, audible to all of 
you, because the forks are made to give remarkably loud 
sounds. But the forks used, especially those of the higher 
pitch, give sounds of very short duration, and for this 
reason it is sometimes difficult to catch at once the beats 
and beat-tones that one wishes to hear. 

Koenig, to whose fertile inventive faculty we owe so 
many of our best acoustical apparatus, has devised an 
instrument for giving us beat-tones that can be maintained 
for any length of time. Such an apparatus is before you. 
It is composed essentially of a wheel, whose circumference 
is provided with a cloth band, which is wetted in a small 
reservoir partly filled with water, and which rubs against 
two glass tubes (Fig. 148), tuned to the intervals, giving 
the beat-tones one wishes to observe. The friction of the 

cloth throws the tubes into longitudinal vibration, and they 
are thus made to yield loud, pure notes. By means of 
this instrument, beat-tones can be heard as long as their 
primaries. The apparatus is provided with twelve glass 
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tubes attuned to notes extending from CG to the twenty-
third partial of C s ; that is, to a note having 5888 vibra-
tigps per second,—a note, therefore, far above the highest 
note of the pianoforte. 

Taking two tubes, so as to give C6 and D6, — interval, 



8 : 9 ; frequencies, 2048:2304, — we have, on turning the 
wheel, a distinct lower beat-note, corresponding to C3, of 
256 vibrations. Tubes C6 and GG — interval, 2 : 3 ; fre-
quencies, 2048 : 3072 — give a C5 that is remarkably pure 
and strong. In this case both the upper and the lower 
beat-notes coincide, as is always the case when the 
generators are separated from each other by an exact 
fifth. • 

We conclude from our experiments with tuning-forks 
and glass tubes that beats give rise to continuous sounds. 
Will beats in all cases, however produced, change into 
a continuous sound, when their number is sufficiently 
large? Koenig answers this question in the affirmative. 
It will be interesting here to repeat some of the experi-
ments which he made in connection with the subject, as 
they will give us a clearer idea of the nature of beats and 
beat-tones than it would be possible to obtain in any other 
way. 

One of the simplest experiments is with a wooden wheel, 
about fifteen inches in diameter, an inch and a half thick, 
and having one hundred and twenty-eight teeth. If a thin, 
elastic piece of wood be pressed against these teeth, and 
we then gradually increase the speed of rotation of the 
wheel, you at first hear a succession of taps, and then a 
confused rattle, that persists even when the wheel makes 
an entire revolution per second, and gives, consequently, 
one hundred and twenty-eight separate taps in that period 
of time. But along with these taps, provided they are not 
too noisy, we may hear the note C.2, of one hundred and 
twenty-eight vibrations. The number of impulses giving 
rise to the rattle heard and the note C2 are in this case 
exactly the same. 

If, however, we substitute a small piece of cardboard for 
the piece of wood, the rattle disappears almost entirely, 
and the note C2 becomes much more distinct. When the 
wheel is given a half of a revolution per second, a rattle is 
heard, resulting from sixty-four shocks per second; a S 
the sound C, corresponding to sixty-four vibrations, is 

entirely drowned in the noise that prevails. We learn 
from this experiment that the same instrument may origi-
nate beats and tones at the same time, both of which are 
perceived by the ear as such. The number of impulses 
giving rise to these different sensations is, as is evident, the 
same in both cases. The experiment also proves that we 
may have as many as one hundred and twenty-eight distinct 
impulses, or beats, without having a continuous- audible 
sound. 

But what, it may be asked, is the lowest sound that can be , 
produced by what are unmistakably beats? Koenig replies 
to this question by a series of tuning-forks constructed 
especially for this purpose. Such a set we have here. It 
is composed of eight powerful forks, between B6 and C7, 
and so tuned that the first seven give, with the eighth, 256, 
128, 64, 48, 40, 32, and 26 beats per second, respectively, 
corresponding, therefore, to the notes C8, C2, C l t G_i, E_lP 

C_i, and a note making twenty-six vibrations per second. 

If we take two forks, one making 3968 vibrations, and the 
other, C7, 4096 vibrations, and strike them both vigorously 
with an ivory hammer, we hear, along with the very acute 
notes proper to the forks, a deep, grave note, wonderfully 
pure, corresponding to C2, of one hundred and twenty-eight 
vibrations per second. At the same time, however, is 
heard a peculiar rolling noise, due to beats. Taking forks 
vibrating 4032 and 4096 times a second, and proceeding 
as before, we have, as a beat-tone, a note making sixty-four 
vibrations per second. This is Ci. This beat-tone, like 
the preceding, is exceedingly pure and distinct. Forks 
executing 4096 and 4048 vibrations per second yield Gi, 
having forty-eight vibrations per second. When the fre-
quencies of the forks are 4056 and 4096, the beat-tone 
resulting therefrom is Ei, whose frequency is 40. We 
are rapidly approaching the limits of audible sounds; but 
we can go down still farther. We take two forks whose 
f^quencies are 4064 and 4096, and whose interval is 
127: 128, — an interval which is much less than a comma. 
The beat-tone in this case is C_i, of thirty-two vibrations, 



and when the forks are held close to the ear, the note can 
be recognized without any difficulty. This, as you remem-
ber, is the lowest C used in any musical instruments ex-
cept the very largest organs. We go down a step lower. 
This time we choose forks whose rates of vibration per 
second are 4070 and 4096. The number of beats for 
these forks, whose interval does not exceed 'half a comma, 
is twenty-six. They are remarkable in that they do not 
produce a continuous sensation, but rather a sensation in 
which one detects the passage from a continuous sound to 
a series of separate impulses, just such as are heard in 
pianos and organs yielding notes below C_i. 

At the same time that one has this sensation of a 
grave tone at the lowest limit of perceptibility, there is 
audible a characteristic rolling due to twenty-six beats per 
second. Indeed, it has not been possible, in any of the 
cases just considered, to separate the rolling of the beats 
from the accompanying beat-tones. We may hear the 
beats alone by holding the forks some distance from the 
ear; but we cannot, even with the loudest beat-tones it is 
possible to obtain, succeed in entirely quenching the beats 
so as to hear only beat-tones. 

These experiments prove that with two primaries of 
sufficient intensity, thirty-two beats per second are com-, 
petent to produce a continuous sound; that beats, to the 
number of about 128 per second, can be distinguished, 
whatever the intervals employed; and finally, that between 
these two limits both beats and beat-tones may be heard 
at the same time. 

From what precedes, we learn that beats, as well as prim-
ary impulses, may give rise to continuous tones. Inter-
mittent tones also, like beats, may coalesce to produce a 
continuous sound. This is also contrary to what Hclm-
holtz teaches, for he tells us " beats and intermissions are 
identical, and that either, when fast enough, produces 
what is termed a jar, or rattle." 

By means of an apparatus specially devised for the 
purpose, Koenig proves that intermittent sounds may give 

rise to a continuous sound. The apparatus consists of a 
large brass disk (Fig. 149), having near its circumference 
a circle of sixteen large apertures. We rotate this disk, 
and excite one of the tuning-forks we have just been 
using, — Q , for example, — bringing it near the disk, so 
that its vibrations may pass through the apertures, as 
these latter move before the fork. On doing this, we find 
that, in addition to the note of the fork proper, there is 
also audible a note due to the intermission of its tone by 
the revolution of the disk. The disk is now making eight 
revolutions per second, and as there are sixteen apertures, 
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the number of intermissions per second amounts to one 
hundred and twenty-eight. This is equal to the number 
of vibrations made by the note heard, C2. 

Substituting another fork, C7, for the C6 we have been 
using, and trying it in the same manner, with the velocity 
of rotation of the disk unchanged, we find that the same 
note, C2, is still audible. We might employ other forks of 
different pitches, and the result would still be the same, as 
long as there is no change in the speed of rotation of the 
disk. As soon, however, as we change the velocity of 
rotation of the disk, the tone due to the intermissions 
oj the note of the fork is changed also. As the speed of 
the disk is lowered, the note becomes more grave. If we 
increase the speed of the disk, the pitch of the note is 



raised in proportion. In all cases the pitch of the resultant 
tone will, as in the case of beats, depend on the frequency 
of interruption of the note emitted by the fork. 

You will not fail to observe that, in these forks, we have 
the means "of determining the limits of perceptibility of 
grave sounds. The method is probably the most satisfac-
tory that the acoustician has at his disposal. With all the 
forks we have used in the experiments just made, the 
notes, even the lowest of them, are extraordinarily pure 
and easily heard. 

In the experiment just made, a continuous sound was 
transmitted to the ear intermittently. When the intermis-
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sions reached a certain number per second they blended 
into a continuous tone, the pitch of which was independent 
of the fork employed. We can observe equally well this 
passage from intermittent to continuous tones, in sounds 
that are periodically variable. Koenig proves this experi-
mentally by a disk, a section of which is shown in Fig. 
150, having seven circles of holes. Each circle has 192 
holes, the diameters of which, for the seven circles, vary 
periodically 12, 16, 24, 32, 48, 64, and 96 times. In blow-
ing against these circles in succession with a tube in which 
the diameter equals that of the largest hole, we have, in 
addition to the sound due to the 192 holes (which is the 
same for all the circles), the note corresponding to the 
different periods of variable intensity, — 12, 16, 24, 32, 48, 

64, 96. We can assure ourselves of this fact by blow-
ing against seven auxiliary circles, having 12, 16, 24, 32, 
48, 64, 96, and 192 holes, all of which have the same 
diameter, when we shall find that the grave, as well as the 
acute sounds, really correspond with the different periodic 
variations indicated by the numbers given. 

The foregoing experiments would seem to be conclusive 
as to the true nature of beats and beat-tones; but Koenig 
did not stop in his researches on this much-disputed ques-
tion until he invented the wave-siren. The simplest form 
consists of a copper disk, whose border is cut in the form 
of a compound curve, — the resultant of two harmonic 
curves corresponding to two sounds of any desired inter-
val. The disk we shall first use is bordered by a curve 
made up of two harmonic curves corresponding to notes 
giving the interval of a major second, 8 :9 . It is con-
structed in precisely the same manner as the curve de-
scribed in the beginning of this lecture (Fig. 140). The 
intervals, too, in both cases are the same. To make the 
curves as exact as possible, Koenig first drew them on a 
very large scale, and then reduced them by photography. 

When, now, such a disk is rotated before a tube with a 
narrow, slit-like aperture fixed parallel to the radius of the 
disk, the length of the slit being equal to the highest part 
of the curve, and air is forced through this slit, a motion 
will be generated in the air corresponding to the law of 
the curve. The result will be the same as that produced 
by the sounding together of two perfectly simple tones in 
which there is no trace whatever of upper partials. With 
a carefully constructed curve we can always be sure of the 
interval employed, and consequently of the simplicity of 
the tones constituting this interval. 

When disks for different intervals are rotated slowly, 
beats are heard; and when the rotation is more rapid, beat-
tones are produced corresponding to those produced when 
tuning-forks for the same intervals are sounded. Thus, for 
the siren we are now rotating, whose interval is 8 : 9 , the 
resultant beat-note, as with the tuning-forks giving the 



same interval, is i ; that is, the frequency of the beat-note 
is i, as compared with that of the lower of the two notes, 
whose relative frequency is 8. This means that the lower 
beat-note is just three octaves below that of the lower note 
of the major second here given. 

By employing a disk (Fig. 1 5 1 ) whose rim is bordered 
by a curve corresponding to the interval of a major seventh, 
— 8: 15, — we should, as with the two tuning-forks of this 
interval, get an upper beat-note, whose frequency, as com-
pared with its generators, would also be 1. 8 x 2 = 1 6 ; 
16 — 15 = 1 . By taking disks having edges corresponding 
to curves representing intervals of 8: 1 1 and 8: 13, we get 

the same results as were 
obtained with tuning-forks 
having these same intervals. 
Like tuning-forks, they give 
both upper and lower beat-
notes, and their frequencies 
are determined by the same 
law as that which obtains 
for the beat-tones of the 
forks. 

Should we wish to study 
only one interval, we em-
ploy a single disk, like the 

one just used. If, however, we wish to examine a whole 
series of intervals, and compare the results obtained, we 
may have recourse to a different form of the apparatus, 
likewise invented by Koenig. Here, instead of disks, we 
have four bands of brass fixed on four wheels (Fig. 152), 
attached to a vertical axis. The edge of each band is 
so cut as to give, for each edge, the resultant of any 
two harmonic curves that we may wish to study. These 
dentated bands, like disks, are caused to revolve be-
fore one or more tubes of long narrow apertures, when 
beat-tones, corresponding to the different intervals, are dis-
tinctly heard. An ordinary Seebeck's siren, with several 
circles of holes corresponding to the primary beat-tones 
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of the curves used, is fastened on the top of the arbor 
carrying the dentated bands. This serves to assist the ear 
in determining the notes and intervals due to the different 
curves. By means of a number of small tubes communi-
cating with a wind-chest, air can be forced through one or 
more of these circles at the same time. We are thus ena-
bled to compare the tones due to simple primary impulses 
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with those generated by the crests and troughs of a com-
pound curve passing before a narrow aperture through 
which air is supplied under greater or less pressure. 

The great advantage of the wave-siren is that, as before 
stated, it gives us perfectly pure tones, free from all ad-
mixture of upper partials. The tuning-forks we have been 
using do this also, but it is difficult to obtain such forks. 
Moreover, with the wave-siren it is easy to get any interval 



desired. For this purpose, it is only necessary to com-
bine two harmonic curves, corresponding to the notes 
whose interval we may wish to investigate. A simple 
harmonic curve will give a simple note. A curve com-
pounded of two harmonic curves will give simultaneously 
the notes corresponding to these two simple harmonic 
curves, and in addition to them, as we have seen, will also 
yield the beat-tones, upper or lower, or both. Koenig has 
constructed disks and bands that give the intervals 8 : 9, 
8 : 10, 8 : 1 1 , etc., up to 8 : 24. The instrument before you 
has eight intervals, beginning with 8:9, and extending up 
to 8 • 16; that is, from the major second to the octave. 

The evidence, then, that beats may coalesce and blend 
into a continuous tone, is conclusive. The more the move-
ment of the air, excited by impulses of any kind, differs 
from a simple pendular motion, the more these impulses 
will be separately distinguishable, and the less the sound 
due to their coalescence will be perceptible. On the other 
hand, the more nearly the periodic motion of the air ap-
proaches to a pendular motion, the less distinct will the 
separate pulses become, and the stronger the resultant 
tone. Wherefore, with the almost absolutely pendular 
motion of tuning-forks, the separate impulses beyond 32 
or 36 cease to be perceived, and the sound resulting there-
from predominates. 

We leave to physiologists to explain why it is that 
we can perceive simultaneously beats and beat-tones of 
the same frequency, which are originated in the same 
sonorous body or bodies. The phenomena observed 
evidently depend on some as yet unexplained capacity 
which the organ of hearing possesses of appreciating cer-
tain impulses as separate, while at the same time it causes 
them to coalesce in such a manner as to give rise to the 
sensation of a continuous tone. 

And we leave to physiologists the explanation of another 
difficulty that must have presented itself to every one who 
has given any attention to the subject of beats and beat-
tones. 

Are beats and beat-tones subjective or objective? Are 
the sensations experienced due to resultant wave-motion 
arising from two generators of sound, or are they entirely 
independent of such wave-motion? If the air be disturbed 
by a vibratory motion occasioned by the resultant action 
of two sonorous bodies yielding beats or beat-tones, one 
should be able to recognize such aerial disturbances by 
means of membranes and resonators. These should vi-
brate in sympathy with any resultant wave-motion that 
may be generated, and the sound due to such motion 
should be perceptibly reinforced by resonators. 

But is this the case? Helmholtz and others say that it 
is. They assert, therefore, that beats and beat-tones1 have 
an objective existence, and appeal to various experiments 
made in support of their opinion. Koeuig, Preyer, and 
Bosanquet, who have given the subject a more careful and 
more detailed investigation than Helmholtz, maintain, on 
the other hand, that beats and beat-tones are entirely sub-
jective, — that they are generated independently of any 
vibratory motion existing externally to the ear. We have, 
then, according to this view, the sensation of beats and 
tones which have no corresponding objective reality. This, 
however, does not imply that such sensations are the pro-
duct of the imagination, because such is not the case. It 
means that the beats and beat-tones perceived are excited 
solely within the ear, — let physiologists explain how, — 
and that, unlike other similar sensations, they do not cor-
respond to any mode of motion outside of the ear. 

Cross has made an experiment—which any one may 
repeat — that seems to be conclusive in favor of the sub-
jective character of beats and beat-tones. If one listens 
to two sounds competent to yield a beat-tone, — one 
sound coming from a generator near by, and the other 
from a distance over a telephone wire, — the beat-tone 
will be heard the same as if the sonorous bodies were 
both near the ear, and acted on the tympanic membrane 

1 Called by Helmholtz differential and summational tones. He does not 
recognize the existence of beat-tones as explained in the text. 



directly. The same result is obtained when both sonorous 
bodies are at a distance from the ear and from each other, 
and when the sounds they emit are conveyed to the ear 
by different conductors, and heard by means of separate 
telephones. With such an arrangement, the formation 
of a resultant sound-wave, competent to generate the 
beat-tone perceived, seems to be impossible. 

But it is time to conclude. We have been discussing 
one of the most difficult and warmly-debated questions 
connected with the subject of sound. Not only have 
Koenig and Helmholtz entered the lists against each other, 
but several other physicists, almost equally distinguished, 
have made the matter an issue of considerable moment. 
Among these may especially be mentioned, W. Preyer, 
G. Appunn, R. H. M. Bosanquet, and Lord Rayleigh. I 
have endeavored, without entering too much into detail, 
to give you what may be regarded as experimentally 
proved regarding this most vexed question of beats and 
beat-tones. Those of you who may be desirous of know-
ing more about the subject, I must refer.to the researches 
of the investigators just mentioned. I commend especially 
to your consideration the account of the very elaborate 
series of experiments of Dr. Koenig on beats and beat-
tones, as given in his admirable " Quelques Experiences 
dAcoustique." 

C H A P T E R IX. 

QUALITY OF SOUND. 

O O U N D S , as we have learned, differ one from an-
other in three ways, — in loudness, in pitch, and 

in quality. Loudness, as we saw, depends on the ampli-
tude of vibration of the particles of the sonorous body, and 
pitch is due to the rapidity of their vibration. What, then, 
is the cause of quality? The answer to this most interest-
ing, and, I may add, most difficult question, I shall endea-
vor to give you in to-day's lecture. I shall ask you to 
give me your closest attention, as we are entering upon 
a question which, to all except the few who have made 
it a matter of special investigation, is either entirely 
misunderstood, or known only by name. 

We are all aware, as a matter of experience, that the 
tone of a violin, even when the pitch is the same, differs 
from the tone of a flute, a clarinet, a guitar, or a pianoforte. 
So, too, may the tone of one violin differ from that of 
another violin, or the tone of one pianoforte differ from 
that of another pianoforte, and that, too, when the pitch 
and loudness of the notes sounded are the same. The 
tone of a Steinway " Grand " is different from that of a 
Weber or a Chickering " G r a n d ; " and the tones of a 
modern violin are vastly different from those emitted by 
an Amati, or a Guadagnini, or a Stradivarius. Even 
different players evoke different tones from the same 
instrument. No beginner can call forth from a pianoforte 
the purity of tone that responded to the touch of a Liszt, 
a Chopin, or a Rubinstein, nor can a tyro on the violin 
draw from the instrument the sweet, smooth, soul-stirring 
notes that it would yield to a Joachim, a Remeyni, or a 
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Paganini. The nature of the tones, then, varies with the 
instrument used, and varies, too, according to the method 
of manufacture, the materials used, and the way in which 
they were seasoned or tempered, and according as the 
performer is a master or a beginner in the art of music. 
More than this. The nature of the tones elicited from an 
instrument may depend even on the mood or the condi-
tion of health of the performer. Thus, as is obvious, the 
differences arising from various causes are almost infinitely 
varied and variable. 

It is to these very marked differences of tone, emanating 
from different causes, and produced by different per-
formers, that we give the general name " quality." The 
word " character is also used to express the same thing. 
The French word timbre is likewise employed. The Ger-
mans use the very expressive term klang-farbe, which, 
literally translated, means, " clang-color," or " clang-tint." 
I do not think, however, that we can well improve on the 
time-honored word "quality," — a word that is familiar 
to you all, as designating those differences of tone about 
which we are now speaking. 

Knowing, then, what is meant by quality of tone, we 
proceed now to investigate its origin. And in order that 
we may have a better understanding of the subject under 
consideration, it will be well to take a hasty review of the 
ground over which we have travelled. 

It had long been suspected that the quality of tone de-
pended on the mode of vibration of the sonorous body, — 
that is, on the form of the wave corresponding to the tone 
emitted; but nothing certain was known about the mat-
ter until Helmholtz took up the subject, about thirty years 
ago. His profound " Lehre von den Tonempfindungen," 
published in 1863, cleared up what until that time had 
been an enigma that had baffled all attempts at its 
solution. 

In this great work he proves that the quality of a tone 
is due to the number and relative intensity of the partial 
tones that accompany the fundamental. The way for this 
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grand generalization had been paved by several other in-
vestigators, but Helmholtz was the first to give it expres-
sion, and experimentally to demonstrate its truth. One of 
the first to throw light on this mysterious subject was the 
illustrious Father Mersenne. Speaking of Aristotle, he 
says, " He seems to have been ignorant of the fact that 
every string produces five or more different sounds at the 
same time, the strongest of which is called the natural tone 
of the string, and alone is accustomed to be taken notice 
of, for the others are so feeble that they are perceptible 
only to delicate ears. . . . Not only the octave and the 
fifteenth, but also the twelfth and major seventeenth are 
always heard, and, over and above these, the major twenty-
third (the ninth partial), about the end of the natural 
sound." 1 

Sauveur, one of the founders of acoustics, made a special 
study of these sounds accompanying the fundamental. 
" On plucking a harp-string," he says, " a delicate and 
practised ear may, in addition to the fundamental, hear 
other and more acute sounds produced by portions of the 
string, which, as it were, separate themselves from the 
string vibrating as a whole, in order to start up vibrations 
of their own." 

Later on Chladni took up the subject, and showed that 
compound sounds are produced by organ-pipes, wind in-
struments, and bells, as well as by strings. Rameau, the 
eminent French composer, made it, in 1722, the basis of 
his system of musical harmony. 

In his admirable article on Sound, written for the " En-
cyclopaedia Metropolitana," Sir John Herschel says, " It was 
long known to musicians that besides the principal or fun-
damental note of a string, an experienced ear could detect 
in its sound other notes, related to this fundamental one 
by fixed laws of harmony, and which are called, therefore, 
harmonic sounds. They are the very same, which by the 
production of distinct nodes may be insulated, and, as it 
were, cleared from the confusing effect of co-existent 

1 Harm., Lib. IX. Prop. 33. 



sounds. They are, however, much more distinct in bells 
and other sounding bodies than in strings, in which only 
delicate ears can detect them." 

From a communication made to the French Academy 
in 1875, it appears that Monge, the famous French math-
ematician, was one of the first to divine the true cause of 
the quality of sounds. Speaking of the sounds emitted by 
vibrating strings, Monge asserted it as his belief that their 
quality was due to the order and number of the vibrations 
of the aliquot parts of the string in question. And he 
added, further, that if one could succeed in suppressing the 
vibrations of these aliquot parts, all strings, of whatever 
material made, would yield tones of the same quality. 

In 1817, Biot, who had been a pupil of Monge about 
twenty years previous, reproduced in his " Précis Élémen- ' 
taire de Physique Expérimentale" the theory of his master 
in a somewhat modified form. 

" All sonorous bodies," he says, " yield simultaneously 
an infinite number of sounds of gradually decreasing inten-
sity. This phenomenon is similar to that which obtains 
for the harmonics of strings ; but the law for the series of 
harmonics is different for bodies of different forms. May 
it not be this difference which produces the particular 
character of sound, called timbre, which distinguishes each 
form of body, and which causes the sound of a string and 
that of a vase to produce in us different sensations? May 
it not be owing to the diminution of the intensity of har-
monics of each series that we find agreeable certain con-
cords that would be intolerable if produced by sounds 
equally loud? And.may not the quality of each particular 
substance —of wood or metal, for instance — be due to the 
superior intensity of one or another harmonic?" 

In the first edition of his excellent " Traité de Physique," 
published in 1855, eight years before the appearance of 
Helmholtz's great work, M. Daguin has the following 
paragraph: " I n musical instruments timbre is due most 
frequently to feeble sounds which accompany the funda-
mental. Sometimes these concomitant sounds arise from 

the vibrating parts themselves, which thus render audible 
several sounds at the same time. At other times the 
vibrating body transmits these tremors to other parts of 
the instrument. . . . Timbre may also be due to the man-
ner in which the velocity of the parts in the vibrating body 
varies during each oscillation. The curves representing 
sonorous waves may be of variable form, and the wave of 
rarefaction may be different from that of condensation. It 
may even be that there are interruptions between the 
successive waves." 

To get a clear idea of the order of sequence of these har-
monic sounds, or upper partials, as we have been calling 
them, let us write out in musical notation the first nine 
upper partials of C 2 : 1 — 

9 - P 
Wb*=i 1 : 

C 2 C 3 G s C4 E4 G4 A4I C 5 D 5 E s 

1 2 3 4 5 6 7 8 9 1 0 

The seventh note, represented approximately by A¿, — 
it is, in fact, a little higher than — although called an 
harmonic in acoustics, is not considered as such in music. 
The same is true of D5, the ninth partial. Either of these 
sounded simultaneously with the prime with sufficient 
intensity would cause the most jarring discord.2 

Having thus refreshed our memories regarding a few 
points developed in the preceding lectures, we are now 
prepared to follow Helmholtz in his investigations as to 
the quality of sound. He tells us, as has already been 
stated, that the quality of a sound depends on the num-
ber of upper partials present, and their relative intensity. 
Mersenne, Sauveur, Chladni, and others tell us what these 
partials are, and when they are generated. In order to 
produce all the different modifications of quality ascribed 
to them, they should possess considerable intensity as com-

1 Compare the notes here given with those in Chapter IV. 
2 See Chapter X. 



pared with their primes. We should, in a word, be able to 
hear them and distinguish them from the prime note which 
they accompany, and to which they give their characteristic 
quality. 

In order to hear these upper partials it is not necessary, 
as might be- supposed, to have a particularly acute ear. 
An ordinary ear, when the attention is properly directed, 
can perceive them in many instances, and a little practice 
will enable one to single out one or more of them from any 
sound that may contain them. 

There are, of course, some tones that are practically de-
void of upper partials. Such tones are emitted by stopped 
organ-pipes, and by certain specially constructed tuning-
forks. These, as has been stated, are called simple tones, 
in contradistinction to those having upper partials, and 
which are denominated compound tones. The flute gives 
nearly a simple tone, while stringed and reed instruments, 
open organ-pipes, brass wind instruments, as also the 
human voice, are particularly rich in upper partials, and 
are, therefore, good instances of compound tones. 

H ere, too, we must distinguish between single snd com-
posite tones. A single tone, which may be simple or com-
pound, is a tone emitted by one sounding body. A 
composite tone is made up of tones — simple or com-
pound— from several sources of sound. Simple tones 
are characterized by purity and softness, whereas com-
pound tones are distinguished for richness and brilliancy. 
But simple tones, however pure, are dull, and appear to be 
more grave than they really are. Compound tones, on 
the contrary, are bright and crisp, and often partake, in a 
marked manner, of the acuteness of their upper partials. 
For this reason even, musicians often make a mistake of 
an octave in estimating the pitch of a given compound 
sound, taking the pitch of the first upper partial for that of 
its prime. 

Upper partials are most easily heard when they are 
inharmonic, as in the case of bells. I strike the large 
Japanese gong on the table, and you at once hear dis-

tinctly several tones of quite different pitch. The lowest 
is deep, mellow, and powerful, and resembles the tone of 
a cathedral bell. The upper partials are clear and pure, 
and although not all constituting harmonic intervals with 
their prime, they still combine in such a way as to produce 
a pleasing effect. I excite another gong, «similar to the 
first, and while sounding alone the result is similar to that 
obtained with the first gong; but the bell, being smaller, 
its prime and upper partials have a higher pitch. When I 
sound both together you perceive a certain jarring and 
harshness that disclose, in a most striking manner, the 
influence of the inharmonic partials. The primes of the 
two gongs form a comparatively good concord, making 
very nearly the interval of a fourth ; but the upper partials 
are so far from harmonizing with each other or with their 
primes that they generate discord. That, however, to 
which I wish especially to direct your attention is the 
number of different notes — five or six at least — which 
can be distinctly separated from the general mass of 
sound. 

The inharmonic upper partials heard so well in bells are 
also given forth with remarkable intensity by most tuning-
forks and metal bars. I give the fork I hold in my hand 
a vigorous blow with an ivory hammer, and, in addition 
to the prime note of the fork, you hear distinctly the 
tinkle of high upper partials. They are, however, quite 
evanescent, while the prime tone persists for some length 
of time. 

On the table is an instrument called the metallophone. 
It consists, as you know, of a number of steel bars, which, 
when struck, vibrate in the same mamjer as the tuning-
fork. When I strike one of these bars, you hear the upper 
partials as distinctly as in the case of the tuning-fork. If 
I strike in succession a number of bars separated from 
each other by harmonic intervals, the primes of these bars 
will give a pleasing sensation; but the upper partials, not 
harmonizing with each other, will produce a jingle that is 
anything but^agreeable. But, as in the case of the gongs 



and tuning-forks just used, the number of separate notes 
that can be distinguished in the very composite note pro-
duced is much greater than the number of sonorous bodies 
originating the sounds. 

There is, then, no difficulty in hearing inharmonic upper 
partíais. But just now we are more interested in detect-
ing the presence of harmonic upper partials. They are, 
indeed, found in specially constructed bells and tuning-
forks along with inharmonic partials; but we shall turn 
our attention to sounds in which harmonic partials so 
predominate over those that are inharmonic that the latter 
are practically imperceptible. 

I hold in my hand a long, narrow, open organ-pipe, 
made of copper. It differs from wider pipes in the fact 
that it is capable of giving, with differences of pressure, a 
series of upper partials of remarkable purity and intensity. 
By forcing air through the pipe, we can, at will, produce 
any harmonic desired, or the pressure of wind can be so 
regulated as to cause two partials to sound at the same 
time. You now hear the fundamental and its octave, and 
in such a way that you have no difficulty whatever in 
recognizing the presence of both notes. 

We now try a pipe that is exactly similar to the last one, 
except that it is stopped, instead of open. This pipe, as 
you know, will also readily yield upper partials. But, 
unlike the open pipe, whose partials follow in the order 
both of even and odd numbers,— I, 2, 3, 4, 5, etc., — the 
stopped pipe will give only such partials as correspond to 
the odd numbers I, 3, 5, etc. As with the open pipe, we 
can, by varying the pressure of air admitted into the pipe, 
elicit from it, at pleasure, any of the partials that it is cap-
able of yielding. In like manner we can cause it to emit 
two notes simultaneously. Just now it is sounding its 
prime and its twelfth, both of which you can distinguish 
with ease. 

It is scarcely possible to render the upper partials of 
strings audible to all of you, as they are, in most instances, 
much less distinct than those to which y^u have been 

listening. I shall, however, show you how they may be 
detected, and leave any of those present who may be suffi-
ciently interested in the matter to make the experiments 
at their leisure. 

In making such experiments, it will be well to look, 
first, for the upper partials corresponding to odd numbers, 
as they are most readily heard. Thus, it is easier to hear 
the third and the fifth partials than to perceive the second 
and the fourth. Sounding beforehand a note of the pitch 
of the partial one wishes to observe, will materially aid in 
hearing such partial when a compound tone containing it 
is produced. 

Both the pianoforte and the harmonium are good instru-
ments on which to study upper partials. Suppose, then, 
we employ the piano, and wish to hear G3, which is the 
third partial of C2. All that is necessary, in order to hear 
this note in the compound note C2, is to strike gently the 
note Gj, and, after it dies out, to strike strongly G>, when 
our ear, already prepared for the note G3, hears it distinctly 
in the note C2. In the same manner we may hear E4 , 
which is the fifth partial of C2. A little practice will also 
enable one to hear the first and second octaves of the 
prime. On one of the louder stops of a harmonium one 
may hear, in addition to the preceding, even the seventh 
and the ninth partials. The two latter are inaudible on the 
pianoforte, because it is so constructed that they are either 
totally or partially eliminated. 

On the sonometer we should proceed in a different way. 
If we wish to hear the third partial, for instance, wc 
should gently press a feather on one of the corresponding 
nodes, and then excite the string by plucking it. In this 
way we can perceive distinctly the note that is due to the 
vibration of the third part of the string, as well as that 
caused by the string vibrating as a whole. In a similar 
manner, we could render, audible several other partials. 
The third and fifth partials, thus excited, are sufficiently 
intense to be heard at some distance, with comparative 
facility. By employing thin strings, which are espe-



cially rich in loud upper partíais, Helmholtz was able to 
recognize partíais up to the sixteenth. 

It is still more difficult to hear the upper partíais of 
the human voice; but even these can be perceived with a 
little attention and practice. Let a powerful bass voice 
sing E27, to the word " awe; " then gently sound on the 
pianoforte B3b, which is the third partial of and after 
the note of the piano dies away, one will still continue to 
hear, in the voice of the singer, the continuation of the 
note emitted by the pianoforte. In the same way, if the 
note be sung to the broad sound of a, as in " father," 
one may hear G4, which is the fifth partial of 

Under favorable circumstances, and by giving the matter 
special attention, one may hear some of the upper partíais 
of the human voice without the assistance of any apparatus 
whatever. Rameau was thus able to distinguish them with 
the unaided ear. Seiler, of Leipsic, says that while lis-
tening to the voice of the night watchman at a distance, he 
was able to hear, first the third partial, and then the prime 
of the note uttered. Garcia relates that in listening to his 
own voice in the quiet of the night he could detect both 
the octave and the twelfth of the note he sang. I have 
heard the same two partíais in the voice of a muezzin in 
Cairo calling the faithful to prayer. But when I heard 
them, the circumstances were especially favorable. The 
muezzin had a remarkably powerful, rich voice, the night 
was unusually still, and the minaret on which stood the 
servant of the Prophet was only a short distance from the 
place where I happened to be at the time. 

To distinguish more clearly and more readily the upper 
partíais existing in any compound tone, Helmholtz con-
structed the resonators with which you are already familiar. 
Thisjs, in reality, only a modification of the resonant case 
first used by Marloye to strengthen the prime tone of a 
tuning-fork. Helmholtz's first resonators were made from 
bottles and from the spherical portions of glass retorts. 
He also employed conical forms made of pasteboard, tin, 
or zinc. But by far the best and most useful, as well as 

the most sensitive resonators, are such as are made by 
Koenig, and which are especially designed to reinforce ' 
strongly one tone only. The conical resonators some-
times used have the disadvantage of strengthening the 
intensity of all the upper partials at the same time that 
they augment the prime. 

With a series of spherical resonators as made by Koenig, 
the dimensions of which are accurately calculated to give 
the maximum of resonance for only one particular note, 
any one, even though entirely unskilled in the study of 
musical sounds, is able at once, and without the slightest 
difficulty, to single out a number of the upper partials 
found in any compound tone of such instruments as the 
violin, harmonium, or pianoforte. These resonators ena-
ble those who have trained musical ears to detect the pres-
ence of partials that are entirely imperceptible to the 
unaided ear, and to extend their investigations in the 
study of compound sounds in a manner that would other-
wise be quite impossible. By means of resonators as 
many as sixteen partials of the human voice have been 
heard, while in reed pipes the number has been swollen 
to twenty. 

Koenig has increased the delicacy and extended the use-
fulness of the resonator by coupling it with the manometric 
capsule. In this way the experiment is made to appeal to 
the eye instead of to the ear. As a consequence, a person 
who is entirely deaf can analyze a compound tone as well 
as one who has a most delicate musical ear. 

Let us connect this stopped organ-pipe, C2, with the 
acoustic bellows. By suitably regulating the pressure of 
the air we can cause the pipe to speak separately either its 
prime, C2, or its twelfth, G3. Not only this, we can so 
adjust the pressure of the wind that we can detect without 
difficulty the presence of both these tones at the same 
time. By applying to the ear the resonator correspond-
ing to the note G3, one can readily hear the note, when 
without the resonator only the note C2 would be audible. 

By connecting the resonators corresponding to the notes 



Co and G3, with two manometric capsules, and gently 
. sounding the pipe so that only its prime is audible, we 

can show that G3 is really present with C2, although un-
heard. The flame-image corresponding to the fundamen-
tal note is shown in I, Fig. 153. 3 is the flame-image of 
the twelfth, and shows that it executes just three times as 
many vibrations as its fundamental. Both flames com-
bined give 1 : 3 , which shows the components of the sound 
under analysis as well as if each partial were examined 
separately. For a similar reason a sonorous body, yield-

FIG. 153. 

ing in succession its prime and its octave, would give 
respectively the flame-images 1 and 2, Fig. 154. Both 
partials, sounding simultaneously, would yield a flame-
image like 1 : 2 of the figure. 

By employing a larger number of properly tuned reso-
nators, it would be just as easy to show the flame-images 
corresponding to five or six partials as it is to show those 
corresponding to two. I may here add, however, that 
neither resonators alone, nor resonators attached to mano-
metric capsules, can be used for very acute sounds. They 
are practically useless for all sounds above C5. 

On the screen is a photograph of an instrument having 

eight resonators (Fig. 155), exactly like those we have been 
using, except that they are mounted on a stand. The nip-
ple of each resonator is connected by a rubber tube with 
a capsule, whose jet is placed before a revolving mirror. 
The resonators are turned to the notes C2, C3, G3, C4, E4, G4, 
the seventh partial of C2, and C5. If a compound tone 
whose prime is C2 is emitted before the opening of the 
resonators, the flame-images reflected from the mirror will 
at once disclose the number and the order of the upper 
partials of the sound. When an open organ-pipe, whose 
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prime is C2, is caused to speak, five or six flame-images 
declare the presence of as many upper partials in the com-
pound tone. The flame-image corresponding to the third 
partial is very markedly agitated. 

The instrument just referred to, having only a small 
number of resonators, answers very well for demonstra-
tions, but could not be employed in investigations in which 
other notes than those to which the resonators are attuned 
are submitted for examination. In the latter case a series 
of universal resonators would be required. Such an appa-
ratus—one that was exhibited by Dr. Koenig at the Cen-
tennial Exposition at Philadelphia in f 876 — I now show 

23 



you, in order that you may have a better idea of its modus 
operandi. The resonators of this splendid apparatus (Fig. 
156) are like that described in our seventh lecture (Fig. 
125). They are supported in a frame, X C Y, and are con-
nected with manometric capsules whose jets are supplied 

with gas, entering through the tube D. The mirror A B is 
rotated before the jets by the crank M. The resonators 
can be so adjusted that all the upper partials between Q 
and C5 can be studied. For the lower notes, the resona-
tors are so arranged that as many as nine partials may be 
observed. These cylindrical resonators are fully as sensi-
tive as those which are spherical, and, like the latter, they 
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indicate the presence of partials as high as C5. Such a 
series of resonant spheres or cylinders has been well lik-
ened to a set of chemical reagents. As such reagents 
enable the chemist to prove the presence of various ele-
ments and compounds, so do resonators afford the acous-
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tician the means of analyzing any compound note into its 
constituent, partials. 

Such an instrument puts us in possession of an admi-
rable means of investigating the nature and composition of 
vowel-sounds. Why does one vowel-sound differ from 
another; or why is it that the same pair of vocal cords 
are capable of sounding more than one vowel at all? The 



pitch and the loudness of two vowels sung to the same 
note may be identical. The only way in which the vowels 
can differ from one another is that in which the sound of 
the violin, for instance, differs from that of the clarinet. 
Vowels accordingly differ from one another because their 
quality is different; because the number and relative in-
tensities of the upper partials accompanying the funda-
mental are not the same; because the various forms 
assumed by the oral cavity in the pronunciation of the 
different vowels are unlike; and because the mouth, acting 
as an easily adjustable resonator, tends, according to the 
form assumed, to reinforce one partial more than another 
when any given vowel is articulated. 

Thus when u, like oo, as in "toot," is sung to C, be-
fore the series of resonators just exhibited, one has, in 
addition to the prime, evidence of the octave, which is 
quite intense, and occasionally also of a very feeble 
twelfth. 

When o, as in " no," is sung, the vibrating flames declare 
the presence of strong third and fourth partials, while the 
octave is weaker than in u. Even a fifth partial may be 
observed in o, but it is extremely weak. 

The action of the vowel a, as in " ah," extends, as is shown 
in the vibrating flames, as far as the seventh partial; but it 
is the fourth, fifth, and sixth that vibrate with the greatest 
intensity. Singing e, as in " there," the fundamental, as 
indicated by the flame-images, is accompanied by the 
octave and the twelfth, — the former feeble, the latter 
intense. The double octave and its third vibrate with me-
dium intensity. In addition to these, there is also a trace 
of the seventh partial. 

/, as in " machine," sung to C2, shows that the prime is 
accompanied only by its first octave. 

No more beautiful nor convincing proofs could be de-
sired than those furnished by carefully tuned resonators 
and manometric flames, that the different vowels, like all 
musical sounds of different quality, are the result, not of 
any peculiar action of the vocal cords, but depend solely 

on the varying admixture of certain partials, of varying 
intensities, with the fundamental. 

But what are the notes that specially distinguish the five 
vowels just mentioned from each other? Donders first 
paved the way for an answer to this delicate question by 
his discovery that the cavity of the mouth for different 
vowels is attuned to different pitches. Helmholtz, Koenig, 
and others took up these investigations, and, by means of 
tuning-forks, determined the pitches of the notes that are 
most reinforced by the resonance of the oral cavity during 
the pronunciation of the different vowels. Their experi-
ments have led to the remarkable discovery that resonance 
is the same for men, women, and children, and that the 
proper tones of the mouth are nearly independent of age 
or sex. 

From a series of forks prepared for researches on vowel-
sounds, I select one which excites the maximum resonance 
in the mouth when it is shaped for articulating the vowel 

as pronounced in Italian, viz., as oo. Holding the fork 
before my mouth thus formed, the resonance, as you ob-. 
serve, is very marked. Holding the same fork before a 
suitably tuned resonator, I obtain a similarly reinforced 
sound, and one identical in quality. 

I try another fork somewhat smaller, and find that this 
resounds most strongly before the mouth when it assumes 
the form required for the pronunciation of the vowel o. 
When the form of the mouth is changed, its resonance for 
this particular fork is much diminished. 

Taking another fork, and adjusting the mouth, you hear 
it distinctly resounding to the fork as in the previous in-
stances ; but. the sound now heard is that of broad a, as in 
" father." 

Similarly, with smaller forks, I excite, by sympathetic 
resonance, in the air of the oral cavity, sounds correspond-
ing to e and i. These latter tones, however, are much 
higher in pitch than those corresponding to the vowels 
u, o, and a, and their resonance is correspondingly less 
intense. 
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According to Koenig's investigations, the notes that are 
most strongly reinforced by the air in the cavity of the 
mouth during the articulation of the vowels u, o, a, e, i, 
are b2!T, b3[R, b4^, b5|T, b 6? , respectively. These notes, as 
is obvious, differ from each other by an octave, and their 
respective vibration-numbers are 224, 448, 896, 1792, and 
3584. In musical notation they would be written as 
follows: — 

t = 
t= 

Vowels . . U 
Notes . . B2t> 
Frequency . 224 

O 
B S B 

443 

A 
B4b 

E 

1792 

I 

3584 

We have here a simpler form of instrument devised by 
Koenig for exhibiting the flame-images corresponding to 
the different qualities of the various vowel-tones sung to 
the same note, and for showing the transformations that 
these images undergo when the same vowels are sung to 
different notes. It is essentially a manometric capsule, 
like those we have been using, except that it is connected 
with a funnel-shaped mouthpiece (Fig. 157). A of the 
figure shows a cross-section of the capsule, and M is the 
revolving mirror in which the images of the flame are visi-
ble. When one sings into the mouthpiece connected with 
the manometric capsule, the flame is agitated, and the 
images seen in the revolving mirror disclose the slightest 
shades in the quality of the tones emitted; and as the 
number and intensity of the upper partials of any note 
vary with the pitch, the flame-images will show a corre-
sponding change in form as the sound produced passes 
from a grave note to one more acute. For the lower 
notes, and particularly for the grave vowels, like u, 0, a, 
there is an exuberance of partials that is entirely absent in 
notes of higher pitch, especially in those of the vowel i. 
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When i is sung to C3, the flame-image produced shows 
that it is practically a simple tone, and unaccompanied, 
therefore, by any partials whatever. 

The qualities of different vowel-sounds, and their trans-
formations for the various notes from Ci to C3, are beauti-
fully depicted in Fig. 158, which gives, in a compendious 
form, the results of the careful and laborious observations 
of Dr. Koenig on the subject of vowel-sounds as studied 
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with manometric flames. 0 U, at the head of the first 
column, is intended to give the Italian sound of uy while, 
the names of ut, re, etc., are given according to the 
French style, instead of that which we have adopted in 
these lectures. 

Many consonants, as well as the vowels, give characteristic 
flame-images. The so-called semi-vowels, m and n, give 
images that are so nearly alike they are practically indis-
tinguishable. Fig. 159 exhibits their images for the notes 
C2 , E 2 , G 2 , C 3 . In Fig. 160 we have the very remarka-
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ble image that characterizes the peculiar sound of the 
letter r. 

The dependence of the quality of tone on the number 

FIG. 158. 

and relative intensity of the upper partials that accompany 
their prime, can be very strikingly shown by a simple 
experiment that any one can make on the pianoforte. 

QUALITY OF SOUND. 

Raise all the dampers of the instrument, and directing 
the voice towards the sounding-board, sing loudly the 
vowel a, as in " ah," and you will hear the sound of the 
same a distinctly repeated by the strings that emit notes 
corresponding to the fundamental and upper partials of the 
voice. In like manner sing 0, as in " oh," and the echo will 
give back with surprising clearness a full, sonorous 0. A, as 
in " bay," is likewise re-echoed with astonishing exactness. 
E, i, and u are also heard, but not so loud as a or 0. 

FIG. 159. 

Sound a clarinet near the sounding-board, and the qual-
ity of the tone of this instrument will be imitated with 
remarkable fidelity. 

All the various sounds mentioned single out and excite 
to vibration certain strings that, by themselves, would give 
the elementary constituents of the compound tone in ques-
tion. These simple experiments prove as conclusively as 
the more elaborate ones we have made that all compound 
tones are composed of simple ones, and that quality of 
tone, as demonstrated in so many ways, is intimately asso-
ciated with the number and intensity of the partials exist-
ing in the tone examined. 



Thus far the method we have employed in investigating 
the quality of sound has been analytical. We have learned 
the difference between simple and compound tones, and 
have seen how we can accurately determine the number 
and relative intensity of the simple tones that coexist in 
any given compound tone. We have studied particularly 
the methods of sound-analysis devised by Helmholtz and 
Koenig, and have found that, with one or two exceptions, 
all musical sounds are composed of two or more simple 
tones, and that it is mainly the presence of these partials 
that enables us to distinguish from each other the sounds 
proceeding from different sonorous bodies. 
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We are now prepared to make another step in advance, 
— to study the quality of sound synthetically. After 
Helmholtz had succeeded in effecting the analysis of 
sound, by the means just considered, he proceeded to 
confirm the results thus obtained by synthesis. By analy-
sis he was able to determine the number and the relative 
intensity of the partials constituting a tone of determinate 
quality. His next problem was to take these partials, of 
the number and intensity revealed by his analysis, and put 
them together in such a manner as to obtain a tone of the 
same quality as that which had been subjected to analysis. ' 
The result was that the two processes — analysis and syn-
thesis—corroborated each other in a most remarkable 
manner. The problem that had so long baffled musicians 

and acousticians was at last solved, and we are now able 
to account for the quality of a tone, as well as for its 
pitch and its intensity. 

In investigating synthetically the quality of a sound, it 
is essential that we should have simple tones. Stopped 
organ-pipes, which, as we have learned, give nearly simple 
tones, might be used, and sometimes are used; but it is 
found more advantageous to use tuning-forks, whose tones 
are reinforced by suitable resonators. Tuning-forks thus 
made give us simple tones, whose vibrations are nearly 
pendular. 

For the artificial production of tones of different quali-, 
ties, quite a number of forks, of different pitches, are 
required. As is evident from what has been said regard-
ing the components of compound sounds, we can employ 
only such tones as those whose frequencies are to each 
other as the whole numbers 1, 2, 3, 4, etc. Hence, the 
application of the method is limited to comparatively 
grave sounds. For should the prime of the compound 
tone to be studied be very acute, its upper partials would 
have such a high pitch that it would be impossible to rein-
force them with resonators; and unless thus strengthened 
they would be useless for the purpose under consideration. 

On the table is a series of ten tuning-forks placed in 
front of resonant cases. The larger fork, C2, gives 128 
vibrations, while the other nine forks are tuned to give 
exactly the nine upper partials of C2. Starting with C2 as 
the prime, these partials would be in the order of succes-
sion, C3, G3, C4, E4, G4, seventh upper partial, — between 
A4S and B4i>, — C5, D5, E5 . 

When the prime C2 is sounded, we have the pure, 
simple tone that is characteristic of a good tuning-fork. 
The tone heard in this case is as nearly a perfectly simple 
tone as it is possible to obtain. In addition to the prime, 
the octave is now excited, and the two tones blend together 
so perfectly that they appeal to the ear as only one note. 
Indeed, it requires considerable effort for the ear to sepa-
rate one note from the other. But the compound tone 



heard when the two forks, C2 and C3, are sounded together, 
is quite different from the pure, simple tone emitted by 
C2 alone. The second, as all can perceive, is fuller and 
richer than the first. 
^ The prime C2 and its first five upper partials, C„ Gs, C4, 

E4, G4, are now set in vibration. As with the two forks, 
the tones of the six forks now so coalesce that the resultant 
tone seems to proceed from one source of sound. So per-
fect is the combination that it is exceedingly difficult for 
the unaided ear to single out the notes that are emitted by 
the individual forks. With resonators, however, this could 
be done with the greatest facility, and in a way that would 
surprise those that have never had any experience with 
such appliances. 

But what I wish specially to direct your attention to is 
the brilliancy and volume and harmoniousness of the tone 
you now hear, as compared with that produced by one 
fork, or by two forks. By exciting simultaneously all the 
forks in the series, except the seventh and ninth partials, we 
obtain a tone that is proportionally brighter. Introducing 
the seventh and ninth partials into the mass of sound now 
heard, the quality is at once changed. We have introduced 
elements of discord, although their influence in this case is 
not so great as they would be in sounding with one of the 
forks separately, because the volume of tone of the eight 
other forks is so great that it partially extinguishes the 
tones of the inharmonic intruders. We could not have a 
more striking or more beautiful illustration of the depend-
ence of the quality of a tone on the number of partials 
accompanying a given fundamental, than that afforded by 
this experiment. The compound sound emitted by the 
series of forks —omitting the seventh and ninth —here 
used reminds one of the fulness, mellowness, and softness 
of the tones of a French horn in the hands of a maestro. 

But for experiments on the synthesis of sounds, it is 
necessary to have, not only simple tones, but tones that 
can be sustained at will. Those afforded by the forks just 
used diminish rapidly, and for that reason are not well 

suited for the work of synthesis we now have in hand. 
And then, again, it is important that we should be able to 
regulate the intensities of the various simple tones intro-
duced ; and to do this accurately a special contrivance is 
necessary. In other words, if we would do exact work in 
the synthesis of sounds, a specially devised apparatus is 
almost indispensable. 

Such an apparatus, as made by Koenig, is now before you. 
It is a modification of the one first devised by Helmholtz, 
and with which he carried on his celebrated researches on 
the quality of vowel and other compound sounds. It is 
one of the most ingenious of acoustic instruments, and 
enables us to effect, in a most striking manner, the compo-
sition of many compound sounds, and to show, what we 
have demonstrated analytically, how much the quality of a 
sound depends on the harmonic partials that are associated 
with the fundamental. 

As seen in Fig. 161 , this apparatus is composed of ten 
tuning-forks, giving the series of harmonic partials, starting 
from C2, of one hundred and twenty-eight vibrations, as 
a prime. They are fixed vertically between the poles of 
electro-magnets which are traversed by an electric cur-
rent that can be rendered intermittent by a tuning-fork so 
constructed as to close and break the circuit exactly one 
hundred and twenty-eight times per second. Each fork is 
provided with an accurately tuned cylindrical resonator, 
whose orifice, when the instrument is in use, is brought as 
near as possible to the vibrating prongs of its associated 
fork. The orifices of the various resonators can be more 
or less opened by keys in connection with them. When 
the resonators are closed, the tuning-forks, although vi-
brating, are scarcely audible, because the boards on which 
they rest are insulated from their common support by 
rubber tubes glued to their lower surface; and this has 
the effect of almost completely damping the sounds 
that would otherwise be heard with considerable inten-
sity. As soon, however, as any of the resonators are 
opened, by pressing on the proper keys, the sounds of 



The best tones to select for imitation with the instrument 
before u£ are the vowel-sounds, because they are free from 
the various noises that always accompany other musical 
sounds. Even aside from this fact, I should now choose 
vowel-sounds, as a matter of convenience, and to show also 

FIG. 161. 

how the results we have arrived at analytically are confirmed 
by the synthetic method. When making the analysis of 
sounds by means of resonators and manometric flames, we 
employed vowel-sounds. The results then obtained may 
now serve as a guide in our synthetic work, and allow us 
to pick out at a glance the upper partials found in the 
various vowels, and regulate their intensities according to 
the flame-images corresponding to the different vowels. 

Thus we saw that when u, pronounced as 00, was sung 
before the resonators, there was, in addition to the funda-
mental, an indication of a strong second partial, and 
occasionally, of a very weak third partial. If then the 
forks C2 and C3 are sounded with their corresponding 
resonators wide open, and G3 is sounded feebly, we should 
obtain a compound sound resembling u. The forks are 
sounded, and at once you hear a tone that certainly 
approaches the one sought. 

O, according to our flame-reactions, is made up of a 
strong prime and strong third and fourth partials, while 
its octave is comparatively feeble, and its fifth partial fee-
bler still. The forks required in this instance will be those 
emitting the prime C2, and the partials C3, G3, C4, E4 . 
Opening the resonators of the proper forks according to 
the indications given by the flame images, we obtain a 
tone that you must admit bears a striking resemblance to 
the sound of the vowel 0 as it is sung. 

In the tone of the vowel a, according to its analysis, 
there are no fewer than seven partials. The prime, fourth, 
fifth, and the sixth are the strongest. The others are of 
various degrees of feebleness. The forks required for a 
are, therefore, C2, C3, G3, C4, E4, G4, and the seventh par-
tial. Sounding these with their corresponding resonators 
more or less opened, according as they are to reinforce the 
tones of the forks strongly or feebly, we have as a resultant 
tone an imitation of the vowel a. 

To imitate the sounds of the vowels e and i is less 
easily accomplished, because of the high pitch of their 
upper partials, and because of the difficulty in rendering 
•the tones of their upper partials sufficiently intense. 

In our flame-analysis of the vowel e we found the prime 
C2 accompanied by an octave and a twelfth, the former 
feeble, the latter very loud. Besides these, there were 
present the fourth and fifth partials of medium intensity, 
and a trace of the seventh. Compounding the simple 
tones of the forks according to these reactions, we obtain 
a faint reproduction of the tone of the vowel e. 



Analytically, i is composed of a prime and its octave, 
both of which are very intense. But the same difficulty 
that was in our way in the analysis of this vowel, and of 
sounds <pf high pitch generally, now confronts us in its 
reproduction, —the difficulty of getting resonators strongly 
to reinforce high partials. For this reason it is impossible 
to imitate the tone of i in a way that even approximates 
the fidelity of the imitations of the graver vowels, es-
pecially u, o, and a. But, you will say, in none of these 
cases is the imitation perfect. The resemblance of the 
artificial sounds to the natural ones is, at best, more or 
less fanciful. 

I admit that we have not, in the experiments made, been 
able to reproduce the vowel-sounds with all their charac-
teristic shades of difference. And what is said for vowel-
sounds may be said of all other sounds. But even granting 
the impossibility of effecting such a composition, we have 
accomplished enough to show that we have discovered the 
foundation of quality in tone, and this is all that has been 
attempted. 

Moreover, in addition to the effect that upper partials, of 
varying number and intensity, have in modifying the qual-
ity of their prime, and in the case of vowel-sounds, for 
instance, of impressing on the resultant tone that quality 
that characterizes it, we must not forget to take into con-
sideration the conformation of the mouth, the condition of 
the vocal cords, the pressure of the air urged through the 
glottis, and a score of other conditions that it would be 
quite impossible exactly to reproduce by any artificial 
contrivance, however perfect. 

And more than this. There is a factor of more or less 
influence in determining the quality of sound, about which 
I have yet said nothing, but which is of sufficient impor-
tance to merit serious consideration. I refer to difference 
of phase. Helmholtz, whose conclusions respecting the 
influence of upper partials in modifying the quality of tone 
have already been given, denies that quality is in any way 
affected by difference of phase. Indeed, the complex 

apparatus that we have just used was partially devised to 
show that the quality of sound is entirely independent of 
difference of phase. In summing up the results of his 
investigations on this subject, he states explicitly that 
" the quality of the musical portion of a compound tone 
depends solely on the number and relative strength of its 
partial simple tones, and in no respect on their difference 
of phase." 

To this conclusion, which Helmholtz lays doWn as " an 
important law," Dr. Koenig takes exception, and by a 
number of cleverly devised apparatus, constructed espe-
cially for the purpose, he shows that difference of phase 
affects the quality of tone to such an extent that its influ-
ence cannot be neglected. 

To appreciate Koenig's experiments, and understand the 
apparatus by which they were made, we must recall what 
was said in our seventh lecture about the combination of 
waves representing notes of the same and of different 
periods, and of notes of the same and of different phases. 
Then, however, only waves corresponding to notes whose 
periods were equal, or were to each other in the ratio 1 : 2, 
or 1 : 3, were combined. But it is possible, and even easy! 
by following the rules there laid down, to combine any 
number of simple waves, whether of the same or of dif-
ferent phases. 

In Fig. 162, drawn by Professor Mayer, we have beauti-
fully illustrated the combination of the six harmonic curves 
corresponding to the first six partials of a musical note. 
The elementary curves are shown in the upper part of the 
figure; the resultant in the lower part. In order to bring 
out the characteristic flexures of the resultant, the ampli-
tudes of the curves are made to vary as their wave-lengths. 
But it must not be inferred that the intensities of the par-
tíais of a musical note vary according to the amplitudes 
here given. Neither must it be concluded that the ampli-
tudes, as compared with the wave-lengths, are nearly so 
great in nature as in the curves in the diagram. As a 
matter of fact, in sonorous vibrations, the amplitude of 



vibration of the oscillating particles, as compared with 
the wave-lengths, must be infinitely small, in order that 
the law of the " superposition of displacements " may be 
rigorously true. 
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The resultant curve given in the foregoing illustration 
has a special interest from the fact that it closely resem-
bles the vibrational figure executed by a violin-string, as 
determined by Helmholtz by means of a vibration-micro-
scope. A comparison of the latter curve (Fig. 163) with 
the former, shows how nearly the two are alike. If the 
violin had yielded a tone of exactly six partials, and of the 
same intensities as indicated in Fig. 162, the two resultant 
curves would be identical in appearance. 

Professor Mayer gives us another remarkable illustration 
of the coincidence of vibrational forms obtained by different 

methods. In Fig. 164, A shows the indentations made in 
a sheet of tin when the vowel a is sung into the mouth-
piece of a phonograph. B exhibits a transverse section of 
these indentations. C gives in outline the form of a raano-
metric flame which has been set in vibration by the sing-
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ing of the same vowel, a. The similarity of forms in the 
two cases is beyond question. 

In Fig. 165, a, we have in the upper horizontal line four 
curves, whose periods are 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 ; and 
represent sounds whose intensities are equal. The four 
curves give the resultants of the eight simple curves, when 
they coincide at their point of departure, indicated by 0, 

0 • » «>0 vs. » aa «E> • C30 A 

FIG. 164. 

and when their difference of phase is equal to or f 
of their wave-lengths. In the same figure, b, we have four 
curves, representing likewise curves of equal intensities, 
and having periods that are to each other as the odd num-
bers 1 : 3 : 5 : 7, etc. As in a, there are differences of 
phase corresponding to 0, f , and f of a wave-length. 

Sounds in which all the upper partials have the same 
intensities as their fundamental are probably never pro-



duced by any of the natural sonorous bodies with which 
we are familiar. When required in music, they are pro-
duced by bringing out simultaneously a series of sounds 
bearing to each other the relations of harmonic partials, 
as in the compound stops of the organ. 

But it frequently happens in nature that sonorous bodies 
possess qualities of tone due to the presence of harmonic 
partials that decrease in intensity according to a determi-
nate law. Such is the case with reeds not provided with 
pipes; with strings emitting only one of their proper 
tones; and with tuning-forks having long, thin branches, 
and executing vibrations of considerable amplitude. 
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In Fig. 166, a, are four curves of four different phases, 
which are the resultants of ten harmonic curves, whose 
periods are as 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : 10, and whose am-
plitudes vary inversely as the numbers expressing their 
order. In b, c, and d we have still different curves repre-
senting sounds whose partials, with their relative intensi-
ties, are indicated by the numbers given. 

If, now, these curves are cut in the circumferences of 
metal disks, or on the margins of metal bands attached to 
wheels, we have reproduced, in a modified form, the wave-
siren which we had occasion to use in studying the nature 
of beats and beat-tones. The principles employed in con-
structing a wave-siren for exhibiting beats and beat-tones, 
and one for showing the quality of tone produced by 
various harmonic partials, of the same or different phases, 
are identical. 

A siren, as employed for the latter purpose, is now 
before you. As you observe, it consists essentially of 
three bands of brass, fastened to three wheels supported 
on a vertical axis (Fig. 167), which is caused to revolve by 
a crank. On the margins of the two lower bands are cut 
four curves, each corresponding to the first twelve partials 
of a sound, the intensities of which partials are inversely as 
the order of their sequence. The difference of phase 
exhibited by these four curves corresponds to the coinci-
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dence of origin in the first curve, 0, and to differences of 
I-, and | of a wave-length in the three others. 
The upper band has cut into its edges two curves, pro-

duced by the combination of harmonic curves representing 
the first six odd partials, whose intensities also decrease 
inversely as the numbers denoting their order of succes-
sion. When revolving on their axes, these curves pass 
before the narrow openings of six tubes which are con-
nected with a common reservoir, and which, by means of 
suitable keys, can be opened at will. When air is blown 
against any of these curves, and they are revolved with a 



sufficient rapidity, a sound is generated whose quality 
varies according to the number of the constituent harmonic 
curves in the resultant compound curve. With this appa-
ratus, then, we are able to compare the results given by 
two series of different harmonic partials, and to compare 
also the results afforded by the same series of partials 
when their phases are different. 

If we now direct a stream of air against the four lower 
serrations in succession while they are made to rotate with 
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a suitable velocity, you immediately perceive that there 
is a marked difference in the quality of the sounds pro-
duced by the different serrated bands. The curve, having 
a difference of phase of is found to give a tone of greater 
power and brightness than any of the three others. The 
minimum of power and brightness is afforded by the curve 
whose difference of phase is -f, while the two remaining 
curves, corresponding to differences of phase of 0 and 
yield a tone intermediate in quality between those furnished 
by the curves whose differences of phase are ^ and | . 

Here, then, we have curves corresponding to partials 
whose number and intensity, in the four cases considered, 
are precisely the same. The very marked difference ob-
served in the quality of the tones cannot, therefore, depend 
on the number and intensity of these partials, but must be 
due to some other factor which is not common to the four 
curves. This factor is the difference of phase of the 
curves, and this alone it is that differentiates the quality 
corresponding to one curve from that given by any of the 
others. 

Trying, in the same manner, the two serrations of the 
upper band, whose curves correspond to the first six odd 
partials, we obtain tones that are entirely different from 
each other, and entirely different from those afforded by 
the indentations of the two lower bands. We note that 
there is in this case, also, the same difference of quality of 
tone for the phases and § as was observed in two of the 
four preceding curves. 

But Koenig was not satisfied with the results afforded 
by these compound curves until he had verified them by 
other means. He had, indeed, constructed his curves 
with the greatest care, and on a large scale, reducing them 
afterwards by photography; and it would seem that the 
evidence furnished by the experiments made was conclu-
sive. To prove, however, that the difference of quality in 
the instances just referred to was, without all peradventure, 
due solely to difference of phase, Koenig devised still 
another form of wave-siren. 

The essential parts of this ingenious piece of mechanism 
(Fig. 168), — a photograph of which is projected on the 
screen, — are sixteen copper disks, mounted on a sort of 
cone-pulley, and connected by suitable tubes with a pow-
erful wind-chest. The disks have cut in their edges six-
teen simple harmonic curves, corresponding to the first 
sixteen partial tones, and they increase in diameter from 
the first to the last. A movement of rotation causes them 
to pass before the tubes attached to the wind-chest, and 
they can be so arranged that each disk will yield a simple 
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tone, corresponding to a simple pendular vibration. With 
these simple tones, one can form various compound tones 
of varying qualities, in the same manner as was effected 
with our tuning-forks and resonators. 

But besides being able to reproduce compound tones 

F I G . I68. 

differing from each other in the number and intensity of 
their constituent partíais, as was done with the tuning-
forks, a special disposition of the apparatus in question 
enables the experimenter to adjust the air-tubes so that 
he can have instantly any difference of phase he may 
desire. Such being the case, he is in a position to show 
the influence of difference of phase on quality of tone. 
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And, as was anticipated, the results arrived at with these 
sixteen disks, giving, at will, either simple or compound 
tones of the same or of different phases, were entirely in 
accord with those given by the wave-siren with which 
we have been experimenting, all of whose curves are 
compound, and made according to a determinate law. 

It is not necessary, however, to have recourse to the 
elaborate apparatus we have been considering, to show 
the marked influence of difference of phase on quality 
of tone. A crucial experiment, also indicated by Koenig, 
can be made with a much simpler form of instrument. 

To the rotator before 
you is attached a disk 
(Fig. 169), whose edge is 
cut in the form of a har-
monic curve. Revolving 
this disk, and directing a 
current of air against it in 
such wise that the narrow 
slit of the tube through 
which the wind passes is 
parallel to the radius of 
the disk, we obtain a fee-
ble, but very sweet note. 
The note is simple, — just such a note as would be pro-
duced by simple pendular vibrations. 

If, however, we incline the slit-like opening of the tube 
either towards the right or the left of the radial line, we at 
once obtain a stronger and a harsher note. With the proper 
inclination of the slit, the note emitted assumes the quality 
due to a free vibrating reed, whose partials are distinctly 
recognizable. When we incline the slit in the direction of 
rotation of the wheel, the simple note is changed into a 
compound note whose prime is accompanied by a series of 
partials of decreasing intensities having a difference of 
phase of When it is inclined in the opposite direc-
tion, the same partials accompany the prime, but with a 
difference of phase of 0. 



We are thus enabled, while using the same partials, to 
change from one phase to another with the greatest rapid-
ity. The result is very striking indeed. In this way we 
discover that the notes whose partials have no difference 
of phase are round and pure, while, on the contrary, those 
engendered by partials whose difference of phase is equal 
to half their wave-length, are more harsh and nasal. The 
difference of quality in the two tones thus generated can 
well be characterized in comparing them to the vowels 
0 and a. As the inclination on the slit to the radius of 
the disk is augmented, this difference becomes more pro-
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nounced, and eventually becomes so great that the quali-
ties of the two notes emitted no more resemble each other 
than do the two vowels mentioned. 

A little consideration will make it evident why a change 
in the position of the slit before a harmonic curve should give 
rise to tones of such different qualities. Let c, e, g,i . . . z 
(Fig. 170), represent a harmonic curve which is made to pass 
before the vertical slit a b. Under such circumstances the 
perpendiculars of the curve that are successively opposite 
the slit will vary according to the law of sines, and we shall 
have a simple tone corresponding to one produced by sim-
ple pendular vibrations. If, however, the slit is inclined, 
the parts of the curve that are successively covered by the 
slit will vary according to a law which is entirely different. 

The result in such a case would be as if the slit were made 
to move before the curve c, e',g', i' . . . z, which is obtained 
by cutting the sinusoid by the straight lines de, f g , h i, . . . 
parallel to a b\ and erecting at the points d , f , h, . . . the 
perpendiculars d e ' , f g ' , and h i ' , equal in length to the 
lines de,fg, h i . . . The change of intensity and quality 
of tone, due to the inclination of the slit to the right or to 
the left of the vertical, manifests itself so quickly and with 
such distinctness that the position requisite for the pro-
duction of a perfectly simple tone can be determined with 
the greatest accuracy by the ear alone, without any assis-
tance whatever from the eye. 

We can, therefore, no longer entertain any doubt regard-
ing the influence of difference of phase on determining the 
quality of sound. In the instances just considered, its 
influence is very marked, and we have no reason for be-
lieving that its influence is different in other tones which 
are characterized by similar differences of phase. Of 
course the chief factors in determining the quality of any 
given tone are the number and relative intensity of its par-
tials ; but in no case is the effect due to difference of phase 
in these partials so slight that it can be entirely over-
looked. Considering the facts in the case, as disclosed 
by the experiments made, we can in truth affirm, in the 
words of Koenig, " that if the changes in the number and 
relative intensity of partials give rise to such differences of 
quality as we observe in instruments belonging to different 
families, or such as distinguish the human voice in the dif-
ferent vowels, the changes in the difference of phase for 
these same partials are competent to produce differences 
of quality at least as sensible as those which are remarked 
in instruments of the same kind, or in the same vowels as 
sung by different voices." 

If now we were asked to give an answer to the question 
we proposed to ourselves at the beginning of this lecture, 
regarding the cause of the quality of sound, we should be 
able to give it without hesitation. The answer would be 
that given by Helmholtz, with a correction for the differ-



ence of phase, and would read as follows: The quality of 
the musical portion of a compound tone depends on the 
number and relative intensity of its partial simple tones, 
and on the differences of phase under which these partial 
tones enter into composition. 

Here I must call your attention to a remarkable mathe-
matical confirmation of the truth of what has been stated 
regarding the influence possessed by the harmonic partials 
in modifying the quality of their fundamental. It shows 
a most intimate connection between two subjects, mechan-
ics and acoustics, that are popularly supposed to be as 
widely separated from each other as are the antipodes. 

The distinguished French mathematician, Fourier, has 
demonstrated that every periodical vibration, of whatever 
form, may always be separated into a series of simple pen-
dular vibrations. This means that when we represent the 
vibrations by curves, there is no periodic form of curve 
that cannot be compounded out of harmonic curves whose 
lengths are inversely as the numbers I, 2, 3, 4, etc. More 
than this. He has indicated the means for calculating for 
each compound curve the number, amplitude, and differ-
ence of phase of its constituent simple curves. 

The law just enunciated, which is generally known as 
Fourier's theorem, when translated from the language of 
mechanics into the language of acoustics asserts, what 
experiment has also shown to be true, that every com-
pound musical tone is composed of a definite number of 
simple tones, whose relative frequencies follow the same 
law as that which governs the sequence of harmonic 
partials. 

But, as we have seen, there are comparatively few in-
stances in which a prime tone is accompanied by partials 
which are perfectly harmonic. In the majority of cases 
the upper partials are more or less inharmonic. With such 
tones Fourier's theorem has nothing to do. 

While experimenting with his large compound wave-
siren (Fig. 167), Koenig discovered that it was impossible, 
with any combination of partials that he could make, to 

reproduce the peculiar strident tones of certain reed and 
wind instruments. Neither could he successfully imitate 
vowel-sounds. He tried every combination of partials 
and every variation of intensity and phase, but in vain. 

He then devised a modified form of wave-siren that he 
thought would afford some solution of the difficulty. In-
stead of having the edge of the disk cut into "the form of a 
curve corresponding to a series of harmonic partials, he 
made the indentations in some of his sirens correspond to 
a fundamental, accompanied by certain perturbed har-
monics. In others the indentations corresponded to sinu-
soidal forms, on which are superposed a number of wavelets 
of various shapes and sizes. I shall show you only two of 
these sirens, in order that 
you may have some idea 
of the nature of the ex-
periments made, and the 
conclusions to which they 
lead. 

The edge of the disk 
before you (Fig. 1 7 1 ) an-
swers to a curve corre-
sponding to a tone com-
pounded of a prime and 
four perturbed harmonic 
partials. The fundamental FIG. 171. 
consists of 24 waves. The 
first upper partial consists of 49 waves (2 X 24 + 1 ) ; the 
second of 75 (3 X 24 + 3) ; the third of 101 (4 X 24 + 5) ; 
and the fourth of 127 waves (5 X 24 + 7). The resultant 
curve embraces 24 waves, all different in form, and some 
of them very irregular in outline. When air is blown 
through a narrow slit against the teeth of this disk, a 
very disagreeable and slightly intermittent sound is the 
result. 

In the second disk (Fig. 172), we have twenty-four sinu-
soidal waves, in the sides of which have been made with a 
file a number of ripples of various forms and sizes. The 



crests and troughs, however, remain untouched. For this 
reason the vibrations made by this siren are of equal 
amplitude and isochronous. This disk, unlike the one 
just used, gives a sound which, although somewhat rau-
cous, possesses a definite musical quality.1 

I'rom these and a number of similar experiments made 
by Koenig, it is found that we have yet much to learn 
before we can answer the many questions that still arise 
regarding the nature of the quality of sound. We know, 
indeed, in a general way the cause of the quality of sound, 
and this is a great step forward; but we cannot yet ana-

lyze the elements of any 
particular tone. To be 
sure, we may be able to 
determine the number of 
partials present, and even 
their relative intensities. 
This is comparatively easy 
work. But in addition to 
this we must know the 
various differences of 
phase that characterize 
the partials of any given 

FIG. 172. tone. And, more than 

this, we must know how 
far the partials of a tone are from being truly harmonic, 
and in what respects the harmonic partials differ from the 
tones of subdivision, if both sets be present at the same 
time. The difficulties are many, and apparently insuper-
able ; but judging from what has been done during the 
past thirty years, we need not despair of being able event-
ually to give not only a general definition of quality, but 
also one that will apply in the case of any particular tone. 

We are now prepared to answer a question that must 
have presented itself to all of you before this, and that is, 
How is the ear able to hear several tones at the same time? 

1 Ueber Klänge mit ungleichförmigen Wellen. (Annalen- der Physik und 
Chemie. Neue Folge. Band X X X I X . 1890). 
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It is evident that a given particle of air, or a given point of 
the drumskin of the ear, can have but one direction of 
motion at any one instant of time. Hence the motion 
imparted to any particle of air, or a point of the tympanic 
membrane, must be that resulting from the compounding 
of all the simple motions corresponding to all the simple 
tones existing in the various tones perceived by the ear. 
Remembering how harmonic curves are combined to form 

FIG. 173. 

compound curves, and having in mind that any given 
point in such compound curves can have motion in only 
one direction at any given instant, we can readily under-
stand how the resultant of any number of simple or com-
pound tones impresses on the tympanum of the ear a 
motion that at any determinate moment is simply either 
outwards or inwards. 

By means of a glass disk devised by Professor Mayer 
we are able to study in a most satisfactory manner the 
nature of the motion imparted to any particle of matter 



under the combined influence of two or more vibratory 
movements of different periods. On the disk (Fig. 173) is 
traced a curve that corresponds to four of the resultant 
curves of Fig. 162. The disk is now placed before the 
condenser of the lantern and projected on the screen. At 
present you see the image of the entire curve. If, how-
ever, a piece of cardboard with a narrow slit be placed 
before the disk, with the slit in the direction of one of the 
radii of the disk, we shall see only a single luminous point, 
all the rest of the curve being covered by the cardboard. 
When the disk is slowly rotated, the point of light repro-
duces exactly the kind of vibratory motion which charac-
terizes a material particle under the joint influence of the 
first six harmonic motions generating a given musical note 
composed of six partials. The to-and-fro motion of the 
luminous point, although perfectly periodic, has a peculiar 
irregular, halting character. If a single harmonic curve 
were traced on the disk, instead of the resultant of six such 

t curves, the vibratory movement of the point of light would 
be quite different. It would then oscillate backward and 
forward like the pendulum of a clock. In other words, we 
should have pictured to us the simple harmonic motion 
corresponding to a simple musical tone. 

How the ear resolves this resultant motion into its con-
stituents, and analyzes the mass of composite tone into its 
simple components, is a question we leave to physiologists 
to answer. It is a fact that the ear does make the analysis, 
and unravels with unerring accuracy the most complex 
sonorous vibrations. Its superiority over the eye in this 
analytic power is most remarkable. The most intricate 
mazes of tone are at once traced to their origin, with the 
greatest facility, by the ear; whereas the eye, in any at-
tempt to separate luminous vibrations of different periods, 
w.ould surely and utterly fail. 

And when we stop to think on the very small size of the 
external passage of the ear, and its capacity to recognize 
at one and the same time a multiplicity of tones of the 
most diverse quality, our wonder increases.' It is only 

then that we begin to realize what a truly marvellous organ 
is the ear. And if we are to accept as true the theory 
propounded by Helmholtz, and based on the discoveries 
of Corti, Hasse, Hensen, and others, our admiration must 
become even greater. According to this theory, there 
are in the basilar membrane of the human ear several 
thousand fibres, each of which is set in sympathetic vibra-
tion by a vibratory motion of a certain definite period. 
These fibres are connected with the constituent filaments 
of the auditory nerve, and by them the various simple 
pendular motions which are singled out from the com-
plex vibratory motions, excited by most sonorous bodies, 
are transmitted to the brain, where they are translated into 
the sensation we call sound. 

If this theory be true, — it is certainly very plausible, — 
we have afforded us a simple mechanical explanation of 
the perception of sounds of various pitches and qualities, 
as far as their vibratory motions are concerned, that com-
pels the mind to recognize the stupendous results which 
the Creator accomplishes by the simplest means, and to 
see in the astonishing phenomena of audition evidences of 
Divine power and wisdom as striking as any disclosed in 
the whole realm of animated nature. 

But sympathetic vibrations excited in the fibres of the 
basilar membrane, by vibrations of determinate periodicity 
which are external to the ear, are evidently only a repro-
duction in the organ of hearing of sympathetic motions 
which are similar to those excited in all forms of sonorous 
bodies whose frequencies are identical. This, however, 
granting it to be true, does not afford any explanation of 
the sensation of sound* We may offer explanations, based 
on the principles of mechanics, as to how vibratory mo-
tions of various kinds are related to each other, and as to 
how the motions of one period may give rise to motions of 
the same or of different periods; but this does not afford 
a solution of the enigma that confronts us, nor does it 
shed any light, on the nature of the action of the brain. 
This brings us again to the borderland of mystery. When 
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we can comprehend the nature of the link that binds mind 
and matter, then, and not till then, may we hope to have 
some insight into the nature of the phenomena here pre-
sented to us, to understand how motion can originate 
sensation, and how vibrations of different periods can be 
changed, translated, as it were, into what appeals to our 
senses, as heat, light, and sound. C H A P T E R X. 

MUSICAL I N T E R V A L S AND T E M P E R A M E N T . 
• 

TH E sounds with which the acoustician deals range in 
frequency from sixteen to nearly fifty thousand 

vibrations per second. Of these, only a comparatively 
small number are employed in music, and they must al-
ways bear to each other certain definite relations of pitch. 
The ratios of frequencies which characterize such sounds 
are called intervals. Thus, two notes whose frequencies 
are as 2 : 1 constitute the interval of an octave. Two 
notes whose vibration-numbers are as 3 :2 give the in-
terval of a fifth. These intervals are independent of the 
position that the notes may occupy on the scale. Provided 
the ratio of their frequencies remains the same, the interval 
retains the same name, whether the notes are in one part 
of the scale or in another. 

The gamut, or diatonic scale, embraces a series of eight 
notes, the first and last of which have the same names, 
and are separated from one another by the interval of an 
octave. The notes of the gamut have been designated by 
the letters — 

C, D, E, F , G, A, B, C2. 

Considering the frequency of C as unity, the frequencies 
of the notes of the scale, including the tonic, or first note, 
will be proportional to the numbers — 

1 , f , h i 2-

Dividing each of these notes by that which precedes 
it, we obtain the intervals between the successive notes 
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of the scale. The intervals of the major scale are as 
follows: — 

C, D, E, F, G, A, B, C2 , 

8. ¥ • if. b V0-. !> it-

The consecutive intervals from C to C2 are called a sec-
ond, a major third, a fourth, a fifth, a major sixth, a major 
seventh, and an octave respectively. C, from which the 
intervals are reckoned, is called the tonic, or key-nMe. 
Musicians call the fifth note above the key-note the domi-
nant, and the fifth note below, the sub-dominant. When 
the key-note is C, the dominant is G, and the sub-dominant 
is G in the octave below C. 1 

In the foregoing scale, as will be observed, there are only 
three different intervals, viz., |, and The first, f , is 
called a major tone; the second, 1g°, is named a minor 
tone; and the last is known as a major ox diatonic semitone. 
The last interval, although called a semitone, is a little 
more than the half of a major tone. Adding together two 
semitones, — which is done by multiplying the frequency-
ratio, -j-f, by itself, — we obtain a number which is slightly 
greater than f : - i f x I f = f f f ; f f f : f : : 2048 : 2025. 
Two semitones are therefore greater than a major tone 
in the ratio of 2048 12025. Subtracting a major semitone 
from a minor tone gives a minor or chromatic semitone, 
V i f = I f - This interval is the smallest usually em-
ployed in music. A less interval, and one of consider-
able importance in theoretical music, is a comma. It 
is yielded by subtracting a minor from a major tone, 
| -T- = f^-. Tones, like major and minor tones, that 
differ from each other by only a comma, are considered 
in music to have the same value. The same may be said 
of major and minor semitones. The ratio between these 
two being less than a comma, — i f -r ff- = — they are 
regarded as semitones of equal value. 

1 When necessary, the subdomiflant is transposed into the octave of the 
tonic. 

The various notes of the diatonic scale are, with respect 
to their frequencies, related to one another as follows: — 

" Tonic. Second. Fourth. Fifth, S e v X h . 

C 3 D E F G A B C 4 

2 5 6 • 288 : 3 2 0 : 3 4 1 . 3 : 384 : 426.6 : 480 : 5 1 2 

1 = 1 : I : 3 I : I : ¥ : 2 

Ifcing the smallest whole numbers expressing these 
ratios, we have — 

24 27 3 0 : 3 2 3 6 4 0 - 4 5 • 48 

All the intervals here given, with the exception of the 
second and the major seventh, are what are known as con-
sonant intervals. The second and the seventh form inter-
vals that are called dissonant. The ratios corresponding 
to the former are expressed by small whole numbers, and 
the more consonant the interval, the smaller the whole 
number expressing the ratio. Hence, after unison, the 
most consonant interval is the octave. After the octave 
come in succession the fifth, the fourth, the major third, 
and the major sixth. 

Dissonant intervals, on the contrary, are characterized 
by ratios composed of large numbers, and the amount of 
dissonance to which any two sounds may give rise may, at 
least in the middle portion of the musical scale, be deter-
mined by the ratio of their vibration-frequencies. Thus the 
interval of a maj<?r tone, f , is, in the lower portions of the 
musical scale, markedly dissonant. A diatonic or a chro-
matic semitone, whose vibration ratios are respectively 
I f and |-|, are, in similar portions of the scale, far more 
dissonant. The intervals f , §, f , are called respectively the 
perfect octave, the perfect fifth, and the perfect fourth, to 
distinguish them from certain diminished or augmented 
intervals of the same name. They are said to form perfcct 
consonances, in contradistinction to the intervals f , f , and 
the minor third, f , and the minor sixth, f , which are denom-



inated imperfect consonances. The minor third is obtained 
by subtracting a chromatic semitone from a major third: 
I x If = ! • Similarly, a minor sixth is equal to a major 
sixth less a chromatic sefnitone, f X §§ = f . 

From the foregoing we observe that the sum of two inter-
vals is obtained by multiplying, not by adding, their ratios 
together. Thus a fifth added to a fourth yields an oc-
tave, | x | = = 2. When we wish to subtract one 
interval from another, we divide the ratio of one by that 
of the other. Thus, a fifth minus a major third equate a 
minor third, § | = 1 | = 

The various intervals thus spoken of are written in musi-
cal notation as follows: — 

Rv?bra°tionU H H ¥ I f f f f f f ^ f 
Logarithm ) „ _Q _0 -

of ratio | 0 I!> 2» 46 51 79 97 125 176 204 222 273 301 

In addition to the intervals given in the above table there 
are several others used in music, obtained by the inversion 
of the former; but we have no time to consider them here. 

In the preceding diagram, as will be remarked, the inter-
vals are expressed in logarithms1 as well as by fractions. 
In point of clearness and intelligibility the logarithmic are 
much superior to fractional values. By means of loga-
rithms we can tell at a glance the interval between any two 
sounds whatever, provided we know the numbers of their 
vibrations. It is immaterial whether they belong to the 

1 The logarithms, it will be noticed, are considered as whole numbers, 
the usual index and decimal point being omitted. 

musical scale or not. Expressed in logarithms, the inter-
val of a comma is 5 ; the interval between C* and D V, 
called an enharmonic diesis, is 6; while that of a mean 
semitone, as employed on tempered instruments, is 25. 

To find the sum of two intervals, we add together their 
logarithmic values. The logarithms of the intervals of a . 
fourth and a fifth are, as given above. 125 and 176 respec-
tively. But 125 + 176 = 301, the value of an octave. A 
major third, 97, added to a minor third, 79, equals a fifth, 
176. The difference between two intervals is found by 
subtracting the logarithm of the lesser interval from that 
of the greater. A fourth, 125, minus a major third, 97, is 
equivalent to 28, a diatonic semitone. A major tone, 5 1 , 
less a minor tone, 46, gives a comma, 5. 

From what has been said, we learn that from the very 
large number of different sounds only a small proportion 
of them can be used for purposes of music ; and those 
that are so used must form a certain fixed determinate 
series. We cannot slide, or proceed by a continuous 
transition, from one sound to another, but must advance by 
degrees ; that is, we must ascend or descend by definite 
steps.1 In the octave there are seven such steps, of vary-
ing size and position. Between these steps of unequal 
height, the demands of our modern music sometimes re-
quire the interposition of other steps, of lesser magnitude. 
Such a succession of sounds is called a scale, from the Latin 
word scala, " ladder," or " stairway." The French use the 
word échelle, which also means a ladder. The German 
term for scale is still more expressive. It is tonleiter, — 
that is, a " tone-ladder," or a ladder of musical sounds. 

A question now naturally suggests itself. Is the diatonic 
scale, of which we have been speaking, something con-
ventional and empirical, or is it founded on some law of 
Nature? The majority of musicians, I am inclined to 
think, would claim for the scale a natural origin. It so 

1 As an ornament, under the name portamento, a continuous slide is 
sometimes permitted in vocal and instrumental music. In instruments with 
fixed notes, as is obvious, a slide is impossible 



well satisfies our ideas of cadence, modulation, and tonal-
ity, it comes so natural to sing it, it is so pleasing to the 
ear, that there is a wide-spread impression that it must 
rest on natural laws, and* is therefore quitg independent of 
all assthetical principles. 

The late M. Fétis, the eminent musical historian, says 
in reference to this subject: " I t is an opinion generally 
held that the succession of sounds known in the modern 
music of European nations, and formulated by their major 
and minor scales, is the result of some fundamental and 
immutable law, and that diatonic music — i. e., music in 
which the sounds succeed one another in tones and semi-
tones — is the music of Nature. 

"According to the doctrines of many theorists and 
historians of the art, the sentiment of the necessity of 
these diatonic relations of sound ought to have preceded 
every other conception of tonality, and man would have 
been incapable of imagining a kind of music inconsistent 
with these relations. 

. " I do not hesitate to declare that this opinion is abso-
lutely contrary to what history teaches us by facts of the 
most unquestionable authority. 

We learn by these facts that diatonic music is not the 
most ancient; on the contrary, we have proof that none of 
the nations of antiquity adopted it, and that there exist 
still peoples to whom it is entirely strange The examples 
of music of the ancients are sufficient to prove the non-
existence of this assumed natural law of diatonic pro-
gression. It is not difficult to establish among primitive 
nations systems of sounds differing altogether from it; 
and it is possible to trace the progressive transformations 
by which the modern diatonic scale has been developed, 
at a comparatively late period, from some of the primordial' 
systems differing from it almost entrely." 1 

The first one to adopt a succession of notes that ap-
proached our modern diatonic scale was Pythagoras, the 

'_ Quoted from «Histoire Générale de la Musique," par E. F. Fétis in 
The Philosophy of Music," by Mr. William Pole. F.R.S 

founder of theoretical music.1 The diatonic scale now used 
was introduced by Zarlino, and the first account of it is 
found in his " Instituzioni Armoniehe," published in 1558. 
According to numerous and varied experiments made by 
MM. Cornu and Mercadier, the best performers on stringed 
instruments still follow the Pythagorean scale when play-
ing a melody, and adopt that of Zarlino only when they 
play pieces in which two or more notes are sounded sim-
ultaneously. Accepting their results as true, — and they 
seem to be well established, — we must conclude that the 
scale of Pythagoras is more suitable for melody; while the 
modern diatonic scale — the scale of Zarlino —is preferable 
for harmony. 

All nations that have had any pretensions to anything 
approaching a musical system have adopted the division 
of the scale into cycles of octaves. The Chinese divide 
the octave theoretically into twelve equal parts, corre-
sponding to our semitones. Practically, however, they 
use only five notes, whose intervals correspond to the 
black notes of the pianoforte The same pentatonic di-
vision of the octave is also found to a certain extent in the 
so-called Scotch music. 

The Arabs recognize both the octave and the fifth in 
their system of music. But their system is even more 
complex than that of the Chinese. It is divided into 
sixteen or seventeen unequal intervals, and is entirely dif-
ferent from anything that obtains among Western nations. 

The Hindoos theoretically divide the octave into twenty-
two parts. Their practical scale, however, consists of only 
seven degrees. In addition to the octave and the fifth, 
they also employ the interval of the fo\irth. 

1 The intervals of the Pythagorean scale are as follows : — 

c d e f g a b c 2 
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In this scale, as will be observed, there are only two intervals, —the tone 

and the semitone, or hemitone as it was called by the Greeks The intervals 
of the fourth, the fifth, and the octave are the same as in Zarlino's scale. 
The major third, sixth, and seventh are increased by a comma, while the 
semitone is diminished by a like amount 



The music of the Persians, like that of the Hindoos, is 
characterized by the subdivision of the octave into minute 

• intervals. But while the latter had, at least in theory, 
twenty-two divisions, the former had twenty-four. Each 
interval, therefore, of a Persian octave would be equivalent 
to what we call a quarter tone. 

The Persian system of music has a special interest for 
us, because of its influence on Greek music, from which 
our own was eventually evolved. The Oriental nations of 
to-day, like the Greeks of ancient times, had a delicate 
estimation of sounds that to us is quite astonishing. The 
Greeks frequently used quarter tones, as do the Arabs and 
Persians of the present time. It is for this reason that an 
analysis of the music of Oriental nations has always been 
such a puzzle to musicians and scientific men. Even now, 
after all the study that has been bestowed upon the mu-
sical systems of the Orient, there are still wanting many 
important data to enable us to form a correct theory 
regarding even one of the numerous systems that there 
prevail. 

It is sufficient, however, for our present purpose to know 
that different musical systems have obtained during the 
course of the world's history; that even now there are 
various systems in vogue, whose differences are so great 
that, with the exception' of the octave and the fifth, they 
have scarcely anything in common. From these facts, 
and from what precedes, it is, then, evident that the dia-
tonic scale has not that basis in Nature that so many people 
maintain it has. It is, on the contrary, the outgrowth of 
long centuries of study and experiment, and the product 
of the aesthetic sense of the untold number of musicians 
and composers who have given us our present system of 
music, and made it what it is to-day. 

But although the diatonic scale, in its entirety, is not 
the scale of Nature — that is, a series of notes dictated by 
certain physical or physiological laws — that it is so often 
claimed to be, it would be a mistake to contend that it 
has no foundation whatever in Nature or on Nature's laws. 

There are, at least, parts of the scale that have a natural * 
origin, and seem to arise from the very nature of sound 
itself. But the parts of the scale that can be shown to rest 
on an undeniable physical basis are a very small proportion 
of the scale taken as a whole 

The first interval that can be proved to have a natural 
origin is unquestionably the octave. We have learned 
that nearly all musical sounds are compound, and that it 
is possible, even by the unaided ear, to recognize some of 
the constituents of a given compound note. Among those 
most readily detected in stringed instruments, such as were 
used by the Greeks, would be the second and third har-
monic partials. But these constitute the octave and the 
twelfth of the fundamental, and, as has been stated, can be 
recognized even in the human voice. And for people like 
the Greeks, who had such acute ears for small intervals of 
tone, it would be unreasonable to suppose that they were 
incapable of hearing the partials that can be perceived by 
even an untrained musical ear 

Again, the octave is. from its very nature, only a repli-
cate—a kind of repetition — of the fundamental. So 
much is this the case that even practised musicians some-
times mistake the second for the first partial. And then, 
furthermore, we must not forget the natural tendency, with 
which every one is cognizant, that there is to sing in 
octaves. Thus, a boy or a woman, in accompanying a 
melody sung by a bass voice, or played on a bass or bary-
tone instrument, will naturally sing an octave higher. And 
provided they have an average musical ear, they can do 
this without any musical education whatever. "When, 
then, a higher voice," says Helmholtz, " executes a melody 
an octave higher than a grave voice, we hear again a part 
of what we heard before; namely, the evenly numbered 
partial tones of the grave voice, and at the same time we 
hear nothing that we had not previously heard." 

The third partial, or the twelfth above the prime, is, as 
you know, just a fifth above the second partial. In many 
instances it can be more readily detected in a compound 



• tone than the octave itself. And so perfectly does the 
interval of the fifth answer the requirements of the'ear 
that even unpractised singers find it quite natural to take 
a fifth to a chorus that does not quite suit the pitch of 
their voice. 

What has been said of the octave and the fifth may, in 
a limited manner, be predicated also of the fourth. But I 
do not think that we can claim a natural origin for any of 
the other intervals of the diatonic scale. 

The fact that the intervals of the octave, the fifth, and 
the fourth have a physical basis in the partials of com-
pound tones accounts most probably for the manner of 
tuning the earliest forms of the Greek lyre. The lyre, as 
we are informed by Boethius, was, to the time of Orpheus, 
an instrument of four strings, whose intervals would be 
represented by the notes C: F : G : C2. Only the order of 
succession of the notes is indicated by the letters given, as 
their pitch is unknown. 

The remaining intervals of the diatonic scale are more 
or less arbitrary and the results of numberless experiments 
to secure such notes as would best answer the purposes of 
melody and harmony. No one who has examined the 
subject would for a moment maintain that there is any-
thing in Nature to suggest the intervals of a tone or a 
semitone. We readily sing the diatonic scale, with its 
different tones and semitones, as a matter of education; 
but it is quite certain that no one uninstructed in music 
would ever naturally sing this scale, however accurate and 
delicate his ear. 

But another question now presents itself. Why was not 
the octave divided into equal instead of unequal parts? 
The answer generally given to this question is that it would 
be difficult for the ear to appreciate uniform divisions, and 
because, too, of the difficulty, if not impossibility, of the 
unaided voice to divide the octave into any given number 
of equal parts. Hence the unequal divisions, some of 
which were suggested by the harmonic partials that now 
characterize our major scale. 

A succession of single tones, in an order pleasing to the • 
ear, constitutes what is called melody. An air or tune sung 
by a single voice or played on an instrument of any kind, 
one note at a time, is a melody. As to its structure, 
music was first developed in the form of melody. Indeed, 
according to Helmholtz, melody is the essential basis of 
music. It has been cultivated from the earliest times, and 
in the musical systems of most of the Oriental nations it is 
the only form of music yet known. 

The simultaneous sounding of two or more tones whose 
intervals are concordant produces harmony, and the com-
bination of two or more notes that are thus harmonious 
constitutes a chord} Two notes constitute a dyad, three 
form a triad, and four a tetrad. In order that a chord 
may be consonant, all the intervals composing it must be 
concords. Three notes, whose rates of vibrations are as 
I : | : |, or as 4 : 5 : 6 , — that is, a triad made up of a tonic,.a 
major third, and a fifth, give us the perfect major chord. 
To this chord it is usual to add the octave of the tonic, 
which gives us four notes that are separated from each 
other by the intervals | , f , By changing the order of 
these intervals so that they read f , | , §, we obtain the per-
fect minor chord. As you will observe, the only difference 
between the major and the minor chords is in the order in 
which the intervals | and |, the major and minor thirds, 
succeed each other. In the former chord the major third 
comes first; in the latter it is the minor third that takes 
precedence. These two chords are at the basis of our 
modern system of music; and although the difference in 
ratios of their constituent intervals is very slight, their 
effect on the ear and the mind is so great that they are 

1 Hauptmann, the great authority on musical theory, draws a very precise 
distinction between melody and harmony. The former, according to him. 
conveys the idea of motion, the latter the idea of rest. Melody must go on, 
otherwise it ceases to be melody. In harmony, however, even though it 
stand still, the musical idea is complete. There are, indeed, progressions 
in harmony, but these constitute a succession of distinct ideas, each more or 
less complete in itself. In melody, on the contrary, it is succession only that 
forms one idea as a whole. 



employed to express entirely different ideas and passions. 
In musical notation the perfect major and minor chords 
are written: — 

1 ; J • • J 
f = §. k 

These chords may be inverted in various ways, and 
caused to go through quite a cycle of changes; but we 
have not the time to consider them here. 

The essential distinction, then, between melody and har-
mony is seen to be that in the former there is a succession 
of simple notes, while in the latter we have a chord or a 
succession of chords. And this, in truth, is the great dif-
ference between the music of the ancient nations, who 
knew little or nothing of harmony, and our modern music; 
between the systems of music that still prevail in the semi-
civilized nations of Asia and that which obtains amongst 
the more cultured peoples of Europe and America. 

We have seen that concords follow each other in the 
order of smoothness, — from the interval of the octave to 
that of the minor sixth. But the smoothest intervals are 
by no means the most gratifying to the ear. This is 
shown in the frequent use of thirds and sixths in two-part 
music as compared with the employment of the concords. 
Thirds and sixths, at least in our modern music, are con-
sidered to have a charm and richness that the fifth, the 
fourth, and the octave possess in only a comparatively 
inferior degree. Certain ¿esthetic reasons have been as-
signed for this preference, but it seems to result rather 
from habit and education. Time was when both thirds 
and sixths were used very sparingly by musicians, and 
when they were considered at best as only imperfectly 
consonant. Both these intervals were unknown to the 
Greeks and the Romans, and were introduced into our 
present system of music in comparatively recent times. 

An interval of special interest to acousticians and to the-
oretical musicians is the harmonic, or sub-minor seventh, 

the vibration-frequencies of whose notes are 4 :7 . But 
this interval, although in some instances more harmonious 
than the minor sixth, 5:8, is not used in practical music. 
Xo satisfactory explanation seems to have been yet offered 
why it has not been adopted. The most that can be 
said against it is that it is strange, and that it has an 
effect on the ear that is quite different from that of any 
of the intervals with which we are familiar. It cannot be 
urged, as is sometimes done, that the interval is dissonant, 
because, as just stated, it is often less so than an interval 
that is frequently employed, — the minor sixth. Indeed, 
the sub-minor seventh is, in some instances at least, quite 
pleasing and harmonious, and it may in certain cases con-
tribute very materially to the richness and brilliance of 
certain chords played on instruments that are tuned in 
pure intonation. 

Having spoken at some length of scales, intervals, and 
chords, we are now prepared for their experimental exami-
nation. For this purpose we shall use tuning-forks and 
sirens, as they are better adapted to our purpose than 
anything else. 

Before you is a set of tuning-forks on resonant cases, 
giving the diatonic scale. They embrace the octave ex-
tending from C3 to C4. When they are sounded in suc-
cession the musicians present will find that the intervals, 
although mathematically exact, are slightly different from 
those to which they are accustomed. Some of the notes 
appear too flat, others too sharp. The reason for this will 
be manifest when we come to consider the tempered scale 
which is now universally used in music. 

When the notes constituting the consonant intervals of 
which we have been speaking are sounded simultaneously, 
the result is entirely different from that yielded when the 
same notes are sounded on any of our keyed instruments 
like the organ or pianoforte. I sound in succession the 
fifth, the fourth, the major and the minor thirds, "and the 
sixth, and they all give consonances that are marvellously 
pure and harmonious. And not only do we hear the notes 



that are emitted by the forks that are agitated by the bow, 
but also their corresponding beat-tones. They come forth 
at times so loud and clear that it is difficult to believe that 
they are not produced by corresponding forks. I now 
sound C4 and the seventh harmonic partial of C2. The 
frequencies of the notes of these forks are as 4:7. We 
have, therefore, the tabooed harmonic, or the sub-minor 
seventh. The result, I think all will confess, is almost as 
gratifying to the ear as some of the consonant intervals 
to which you have just been listening. I can even fancy 
that some of the musicians present would be glad to have 
this interval introduced into our musical system forthwith. 
The effect is new, I admit, but I think that not even the 
most pronounced partisans of our present system of music 
would declare it to be unpleasant. In the music of the 
future it may be reckoned as a consonance. Who knows? 
The major thirds and sixths, and still more the minor 
thirds and sixths, had to struggle a long time for recogni-
tion. But it came at last, and they are now among the 
most popular intervals in music. And so may it be in a 
measure with the sub-minor seventh. It has many friends 
even now, and their number is daily increasing. Music is 
pre-eminently a progressive art, and it is difficult to foresee 
what modifications it will admit in the not distant future. 

A siren devised by Oppelt enables us to push our in-
vestigations still farther. This instrument — an elaborate 
form of the instrument invented by Seebeck — consists of 
a large disk of copper (Fig. 174), pierced with 24 concen-
tric circles of holes. Fifteen of the circles yield simple 
notes, 5 give different intervals of the diatonic scale, and 
the remaining ones furnish 4 of the more common chords. 

The siren is now mounted on a rotator and caused to 
revolve. When a stream of air is directed by means of a 
suitable tube against any of the circles of holes, you hear 
notes exactly like those produced by Seebeck's siren. 
Blowing against the circle having 12 holes, and then 
against that having 24 holes, we produce, as you hear, two 
notes that are separated from each other by the interval of 

an octave.. There are other circles having 36, 72, 96, 144, 
and 192 holes. 36 and 72, 72 and 144, 96 and 192, taken 
in pairs, have the same ratio, viz., 1 : 2, and hence give 
the same interval as the circles having 12 and 24 holes. 
The circles that have respectively 12 and 18 apertures — 
ratio 2 : 3 — yield the interval of a fifth. Similarly, the 
circles having 12 and 15 holes—ratio 4 : 5 — give the 
major third. In like manner, we might by suitable combi-

F I G . 1 7 4 . 

nations obtain all the other intervals of which we have 
been spfeaking. 

But the important fact in this experiment, and the one 
to which I wish especially to direct your attention, is that 
these intervals are entirely independent of the pitch of 
the notes composing them. Whether the disk be rotated 
rapidly or slowly, the frequency-ratio of any two notes 
remains the same. Provided, then, that the relative pitch 
of any two notes remains constant, the interval remains 
unchanged, whatever the position of the interval in the 
scale. 

From the intervals we have been considering, it is but a 
step to chords of three or more notes. We shall try here 
only the perfect major chord, — C, E, G, — the relative 
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frequencies of whose notes ¡ 3 4 : 5 : 6 . When ¿^current of 
air is directed against the holes composing this chord, and 
the disk is caused to revolve, the harmony at once bursts 
forth pure and clear. Whether the disk move slowly or 
rapidly, whether the pitch of the notes be high or low, 

the character of the chord, as you perceive, remains 
unchanged. 

But let me make you acquainted with a more elaborate 
and a more available instrument than the siren of Oppelt. 
Before you (Fig. 175) is a double siren devised by Helm-
holtz. . It is composed of two of Dove's polyphonic 
sirens, connected by a common axis. Dove's siren differs 

F I G . 1 7 5 . 

from the siren of Cagniard de la Tour in having two or 
more circles of holes, — that of Cagniard de la Tour hav-
ing, as you remember, only one. The Dove sirens used 
in the instruments before you have each four series of 
holes, disposed in concentric circles. The lower disk pre-
sents four series, of 8, 10, 12, and 18 holes; the upper 
disk has four others, of 9, 12, 15, and 16 apertures. If, 
therefore, the circle having 8 holes yields the note Q , the 
siren, at the same velocity of rotation, will give the notes 
Cj, Ei, Gj, D2 for the lower disk, and the notes D „ Gi, Bi, 
and C2 for the upper. The instrument, consequently, is 
competent to produce all the more important intervals 
and chords we have been considering, and serves admi-
rably to bring out all the characteristics of the diatonic 
scale. 

The orifices A and B are connected with an acoustic 
bellows by means of an India-rubber tube. When air is 
urged into A, the upper siren alone sounds. When air is 
admitted into the lower siren, it only becomes vocal. If, 
however, air be admitted .into both orifices simultaneously, 
both sirens become sonorous. The number of revolutions 
made by the sirens is recorded by the clock-work CD. 
The keys at a and b correspond each to a series of orifices 
in the parts of the air-chambers opposite the openings A 
and B. By means of a toothed wheel and pinion at E, 
not only the disk of the upper siren, but also the air-
chamber above the disk, can be made to rotate both for-
wards and backwards. Both the upper and lower sirens 
are surrounded by brass boxes, divided into halves so as 
readily to be attached to or removed from the instrument. 
One half the box is removed from the lower siren, while 
both halves are seen enclosing the one above. These 
boxes act as resonators, and their office is to augment the 
volume of the prime, while the upper partials of the com-
pound tone of the siren are correspondingly damped. 
The moment the tone of the siren is in unison with that 
of the box, the note emitted bursts forth with extraor-
dinary purity and power. 



W hen air is simultaneously urged into both #ind-chests, 
with the two circles of twelve apertures open, we have per-
fect unison. If, now, a series of 8 holes in the lower, and 
16 in the upper siren be opened, we obtain the interval of 
an octave. Opening the series of g in the upper and 18 
holes in the lower siren, the same interval is given, although 
the absolute rates of vibration have been increased. But 
the ratio of the two rates remains the same, being in both 
cases as 1 : 2 . Opening a series of 10 apertures in the 
lower, and 15 in the upper siren, or of 12 holes in the 
upper and 18 in the lower, we have, in both instances, 
the interval of the fifth, because in both cases the ratio of 
the rates of vibration is as 2 :3. By opening the series 
of 9 and 12, or of 12 and 16, — in both of which cases the 
ratio is 3 : 4, — we obtain the interval of a fourth. Simi-
larly the two series of 8 and 10, and 12 and 15, yield the 
interval of a major third, expressed by the ratio 4 : 5 . In 
like manner the series 10 and 12, or 15 and 18, give the 
interval of a minor third, whose frequency-ratio is y . 6 . 
When we open the series having 8 and 9 apertures,' we 
obtain the interval of a major tone. The series 9 and 10, 
for a like reason, give the interval of a minor tone. The 
series whose orifices number 15 and 16 respectively yield, 
when sounded at the same time, the interval of a major 
semitone. 

The last three intervals, when the siren is moving at an 
ordinary velocity, are remarkably dissonant. The°reason 
of this is because of the beats, which are very loud and 
distinct. We can, however, so increase the velocity of the 
siren as to causc the beats corresponding to the intervals 
8 : 9 and 9 : 10 to coalesce and give rise to pure, clear 
beat-tones. The harshness of the interval is now far less 
than it was before. This experiment succeeds particularly 
well with the interval corresponding to a major tone, 8: 9. 
The beat-tone in this case is three octaves below the lowest 
constituent of the interval, but it is sufficiently loud to be 
heard throughout the hall. 

Helmholtz's siren affords us a simple means of ilJustrat-

ing the phenomena of beats and interference. If we open 
the two series of twelve orifices each, and urge air through 
the sirens, we have, as just seen, perfect unison. The 
sound from one siren reinforces that from the other, and 
the result is a much greater volume of tone than either 
one, singly, is competent to produce. This, however, 
holds true only when the apertures in the sirens have the 
same motion with reference to the orifices in the wind-
chests. But, as we have seen, we are able, by means of the 
wheel and pinion, E, to turn the upper cylinder either in 
the same direction in which the siren moves, or in the 
direction opposite. When the cylinder is rotated so that 
its orifices meet those of the siren, the apertures pass each 
other more rapidly than when the cylinder is motionless. 
The pitch of the note of the upper siren is thus rendered 
higher than the pitch of the note from the lower one, and 
the result, as declared by the powerful beats, is interfer-
ence. For every complete revolution of E there are pro-
duced four beats, for the prime tone of the instrument. If 
the motion is reversed, the orifices of siren and cylinder 
pass each other less frequently, and the result is that the 
pitch of the note emitted by the upper siren is lower than 
the pitch of the note from the lower siren. Again, we 
have interference, and beats are heard as before If one 
revolution of E towards the right give rise to four beats, 
and heightens the pitch of the upper .siren by four vibra-
tions, a single revolution to the left will lower the pitch by 
the same amount, and the tone of the upper siren will have 
four vibrations less than the tone of the lower one. It is 
obvious that we have here another illustration of Doppler's 
principle, which was discussed in extenso in our third 
lecture. 

So far, we have been studying musical intervals acousti-
cally. But we can also study them mechanically and 
optically. Indeed, paradoxical as it may appear, the most 
delicate and most accurate means at our disposal for 
examining musical intervals is the optical method. We 
shall consider this presently. As an introduction to it, 



we shall investigate the nature of the vibrations of the 
compound pendulum devised by Professor Blackburn, of 
Glasgow, in 1844. 

A modified form of such an instrument (Fig 176) is 
before you. The bob is a thick disk of lead, into which is 
fitted a glass funnel filled with fine sand. Instead of a 
single string, as is used in an ordinary pendulum, we have 
here an arrangement calculated to give a much more com-

plicated motion. When 
t ' l e Pe nduluni, a s shown 

Iff V / in the figure, oscillates 
\ / in a direction at right 

angles to the cross-piece 
from which it is sus-
pended, its length is 
equal to the distance 
from the lower part of 

\ the cross-piece to the 
riL jtilft' | II centre of the disk. If, 
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i m K ^ ^ ^ t t its length will then be 

measured from the point 
r—a small ring of metal 
—to the centre of the 

FIG. 176. disk. If moved in either 
direction, as stated, the 

motion will be in a straight line, — the direction in one 
case being perpendicular to what it is in the other. But 
if the pendulum is started from the point D, which is in 
a line making an angle of forty-five degrees with the line 
joining the two uprights, we get quite a different result. 
In this case, the sand from the funnel will trace a curve 
instead of a straight line, the nature of the curve depend-
ing on the relative lengths of the two pendulums. I say 
two pendulums, for that in reality is what we have. The 

point of support for the shorter pendulum is the metal 
ring r, and the point of support of the longer one is the 
lower part of the cross-bar. 

If the shorter curve is one fourth the length of the longer 
one, the former will execute twice the number of vibrations 
that the latter will in the same period of time. This is in 
accordance with the law that the times of the vibrations of 
any two pendulums vary inversely as the square roots of 
their lengths. But the bob cannot move in two directions 

F I G . 1 7 7 . 

at the same time. It will, consequently, move along a 
path intermediate between the two straight lines just 
spoken of, and the resultant due to the combination of the 
two vibrations is a parabola, — A (Fig. 177). The rates 
of vibrations of the two pendulums in the case just con-
sidered are as 1 : 2 . But this ratio also expresses the 
interval of the octave. The figure A therefore is the 
curve that corresponds to this interval. 

If we change the position of the ring r so as to alter the 
relative lengths of the two pendulums, and start the bob 
from D, as before, we shall obtain an entirely different 



figure from the one just exhibited. Making the lengths 
of the two pendulums as 4 : 9 , the sand from the funnel 
will describe figure B. But the square roots of 4 and 9 
are 2 and 3 respectively. While, therefore, the longer 
pendulum makes two vibrations, the shorter one executes 
three. But the ratio 2 : 3 expresses the interval of the 
fifth, and hence figure B may be considered as the visible 
expression of this interval. 

Making the relative lengths of the two pendulums 9 and 
16, —the square roots of which are 3 and 4, —we obtain 
figure C, corresponding to the interval of the fourth. 
Similarly, if we make the lengths of the pendulums as 
16 : 25, we shall obtain figure D. The square roots of 16 
and 25 are respectively 4 and 5. But these ratios express 
the vibration ratio of the major third. Figure D, con-
sequently, corresponds to this interval. In the same 
manner, by changing the relative lengths of the pendu-
lums, we could obtain figures corresponding to all the 
intervals in music. We should find that the figures 
expressing the intervals become more complex as the 
numbers representing the intervals become larger. 

The figures just given are produced only when the bob 
starts from the point D, or from some point similarly sit-
uated with reference to the straight line between the two 
uprights and the one intersecting it at right angles. If the 
bob be made to start from points other than those men-
tioned, entirely different figures will be produced. 

Mr. Tisley has invented a compound pendulum, which, 
for the variety, beauty, and delicacy of the figures it is 
competent to produce, is in every way superior to the one 
we have been using. Such a one, connected with a ver-
tical lantern, is now before you. It consists of two pendu-
lums, P P\ balanced on knife-edges at A A'. From the 
points project two brass arms cp and c'p, which, when 
the pendulums are at rest, are at right angles to each other, 
t hese arms are given perfect freedom of motion in every 
direction by being connected with the pendulums by ball-
and-socket joints at r and By means of the threads t 

and i', connected with delicate adjustable springs attached 
to the arms cp and c'p, the tracing point atp may be readily 
lowered and raised with-
out in any way affecting 
the vibrations of the pen- — — 
dulums. Sliding brass 
plates are attached to the 
pendulum rods, and are 
intended to receive the 
weights, which serve the 
purpose of bobs. The 
sum of the weights ordi-
narily varies from five to 
twelve pounds. The rel-
ative lengths of the two 
pendulums are altered 
at will by placing the 
weights at different 
heights. W is a smaller 
weight sliding along the 
pendulum • rod, and is 
counterpoised by the 
weight T. These small 
weights enable one to 
adjust the pendulums 
very accurately, and to 
change, if need be, their 
rates of vibration even 
while in motion. 

On the condenser of 
the vertical lantern rests 
a plate of glass black-
ened by camphor-smoke. 
The pendulums are so ~ F i g I78 

adjusted that one of them 
vibrates twice while the other executes three vibrations. 
If, then, they be both made to oscillate simultaneously, 
they should cause the tracing-point,/, to describe a curve 



corresponding to the musical interval of a fifth. The pen-
dulums are started, and instantly there flashes out on the 

screen, where all was darkness 
before, a beautiful bright curve, 
which becomes more and more 
complicated. Finally, the trac-
ing-point has returned to its 
starting-point, and the curve 
delineating the interval of a 
fifth is complete. But as the 
pendulums continue to vibrate 
there is inscribed on the plate 
a second figure within the first. 
Both are identical in all re-
spects except size. The reason 
of this is due to the gradually 
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lation of the pendulums. Thus, 
by allowing the pendulums to vibrate for some moments, 
a number of figures, equally beautiful and equally sym-
metrical, are inscribed on the 
glass plate, one within the other. 
We have now on the screen a 
visible expression (Fig. 179) of 
the sonorous vibrations com-
posing the interval of a perfect 
fifth. By sliding the weight, W, 
up or down the rod, we should 
disturb the perfection of the 
interval, and introduce corre-
sponding changes in the figure. 

Only a moment is required 
to adjust the pendulums for 
the interval of a fourth. Sub-
stituting a new glass plate for F i g l 8 o 

the one now on the lantern, and 
setting the pendulums going as before, we have designed 
for us a figure that is even more beautiful and more com-

plex than that corresponding to a fifth. As before, we 
have a series of curves within curves (Fig. 180), as elegant 
in form as they are marvellous in regularity. By suitably 
adjusting the relative lengths of 

we could secure^an 

slight change the lengths 
of the pendulums is all that is re-
quired to transform some of the simpler figures we have 
been studying into others of bewildering intricacy. And 
yet, notwithstanding the maze-like complexity of these 

tracings, they are, one and 
Jf all, as faultlessly symmetri-

/ cal as they are novel and 

I In 1827 Wheatstone de-
_ / vised a simple little contriv-

ance for showing the figures 
n ^ W corresponding to the various 

j i B p k musical intervals, that repro-
j ^ S j S j g k ¿ ^ d u c e s admirably all the va-

rious curves afforded by the 
pendulum. To this little 

^ ^ M M ™ ^ piece of apparatus he gave 

'' It is nothing more than an 
FIG. 182. elastic rod of steel (Fig. 182) 

attached to a firm support. 
If the rod be cylindrical, and its flexural rigidity for all 
transverse directions be the same, it will, when set in vi-
bfation, move in one plane, like a simple pendulum. But 



if the flexural rigidity be unequal, either through lack of 
homogeneity of the material of the rod, or on account of 
its form, there will be a composition of two rectangular 
vibrations that are, as in the compound pendulum, mu-

y tually perpendicular. Thus, if 0 b a 
(Fig. 183) be the cross-section of a 
prismatic rod, the rod will tend to 
vibrate more rapidly in the direction 

r~] Oy than in the direction Ox. If, how-
T ever, the rod be flexed to some point 

FIG. 183. intermediate between the lines Oy and 
Ox, and then set free,-it will no longer 

vibrate in a single plane, but will execute a curve varying 
as the ratio of the sides a and b. If a : b as 1 :2, the curve 
due to the compounding of the two rectilinear vibrations 
will be that corresponding to the interval of the octave. 
The rod before us is made to give the figure of the octave.. 

FIG. 184. 

At its upper extremity is a small, highly polished mirror, 
which reflects a beam of light coming from our lantern. 
On the ceiling is depicted the curve of the figure 8, an-
swering to the curve of the octave. 

If, in place of the rod just used, we were to take others, 

in which a: b = 2 : 3, 3 : 4, 4 : 5, or 5 : 6, we should obtain 
curves corresponding to the fifth, the fourth, the major, 
and the minor thirds respectively. On the table is a small 
stand in which are fixed six rods (Fig. 184) so constructed 
that they give all the common intervals 
from unison to the minor third. 

The rods, so far employed, are com-
petent to describe curves corresponding 
only to a single interval each. But Lip-
pich has devised a universal caleidophone 
(Fig. 185), with which we are able to ob-
tain figures answering to any interval 
whatever. It consists of a long strip of 
steel fastened at its lower end to a solid 
support. To the upper end of the strip 
is attached a similar strip of steel, the 
direction of the greater cross section of 
the latter being perpendicular to that of 
the former. The two pieces of metal 
are so connected that the upper one is 
capable of being adjusted so that its 
length may bear any desired ratio to that 
of the lower strip. The bright bead at 
the upper extremity of the adjustable 
strip reflects light in the same manner as 
the similar apparatus that we have just 
used. It is manifest, from what has been 
said, that this form of caleidophone, sim-
ple as it appears, is capable of yielding 
as great a variety of curves as the com-
pound pendulum. The results of the one beautifully cor-
roborate those of the other, and both fully respond to all 
the requirements of theory regarding the composition of 
the rectangular vibrations of pendulums and elastic rods. 

But, you may ask, where is the connection between the 
figures we have been studying and the musical intervals to 
which they are said to correspond? Neither the pendu-
lums nor the rods emit any sound whatever. The latter 



may, indeed, in some cases, yield notes, but they are at 
best very faint. It is important, therefore, to establish a 
connection that cannot be gainsaid between the various 
curves given, and the musical intervals that they are said 
to represent. The optical method of M. Lissajous, dis-
covered in 1857, shows the connection in a most remark-
able manner, and at the same time affords the most 
delicate method of tuning sonorous bodies that is known 
to science. 

We have already had occasion to see something of 
Lissajous' method, but not precisely in its bearing on 

FIG. 186. 

musical intervals. This method, which is now so cele-
brated, and which is now always employed when it is 
desired to have intervals of tuning-forks, or other instru-
ments, absolutely exact, is, in principle, only a modification 
of Wheatstone's discovery. In place of rods, Lissajous 
used tuning-forks, to one of the branches of which are 
attached small mirrors. 

For the sake of illustration, I shall use the simplest form 
of apparatus. A beam of light from our lantern passes 
through the lens L (Fig. 186), and impinges on the 
mirror m of the upright fork D. The light is reflected from 
the mirror, in, of the fork D to the mirror M, and thence to 

the screen. While the fork is quiescent, only a bright spot 
of light is seen on the canvas. As soon, however, as the 
fork is set in motion, the spot of light, /, becomes a vertical 
line, I T , parallel to the branches of the fork. If, now, 
the mirror, M, be rotated about its vertical axis, the straight 
line is transformed into a beautiful sinuous curve, i'i". 
This change of a luminous point into a straight line, and 
then into an undulating curve of light, is, as you know, 
due to the persistence of impressions made on the retina. 
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Let us now substitute for the mirror M a second fork, 
D , whose plane of vibration is perpendicular to that of 
the fork D. If the fork D remain in quiescence, and D] 

be caused to oscillate, the point of light on the screen will 
describe a horizontal line which is parallel to the branches 
of the fork. This line is perpendicular, therefore, to that 
made by the fork D. Both forks are excited, and we have 
now on the screen a curve (Fig. 187), which, we have 
said, corresponds to the interval of an octave. But how 
do we know this? Because, aside from the fact that the 
frequencies of the forks are stamped on their stems, we 



can, on listening to them, hear that one yields a note 
exactly an octave higher than that emitted by the other. 

FIG. 188. 

By taking forks whose frequencies are as I : i , i : 2, 1 : 3, 
- : 3. 3 : 4. 3 : 5. 4: 5 - and 5 : 6, we may obtain all the curves 

exhibited in Fig. 188. There can be no doubt about the 
figures corresponding to the intervals named, because, 
when the forks are sounded, the ear tells us at once what 
the intervals are, and these, we find, always correspond to 
certain characteristic curves. In Fig. 188 there are five 
curves —for unison, the curves may become straight 
lines — for each interval corresponding to the different 
phases in which the forks may happen to vibrate. As a 
matter of fact, if the intervals are not absolutely exact, 
there is an indefinite number of forms for the curve 
distinguishing each interval, 
and there is a constant change, 
while the forks are vibrating, of 
one form into the other. Thus, 
when two forks are in perfect 
unison, their characteristic curve FIG. ¡89. 

is a circle. It may also be an 
ellipse, or a straight line, depending on the phases of 
vibrations of the forks. But if the unison be disturbed, 
even never so slightly, we immediately observe a change, 
more or less rapjd, from a circle into an ellipse, from an 
ellipse into a straight line, and from a straight line back 
into a circle. At one time the ellipse, as also the straight 
line, is inclined to the right; at another, to the left. Each 
cycle of changes shows all possible forms intermediate 
between a straight line and a circle. What has been said 
of the transformation undergone by forks whose unison is 
disturbed may be iterated regarding the changes that may 
characterize any of the intervals whose curves are given 
in the adjoining figure. 

In Fig. 189 we have two phases of a more complicated 
curve, — that corresponding to the interval of a major 
second, — whose vibration-frequencies, as you remember, 
are 8: 9. 

By using Mercadier's electric forks, which we have had 
occasion to employ more than once heretofore, we can, by 
means of the movable weights on the branches, have the 
intervals so accurately adjusted that the curves will suffer 
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no variation whatever. The figure yielded, whatever it 
may be, or whatever phase it may present, will then 
remain fixed and invariable as long as the forks are in 
vibration. 

This fact, as is evident, can be used to advantage in what 
has been aptly termed optical tuning. All that is neces-
sary is to have a standard tuning-fork, executing any given 
number of vibrations per second. To simplify the work as 

much as possible, Lissajous 
invented what is known as 
an optical comparator, or 
vibration microscope. An 
improved form of this in-
strument was subsequently 
devised by Helmholtz. It 
differs from that of Lissajous 
in being provided with an 
electro-magnet, so that it 
can be kept in vibration as 
long as may be desired. 
Such a comparator (Fig. 
190) is before you. It is 
composed of an electric fork, 
attached to a solid support, 
and a microscope. The ob-
jective of the microscope is 
borne by one of the prongs 

of the fork, which makes a right angle with the tube. 
When the fork is set in motion the objects visible in the 
field of the microscope seem to move in the same direction 
as does the fork. If now a second tuning-fork, whose 
prongs are perpendicular to those of the first, be caused 
to oscillate, a point on the second fork will appear to de-
scribe a curve, whose form will depend on the vibration-
frequencies of the two forks used. If the intervals of the 
fork be perfect, some of the forms seen in Fig. 188 will 
appear, and the form first seen will persist as long as the 
interval remains undisturbed. If. however, the interval be 
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perturbed in any way whatever, by a change in the tem-
perature of the forks, for instance, the figure seen is no 
longer constant. It immediately begins to pass through a 
cycle of changes, producing some of the various curves in 
P ig. 188. The longer the time required for effecting a com-
plete cycle of changes, the nearer the intervals of the forks 
are perfect. The vibration-microscope before us is made 
to execute exactly 128 vibrations per second. If, now, 
the figure yielded by this fork, and a second one sup-
posed to be in unison with it, go through a cycle of 
changes in ten minutes, it means that our comparator exe-
cutes 1 0 x 6 0 x 1 2 8 = 76800 vibrations, while the other 
fork, during the same period, makes one vibration more or 
one vibration less than this number. The percentage of 
error in this instance is very slight indeed. 

This method of tuning may be applied to any sonorous 
bodies whatever, and is incomparably superior to any 
other method we have yet seen. It affords us a means 
of determining, without any assistance whatever from the 
ear, any musical interval with a precision that is virtually 
absolute. By this means a deaf person can tune with 
almost infinitely greater exactitude than would be possible 
for the most delicate and most practised musical ear. 

Koenig's clock-fork, or tonometer (Fig. 191) , js a more' 
elaborate form of comparator than Lissajous' vibration 
microscope. As an instrument of precision, it is wellnigh 
perfect. It consists of a large tuning-fork, making sixty-
four vibrations per second, which, like Lissajous' com-
parator, is connected with a microscope. Each prong is 
provided with a micrometer screw having a heavy head, 
by means of which the rate of the fork can be adjusted 
with the utmost precision. Between the prongs is a deli-
cate thermometer for indicating the temperature. The 
escapement of the clock, with which the fork is connected, 
is so regulated that the tuning-fork performs the same 
functions as does the pendulum or balance-wheel in an 
ordinary clock. The vibratory motion of the fork is ren-
dered continuous by the impulse it receives from the 



escapement-wheel at each vibration. It was by means of 
this marvellous piece of mechanism that Koenig deter-
mined the frequency of the Diapason Normal of the French 
Conservatory, and proved that its pitch was slightly differ-
ent from what it was supposed to be. It is this instrument 
also that he used in determining the frequencies of many 
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of the forks that we have been using in the course of these 
lectures. Hence their unfailing accuracy, — an accuracy 
that it would be impossible to secure by anv other known 
means. 

. Lissajous, in connection with M. Desains, has fur-
mshed us with another method of obtaining acoustic fig-
ures corresponding to any given musical interval. It is 

known as the graphical method, and may be viewed as sup-
plementary to the optical method which we have just ex-
amined. We have already had occasion, especially in the 
eighth lecture, to employ the graphical method, so that the 
principle involved is quite familiar to you. We shall now 
have recourse to a more delicate piece of apparatus than 
any we have yet employed when using this method. The . 
instrument before you (Fig. 192) consists of two large 
tuning-forks fastened to a heavy cast-iron base. A prong 
of one of the forks carries a piece of smoked glass, while a 
prong of the other bears a light style. The forks, which 

FIG. 192 . 

are in perfect unison, are now placed at right angles to 
each other and set in vibration. On moving the fork, to 
which the style is attached, along a groove, a beautiful trace, 
corresponding to the interval 1 : 1, — unison, — is given on 
the smoked glass. Here, as in the optical method, we 
have the composition of two rectilinear motions, and the 
result is a curve, Fig. 193, which is characteristic for the 
interval named. Employing forks whose vibration-fre-
quencies are as 1 : 2, 1 : 2 ± , 5 : 6, and 1 5 : 1 6 , we obtain the 
elegant tracings exhibited in the adjoining figure. 

All the various methods we have used for elucida-
ting the nature of musical sounds admirably supplement 
each other, and unequivocally substantiate all the deduc-



tions of theory. In observing the intimate connection 
between simple mathematical ratios and musical conso-
nances, we cannot help calling to mind the saying of Pytha-
goras, " A l l is harmony and number." The relations 
between simple numbers and musical harmony is indeed 
so marked as to arrest the attention of even the most cas-
ual observer. There is something of truth, therefore, in 
Leibnitz s definition of music, when he says it is " an 
occult exercise of the mind unconsciously performing 
arithmetical calculations." 1 
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We have frequently, in the course of our lectures, used 
the words consonance and dissonance, and spoken of inter-
vals as being consonant or dissonant. It is now time that 
we should understand the full signification of these terms 
and inquire into the causes of consonance and dissonance 
and learn why some intervals produce dissonant, and some 
consonant sensations. 

Every one knows, whether he have an ear for music or 
not, that two or more sounds simultaneously produced 
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may in certain instances have a harsh, jarring effect, while 
in other cases the result of the combination of several 
notes is pleasing and harmonious. This, however, is only 
saying that there is such a thing as dissonance as contra-
distinguished from consonance, that certain musical inter-
vals are rough and grating, while others are smooth and 
flowing, but it does not offer any explanation of the phe-
nomena observed. 

According to the great geometer, Euclid, " Consonance 
is the blending of a higher with a lower tone. Dissonance 
is incapacity to mix, when two tones cannot blend, but 
appear rough to the ear." The illustrious Euler, as the 
result of profound mathematical investigations, concludes 
that the mind is pleasurably or unpleasurably affected 
according as the musical intervals heard are simple or 
complex. As stated by Helmholtz, " Consonance is a 
continuous, dissonance an intermittent, sensation of tone." 1 

These definitions, however, are little more than statements 
of a fact. Even the definition of Helmholtz, often as it has 
been quoted, does not give us the desired information. 
Indeed, before the investigations of Koenig on the nature 
of beats, and the researches of Mayer on residual sonorous 
sensations, a philosophical distinction between consonance 
and dissonance was an impossibility.2 But strange as it 
may seem, the profound and painstaking researches of 
these two distinguished physicists seem to be entirely 

1 " Consonanz ist eine continuirliche, Dissonanz eine intermittirende 
Tonempfindung." 

2 As early as the beginning of the last century, Sauveur had outlined the 
true theory of consonance and dissonance, but it was allowed to fall into 
oblivion. " Beats," he tells us, " do not please the ear because of the ine-
quality of the sound, and it is quite likely that it is the absence of beats 
which renders octaves so agreeable. Following out this idea, i t is found that 
the chords in which beats are not heard are precisely the ones which musi-
cians treat as consonances, and that those in which beats are heard are dis-
sonances. When a chord is dissonant in one octave and consonant in 
another, it is because there are beats in one, and none in the other. Such a 
chord is deemed an imperfect consonance " (" Histoire de l'Académie 
Française " for the year 1700, page 143). Most of the acoustical discoveries 
of Sauveur are to be found in the Memoirs of the French Academy of 
Sciences. 



ignored. They were the first to give us quantitative 
determinations of the relations between different tones, — 
all previous determinations being only qualitative, — and 
the first to put us in possession of the facts necessary to 
draw the line of demarcation between intervals that are 
consonant and those that are dissonant. In their works 
we find the key to the solution of the most vexed ques-
tions of musical harmony. And yet, with the exception 
of a published lecture by Prof. S. P. Thompson,1 and a few 
brief notices by Mr. A. J . Ellis,2 their admirable investiga-
tions and the important laws which they disclose are, by 
English readers at least, virtually unknown. 

Koenig's researches, as we have seen, revealed the fact 
that beats, when sufficiently numerous, may coalesce so as 
to produce a musical note. Hence the beat-tones, which 
are commonly known as grave harmonics, differential 
notes, resultant notes, etc. Professor Mayer finds, by a 
long series of most arduous observations,3 extending over 
the entire musical scale, that the time during which the 
sensation of sound persists in the ear after the vibrations of 
air near the tympanic membrane have ceased, varies with 
the pitch of the note observed. The results of Professor 
Mayer's experiments are given in the following table: — 

0625 sec. 
0384 " 
0212 « 
0166 " 
0128 " 
oui " 
0091 " 
0074 " 

cal1 Re«6 P h r a ' F r i t , 0 n ° f M u S i C ; b e i n S a n of the Acousti-
L i t r r ° f . I R u d ° , p h K ° e n i " o f P a r i s> Slivered in the Royal institution of Great Britain, June 13, 1890. 
2 See Ellis's Helmholtz. 
3 See Tfte American Journal of Science and Arts, October, 1874. 

In Column N are given the names of the notes, and in 
Column V their corresponding frequencies. Column B 
exhibits the smallest number of beats per second which 
the note must make with another note in order that the two 
may constitute the nearest consonant interval The dura-
tion of the beats in fractions of a second are given in Col-
umn D. Thus the lowest number of beats that Cx can ^ive 
with another note in order that the sensation may be contin-
uous, is 16. The duration of the residual sensation for Q is 
consequently the J - of a second. But 64:64 + 16 = C • E 
the interval of a major third. For the next higher octave 
we have, according to the table, 128 : 128 X 26 = C2 • E^ ' 
In this instance a minor third is the nearest consonant 
interval Por the notes C3 and C4 the nearest consonant 
intervals are respectively about 1 and i of a semitone less 
than a minor third. Q forms a consonance with a note 
that is but a single tone higher, while Cc makes a conso-
nance with a note that is separated from it by an interval 
which is less than a semitone. 

This is certainly contrary to all the generally received 
opinions of musicians, who consider the intervals of whole 
tones and semitones as invariably dissonant. They admit, 
it is true, especially when their attention is called to thè 
fact, that the dissonance of these intervals is less in the 
higher than in the lower parts of the scale. But they will 
persist in calling the intervals of whole tones and semi-
tones dissonant, in whatever part of the scale these inter-
vals may happen to be found. Facts, however, are 
stubborn things, and Professor Mayer has demonstrated 
that intervals universally regarded by musicians as disso-
nant are, at least in the higher parts of the scale, quite 
perfect consonances. Similarly, intervals in the lower 
parts of the scale that musicians always treat as conso-
nances, Professor Mayer shows are, in reality, dissonances. 
Thus, the nearest consonant interval for Ci, according to 
the above table, is a major third. But both in this part of 
the scale and in that below, musicians make use of a minor 
third which is demonstrably dissonant. 



The conclusions arrived at by Koenig and Mayer estab-
lish the fact that whenever two notes, whatever their posi-
tion in the scale, are separated by an interval sufficiently 
large to allow the beats to blend into a continuous tone, the 
result is consonant. When the beats do not blend, there 
is dissonance. The cause of dissonance, therefore, is beats, 
which, like a flickering light, give rise to a discontin-
uous sensation. When the sensation is made continuous 
by the coalescing of the beats, the result is consonance. 
These statements may be regarded as two laws, but laws 
that admit of exceptions. We saw in Lecture Eighth that 
the same generator may produce, at one and the same 
time, both beats and beat-tones of the same number of 
vibrations. We learned also that the same phenomenon 
is exhibited, especially well, by means of heavy tuning-
forks of high pitch. 

I sound the two forks C5 and D5, which form a major 
second, and at once, in addition to the notes corresponding 
to these two forks, we hear a deep beat-tone identical with 
the note produced by a fork, having a frequency of C2. I 
do not think that any of the musicians present would 
pronounce the effect dissonant; and yet, according to 
musical theory, the interval of C5 and D5 always produces 
dissonance. In a similar manner are sounded the forks 
D5 and E5, separated from each other by a minor tone. 
The beat-tone is the same as before, — C2. In both in-
stances the effect is strange, if you will, but certainly not 
dissonant, in the sense in which the term is ordinarily 
understood. 

We now take the forks E„ and F6, separated from each 
other by a semitone. When both are sounded together, 
we hear, in addition to the proper notes of the forks, the 
deep beat-tone F2 , which breaks forth with astonishing 
clearness. Again, if we employ the forks B6 and C7 — 
likewise separated by the interval of a semitone — we have 
produced, when they are sounded simultaneously, a beat-
tone, C3, of singular volume and power. Even in these 
cases,*where the interval between two generators is only 

a semitone, the result is smooth and continuous. The 
sounds of the forks are acute, it is true; but the effect of 
the combination is neither harsh nor grating on the ear. 

^ P ^ i a b l e beats are heard in either case, and the 
interval of a semitone in this region of ¿ e scale must be 
pronounced a consonance, musical theory to the contrary 
notwithstanding.1 

Mr. Ellis obtained similar results from two flageolets 2 

When one instrument yielded FSe, and the other G0, the 
beat-tone produced would have been G2, had the interval 
been pure; but as it was, the beat-tone approximated F 2 

more closely than G2. What is remarkable in this case is 
that no beats whatever are perceptible, and the beat-tone 
generated is far below any note that the instrument itself 
is capable of producing. 

All the interesting phenomena which we have just been 
examining can be beautifully shown by means of a species 
of harmonium now before you.s It was specially designed 
by Mr. Ellis as an instrument for demonstrating the facts on 
which musical theory depends. It is tuned by means of a 
set of forks so as to give intervals that are perfectly pure 
It is essentially an experimental instrument, and its range 
is too limited for the purposes of practical music. 

By sounding simultaneously the two notes constituting 
any of the ordinary musical intervals, we at once hear the 
corresponding beat-tone burst forth with surprising clear-
ness and strength. Testing some of the notes in the upper 
part of the scale, which are separated by a tone or a semi-
tone, we obtain a result that is essentially the same as 
those yielded by tuning-forks and flageolets. Both kinds 
of intervals yield smooth and distinct beat-tones, and fre-
quently without any perceptible traces of beats. This, 
then, is an additional illustration of the fact that the inter-

R ' ' J " 6 T w n 1 * f ° r e g 0 i n g e X p e " m e n t s f o r t h e distinguished violinist, 
Remeny , and he fully concurs ,n the views herein expressed regarding the 
nature of consonance and dissonance. 

2 Ellis's Helmholtz, pp. 153 and 173. 
3 The violin and violoncello also serve the same purpose admirably" 



vals of a tone and a semitone, far from being dissonant, 
may, in the higher regions of the musical scale, be quite 
consonant. 

It must, however, be observed that compound tones, 
such as those given by reeds, do not always give such 
pleasing effects as do the simple tones of tuning-forks-
The reason of this is that although the primes of com-
pound tones may be consonant, the upper partials may, 
and often do, beat with their primaries and with each 
other, and thus give rise to a roughness of tone that is 
never observed in the case of the same intervals when 
simple tones are tried. 

It is obvious that what has been said of consonance and 
dissonance, as considered in any of the musical intervals, 
applies with equal truth to chords composed of three or 
more notes. Chords are consonant when unaccompanied 
by beats; they are dissonant when beats are present. 
Occasionally the beats, especially those resulting from the 
upper partials of compound tones, are so feeble that they 
are quenched almost, if not entirely, by the louder con-
tinuous tones of the chords. When the beats are so feeble 
as not to be recognized in the mass of the tone, or so weak 
as not to produce any disagreeable effect on the ear, they 
are viewed as - being virtually absent, and the chords are 
regarded as consonant. It is also important to bear in 
mi rid that chords, like intervals, may be dissonant in one 
part of the scale, and consonant in another. It is a mis-
take, then, for the reasons adduced, to attempt to draw a 
line of demarcation between consonance and dissonance 
either in the case of intervals or of chords. Nature has 
indicated no such boundary lines, and it is futile for musi-
cians—as many of them often do — to pin their faith to 
theories that can be disproved by the simplest experiments. 

In order to exhibit at a glance the comparative dis-
sonance and consonance of the different intervals of the 
scale from C, to C5, Helmholtz constructed a diagram, of 
which Fig. 194 is a slightly modified reproduction. The 
intervals are indicated by distances measured off on the 

horizontal line C3, Cs. Their relative dissonances and 
consonances are denoted by the perpendiculars from the 
curve to the horizontal base-line. As will be observed, 
the curve from C3 to C4 is somewhat different from that 
extending from C4 to C5. The curve for octaves above C5> 
or below C3, would show corresponding differences, — the 
consonances being more numerous in the upper, and less, 
numerous in the lower regions of the musical scale. This 
curve was calculated for the compound note of a violin. 
The curves corresponding to the notes yielded by other 
instruments would, of course, exhibit different outlines, 
and be modified according to the relative number and 
intensity of the partials present. Mr. Sedley Taylor, in 
referring to this curve, picturesquely says: " I f we regarded 
the outline as that of a mountain chain, the discords would 

be represented by peaks, and the concords by passes. The 
lowness and narrowness of a particular pass would measure 
the smoothness and definition of the corresponding musical 
interval." 

So far we have been considering only exact intervals; and 
only one scale, the natural, or diatonic, scale of C major. 
But musicians, in order to secure all the variety and effects 
that characterize our modern music, must employ a large 
number of scales in both the major and the minor modes. 
Hence the necessity for additional notes, and hence, also, 
the origin of the so-called chromatic scale. This scale 
contains 12 instead of 7 —or, counting the octave, 13 
instead of 8 — notes within the interval of the octave. 
By the addition of 5 additional semitones, the whole notes 
are sharpened or flatted by a chromatic semitone; and 
the octave is thus divided into 13 semitones. These 13 
semitones are all that are usually employed within the 



octave of such keyed instruments as the organ, harmo-
nium, and pianoforte. 

But if pure intervals are to be preserved, the number of 
intervals to the octave should be much greater. The rea-
son of this is, that the sharp of one note is not, as is so 
often supposed, the same as the flat of the note following. 
Thus, if C3 have a frequency of 256 vibrations, the vibra-
tion-numbers of Q:8 and Dt>3 will be respectively 266.66 
and 276.48. Between these two notes, usually considered 
as the same, there is, as will be observed, a difference of 
nearly ten vibrations. Again, Efc and Fvs give, respec-
tively, 333.33 and 327.68 vibrations, the former being 
higher than the latter. The vibration-numbers of % and 
0 4 are 500 and 491-52. in the order named, the sharp of 
the lower note having a higher pitch than the flat of the 
upper one. In the octaves above C3 the differences in the 
number of vibrations between the sharps and flats of two 
adjoining notes is proportionately greater. 

If, in like manner, we should flat and sharp all the 
eight notes of the octave, we should obtain twenty-four 
notes to each octave; and this for one key simply. Sim-
ilar differences would be observed between the sharps 
and flats of the notes of the remaining twenty-three 
major and minor scales. 

From what has been said it is obvious that the thirteen 
tones of the chromatic scale are entirely inadequate to the 
purposes of music, if pure intervals are to be preserved, 
and if the performer is to have the power to modulate 
from one key into another. Mr. Ellis has calculated that 
theory requires no less than seventy-two keys to the 
octave, in order that the musician may have complete 
command over all the keys employed in modern music 

The mechanical difficulties in the way of constructing 
instruments with such a large number of keys to the oc-
tave, not to speak of the difficulties that such an arrange-
ment would entail on the composer and the performer 
have given rise to various kinds of compromises, known as 
systems of tempering, or tempeiwnent. 

Temperament is "the division of the octave into a num-
ber of intervals such that the notes which separate them 

The first system of temperament-known as unequal, or 
rnean tone temperament - was introduced by Zarhno and 
Sal nas m the sixteenth century. The object of this form 
of emperament was to render the more common scales 
fairly accurate while the others are ignored. Such a sys-
tem of tuning limited the player to a part only of the keys 
now in use. It had, however, the advantage of giving 
smoother consonances than when all the scales are used 
and retained its ground in parts of Europe and Greai 
Britain until only a few years ago. Even now there are 
organists who prefer it to the systems now in use. 

I he system of temperament which now prevails almost 
universally ,s known as that of equal temperament Its 
introduction is generally ascribed to Johann Sebastian 
Bach, in the early part of the last century. There seems 
however, to be no doubt that it was known long anteriorly 
to that period. In his " Harmonie Universelle," Mersenne 
g.ves the correct numbers of the ratios for equal tempera-
ment, and says of it that " i t is the most used and the 
most convenient, and that all practical musicians admit 
that the division of the octave into twelve semitones is 
easier for the player . " 1 In his " Harmonicorum," pub-
lished in 1648, he makes substantially the same statement.2 

But whoever may have been the inventor of equal tem-
perament, it prevails now, to the almost entire exclusion 
of other systems. It has the advantage of simplifying the 
construction of keyed instruments, and of rendering less 

1 His words in reference to equal temperament are, that it is " le plus 
us.te et le plus commode, et que tous les practiciens avouent que la divi-
s.on de l'octave en 12 demitons leur est plus facile pour toucher les instru-
ments (Livre III. prop. 12). 

2 Speaking of the division of the octave into twelve equal semitones -
thirteen counting the octave of the ton ic , -he says, "Quod temperament'um 
omnium fac.ll.mum esse fatebuntur organarii, cum illud ad praxim rede-
gerint" (Liber IX. prop. 19) 



difficult the work of composer and performer; but it sac-
rifices much of the beauty and harmony of effect that 
would result from just intonation. 

In equally tempered instruments, the only interval accu-
rately tuned is the octave. All the other intervals are 
more or less out of tune. The fifth is somewhat flat-
ted, whereas the thirds and sixths are much sharped. 
When the notes of the tempered scale are sounded in 
succession, no deviation from pure intonation is observ-
able, except by trained musical ears. When, however, 
two or more notes are sounded simultaneously, especially 
on instruments which, like the organ or the harmonium, 
give sustained tones, the departure from pure intonation is 
at once remarked, even by those who have no ear whatever 
for music. Beats, more or less numerous, are found to 
accompany all intervals except the octave. Fortunately, 
however, for the pianoforte, these beats are evanescent, 
and hence the effect is not so jarring as with the harmo-
nium or the organ. It was indeed its adaptability to the 
pianoforte that gave the system of equal temperament 
the long lease of life that it has enjoyed. And it was 
the simplicity of the system, more than anything else, that 
tended to develop the pianoforte and make it what it is 
to-day, —the "voice of the composer," and the most 
popular of instruments. 

But notwithstanding all the advantages claimed for it, 
equal temperament deprives us of one of the greatest 
charms of music, —that of the vivid contrast afforded us 
by the close juxtaposition of consonant and dissonant 
chords. This is at once seen by comparing the effect of 
a piece of music played on an instrument tuned in just 
intonation, with that of the same piece played on an 
instrument tuned in equal temperament. A still more 
striking way of showing the marked difference between 
music as executed according to pure intonation and ac-
cording to equal temperament, is to have a quartet of 
accurate voices sing first according to the former system, 
unaccompanied, and then according to the latter, ac-

companied by the pianoforte. The contrast between the 
purity and brilliancy of the concords of pure intonation, 
and the harshness and dulness of those of equal tempera-
ment, is so decisive as to appeal to any one who has even 
an ordinary ear for music. Hence it would be much 
better if singers were taught by accompanying them with 
the violin or 'cello instead of the piano. 

It is pure intonation that renders the music played on 
slide trombones and string quartets of a character so su-
perior to that executed on ordinary keyed instruments. 
The instruments of the trombone and violin family are 
not, like the pianoforte and organ, limited to a few notes, 
but, like the human voice, are competent to produce an 
indefinite number of tones and intervals that are abso-
lutely pure. 

It is because music sung and played in pure intonation 
is of such excellence that it should receive more atten-
tion than is ordinarily given it. There are, it is true, those 
who think that the duodecimal division of the octave is 
quite sufficient for all purposes of melody and harmony, 
and that nothing better can be had, and who accordingly 
regard all who favor a change as unreasonable innovators 
But it must be admitted by all who have examined the 
subject that our present musical system is far from perfect. 
No one, I take it, will refuse to encourage pure intonation, 
where, as in vocal and stringed harmony, it can be se-
cured as readily as intonation that is confessedly faulty 
and unnatural.1 

There is no insuperable obstacle to the introduction of 
pure intonation into*all forms of orchestral music. It 
would of course necessitate some changes in the forms of 
instruments as now made, but the changes demanded 
would not by any means be so great or so numerous as is 
usually imagined. The labors and experiments of Helm-
holtz, Bosanquet, Ellis, Poole, White, and Colin Brown 
have demonstrated that pure intonation is possible, even 
with keyed instruments like the organ and the harmonium. 

1 See Appendix I I 
* 28 
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It may therefore be accepted as a fact that we are yet in a 
state of transition as regards the system of intonation to 
be employed in music, and that the not far distant future 
will witness the introduction of many modifications of the 
tempered system now in vogue. 

Mr. Ellis states the case well when he says that " Equal 
temperament, or what tuners give us for it, — a very dif-
ferent thing generally, — has indeed become a temporary 
necessity. . . . But the discoveries of Helmholtz have 
sounded the knell of equal temperament, which must 
henceforth be regarded as a theoretical mistake and a 
practical makeshift, — a good servant, dismissed for be-
coming a bad master, and now merely retaining office until 
a successor is installed. . . . At any rate, just intonation, 
even upon a large scale, is immediately possible. And if 
I long for the time of its adoption in the interests of the 
listener, still more do I long for it in the interests of the 
composer. What he has done of late years, with the rough 
and ready tool of equal temperament, is a glorious presage 
of what he will do in the future with the delicate instru-
ments which acoustical science puts into his hands. The 
temporary necessity for equal temperament is passing 
away. Its defects have been proved to be ineradicable, 
An intonation possessing none of these defects has been 
scientifically demonstrated. It is feasible now on the 
three noblest sources of musical sound, — the quartet of 
voices, the quartet of bowed instruments, and the quartet 

• of trombones. The issue is in the hands of the composer. 
Can any one doubt the result ? " 1 

I have now only a few brief observations to make, and 
my task is finished. In what I have said I have confined 
myself solely to the elucidation of the subject of physical 
acoustics, and of its simpler relations to the physical basis 
of musical harmony. The subject of physiological acous-
tics, which Johann Muller, Helmholtz, Gavarret Preyer, 
and others have treated so ably, I have touched upon but 

1 ".Illustrations of Just and Tempered Intonation." extracted from the 
Proceedings of the Musical Association of London, 1874-75. 

incidentally, and only when it was found necessary to 
throw light on the physical aspect of the questions under 
discussion. Only the merest reference has been made to 
the subject of musical assthetics. This was foreign to the 
scope of our work. Although physics and mathematics 
are intimately connected with music as a science, they 
have little or nothing to do with it as an art. The Esthet-
ics of music, therefore, is something that must be consid-
ered apart from any of the physical and mathematical 
relations that have been investigated at such length. To 
show you how important it is not to lose sight of this 
observation, I shall quote for you a few paragraphs from 
one of the greatest authorities on musical ¿esthetics, Dr. 
Eduard Hanslick, of Vienna. He says,— 

"Finally, let it be observed that musical beauty has 
nothing to do with mathematics. The idea entertained 
by certain writers, even those who should know better, 
regarding the part played by mathematics in musical com-
position, is singularly vague. Not satisfied with the facts 
that the vibrations of tones, the differences of intervals, 
consonance and dissonance, may be traced to mathematical 
relations, they are convinced that the beauty of a piece of 
music is also grounded on numbers. The study of har-
mony and counterpoint is for them a kind of cabala which 
teaches composition by calculation. . . . 

"Although mathematics furnishes an indispensable key 
for the investigation of the physical basis of the tonal art, 
its importance in musical composition must not be over-
rated. In a tone-poem, be it beautiful or not beautiful, 
nothing is calculated mathematically. Creations of the 
fancy are not arithmetical problems. ' All monochord ex-
periments, sound-figures, proportions of intervals, etc., are 
out of place here. The department of aesthetics begins 
where these elementary relations cease. Mathematics pre-
pares only the simple material for intellectual treatment, 
and remains concealed in the simplest relations; but 
musical conceptions come to light without its assist-
ance. . . . What converts music into a tone-poem, and 



raises it out of the category of physical experiments, is 
something free and spiritual, and, therefore, something 
incalculable. Mathematical calculation has as much par-
ticipation in the art work of music as it has in the 
productions of the other arts, but no more." 1 

In music we have a beautiful illustration of how science 
and art go together hand in hand, how one aids the other, 
how science explains art, and how art often forestalls the 
conclusions of science. The two working together, with a 
common end in view, have made music what it is to-day, 
— the solace and the delight of our race. And we have 
every reason to hope that the music of the future will be 
even a closer approximation to those " pure strains ethe-
real " of which the poet sings, and which we are ever wont 
to associate with that blessed Fatherland, which is filled 

" With acclamation and the sound 
Symphonious of ten thousand harps that tune 
Angelic harmonies." 

1 Vom Musikalich-Schönen, von Dr. Eduard Hanslick, Professor in the 
University of Vienna. 
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T A B L E OF T H E C O M P A S S E S OF V O I C E S A N D I N S T R U M E N T S . 

A P P E N D I X . 

I. 

F R E Q U E N C I E S OF NOTES OF T H E M U S I C A L S C A L E , AND 
COMPASSES OF T H E HUMAN VOICE, A N D OF SOME OF 
T H E MORE COMMON M U S I C A L I N S T R U M E N T S . 

t 7 0 r purposes of reference and comparison there are exhibited 
in the diagram on page 438 the notes of the musical scale, 

and the frequencies of these notes according to the standard — 
physicists' pitch —used throughout this volume. Knowing the 
frequency-ratios of the different intervals, as detailed in Chapter X., 
it is an easy matter to calculate the vibration-number of any deter-
minate note according to French or international pitch. 

There are also given the various compasses of the human voice, 
and of a few of the musical instruments in most general use. The 
compass of the ordinary organ is only seven octaves; but in the 
larger instruments it is, as indicated in the diagram, fully eight 
octaves. In some exceptional cases the range may extend half 
an octave higher. 

Inasmuch as the positions of notes are frequently referred to 
the corresponding organ-pipes, the lengths of pipes for the lowest 
notes — the C's — of the different octaves are here specified. Thus 
the lowest octave of the organ is often called the 32-foot octave; the 
next higher is known as the 16-foot octave; while the other octaves 
above this are in like manner designated from the lengths of the 
pipes yielding the lowest notes. 

Sometimes, however, special names are given to some of the 
'octaves. Thus the octave of C_.2 is denominated the sub-contra, 
and that of the contra octave. The octave of Cx is called the 
great, while that of C2 is known as the tenor, or little octave. The 
octaves C3 and C4 are termed the middle and treble octaves 



respectively, and the two following — those of C4 and C5 — are, in 
the order named, spoken of as the octaves in alto and in altissimo. 
The octave of C3 is likewise styled the one-stroked octave, while 
the octaves C4, C5, and C6 are named respectively the two-stroked, 
three-stroked, and four-stroked octaves. 

The pianoforte is classed as a seven-octave instrument, although 
its compass is sometimes less and sometimes greater. Similarly 
only the average compasses are given for the violin, harp, and the 
human voice. A reference to Chapter II. will show that the pitch, 
both for male and female voices, may in certain instances vary 
within a considerable range. 

In connection with the foregoing I would call attention to the 
desirability of having some uniform system of indicating the notes 
of the different octaves of the musical scale. We saw in Chapter 
II. that there are several systems in vogue, those in Germany and 
England being quite different from the one that obtains in France. 
This lack of uniformity is often a source of much embarrassment, 
and even of grave error. 

Now that an international standard of pitch has been adopted, 
it would be a great boon both to students and general readers if 
some uniform method of naming the notes could be established. 
A very slight modification of the French system would, it seems to 
me, answer admirably all practical purposes. Thus, if instead of call-
ing the lowest C, corresponding to sixteen vibrations, C_2, C", Q, 
or Ut_2, as is now the custom, it were called Cx, and the C's follow-
ing were designated C2, C3, C4, etc., it would greatly simplify mat-
ters both for acousticians and musicians. It would then be an easy 
matter to locate any note, from that of the 32-foot organ-pipe to 
that of the most acute note perceptible by the human ear. The C 
of the sub-contra octave of the organ being Q , the highest G of 
Appunn's forks — eleven and a half octaves above Cx — would be 
known as Gl2. 

II. 

P L A Y I N G I N P U R E INTONATION. 

' "THAT good violinists and violoncellists, when unaccompanied 
by equally tempered instruments, execute pieces of music 

written for harmony, in pure intonation, is well known. This ac-
counts for the remarkable purity and fulness of tone that charac-
terize the playing of such artists as Remenyi, Joachim, Popper, 
Wilhelmj, and Ole Bull. In listening to such performers, one can 
always hear distinctly the Tartini, or beat-tones, that add such rich-
ness and volume to violin music. Virtuosi like those named give 
their theoretical value not only to octaves, fifths, and fourths, but 
also to thirds and sixths. Indeed, we may well doubt whether such 
artists could, when unaccompanied, play a major third out of tune, 
as required by the system of equal temperament. Remenyi tells 
me that when he is not accompanied by a keyed instrument, he 
instinctively plays in pure intonation, and that he feels the differ-
ence betweeen notes like and Eh", or G£ and A^, for instance, 
of which equal temperament can take no account. 

Even in playing melodies, the best violinists play according to 
the just, and not according to the tempered, scale. This has been 
proved conclusively by the experiments of Delezenne and others. 
It is true that the experiments of Cornu and Mercadier seem to 
point to the Pythagorean scale as the scale of melody; but even 
granting this to be the case, it may be accepted as a demonstrated 
fact that whether violinists play according to the Pythagorean or 
the modern diatonic scale, they do not play according to the scale 
of equal temperament. 

An interesting crucial experiment, showing that good violinists 
play in pure intonation, and not according to equal temperament, 
was made by Helmholtz, with the aid of Herr Joachim. For this 
purpose a specially constructed harmonium, giving pure intervals, 
was employed. It was thus discovered that the intervals played 
by the distinguished violinist were exactly the same as those given 
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by the harmonium. The intervals specially selected were thirds 
and sixths, and Helmholtz found that these intervals as played by 
Joachim were always perfect, and never equally tempered, thirds 
and sixths. 

I have made a similar experiment with the eminent artist Re-
menyi, — he using the violin, and I an harmonium tuned in just 
intonation. The results arrived at were identical with those ob-
tained by Delezenne and Helmholtz. 

In order that the reader may see at a glance the principal scales 
spoken of in this work, and have a graphical representation of the 
differences between pure and equally tempered intervals, between 
sharps and flats, I append the accompanying diagram,1 calculated 

for the octave extending from Cs to C4. The frequency of C3, E, 
tT^-

is 256 vibrations per second,— the same as used throughout the 
book. By inspection of the diagram it will be noticed that the 
semitones have not the same value in any of the scales. Again, 
in the Pythagorean scale there are only two different intervals, the 
whole tone and the semitone, or hemitone ; whereas in the mod-
ern diatonic scale there are, as we have learned, three different 
intervals, the major and minor tones, and the semitone. A very 
marked difference is likewise observed between the sharps and 
flats; the latter, contrary to what musicians teach, being higher in 
pitch than the former. The only interval that is common to the 
three scales is the octave. The intervals of the equally tempered 
scale are, as indicated, all of exactly the same magnitude, the 
deviations from pure intonation being evenly distributed among the 
different intervals of the octave. The relative values of the inter-
vals of the three scales are given in logarithms. They may also, 
as is obvious, be obtained from the vibration-numbers of the 
various notes as given in the diagram. 

1 A combination of some diagrams, slightly modified, given in Pole's 
" Philosophy and Music." 
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Bureau de Longitudes determines the 

velocity of sound, 97 , 98. 
Byron, L o r d , on N a t u r e ' s music, 37 . 

C A G N I A R D D E LA T O U R ' S mill-siren, 30. 
siren, 62-66. 403. 

Caleidoplione, Wheatstone 's , 4 1 1 - 4 1 3 . 
Car ly le , on music of Nature , 37 
Cauchy, 169, 1 9 1 . 
Cavail le-Coli , 2 1 7 . 

his formula for making organ-pipes, 
237 , 

Character of sound, 342. 
Chladni , 58, 79, 82, 83 , 107 , 1 28 , 1 4 1 , 

>67, 173. '78, >«7> >89. 191. 193. 
«95. '97, 198, 2 1 1 , 248, 256, 258, 
345 

Chladni ' s figures, explanation of , 1 9 3 - 1 9 5 . 
on plate vibrating in vacuo, 199. 
rotating, 2 0 1 . 

great work , 169. 
view of the tuning-fork, 1 7 4 . 
laws of vibrating plates, 202. 
method of determining pitch, 60. 
observations on tipper partials, 343. 
tonometer, 1 7 1 . 

Chords, perfect major and minor, 397. 
Chromatic scale, 429, 430, 4 4 1 . 

semitone, 388. 
Claque-bois, 1 78 , 1 79 . 
Clarinet, 242. 
Clock-fork, Koenig ' s , 74, 4 1 9 , 420. 
Colladon and Sturm measure velocity of 

sound in water , 1 0 4 , 1 0 5 . 
Comma, 388. 
Comparator, optical, 4 1 8 . 
Compasses of the human voice and of 

various musical instruments, 43. 
90, 100, 4 3 7 . 

Composite tones, 346. 
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Compound tones, 143 , 346. 
Consonance, 266. 
Consonance and dissonance, .diagram il-

lustrating, 429. 
difference between, 422-429. 

Consonances, imperfect and perfect, 390. 
Consonant intervals, 389. 
Consonants, flame-images of , 359-362 . 
Cornet-a-piston, 245 
Cornu, 393, 443. 
C o r t i ' s discoveries, 385. 
Cottre l l ' s experiment, 1 1 6 . 
Crest of wave, 67. 

C u r v e of sines, or harmonic curve, 67. 
Curves corresponding to various intervals, 

described by vibrating piano-wires, 1 6 5 . 
illustrating beats, 302. 

D A G U I N , 276, 277 . 
on timbre, 344, 

D ' A l a m b e r t , 1 3 7 . 
Delezenne, 443 . 
Desa in ' s and L i s sa jous ' graphical 

method, 420, 421 
Despretz , 82, 83 . 
Diapason Normal , 63 , 74, 76. 
Diatonic scale, 79, 387, 3 9 1 - 3 9 3 . 

conventional, 3 9 1 - 3 9 5 , 443, 444. 
semitone, 388. 

Dif fract ion of sound, 126, 127 
Dissonance and consonance, difference 

between, 422-429 . 
Dissonant intervals, 389. 
Distance travelled by sonorous vibrations, 

1 2 7 - 1 2 9 . 
Dominant , 388. 
Donders ' researches on vowel-sounds, 

357-
D o p p l e r ' s principle, n o , 1 1 2 , 405. 
Duboscq, 309. 
Duhamel ' s vibroscope, 65 
Dulong , 256. 

measures the velocity of sound in 
gases , 1 0 3 . 

E A R , accuracy of , 92. 
rapidity of its appreciation, 92. 
external , auditory passage of , 278, 279. 
sensitiveness of , for different notes, 91 . 
training of , 93. 

Ecl io , s imple, multiple, polysyllabic, 1 1 9 . 
Echoes , remarkable, 120, 1 2 1 . 
Electrographic method of determining 

pitch, 70. 
E l l i s , 82, 85, 148, 242, 244, 3 1 8 , 424, 427, 

„ , 43° - 433 . 434-
Embouchure , 2 16 . 

de cor, 243 . 
E q u a l temperament, 4 3 1 

scale of , 441 . 
Euc l id , on consonance and dissonance, 

423-
E u l e r , 1 3 7 , 169, 208, 423 . 
Evolution in science, 42. 
E x n e r , 93. 

F A R A D A Y , 198, 248. 
F é t i s , M . , 392. 
F i f t h , a , 388. 
F i g u r e s , L i s sa jous ' , 4 1 7 . 
F i l m s , vibrating, 2 7 1 . 
F lageo le t , 238. 
F lame- images of vowels and consonants, 

359-362 . 
F l a m e , raanometnc, 2 2 9 - 2 3 1 . 
F l a m e s , sensitive, 2 5 1 - 2 5 4 . 

s inging, 247-251", 
F l u t e , 238. 

Bernouil l i ' s , 229. 
or flue pipes, 2 1 7 . 

Fog-s igna ls , 1 25 . 
F o u r i e r ' s theorem, 3S0. 
F o u r t h , a , 388. 
F rench horn, 244. 

pitch, adoption of , 76, 77. 
Frequencies of notes of the musical scale, 

439. 440. 
Frequency , 69. 
Fresnel's experimenium cruris, 300. 
Fundamenta l note, 140 

G A L I L E O ' S experiment on pitch, 57. 
Ga l ton ' s whistle, 87 
Gamut , 79 -8 1 , 387. 
Gases , velocity of sound in, 1 0 3 . 
Gavarret , 434. 
G a y - L u s s a c , 97. 
Germain, Mile . Sophie , 1 9 1 . 
Geyer , 2 5 1 , 253 . 
Govi , 2 5 1 . 
Graphical method of obtaining acoustic 

figures, 420, 4 2 1 . 
determining pitch, 69. 

Grinialdi , 299. 
Guericke 's , Otto von, experiment showing 

that sound cannot travel in vacuo, 
„ 39-
G u y of Arezzo, 79. 

H A N D E L , 77. 
Hansl ick on musical esthetics, 4 3 5 , 436 
Harmonic curves, Mayer ' s combination 

of , 370. 
motions, 52, 67. 

Harmonics, 140, 148, 1 5 3 . 
in music, 1 5 1 - 1 5 3 . 

Harmonicons, g lass and rock, 35 . 
Harmonium tuned in pure intonation, 427. 
Harmony, 397. 
H a r p , Marloye 's , 184. 
Hasse , 385 . 

Hauptmann, on melody and harmony, 
, 397-

Hawksbee ' s experiment on the transmis-
sion of sound, 40. 

Hearing, range of , fo r different persons, 
9 1 . 

Helmholtz, 58, 82, 83, 8 8 , 1 3 4 , i 4 4 , 1 7 5 , 
2 7 4 . 3 ° 4 , 3 1 s . 3 1 9 . 322, 3 4 ° . 3 4 5 . 
3 5 ° , 362, 365, 368, 369, 370, 379 , 
3»5 . 395, 4 1» , 423 , 428, 433, 434, 
443, 444-
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Helmholtz, his apparatus for the synthesis I 
of sounds, 366. 1 

his distinction between a musical sound ] 
and a noise, 35 . 

his double siren, 402-405 . 
on influence of difference of phase on ] 

quality of sound, 369. ] 
on melody, 397. 
on quality of sound, 342, 3 4 3 . ] 
his researches on vowel-souñds, 357 . J 
his theory of audition, 385. 
his work on sound, 1 7 . ] 

Hemony , 205. ] 
Henry , J o s e p h , 1 2 5 . ] 
Hensen ' s discoveries, 3 S 5 . 
Herschel, S i r J o h n , 293, 296, 343 . 
H e r t z ' s experiments , 299, 300. 
Hipkins , 148. 
Houghton ' s illustration of noises giving 

rise to musical sounds, 37 . 
H iiber, 1 4 1 , 
Humboldt , 97, 1 1 8 , 1 1 9 , 1 28 . 
Huygens , 262, 299. 
Hydrogen singing-flame, 3 1 . 

I N T E R F E R E N C E , partial and total, 2S7. 
apparatus, Koenig ' s , 296. 
of vibrations of tuning-fork, 288, 2S9. 
shown by means of manometric pipes. 

292, 293. 
Intervals , consonant and dissonant, 3S9. 

logarithmic va lue of , 390, 3 9 1 . 
musical, 3 2 3 , 387, 390. 

Intermittent sounds which g ive rise to 
continuous sounds, 3 3 2 - 3 3 4 . 

Intonation, just , 4 3 2 - 4 3 4 . 
playing in, 443, 444: 

Isochronism, some effects of , 263 . 
Isochronous, meaning of word, 2 3 . 

J E W S - H A R P , 1 72 . 
J o u l e ' s thermal unit, 1 7 2 . 

K A S T N E R ' S pvrophone, 2 5 1 . 
Key-note, 388Í 
King, a form of Chinese musical instru-

ment, 35. 
Kircher , Father , 1 20 . 
Kirchhof f , 1 9 1 , 208. 
Koenig , D r . R . , 58, 83 , 84, S6, 1 1 2 , 149 , 

1 5 1 , 1 79 , 190, 2 18 , 234, 235, 265, 
276, 280, 2 S 1 , 3 1 8 , 3 1 9 , 322 , 324, 
3 2 7 , 328, 3 3 ° - 3 3 4 , 3 4 0 , 3 5 ! . 3 5 3 . 
362, 365, 369, 375 , 377 , 379, 3»o, 
382, 423, 426. 

his acoustic apparatus, 1 8 . 
his clock-fork, 74, 4 1 9 , 420. 
on the influence of the difference of 

phase on the quality of sound, 378. 
his researches, 1 7 . 
his researches on vowel-sounds, with 

tuning-forks, 357 , 358. 
Kohlrausch, 93. 
Kundt ' s method of determining the ve-

locity of sound, 107, 256. 
sound-figures, 256, 257 . 

L A G R A N G E , 1 3 7 , 1 9 1 . 
L a m p m a n on the music of Nature, 37 . 
Lap lace , 103 , 1 0 5 . 

his correction of Newton's formula, 
100. 

L a r y n x , model of , 246. 
L e Conte ' s discovery of sensitive flames, 

251-
Leibni tz ' s definition of music, 422. 
L e R o u x ' s determination of the velocity 

of sound, 1 0 1 . 
L i g h t and sound vibrations compared, 88. 
L iquids , velocity of sound in, 105. 
L i ssa jous , 63 , 74, 1 6 9 , 3 0 9 , 3 1 2 , 4 1 8 , 4 1 9 . 

his graphical method, 420. 4 2 1 . 
his experiment showing interference, 

29 1 . 
his optical figures, 4 1 7 . 
optical method of studying musical 

intervals, 4 1 4 - 4 2 0 . 
Locke, on the nature of sound, 20. 
Locomot ive whistle, action of , 2 1 8 . 
Logar i thmic value of intervals, 390, 3 9 1 . 
Loudness of sound, law governing, 55. 
Lucret ius on propagation of sound, 1 0 1 . 

on origin of wind instruments, 2 1 3 . 
L y r e , Greek, 396. 

M A C H , 1 1 2 . 
his apparatus for illustrating the prop-

agation of sound-waves, 5 1 . 
Ma jor scale, 392. 

chord, 397. 
semitone and major tone, 388. 

Manometric flame, K o e n i g ' s , 2 2 9 - 2 3 1 . 
Mar iotte ' s law, 98, 99. 

apparatus for illustrating transmission 
of sound, 48. 

Marloye , 24, 83, 1 3 2 , 1 3 3 , 350. 
his harp, 184. 

Mayer , P ro f . A . M . , 92, 107 , 187 , 370, 
, . 383 , 425, 426. 
his mechanical equivalent of a sono-

rous vibration, 56, 57 . 
his electrographic method of determin-

ing pitch, 70. 
his sound-mill , 28 1 . 
his tracings, 72. 

Melde's experiments with vibrating 
strings, 1 5 7 - 1 6 2 . 

Melody, 397. 
Helmholtz on, 397. 

Mean-tone temperament, 4 3 1 . 
Melodiaphone, 277. 
Membrane, basilar, 38 3. 
Membranes , vibrating, 2 0 7 - 2 1 0 . 
Mercadier, 393 , 4 1 7 , 443 . 

his electro-magnetic forks , 160, 309, 
3 1 2 . 

his radiophone, 3 3 . 
Mersenne, F a t h e r , 23 , 55, 69, 77, 99, 140 , 

1 4 1 , 2 1 8 , 2 1 9 , 2 3 7 , 2 8 0 , 3 4 5 . 
his acoustic researches, 57-59. 
h is determination of the velocity of 

sound, 95, 96. 
his determination of pitch, 58, 59. 
on equal temperament, 4 3 1 . 



Mersenne, Father, on laws of vibrating 
strings, 1 35 - 1 37 ' 

on quality of sound, 343. 
on quality of sound, tubes and drums, 

203, 236. 
Metallophone, 35, 179. 
Meteors, explosion of, 12S. 
Microscope, vibration, 418. 
Mill-siren of Cagniard de la Tour, 30. 
Minor scale, 392. 

chord, 397. 

semitone and minor tone, 38S-
Mirror, revolving, 231. 
Monge, on quality of sound, 344. 
Monochord, 132. 
Motion, harmonic or pendular, 52, 67. 

effect of, on pitch of sound, 1 1 0 - 1 1 3 . 
Mouth instruments, 216. 

piece of horns, 243. 
pipes, 217. 

Mozart, 79, 90. 
Millier, Johann, 246, 434. 
Music, Arabian, Chinese, Greek, Hindoo, 

Persian, Scotch, 393, 394. 
boxes, 1 7 2 . 

Leibnitz's definition of, 422. 
Musical intervals, 323, 3S7, 390. 

N a i l - k i d d l e , 1 7 2 . 
Napoleon Bonaparte's interest in Chlad-

ni's experiments, 191. 
Newton, 99, 103, 105. 

on the nature of sound, 47. 
on the velocity of sound, 9 8 - 1 0 1 . 

Noble and Pigott, 145. 
Nodes, 146. 

not motionless, 156. 
and ventres of organ-pipes, 226-234. 

Noise, as distinguished from a musical 
sound, 34. 

Norremberg's apparatus for showing in-
terference, 293. 

Notes of the scale, various methods of 
indicating, 80, S i . 

Notes, beat-, 322. 

Oboe, 242. 
Octave, an, 388. 

pentatonic division of, 397. 
Ohm, G . S., 150. 
Ophicleide, 245. 
Oppelt's siren, 400. 
Optical comparator, 418. 

expression of beats, 309-315. 
method of studying musical intervals, 

Lissajous', 414-420. 
Oral cavity, resonance of, 357, 358. 
Organ, acoustic, 218. 

pipe, description of, 216. 
large manometric, 233. 
open, law of, 220. 
stopped, law of, 220, 2 2 1 . 
subdivision of air-column in, 2 2 1 -

224. 
nodes and ventres of, 226-234. 

Organ-pipe, theory and experiment re-
garding, 235-237. 

Orpheus and Amphion, legends of, 2S2. 
Oscillation, meaning of term, 22. 

P a p i u s . experiment on the transmission 
of sound, 40. 

Partial tones, order of succession, 140. 
Partíais, harmonic and inharmonic, 149, 

upper, resonance of, 2S0. 
Pendular motion, 52, 67. 
Pendulum, Blackburn's, 406. 

Tisley's compound, 408, 409. 
Period, and periodic, meaning of terms, 23. 
Periodically variable tones, 334. 
Periods, vibrations of same,"and of differ-

ent, 283-286. 
Phase, meaning of, 45. 

identity of and difference of, 2S3-2S5, 
290, 291 

difference of, influence of, on quality 
of sound, 368-379. 

Phonautograph, "70. 
Pipes, flute, or flue, and mouth-pipes, 2 1 7 . 

organ, 216. 
Pitch, 60. 

as affected by motion, 1 1 0 - 1 1 3 . 
determined by the siren, 64. 
French, adoption of, 76, 77. 
Mersenne's determination of, 59. 
standard, 7 5 - 7 7 . 

Plateau, 141 . 
Plates, vibrations of, 191 -202. 

vibrating, laws of, 202. 
Playing in pure intonation, 443, 444. 
Poisson, 160, 191 , 208. 
Polarized light, applied to the study of a 

vibrating body, 187-189. 
Popocatepetl, silence on summit of, 41. 
Portamento, 391. 
Preyer, 82, 83, 84, 339, 340, 434. 
ryrophone, 251 
Pythagoras, 1 3 2 - 1 3 4 , 392. 
Pythagorean scale, 393, 441, 443, 444. 

Q u a l i t y of sound. 342. 
Quincke's apparatus for showing inter 

ference, 294. 

R a d i o p h o n e described, 33. 
Rameau, 41 , 343, 350. 
Ramsey's theory of"smell, 2 1 . 
Range of hearing for different persons, 91 
Ray of sound, 114. 
Rayleigh, Lord, 1 1 1 , 130, 206, 263, 340. 

on Laplace's correction of Newton': 
formula, 100. 

Reed, description of, 240. 
double and single, 239. 
free and striking, 240. 
instruments, 216. 
pipe, 239. 
vibrating. 172. 

Reflection of sound, 1 1 4 - 1 2 3 . 
Refraction of sound, 1 2 3 - 1 2 5 . 

Regnault, 103. 
his determination of the velocity of 

sound, 101. 
Remenyi, 341, 427, 441. 
Resonance, 266. 

of oral cavity, 357, 358. 
Of upper partials, 280. 

Resonator, adjustable, Daguin's, 276. 
Helmholtz's, 274-276, 350, 351. 

Revolving mirror, WheatstoBe's, 2 3 1 . 
Riccati, 141, 169. 
Rccker, Trevelyan's, 29. 
Rods, free at one end, 1 7 3 , 1 7 4 . 

free at both ends, 177, 17S. 
longitudinal vibrations of, 179-186. 
transverse vibrations of, 170 - 179. 

S a l i n a s , 431 . 
Sauveur, 79, 82, 83, 141, 142, 146, 14S, 

' 5 ' . 2 I 9 , 345. 423-
his determination of pitch, 59. 
on upper partials, 343. 

Savart, Felix, 28, 82. 83, 138, 181 , 190, 
191, 200, 201, 207, a n , 218, 235, 
236, 254. 

his bell, 270. 

his law of vibrating tubes, 203. 
his method of determining nodes of 

sonorous pipes, 225. 
his tube, 28. 
his wheel. 29, 60, 61. 

Savart, Nicolas, 138. 
Scale. 391. 

chromatic, 429, 430, 441. 
diatonic, 387, 39"-393> 44 ' , 443» 444-

conventional, 391—395. 
of equal temperament, 441, 443, 444. 
musical, frequencies of notes of, 439, 

440. 
uniform system of indicating notes of, 

desirable, 440. 
Pythagorean, 393, 441-444. 

Schaffgotsch, 2 5 1 . 
Scheibler's tonometer, 74, 309. 
Schneebeli's theory of aerial vibration in 

pipes, 2 1 7 . 
Schwedoff's apparatus for illustrating the 

laws of vibrating strings, 1 6 2 - 1 6 5 . 
Scott and Koenig's phonautograph, 70. 
Second, a. 388. 
Seebeck, 169. 

his siren, 30, 61 . 
Seiler, Madame, 279. 
Semitone, chromatic, diatonic, major, 

minor, 388. 
Seneca on the origin of sound, 19, 3S. 
Sensitive flames, 2 5 1 - 2 5 4 . 
Seventh, a, 388. 

harmonic or sub-minor, 400. 
Shells, spherical, 46. 
Shore, John, inventor of the tuning-fork, 

24. 
Simple tones, 346. 
Sines, curve of, 67. 
Singing-flames, 2 4 7 - 2 5 1 . 

hydrogen, 3 1 . 
yielding beats, 305. 

Single tones, 346. 
Sinusoid, 67. 
Siren of Cagniard de la Tour, 62 -65. 

Helmholtz's double, 402-404. 
Koenig's, 18. 
Oppelt's, 400, 402. 
wave, 335-338. 

Sixth, a major, 388. 
Sling, musical, 31 . 
Smith's air-reed. 2 1 7 . 
Smoke-jet, sensitive, 254. 
Solids, velocity of sound in, 106. 
Son ran que, 190. 
Sondhaus. 124. 
Sonometer, 133, 155, 166. 
Sound, character of, 342. 

definition of, 1 9 - 2 2 . 
figures, in vibrating tubes, Kundt 's , 

256, 257. 
how produced, 2 1 , 22. 

mill, 2S1 . 
pitch of, 60. 
propagation of, 4 2 - 5 3 
quality of, 342. 
shadow, 126. 
timbre of, 342. 
diffraction of, 126, 127. 
reflection of, 1 1 4 - 1 2 3 . 
refraction of, 1 2 3 - 1 2 5 . 
and light vibrations compared, 88. 
of subdivision, 149. 

Sounds, acute, limits of audibility of, S3, 
grave, limits of audibility of, 82. 

Stancari's experiment, 59. 
Standard pitch, 75 -79. 
Stone, 92. 
Straw-fiddle, 178. 
Strehlke, 169. 
String, as understood in acoustics, 131 , 

138. 
Sub-dominant, 3S8. 
Superposition of vibrations, 154, 155. 
Sympathetic sounds and vibrations", 266. 
Synchronous motion, instances of, 263, 
Synthesis of sounds, 365-368. 

T a r t i n i , 322. 
Taylor, Brook, 137. 

Sedley, 2 7 1 , 429. 
Temperament, equal, and mean-tone, 431. 

scale of equal, 431, 435, 443, 444. 
Tensile strength of pianoforte-wires, 137. 
Terquem, 190. 
Tetrad, 397. 
Theorem, Fourier's, 380. 
Thermal unit, Joule's, 57. 
Third, a major and a minor, 388. 
Thompson, S . P. , 424. 
Timbre, 342. 
Tisley's compound pendulum, 408, 409. 
Tones, beat, combinational, differential, 

resultant, summational, 322. 
composite, compound, simple, single, 

346-
major and minor, 3S8. 
shell, Wordsworth on, 278. 
periodically variable, 334. 
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Tonic, 387, 388. 
Tonometers, 74-76, 1 7 1 , 309, 419, 420. 
Torsional vibrations, 167, 189, 190. 
Trevelyan's rocker, 29. 
Triad 397. 
1 rombone, 244. 
Trough of wave, 67. 
Trumpet, 245. 
Trumpets, ear and speaking, 122, 123. 
Tubes, sonorous, laws of, 2 1S . 

Tuning by means of beats, 308, 309. 
of musical instruments, 317', 3 18 . 

. Tuning-forks, inventor of, 24. 
mode of vibration of, 2S9. 
heavy for beat-tones, 325. 
Koenig's, 18. 
of variable pitch, 3 15 , 3 16 . 

lyndall , 1 19 , 125, 25 1 . 

U n d u l a t i o n , meaning of term, 67. 

V a n d e n G h e y n , 205. 
Velocity of sound in air, 94-104. 

of sound in gases, 103 
of sound in licjuids, 105. 
of sound in solids, 106. 
of sound, Mersenne's measurement 

of, 95. 
Ventral segments, 146. 
Ventres, 146. 

and nodes of organ-pipes, 226-234. 
Vibration microscope, 418. 

_ number, 69. 
Vibrations, complete or double, semi or 

single, 22. 
amplitude of, 23. 
of aerial columns of sonorous tubes, 

mode of, 216, 2 17 . 
longitudinal, 160, 165, 179, 1S6. 
torsional, 167, 189, 190. 
transverse, 160. 165, 170, 179. 
superposition of, 154, 155. 

Vibratory movements, 23. 
Vibroscope, DuhamePs, 65. 
Violin string, vibrational figure of, 371 
Violon de fer, 172. 
Vitruvius on propagation of sound, 43. 
Voice, compass of, 90. 
Vowels, flame-images of, 359, 360. 
vowel-sounds, analysis of, 355-357. 

researches 011 by Donders, Helmholtz 
and Koenig, 357, 3 S 8 . 

W a l l i s , 145. 
Walloston, 83. 
Wave-siren, 335-338. 

compound, 376. 
Wave-systems of various kinds, 284, 28; 
Weber's observations, 289. 
Wertheim, 32, 218, 234, 235, 256. 

his method of measuring the velocity 
of sound in liquids, 105, 106. 

H heatstone, 109, 193, 231 , 248. 
his caleidophone, 4 1 1 - 4 1 3 . 

Wheel, Savart's, 29, 60, 6 1 . 
Whewell on a passage from Aristotle, 42. 
Whistle, Galton's, 87. 
Wind-instruments, 216. 

origin of, 2 13 . 
Wordsworth, on shell-tones, 27S. 

X y l o p h o n e , 35 . 

Y o u n g , D r . T h o m a s , 6 9 , 1 4 7 , 1 4 8 , 1 6 5 , 
299, 322. 

Z a m m i n e r , on the French-horn, 244. 
Zarhno, diatonic scale, introduced bv 393 

and Salinas on unequal or mean-tone 
temperament, 43 1 , 




