WAGHRY
ANXIOR OR 3its
WRTVRRDM RNINAS

67564123

UNIVERSIDAD AUTÓNGMADE NUEVO LEON
DIRECCIÓN GENERA| DE BIBLIOTECAS

bOOKS PUBLISHED BY J. S. REDFIELD.

INEDICAIEOOKS.

RUDOLPH WAGNER, M.D.,
professor of comparative anatomy and phystoloay in the university of
ELEMENTS OF THE
COMPARATIVE ANATOMY
OF THE VERTEBRATEANIMALS.
EDITED BY ALBERT TULK
"Propesson Wianer of Gottingen ranks anong the first Comparative Anatomists of the
. 1 entertain the highest opinion of his work, and am happy to learn, it is about to be Ige; I entertain the highest opinion of his work, and am happy to learn, it is about to be issued from subect is one of prestity. and has always claimed the attention of the Physiologist.
It is beginning to awaken a lively interest among the sclentific men of our own country. It is begining to awaken a lively interest among the scientific men of our own country.
WW. PARKER, M.
"754 Broadwas, Oct $11,281 \mathrm{~L}$ "
$\star \star * *$ "I have looked over Wagner's Comparative Anatomy, and it strikes me as ad-
mirably fulfilling what the title indicates-that of afording a brief but distinct and compremirably fulfilling what the title indicates--that of affording a brief but distinct and compre-
hensive outline of the subject. I think too, that by this publication, you are conferring a benefit upon medical men, and especially upon students who wish to obtain a general knowl.

"College of Physicians and Surgeons, X. Y."
\qquad encisels
J. P. MAYGRIER, M.D.
professor of obstetrics and diseases of women and chiddres at paris, co.
MIDWIFERY ILLUSTRATED,
WITH TWO HUNDRED HLUSTRATIONS
BY A. SIDNEY DOANE, A.M., M.D.
In one vol. 8vo. Price Five Dollars.
"THE spiendid Mustrations of Midwifery given in Maygrier's large work are admirable in
their execution, and essentially useful both to the Practitoner and Student of Obstetrics. their execution, and essentialy useful both to the Practitioner and Student of Obstetrics,
Dr Doane, in making a translatition of this work, and giving to the American public an edition
of these fine enray of these fine engravings, will essentially serve the cause of medicine; and Id not hesitate
to recommend the work. To recommend the work. \quad Professor of Osstertics and Disecases of Wo. Women and "Iast of opinion that the translation of M. Maygrier's Midwifery, as prepared by Dr. Doane, will be a most valuable acquisition to Students and Practitioners of Medicine. D. DNA M.D.
"ALEXANDER F. STEVENS, M.D."

WILLIAM BUCHAN, MD
A TREATISEON. THE
PREVENTION AND CURE OF DISEASES, BY REGIMEN AND SIMPLE MEDICINES.
revised and enlarged with the adjition of.
A VEGETABLE MATERIA MEDICA,
Fointing out the virtues, preparations, and doses, of our most valuable native
mediamal plants, and an outline of
ANATOMY AND PHYSIOLOGY.
\therefore BY J. G. NORWOOD, M.D.
In one volume, 8 vo . Price Four Dollars.
"As health is the most precious of all things, and is the foundation of all happiness, the
science of protecting life is the noblest of all, and most worthy the attention of all man-
kin."
kin. - Hoj man.

vi

ADVERTISEMENT.

to clothe it in an English dress, an attempt in which I trust my labors may not be wholly without success.
The insertion at the end of each Class, of a List of the principal works that treat of its anatomy, instead of in the form of foot-notes, may be regarded as a somewhat novel feature in a scientific work in this country; it is highly important, however, that we should become acquainted with the literature of a subject in order duly to appreciate its value and progress up to the present time; and I have therefore hoped, by giving it a prominent position in the book, to call the attention of the reader more directly to this most useful department of his studies.

are frequently found in the epidermis，corium，and Malpighian layer． The Cetacea approach the fishes in the texture of their corium， which is composed of an interlacement of very loose fibres，the in－ tervals between which are filled with fluid fat．The pigmentary layer in this order is remarkably dense，often several lines in thick－ ness，and lies directly beneath a thin，usually smooth and hairless epidermis．The layers of the epidermis frequently attain a consid－ erable，thickness，and form what are called callosities．In many of the Rodentia and Carnivora，and in the Camels，these callosities are dereloped into thick pads under the feet；in the Apes they form the cushions upon the buttocks．In the huge Pachydermata a similar strueture prevails in connexion with the whole epidermis． True scales are met with in the tail of many animals，as in the Beaver．A horny tissue，consisting of coarse fibres，is exhibited in the structure of nails and claws，but more especially in that of hoofs and horns．Thus the horn of the Rhinoceros consists of cor－ neous fibres，like bristles，which have coalesced so as to form a hol－ low cone ；the individual fibres，however，have a fine cellular texture like hairs．
The most common of the horny covering of the Mammalia occurs in the form of hairs．A distinction of these can be made，as in the feathers of birds，into woolly hairs corresponding to down，and ordi－ nary hair or fur．The first are very soft and slender，frequently curled，and are situated next the skin．The second kind are longer， stiffer，usually running to a fine point，and may be developed into bristles，vibrisse，and spines．The spinous hairs are mixed with the others ；they are coarser，more rigid，and generally slender at the base，bulge out externally．The fine silken sort of hairs are the connecting link with wool．The roots，follicles，and stems of hairs，have the same structure in the mammiferous class of animals as in Man．The follicles of the hairs are，however，very large in the vibrisse of the upper lip and corners of the mouth in some Mammalia，as the Seal，where they receive nervous twigs of consid－ erable size．
The minute structure of hair presents great differences，accord－ ing to the class，order，genus，and species，to which the animal belongs．In different parts of the body even the hairs have not the same structure．They consist，as in Man，of cells，and are invested by a thin cellular layer of epithelium．As a general rule，we can distinguish a cortical and a medullary substance，which exhibit differences in the color，thickness，form，and size of their cells

The two are often very distinct，so that，as in the spines of the hedgehog，a canal is found internally，separated by transverse parti－ tions into cellular intervals．Sometimes，on the contrary，particularly in the cervine Ruminantia（the Roe），the cortical substance appears entirely wanting，and the hair is made up throughout of coarser cells． The cortical substance is generally coarser and harder than the me－ dullary，but frequently passes insensibly into it．The latter is in many cases wanting，as almost always in the hair of the human head，where epithelium and cortical substance are alone found，while in other sit－ uations，as upon the chin，thie eyelashes，eyebrows，nose，axillæ，and pubis，the hairs possess a medullary centre．Most hairs are not round，but compressed upon one or two sides，so as to present a transversely oval section（Dasyprocta），or one that is kidney－shaped （Giraffa），or that is quadrangular（Histrix Javan．），or irregularly an－ gular（Auchenia Llama）．
The hairs upon their external surface are for the most part smooth and even，as in Man，or they exhibit slight lateral projections，as in the Squirrel，or they are knotty，as in the Bear，or provided with pointed processes like the teeth of a saw，which in some cases （Mygale）stand out only upon one side，in others（Pteropus）upon both，or they are furnished with thorn－shaped processes，as in the Cheiroptera．They are rarely found channelled，as is the case in the two－toed Sloth，by rounded longitudinal ridges and intervening grooves．The gray and grayish－white hairs of such animals as the Mole and Mouse，exhibit a variegated appearance，like the down of Birds．They are annulated with black at regular intervals，where the hair is either transparent，or else surrounded by more delicately marked rings．The spines of the Hedgehog and Porcupine do not essentially differ in structure from hair，they only seem to contain more of the same materials．Their epithelium is very much de－ veloped，and the cortical substance consists of small，elongated cells， and is of a horny consistency．The medullary tube is very spa－ cious，and contains two kinds of cells．In the different species of the genus Erinaceus，we perceive differences in the form and size of these internal cells．In bristles，e．g．of the Hog，there is found a very small compressed medullary tube，and in the cortical sub－ stance a very ample cellular structure．In the several orders of Mammalia，very great differences occur，so that they can scarcely be said to have anything in common．Thus all the Apes have three substances，which vary much，however，in their relative preportions． In the Carnivora the cortical substance appears always to predomi－

Cheiroptera, Solidungula, and Pachydermata, and some few genera from the other orders, of a single piece, as in Man, both halves hav1. ing become united in the median line at an early period before or after birth. In other animals both the halves remain permanently separated, and are held together only by ligamentous fibres. The lower jaw is in its simplest condition in Balæna, where it resembles a rounded arched rib. In the Dolphin it is somewhat deeper, and provided with a small coronoid process. The ascending ramus of the jaw, which is more or less conspicuous in the higher orders of Mammalia, is frequenty altogether wanting, as in Orycteropus. The Carnivora have a strong and broad, the Ruminautia, as the Camel, a long and small, coronoid process. The lower border of the symphysis is in Man alone curved forward and upward, in all the Apes it slopes downward and backward. Many Mammalia, such as the Carnivora and Rodentia, have a process directed backward from the angle of the jaw, a structure which is very generally met with in Birds. The form of the ariculating condyle is subject to great diversities, which usnally characterize entire orders. Thus it is very small, and plays freely in all directions within a shallow glenoid cavity in the Ruminantia ; it is much elongated transversely, and locked in a deep cavity of a corresponding form in the Car nivora so as to admit of no lateral motion; it is lengthened out from back to front, and chiefly moveable in this direction in the Rodentia.
Viewed as a whole, the form of the skull departs most from that of Man in the lowest orders. Thus in the Cetacea the jaws are generaliy lengthened out in the shape of a snout; and the cranial bones are united merely by squamous sutures. A want of lateral symmetry occurs also in this order. In the Physeter the right nasal orifice is much the larger, the nasal partition is pushed to the left side, and the nasal bones lie rather behind than by the side of each other. In the Dolphin this asymmetrical condition is extended to other bones, namely, the intermaxillaries. In the Narwhal the lower jaw itself is asymmetrical, the left half like the corresponding half of the upper jaw being the larger and broader. The skull of the Monotremata (Omithorynchus, Echidna) is very bird-like through the early coalescence of its bones, and the snout-shaped jaws. In the higher orders the facial and maxillary bones constantly retreat farther backward. In the Horse the facial is four times larger than the cranial portion of the skull, a proportion exactly the reverse of that of Man. The depressions within the
vertebre are generally broad and shallow, very long in some Ruminantia, as the Giraffe, very short, thin, lamellated, and parlly anchylosed together by their bodies and arches, in the Cetacea, as the Dolphin and Whale. A fusion and partial anchylosis occur also in some Edentata, e. g, the Armadilloes, Dasypus, and Chlamyphorus. The atlas is offen very large, and the second cervical vertebra has very generally a processus dentatus. The average number of the dorsal vertebrea is, as in Man, 12. Moss Apes have from 12 to 14; he Cheiroptera most frequently 11 ; the Carnivora usually 13 ; the Ruminantia, Edentata, and Pachydermata 15 to 20 ; the Cetacea, 11 to 18 ; the greatest number, 23 , occurs in the two-toed Sloth. The spinous processes are for the most part straight and frequently very long, as in the Solipedia, Ruminantia, Pachydermata, for the attachment of the ligamentum nucher, and form what is called the withers. In the higher Apes they stand obliquely, as in Man, and cover each other like tiles. They are seldom wanting as, in Cheiroptera and some Insectivota. The lumbar vertebrea are generally the largest, and in a few instances have inferior spinous processes, e. g. the Hare. Their number is from 3 to 7 ; sellom more. The Antliropoid Apes have mostly 4, the rest of the Mammalia usually more than 5 ; the smallest number is 2 (Myrmecophaga didactyla), the highest 9 (Loris). In the Solidungula, more rarely in the Pachydermata and Ruminantia, the transverse processes of the most inferior lumbar vertebrex are united by ligaments or blended together, a condition which sometimes occurs abnormally in Man. The sacrum, as a rute, is very narrow, straight, and composed of from 2 to 5 vertebre united together; the Monotremata, the It consists in the Orangs of 4 united vertebrex (in most other Apes of 3), and is in them broad like the human sacrum, and slightly concave. In the Ornithorynolus, the sacral vertebra, remain permanently separated. The sacrum is exceedingly broad and anchylosed inferiorly to the pelvis in Dasypus. Candal vertebre are very generally present, but, as in Man, they are reduced in some of the ligher Apes to 4 or 5 aborted vertebre. They are usually very numerous-20 or 30 , and in some Edentata even 40 , and beyond that number. The first caudal vertebre are very similar in form to true vertebrex ; they have the usual processes, and very generally inferior spinous processes also. Toward the end of the tail they always dwindle gradually in size, lose their processes, and become simple ossicles, resembling the phalanges of the
fingers. A universal characteristic of the vertebræ of a mammiferous animal is this : the anterior and posterior surfaces of their bodies are either flat or slightly concave, and collected together by ligament. It is rare for the cervical vertebre to have, as in the Horse, an articulating cavity posteriorly, and in front a very convex head.
The Ribs correspond in number with that of the dorsal vertebre. They are for the most part long, flat, and sometimes very broad from before backward, as in some Edentata, e. g. Myrmecophaga didactyla, where they are in contact in that direction, and even overlap each other like tiles, so as to form a kind of coat of mail; occasionally, however, they are very small and rounded, as in Manatus. The ribs are mostly connected, as in Man, with two vertebre, and their transverse processes; in the Monotremata, however, they articulate only with the vertebral bodies. In the Cetacea the posterior ribs hang down from the transverse processes alone. In front, the ribs are firnished with their costal cartilages, which in some orders, as the Edentata (also in the Cheiroptera and Cetacea), have a great tendency to become soon converted into bone, and thus into a series of sternal ribs, as is constantly the case in birds. The number of true ribs (those which are attached to the sternum) is usually greater than that of the false, though the Cetacea have far more of the latter; the Whales have in fact only one or two true ribs. The Seals, on the contrary, have the greatest number of true ribs. In the Monotremata, the anterior rib-bones are attached by distinct capsular joints to the sternum, and the last costal cartilages are expanded into broad thin plates.
The Sternum is very generally divided into three portions, the middle one of which, or the body, in place of being represented by a single piece, as in the adult haman subject, usually consists of as many pieces as there are true ribs present. In most eases even in the Cetacea, the sternum is broad and compressed from before backward, but more rarely in the lateral direction; it is very short in the detacea, very long in the Carnivora and Edentata. The manubrium sterni presents considerable differences, but generally receives the clavicles, when present, and the first two ribs. It is very broad and conspicuous in the Edentata, and in the Cheiroptera and Monotremata is prolonged into a transverse process, so that it has the form of a T. In the Cheiroptera, the Armadilloes, and the Mole, there is a crest upon the antero-inferior surface of the manubrium for the attachment of the large and powerfully developed pec-
toral muscle. In the Elephant and Horse, the whole sternum is very much compressed latterly. The ensiform process is frequently short and pointed, sometimes, however, it is very long, and expanded behind into a thin cartilaginous dise, as in Myrmecophaga, Dasypus, Manis, and some Rodentia ; in some Edentata it extends nearly to the pelvis. In the Ant-eaters the anomaly is exhibited of the costal cartilages passing between two portions of the sternum so as to meet and become united from opposite sides. In the Monotremata the manubrium and body of the sternum are united by a capsular articulation. Many of the pieces of the body of the sternum frequently coalesce, as in the Horse and Elephant.
The Scapular Areh presents very many differences. A Scapula is generally present; it is very broad even in the Cetacea, and has for the most part a spine, though that may be but slightly developed, as well as a coracoid process. The latter, which is wanting in Phoca, is very long, on the contrary, in the Cheiroptera. The scapula is remarkably long and narrow in the Mole, and its form is similar though of smaller proportion in the other Insectivora, as Sorex. It is small also in the Ruminantia, throughout which order the acromion is wanting along with the clavicles. In many Rodentia a hook-shaped process arises from the spine posteriorly, as in Lepus. The broadest and most peculiar shaped scapula is seen in the Edentata. In the Cheiroptera its form approximates the human, frequently more so than that of the Apes, where it is, as in the Chimpanzee, longer, and the neck, as in the Orang-utang, usually very broad.
The Clavicle is completely wanting in the Cetacea, Ruminantia, Solidungula, Pachydermata, and some of the Rodentia and Carnivora, as Phoca, Ursus, Nasua; it is found very small, flat, and simply imbedded in the flesh in the Dog and Hyena, but larger in the Badger, Otter, and Cat, where it is represented by a sickle-shaped rib-like bone. It is present in the Marsupiata and Insectivora. Among the latter the Mole has a very remarkably formed short, quadrangular clavicle provided with a joint for articulation with the humerus. In some Rodentia it is small, connected merely with the sternum, and does not extend as far as the scapula. In the Cheiroptera it is very large and strongly arched. In the Quadrumana it agrees for the most part in form with that of Man, though it is proportionately thicker and stronger, as in the Orangs.
The Humerus is in general a rounded and long bony tube, but exhibits most remarkable differences. In swimming and fossorial

animals it is very short, as in the true Cetacea, and in many of the digging and aquatic Mammalia. On this account it frequently obtains quite a peculiar breadth, being provided with singular processes or inequalities of surface for the attachment of muscles, as in the Mole and Monotremata. It is on the other hand longest and thinnest in the Cheiroptera, and in all the Apes, especially the Gibbons, Orang-utang, \&c. It is much longer in the very anthropoid Chimpanzee, than in Man. The inferior articulating extremity is formed into one or two pulley-like surfaces for connexion with the bones of the fore-arm. The olecranal fossa is perforated in different Apes, Carnivora, and Rodentia. There occurs also frequently in these orders, as also in many Edentata and Marsupiata, an opening in the internal condyle for the passage of the median nerve and brachial artery. The structure of the scapular and humeral bones
$=$ in the Monotremata-Ornithorynchus, and Echidna, is of a very opposite character, the scapular areh in them being arranged according to the type of the Saurians. The scapula is long and sabreshaped, and, with a peculiar piece situated more inferiorly, and connected with the sternum, which corresponds completely with the coraco-clavicular bone in Birds, forms an articulating cavity for the humerus. The thin anterior clavicle, corresponding to the furcular bone, unites with that of the opposite side, and is firmly supported by the anterior border of the T-shaped manubrium sterni. Beside these, there lies upon each side a peculiar quadrangular bone between the manubrium and the coracoid, which reminds us of a similar structure in the Lizards.
Still greater differences are met with in the bones of the Forearm and Hand, especially the latter. The element in which the animals live, whether air or water, upon or beneath the surface of the earth, has a special influence upon these parts, which are further modified by particular wants and modes of existence. In general, we find two bones in the fore-arm, which admit of a greaterslegree of rotation in the Quadrumana, the Carnivora, and Marsupiata, than in the remaining classes. This motion is however less even in the higher Apes, than in Man, and pronation and supination are much more limited. The ulna is constantly longer than the radius, and provided with an olecranon of variable size, which is all but absent in the true Cetacea, where the two short bones of the fore-arm lie immovably behind each other, and are very flat like the whole extremity, which is constructed after the fashion of a fin. Even in the Rodentia and Insectivora, the radius which
and united to 7 or 8 sacral vertebre. In the Apes with tuberosities, the ischia are broad and flat inferiorly, as if cut off. The spine of the ischium occurs only in the Apes. On the other hand, in some Cheiroptera and Edentata, the spines of the ischia coalesce posteriorly, or with the sacral and caudal bones, so that the sciatic notch is always converted into a true foramen. The foramen ovale is often very large, and occasionally, as in. Phoca, the two bones enclosing it are very much elongated. The acetabulum has almost always a bottom, and frequently a depression for the insertion of the ligamentum teres, which later is, however, completely wanting even in the higher Apes. The acetabulum is very seldom perforated, as in Echidna (and in all Birds). In the Ai, which has such an unseemly gait, the acetabulum is very small and shallow. From the anterior or upper border of the pubic bones there frequently arises a pointed spine-shaped eminence (eminontia-ilio-pectinea), which is the first indication of a marsupial bone, e.g. in Vespertilio spectrum. In the Monotremata and Marsupiata there is constantly placed in the same situation the marsupial bone, an elongated cylindrical and triangular bone, the free point of which is directed forward. It may be regarded as formed by a partial ossification of the fibres of the external sheath of the abdominal muscles. The pelvic bones are very simple in the Cetacea, and appear sometimes to be entirely wanting, as in Manatus. In the Dolphins they consist of two simple elongated bones lying near the anal and generative organs, which converge together from opposite sides, or else, as in many Whales, are connected by a transverse piece, this rudimentary form of pelvis frequently resembling the hyoid bone of Man;
in the Dugong a small V -shaped bone is the representative of the pelvis.
The Posterior Extremities exhibit a great general resemblance to the anterior. The femur preserves the human type in the differens orders more than the humerus. The trochanter major is often very large, and extends beyond the head of the bone; the internal trochanter is occasionally wanting, and in a number of animals, e.g. Castor, Dasypus, Equus, but in the Rhinoceros especially, we meet besides with a strong process more or less in the middle, resembling a third trochanter. In the Cheiroptera the head of the straight a third trochanter. In the Cheiroptera the head of the straight
femur lies in a peculiar manner between the two trochanters, which are of equal height. The femur is short in the Solipedia and Ruminantia, and particularly so in the Seals. In the leg, the tibia is always the principal bone and the main support of the femur. The is.
metatarsal bones of the principal toes in the leaping animals are ong, and partly united together, e. g. in the Kangaroo, Pedetes Dipus, where three toes have only a single metatarsal of remarkable length terminating in three articular heads. The single metatarsal of the Solidungula has only a single articular head, but two stylehaped and very slender adjacent bones. Most of the remaining orders have the number of toes from 3 to 4 ; the Quadrumana, Cheiroptera, and most Carnivora, have 5. The number of toes is the same as the fingers, only the great toe corresponding to the thumb is frequently rudimentary, and has only one joint, or is wanting altogether, while the remaining toes have generally three phalanges each. In the Apes the metatarsal and phalangeal bones are much slenderer than in Man.

muscular system.

The several orders and genera of Mammalia present the greatest diversities in reference to the muscles of the extremities. In the greater number of cases, especially as regards the higher orders, the muscular system may be referred to the human type. While, however, the thin flat muscles which lie beneath, and serve to corrugate the integument, are very slighty developed in Man, and are limited to particular situations (M. frontales, oceipitales, platysma-myoides, \&c.), they occur in the Mammalia as museular layers spreading over
lesce more ore, shoulder, and abdomen. In many cases they coacan roll themselves up in a ball, they form a very large thick fleshy lamina, which can be drawn like a cap over the whole back, sides, and part of the extremities, e. g. in the Porcupire and Hedgehog, in which last the tegumentary muscle is short, hood-shaped, very thick, and separable into two layers
The muscular system of the Apes, even of the highest, exhibits many departures from that of Man. The muscles of the extremitres are arranged according to a more analogous type. The individual mobility of the fingers is much more limited in them than in Man, and this is particularly the case with the thumb. The short extensor of the thumb is wanting; the flexor brevis is blended with the adductor; the flexor longus pollicis is not a distinct muscle, but only a tendon of the flexor digitorum communis profundus; the extensor longus pollicis forms a common muscle with that of the index and middle fingers. The want of a distinct ex-

THE coverings of the brain and spinal-cord agree in general, in so far as the arachnoid and pia mater with its net-work of vessels are concerned, with those of Man. The dura mater psually forms a falx, which extends deeply between the hemispheres. As a general rule, the tentorium cerebelli is present, but the falx minor is nearly always wanting, on account of the large vermiform lobe of the cerebellum projecting beyond its hemispheres. The tentorium is in many Mammalia supported by a bony plate springing from the internal surface of the skull, and is particularly strong in the Cat, and other Feræ, but feeble in the Horse, Dolphin, and some of the Apes. An osseous plate is seldom found in the falx, as in many Birds; but is occurs in the Ornithorynchus. Between the laminæ of the dura mater are found the venous sinuses.
The spinal cord of the Manmalia extends considerably lower than in Man; as a rule, it reaches as far as the sacrum, though in the Cetacea it appears to terminate ligher up. The nerves themselves of the Cauda equina pass ont through the openings of the most complete of the caudal vertebre, Of the two enlargements upon the cord, the posterior is wanting where there is imperfect development of the hinder extremities, as in the Cetacea; and sometimes the two enlargements coalesce so as to form a single one of very considerable size. The central canal which is present in the foetus of Man (perhaps also in the adult) appears in very many of the Mammalia to exist during their whole life; at all events, the fourth ventricle is more or less deeply prolonged into the spinal marrow. The brain is developed in the lowest degree, and is truly bird-like in the Ornithorynchus, where the pons is very small, and there is only a rudiment of the corpus callosum present, as in the Marsupiata, while the hemispheres of the corebellum appear more as appendages, or lateral extensions, of the very greatly developed vermiform lobe ; the corpora quadrigemina form only a pair of ganglia, the posterior pair being scarcely visible; the optic thalami coalesce in the middle by a very strong commissura mollis, and the hemispheres are without convolutions. In the Rodentia, Marsupiata, and Edentata, the vermiform portion of the cerebellum is so considerable, that the hemispheres appear to recede very much; they are already more developed in the Ruminantia and Pachydermata, and are still more highly organized in the Car-

generis birds) well developed, two or three ducts from it opening
beneath a lold of the imner surace of that lid. The mechanism for a moving the nictitating membrane is not the same as in Birds. It seems to be drawn forward the more the retractor muscle acts, when
8. the eye by being pulled back presses within the orbit against the posterior termination of the cartilage of the nictitating membrane

[^0]true ethmeidal cells appear to be met with here, which are wanting in the rest of the typical Whales.
In the Dolphins, the spouting apparatus has been accurately described. Behind the velum palati the inferior patt of the nasal canal, which is here single, can be shut off from the pharynx by a strong circular muscle (Musc. pharyngo-palatinus v. constrictor isthmi faucium superior). Further, superiorly above and behind the bony palate, the nasal canal is as usual divided by a septum, and each of the two passages thus formed receives the Eustachian tube of its side, and terminates, as the external nasal aperture, upon the skull in front of the forehead. The blowing apparatus with its peculiar cavities here lies upon the bones. The nasal canal passes immediately into two anterior and two posterior cavities, lying one ever the other; the covering of these is formed by a couple of projecting folds or valves, one arising from the anterior, one from the posterior wall, and which leave between them a narrow transverse fold. Above the valves there lies a simple flask-shaped cavity, the neck of which passes into the external blow-hole, which communicates upon either side in front and externally with the double capacious and rounded spouting sacs, each of which presents upon its basis strong parallel rib-shaped elevations (plications of its fibrous coat); all the parts of this external apparatus are lined with a hard, dry epithelium, and are formed of a thin fibrous tissue. The whole apparatus is surrounded by muscles which lie beneath the integument and fat, and form several layers which probably dilate the blowkole.

Organs of Tasto.

The tongue in the Mammalia, as in Man, serves as an instrument of taste ; in relation, however, to size, form, structure, and development of epithelium, degree of mobility, \&e., it exhibits great differences. In the true Cetacea it is but slighty moveable, flat, depressed, smooth and without gustatory papille ; this is the case also in the Dugong and Sea-cow (Manatus). In many Edentata, e.g. Myrmecophaga, Manis, and such like, it is very long and vermiform, smooth and viscous. In the Ornithorynchus it is covered in front with large, hard, horny spines, behind with soft villi; in the Cats among the Carnivora, with very pointed horny spines, capable of tearing; among the Cheiroptera, at least in Pteropus, partly with similar trident-shaped corneous spines, as sheaths to the papilla. Most animals have a soft tongue covered with papille, of which

36 MAMMALIA. 2 .
Hystrix. 3d, Compound teeth, dentes compositi, in which each molar tooth consists of separate laminæ corered with enamel, and united by means of a softer intervening substance, called crusta, petrosa, or cementum. This structure is most clearly and strikingly displayed in the large molars of the elephant, but it occurs also in the Horse, the Ruminantia, and many Rodentia, as the Hare, the Field-mouse (Arvicola), and the Guinea-pig.
The diversities in the form and arrangement of the teeth are so great, that scarcely anything general can be said about them. It is the special province of zoology to set forth these specialities, and we shall therefore here give only a few of the prominent examples. Thus in the Narwhal a very peculiar formation and asymmetrical arrangement of the teeth occurs. There is usually found only upon one side of the upper jaw a very long spear-shaped projecting tusk, while that of the other side remains quite rudimentary, and is probably a mere deciduous tooth; the rest of the teeth are wanting. Hyperoodon has only some small teeth in the lower jaw. The Dolphins have a great many, often 200, mostly pointed teeth, in both jaws. The graminivorous Cetacea, Halicore and Manatus, have merely molar teeth wihh flat crowns; in the first the incisor teeth in the upper jaw are developed into long deflexed tusks. In the Ruminantia generally the superior incisor teeth are wanting in the intermaxillary bone, which in the Camels only supports a pair of incisors resembling canines. The canine teeth, with the exception of the Musk-deer and the Camel, are also wanting in the Ruminantia. In the Horse the males only have canines, but here also they are frequently undeveloped. Among the Pachydermata the canines are wanting in the Rhinoceros, in the Hyrax, which has rodent-shaped incisors, and in the Elephant, in which incisor teeth are also wanting in the lower jaw, while those in the intermaxillary project as long tusks. The Ornithorynchus has, upon the whole, above and below, four singular horny molar teeth. The incisors are wanting in all the Edentata, Dasypus sexcinctus only having two upper ones ; the canines also are wanting in nearly all, and the molar teeth easily fall out. The Rodentia always have two long chisel-shaped incisors, covered only upon their anterior surface with enamel, continually growing from behind, and implanted in very long deep maxillary sockets; behind the superior pair in Lepus and Lagomys two lesser ones are found. The canines are here wanting without any exception, and we therefore meet with a great interval between the incisor and molar teeth. The herbivorous

Marsupiata approximate the Rodentia in the absence of canine teeth, and in having sometimes, as in Phascolomys, two incisors both above and below. The carnivorous Marsupiata, as Didelphis, correspond in the structure of their teeth with the Carnivora, whose molars are always furnished with more or less pointed, and frequently, as in Phoca, many jagged crowns. The more purely carnivorous the amimal, and the more it feeds upon living prey, the less numerous are the molars, one of which, the largest, constitutes what is called the carnivorous tooth. The canines here become large tusks or fangs. The Cats serve as an example, in which, through the prodigious development of the canines, conspicuous intervals arise in the dental series. The Walrus has also very large canines (tusks). The Cheiroptera and insectivorous Fere, as the Hedgehog and Mole, have broader molars, but with very pointed serre; they are similar also in the Lemurs, the Makis and Loris; in the Cheiroptera the superior incisors are very small, and easily fall out. Among the Apes, those of the Old World have the same number of molars as Man (20) ; those of the New World have 24. They never however stand in old animals (even in the Orang-utang and Chimpanzee) in an uninterrupted row, but there are always, on account of the enormous development of the canines, conspicuous spaces in front of the molar teeth. In Man alone the teeth stand in one continuous unbroken row, and it seldom happens, save in the Negro races, that small intervals remain between the incisor and canine teeth of the upper jaw. It is only in an extinet race of Pachydermata, Anoplotherium, that all the teeth form an unbroken series, as in Man.

As concerns the microscopic structure of the teeth, their tubuli and enamel, \&c., we are hardly prepared at present to offer any generalizations, and recourse must be had therefore to the most recent works of mierographers upon this subject. The manifold external forms and arrangements of the teeth are figured in zoological books.
The form of the Lips is very various. Thus many Ruminantia, like the Ox, or the Sea-cow (Manati), have a thick, moist, hairless upper lip, while in the Ornithorynchus lard horny kind of lips, shaped like the bill of a duck, occur. Many genera possess what are called cheek-pouches, that is, purse-shaped sacs, usually internal, seldom external, when they are always small, as in Cælogenys and Askomys. The Apes of the Old World, with the exception of the highest genera, have mostly small cheek-pouches; as likewise some
Cheiroptera. They are very large in the Hamster and other Rodentia, where they extend deeply down the neck, and are compressed by peculiar tegumentary muscles which arise from the spinous processes of the vertebre, being detached from the trapezius muscle. The cavity of the mouth is usually smooth internally; sometimes, however, as in the Ruminantia, it is beset with hard tubercles, which are very hard and homy on the palate of Echidna. The palate is frequently provided with deep transverse furrows and projecting elevations. Some Rodentia, such as the Beaver and Hare, have a spot upon the imner surface of the cheek beset with hairs. The velum palati is more or less scooped out into a semilunar form; the avula is wanting in nearly all animals, even in the Makis; and in the Apes where it oecurs, it is smaller than in Man. In the Elephant the velum palati is very long; as also in the Cetacea, where it is drawn very far back. The mucous glands are more or less developed; in the zygomatic groove in the cheek, they not unfrequently form a ragged conglomerate gland (glandula buccalis), with several excretory ducts, which sometimes extends even into the orbit and zygomatic fossa. The tonsils are generally met with; they are largest in rapacious and canivorous animals, as in the Bears and Cats; they are, on the contrary, very small in the Mustelidæ ; in the Rodentia they are most feebly developed, and exhibit in general great diversities in the several orders. In the Apes even they are different. In the Lion and some other Cats, each tonsil forms a sac, in which the fluid secreted accumulates. A peculiar - formation occurs in the Camel; there is here found a singular development of the velum palati, which is called the bursa faucium, as a moveable duplication of the velum containing many glands, which occurs in its full development only in the male, and in the rutting season swells out so much as to protrude from between the
The Tongue has already been considered as the organ of taste. In some animals, as the Dog and Cat, there is found in its middle line covered by flesh a band-shaped fibro-cartilage, called the worm. The lingual or hyoid bone is generally present, but exhibits very diversified forms. It is in its simplest condition in the scaly animals, as the Manis, where it forms only a slender arch, and exhibits no traces of peculiar cornua. It is of considerable size, and provided with two cornua in the Ornithorynchus and Echidna; in the latter the posterior cornu consists of three pieces. In the Cetacea, as the Dolphin, the body of the lingual bone is flat, and there are

right, has the largest circumference, corresponds with the paunch, and is very much corrugated internally. The second is smaller, and communicates with the very extremity of the esophagus by a large round opening. The third stomach is the smallest, while the fourth, next in size to the first, is intestiniform, very long and curved; and opens by a very small pyloric orifice into the intestine.
The Intestinal canal is in general portioned of by means of a valve into an anterior longer small intestine, and a posterior shorter or large intestine. In the genuine Cetacea (not in Manatus and Halicore) no limitation is found between small and large intestine, and the cecum is wanting, as also in the Cheiroptera, many Carnivora (e. g. Ursus, Mustela), and in the Insectivora, while it is very seldom wanting in the Rodentia. The ccecum, elsewhere pretty generally present, is very short in the rest of the Carnivora, namely, in the Cats ; it is conspicuous in the Ruminantia, still more so in the Horse, and especially in most of the Rodentia, e. g. Mus Cricetus, Cavia, Castor, and Lagomys, where it exceeds the stomach many times in size-in the Hare from 8 to 10 times. There rarely occur, as in most Birds, two small ceeca, e. g. in Myrmecophaga and Hyrax. A vermiform appendix occurs in the Orangs and Gibbons, and rarely here and there throughout the other orders, as in Lagomys. In the Cetacea the duodenum commences by a bladderlike enlargement, which was once falsely regarded as a portion of the stomach. The clusters of Peyer's glands are, as a rule, considerably developed. The mesentery is usually longer than in Man, even in the Apes. A small and large omentum, traversed by elegantly disposed streaks of fat (as in the Otter), is regularly present. The insertion of the great omentum departs most from that of the human adult, and resembles more that of the fetus. Frequently, as in the Rodentia, lumbar omenta occur, which penetrate partly into the inguinal canal, and are to be regarded as elongations of the peritoneal or vaginal coat of the testicle. In the female (as the Rat), the lumbar omenta are elongations of the round ligaments of the uterus. In the Ruminantia the great omentum forms a veil over the compound stomach; in the Carnivora it lies around the intestines. The intestinal villi are exceedingly large in the Rhinoceros, and very conspicuous in the Rodentia, and also in the Makis ; they are larger in the Apes than in Man, and small in the Ruminantia. The length of the intestinal canal is most considerable in the latter, and is in proportion to the length of the body as 15 or 20 to 1 ; in
the Sheep even as 28 to 1 ; in most Carnivora, it is as 4 to 1 ; and in the Cheiroptera, as 3 to 1. Many animals, as the Cetacea, the Ornithorynochus, and the Nole, seem to have mere longitudinal folds upon the mucous membrane, but no villi.

Of the Salivary glands the three pairs of the human subject are generally present, yet they are wanting completely in the Cetacea. The Dugong (Halicore) alone has a very large parotid, which on the other hand is wanting along with the sublingual gland in the Seals. These glands are also partly wanting in the Monotremata. In general the salivary glands are largely developed in the Ruminantia, Pachydermata, and Rodentia, moderately so in the Quadrumana, and less in the Carnivora. In many Carnivora, as in the Dog, and in many Rodentia, as the Squirrel, and also in the Makis, the submaxillary glands are larger than, frequently as large again as the parotids. This is especially the case in the Beaver, where the two coalesce posteriorly in the nape of the neck, and form a large mass. The Edentata, also, especially the Kangaroo and Opossum, as likewise the Cheiroptera, have large salivary glands, with the exception of the sublingual, which, in the last-named order, is very slightly developed; in the Dog and Cat it is also very small. The submaxillary gland is very large in Myrmecophaga and Orycteropus.
The Liver of the Mammalia is fashioned after the human type ; it is usually divided into two principal lobes, and is frequently more deeply bisected. In the Cetacea its two lateral lobes are very feebly indicated; in the Ruminantia there is found a third smaller lobe. The liver is three-lobed in the Hog and some Rodentia ; most of the Rodentia, Marsupiata, and Apes, have, however, from 4 to 6 , the Carnivora still more, 6 to 8 lobes, as the Dog, Cat, and Bear. The liver of the Orang is like that of Man.
The Gall-bladder is usually present, though it is also frequently wanting, as, for example, in the true Cetacea, many Ruminantia (Camel, Goat), the Horse, and most Pachydermata (though not in the Hog), and several of the Rodentia, as the Hamster, the Mouse, and in the Sloth among the Edentata. A biliary duct always passes to the intestine, into which, or into the gall-bladder, the excretory duets of the liver pour their secretion. The pancreatic duct often joins just before it enters the intestine the termination of the biliary duct, which is in this situation frequently expanded in the shape of a bladder, as in the Elephant, the Kangaroo, the Otter, the Seal, \&c. A remarkable peculiarity is possessed by the Orycteropus, in which two separate gall-bladders occur, united by a common peritoneal

valves, agrees for the most part with that. of Man, though there sometimes occurs, as in the aorta, a sacciform expansion of its commencement, e. g. in the Narwhal, and in a less degree in many of the Dolphins also. The number of pulmonary veins varies considerably, and there frequently occur upon one side a greater number than upon the other $(3+2)$, a circumstance chiefly occasioned by the number of the lobes of the lung.
Valves occur in the Veins of the body, and frequently, even as in the $O x$, in the portal veins, where they are wanting in Man. The trunk of the superior vena cava is very frequently double, in individual animals from all the orders, as in the common Bat, Hedgehog, Squirrel, Ornithorynchus, Elephant; as a rule, however, it is single, as in the Apes, Ruminantia, most Carnivora, \&c. The inferior vena cava is commonly dilated in diving animals, previous to entering the heart, and while yet within the liver, as in the Seals; in a less degree also in the Dolphin and Otter, still less so in the Beaver and Ornithorynchus; in these it forms a true sinus, like that of Fishes. This large size of the veins, in relation to that of the arteries, exerts unquestionably an important influence upon the circulation and the process of diving; and the discovery is a remarkable one, of a peculiar annular muscle, about an inch in breadth, which is met with in the Seals on the trunk of the inferior vena cava, above the diaphragm and venous sac, and which can cut off the return of blood to the heart. In the Cetacea remarkably developed venous plexuses occur; one of these lies, e. g. in the canal formed by the inferior spinous processes of the tail; another much more conspicnous (plexus iliacus) lies between the psoas muscle and
the peritoneum. the peritoneum.
The absorbent vessels exhibit in general the same conditions as in Man, in reference to the chyliferous ducts. The lymphatic glands of the mesentery are usually less numerous, and more blended together, than in Man. They sometimes form only a single mass lying at the root of the mesentery, called the Pancreas
Asellii (as in the Dog and the Carnivora generally), near to which, however, some smaller lymphatic glands usually occur. This mehowever, some smaller lymphatic glands usually occur. This me-
senteric gland is most conspicuous in the Cetacea, where the lymphatic vessels are very much developed.
The Blood of Mammalia very uniformly presents small, round, disc-shaped corpuscles, very similar to, but mostly somewhat smaller than in Man; this is especially the case in the Ruminantia. The largest animals, as the Elephant, have still very small cor-

Dugong, on the contrary, they are greatly elongated ; occasionally they appear incompletely lobed (in many Cats and Weasels), as in the newly-born infant. In some animals, particularly those that live in water, each kidney is divided into several, often into many lobuli. In the Ox, there are found 20 free, rounded lobuli, about 12 in the Otter, and from 40 to 50 in the Bear. The kidney is divided into from 70 to 100 or more lobules in the Seals, and its surface has in consequence a tessellated aspect. In the true Cetacea the kidneys have a racemiform appearance; in the Dolphins 200 separate lobules can be counted. Each lobule is pravided with a papilia, and there is here found no pelvis, but an excretory duct proceeds from each lobule, so that the ureter is composed of branched tubes, like the ducts of other glands. Most of the remaining animals, namely, all Apes, even the Crangs, most Rodentia, Carnivora, and Edentata, have only a single papilla, into which all the renal tubuli open. The wrinary bladder is particularly large in the Herbivora (as in the Horse), smaller, rounded and muscular in the Carnivora, thick-walled, elongated, and very small in the Cetacea, whore the ureters also are exceedingly short.
The Renal capsules are generally present, and always larger in the fetal than in the adult animal. They are flat, and like those of Man, in the Quadrumana ; very large in most Rodentia, and very small in the Cetacea, even in their fetus.

special secreting organs.

Besides the organs of secretion which are necessary for the general animal economy, there occur in separate families, genera and species, particular secretions, which always serve a special purpose in connexion with the peculiar structure and mode of life of the animal to which they belong.
Thus several of the Sebaceous follicles of the skin are developed in many animals into compound follieles and true glands, which secrete a strong smelling sebaceous or unctuous fluid.
A group of such sebaceous sacs lies in the Stags and Antilopes in a cavity of the lacrymal bone beneath the eye, which secrete what are called the "tears of the Stag."
The peculiar smell which emanates from the Cheiroptera depends, for the most part, upon a considerable flat and yellow colored gland, which in Vespertilio murinus, noctula, \&c., lies upon both sides of the upper jaw, between the eye and nose. Similar, only

MAMMALIA

also in its middle, but rarely posteriorly, there is often found, as in the Horse, the Ruminantia, Carnivora, and Apes, a fold or septum, in one case strong, in another merely rudimentary, which corresponds to the hymen of the human female, but is never so peculiarly developed as in the latter.

The Clitoris appears to be generally present, and occurs also in the Monotremata and Cetacea. It is usually situated far forward, consists of cellular tissue, and is provided with a glans, and prepuce. It is very much developed in the Rodentia, Carnivora, and Apes, and in them contains not unfrequently a cartilage or bone analogous to that of the penis. Thus there is found a small bone in the domestic Cat, which is larger in other species of the Feline race, and in the Otter, Bear, Marmot, \&c., but is apparently frequently wanting in the Apes. A clitoris, on the contrary, of unusual size occurs in the Spider-monkeys (Ateles), being from two to three inches long, and provided with a glans and conspicuous prepuce, upon the under surface of which a groove runs from the orifice of the bladder, along which the urine flows. In the Marsupiata, the clitoris is split like the glans of the male, and there project from it two folds forming a groove for the passage of the urine, or, as in the Lemming, the Makis, and Loris, the clitoris is actually perforated, and thus attains the highest grade of analogy with the male penis. The spongy bodies and arterix helicinæ are frequently wanting, and the body is filled with fat, so that even in the Spidermonkeys, it is probably incapable of erection. The preputial glands of the clitoris are occasionally very much developed; and in some Carnivora, Marsupiata, Ruminantia, and Rodentia, we also find at the base of the clitoris more or less distinctly developed Cowper's glands, which have been lately proved to exist in the human female. The nymphæ or internal labia are wanting; the external labia are but slightly developed, and consist only of a pair of hairless projections, which bound a mostly rounded vaginal orifice; the mons veneris is wanting. In some Mammalia, namely, the Horse and Ruminantia, we find upon either side of that of the urethra the two orifices of what are called the vaginal canals, which run between the muscular and mucous membrane to the broad ligaments of the uterus, but are sometimes entirely closed ; they may probably be regarded as the remains of the excretory ducts of the Wolfian bodies or false kidneys in the feetus, and thus as a kind of persistent arrest of formation.
The Mammary glands, which occur in all the Mammalia, are to
only a pair of lateral tegumentary folds), within which are situated the manme and nipples, to which the still slighty dereloped embryos attach themselves, and are there completely formed. The pouch is a duplicature of the external integument, which posteriorly and superiorly stands in connexion with the tendon of the external oblique muscle of the abdomen. The muscle of the mammary gland, already mentioned (compressor manmma), is situated upon the external obligue muscle, arises from the posterior part of the pelvis, becomes broader anteriorly, and divides into two slips, between which the nipples are enclosed. The number of the later is greater in the carnivorous than in the herbivorous Marsupiata. The Male sexual organs, like the female, exhib versities in the several orders. The Testides, as in Man or rounded, and sometimes much el estictes, as in Man, are oral in the Cetacea. They have a tunica vaginalis, but are seldom situated, as in Man, in a scrotum separated by a partition, this being the case only in the Apes, several Carnivora, the Ruminantia, and the Horse. The scrotum usually stands in communication with the abdominal cavity through an open inguinal canal. In many insectivorous Carnivora and in most Rodentia, the scroum is all but wanting, and the testicles lie in the perineum, as in the Beaver, or within the abdominal cavity, as in Sorex, Erinaceus, Talpa, Myoxus, and many others, while in other genera and in the Cheiroptera the testicles, during the rut at least, glide back into the belly. In the Cetacea and Monotrematat, as also in some Pachydermata, e. g. the Elephant, and indeed, in many Rodentia, the testicles are situated permanently in the abdomen, upon either side of the rectum, and are there retained in their place by a mesentery similar to the broad ligaments of the uterus. The internal structural arrangement of the testicle is essentially the same as in Man; the delicate seminiferous tubes uniting into the seminal duct form an epidydymis. In many animals a portion of the tunica albuginea is given off as a strip of various form, which sends laterally ray-shaped fibres between the lobules of the seminal vessels; this structure is known by the name of Corpus Highmori, and is particularly distinet in the Ruminantia, and also in the Horse and Dog. At the spot where the vasa deferentia unite, before the commencement of the urethra, they form not unfrequently an expansion like the uterus, or a kind of sinus, which is perhaps to be viewed as a remnant of the sinus urogenitalis in the fetus.

The testes secrete a white Semen, the moving elements of which,

two kinds already named, by a very slender stiff stem and a marrowless, transparent, very slender shaft, with very fine round barbs, not provided with ciliary, nor connected by hook-shaped, barbules.
The barbs are occasionally entirely wanting and then these feathers
resemble hairs. They occur in all birds, but are often easily overes.
$2-2+2$ 68 resemble hairs. They occur in all birds, but are often easily overlooked; they are always associated with the quill-feathers, so that upon the head, neck, and trunk, one or two filamentary feathers stand quite near to each of the quill-feathers, and appear to proceed along with them from the same tegumentary capsule. It is more rare ta find, as in the Herons and birds of the duck-kind, several, even so many as ten, flamentary feathers near to each quill-feather.
OSSEOUS SYSTEM.
THE Skeleton of Birds presents a remarkable contrast to that of the other Vertebrata, while, at the same time, nearly all its forms throughout the class are characterized by a great uniformity
One special peculiarity is met with in the internal structure of the bones, which are more or less hollow internally, devoid of marrow, and permeated by air. For the latter purpose many of them are provided with openings, which stand in relation to certain aircells of the body (which will be described in treating of the respiratory organs), and are filled from them with air. As a general rule, the capacity and extent of these openings throughout the skeleton depends upon the size of the bird, and its powers of flight. Small, though very rapidly flying birds, have few hollow bones; in large and very high flying species, they are, on the other hand, most numerous. In many Birds, all or nearly all the bones are solid. In several of the bones, there is a predominant tendency over others to this hollow structure, as is found most frequently the case in the humerus, cranium, and sternum, but more rarely in the femur, and very rarely in the bones situated below the elbow and knee-joints. The bones are filled through one or many openings, which occupy different situations, according to the genera and species. Thus the small Passerine birds, many small Grallæ and Palmipedes, as the Snipes, Terns, Moor-hens, \&c., have no bones for the reception of air, except some of the cranial, which are always filled with air from the nose. The most complete want of pneumatic permeability in the bones is at present to be obserred in the Apteryx of New Zealand, a bird belonging to the order Brevipennes; and which is destitute also of air-cells. In some of the larger Passerine birds, as 4.

72
usually effected by means of a bony suture. The superior maxillaries, which are generally small, and removed quite to the sides of the upper mandible, are united posteriorly by a slender flattened 8 jugal process to the bone of that name, so as to form a jugal arch. The nasal bones are flat and mostly of considerable size, lie in front of the frontals, and give off frequently two processes directed forward, as in the Galline, where they are very deeply excavated so as to present the form of an arch. By means of this excavation in the bones, the nasal foramina coalesce posteriorly. Near to and externally to the nasal and frontal bones, upon the anterior edge of the orbital cavity, are situated the lacrymal bones, for the most part separate, and exhibiting great varieties in their degree of development, but which are, as a rule, however, very large, and project inferionly into a hook-shaped process. In the Woodpeckers and Parrots they are very firmly blended with the skull; they are very small in the Galline, while, on the contrary, in the Spoon-bill, Albatross, and other birds, they abut against the jugal arch, and are united to it by a ligament which is frequently ossified. In the Parrots and Snipes the lacrymal bone forms a ring around the orbit after it has united with the jugal process of the sphenoid bone. The lacrymal bone is very much developed in the Diurnal birds of Prey, where it helps to form the roof of the orbit, and supports externally the os superciliare, which eccurs even in the Ostriches. The palatal bones exhibit important diversities, They are in general two elongated slender bones, which are moveably united, partly together, and partly with the sphenoid (rarely by means of a suture), but are firmly anchylosed in front with the superior maxillary bones. They are flat, broad, and horizontal, in the Birds of Prey; particularly broad in Caprimulgus; narrow and not united in the Passeres, with but few exceptions, such as Loxia coccothraustes, where they are placed vertically, as in the Parrots; they are very narrow, especially in front, in the Galline ; wedge-shaped and hol lowed out into the form of a groove in many Gralle and Palmipedes, as the Storks and Herons, and anchylosed so as to form a short tube along with the vomer in Buceros; in the Goose they are perpondicular, and so also in the Parrots, where however they consist of much broader laminæ, with a strong free process given off posteriorly and inferiorly; in the Brevipennes they are anchylosed by suture with the Sphenoid. Between them lies the vomer, which is wanting in the Parrots and Gallinæ, but which is most strongly developed in the Palmipedes, and is generally represented by a developed in the Palmipedes, and is generally represented by a

in other words, strongly arched, its branches standing wide apart from each other; in the 0 wls the branches are thinner, and the whole furcula more V-shaped; this being the case in a still greater degree in the Galline, where the process at the angle of union of the branches is of very considerable size. In the Cuckoo the furcula articulates with the keel of the sternum; in the Stork and Heron these parts are firmly united by syndesmosis, and in the Crane by actual coalition. In some O wls, Parrots, and in the Rhamphastidie, the two branches are not united, and in some New Holland Parrots (Pezoporus) the furcula is either entirely wanting, or in a very rudimentary condition. The Brevipennes present peculiar modifications of the scapular arch, for in them the scapula is very narrow and small, the furcula is wanting or coalesces with the coracoid bones, which in the Ostrich are each perforated by a single large opening, and in the Cassowary are represented by narrow bony plates. In the Emeu a rudiment of the furcula is always present, and appears in the Indian Cassowary as a mere hook-shaped process. The furcula is entirely wanting in the Apteryx.
The Humerus articulates by its broad head with the shoulderjoint, to which it is attached by a loose capsular ligament and several strong fibrous bands ; this articulating surface is commonly formed by the coracoid bone and scapula. The humerus is in many of those small birds which are considered powerful fliers, as the Swift (Cypselus), Humming-bird, very short and broad, provided with processes, and in some degree resembles the scapula of the Mole. In the Penguin it is, in common with all the bones of the arm, quite thin and flattened; it is very large in the great Birds of Prey, as Gypaetus, in the Ostrich at least it is much longer than the bones of the fore-arm, but is small and rudimentary in the Emen. The two bones of the fore-arm are generally the longest in large Birds of powerful flight. The ulna, which is of considerable size and thickness, has usually a short olecranon at its proximal extremity, while near to and in front of it lies the far more slender radius. To these bones succeed two short bones, particularly large in the Penguin, very rarely wanting, as in the Emeu and Apteryx, and which represent the bones of the carpus. The metacarpus is always composed of a single bone, which consists however primarily in nearly all birds of two distinct pieces, which at a later period in their existence blend so completely together at their extremities, that a large elongated space is left between them. The principal bone is that which, corresponding in position to the radius, is turned

84.

AVES.
the dorsal and lumbar region are, on the contrary, less distinct and much more feebly developed.
The muscles which correspond to the rectus capitis anticus major et minor lateralis, trachelo-mastoideus, complexus, biventer cervicis (the last, however, being wanting in the Herons), are very large and powerful. $\cap 7$
From the tail serving in Birds, as a very moveable rudder to steer their course through the air, the muscles which are found upon the caudal portion of the vertebral column are very strong and distinct, and arise from the pelvic and lumbo-sacral bones, which aford them a fixed point of attachment. By these muscles the tail itself is clevated, depressed, and lateralized, and by means of other very powerfol fasciculi, which are attached to the proximal ends of the remigial feathers, these also can be expanded or approximated.
A great portion of those muscles which lie immediately upon the trunk, namely, the costal and abdominal muscles (m. m. intercostales externi et interni, serralus anticus major, latissimus dorsi, m. rectus externus, internus transversus abdominis), are but slightly developed, and of a very flattened form. The abdominal muscles, which, though broad and weak are however constantly present, form only a thin covering over the viscera, which are protected for the greatest extent by the large and expanded sternum ; they have no transverse tendinous intersections, but are united in the middle by a broad white line (linea alba). The rectus muscle of the abdomen frequently does not pass to the pubis, but blends with its fellow of the opposite side in the sphinoter of the anus.

The diaphragm, which is most developed in the Ostrich, is represented by small museular fascieuli, which usually arise by digitations from the four middle sternal ribs, and are attached to a thin tendinous aponeurosis, which is spread over the inner and inferior surface of the langs.
The pectoral muscles are enormously developed, more especially the pectoralis major, the fleshy mass of which in certain instances weighs as much as all the rest of the muscles put together. It arises from the keel and posterior and external part of the dower surface of the sternum, and from the furcular bones, and is inserted into the humerus, and serves to depress forcibly the latter bone, so as to produce the downward stroke of the wing in flight. Beneath it there lies a second muscle or pectoralis minor, and beneath that again a third. In the Ostrich the origin of the pectoralis major is
weight of the body, the extensors obtain a manifest preponderance of size over their opponent flexors, and all take their origin high up upon the pelvis. Two glutei muscles (m. glutous major et minor) may be distinguished, the first of these being of tolerably large size, and filling up the external concave sufface of the ilium; there frequently occurs also a third glatæus muscle. Of the gemelli muscles the superior one is present. The adductor and flexor muscles, viz, the rectus femoris, the sartorius which is often wanting e. g.in the Herons, the m. gracilis, biceps femoris and also the tensor vagine, admit of being readily referred to their respective analogues in Man. VERITATIS
Such is also the case with the remaining flexor and extensor muscles of the leg and toes, in which a gastrocnemius, tibialis anticus, peroncus, fexor digitorum longus perforatus et perforans, ean be distinguished, along with special adductors and abductors of the toes. The fleshy portions of all these muscles are situated high up, arising from the proximal end of the tibia, or even from the fomur, and are continued over the rest of the leg, in the form of very long tendons. They exhibit modifications in the foot according as the great toe is present or absent, or there is a fifth toe developed, or in relation to the whole foot, as it may be adapted either for swimming or climbing, \&c.
The methods by which the actions of swimming and flying are performed are subjects belonging rather to the physiology and natural history of birds, and can not therefore be further inquired into in the present work.

NERVOUS SYStEM.

THE same coverings or membranes can be distinguished in the Brain of birds as are met with in that of the human subject. The dura mater, which is of a tough consistence, gives off a feebly deyeloped falx, prolonged from a bony ridge upon the internal surface of the cranial cavity, between the two cerebral hemispheres. A strong fold, of this membrane forms also a tentorium between the cerebrum and cerebellum; and the vascular plexuses of the pia mater are remarkably developed.
The Hemispheres form a pair of nervous masses usually of the shape which their name implies, but which are, in some cases, as in the Grallæ, Palmipedes, and also in the Paarots, more elongated longitudinally, than laterally expanded, as in the Birds of
Prey, while they present in the Pigeons and Passeres a tolerably uniform and rounded aspect. Their surface is either quite smooth, or exhibits only simple inflexions, or several shallow depressions, as in the Parrots. They appear to terminate abruptly behind, so as to leave the small cerebellum completely uncovered The cerebellum, as it is called, would seem to correspond rather with the vermiform process of that organ in the Mammalia, here increased in size, and its hemispheres, to a pair of lateral projections or appendages of the same. This process is divided into a considerable number of lamellæ (20 to 30), which vary in different generz. A longitudinal section exposes in its interior the arbor vitæ, the ramifications of which vary numerically according to the genera, they being 9 in Lanius, 11 in the Falcon; the corpora dentata corebelli are, however, wanting. There is no distinct connecting commissure to the lateral lobes, or pons, its place being supplied only by some transversal medullary fibres. The corpora quadrigemina are represented by a single pair of convex eminences, presenting externally no indications of a further division, and which placed tolerably apart from each other, are interposed between the cerebral hemispheres and cerebellum. They are composed externally of white or medullary substance, but have internally a large nucleus of gray matter, enclosing a small cavity or ventricle. The thalami optici of smaller size are partly united with these bigeminal bodies, and partly lodged within the hemispheres of the cerebrum. The corpora striata form a pair of large ganglia. Superiorly and posteriorly, in the angle between the cerebellum and its two hemispheres, the pineal gland is situated as a tongue-shaped lobule, in general placed quite superficially, though its position in the Owls is deeper. It is easily removed along with the dura mater in stripping off that membrane. The pituitary body lies in a depression of the sella turcica of the sphenoid bone, and is of considerable size. Of the commissures, the great or corpus callosum is extremely short and small, and the part corresponding with the formix is in an equally rudimentary condition. These parts have in fact all but coalesced with the anterior commissure, from which a radiated expansion of medullary fibres may be seen, upon drawing the hemispheres asunder, to be prolonged into their substance. Several streaks of gray and white matter lying further back behind this, correspond to the commissura mollis and posterior, which overlie the large valvula cerebelli. The ventricies of the brain are essentially the same as in the Mammalia, only the lateral ventricles have
coalesced into one with the third ventricle, and are prolonged forward into the olfactory ganglia or mammillary processes, as in most of the Mammalia. The fourth rentricle communicates as a narrow slit with the stem of the arbor vite, and in the direction forward with the aqueduct of Sylvius.
The Spinal Cord is connected to the brain through the intervention of a well-developed medulla oblongata; it is cylindrical throughout, has an anterior and posterior fissure, and a narrow central canal which extends throughout its entire length. There is a swelling upon the anterior extremity of the cord corresponding with the origin of the brachial plexus of nerves; another of larger size is situated within the lumbo-sacral bone, and accords with the origin of the nerves to the posterior extremitios, while at its commencement the lateral columns of the spinal marrow diverge so much as to form a kind of groose, termed from its figure the rhomboidal sinus, and which, communicating with the median canal of the cord, is covered by a very soft gelatinous transparent substance, consisting of an assemblage of delicate white cells permeated by blood-vessels. The spinal cord then becomes narrower and is prolonged into the canals of the caudal vertebre.
The twelve cerebral pairs of nerves in the elass of Birds can be readily referred to their types in the human subject. The nerves of smell take their origin from a special swelling or olfactory ganglion. The optic nerves are always of very large size and cylindrical, and form a complete union or chiasma, which consists in general of eight nervous fibrils, that decussate each other. The fifth pair is very conspicuous, and the larger or sensitive root has a Gasserian ganglion upon it. Its first or ophthalmic division combines with a branch from the oculo-motor, or third pair of nerves, to form a large ciliary ganglion, from which is given off directly the cillary nerve supplying minute filaments to the iris. No comnexion of this nerve with the sympathetic has been observed; a fact which is the more interesting, from the relation which it probably bears to the voluntary power possessed by Birds over the movements of their iris. From the ophthalmic division of the firth a branch proceeds also to the Harderian gland, another to the nasal organs, while a third ramifies upon the beak, so that this nerve is more extensively distributed than in the Mammalia. The second division or superior maxillary nerve is particularly large in the Ducks and Geese, and ramifies in the upper mandible beneath its marginal lamellæ and the mucous lining of the palate; branches also arise from it to

wary the folds are acutely angular like those of a fan, though in other cases they are generally rounded off. Nocturnal birds have in general the fewest number of folds, e. g. the 0 wls from 5 to 6 , the Goatsuckers 5 . In the greater proportion of birds from 14 to 15 occur. The folds are most numerous in the Passeres, where they amount from 16 to 18, and 22, or even 28 , as in Corvus. In Diurnal birds of Prey, there are from 14 to 16 ; in the Gallinæ 16 to 18 , and in most Palmipedes only 9 to 12. The pecten in the Ostrich is provided with 15 or 16 , in the Cassowary with 4 or 5 , and with 18 folds in the Humming-bird.
The function of the marsupium is unknown. It can not in any way contribute, as has been suggested by some anatomists, by the alternate contraction and dilatation of an erectile tissue to alter and adjust the focal distance of the lens within the eye; this power, which is possessed to a considerable extent by birds, being probably offected by the conjoined action of the muscular and very mobile structures of the iris and ciliary ligament, by which the position of the lens may be slifted. The whole form of the eyeball is very admirably adapted for the exercise of this function, through the large size of its anterior chamber, and the quantity of aqueous humor contained therein.
A remarkable exception to the great uniformity of structure which the eye exhibits throughout the present class, is furnished by that singular bird of New Zealand, the Apteryx australis. The marsupium is here entirely wanting (and so far as is known this is the only instance of the absence of that organ among Birds), a condition which may be probably associated with the perfectly nocturnal habits of this species, and its limited range of locomotion. The optic nerve enters the eye by a small round opening, and the globe of the eye is in proportion to that of other birds of very small dimensions; the lens also is small, and very convex.

The eye of Birds is moved by four recti and two oblique museles; the trochlea or pulley for the tendon of the superior oblique muscle is however wanting, and all the muscles are proportionally very short. All birds have three eyelids; a superior which is the shortest; an inferior the largest and most moveable palpebra, provided with a tarsal cartilage, and a third situated in the anterior angle of the eye, which is very moveable, and called the nictitating membrane. The orbicularis palpebrarum muscle, which is most strongly developed in the Apteryx, is inserted into the tarsal cartilage, and when it acts draws the lower eyelid in the direction upward. The
The external auditory meatus is short, and completely formed by bone posteriorly, where it forms a conchiform expansion. The membrana tympani large and consisting of several lamellæ, is directed obliquely backward and inward, and differs in form from that of the Mammalia, by being stretched so as to be convex or infundibuliform externally toward the meatus, instead of internally, as in the human subject. The tympanic cavity is spacious and irregular, and receives the orifices of the two mostly osseous Eustachian canals which nearly coalesce together at their faucial extremity into a common opening. Other small apertures conduct from this cavity into the osseous cells of the surrounding bones, which correspond to the cells of the mastoid process, and occasionally extend over the whole cranium. The walls of the tympanic cavity are not truly closed, but communicate directly with all the cranial bones, and even with the os quadratum.
A veritable chain of auditory ossicles may be distinguished, one of which is style-shaped and bony, while the tivo others remain in a cartilaginous condition. The external of these cartilages, corresponding to the malleus, is mostly of a triangular shape, perforate, and provided frequently with a long process, abuts against the membrana tympani. The second internal but smaller cartilage may be frequently detached from the mallens, which it serves to unite with the stapes or columella; it may be regarded as the rudiment of the incus. The principal bone is the long styliform analogue of the stapes, the columella or bacillus; its base expands into a broad oval plate which is lodged in the foramen ovale, and through this the sonorous impressions are transmitted to the aqueous fluid of the labyrinth. More frequently the columella is found to be broader inferiorly, and by being provided with two crura, to assume its characteristic stirrup-like figure, as is the case in the Pelican, Raven, \&e., where it resembles the stapes of many of the Mammalia, e. g. the Kangaroo.
Only a single muscle can be detected for moving the anditory ossicles ; this would seem to cofrespond to the laxator rather than the tensor tympani, the nominally implied action of the latter muscle upon the membrana tympani being usually effected by the elasticity of the malieal cartilage. The muscle in question arises from the posterior part of the tympanic cavity, and is inserted into the malleal cartilage, expanding also in a tendinous manner upon the membrana tympani.
The Labyrinth consists of very compact bony parietes, but is
(otoliths) are found, as in Man and Mammalia. The diversities presented by the auditory apparatus in the several orders and genera can not be entered upon in a work like the present. The Struthous birds appear to agree essentially with the other members of the class in their organs of hearing, only their conical cochlea is the smallest in size in proportion to the other parts.
Organs of Smell.
The ethnoid bone in Birds forms an osseous plate of considerable size (frequently interrupted by an aperture closed with membrane), which is interposed between the orbitar cavities, and presents generally rudiments of lateral parts. This bony septum is completed in front by cartilage. The nasal cavity is remarkably large; a proper external moveable nose is, however, wanting, and the nostrils are sitaated upon the upper mandible near to the base of the bill, being wide and distinetly visible; but in rare instances, as in the Booby (Sula alba), they are so narrow that they have been erroneously believed to be wanting altogether. Cartilaginous but immoveable nasal alæ are for the most part present, and occasionally, as in the Albatross, Petrel, and Puffin, elongated into a tube which may be regarded as an external nasal organ. The nostrils vary in form and size, and are frequently, as in the Raven, protected with featherlike bristles. The two nostrils are separated from each other by a septum, which is wanting however in many birds, e. g. the Gallinazo (Cathartes), so that they intercommunicate from either side. The posterior nasal orifices (choane) are two long narrow fissures frequently coalescing into one, at the commencement of which in the palate are usually found some epithelial papillæ. Within each nasal eavity are situated three cartilaginous, rarely partly ossified, turbinated bones; the superior of these is formed by a simple spheroidal or bell-shaped inflexion of the lateral cartilaginous parietes of the nasal cavity; the inferior frequently consists of a small curved plate provided with lateral projections, which adheres to the septum narium and is often largely developed, as in the Snipe, where it is represented by a falciform lamina. The middle one, which is the largest in size, is to be regarded as a true turbinated bone, being constantly a perfectly convoluted cartilagino-membranous plate varying in its degree of development. Among birds of the Duck kind, its convolution makes two and a half turus, in the Gallinæ only one and a half ; accessory nasal cavities or sinuses are

ORGANE OF TASTE

rarely met with, though in Anas clangula true frontal sinuses are found extending over the whole upper part of the cramum. The nasal cavities are lined by a very vascular mucous membrane. The olfactory nerve ramifies in a radiated manner upon the septum narium and superior turbinated bone only, the two inferior ossa turbinata receiving filaments from the fifth pair.
A peculiar Nasal Gland for lubricating the surface of the pituitary membrane of the nose is very generally found, being rarely wanting, as in the Pigeon, Cuckoo, and Woodcock, and is often very largely developed. It exhibits very great diversities throughout the orders and genera; in many Birds, as the Palmipedes, e. g. Eudytes, Alca, Diomedea, and in Charadrius, it lies in a deep cecal depression upon the frontal bone, which is narrower and flatter in the Gulls and Puffins. The gland is of a crescentic shape in most Birds, as the Passeres, Gallinæ, Owls, many of the Grallæ and Palmipedes, and situated in depressions above the obtuse supra-orbital ridge; in the Bustard it is placed near to the superior turbinated bone; in the Rapacious and some of the Wading-birds, as the Heron, it is lodged in the upper part of the orbit, but very rarely, as in the Woodpeckers, in its lower part beneath the eyeball. The two nasal glands often form, as in Charadrius, large cushions upon the forehead, and in these cases the excretory duct perforates the groove of the frontal bone anteriorly, and is continued onward upon the external wall of the nasal cavity. The Ostriches have a nasal gland, but only slightly developed.

Organs of Taste.

Covered for the most part by a hard and dense epithelium, and having only upon its root some softer sensitive papillæ supplied by branches of the glosso-pharyngeal nerve, the Tongue is obviously but ill adapted to serve as a very refined instrument of taste; still however the extent to which this function is enjoyed varies in many Birds.

Setting aside, as belonging rother to the special province of Ornithology, a detailed description of the great diversities of form and structure which this organ presents in the several genera of Birds, we shall be content with only noticing here some of its most striking modifications. It is of moderately large size, but hard and horny in the Rapaces, Corvidæ, \&c.; short, thick, subcylindrical, and soft in the Parrots, where alone it is frequently provided with small sof
$\frac{7}{7}$ glossus), are furnished with an extensile tongue terminated by a pencil of hairs (whence the generic name), adapting them admirably for feeding upon the nectar of flowers. In the Woodpeckers the tongue is very long, slender, and vermiform, and beset with small retroverted hooks. In the Humming-birds it is also very long and, as in many other birds, deeply slit at the apex, but each half is in them hollowed out into the form of a groove, so that the two divisions when approximated form a tube, which serves as a syphon for pumping up the nectar from the flowers. The tongue is in the Flamingo exceedingly large, angularly curved, and fleshy, or rather provided with an abundant cellular and adipose tissue (upon which account it was esteemed by the Roman emperors as a savory article of food), and its upper surface is covered with recurved spinous papille. It is, on the contrary, extremely small and rudimentary in the Picarie and Auks, and even more so in the Pelican and Gan-- net (Sula), where in fact the styliform and slightly curved hyoid cartilage covered by the mucous membrane of the mouth is all that can be detected, so that a proper tongue may be said to be completely wanting. In the Tenuirostral and Passerine birds generally, the greater part of the gustatory organ is horny with acute lateral margins. Frequently, as in the Toueans (Ramphastos), it is comb or brush-shaped upon either side, from being provided with horny fringes. There is found within the substance of the tongue posteriorly a usually double, rarely single, cartilaginous or frequently osseous body (os linguale, ossa entoglossa Nitzch), which abuts against the hyoid bone, and forms at the same time the apicial portion of its body. In the twatoed Ostrich (Struthio camelns) this lingual ossicle coalesces with the hyoid bone, and in many Birds consists of an anterior and posterior division.
The Os hyoides consists of an elongated and narrow body, which usually extends posteriorly into a short pointed, or longer filamentary cartilaginous portion, and has upon the middle of its sides or more posteriorly a pair of articulating surfaces for the lesser cornua. These are often tery long, and formed of an anterior thicker osscous, and a posterior slenderer piece, which is more or less cartilaginous, and terminates in a filamentary manner. In the Woodpeckers and also in the Humming-birds peculiar modifications are exhibited in the arrangement of the above parts; in them the cornua of the os hyoides are exceedingly long and slender, and continued round the skull beneath the skin to the base of the upper mandible, where their 4. Cl

the cesophagus is much wider than the gizzard; the latter is very thin and membranous, as in the Divers. It is very rarely, as in Euphone violacea, that all traces of a muscular stomach or gizzard are wanting. On the contrary, there occurs occasionally, as in the Herons and Pelican, though not in the genus Sula, so nearly allied to the latter, a third always smaller gastro-pyloric dilatation, which is tolerably distinct, and conducts by a narrow pyloric opening into the duodenum,
The Intestinal Canal always makes a number of convolutions upon itself that are retained in their place by mesenteric folds of peritoneum; the latter membrane does not, however, develop true omenta. The duodenum forms at its commencement a long loop, within which the pancreatic gland is situated, while the small intestine is continued at its lower extremity into a large intestine not much wider, but shorter, and passing downward in front of the vertebral column, its commencement being usually indicated by a symmetrical pair of short or longer ceca coli. The large intestine terminates by opening into a wide sacciform or rather bladder-shaped compartment of the urethro-sexual cavity, the cloaca. The villi of the small intestine are generally much elongated, and extend also occasionally as far as the extremities of the creca, e. g. in Fulica, but this is not the case in the Gallinæ and 0 wls. The villi are, however, frequently wanting, or rather, there occur instead zigzag folds of the lining membrane, as in Corvus, Euphone, Turdus, and perhaps in the Passeres generally.
Many varieties occur in reference to the two cerca just alluded to. They are, for example, completely wanting in nearly all the Scansores and Picariæ, as Picus, Psittacus, Rhamphastos, Alcedo, Upupa, Cypselus ; they are very short in the Pigeons, Owls , most Passeres, and many Grallæ, e.g. the Stork and Spoon-bill, somewhat longer generally in the Diurnal birds of Prey, while they attain, on the other hand, a considerable development in most of the Natatores, as the Geese, Ducks, \&c., where they are frequently also asymmetrical, being longer upon one side than the other. The creca are of surprising length and width in the Gallinæ, as in Tetrao, where they each measure a yard in length; in the Ostrich the coeca are upward of two feet long, provided internally with a spiral valve, and blend, at their inferior extremity, into a single cavity; the large intestine is here also, as an exception, much longer than the small intestine. It is very rarely that, as in the Mammalia, a single, and in such

tween the two lungs, and gives off large visceral trunks within the thoracico-abdominal cavity to the stomach, liver, spleen, and mesentery, a superior and inferior artery passing transversely to the kidneys, and a small anterior or femoral with a much larger posterior ischiadic artery to the leg; the aorta is then continued along the spine, as the arteria sacra media, and gives branches to the contents of the pelvis. Several of the arteries, as the anterior tibial in the Goose, Heron, and Crested Grebe, form here and there beautiful retia mirabilia or vascular plexuses.
The bammalia, have but few valves. The blood of the superior half of the body is poured into the right auricular sinus from the two distinct mouths of a pair of superior venæ cavæ. They are formed by the junction of a jugular and subclavian vein, of which the right jugular is generally three to four times thicker and stronger than the left. The inferior or posterior vena cava collects the blood from the posterior moiety of the body, and receives especially the large renal veins. The inferior vena cava is very broad, especially in the Diving-birds. The Pulmonary artery, single at its commencement, divides into two main trunks for the two lungs; in a similar manner, also, the pulmonary veins enter the left auricular sinus by a single trunk. The vena porta receives principally the blood from the viscera, but some also from a large branch of the caudal vein and the veins of the posterior extremities. The blood of Birds has the highest temperature of all the Vertebrate animals (about 110° Fahr.), and the blood corpuscles are always of an elliptical form, and of very uniform diameter, throughout all the orders.
The Chyliferous or Lymphatic Vessels are numerous, and provided with valves, but do not form any conglobate glands upon the mesentery, though in the neck these glands often occur, and are of considerable size, as in the Heron, where there are from five to six pairs. A receptaculum chyli is situated upon the origin of the coliac artery, and the lymph of the body, as well as the chyle, is collected into two lymphatic trunks, which enter the angles formed by the junction of the superior venæ cave with the jugular and subclavian veins. Lymphatic hearts have not as yet been satisfactorily demonstrated to exist in Birds ; still, however, in the Cassowary a lymphatic sinus has been found, situated beneath the integument, upon the transverse processes of the second sacral vertebra, and which, reasoning from the analogy of its position with that of the Frog, may perhaps be regarded as a lymph-propelling organ.

organs of volce and respiration.

organs of voice and respiration.

THE air during the act of inspiration in Birds passes through the nasal openings to the Rima glottidis, the opening and closing of which aperture may be very well observed in the expanded mouths of young birds while they are being fed. The rima glottidis forms a longitudinal fissure in the superior larynx, and is generally provided with pointed or obtuse epithelial papillæ more or less strongly developed, and frequently arranged in rows that would appear in some measure to supply the place of the epiglotis, which is wanting in the present class; they offer varieties in the several genera, and are wanting only in the Struthionidæ. Occasionally there is found behind the tongue a membranous valve-like fold, as in many Ducks and in the Ostrich ; in some cases this fold has a median lappet, as in Scolopax gallinula, while a thicker dentated fold is found as a rudiment of the epiglotis in Fulica atra. A true epiglottic cartilage appended to the superior border of the thyroid cartilage occurs however in a few Birds, as the Swan and some other Natatores and Gralle.
The Superior Larynx consists of several cartilaginous pieces, which admit of being compared with analogous parts in the human subject, and are constantly ossified in adult Birds. The largest of these pieces is a single bony plate, which forms the anterior part of the larynx, and abuts posteriorly and inferiorly against two lesser elongated and narrow cartilaginous pieces, not united in the median line, which appear at first sight in adult Birds to be separated from the anterior bony plate, but are blended with it at an early period in young birds. These three bony pieces are the conjoined representatives of the thyroid cartilage; the anterior plate is usually interrupted by several transverse intervals, that indicate its original formation from the coalescence of a short series of tracheal rings, these last being distinetly perceptible in many cases. Two to four of these rings are generally to be recognised, except in the Parrots, where there is no visible trace of their fusion. Posteriorly and internally the thyroid plate presents a more or less elevated ridge, dividing incompletely the cavity of the superior larynx into two symmetrico-lateral halves. Another process (processus epiglotticus Henle) arises from it superiorly, and in many Birds, as Larus, Alca, from its soft and slender condition approaches in character to the epiglotis of the mammiferous animal. Posteriorly, between

no inferior larynx. It is true that in the Vultur cinereus and fulvus as also in Gypaetos, there can not be foumd, as in many other Birds, any coalescence of the lower tracheal rings, or an external tympaniform membrane, but between the demi-rings of the bronchi (which appear, however, in the American Vulture or Gallinazo to be almost complete) there is situated the internal tympaniform membrane, while a single pair of muscles placed externally at the extremity of the trached, serves to elevate slightly the bronchi upon either side, shorten the trachea, and thus expand the two bronchio-glottidean. fissures. This pair of muscles acts moreover as an antagonist to the sterno-tracheales.

In the majority of those Birds which are capable of uttering sounds membranes are found situated both exteriorly and internally to the inferior larynx. There arises from the cross-bone a thin membranous slightly elastic and easily lacerable membrane, which completes the bronchi upon their internal aspect. The extent of this membrane is greater or less in proportion to that of the segment formed by the imperfect bronchial rings; the first two or three of these are usually very slightly curved, and in the form only of a small semicircle; the membrane completing the rings is therefore largest in this situation, and fully merits its appellation of membrana tympaniformis interna. In some Birds, as in several Ducks, especially the Mergansers, large flat cartilaginous discs are situated in this tympanic membrane, or, as in Fulica, thick cordiform cushions of cellular tissue, either of which structures must exert an indubitable influence upon the formation of the voice. There is generally found a membrana tympaniformis externa presenting the form of a fenestroid oval membrane placed between the cross-bone or the lowermost tracheal ring and the most superior of the bronchial semicireular cartilages.
This external fenestra or membrane may be wanting and still the inner one present and the trachea form an osseous drum, as in the Ducks and Mergansers. Or else the hard rings of the trachea may lie closely approximated and invested by fibro-cartilage, beneath which is situated the external ovale membrane, as in the Flamingo. No important change however can be effected in the relative degree of tension of the two membranes in cases where a single pair of muscles is present, and attached high up to the border of a drum formed of inmoreable rings, whereas when inserted in the uppermost bronchial rings, a far greater share of mobility is attainable by the membranes.

ORGANS OF VOICE AND RESPIRATION.

Such a single pair of muscles (m. m. broncho-tracheales) occur in the Rapaces, some Scansores and Pieariæ, e. g. Picus, Cypselus, Caprimulgus, and, though but feebly developed, in the Cuckoo; also in the Pigeons (which have a large external membranous fenestra), and many Gralle and Natatores, while it is absent in other Scansores and Picarix, e. g. Alcedo, Upupa, other Grallæ, and Natatores, as Hœmatopus, Anser, Anas, Mergus, and in the Brevipennes and Gallinæ. This single pair of muscles often ascends high up close to the sterno-tracheal muscles, draws the bronchi in the direction outward and thus expands their glotidean fissures.
Two special muscles of the larynx do not appear to occur in these cases, to which succeeds the peeuliar structure of that organ in the Parrots, where it has three strong pairs of muscles, but the sternotracheales are absent. The inferior glotis is single and narrow in the Parrots, from the inferior partition or cross-bone being wanting. The structure of their larynx is as follows : the trachea passes into a short tympanum, and beneath this there is constantly situated a semilunar ossified cartilage (cart. semilunaris), having its concavity directed downward, and between its border which excavated in a crescentic form is curved upward, and the first bronchial demi-ring, is situated the external tympaniform membrane. The superior semilunar pieces can be moved inward and outward upon the tympanum, or raised and depressed like a pair of valves, and the membrane follows these movements. Of the three muscles, that which is situated most deeply is the shortest; it arises from the upper part of the tympanum, and is inserted by its whole breadth to the upper semilunar cartilage which is moveable like a valve. This is the m. abductor carl. semilunaris, and while this muscle elevates the corresponding semilunar bone, it draws also the membrane outward, and thus widens the opening of the glotis. Above this is situated another longer muscle, which arises close to it , and passing in a bridge-like manner over the tympaniform membrane, is inserted into the uppermost bronchial ring; it elevates the bronchus of the corresponding side, by which movement the two membranes approximate, come nearly in contact in the middle line, and thes narrow the fissure of the glottis. Above this short levator bronchi, is situated another, the levator longus, which has the same function, though at the same time its muscular belly arises higher up and is continued into a long tendon which, running over that of the former muscle, is occasionally inserted into the anterior side of the fifth to the seventh, or often the third to the

against its fellow of the opposite side, and is attached higher up to the posterior extremity of the first bronehial arch, which it serves to elevate. The fifth pair of muscles is situated between the posterior long, and the anterior transverse, elevator, and is called the oblique elevator (m. obliquus posterior s. rotator posterior); it arises externally from the superior border of the tympanum by a short and thick muscular belly, passes obliquely backward, and is inserted into the posterior extremities and lower border of the second bony arch, which it rotates and draws in the direction outward.
The voice of Birds appears like that of the human subject to be produced by the combined vibrations of the laryngeal membranes and the tongue. The flute-like tones of the Singing-birds are doubtless accomplished by a vibration of the whole column of air while passing through the trachea. Where all the membranes are absent and the bronchial rings complete, the voice is also deficient, as in the Stork.
In addition to the already recorded peculiarities in the anatomy of the inferior larynx, there occur in many Birds expansions of the tympanum or apparatus of resonance which strengthen the tone of their voice. To these belong the large bladder-like dilatations and expansions of the tympanum met with hitherto only in the Natatores, as the Drakes and Ganders. These expansions, which have been called the labyinth, are peculiar from their pecurring only in the male and never in the female sex, and in being asymmetrical or of unequal dimensions upon the two sides, the left being always considerably larger than the right; as a rule, this structure is found upon the left side, it being very rare for the right tympanum to be the them
In the Ducks the labyrinth consists for the most part of round bony ampullæ about the size of a pea in the lesser species, as Anas crecca, still smaller in A. clypeata, but much more developed in the larger species. More rarely there occurs a double irregular labyrinth larger upon the right side than the left, as in Anas tadorna. These ampullæ are wanting in the Dipper (Hydrobates), and both sexes are alike in this respect. Other Dueks, as Anas marila, fuligula, glacialis, leucophthalmos, have a perforate labyrinth : the enlargement is here more angular, and partly provided with membranous fenestræ. This also is generally the case in the male Mergansers, where the labyrinth in M. merganser attains its highest grade of development. The larynx here forms a thick-walled and hard bony expansion nearly one and a half inches in length, having an uneven

116
which traverse the internal and inferior side of the lungs; behind these openings are situated others for the superficial tubes, and lesser ones for the deeper. The superficial tubes pass almost completely round the lung upon every side, and their external walls are very thin and transparent. The deeper tubes resemble cylindrical pipes, traverse the lungs in many directions, and are nearly straight and parallel to each other; they are the most numerous, and open in such a manner into the superficial tubes, that they pass from the upper to the under side of the lungs, and communicate laterally with each other. From their walls being thick and remaining constantly patulous, and from those of the superficial tubes into which they open being transparent, the lungs of Birds acquire the perforated tubular appearance which they present. The parietes of the tubes and canals are covered with a most beautiful and delicate network of small cavities and cells, with intervening septa mostly of an hexagonal form, and within the meshes lie other still smaller open cells. The cells of the langs in Birds are therefore never terminal cells, as in the Mammalia, but open parietal cells from $\frac{1}{4}$ th to $\frac{1}{20}$ th of a line in diameter, upon which the vessels expand and thus come into contact with the air. All the cells and subes of the lungs communicate naturally with each other, so that the lungs can be perfectly inflated from any one point.
Upon the surface of the lungs near to their posterior margin and upon the imner side, there is observed, upon stripping off the pleura in this situation, openings from five to seven in number, by means of which the bronchi are brought into communication with the peculiar Air-cells of the Bird. These highly remarkable receptacles for the atmospheric fluid are membranous, being formed by reflected prolongations of the pleura and peritoneum, and surround all the viscera. These cells may be distinguished in general into the following principal divisions, which are separated by membranous partitions, and for the major part transmit air. 1st, The two empty lateral cells which descend beneath the sternum as far as the pelvis, divide again into an anterior and posterior, or frequently even into three cells, and enclose no viscera. In the Passeres the two anterior lateral cells coalesce into one, and communicate with the bronchial cells. $2 d$, the two cells which enclose the lobes of the liver, do not communicate with any air-opening, and therefore receive no air, and merely result from the subdivision of the remaining aircells. $3 d$, An intestinal cell, also conveying no air, which includes the intestinal canal, and is divided by the mesentery into two
halves. 4th, A cell for the heart. $5 t h$, A cell situated in front of the breast for the bronchi, which it surrounds, together with the inferior larynx. A still greater extension of the air-cells occurs in some Birds. Thus, the Roller (Coracias) is provided with a pair of large air-cells beneath the skin of the head and neck, and these communicate with the nasal cavity, but not with the trachea. The distribution of air throughout the body is nowhere more extensive than in the Booby (Sula) and the Pelican. In these genera the lateral cells of the trunk are uncommonly large, and separated by two partitions into three large chambers, from the most anterior of which the air gets beneath the axilla under the integument, and fills the space upon the breast and beliy from the furcular to the pubic bones. Several larger and various smaller cells are also met with, and the fat, which is generally abundant in such situations, is here wanting. The air-cell above the great pectoral muscle and on the inferior part of the neck is particularly large, and the delicate cellular tissue here forms partitions including cells several lines in diameter, which are continued almost beneath the epidermic layer of the skin as far as the quills of the contour-feathers, but not into their interior. These cellular air spaces are further distributed beneath the short investing feathers of the wing, and between the quills of the greai primaries. Upon the middle and upper part of the body tegumentary air-cells do not exist; and upon the head there is found beneath the crisp-feathers covering the occipital region, only a single solitary cell partitioned off into some small spaces. The communication which exists between the preumatic cells of Birds and the interior of many of their bones, the latter being for this purpose devoid of medullary tissue, and thus rendered permeable to air, has been already mentioned in treating of the skeleton. The Apteryx offers a striking contrast to the Pelican in being entirely devoid of air-cells, and is hitherto the only known exception of this kind among Birds. This extensive distribution of the atmospheric air throughout the body of Birds contributes obviously, by highly oxygenating the blood, to increase the general activity of their arterial system, conditions which are manifested in the greater number of its pulsations within a given time, and its more elevated temperature (107° to $110^{\circ} \mathrm{Fahr}$.), as contrasted with that of the Mammalia.

The mechanism of the function of respiration, according to the recent special researches of Dr. Edward Weber, is performed in the following manner. The ramifications of the bronchi with the network of tubes they form within the lung are during inspiration
lung is firmly fixed, and the contraction of those fasciculi of the diaphragm that are inserted upon the free surface of the lung. By this action not only are the tubes expanded and lengthened out, but in like manner also the interspaces included between them. The air must of necessity therefore penetrate and distend the terminal bronchial ramifications situated between these interspaces. The lungs derive their supply of air, which they receive by the process just mentioned, partly from the trachea and partly from the airsacs, the latter forming pneumatic reservoirs, from and into which the lungs both inspire and expire. Now as each of these reservoirs is in communication with the bronchns through a wide tube, the air they contain is always in a respirable condition, for while the thorax is being expanded that portion also of the pneumatic sac which lies concealed beneath it is expanded also, and sucks in the air upon the one hand through the trunk of the trachea, upon the other, from that part of the air-sac that projects out of the cavity of the thorax, and which may accordingly be seen to collapse during the act of inspiration. When, however, the capacity of the thorax becomes narrowed during expiration, that portion of the air-sac covered by it is compressed and drives out its contained air upon the one hand into the tracheal trunk, upon the other into the projecting part of the air-sac which is then observed to dilato. There appears, moreover, to exist a special provision whereby, when the wings are elevated during flight, and their pressure is consequently removed from the great preumatic sacs situated in the axilla and between the pectoral muscles, that the sacs become distended with air, which, when the wings are depressed, is driven out of them into the lungs, so that a bird, such as the Lark, while mounting perpendicularly upward to a great altitude in the air, is still enabled to sing without at the same time getting out of breath.

A pair of small glandular bodies devoid of exeretory ducts occur in Birds, and from the situation they occupy may be regarded as Thyroid glands. They are very generally of a rounded form and of a reddish color, richly supplied with vessels, and lie upon either side of the lower part of the trachea, where they are more or less attached by cellular tissue and an arterial ramuscule to the carotid, or else to the jugular vein. Immediately beneath and united to them, there are found in many Birds small corpuscles of a denser texture, and whitish or yellowish color. Both thyroid glands are separated from each other in the middle line by a wide interval.

. 122

fou
found, situated on the mesial line of the anterior extremity of the kidneys, are in contact externally with the large vascular trunks, and are partly covered by the testes and ovaria.

particular organs of seoretion

Particular glandular organs are found very generally distributed in the region of the tail and cloaca; but really specific secretions, such as occur so frequently in several of the orders and genera of Mammalia, do not appear to occur in Birds.
A peculiar gland, which is called the Glandula Uropygï, exists very commonly throughout the class, and secretes an oily fluid of a whitish or yellowish color, having occasionally a musky odor, and which is applied by the bill to anoint the feathers, so as to prevent their getting wet. It is situated above the last caudal vertebre upon the quills of the remigial feathers of the tail, and consists properly of two distinct glands, which are either united in the median line, or frequenty only by their posterior extremities. They consist internally of close-set elongated ceecal tubules, not intercommunicating and opening into a mostly linear cavity of greater or less size situated iu the centre of the gland. A double orifice, rarely one (or many, as in the Pelican, where twelve apertures are found arranged in two rows), which opens upon a papilla, and, as in the Diurnal birds of Prey, the Parrots, Gallinæ, and Natatores, is surrounded by a tuft of small feathers, indicates the outlet of the excretory duct. The gland itself is usually triangular or cordiform in the Natatores, as the Ducks, where it is of the largest size, and divided by a fissure into two clavate lobes. It is very rarely absent, as in the Brevipennes, e.g. the Bustard, in the Penguin, and some only of the American Parrots, for others possess it.
Another organ that may be conjectured to be one of secretion also, is called the Bursa Fabriczi. It occurs in nearly all Birds, being wanting in the Ostrich, probably alone among the Brevipennes, and is situated deep within the pelvis between the ureters and behind or above the cloaca, in front of the extremity of the sacrum, and is usually covered by cellular and adipose tissue. It opens below the two ureters into the cloaca by a considerable orifice, which
is separated by a fold from the urinary compartment of that cavity. Covered externally by a layer of muscular fibres, it is in some cases of a thin membranous texture, but in others frequently provided with a thick layer of small follicles, as is especially the case in the Gralle
and Natatores. It appears to be very much developed in young Birds, but dwindles in size so as to be scarcely apparent in adult age; still, however, it exhibits varieties of form and proportions. Its function is not accurately known. At first sight it might be compared to the anal sacs of the Mammalia, while some anatomists on the contrary regard it as the urinary bladder of the Bird, but both its position, and the certain fact that urine gets into it only by accident, militate against this opinion. Furthermore, its equal degree of development in both sexes is opposed to the view of its being destined to receive in the female the seminal fluid of the male, and be thus analogous to the spermatheca in the female insect.

organs of generation.

The Generative apparatus in Birds, especially of the female, departs very considerably from its conditions in the Mammalia, and throughout the whole class exhibits a very close conformity of character with the type of organization in the inferior Vertebrata.
The Female organs of generation are, as a rule, asymmetrically disposed, being only fully developed upon the left side. The ovarium consists of a small stroma made up of a bed of compact fibres, in which are situated the very small vitelline vesicles. It is situated in the lumbar region, and is attached to the superior or anterior extremity of the left kidney, and partly also to the renal capsule. The free surface, or that directed toward the abdominal cavity, is disposed in transverse folds, from beneath which the vitelli gradually protrude during their growth, so that the ovarium soon assumes the appearance of a cluster of berries supported upon pedicles or stalks. The oviduct, spirally contorted like an intestine, and attached to a fold of the mesentery, descends parallel with the left kidney, and commences by an open funnel-shaped or truncate abdominal ostium, adapted for receiving the ova after they have been detached from the ovarium. This part is called the infundibulum, and after being continued into a narrower portion, the oviduct again expands into a kind of ventricle, within which the vitellus obtains its complete investiture of albumen, and external to that the calcareous shell; the rest of the tube is termed vagina, and short and narrow opens upon the left side of the cloaca. The mucous lining of the oviduct presents well-developed longitudinal folds, and the whole organ augments in length as well as in capacity during the period of oviposition. There are only a few Birds that possess a

 appears to be effected by those kinds of Reptiles, as the Chameleon, that are provided with a thin and delicate epidermis, having beneath it soft tubercles or excrescences, endowed with the power to expand and contract. These tubercles, which are continued also upon the circular eyelids, are separated from each other by strong

The external coverings of Reptiles have not been so closely invesfigated, especially in an histological point of view, as those of Mammalia, Birds, and Fishes.
The naked Amphibia, such as the Frogs, have a smooth slippery skin covered by a tesselated epithelium, which is continually being shed in large irregular patches, or shreds. The nuclei of the epithelial cells are usually distinctly visible in the layers thus thrown off. Simple glandular follicles, closely aggregated, and more or less numerous, with frequently star-shaped or ramified pigmentary cells, are found beneath this epithelial layer. The skin surrounds but loosely the muscles of the body, and numerous spaces for lymphatic vessels are found beneath it. It is exceedingly vascular and richly supplied with nerves, and is therefore yery sensitive, and capable of producing when irritated the most lively reflex phenomena. The small slightly-developed glandular follicles of the integument attain so large a size in the Toads, Frogs, and Newts, as to effect a transition to the more composite forms of glands. In some instances, as in Salamandra, Triton cristatus, \&c., small pyriform follicles, either solitary or aggregated, extend over a great part of the back, or form, as in the Toads and Newts, a large warty protuberance behind the ear, from which an acrid milky fluid may be readily expressed, the excretory ducts of the several sacs being readily recognised during this operation.

Sub-Class 1. Reptilia squamigera.
Order I. Saurra.-Ex. Crocodile, Lizard, Chameleon.
II. Chelonia.-Ex. Tortoise, Turtle.
III. Ophidis.-EXx. Rattlesnake, Boa, Vip
8.
-

Order IV. Batrachia. $\quad\left\{\begin{array}{l}\text { B. Anoura,-Ex, Tood, Frog. } \\ \text { B. Urodela.-Ex. Salamander }\end{array}\right.$

$\left\{\begin{array}{l}\text { Derotremata.-Ex. Amphiume, Menopon } \\ \text { Perenizhater }\end{array}\right.$
$\left\{\begin{array}{l}\text { Derotremata-Ex. Amphiume, Menopome. } \\ \text { Perennibranchiata s. Proteidea.-Ex. Proteus, Siren, } \\ \text { Axolofl. }\end{array}\right.$ annular layers of fibres, and consist of a bed of fibro-cellular tissue, within which a double layer of pigmentary cells may be detected. The most superficial pigmentary cells are black, either small and rounded, or of larger size and ramified, and beneath them are found some smaller nucleated cells or spots of a bright red color. The general appearance of these structures remind us very strikingly of the chromatophorous cells of the Cephalopoda, and it is probable that in the living Chameleon the same lively contraction of the walls of the cells may take place as in the Cuttle-fish; and to this property may be owing the well-known power of changing color which that animal possesses. In specimens preserved in spirits of wine, these cells may be rendered beautifully distinct by treating the skin with caustic potash.
The Squamigerous Reptiles exhibit various degrees in the development of their epidermic structures, giving rise to those numerous diversities of form which it is the special province of Zoology to depict. Frequently, as in the Snakes, in Scincus and other Saurians, scales are found that overlap each other like tiles, as in Fishes, or are disposed in a quincunctial order, or so as to form annular bands, as in Ophisaurus. Scutes, provided with tubercles and spines, are also commonly met with, or large plates containing bony matter, as in the Crocodiles and Chelonia; in the latter indeed they constitute true dermal bones, which coalesce with the skeleton, and form the dorsal and ventral shields, as will be described more minutely further on. The laminæ or scuta of the epidermis are formed by the coalescence of horny cells, which may be brought into view by submitting the scales of a tortoise to the action of caustic potash.

The scales of the Snakes exhibit under the miscroscope very delicate longitudinal and transverse strix, which are probably caused by the coalescence of cells. In the parts of the epidermis situated between the scales, the cellular structure may be often more distinctly recognised. The epidermis is cast several times during the year, either piecemeal, or like the exuvia of the caterpillar, in one entire piece from off the whole surface of the body. A kind of

132

moult is thus performed, as by Birds, and something analogous ocours not only in many Saurians, but even in Emys among the Chelonia. The exuviation usually takes place in spring, but frequently upon the occurrence of a change of weather several times in the course of the year.
Tegumentary follicles of a particular kind are developed in several Sain, as the true Lizards, e. g., Lacerta, but also in Iguana, Cordylus, Gecko, though they are here fewer in number. In the above named genera a single row of them provided with from 12 to 20 orifices is found extending from the inguinal region to the knee-joint. These apertures are placed upon scales of a particular construction, forming tubereular or bulb-shaped elevations. Each opening conducts into a sac, the commencement of which is divided into small cerca

> osseous system.

The remarkable diversities which the Osseous System of the Reptilia presents throughout the several orders and genera, render its description by no means easy without entering into very considerable detail.
As regards the Cranial bones, the best plan will be to consider them separately in each of the orders belonging to the two subclasses of Reptilia, commencing with the naked Amphibia. The Ichthyodea or Fish-like Amphibia and the Batrachia agree closely in the conditions of their skeleton, though that of the former approximates more closely to Fishes. This is exemplified in the structure of the occipital bone in the Protens, where the two lateral occipital bones do not articulate by condyles with the vertebral column, but are united firmly by synchondrosis with the first cervical vertebra. In the Salamanders and Frogs, on the contrary, each of the two lateral occipitals has an elongated condyloid process, and both abut against each other superiorly and inferiorly, so as to circumscribe an interjacent foramen magnum. The body of the sphenoid bone is of considerable size, forming the basilar surface of the cranium, and is of a cruciform figure in the Anourous Batrachia, running : to a narrow point anteriorly; it is broad, however, in the Pipa, and to a still greater degree in Siren and in Ceecilia. In the direction upward, it supports the alæ-majores, which are osseous only in the Tailed Batrachia, being in the Anoura membranous, and perforated by a large opening for the passage of the optic nerve. Each of the inferior wings or ale (processus sphenoidet) is provided

- in the Frogs with two large processes, one in the direction forward and outward, uniting them with the supra-maxillary, palatal and nasal bone, and the other, or posterior process, with the os quadratum. In the Tailed Batrachia, as the Salamander, the sphenoidal wings are not united to the supra-maxillaries, but project forward into a free and pointed process; in Acholotes they unite with the vomer, but in the Siren are absent together with the palatal bones. The temporal bone has only the articulating portion of the petrous bone developed to form part of the cranium, and this is let in between the circumjacent bones. The articulating portion of the temporal, or what is called the os quadratum or tympanicum, is freely detached from the petrous, and consists mostly of one, more rarely as in Proteus, of two pieces. It is united above to the eranium by a suture, abuts inferiorly against the jugal bone, 4 and articulates with the lower jaw. The pair of parietal bones are always distinctly present, but occasionally, as in Hyla and Bombinator, separated by an interval or membranous fontenelle. The two frontals of considerable size are very distinct in the Tailed and in the Fish-like Batrachia, but are either absent in the Frogs or anchylosed with the parietals. In front of the frontals, between them and the intermaxillaries, certain bones are found, the homologies of which it is by no means easy to determine. A pair of ossicles placed in this situation in the Frogs and Pipa have been regarded by some writers as the nasal, by others as lateral ethmoidal bones. In the Salamander, a pair of similarly placed, but smaller bones, separated from each other in the middle line by the principal frontals, have been regarded as particular bones under the name of the anterior frontals, if they be not upon the other hand viewed as ethmoids. A single azygos bone, which in many Batrachía and also in Ccecilia appears as a small plate in front of the parietal and frontal bones, and usually projects downward in the form of a septum, may be well considered as a middle ethmoidal. The lacrymal. bones are generally absent. The analogue of the jugal bone is seldom met with, or is at all events not to be determined with certainty. In the Frog there lie in front of the apex of the body of the sphenoid a pair of narrow transversely directed bones, which are united to the superior maxillary, and by a small ascending ramus, with the nasal bones ; they may be regarded as the palatal bones. In front of them is situated in the Frog a pair of bones of considerable size provided with minute teeth, and which are probably the representatives of the vomerine. On the contrary, in the

Tailed Batrachia, e. g., Siren, only a single pair of ossicles is found provided with teeth, and which admit therefore of being taken either for palatal or vomerine bones. The superior maxillaries are usually of very large size, being rarely, as in the Siren, in a minute or rudimentary condition. The intermaxillaries are also considerably developed. The inferior maxilla generally consists of an anterior piece supporting teeth, and a posterior articular portion of nearly equal length. A small ossicle is occasionally placed upon its articulating surface, but is generally anchylosed thereto. A fourth piece is seldom found in the middle of the lower jaw, as is the case in the rest of the Amphibia
The Squamigerous Reptiles are characterized by the greater, extent to which ossification is carried in the several bones composing their skull, many parts that in the naked Amphibia were only membranous having become in them converted into bone. The individual bones of the cranium are here also multiplied by division, as is especially exemplified in those that enter into the construction of the occipital, sphenoid and parietal. In this respect the present order of Reptiles seems to be most closely related to the Osseous Fishes.
In all the three orders composing this sub-class, namely, the Sauria, Ophidia, and Chelonia, the occipital bone is furnished with only a single condyle, which articulates with the first cervical vertebra, and is usually formed by the coalescence of three ossicles, namely, by the body of the occipital bone, which is always present, and the two lateral occipitals. Between the two last is interposed the supra-occipital plate completing the foramen magnum from above; it is of small size in the Ophidians, but mostly large in the Chelonia, where it projects backward into a pointed crest. In the last named order, and in the Crocodiles, a pair of supra-laeral occipital bones, as in Fishes, are intercalated between the others; they abut in the direction outward against the mastoid bone, internally against the petrous, and assist in forming the bony part of the organ of hearing. The body of the sphenoid is broad and short in the Chelonia, very elongated and narrow in the Ophidians, whereas in most Sauria it projects forward in the form of a style, The alæ majores of the sphenoid are in the Ophidians and Saurians perfectly membranous. There occurs here, however, a peculiar, narrow, long and style-shaped bone, usually called the columella (os tympanicum Bojanus, os suspensorium Nitzch) which ascends perpendicularly like a small column from the inferior wings of the

8. osseous system.

sphenoid upon either side, and supports the parietal bone, which rests upon it like the capital upon a pillar. This columella corresponds acconding to some anatomists with the great wings of the sphenoid. The inferior wings of the sphenoid are very large in the Chelonia, and united with the body of the bond, and to each other in the middle line, by suture; they represent at the same time the great alæ, and unite in front with the palatal benes. In most of the Sauria they are narrow and elongated, frequently support teeth, and are connected by synchondrosis with the body of the sphenoid; they are separated from each other, and abut posteriorly against the os quadratum, and in front, generally by means of two processes, against the palatal and jugal bones. In the Crocodiles they äre very broad, unite in the middle line by suture, and conceal the body of the sphenoid. In the Ophidia the two wings are widely separated, very elongated, frequently provided with teeth, and bifurcate into an internal piece united with the palatal bones, and which can be regarded as an internal pterygoid process, and an external corresponding with the external pterygoid, and connected to the superior maxilla. The first piece extends very far back posteriorly to the union of the os quadratum with the inferior maxilla. The last piece is considered by many anatomists as a particular bone under the name of os transversum. The temporal bone is divided upon an average in all three orders into four pieces. In the direction inward and backward is situated the petrous bone, posteriorly and externally the mastoid, which in the Ophidia is very much elongated and style-shaped, but shorter in the other orders; in front of and in contact with this is generally placed the squamous element, united in the Chelonia and Sauria by suture with the parietal and jugal bone, but being quite free in the Ophidia, and advanced further forward. This piece is however viewed by many anatomists as a peculiar bone, under the name of anterior frontal, and being divided in the Tortoise into two pieces; the posterior of them has been in like manner termed the posterior frontal. The right interpretation of these bones has, however, given rise to much contrariety of opinion, relative to which the reader must consult and compare the special treatises on the osteology of the Reptilia. The articulating portion of the temporal, called the quadratal or tympanic bone, is particularly broad and concave in the Chelonia so as to be adapted for the reception of the large tympanic membrane, and superiorly is united by suture with the squamous and mastoid elements, while inferiorly it always projects
into a rounded condyle for articulation with the inferior maxilla. a

- This bone is similar in character, only narrower, in the Sauria, still more elongated in the Ophidia, and in both, especially the latter, moveably united to the mastoid bone. The parietal bone is double in the Tortoises, but throughout almost all the Ophidia and Sauria, as in the Crocodiles, and even the anomalous genus, Amphisbæna, it consists of a single usually insignificant bone. The two frontals are still smaller, and united by a suture in the Chelonia, Ophidia, and some Sauria; the Crocodiles and other Sauria have a single frontal. A pair of bones situated in front of the frontals, frequently separated, as in the Ophidia and Crocodiles, by the nasal bones, may be regarded as ethmoidal, or according to others nasal bones. They appear to be absent in other Reptilia.
The Facial bones exhibit fewer deviations from their normal type in the higher Vertebrata, and admit, therefore, for the most part, of being readily and consistently referred to their analogues in the human subject. In front of the frontals lie generally a pair of mostly elongated nasal bones, there being very rarely only a single bone in their place, as in Moniter niloticus. Between the squamous element of the temporal and the superior maxilla the jugal bone is intercalated; it is of very large size in all the Chelonia and Crocodiles, and is met with in the rest of the Sauria, but appears to be absent in the Ophidia, and its place to be supplied by the external wings, of the sphenoid. The palatal bones are very generally present, situated between the pterygoid processes and the superior maxilla, and are broad in the Chelonia, very elongated and mostly furnished with teeth in the Ophidia. Between the superior maxMary, nasal, ethmoid, and jugal bones, there is introduced, as in the Crocodile, a bone of tolerably large size, which may be either regarded as a distinct bone by itself, or from the analogy of its position, as a lacrymal bone. It would appear to be absent in the remaining Reptilia. The vomer is in the majority of instances, as in the Ophidia and Sauria, of large size and double; in the Crocodile, however, it is absent. In the Chelonia this bone is single, and frequently concealed from beneath by the palatal bones. Those bony plates, called ossa superciliaria s. squame supra-orbitales, which are placed in the Lizards upon the edge of the froutal bones, and form the roof of the orbitar cavity; are rather to be considered as pertaining to the tegumentary skeleton, than as true bones of the face. The intermaxillary bone is generally small and single in the Ophidia, Sauria and Matamata Turlle (Chelys); but double in the
cranium, which will not aamit of being included under the general description already given. Thus, in the Chameleón, long processes invariably project backward from the temporal and parietal bones, and unite to form an arch, thereby occasioning a most singular form of skull. The serpent-like apodal Saurians, as Pseudopus, Anguis, have the head constructed completely upon the Saurian type, presenting as in them the same style-shaped bone or columella which occupies the place of the large ale of the sphenoid. Still more abnormal are the conditions of the cranium in the Saurian genera, Amphisbera and Trogonophis, in which, however, the halves of the lower jaw are firmly consolidated; and also in those genera of Serpents, which depart most from the Ophidian type, as Rhinophis, Tortrix, and particularly Typhlops, where the maxillary and nasal bones form in front a hollow bony bladder, the pterygoid bones are represented by long squamoid bones, and the lower jaw, which in the Rattlesnakes consists of three pieces, appears to be formed of one piece, and to be edentulous.
The Vertebral Column exhibits remarkable diversities in the several orders of Reptilia,
The vertebre of the Icthyic Reptiles (Proteus, Siren, \&c.) have their bodies conically excavated at either end, and the intervals between them filled up by a gelatinous substance, as in Fishes. The number of the vertebre is remarkable in the elongated bodies of the animals belonging to this order, for 60 are to be counted in the Proteus, 80 in the Siren, and above 100 in the Amphiuma. The vertebre are divided into those of the trunk and tail; the first of
these presenting distinct and these presenting distinct and often strongly developed transverse processes, and for the most part spinous processes also, which entirely disappear at the extremity of the caudal series. The number of the vertebre is also very great in the Tailed Batrachia, as in the spotted Salamander and Tritons, where there are 15-16 in the trunk, $20-30$ in the tail, the numbers varying somewhat in different individuals. The bodies are concave anteriorly, and convex posteriorly; the reverse of this is, however, the case in the Tailless Batrachia, as the Frogs. These, as well as the Tree-frogs, have but very few vertebre, there being from $8-9$; in Pipa there are only 7 , with stout transverse processes, which are especially long upon the second and third lumbar vertebre, to which succeeds. the single though large sacral vertebra, the transverse processes of which are particularly broad. A long style or sabre-shaped bone

OSSEOÚS SXSTEM.

the dorsal vertebre, and are more numerous than those of the caudal vertebre. In the true Serpents, there are always above 100 vertebrex, usually above 200 , or 300 , as in the great Boas, while the Python presents even 400 and upward; of which the caudal make up only a fourth to a seventh part of the whole series. No traces of a sternum are met with in the Ophidia.
In the true Sauria the number of the vertebre and ribs is also considerable, being greatest in the elongated serpent-like forms of that order, as Anguis, Pseudopus, Chirotes, Amphisbeena, where they amount from $30-60$ or 100 , while that of the caudal vertebre, which at the extremity of the tail become very small and rudimentary, frequently exceeds 100 , as in Lacerta, Monitor, \&c. The bodies of the vertebre, like those of the Ophidia, are generally concave anteriorly, and provided with a hemispherical head posteriorly. The cervical vertebre, of which the second has an odontoid process, are few in number, and generally devoid of ribs, but occasionally support them ; to these succeed numerous dorsal vertebre, and more rarely behind them some lumbar vertebre, e. g., in Monitor, Lacerta, Chameleon, Draco ; lastly, a sacrum may be distinguished, usually consisting of two vertebre; with long transverse processes that unite it to the iliac bones; to the sacram follow next the numerous caudal vertebre, frequently provided at their commencement with'superior and inferior spinous processes. Superior spinous processes are ussually fond upon the cervical and caudal vertebre, and upon the latter, inferior processes also, forming at their root a hemispherical canal, within which the aorta passes. Transverse and oblique processes are likewise met with. The ribs are numerous, and there are several anterior and posterior ones, as in the Lizards, which are not connected to the sternum. In the Chameleon, the broad body part of the sternum is merely cartilaginous, and the costal cartilages, corresponding with the sternal ribs, coalesce together in the middle line, so as to form so many intersecting bands. In the Flying Dragon (Draco viridis), the anterior ribs alone are united with the sternum; the posterior, especially the three middle ones, are very long and straight to support a membranous expansion, which serves the animal as a parachute, to sail through the air with from tree to tree. Nearly all the Saurians, with very few exceptions, such as Amphisbeena, possess a sternum, which occurs, however, in a rudimentary condition in the other serpentoid genera. It consists, as is well exemplified by the genera Lacerta, Monitor, \&ce., of an anterior slender T-shaped or cruciform bone, which
corresponds to the manubrium, and behind this of a very broad flat, cartilaginous piece representing the body of the sternum, whereunto are appended posteriorly two small elongated pieces, parallel with each other, which, but for their receiving some of the costal cartilages, might be regarded as analogous to the ensiform cartilage of the Manmalia. The sternum becomes smaller, and more rudimentary in Chirotes, where the ensiform cartilage is formed by the uni-perforate plate of the body of the bone. In Anguis, even this is wanting, and there is only left a thin cartilaginous plate behind the clavicles; while in Pseudopus, the T-shaped manubrium is present along with it, though furnished with shorter processes.
The Crocodiles exhibit in the conditions of their skeleton, as in other general points of structure, various departures from the type of the remaining Sauria. The relative number of the vertebre, with the exception of the caudal, agrees with that of the human subject, there being seven cervical, twelve-dorsal, and five lumbar. The atlas is remarkable for consisting of four pieces, and supporting, as does also the second cervical vertebra, a moveable bone or rib of considerable size. The five succeeding vertebre of the neck, like the twelve dorsal vertebre, have their laminæ united by suture to the vertebral bodies, and support also short rib-like appendages, which are attached, like true ribs, by two crura, or in a furcate manner to the double (superior and inferior) transverse processes, and terminate externally by a hammer-shaped head, the anterior and posterior ends of which lie in such a way upon those of the adjoining vertebræ, as to limit the movements of the vertebre in the lateral direction. This structure explains the fact, why one can easily escape when pursued, from a Crocodile, by moving in a circle. The sternum is broad anteriorly, and there projects into a pointed and free median process, while posteriorly it extends by means of two long slender pieces (sternal ribs), as far as the pubis. The part opposite to the lumbar vertebre supports five pairs of free costal cartilages, without any vertebral ribs. There are only two sacral vertebre, as in the rest of the Sauria, and about forty caudal vertebre.
It is in the Chelonia unquestionably that the vertebre, ribs, and sternum, present the most abnormal structure, for it is in them tha a coalescence of some of the tegumentary bones takes place with those of the true skeleton, so as to form the dorsal shield, or carapace, and the ventral or plastron. The cervical vertebre, eight in
number, are always freely moveable, and to such a degree in the Land and Fresh-water Tortoises, that the neck can be retracted beA. neath the carapace. They are similar to those of the Lizards, and provided with long but very depressed superior and inferior spinous processes. The odontoid process of the second cervical vertebra is constituted by a distinct bone. The two sacral, as also the caudal vertebre, few in number, are provided with strong transverse processes. The bodies of the dorsal vertebre are of very peculiar construction, being very long and narrow, and anchylosed to the dorsal shield, and hollowed out superiorly for the lodgement of the spinal cord. By making a perpendicular section of young specimens, the bodies may be readily perceived with the arches alternating with them. A distinct series of bones of a flattened form may at the same time be seen in the upper part of the section, to be situated upon the spinous processes; they form the middle row of dorsal scutes, and are partially anchylosed together, and with the ribs, by suture. They belong to the dermoskeleton, and in adult animals coalesce completely with the spinous processes. The lateral parts of the carapace also consist of anchylosed ribs and dermal bones. In young specimens the ribs are seen to be narrow, and are plainly distinguishable from the dermal bones. The origin of the rib, or its narrow neck, may be also detected, and the mode by which the head uniting with the bodies of two vertebre, and also with their arches, forms the tuberculum coste. In adult specimens of the Land Tortoises, the tegumentary bones are so strongly anchylosed together, that the two ribs, which were originally distinct, become completely absorbed, and even the costal necks and heads are represented by only thin bony fibres. Externally the carapace is surrounded by a circle of quadrangular, or elongated bony scutes, which belong entirely to the tegumentary skeleton, and replace as it were, the costal-cartilages, while they are in part firmly united to the plastron. This union is effected moreover by means of a sternum, and several dermal bones anchylosed to it , as may be also seen in young specimens. The plastron consists of eight pieces united by suture, or by fibro-cartilage, and of a single piece intercalated between the four anterior ones, and which may be regarded as a kind of manubrium sterni. In the Land and River Tortoises, at least in Emys, this piece consists of a large and entire plate ; in Trionyx, and the Marine Tortoises (e, g. Chelonia), it is perforated by irregular apertures, and the anterior pieces concur to form a T-shaped bone, which reminds us of the structure of
this part of the sternal apparatus in the Lizards. In Trionyx and Chelonia, the apices of the ribs are free, and abut against marginal scutes, which never become anchylosed to them. In Testudo and Emys the dorsal scutes are most perfectly developed, but they are all blended together, and united by suture.
The typical strueture of the Scapula and Clavicle is best exemplified in the Tailless Batrachia, or the Frogs, whence we will pass to consider its modifications in the other orders. The Scapula consists in the Frogs of two bony plates, the superior one of which rests upon the transverse processes of the anterior vertebra, the inferior narrower helps to form, along with the two succeeding bones, the articulating surface for the humerus. The clavicles are two in number upon either side; the anterior one is narrow, and flattened like a scale, the posterior is broader; they both diverge from each other in front, and come in contact in the middle line with their fellows of the opposite side, so that the anterior coalesces with the anterior, the posterior with the corresponding piece of the sternum.
Next in order to the above, we have to consider the structure of these parts in the Chelonia. The Scapula is in them a longer and narrower bone, slightly and loosely connected superiorly by ligamentous bands with the first cervical vertebra, while inferiorly it is continuous directly with the anterior and also narrow clavicle, so that the two bones are anchylosed into'a single one. The posterior clavicle is mostly broader, and expanded in the form of a shovel at its free extremity, which is directed backward, while in front it unites with the two former bones by means of synchondrosis, to form the articulating cavity for the humerus. The whole of this osseous girdle is completely covered by the carapace and plastron, and is therefore not visible externally.
In most of the Sauria, the scapula, as in the Frogs, is formed of two pieces. The posterior clayicle is very broad, projects into several points, which abut against a cartilaginous piece that is united to the sternum, and a corresponding cartilaginous piece of the other side. The anterior clavicle is rib-shaped, and does not contribute in any way to the formation of the shoulder joint. Both the anterior clavicles abut against each other in the middle line, and together form a narrow arch in front of the T-shaped portion of the sternum. The above arrangement of parts is principally displayed by the Lacerte, and other closely-allied genera. The Crocodiles have a single elongated scapula, and also a single, tolerably broad and flat
clavicular bone, forming, with the preceding, the articulating cavity for the humerus ; the two clavicles rest ppon the supra-lateral border of the broad sternum. The structure is in a like degree simple in Chameleon, and also in Chirotes. In Anguis and Pseudopus there is found beneath the skin a beny girdle, without any further development of extremities, in this the anterior flattened clavicles which converge and come in contaet with each other, are distinct, and in a less degree, may the rudimentary scapula, and still less the posterior clavicle, be distinguished. In Amphisbæena, at least in Trogonophis Wiegmanni, only a rudiment of the anterior clavicle is present, so that this animal exhibits the greatest amount of imperfection, and, as it were, the last link in the interesting metamorphoses of the anterior extremities in the Sauria. While, however, these subcutaneous rudiments of bones occur in the serpent-like Sauria, it would appear, at least according to present researches, that in the Ophidia every trace of anterior extremities has disappeared. In the Tailed Batrachia, as the Salamanders and Tritons, the structure is more simple. The scapule continue in a more cartilaginous condition, and instead of the elavicles, there is found anteriorly, a broad, partly cartilaginons plate, which comes in contact with that of the opposite side. The structure of these parts is similar in the Icthyic Reptilia; in Siren, and Proteus, the scapula is at least osseous inferiorly, but in Amphiuma is reduced to a mere cartilaginous plate. Every trace of extremities appears to be want-- ing in Cecilia.

In the disposition of their Anterior Extremities, the Reptilia approximate the Mammalia. The humerus is of moderate length, and in the Chelonia very muich bent, and twisted in such a manner in relation to the axilla, that the arched surface looks in the direction backward; two bones are generally met with in the fore-arm, whereof the radius is usiually placed anteriorly, but in the Chelonia, internally and posteriorly; it is only the Tailless Batrachia who have a single bone to their fore-arm, but even this presents a double groove indicative of its division into two bones, and possesses internally a double medullary canal In many Reptiles a peculiar ossicle is developed in the extensor tendon of the humerus, above the projection of the olecranon, and, from its resemblance to the patella, has been called the patella brachialis. It occurs in many Batrachia and Sauria, more rarely in the Tortoises, but is wanting in many genera, and in the Crocodiles. In all Reptiles, the carpus is composed of Wa double, more rarely a single or triple, series of small ossicles, which

OSSEOUS SYSTEM.

vary in number, and present a merely cartilaginous condition in the Sirens. To these succeed the metacarpal and phalangeal bones of the fingers, the latter differing in number and proportion, three in a row being the usual quantity, though in the Sauria there are from four to five phalanges upon some of the digits. The Ichthyic Reptilia have a few somewhat cartilaginous carpal bones. The Land Tortoises appear to have no metacarpal bones ; the phalanges are here very short, but in the Marine Tortoises very, long, and well developed to sustain the swimming paddles. In the Frogs, and Salamanders, there are found from $5-7$, and in the Chelonia and Sauria mostly 9-10 phalanges. The two latter orders have mostly five, the Batrachia four fingers. There is frequently found however in the males of the Tailless Batrachia, a special rudimentary bone, or thumb. In the Sauria the third digit has four, the fourth five joints, and both of them are very long. The Proteus and Amphiuma tridactylum, as the name of the latter implies, possess only three digits, while there are only two in A. didactylum, and one in Chœmasaura. -
The greatest resemblance to the Mammalian type, and consequently the most perfect condition of the bones of the Pelvis, is manifested by the Squria and Chelonia; for it is here that we constantly find an ilium united to the sacrum, as well as a pubis and ischium, all these three bones remaining permanently separated, and meeting in the acetabulum; in both orders the ischiac unite in front, like the pubic bones, thus giving rise to a symphysis, as in the latter; in the Chelonia these two symphyses approximate, so as to leave an intervening obturator foramen. In the Anourous Batrachia the pelvis has a V-shaped form ; the two iliac bones are very long and narrow, form the branches of the letter, and coalesce within such a narrow space behind with the very small pubic and ischiac bones, as to leave a bony disc, perforated by the two closely adjacent acetabula. In the Tailed Batrachia, and the Ichthyic Reptiles (though in some of the latter, as in Siren, it is wanting), the ilium is a narrower bone, united by ligament with the vertebral column; the pubis and ischium are blended together so as to form a single plate of considerable size, loosely connected to that of the other side, and for a great extent cartilaginous, especially in the Sirens. The rudiments of the pelvis are still further diminished in the Apodal Sauria, wherein a single bone is all that is invariably found, situated as in many Ophidia beneath the skin, behind the found, situated as in many rib-bearing vertebræ, and nearest to the anus; it actually supports

BEPTILIA.
in several species small osseous rudiments of feet. The structure of the posterior extremities in Pseudopus, Anguis, and Acontias, is very interesting, as exhibiting an advanced condition, for here indeed the single elongated pelvic bones are attached by ligament to the transverse processes of the last dorsal vertebra; in Eryx, Boa,
7 : Typhlops, Amphisbeena, \&c., a pair of very elongated bones, consisting occasionally of several pieces, lie always free, and at a distance from the vertebral column, in a parallel position with the rectum. The Amphisbeenas, such as Trogonophis, exhibit the simplest form of pelvis, since it consists in them of a very small flattened bone, lying posteriorly beneath the integument, and near to the vertebral column; it may be regarded as a rudiment of the ilium. This structure is rather more complete in Ophisaurus,
The Femur is of large size, and strongly curyed in the Chelonia; the tibia and fibula are generally met with, with the exception of the Anourous Batrachia, where only a single bone is found, as in the fore-arm, presenting marks of division. There is frequently developed in the extensor tendon of the femoral muscles, in many Sauria, a patella, and in several Batrachia, as in Pipa, a second patella occurs, situated behind, between the tibia and tarsal bones. These last, disposed in three rows, continue partly cartilaginous in the Tailed Batrachia, and present themselves under similar conditions in the Ichthyic Reptiles; on the contrary in the Anourous Batrachia the two tarsal bones, corresponding to the os calcis and astragalus, are constructed after the type of the crural bones, being of an elongated form, while in front of them is situated a row of lesser tarsal ossicles; in the Chelonia, and Sauria, the small tarsal bones are disposed in two rows. The metatarsal bones correspond completely in the several orders with the metacarpals. The number and form also of the phalanges of the toes correspond, with some exception, to those of the fingers. The last toe but one is usually the longest. Several Ophidia, and Apodal Sauria, possess the rudiment of a single toe, which is, even provided with a nail, as in Pseudopus, where the rudiment is very small, and turned in the direction upward. It is more developed in the true Serpents, but it is only in some genera, as Tortrix, Boa, Python, and also Eryx, in which this rudiment of a toe supports a strong pointed claw. The poisonous Snakes, Natterers, \&c., appear to be destitute of these structures. In. Siren, and Cæeçilia, all trace of posterior extremities is likewise wanting.

rectus may be distinguished, provided with many transverse tendinous bands. The muscles of the extremities are more analogous to those of the higher Reptilia.
In the Frogs the muscles of the back, are much shorter, and the parallel tendinous intersections are limited, as in man, merely to the abdominal muscles. The dorsal region in the Frog, particularly behind the head, is covered chiefly by the powerful muscles of the scapula, and the very small latissimus dorsi. The temporal muscle is very developed, and in like manner the strong muscles of the lower law. The pectoralis major is of very remarkable strength, and gives off narrow strips in the direction forward and backward, and is also divided into several stout bellies; beneath it lies the small pectoral, also of considerable size. The extensors of the humerus and fore-arm (m. m. deltoideus and tricops brachii) consist of very short, but uncommonly fleshy and strong muscular bellies. The flexor and extensor muscles of the hand present a similat character, so that in this respect the organ obtains a form analogous to that of the human subject. Upon the posterior extremities, on the contrary, the large glutei are very different from those of Man, appearing as short, narrow, and but slightly developed muscles, adapted to the elongated form of the iliac bones, to which they are attached. The muscles of the legs, from the hinder extremities being adapted by their length for leaping and swimming, exhibit forms more analogous to the human structures, this holding good, both with the extensor and flexor muscles, as the m. sartoruus, adductor magnus, semitendinosus and membranosus, 1: and the strong muscles of the fibula, the gastroonemii. The strong tendo-Achillis is continued into the plantar aponeurosis, and the patella-like bone already alluded to, as placed between the tibia and tarsal ossicles, serves it as a pulley over which to play. The muscles of the feet are greatly subdivided, and their short bellies pass into delicate tendons.
. The slightest or most rudimentary degree to which the muscles of the trunk, including those of the back and ribs, are developed, is met with in the Chelonia, by reason of the peculiar manner in which their tegumentary is anchylosed to the true skeleton. The muscles of the face are equally rudimentary, and upon removing the hard closely overlying integument, we perceive only the temporal and palpebral muscles. The muscles of the neck, and its nape, are, on the contrary, well developed, particularly the m. spinalis - cervicis, which divides into single detached bundles, and is inserted

. into the carapace, beneath which it serves, together with the retrahentes capitis et colli, to retract the head of the animal. The oblique and transverse muscles of the abdomen are of considerable size, being important agents in the movements of respiration, and there is found in this region of the body, as in Birds, a rudimentary form of diaphragm, which arises as a broader thinner muscle than in them, from the vertebral column and carapace, and is interposed between the peritoneum and pleura, without, however, meeting its fellow in the middle line from the opposite side. Beneath the plastron lie the great pectoral muscles, which, like the large glutexi, are strongly developed, this being the case also with the muscles of the extremities, among which the flexor muscles of the leg, the biceps femoris and semi-tendinosus, are remarkable for their length. 1 ,

- In the Ophidia the cranial and maxillary muscles, especially those of the lower jaw, are distinguished by their great development; for instance, the temporal, from which a layer is given off over the poison-sac of the Venomous species, and acts upon it as a compressor. The muscles of the trunk, howerer, by which locomotion is effected, are the most remarkable in the Serpents. It is here chiefly the intercostales, as well as the spinales, semi-spinales, interspinales and inter-transversales musčles that act upon the very moveably united vertebre and the free extremities of the ribs. Of the intercostals, some pass directly from one to the next adjoining rib; while others pass over several of these bones. Even the pelvis and rudimental feet of many Serpents (the osteological relations of which have been described above) are provided with muscles that bend the extremities as far as their ungual phalanx, and extend or draw them in different directions.

The Brain of the Amphibin ranks greatly inferior to that of Birds in the relative proportional size which it bears to the bulk of the body, though it fills up tolerably the cranial cavity, and is surrounded by the usual membranes. What is remarkable, it exhibits no very important differences in the several ordets, though in this respect we are confessedly still in want of more aecurate investigations.
The Spinal Cord is prolonged into the caudal vertebre, and is generally furnished with two swellings corresponding with the * gorn t?

倩 $=$.
origin of the nerves to the extremities，but which are wanting in the Ophidia；the genus Bipes among the Sauria possesses only posterior swelling upon the cord，and Chirotes only an anterior， in accordance with the position of the rudimentary extremities al－ ral canal．The the spinal cord is always traversed by a cen－勆 ulous ：in reptilia，and the romboidal sinus is broad and pa－ especially in the proximity of the pyramidal tracts，more dilated， absent．The cerebellum arises by two crura，and consists in the naked Amphibia and Ophidia of a hollow medullary layer，which passes as a small narrow band transversely over the fourth ven－ tricle，without covering it completely；in the Chelonia it forms a smooth spherical and hollow swelling，and in the Sauria，as in the Crocodiles，it is provided with one or several lateral transverse grooves．In front of the cerebellum are situated a pair of large oval ganglia，hollow internally，and partly coalescing in the middle line in the naked Amphibia，as the Iehthyic genera Proteus and Amphiuma，but which are of largest proportional size，and distinct from each other in the Frogs，and also in the Sauria；they repre－ sent the corpora quadrigemina，probably incorporated with the optic thalami．To these succeed the oval cerebral hemispheres of considerable size，and which，smooth and devoid of convolutions， give off the olfactory nerves．Within their lateral ventricles is placed，at least in the Crocodiles and Tortoises，an elongated gang－ lion，which corresponds perhaps to the corpus striatum；and by the side of this is a distinctly developed choroid plexus，while a system of commissures for uniting the double parts of the brain is always met with．The pineal gland is very large in the Che－ lonia，but smaller in the other orders，and lies uncovered by the hemispheres in frent of the corpora quadrigemina．Although this gland is met with in all the Amphibia，it is difficult to determine whether it is really present in the Frog．The pituitary appendage is constantly present，and of noticeable size．The ventricles coalesce together；the aqueduct of Sylvius is a very wide canal，and the fourth ventricle is quite open and uncovered from above，especially in the Amphibia．
The Cerebral nerves admit of being very easily reduced to their analogues in the human subject and the rest of the Vertebrata，and have been traced with the most special care in the Frog，Tortoise， and Serpent．

In the brain of the Frog only eight separate nerves are found，the facial，glosso－pharyngeal，aceessory of Willis，and hypoglossal，ex－ hibiting no distinct roots；the facial is still supplied as a branch from the acoustic；the vagus，which arises behind the auditory nerve from the most posterior limits of the medulla oblongata， passes at a right angle through an opening lying to the outer side of the articulating tubercle of the occipital bone；some very deli－ cate neryous radicles，arising from the inferior tracts of the medulla oblongata near to its anterior fissure，unite with it and appear to cor－ respond with the glosso－pharyngeal．Some of the roots of the ac－ eessory nerve appear to be absent，and the hypoglossal is given off by the first pair of cervical nerves．In the Frogs，as in all the Rep－ tilia，even the Ichthyodea，which live habitually in water，the olfac－ tory nerves are of very considerable size，and proceed generally from some medullary ganglia situated in front of the hemispheres． The optic nerves are flat and form a chiasma，and at this seat of union there is found a partial decussation formed by the overlapping of several distinct laminiform faciculi of nervous matter．
In the Tortoises，and probably all the Squamigerous Reptiles，all the twelve pairs of cerebral nerves are to be fonnd，and their roots admit of being traced to the base of the encephalon．
As regards the Spinal nerves，their origin by two roots is always very distinct，and those of the Amphibia，especially of the Frogs， are particularly well adapted for the purposes of physiological experi－ ment．Their number varies very much，ten pairs being found in the Frog，and several more in the Tortoise．In the Squamigerous Rep－ tilia the last cervical and first dorsal nerves usually form the brachial plexus；from the lumbar nerves is given off the crural，and from it and the sacral nerves the ischiadic plexus．
The Sympathetic nerve，the existence of which was formerly over－ looked in the Serpents，has now been proved of general ocry over－ throughout the present class．In the Frogs the ganglia admit of being very readily demonstrated lying upon the sides，of the verte－ bral column；they are here situated near to those small white ves－ icles which protrude by becoming swollen chiefly during the spring of the year，and contain numerons microscopic calcareous crystals． The plexuses of the sympathetic nerye unite with the vagus，and by a ganglion with each of the spinal nerves．The sympathetic then， enters the skull through the condyloid foramen，and unites with the 8．ganglion of the fifth pair or trigeminus，and also with the other cer－ ebral nerves．The cranial portion of the sympathetic in the Ser－
$\$$

[^1]\qquad

152
REPTIIA.
號 the n. trigeminus, vagus, glosso-pharyngeus, hypo-glossus, and also with the facial nerve. External to the cranium we meet with ganglio which may and spheno-palatine anglion the portion of the trunk, and upon the internal processes of the vertebral bodies, the sympathetic nerves may be traced is extreme
(dy delicate streaks. The extremelargest Serpents. In the Crocodiles, the cervical portion of the sympathetic is situated deep within the canal formed by the transverse processes of the cervical vertebre. The vagus is distributed in the Serpents as far as over a third of the cavity of the trunk.
The lateral branch, that arising chiefly from the nervus vagus runs along the sides of the trunk as far as the tail, and is of general occurrence in the class of Fishes, is met with also in the Perennibranchiate Amphibia, the Proteidea, and the larvæ of $\mathrm{Ba}-$ trachia; but in the metamorphosis which the latter undergo, it disappears by degrees, and becomes finally reduced to the auricular branch of the nervus vagus, or some tegumentary offset corresponding to the former. In the Serpents and Lizards, no lateral nerve exists:
organs of the senses.

The Eyeball with its several component parts, approximates in the naked Amphibia most in struoture to that of Fishes, since they live in the same element as the latter, and the globe of the eye having to receive the rays of light through the water, is accordingly, fatter in front, and the lens more spherical. In the Squamigerous Reptiles, the structure of the globe of the eye agrees more with that of Birds, yet even in them presents cerrain characeteristic differences, as may be readily perceived, upon examining a longitudinal section of the eyeball. In Protens the eye is very small, but provided with a lens, and the usual tunics; in the genus Typhlops, the eye is still more rudimentary. The sclerotic frequently contains a bony plate, or several bony scales united to form a ring, as in Birds. This is the case with the Tortoises, where ten bony pieces may be most usually counted, and in many

B
Sauria, as Lacerta, Iguana, Monitor. The cornea is more convex than in Fishes, and the anterior chambers of the eye of various dimensions. The choroid coat is very thick, frequently covered externally and internally with a dense layer of black pigment; the cillary body usually gives off some projecting folds, or ciliary processes. The irís in the Batrachia is invested in front, with a gold-colored pigment. The pupil is capable of a slight degree of expansion ; for the most part of a circular form, as in Pipa; it frequently, however, as in the Frog and Salamander, presents the figure of a transversely directed nearly rhombic oval; in the Crocodile, and many Ophidia, as the Viper, and Rattle-snake, but without bearing any reference to the poisonous qualities of the Serpent, the pupil forms a perpendicular slit. The optic nerve perforates the tunics of the eye in the direction externally and inferiorly, but usually enters the eye of a rounded shape. The papillary layer of the retina is very greatly developed. The. vitreous humor is mostly small in proportion to the lenis, which last is in those Reptiles that live in water, very spherical, or else compressed, and frequently, as in Emys, elliptical. In several Sauria, as in Lacerta, Iguana, Chameleo, Monitor, a feebly-developed process from the choroid, slightly plicated, and invested by a layer of pigment, is prolonged into the interior of the eye, from the point of entrance of the optic nerve, and appears to be analogous to the pecten in the eye of the Bird, though it never has so many folds, there being occasionally only two. The glabe of the eye is usually moved by six muscles, four recti, and two oblique or rotator muscles. To those is superadded in the Frog an infundibuniform muscle (suspensorius oculi) divided into several fasciculi, which arises, in a manner perfectly similar to that described in the Mammalia, from the bottom of the orbitar cavity, and is attached to the posterior part of the eyeball.
The Protective and Glandular appendages of the eye exhibit very diversified degrees of development in the Reptilia. In the Ichthyodea, the external integument is partly continued over the eye, as a transparent lamella. The Squamigerous Reptiles have for the most part a superior, and larger inferior eyelid provided with a cartilaginous plate, and usually very moveable, and in addition to these, a third internal eyelid, or nictitating membrane. Numerous varieties however occur ; thus in Scincus, and Gecko, both eyelids are small and immoveable; the Salamanders possess only two short eyelids, but the Frog the additional third -
one, which is very moveable; in the Chameleon the eyelids form a thick eushion, furnished with a dense muscular layer, and having a small central aperture opposite the pupil. The nictitating membrane of the Frog slides underneath the upper eyelid, and is moved by a mechanism, that reminds us of that already described in Birds. There are found a detractor and an elevator of the nictitating membrane ; the latter muscle arises superiorly and in front from the nictitating membrane, and gives off a tendon, which passes though a pulley to beneath the eyeball, perforates the infundibuliform muscle, and terminates by a small muscular belly attached to the posterior angle of the eye. In the Ophidia the eye is covered by a transparent lamella of epidermis, which is shed along with what is called the exuvia or cast skin. Beneath it lies the conjunctiva which is reflected over the sclerotic coat, invents the cornea, and so forms a completely closed sac, which receives the excretory duets of the lacrymal gland, and conducts the secretion from the flater through a duct between the maxillary and palatal bones into the cavity of the month. The Lacrymal gland is situated behind the eyeball, and is particularly large in the non-venomous Serpents, as the genus Coluber, but also in the Vipers, e. g. V., berus, where it was formerly falsely taken from the poison-gland. The Sautia and Chelonia have for the most part two lacrymal glands, an external, the largest, and an internal, smaller; one of these is destined for the nictitating membrane, and corresponds to the Harderian gland. The naked Amphibia do not appear to be furnished with a lacrymal. apparatus.

- THE naked Reptiles completely approximate the Fishes in the structure of their organ of hearing, while the Squamigerous subelass exhibit a higher grade of organization, by the appearance of a true cochlea. The tympanic cavity is absent in the Ichthyodea, and Tailed Batrachia, and 'both integument aqnd muscles are continued over the external ear; the oval fenestra is closed by a cartilaginous operculum, into which is inserted a horizontal, elongated, style-shaped ossicle, like that in Birds, and called the columella; the Eustachian tube is wanting. The tympanic cavity is also absent in the Ophidia, but they have for the most part a columella and operculum. The Anourous Batrachia have in general a membranous tympanic cavity, which commences by an infundibuliform branous tympanic cavity, which commences by an infundibuliform from without, is stretched. The fenestra ovalis is closed by a cartilaginons, slightly concave operculum, upon which the broad end of the columella rests, while to its outer extremity a small cartilage is united, the swollen head of which is fixed upon the membrana tympani; the two Eustachian tubes open into the cavity of the pharynx, and occasionally in the middle of the latter by a common
* aperture. In the Chelonia and Sauria the tympanic cavity receives a partly bony, partly membranous Eustachian tube, which
- is mostly very short and broad in the Sauria; several of the latter have also the membrana tympani covered by skin and muscle. The fenestra ovalis is closed by an operculum, upon which rests the columella, and is united to the membrana tympani by a small cartilaginous frequently divided body, that presents a discoidal form in the Chelonia. If we compare this chain of auditory ossicles with those of the Mammalia, the small cartilage united to the tympanic membrane will be found to agree with the malleus, the columella with the incus, and the operculum with the stapes, if not in form, at least in function. Two muscles are found in the internal ear of Rep-? tiles, namely, a tensor tympani, and a stapedius.

A variety of specialities belonging to the auditory apparatus occur in this diversely constructed class; of these the following are perhaps the most important to be mentioned. The operculum is found in Ccecilia, Amphiuma, Siren, and Tortrix, and a small columella, such as occurs also in the true Serpents, in Amphisbona. Typhlops and Rhinophis have no auditory ossicles. In the Salamander there is situated a membrane upon the fenestra ovalis, beneath the operculum, and a short canal conducts to the vestibule. The Bufo igneus, and Rana cultripes Cuv., perfectly resemble the Salamanders, in the absence of a tympanic cavity, and they have also, like Pipa, only a single opening within the pharynx for the two Eustachian tubes. In the Tortoises, the incomplete canal of the Eustachian tubes is seen at the base of the sphenoid bone, made up inferiorly by membrane; in several, as in the genus Chelonia, the columella is lodged in a posterior excavation of the os quadratum, which receives the membrana tympani, and in Emys expansa is in the form of a foramen. The columella is moved by a single muscle. In Chameleo, Anguis, Acontias (in which last the columella even is wanting), and partly in Pseudopus, the membrana - tympani is covered by muscles and integument, but is freely exposed on the contrary in Ophisaurus, while in Chirotes the whole ent in Reptiles, and it is only the highest form of them, the Crocodile, that possesses a rudiment of this structure, under the condition of a double tegumentary fold or flap, the superior portion of which contains in its interior a bony plate, and can be shut down by a muscle like a valve.
All Reptiles have a bony labyrinth lined by a membrane, and completely separated from the cranial cavity, with which it is merely associated by the openings for the passage of nerves; it is's situated wihin the temporal bone, and partly within the latero-inferior pieces of the occipital bone. The vestibule is of varied form and size, and receives the semicircular canals by four or five openings; the external canal is placed horizontally, and the anterior and posterior stand perpendicularly, and have one of the crura common to them both. Two grooves are usually found in the vestibule, and the sac. lying within it encloses a friable crystalline cretaceous mass, and in rare instances harder lithic bodies; the membranous canals expand into ampullæ. The cochlea appears to be entifely absent in the naked Amphibia, but on the contrary to be found in all the Squamigera. It is found in its simplest condition, as a rounded carvity with a sac in the interior containing a watery fluid, in the Chelonia. Yet even in them, a round or cochlear fenestra, separated from the fenestra ovalis by a thin septum, is found placed in the direction backward, and closed by a second tympanic membrane. In the Sauria and Ophidia the cochlea is a hollow cone, blunt and somewhat dilated at the apex; it includes a pair of cartilages, which turned toward each other, are clothed by a plicated membrane, upon which, as upon the spiral plate of the higher animals, the auditory nerve expands into delicate filaments ; at the extremity of the bony sphere is situated a peculiar retort-shaped sac (lagena) which contains the fluid of the labyrinth, and receives, like the vestibular sac, a twig from the acoustic nerve. The branches of the portia dura pass only though the tympanic cavity, and there appears to be a true chorda tympani present. Hollow cells are frequently found in the tympanic and mastoid bones, and stand in communication with the internal ear.

It is a very general character of the Reptilia, and is in relation to their peculiar mode of pulmonic respiration, that the posterior, nasal apertures perforate the palatal bones internally, this being the case even in the Ichthyodea, though, however, some genera occur among these, in which, as in some Fishes, the nostrils merely open as small slits behind the lips, as in Protens and Siren, while in Amphiuma, Menopoma, Acholotes, \&c., the openings of the choanæ or posterior nares are found in the palate. The nasal cavities are frequently lined by a plicated pituitary membrane, e. g. in Proteus, as in Fishes. It is rarely, as in Trionyx among the Chelonia, that the nose is lengthened out into a small mem-brano-cartilaginous snout. The nasal canals are in other respects very simple in the Naked and in the Squanigerous Reptilia ; in the Batrachia the nostrils are contractile externally. A cartilaginous partition separates the two nasal passages, and cartilaginous plates, invested by mucous membrane, and which correspond to the turbinated bones, clothe the rest of the nasal parietes, and project slightly beyond the bones, as cartilaginous external nasal organs. The nasal passages are of greatest length in the Sauria, as the Crocodile, and are frequently expanded in front, in the form of a pouch, and, as in the Cetacea, can be closed by valves ; feebly developed cartilaginous, or bony turbinated organs are also present. Besides the olfactory nerves which pass through small ethmoidal plates, and divide and ramify is a simple manner, a twig also from the fifth pair of nerves is distributed chiefly to the external part of the nose. A special nasal gland is found in many Serpents, constantly situated between the superior maxillary, lacrymal, and nasal bones, and having a proper excretory duct, that opens into the palate. The Cæecilia and many Serpents have also an orifice etween the nose and eye, which leads into a small blind sac, from which arises a small tentacle; the function of this organ is unknown.
 known.

Organs of Taste and Touch.
18 Although it is doubtful whether the members of the present class are endowed with a distinct sense of taste, this is certainly not the case with the Land Tortoises. Reptiles swallow their food nearly wepiles swallow their

tor and retractor, and four to five additional pairs of muscles, a detailed description of which would lead us out of the plan of the present work.

The study of the different structural conditions of the lingual bone possesses a great amount of interest with the philosophical or transcendental comparative anatomist, namely, in reference to the development of the branchial apparatus, or of the visceral arches, and the mode of division of the fotal vessels in the Vertebrata.
The tongue may in the Reptilia be frequently used as an implement of touch. Special organs of touch do not exist, but in the naked Amphibia, as the Frogs, the whole skin is endowed with the highest sensibility, being supplied by numerous nervous filaments, and it is on this account that, on irritating the skin in these animals, they exhibit such strong and varied reflex movements, and are thereby best adapted for making experiments upon the dynamics of the nervoñ system.

THE form and armature of the jaws is exceedingly diversified in the Reptilia. The Teeth, when present, never serve to masticate, but only to seize the prey, or else they form, as in the, Venomous Serpents, what occurs in no other class of animals, peculiarly constructed weapons for inflicting a deadly wound.
The teeth are completely wanting in the order Chelonia; the maxille, with the exception of those of the Chelydes, which are merely covered by skin, are invested, with horn, consisting of superimposed lamellæ, like those of Birds. In Trionyx, however, the lips * are soft and fleshy.
Some edentulous genera are also found among the Batrachia,
i- e. g., Pipa. The Toads have palatal teeth, and besides these in the Frogs, there are rows of short pointed teeth in the upper jaw, 2 and more rarely also in the lower jaw, as in the genus Hemifractus, and the Tritons, and Salamanders. Similar diversities occur in the Ichthyodea, thus Protens possesses teeth in both the upper and lower jaws, and the Axolotl also upon the palate, while in Siren a pair of large dental plates are found upon the palate, but no teeth on the inter and supra maxillary bones.
The Sauria, however, exhibit the greatest variety in this respect. In some cases, numerous very small and pointed teeth stand prin-

(Cipally upon the edges of the jaws, but occasionally on the palate. 161 In others, the teeth are either uncinate, chisel, awl, or lancel-shaped, finely dentated upon the edges, or deeply serrated at the apices, and occasionally they are conical and blunt. The teeth consist of osseous, substance, and a coating of enamel, are rarely implanted in distinct sockets, but are either anchylosed externally by their fang to the maxillary bones (dentes adnati), while internally the fang is free, and only covered by the gum, or they are firmly (dentes innati) anchylosed to the edges of the jaw. Thus the teeth in Monitor, Basi* liscus, Anolis, Polychirus, Iguana, and others, belong to the first kind, and to the latter those of Calotes, Draco, Stellio, Uromastrix, Chameleon, and Ameira. The teeth are small and blunt in Lacerta, \mathcal{L} Pseudopus, and Amphisbœena, and denticulated upon thé edges in the Monitors. The Crocodiles have pointed, conical teeth, becoming blunter posteriorly, and implanted in sockets; the numerous teeth that are destined to replace them are imbedded, of a conical form, in the interior of the first set. Upon the more minute specific arrangements of the teeth, it is the province of Zoology to dwell.
The Serpents, when unprovided with poisonous teeth, have curved hook-shaped teeth in the lower jaw, and upon the palatal and supra-maxillary boies, while the small inter-maxillary bone is edentalous, or only rarely toothed, as in Tortrix. 'In different kinds of Serpents suspected to be dangerous, we meet with a gradual transition from the solid teeth of the non-venomous, to those of the Venomous species. Even in our harmless Snake, the Coluber Natrix, several of the posterior teeth of the upper-jaw appear to be larger and longer than the others. In some other species, formerly included under the genus Coluber, and in Dipsas, Homalopsis, \&c., the last tooth of the upper jaw is not only longer, but provided with a more or less deep groove, into which- the poison escapes from the posterior poison-gland. The superior maxillary bone is shorter in the true Venomous Serpents, and supports upon either side a very long pointed tooth, behind which, several smaller ones are situated wih their points curved backward, and which are destined to rise up and replace each other in succession, as they may chance to be lost; ; they are all surrounded for the sake of protection with a common wide membranous sheath, formed by an elongation of the substance of the gum. These teeth are either traversed by a demi-groove, open externally, as in Elaps, Naja, Bungarus, or by a closed canal, which stands in communication superiorly with the excretory duct

the Sauria and Batrachia, while it is divided, and still more distinctly in the Chelonia, into two lobes. A Gall-bladder appears to be always present, and the hepatic and cystic ducts usually pass separately to the intestine; they are very long and slender in the Serpents ; occasionally, as in Python, several ducts proceed from
; the gall-bladder, that subdivide themselves into ten tubes, opening each singly into the intestine. Sometimes, as in the Frog, Viper and Crocodile, the two principal ducts unite.
The Spleen is pretty generally present in the Chelonia, and is of : largest size in the Sauria, and, as in the Crocodiles and Tortoises, situate more to the right than left side. The spleen is small and rounded in the Batrachia, and more elongated in the Ichthyodea. It is singularly situated in the Serpents, being, as in Coluber Natrix, firmly attached to the pancreas, and smaller than it in size (though in other Serpents it is larger), and readily distinguished from that gland by its reddish color.
A Pancreatic gland, more or less developed, is always found; it is more rarely lobed than simple, and is frequently of a spherical form. It is provided, as in the Chelonia, with a single, or, as in the Crocodiles, with a double excretory duct, while in Python there are several. They enter the small intestine behind the pylorus, accompanied by, or near to, the gall ducts. In the Serpents the biliary ducts perforate the pancreas.
organs of circulation.
THe diversities in the arrangement of the Circulatory system in Reptiles are of a very remarkable character, and depend in the Ichthyodea upon the peculiar combination of lungs and gills which they possess, and in the Batrachia, upon the remarkable metamorphosis that they pass through from their larval, or tadpole mode of respiration by gills, to that by lungs at a later period of existence.
Those genera of Ichthyodea, as the Axolotl, Proteus, and Siren, which retain during their whole life three tufts of Branchiæ, rank nearest to the class of Fishes. The Heart, however, consists in them of a single ventricle, and two auricles (the left the smallest), separated by a delicate septum, and covering with their auricular appendages part of the ventricle and bulb of the corta. Within the ventricle of the Siren, there is even found a rudimentary septum. The blood, returning from the body, is collected in the large superior and inferior venæ cave, which dilate, as in Fishes, into a

ORGANS OF CIRCULATION

* 4 great, contractile venous reservoir (sinus venosus), from which the blood is driven into the right auricle, of considerable size also. The blood of the two auricles becomes mixed in the ventricle, and its regurgitation is prevented by means of valves. From the ventricle rises the truncus arteriosus, which soon dilates into a contractile bulb, and is furnished with two pairs of superincumbent valves. Three branchial arteries are always given off from this trunk, to ramify upon the gills; while from the latter three branchial veins take their rise, and constantly unite into a common trunk, which, anastomosing with that of the opposite side, forms the descending aorta. The trunk of the pulmonary arteries is given off in a remarkable manner from the most posterior of the branchial veins while the most anterior of these last furnishes the trunk of the carotid. The pulmonary veins pour their blood into the left auricle.
Those Ichthyodea, as the Menopoma, Amphiuma, and Menobranchus, which in their perfect condition have no gills, but only branchial fissures, depart in some degree from the type of structure just described. The trunks of the venæ cavæ, with the auricles and ventricle, are similar in character to those of the Perennibranchiate Ichthyoidea, but the number of valves in the bulb of the aorta is increased, and from it there arise upon either side two main arches, which unite together behind the cesophagus to form the abdominal aorta, after having given off branches for the supply of the head.
In the larvæ of Batrachia, the heart consists at first of a single ventricle and auricle, with a sinus venosus, and bulbus urteriosus which gives off branchial twigs, as in the Ichthyodea; the left auricle is formed as the lungs become developed, and then the vascular system resembles very much, e. g. in the larvæ of the Salamanders, that of the fish-like Reptiles with persistent gills, e. g. Proteus and Siren.
* In the Batrachia, when perfectly developed, we always meet with two auricles, not separated externally, but divided within from each other by a membranous partition, and a single ventricle. From the latter arises a single long arterial trunk, which is divided internally at its origin by an imperfect septum into two halves, and then splits into two branches, each of which again subdivides into an arch for the, aotra, and an artery for the lungs; 'these two trunks commininicate throughout life by a pair of ductus arteriosi, so that a mixture of two different kinds of blood takes place in
them, as well as in the single ventricle. In the Tailed Batrachia the aortic arches unite at an early period of existence and high up; in the Anourous kind very low down to form the abdominal aorta.
In the Squamigerous Reptiles, as in the. Chelonia, the heart is larger and stronger, the aurieles separated externally and provided with a stronger muscular partition, and the ventricle is divided into two cavities, by a more or less perforate or complete septum, traces of which occur, in Pipa, among the Batrachia. The ventricle is properly the right one of the higher animals developed to a greater degree, and the conus arteriosus is in like manner a special division of the cavity from which the aorta and pulmonary artery arise. Between the auricles and ventricles are interposed strong valves, and the usual valv. semilunares at the commencement of the arteries. Each of the two main branches of the pulmonary artery gives off a large ductus arteriosus to join one of the twe aortic arches, which pass over the corresponding branch of the trachea to the vertebral column, in order to unite and form the trunk of the abdominal aorta.
: Manifold diversities occur in the circulatory system of the several orders of Squamigerous Reptiles ; thus the heart of the Ophidia, and also of the Sauria, is more elongated, while on the contrary in the Chelonia it is short and very broad. The true Ophidia on account of their single lang have only the left branch of the pulmonary artery developed, which gives off its ductus arteriosus, and a twig to the rudiment of the right lung. The two trunks of the pulmonary veins usually enter the left auricle, inited together, but rarely sepfarate.

The Crocodiles exhibit the most complete form of heart, for in them the arrangement of its several parts agrees essentially with that of Birds and Mammalia. The walls of the heart are very thick and muscular, and the two ventricles are completely separated by a strong septum from each other. But just at the outlet of the ventricles we find a communication established between the two, so that the two kirds of blood, to wit, the vitiated and purified, become mixed together, and thus a similarity is.established with the rest of the Reptilia, and the fetal condition of the heart in Birds and Mammalia. The ductus arteriosus of Botal is to a certain extent persistent, and the aorta arises by an externally single, but internally double trunk from the right as well as lefft ventricle of the heart, and thus forms two corresponding aortx.
In all Reptiles the heart is surrounded by a pericardium, which
6. in many, as in the Serpents, Tortoises and Lizards, and also in some Batrachia, sends off one or more tendinous threads upon the apex of the heart. The heart is generally situated far forward and in the miadle line.
As regards the course of the Arteries great differences naturally occur in the several orders and genera, which can not be minutely described in the present work. First of all, a single coronary artery usually arises from the truncus arteriosus. Two carotids are generally present in the Squamigerous Reptiles, but only the left in the Ophidia conveys the blood to the brain ; the right carotid situated more deeply gives twigs to the cervical muscles and ribs. A common trunk usually proceeds from the aorta, for the supply of the viscera, as the stomach, liver, spleen, intestines, and of the mesentery, or as in the Ophidia, the mesenteric artery arises separately, or many small branches occupy the place of the two. In the Batrachia there is found upon the carotid of either side a small dilatation, which is formed by the artery here dividing into a number of exceedingly fine vessels, which constitute a spherical spongy kind of vascular rete, through the meshes of which the main trunk of the carotid is continued. In the Serpents several arteries anastomose with the pulmonary arteries, for instance, the hepatic, gastric, and esophageal.
The Veins of the body in which, among the larger Sauria and Chelonia, valves may be demonstrated, usually uníte into a posterior and two anterior vene cavæ, which pour the blood into the venus sinus already described.
Reptiles possess a double Portal system, one for the liver, and one for the kidneys, and both of these exhibit somewhat different relations in the several orders. In the Frog the veins of the intestinal canal, of the spleen, \&c., concur to form the vena porta of the liver; those of the abdominal coverings, the urinary bladder, and partly of the posterior extremities, form the portal vessel of the kidneys, while the efferent veins from the latter organs constitute the trunk of the posterior vena cava, into which the blood returning from the sexual organs and liver is poured; some of the veins of the abdominal parietes empty themselves into the umbilical vein. For a further description of the renal veins the reader is referred to the description of the urinary organs.

$$
{ }^{*}
$$

The Lymphatic vessels are highly developed as a sysiem in Reptiles, and form very numerous plexuses, but no glands. The lacteal, vessels, which are very abundant upon the mesentery, are
collected together into a receptaculum chyli; one or several thoracic ducts convey the lymph and chyle into the anterior venæ cavæ.
The pulsating lymphatic hearts, which have been discovered chiefly in the ischiadic region of the Frogs, Salamanders, Serpents, Tortoises, and Crocodiles, constitute one of the most remarkable peculiarities of the present system in Reptiles. They are provided with muscular walls, the fibres composing which exhibit under the microscope the peculiar transverse strix characteristic of the voluntary muscular tissue. The posterior pair of these hearts may be seen externally pulsating very distinctly immediately beneath the integument covering the ischiadic region in the Frog; they discharge their contents into a branch of the ischiadic vein; situated more deeply above the third cervical vertebra, lie the anterior lymphatic hearts in the same animal, and they appear to impel their contained fluid into a branch that opens into the jugular vein. These organs appear to be largest in the Chelonia, where, placed invariably behind the superior extremity of the iliac bones upon the origin of the semitendinosus muscle, they measure an inch in diameter, and receive lymphatic vessels of the thickness of a quill ; they pour their lymph into a vein that forms a twig of the reno-portal vein.
If the results be correct (for some degree of uncertainty always attends them) that have been obtained by injections of the vascular system of Reptiles with mercury, it would appear that their bloodvessels are surrounded, to wit, in the Serpents and Tortoises, in a sheath-like manner by very large and broad lymphatic vessels, and that plexuses of the latter cover-all the viscera, and are moreover attached by ligamentous filaments to the arteries. A very large reservoir of lymph is usually situated in the lower part of the belly, and from its bifurcation the thoracic ducts take their rise ; in the Frog several such reservoirs are met with. A more direct passage into the venous branches is never met with.
The relative size and form of the Blood-corpuscules in the present

- class is most remarkable; in all the naked Amphibia. as the Frogs, Tritons, and Salamanders, they are large and oval in shape, but it is in the Ichthyodea, as in Proteus, that they attain the greatest size in the whole animal kingdom, being from eight to twelve times longer than in man. The corpuscules are smaller, but invariably oval in all the Squamigerous Reptiles, even in the Crocodiles, and resemble in figure and diameter those of Birds. The rounded lymph-corpuscules are always smaller and more irregular.
tary larynx is continued directly into the membranous bronchi In the Salamanders a short membranous trachea exists, and in some genera of Batrachia, as in Pipa, more or less perfect cartilaginous leaflets and rings appear upon it. In the Ophídia also, as in Coluber and Vipera, the trachea is often membranous at its commencement, but provided further down with cartilaginous rings, which are frequently osseous, e.g., in Crótalus and Python, where their'number is very considerable, amounting to 300 rings and upward. The rings are continued also over the single, or, where two lungs are present, double bronchi. In the Sauria, the trachea varies in length, being short with only $20-30$ rings in the Chameleon, while in the Crocodile upward of 80 occur. In the Chelonia, as in Testudo greca, the trachea is divided deeply and higher up, and is furrished with strongly developed rings, which are continued throughout the bronchi into the lungs.
The Eungs exhibit remarkable diversities of form and structure. Thus, in the Ichthyodea, as in the Proteus, the lungs form a pair of very long narrow tubes which terminate inferiorly in a slightlyexpanded pyriform bladder. In the Triton they present the appearance of elongated sacs, of tolerably uniform width throughout, and terminating in a point, while in the Frogs they are much shorter and broader. When the lungs have been fully expanded, they extend through the greater part of the abdominal cavity. In many Sauria the lungs present similar characters, and are both of equal size, e. g., Scincus. In the Apodal Sauria, as Anguis, Pseudopus, and also in Chirotes, only one lung, and that usually the right, is present, but in those Sauria with very short or only a single pair of feet, as Zeps and Bipes, the left also exists, but is one third or more shorter than that of the right side. In the Ophidia, as Boa and Python, the length of the left lung is generally less by a third or half than that of the opposite side, but in Coluber, Crotalus, and others, it is much smaller, and quite rudimentary, appearing as an almost obliterated appendage. The genera Cecilia and Amphisbæna appear on the contrary to have the left pulmonary organ developed, and the right shortened, this arrangement probably varying according to the species. In the Yiper and other Serpents there is only a single lung, which on that account is always very long. The lungs are flat and short in the Crocodile, but largest and most perfectly formed in the Chelonia, where they extend beneath the carapace as far as the pelvis. Here and there, as in Polychrus and Gecko, and es-
$+$
ORGANS OF RESPIRATION AND VOICE.
pecially in the Chameleon, hollow ceceal diverticula are given off from the lungs.

The internal structure of the lungs differs in the several orders and genera of Reptiles, the respiratory surface being very much increased in the Squamigera by the development internally of cells, while in the lowest orders, the lungs are simply hollow bags. In the Ichthyodea and Tailed Batrachia their condition is of the simplest kind, as in Proteus and Triton, where they form, as already stated, simple bladder-like sacs, directly continued from the membranous larynx. In the Salamander the lungs begin to assume an uneven appearance from the occurrence of small inversions. In the Anourous Batrachia their respiratory surface is increased by membranous cells which project into them internally, and form with the lateral walls open rhomboidal, or more or less hexagonal or polyhedric spaces, upon which lesser cells again rest, these last opening in the inward direction into the common cavity of the lung. The lungs are more perfectly formed in the Chelonia and Sauria, although several genera of the latter frequently retain the simple character of membranous sacs, with an areolar tissue developed upon the internal surface of their walls, but no internal dissepiments. In both orders the cartilaginous rings of the bronchi becoming more imperfect are continued as strips, which, cartilaginous at first, are next converted into tendon, and form rounded or angular meshes which rest partly upon the walls of the lung, and enclose lesser meshes or air-cells, or are united together internally so as to form numerous dissepipents ; thus the whole lung is filled more or less by a coarser or finer areolar fissue, and presents a number of cellular portions which can be all inflated from any one point. The middle areolar tissue is usually absent in the upper and lower (or only in the latter) parts of the lung, and the cells are then merely parietal, and leave cavities of considerable size in the interior of the organ. The lungs of the Crocodile and Monitor are the most completely made up of cells. In the Serpents it is commonly only the commencement of the one developed lung that is replete with cells and areolar tissue, its posterior extremity being in the condition of a thin' walled and very extensible bladder. The size of the cells varies, but they are always larger than in Birds.

In the Amphibia, which present the lowest forms of air-breathing animals in the class Vertebrata, the study of the structure of the Larynx as an instrument of voice is one indeed of particular interest.

Its simplest structure is exhibited by some Ichthyodea, e. g., Pro-

teus, in which it forms a cylindrical cavity, which is narrow supe riorly toward the glotidean fissure, and beneath the latter is continued through the intervention of two sacs into the lungs. Within this rudimentary larynx are situated several strips of cartilage, corresponding to the pars arytenoidea and laryngo-trachealis. In the Tritons and Salamanders, where the sacs or rudimental indications of the bronchi are absent, the laryngeal or vocal box, compressed from before backward, is supported by a superior arytenoid, and an inferior lateral or laryngo-tracheal cartilage. The structure is similar in one family of Ichthyodea, comprising the Menopome, Amphiume and Axolot, as also in Cocilia, where several tracheal rings are already met with.
Resembling more nearly the larynx of the higher animals, but with diverse modifications, we come now to consider the structure of the laryngeal cavity in the Anourous Batrachia; a subject of special interest from the differences which it presents in the two sexes of these Amphibia. This latter circumstance is very strikingly* exemplified by its conditions in the males of the genus Pipa. The arytenoid cartilages are here of considerable size, triangular in form, and articulate with the lateral or laryngo-tracheal cartilages situated beneath them, and here united into a single body; this, which corresponds io the thyroid cartilage, forms at the same time the upper part of the trachea, and diminishes greatly in size opposite to the arytenoid cartilages. The glottidean fissure is situated quite close to the root of the tongue, and there are always found in this situation, with but few exceptions, as in Pipa and Dactilethra, a pair of vocal chords, that correspond to the ligamenta inferiora of the Mammalia, and are attached before and behind to the arytænoid cartilages. Beneath the vocal chords are situated a pair of cavities analogous to the ventricles of Morgagni. A pair also of inferior vocal ligaments, narrower than the true ones, and formed by simple folds of mucous membrane, frequently occur.:
In the Squamigerous Reptiles, the separation of the larynx from the trachea is more distinctly shown. The arytrnoid and thyroid cartilages in the Serpents are frequently blended together. In the Crocodiles and Tortoises, and in many of the Sauria, the thyroid cartilage is very developed, isolated from the rest, and being provided with special processes, resembles that in the larynx of Man. Frequently there is developed from it in the direction upward a fold of mucous membrane or a processus epiglotticus, which as in the Chameleon, may be viewed as a rudiment of the laryngeal valve.

organs ${ }^{\circ}$ of respiration and voice.

A true cartilaginous epiglottis is found to be present either as a narrow papilla, or broader lobule, in different Serpents and Sauria. The vocal ligaments are not nearly so generally present among the Squamigera, as the Anourous Batrachia. They are wanting in all the Serpents, the hissing sounds of these animals being produced like the act of whistling in the human subject, by the edges of the narrow laryngeal outlet performing friction against the air in expiration. The Lizards possess a pair of narrow vocal chords. A thick fold of mucous membrane with a subjacent pouch is all that is to be remarked in the Crocodile.
A peculiar structure in the genus Chameleo, reminding us of the laryngeal pouches in many Apes, is well deserving of notice. Between the larynx and first treacheal ring is found an opening which leads into a membranous sac that can be distended with air.
As concerns the Laryngeal muscles, an expansor of the glotis (m. dilatator aditus laryngis Henle) is found, very generally in the Batrachia, and arises either from the vertebral column and the skull, or from the lingual bone (this being the case in all the Anoura), and is inserted into the edge of the yocal fissure, or into the cartilago lateralis of its corresponding side. Besides this muscle, in examples, of a more perfect structure, we may distinguish three others, a dilator of the laryngeal inlet, with a contractor and a compressor of the cavity of the larynx, all of which exhibit manifold diversities. Among the Squamigera an elevator and a depressor of the larynx are found in the Serpents, as a pair of long muscles, that are absent in the higher orders of the sub-class, but a compressor and dilatator aditus laryngis are universally present.
In some of the Anourous Batrachia, e. g., in the Tree and Meadow Frogs. (Hyla and Rana esculenta), but not in R., temporaria, accessory organs are associated with the vocal apparatus. They consist of a pair of thin-walled, very dilateable bladders, situated by the articulating surface of the inferior maxilla, and which open always into the cavity of the mouth below the Eustachian tubes; they contribute to strengthen the voice, by serving as an apparatus of resonance.

Between the carotid arteries and resting upon the trachea, a small vascular gland, which may be viewed as the analogue of the Thyroid gland, is found in several Squamigerous Reptiles, as in the Tortoises, Crocodiles, and also in the Serpents.

open. They are lined internally by a mucous membrane, which is covered with a net-work of flat cells and depressions, that secrete a fetid kind of grease. An epithelium provided with the same cellular surface rests quite freely upon the mucous membrane of these Anal sacs. The Chelonia possess similar but/more rounded anal sacs. The Crocodiles have a thicker walled pouch situated beneath the integument upon the middle of the lower jaw, and which is called the musk gland, from its secreting a dark-colored grease smelling like musk.

The most remarkable peculiarity in the secretory organs of the present class is afforded by the Poison glands, which occur, however only in the order Ophidia.
The Poison-gland corresponds in some measure with the parotid salivary gland, and agrees most strikingly in situation with the later in the Venomous Serpents, having posterior venom-teeth, e. g. Dipsas, Homalopsis, where it lies more freely, not invested by any fibrous tunic, and has a short excretory canal. In the typical Venomous Serpents, as Vipera, Naja, Crotalus, Trigonocephalus, the poison-gland is situated more behind and beneath the eye, consisting of short tabes in Naja, or of hollowed ramified lobules (Trigonocephalus) and is surrounded by a dense, mostly double fibrous sheath, this again being covered by a layer of muscular fibres, which proceed partly from the temporal muscle, and serve to compress the gland and force its contained secretion into the excretory ducts; the latter courses along the external surface of the superior maxillary bone, and enters an opening placed at the root of the poisontooth. The situation and structure of the poison-gland are similar in the Aquatic Serpents (Hydrus and Hydrophis). This gland occurs in an unusual situation in Causus rhombeatus, being ensiform, situated in a channel-like cavity, and extending to the 18 th or 19 th wertebra, so that it reaches over more than a seventh part of the whole length of the body; its excretory duct extends from the *. poison-tooth to behind the quadrate bone. The ejection of the poison into a living animal is accompanied by peculiar and frequently fatal effects. and organs of generation.
2,
\& Repmics, like all the Vertebrata, have two distinct sexes, which exist in tolerably equal numerical proportion to each other, though with some preponderance upon the part of the female. The getmpreparing sexual organs are always situated within the abdomen,
and usually in front of the kidneys. The ovaria and testes are usually placed symmetrically apon the two sides, and are of equal size ; it is rare for the testis or ovarium of the right side to be situated higher up than the left, as in the Ophidia and Blindworms (Anguis), where their asymmetrical arrangement reminds is of that of the lungs and kidneys of the same side.
In all the naked Amplíibia and among the Squamigera, as the Ophidia and Sauria, the Ovaria are in the form of simple sacs or bags, mostly of a rounded shape, e. g., Ichthyodea, Tritons, Salamanders, and Ophidia, or of a more elongated form, e. g., Sauria, lined internally with a smooth mucous membrane, beneath which the ova are developed, and externally invested by peritoneum. Occasionally, as in the Anourous Batrachia, the ovaria are divided into lobes; and partitions projecting into their interior, form there cells within which the ova are found. In the direction forward, each sacciform ovafium is provided with a round or sometimes tubular aperture for the exit of the ova ; within the smallest and most primitive ova a chorion, vitellus, and germinal vesicle may be clearly distinguished, the Jatter being in the Naked Amphibia provided with numerous small germinal spots. In the Squamigera the germinal spot is always single. In the Chelonia each ovarium, as in Birds and Cartilaginous Fishes, consists of a stroma, upon the free surface of which, namely, that turned to the ventral side, the ova are developed.
The Oviducts are two long membranous, frequently multi-contorted tubes, which are kept in their place by folds of mesentery, and are provided in the direction forward in some Reptiles, as in the Chelonia, with an infundibuliform abdominal ostium, into which the ova, after being detached from the ovarium, are received.' In the Batrachia the opening of the oviducts is placed at a great distance from the ovarium, in the proximity of the heart. Strong and even muscular fibres lie between the external peritoneal and internal mucous membrane, and by means of these the oviducts are capable of exercising considerable peristaltic movements fike the intestines. Their internal mucous membrane exhibis, chiefly in their lower or posterior part, strong longitudinal folds or villi, upon twich the albumen is secreted, being the first investment which is here obtained by the of a. The oviduct is usually more widely dilated in the posterior part. Both oviducts open into the cloaca separately. A clitoris has been found hitherto only in the Chelonia and Crocodiles.
The Testes are of an elongated form in the Ichthyodea and Ophit dia, or rounded, as in the Frogs, Sauria and Chelonia, and frequent-

ly divided by constrictions into several portions, A single testicle is most commonly found upon eitheriside ; occasionally, however, we meet with two and even several testes united one behind the other merely by the seminal vessels, as is the case in the Salamanders, where three to four suth testes occur. The testes are invested externally by a thick fibrous coat, and consist internally of long or short and narrow ceca. The open extremities of these cceca pour, the seminal fluid into several ducts, which unite to form a straight or contorted vas deferens, running down in front of the kidneys. Both yasa deferentia open into the cloaca. Upon the testes, as also upon the ovaria, there are appended occasionally in front, large yellow-colored lobes of fat divided in a digitate form, e.g., in the Tailed Batrachia, while on the Anoura the adipose lobes are elongated, undivided, and attached by mesentery to the internal side of the sexual organs, or that turned toward the vertebral column.
The Spermatuzoa contained in the semen of the Reptilia exhibit - wery numerons diversities. Those of the Squamigera, however, in the common Snake for example, like those of Mammalia, an elongated body pointed anteriorly, and a very fine filamentary tail. In the Naked Amphibia greater varieties occur, while in the Frogs their body is elongated and narrow, but not very long; the spermatozoa of the Tritons and Salamanders are slender and circularly contorted, attain a very remarkable length, and exhibit yery peculiar movements; other anomalous and singular forms occur, e. g., in Bombinator. The spermatozoa are probably of largest size in the Proteus, thus exhibiting an interesting analogy with the blood corpuscules.
A proper external organ of copulation or sexual excitement, namely, a Penis, is absent as a rule in all the Naked Amphibia, Batrachia as well as Ichthyodea. Still however in the Tritons, and in some also, perhaps all the Ichthyodea, there is developed, at least - during the period of the coitus, an organ which may be viewed as a rudiment of a penis. It consists of an acuminate papilla of considerable size, situated within the cloaca, and continued posteriorly into two short thick crura, which form a groove with the posterior wall of the cloaca, into which the semen is conveyed as it issues from the adjacent mouths of the vasa deferentia. This papilla is amperforate, but, though very irritable, is incapable of erec-
A tion. This structure resembles much the rudiment of the penis that occurs in the male Ray-fish. Accessory glands occur in the Ichthyodea and Tailed Batrachia. They consist of a.very dense Ichiny
glandular layer, which surrounds the cloacâ, and forms a protuberance around the anus, which consists of several layers of cæca, and projects very much at the time of the coitus.
The Lizards and Serpents possess a double penis capable of being - everted; these two intromittent organs are in the Serpents often very long, slender and pointed, and are here, frequently like other organs, e. g., Coluber natrix, asymmetrically developed, the left being the longest. They lie extended beneath the integument in a cavity behind the anus at the commencement of the tail, and can be everted from the cloaca, as in the Ducks and Geese, by a pair of special muscles ; they are devoid, however, of elastic tissue and a fibrous body. At the season of the coitus they form, when everted, a double tube, which serves for the exit of the semen. Frequently, as in the Vipers and Rattlesnakes, and also in Python, êach of the

- two penes is bifurcated at the extremity

The penis is single in the Tortoises and Crocodiles, and resembles more, that of the Two-toed Ostrich among Birds; it consists of a fibrous body, and has a groove upon its upper and anterior surface, which is imbedded in cavernous tissue, and into which the seminal fluid is received from the seminal ducts. In front we find a glans of varied form, infundibuliform in the Crocodiles, and very largely developed in the Tortoises; the whole of it consists, as in Man and Mammalia, of cavernous tissue. A muscle serves to draw the penis out of the cloaca. It is peculiar to all Reptiles, that the urogenital orifice lies invariably, as in the higher Vertebrata, in front of the anus.
Whit In the males and females of the Tortoises and Crocodiles, there is found what are called the Peritoneal canals, which conduct as membranous tubes or slits from the peritoneal cavity into the cloaca, and are continued upon the penis as far as the glans, and there terminate blindly; in the female they are to be traced to the root of the clitoris; in both sexes they remind us of the vaginal canals of the
Mammalia (see p. 54), and áre probably the remnent of a fetal structure, viz, the excretory ducts of what are called the false kidneys or Wollfian bodies. (.).
The two sub-classes of Reptiles, differing, as we have already seen, in so many important particulars from each other, are also developed from the ovum in an entirely different manner. The Naked Amphibia agree with Fishes in having neither amnion nor allantois, both of which fetal structures occur, however, in the Squami\& gera, of whom many have proposed to form a distinct class, limit-

180 BIBLIOGRAPHY゙. $x^{2}+\pi$ e
ing to it the name of Reptilia. In the presence of these embryonic **structures, the Serpents, Lizards, and Tortoises, agree therefore with Birds, Mammalia, and Man.

REFERENCES

to the pringipal works uron the anatomy of reptiles.
Iv addition to the list bf General Works upon Comparative Anatomy given at page 61, consult the Article Arrphibia, by Thomas Bell, in Todd's Cyclopædia of Anatomy and Physiology, and the different treatises upon Reptiles in the Penny Cyclopædia.

Tegumentary System.
Mandl, Añatomie Microscopique. Paris, 1838-43.
Dumeril and Bidron's Erpetologie, vol. i. Paris, 1834. Dumeril and Bidron's Erpetologie, vol. i. Paris, 1834. Ascherson, über die Hautdüsen der Frösche in Müller's Archiv, 1840. Van der Hoeven, Icones ad illustrandas coloris mutationes in Chameleonte, 1831.
Meissner, de Amphibiorum quorundam papillis glandulisque femoralibus. Basil, 1832.
Osseous System.

Cuvier, Recherches sur les Ossemen fossicles. Tome dernière.
Cuvier, Regne animal, 2de Edition, tom. 3, on Osteology of the skull of

Serpents

Wagler, Nâturlich System der Amphibien. Munchen, 1830.
Dugès, Recherches sur l'Osteologie et la Myologie des Batraciens a teurs differens Ages. Par. 1835.
Joh, Müller, in Tiedemann's und Treviranus's Zeitschrift für Physiol. Band. 4, upon the anomalous genera of Serpents.
Ed. D'Alton, de Pythōnis ac Boarum ossibus commontatio. Saxonum,

Tiedemann, Anatomie und Naturgeschichte des Drachen. Nurnb. 1811.
Heusinger, in seiner, Zeitschrift für organische Physik. Band. 3, upon Osteology of Apodal Sauria.
Joh. Mäller, über Chirotes und Pseudopus in Tiedem. und Trevir. Zeitschritt f. Physiol. Band. 4.
Peters, in Müller's Archiv. 1839, upon union of dermo and tegumentary keleton in Chelonia.
Bojanus, Anatome Testudinis. Vilnæ, 1839.
Muscular System.

Consult in addition to the works of Dugès and Bojanus, the Comparative Anatomies of Cuvier and Meckel. D'Alton in Müller's Archiv. 1834, Carus, Erlanterungstafeln, and the Icones Zootomicæ of Wagner.

Valentin in Sömmering's Hirn-und Nerrenlehre.
Icones Physiol Tab. 17 and 23. Brains of different Reptiles. Carus, Darstelling des' Nerren systems. Leiprig, 1814. Serres, Anatomie du Cervean, Paris, 1827 .
Treviranus, über Hirn und Nerven des Protens, in Comment. Societ. Gottingens, vol. 4., and Beobachtungen aus der Zootomie, Heft 1.
Mayer, Analekten zur vèrgleichenden Anat. figures and descriptions of Brains of Ichthyodea
Müller, Vergleichende Neurologie der Myxinoiden.
Müller, zur Vergl. Physiol, d. Gesichtsinn's. Leipzig, 1833, upon decussation of optic nerves.
Volkmann, in Müller's Archiv. 1838.
Voigt, Neurologie von Python, Müller's Archiv. f. 1839,
Van Deens. Traités sur la physiol. de la moelle épinière. Leiden, 1841 Giltay, de Nervo. Sympathico. Lugd. Batav. 1834.
Organs of the Senses.
Cloquet, sur les veies lacrymales des Serpents, Mém, du Mus. d'hist. nat. vol. 7.
Duvernoy, Ann. des sciences nat, tom: 30, and in Mém. de la soc. d'hist. nat. de Strassbourg, tom. 2, on tongue of Chameleon.
The works of Scarpa, Windischmann, and Steifensand, see p. 128 of the present work.
Rusconi, Monografia del Proteo anguino.
Müller, in Meckel's Archiv. 1829, upon nasal glands of Serpents
Rathke, Untersuch, über den Kiemenapparat und das Zungenbein der Wirbelthiere, Riga, 1832.
8 Henle, vergleichend-anat. Beschreibung des Kehlkopis. Leipz. 1839. Losana, in memorie della scienze di Torino, vol. 37, 1834, upon structure of lingual bone. \quad shat
" Digestive System.
Schlegel, in nona Act. Acad. Leopold. vol. 14, upon structure of Poison-fangs.
Brotz and Wagemann, de amphibiorum hepate, hene ac pancreate. Fribargi. 1838.
Organs of Circulation.

Owen, Anatomy of Lepidosiren. Trans. Lin. Soc, for 1840, and Trans.
Zoot. Society, vol. 1.
Martin St. Ange, sur les organes transitiores et la metamorphose des Batraciens, Ann. dees sci. nat. tom. 24.
Hunter, Upon the Menopome in catalogue of Museum, R. C. Surgeons, 1834, vol. 2.
Rusconi, Descriziene anatomica degli organi della Circolazione delle Larve delle Salamandre acquatiche. Pavia, 1817.
Bischoff in Müller's Archiv. f. 1836.

182

> BIBLIOGRAPHY. ,

Bern. 183
Voigt, Inaugurabhandlung zur Anat. der Amphibien. Bern. 1839. Huschke, über die Carotidendrüse der Batrachier in Tiedemann's Zeitschrift f. Physiol. Band. 4
Schlemm, über, das Gefass-system der Schlangen in Tiedem. Zeitscrift, Band. 2.
4. Hyrtl, in den östreichischen Jahrbüchern für Medicin. Band. 15, 1838 Hyrtl, Strena anatomica de pulmonum vasis in Ophidiis nuperrime ob servatis. Pragæ. 1837
Calori, in den Commentar. Bobon. vol. 5.
Burow, de vasis sanguiferis ranarum. Regiom. 1834
Gruby, Annales des sc. nat. tom. 16, on venous system of Frog. Bojanus and Jacobson in Meckel's Archiv. Band. 3, and
Nicolai in Oken's Tris for 1826, upon portal system of kidneys.
Joh. Müller, über die Lympherzen der Schildkröten, Berlin, 1840.
Valentin's Repertorium, Band 1,1836, apon lymphatic heart of Python.
Weber, in Müller's Archives, for 1835.
Panizza, sopra il sistema linfatico dei rettili richerche zootomiche. Pavia, 1833.
Organs of Respiration.

Meckel's Archives f. Physiol. Band 4, upon respiratory system of
Reptiles, and Henle and Rathke, opera citata
TEGUMENTARY SYSTEM.
CLASS IV.-PISCES.*
TEGUMENTARY SYSTEM.

The skin and other tissues belonging to the tegumentary system in the class of Fishes, exhibit very numerous diversities of structure; they have not, however, been so carefully investigated as hairs and feathers.

An Epidermis is always present, lubricated frequently by a copious viscid secretion, and occasionally entirely devoid of scales, as in the
Cyclostomi, Lophius piscatorius, Murænophis, and others, while, on the other hand, many Fishes that appear almost smooth and scaleless, such as the Burbot (Gadus Lota), are in reality provided with small scales. The scales are usually disposed in an imbricated manner upon the body of the Fish, and adhere by one extremity being implanted in a sacciform depression of the corium:

The Scales generally exhibit great varieties of form, being either round or angular in their contour, and frequently provided with jagged edges. They usually consist of transparent, or highly refractive laminæ like mother-of-pearl ; upon their external surface we observe a series of circular lines, which are disposed concentrically around a common nucleus or spot, which is not always

परि. -

- Class PISCES.

Sub-Class 1. Pisces Ossei s. Ostacanthi.
Order I. Acanthopterycir-Ex. Perch, Bream, Mackerel.
II. Malacopterygir-Ex. Carp, Pike, Salmon, Herring.
III. Plectoonathi.-Ex. $\left\{\begin{array}{l}\text { Diodan, Tetrodon, Orthagoriscus, Ostracion, Balis. } \\ \text { tes, \&c, }\end{array}\right.$
IV. Lophobranchir--Ex.-Syngnathus, Hippocimpus.

Sub-class 2. Pisces Cartilaginosi s. Chondropterygii.
V. Plagossome.-Ex. Rays and Sharks.
VI. Eleutherobranchi.-Ex. Sturgeon, Chimara.
VII. Cxclostomi-Ex. Pefromyzon, Ammocetes, Myzine, Bdellostoma. Müller and Marnus is systemate uropöetico. Halæ, 1817. Nagel, in Müler's Archiv. I836, on structure of renal capsules.

Brandt angans of Secretion.
Cantor, Itzeburg medicinische zoologie, Band. 1.
Reinwa Trans. Zoological Society, vol. 6, upon Hydrophis.
Rengger, in Meckel's Archiv. for 1829.
Rathbe, Beitrage zur Geschichte der Thion
Wagner, Abhandlungen der math, physik Klasse der Akademie zu München, Band 2, 1837, upon microscopic anatomy of seminal fluid.
Valentin's Repertorium, 1841, S. 357
Finger, de Tritonum genitalibus. Marborg. 1841.
${ }^{\text {IIsidor}}$ Geofroy, and Martin. St. Ange in Annales des sciences nat. vol. 17;

Sub-class 3. (Provisional). Pisces Anomali.
IX. Heramthomer उत्ट

$$
\cdots \geqslant
$$

182

> BIBLIOGRAPHY. ,

Bern. 183
Voigt, Inaugurabhandlung zur Anat. der Amphibien. Bern. 1839. Huschke, über die Carotidendrüse der Batrachier in Tiedemann's Zeitschrift f. Physiol. Band. 4
Schlemm, über, das Gefass-system der Schlangen in Tiedem. Zeitscrift, Band. 2.
4. Hyrtl, in den östreichischen Jahrbüchern für Medicin. Band. 15, 1838 Hyrtl, Strena anatomica de pulmonum vasis in Ophidiis nuperrime ob servatis. Pragæ. 1837
Calori, in den Commentar. Bobon. vol. 5.
Burow, de vasis sanguiferis ranarum. Regiom. 1834
Gruby, Annales des sc. nat. tom. 16, on venous system of Frog. Bojanus and Jacobson in Meckel's Archiv. Band. 3, and
Nicolai in Oken's Tris for 1826, upon portal system of kidneys.
Joh. Müller, über die Lympherzen der Schildkröten, Berlin, 1840.
Valentin's Repertorium, Band 1,1836, apon lymphatic heart of Python.
Weber, in Müller's Archives, for 1835.
Panizza, sopra il sistema linfatico dei rettili richerche zootomiche. Pavia, 1833.
Organs of Respiration.

Meckel's Archives f. Physiol. Band 4, upon respiratory system of
Reptiles, and Henle and Rathke, opera citata
TEGUMENTARY SYSTEM.
CLASS IV.-PISCES.*
TEGUMENTARY SYSTEM.

The skin and other tissues belonging to the tegumentary system in the class of Fishes, exhibit very numerous diversities of structure; they have not, however, been so carefully investigated as hairs and feathers.

An Epidermis is always present, lubricated frequently by a copious viscid secretion, and occasionally entirely devoid of scales, as in the
Cyclostomi, Lophius piscatorius, Murænophis, and others, while, on the other hand, many Fishes that appear almost smooth and scaleless, such as the Burbot (Gadus Lota), are in reality provided with small scales. The scales are usually disposed in an imbricated manner upon the body of the Fish, and adhere by one extremity being implanted in a sacciform depression of the corium:

The Scales generally exhibit great varieties of form, being either round or angular in their contour, and frequently provided with jagged edges. They usually consist of transparent, or highly refractive laminæ like mother-of-pearl ; upon their external surface we observe a series of circular lines, which are disposed concentrically around a common nucleus or spot, which is not always

परि. -

- Class PISCES.

Sub-Class 1. Pisces Ossei s. Ostacanthi.
Order I. Acanthopterycir-Ex. Perch, Bream, Mackerel.
II. Malacopterygir-Ex. Carp, Pike, Salmon, Herring.
III. Plectoonathi.-Ex. $\left\{\begin{array}{l}\text { Diodan, Tetrodon, Orthagoriscus, Ostracion, Balis. } \\ \text { tes, \&c, }\end{array}\right.$
IV. Lophobranchir--Ex.-Syngnathus, Hippocimpus.

Sub-class 2. Pisces Cartilaginosi s. Chondropterygii.
V. Plagossome.-Ex. Rays and Sharks.
VI. Eleutherobranchi.-Ex. Sturgeon, Chimara.
VII. Cxclostomi-Ex. Pefromyzon, Ammocetes, Myzine, Bdellostoma. Müller and Marnus is systemate uropöetico. Halæ, 1817. Nagel, in Müler's Archiv. I836, on structure of renal capsules.

Brandt angans of Secretion.
Cantor, Itzeburg medicinische zoologie, Band. 1.
Reinwa Trans. Zoological Society, vol. 6, upon Hydrophis.
Rengger, in Meckel's Archiv. for 1829.
Rathbe, Beitrage zur Geschichte der Thion
Wagner, Abhandlungen der math, physik Klasse der Akademie zu München, Band 2, 1837, upon microscopic anatomy of seminal fluid.
Valentin's Repertorium, 1841, S. 357
Finger, de Tritonum genitalibus. Marborg. 1841.
${ }^{\text {IIsidor}}$ Geofroy, and Martin. St. Ange in Annales des sciences nat. vol. 17;

Sub-class 3. (Provisional). Pisces Anomali.
IX. Heramthomer उत्ट

$$
\cdots \geqslant
$$

situated in the centre of the scale; the circular are frequently intersected by longitudinal lines, and of this arrangement there are abundant examples. To determine the more minute structure of the scales of Fishes is a subject attended with much difficulty. The scales are always included within the cutis itself, and consequently, 4 uuless the latter is injured, it is impossible for the scales to come off. The layers, which cover the scales, are as follows : 1 st. An epidermis, formed of tessellated cells; these may be found detached in small masses in the slime that covers a Fish, and constitute its principal part. 2d. A layer of pigment-eells; these are frequently ramified, and are continued into spirally-contorted terminal canals, which do not, however, anastomose with each other. 3d. The cutis, consisting of a fibrous tissue, within the areolæ of which is a deposite of fat. 4th. A very fine layer of membrane, distinct from the cutis, and in which linear-shaped depressions and elevations may be remarked corresponding to the concentric grooves and ribs of the scales. This layer consists of fibres, which, in a histological point of view, are related to cellular tissue.
Each scale is lodged in a sac, formed by two lamellæ of the cutis, the superior of which is alone covered by pigment-cells and epidermis. Each scale has an inferior soft portion, consisting of fibrocarilage. It is not easy to determine whether or not the concentric strix are merely the optical expression of the lamellæ of the scale lying npon each other. This part of the scale appears actually to consist of bony tissue, although true osseous corpuscules are generally absent. The scales are, moreover, traversed by broader chan-nel-like longitudinal lines; these are, however, frequently absent, and their nature and signification are unknown
The manner in which the scales clothe the body of Fishes varies very much in the several genera, as do the feathers upon Birds. As a rule, the scales lie in an imbricated fashion upon each other, leaving a part of their border free, so that they abut against each other in a variety of ways. Occasionally the upper edge of a scale is provided with a hook-shaped process, which catches in a depression of the inferior edge of the next scale that covers it . The lines of direction of the rows of scales upon the body vary also.
The form and contour of the scales present an almost endless variety; they are either round or oval, angular or provided with undulated edges and projecting lobes ; these edges are frequently dentated, and provided with several rows of spines. A row of pecu liarly-formed scales is situated upon what is called the lateral line,
and they are here perforated by a canal, or frequently by a short tube, through either of which the mucous ducts, presently to be described, open externally upon the integument. \qquad
The bony scales of many Fishes, e. g., Lepidosteus, Polypterus, Trigla, differ from the ordinary scales of the Osseous Fishes, for in them we find distinct osseous corpuscules. True tegumentary bones oceur in the Sturgeons, many Siluri, and in the genera Polypterus and Lepidosteus, and form large bony plates, which are frequently invested by enamel. In the Trunk-fish (Ostracion) these form tolerably regular six-siaed plates, which are so accurately fitted to each other, as to form a very compact and hard coat of mail. In the Spinous Globe-fishes (Diodon, Tetrodon), the scales project from the surface of the body into long and pointed spines. Small acumiSharks elevations are seated upon the integument in the Rays and herks, and in the intervals between them, in the Rays, several larger ones, situated upon a broader basis, are prolonged externally into a transparent spine, and exhibit internally, like the teeth, a medullary pulp, to which vessels are distributed.
The integument is traversed by the peculiar narrow Mucous. Canals, which give off short, transversely-directed branches, and terminate externally by free open mouths, in different situations, but especially upon the lateral line, on the head and snout, c. g., in Fishes of the Eel kind. In the Gadus merlucius, in which these mucous canals have been most carefully examined, there is one which runs like a vessel along the whole length of the body, bifurcates behind the eye, and gives off a pair of branches to the snout, while at intervals branches arise from it that open upon the integument; a small twig also passes over the preoperculum to the lower jaw. In the Rays and Sharks particularly strong and tortuous canals are found imbedded in the integument of the head. In Torpedo two rows of openings lie upon either side of the back, and open into two corresponding longitudinal canals. Special layers of glands are situated beneath the lateral line, and are, in the Carp, Tunny, and several other Fishes, much developed. They appear to secrete the mucus, which passes out through the canals traversing the scales of the lateral line. In rare cases these mucous canals are wanting, as in some, but not all, the genera of the order Cyclostomi. The mucous canals of the head are frequently covered by hard scales, which serve to protect them; this is the case throughout the whole 4 course of the mucous canals in Polypterus Bichir. In other in-
 occipital elements rest upon this basilar portion of the bone, and, analogous in part to the articular or condyloid pieces of the higher Vertebrata, concur in forming the lateral and superior parts of the occipital bone, and leave between them the foramen magnum for the exit of the spinal cord. Each of these pieces is perforated in the Carp by a large oval opening, situated laterally above the foramen magnum, and which remind us of similar apertures in many Wading and Aquatic Birds. Superiorly to the above pieces are placed the tivo latero-superior elements, which in many cases receive the mem-1 branous semicircular canals of the auditory organ, and therefore represent, in some respects, certain portions of the temporal; they have been viewed, accordingly, by some anatomists as mastoid bones. These two pieces are generally smaller than the inferior pair, and correspond in part to the squamous element of the occipital, which is here, however, principally formed of a single plate of bone. This, the supra-ocipital, is usually provided with a strong crest or spine-shaped process for the attachment of the nuchal muscles. This crest is more strongly developed in the Bream than in the Carp, and to a still greater degree in Coryphæna, Chætodon, \&c. It corresponds to the spinous processes of a vertebra.
The Sphenoid is divisible into seven pieces, three of which are in
pairs. The single body of the sphenoid is mostly of a very elonpairs. The single body of the sphenoid is mostly of a very elon-
gated form, frequently also of great depth, gated form, frequently also of great depth, laterally compressed and keel-shaped, e. g. in Anarrhicas. It forms the largest and chiefly the middle part of the base of the skull, abuts posteriorly against the body of the occipital, and in front against the vomer. It supports in the direction upward the two ale majores, if we do not regard these as partly united to the temporal bone. At the point posteriorly where these pieces come in contact with the petrous bone, they have a notch through which the second and third branch of the trigeminal nerve issue from the skull. Still further upwatd and forward are situated the ale minores, which are frequently two in number, but often replaced, as in the Carp, by a single osseous leafiet, excavated superiorly by a keel-shaped groove; in other Fish they coalesce at an early period of existence into one bone. All the above-named parts of the sphenoid are, like those of the occipital, united together, and with the rest of the cranial bones, by suture. This is not, however, the case with the two pairs of inferion wings or pterygoid processes, which, of considerable size, abut against the middle part of the inferior surface of the body of
the sphenoid, and are united in front with the palatal bones, and 189 posteriorly and inferionly with the articular portion of the temporal. Occasionally, as in Pleuronectes, they are divided into two pieces, an internal and external alar lamina. As constituent elements of the temporal bone, we regard with more or less justice a remarkable number of ossicles, which may be resolved into two principal divisions, belonging to the cranial and articular portion of that bone. The cranial division consists always of three bones, which, intercalated between the already described pieces of the occipital and sphenoid bones, are united with these, as well as the parietals and frontals, by suture. The petrous bone is of larger size, disc-shaped, and is situated most deeply, being interposed between the body and inferior occipital bone, and also the great wings of the sphenoid; it rests upon the body of the latter bone, and is perforated by a large opening for a branch, the opercular, of the fifth pair of nerves. In the direction upward and backward is placed the mastoid bone, which by some has been taken for the squamous element. We may regard, however, as the squamous portion of the temporal, a bone which rests in front of the mastoid, above and upon the petrons; but if this analogy will not hold good, it must be viewed as a particular scale-like bone, comparable to that which occurs in the Reptilia, and be called the posterior frontal. Between this portion of the skull and the lower jaw a number of bones, amounting to five at the utmost, or four, three, or only two in number, are introduced ; the most anterior of these articulates with the lower jaw, and constitutes the articular portion of the temporal, which, in Reptiles and Birds, is reduced to the single quadratal bone. The first, the uppermost and most posterior bone, is always the largest in size; it forms the superior articular bone, and unites itself by means of a mostly moveable process with a corresponding depression in the mastoid piece and squamous element of the temporal bone; behind and above we meet with a condyle upon it for articulation with the operculum. In front of, and leading somewhat downward from, the superior articular bone, lies the great opercular, a flat and very thin bene, beneath which again is placed the narrow hamular ossicle, and against this the inferior articular, which articulates with the lower jaw, abuts in the direction forward and downward. There is found sometimes a fifth, smaller and flatter bone, situated between the others. The above-mentioned bones are partly united together by squamous suture, partly by fibro-carilage, and concur to form a bony wall, abutting posteriorly against the preoperculum, which
bone is reckoned not improbably by some as belonging also to the articular division of the temporal. The whole of the quadratal bone abuts in front and superiorly against the inferior wings of the sphe-, noid. In cases where several of the bones now described are wanting, or have coalesced together, four, three, or only two bony pieces, may compose the articular portion of the temporal. Thus in Cy prinus and Esox we find five, but in most genera, as Perca, Pleuronectes, and Cobitis, only four of these elements. The quadratal bone, e. g. Zeus, Silurus, and Heterobranchus, is formed of three pieces. Two pieces only, firmly united by suture, are fouud, e. g. in Muræna and Murænophis, where this bone more resembles in form the os quadratum of the higher Vertebrata. A pair of mostly small flat parietal bones, which are situated upon the upper surface of the cranium, between the occipital, temporal, and frontal bones, are very generally present. In front of these lie the double frontal bones, mostly of considerable size, and to which the ethmoid is affixed in front. This latter bone consists of a middle azygos piece or lody, and two large lateral ethmoids, which have been viewed by many as particular bones under the name of anterior frontals. Spaces forming fontanelles occasionally intervene, e.g. Silurus, Cobitis, between the frontals and also the parietal bones. The distinct want of symmetry in the bones of the two halves of the cranium in the Plaice and Flounder is another osteologieal peculiarity deserving our attention.
The greater proportion of the Facial bones in the Osseous Fishes - admit of being very readily referred to their analogues in the higher Vertebrata. The upper jaw consists very generally of an anterior pair of intermaxillary bones, mostly supporting teeth, and of a superior maxillary, occasionally very rudimentary, situated behind these, and scarcely ever furnished with teeth. In the Carp tribe both bones are devoid of teeth; the intermaxillary bone is usually the smallest of the two, but is largest in Sparus and the Fishes of the Eel kind e. g. Murænophis, in which the intermaxillary and vomer appear to have coalesced, while the superior maxillary supports teeth. In some cases the latter bone coalesces with the vomerine, palatal, and nasal bones to form a single bone, which unites, however, with that of the other side by suture, as in Orthagoriscus and Diodon. The superior maxillary bone is very small and rudimentary in Silurus, and is even absent in Balistes, where, however, the intermaxillary is much developed. A second bony piece in rare instances, e.g. in the Trout, Pike, and Herring, is situated above
and upon the superior maxilla, and may be probably compared 191 with the labial cartilages of the Plagiostomi. Other bones, however, besides this occur in many of the Osseous Fish, which are still more analogous to the system of labial cartilages in the Sharks. Thus a cartilage is frequently found in the fold of the angle of the mouth, which in Scirena aquila is of very large size; it is mostly conical in form, attached by its basis to the lower jaw, and by the other end, which is free, to a fold of the mucous membrane. It is much more rare for a similar cartilage to exist in the upper jaw, as, for example, the two fine strips of cartilage in Dactyloptera volitans, where they correspond completely with similar structures in the Sharks.
The vomer is attached posteriorly to the anterior extremity of the sphenoid bone, and lies beneath the ethmoid. It very frequently supports teeth, but in the Carp projects into a couple of rounded nodules. The palatal bones are situated in front of and to the sides of the ethmoid, and in the direction backward they abut against the pterygoid bones. Each palatal bone is united to the vomer by means of a joint, and by means of this the mobility of the bony apparatus that rests upon the articulating or quadratal portion of the temporal is eflected. Occasionally, e. g. in Muræna, Murenophis, the palatal and pterygoim bones concur to form a single bone, which is very large in Gymnotus. The nasal bones are usually situated, as a pair of elongated flat bones, in front of and upon the ethmoid, e.g. in the Pike. In the Carp, an elongated, stile-shaped bone occupies their place; it is somewhat dilated at each end, and upon its sides there is always found a smaller discoidal bone. In Fish of the Eel kind, the nasal bones, or their analogues, are completely absent. Externally, upon the lower edge of the orbitar cavity in many Fishes, there is situated a series of flat bony scales, frequently five in number, which are mich developed in the Carp, and the most anterior of which is the largest. They are called infra-orbital bones, and, from their forming a kind of arch, may be compared to the jugal bone. This chain of ossicles is subject to much variety, being wanting in Murena, Murenophis, Balistes, and other anomalous Fishes, while oceasionally six bony scales occur, as in Perca, where they are very small, or they are only four in number, as in Trigla, and of remarkably-large size ; in some cases only two or one exist. There is occasionally found upon the border of the orbit, and situated upon the frontal bone, a peculiar bone of small size, the superciliary ; examples of it are furnished by Cypri-

198

occurs in the Cyclostomi. The cartilaginous corpuscules disappear by degrees, and the cartilage appears deyoid of cells, like the bairs of one of the Goat tribe. 4th. The completely-ossififed cartilaginous tissue, as exemplified in the solid vertebral bodies of the Rays and Sharks.
The Sturgeen, although a true Cartilaginous Fo transition from that thous Fish, effects the by the disposition type to the Osseous, of which we are reminded by the disposition of the parts of its skeleton. Already do.we find in many of the Osseous. Fishes, as the Pike and Trout, that the cranium consists internally, where it encloses the brain, of cartilage, upon the external surface of which the bones of the cranium, as already described, are deposited.a In the Sturgeon the cartilaginous cranium becomes ossified at its base, this bony portion correspiond ing to the basilar element or body of the occipital and sphenoid. But even here the ossific process has taken place only externally, and that surface which forms the cavity of the cranium still continues cartilaginous; the ossification is most apparent in the fibrous tunic, which, continued from the fibrous sheath of the medulla spinalis, lines the skull. In other parts the cranium is perfeetly cartilaginons, and covered in with firmly adherent bony scutes, which belong properly to the dermo-skeleton, and admit only of an 'inaccirate or yery remote comparison with the cranial bones of the Osseous Fishes. In front and on the sides the cartilage of the head presents depressions for the eyes and nasal cavities, and then projects into a long process - The palatal bones are separate from the skull, united with the superior maxilla, and consists posteriorly of an azygos bony plate, and two anterior osseons pieces in pairs. The quadratal bone consists-of a superior bony piece united to the cranium and two inferior cartilaginous pieces ; the last of these is united to the lower jaw, which, with the small and double superior maxillary bone, closes the edentulons mouth.
In the Chimmara, the Sharks, and the Rays, the skull is a large cartilaginous capsule, enclosing the brain and auditory apparatus; it is free of the vertebral column, and exhibits no traces of ossification. In the Plagiostomi there usually remains upon its upper sur-
This open space or fontanelle, elosed only by a fibrous membrane, This cartilagiinots capsulle. is particularly flatened upon its upper surface in the Rays, and has posteriorly an opening, the occipital or
foramen magnum, and lesser apertures also for the exit of nerves. A portion of this capsule, convoluted upon itself literally, forms the A portion of this capsule, convoluted upon itself laterally, forms the
orbitar cavities, and frequently-presents superiorly, as in Scyimnus
an orbitar process. United to the anterior extremity of the cranium we meet with a deep. hollow leaflet of cartilage, forming the nasal fossa. The upper jaw is constituted by a narrow arch of cartilage, occasionally, however, deep, as in the Sharks, and of a semilunar form; it is beset completely, both upon its edge and posterior wall; with teeth. A quadratal carrilage, more simple and elongated, is lodged in a posterior lateral depression in the skull, and articulates with the lower jaw, an arch provided with teeth, and composed of two lateral halves like the upper. There occur, moreover, in the Rays small palatal cartilages, as also peculiar cartilages belonging to the spiracles, and which correspond somewhat to the pterygoid bones or processes in the Osseous Fishes. The intermaxillary bone must be regarded as absent, if we do not consider it united wìh the superior maxilla in the arch of cartilage just described.t In the Chimeree the skull is very peculiarly formed, being provided with distinict convoluted nasal cartilages, while upon the fore part of the : head stands a style-shaped piece of cariliage.
Furrhermore, there exists in many of the Sharks and Chimeras a peculiar system of labial cartilages, which is wanting in the, Rays and Sturgeons; the question of its homology has given rise to various incorrect speculations; a portion of it was regarded formérly by some anatomists as belonging to the maxillary apparatus. It, consists of several more or less elongated muzzles of cartilage varying in form and partieularly remarkable in the Chimera, which rest externally and laterally against the upper and lower jaw. In Acanthias and other genera, for example, à lower labial cartilage is to he distinguishéd lying upon the iiferior, and a superior upon the upper maxilla, and occasionally, as in Scymnus, Chimmra, a third cartilage situated above the latter one. Among the Rays, it is, only in Narcina that small labial cartilages are met with. In them and in the true Eleetric Rays (Torpedo) there is situated in frontof hie Body: -a cartilaginous production of the muzzle which unites the pectoral fins to the skiull. \qquad数.
Still more abnormal is the strueture of the cranium in the Cyclostomi, and in them we are again met by numerons varieties in the structure of the buccal cartilages:? With this group, indeed; all attempts to draw any analogy or comparison with the typical Fishes must be laid aside.
The craninm of Petromyzon marinus and fluviatilis, consists of a hard, nearly osseous brain-capsule, having a detached flattened basilar portion, thatt gives off in the direction backward a pair of pro-

vertebræ, and opposed to each other; but the gelatinous column with its fibrous sheath that occurs in the Sturgeons and Chimære, and also in the Cyclostomi (as will be described further on), has a cellular structure, like the chorda dorsalis, quite different from cartilage.

In the Plagiostomi the fermation is of a more perfect kind, and similar to that of the Osseous Fishes, for the upper and lower pieces of the vertebræ having become more complete, the gelatinous column is so enclosed that the conical facets of the vertebral bodies are alone left. The points of ossification in its interior are very complex. In some Rays and Sharks a hyaline cartilage rests upon the surface of the vertebral body (e.g. Spinax, Scyllium); in others the vertebral body, with cellular interstices, ossifies up to the surface, but in its interior there remains a cross of hyaline cartilage, the crura of which are directed toward the points of origin of the arches and transverse processes (e. g. Carcharias, Zygxna); or other varieties occur, as in many genera, e. g. Hexanchus, Heptanchus, where the whole vertebral column remains cartilaginous throughout life. As a rule, however, the vertebral bodies, the pieces forming the arches, the intercrural cartilages, and the laminæ forming the roof of the spinal canal, are always to be distinguished. In the Rays a large anterior portion of the vertebral column is not distinctly divided into vertebral pieces, these being blended together.
In Petronyzon the fibro-cartilaginous tube is found to be annulated, filled with gelatine, and surrounded by a fibrous tunic, which forms above it a tube for the spinal marrow. In the upper membranous tube cartilaginous crura are seen to arise, and may be viewed as rudiments of vertebral arches.

In, Myxine, Ammocætes, and Bdellostoma, we meet with the lowest persistent condition of the vertebral column, and one which disappears at a very early period of existence in the higher Vertebrata; this consists of a chorda dorsalis, filled with gelatine, and surrounded by a fibrous tunic that forms above a tube for the spinal marrow; but all special divisions or rudiments of ossification in this tube are wanting. A similar chorda dorsalis, projecting as far as the snout, together with a fibre-membranous capsule for the spinal marrow, is found also in Amphioxus. Even in the Lepidosiren the vertebral column consists of a mere chorda dorsalis, without any indication of vertebral rudiments, and provided only with a ligamentous capsule and gelatinous substance.
Cartilaginous aecessory spines occur in the dorsal and anal fins x ค.
of the Sturgeon as in those of the Osseous Fishes; in the Sharks and Rays several divisions of triangular and quadrangular cartilaginous laminæ occur; they correspond to the accessory spines and support the fin-rays, \qquad
Many of the Cartilaginous Fish, as the Rays, Sharks, Sturgeon, at least the Lampreys, possess a peculiar sternal series, formed of a number of ramified rib-shaped cartilages which are united together, and to an elongated sternoid cartilage ; it encloses the gills, and may be therefore most properly compared with the branchial skeleton of other Fishes.

Among the Cartilaginous Fishes we meet with an entire absence of Extremities in the Cyclostomi, while in the Sturgeons, Chimæræ, Rays, and Sharks, they exist in the form of pectoral and ventral fins. The anterior extremities of the Sturgeon resemble those of the Osseous Fishes in being composed of several pieces, which correspond to a scapula and clavicle ; the posterior extremities are a pair of small ventral fins. The Chimæra approximates most in this respect to the Plagiostomi.

- Among the Plagiostomi the Rays present us with a surprising development of their pectortal fins, which correspond to anterior extremities, and are in some degree analogous to those of the Osseous Fishes. Their first portion consists of a seapular and a clavicular cartilage ; frequently, however, of three cartilages that form a pretty broad arch, which in the Rays firmly unites with the anterior anchylosed section of the vertebral column, but does not reach the latter in the Sharks. To this first portion succeeds a second, which consist in the Rays of three or four very elongated cartilaginous pieces; next we meet usually with two rows of rays, the posterior of which may be perhaps likened to the metacarpus, while the anterior or external represents as fin-rays the digital phalanges. In the Rays the digital phalanges are somewhat-dilated at the two ends.

Inthe Plagiostomi and Chimæræ the arrangement of the posterior extremities is rather more perfect than in most Osseous Fishes. An iliac cartilage is here present as a rudiment of the pelvis, and to this follows a series of more elongated cartilages, which may be regarded as tarsal, while arranged upon these are the rays or pedal phalanges supporting the ventral fins. In the male Rays and Sharks a pair of long, slender, cartilaginous appendages are united to the iliac cartilage ; they are hollowed out by a groove above for
the passage and exit of semen, and thus perform the function of external generative organs.
The genus Amphioxus, like the whole order of Cyclostomi, is devoid of all extremities. In Lepidosiren there are found externally, in the situation of the pectoral and ventral fins, two pairs of inarticulate filaments. The first pair.rest upon a bone or cartilaginous girdle forming their support; and for the posterior rudiments of fins there exists likewise a pelvic piece.
HLERE FA MUscuLAR system.
HEATATS
The Muscles of Fishes are characterized by their slight degree of separation from each other, by the absence of Fong tendons (which oceur only in some anomalous muscles of the cranium, e.g. in the । Electric Ray), and by the softness of their fibres. The color of the muscles is generally pale, being either white or having a tinge of yellow; occasionally, however, as in the Tunny (Scomber thynnus), they are red like the flesh of Mammalia. Their microscopic structure does not differ from that of the other Vertebrata, nor are the characteristic transverse strix wanting even in the whitest fibrillæ.
Peculiar muscles of the integument do not appear to exist ; still the small superficial muscles which move the several rays of the dorsal and anal fins are obviously analogous to the muscles that act upon the feathers in Birds, and upon the ventral scales in Serpents. Each fin-ray is constantly provided with a single superficial muscle upon either side (right and left) of its basis ; they arise from the integument, and wave the fin to and fro so as to maintain the act of swimming. Besides these, there are other muscles more deeply seated, and of some length, which cover the interspinous bones. Each fin itself is provided with a pair of protractor and a pair of retractor museles, those that correspond upon either side being separated by the interspines, and covered by the great lateral muscles of the body. By means of these muscles the dorsal and anal fins can be elevated and depressed. Those Fishes which, like Gasterosteus, Silurus, Lephius, and Balistes, are furnished with certain strong but loose spines or fin-rays as instruments of defence, present greatly developed and isolated fin-muscles.
By far the largest portion of the fleshy mass of Fishes is made up. by the large lateral muscles of the body ; they consist of Iongitudinal fibres, which are interrupted by numerous tendinous undulating lines passing from the dorsal to the ventral aspect, and extend from
y e \qquad
MUSCULAR SYSTEM, "
the head and scapular arch to the base of the caudal fin. This mass of muscle is not, however, so simple as it appears, but divided into numerous parts. We may distinguish an upper layer where the tendinous strips are directed obliquely backward, and then a second and third; the last of which is situated beneath the lateral line. The tendinous transverse strips here alter their direction, but cor\therefore respond to the number of vertebre. These layers of muscle arise from the skull itself, from the occipital and mastoid bones, in which situation they correspond to the nuchal muscles; also froin the scapula and clavicle, then from the lingual bone, the vertebre and their - ispinous processes, clothe the ribs, and are inserted by short tendons into the base of the caudal fin. Below them lies another layer upon the belty, which corresponds to the abdominal muscles, while the upper layers are analogous to the dorsal muscles of the higher animals, especially the m_{0} m. spinalis, semispinalis, mullifidus spine, longissimus dersi, and sacro-lumbaris. The symmetry displayed by the dorsal and ventral portions of the lateral muscles, upon a perpendicular seetion, is most striking, and we are in this way best enabled to see the peculiar infundibuliform arrangement of the several muscular layers.

Each lateral muscle bends the body toward its own side, at the same time producing powerful lateral inflexions of the rudder-like tail; movements so necessary in the act of swimming. The head can be also moved to a slight degree, when its freedom of attachment to the vertebral column admits of it. By the co-operation of the two lateral muscles upon either side at their anterior part, the compression of the swimming-bladder may be also affected.
The several orders and genera of Fish naturally exhibit numerous muscular varieties. Beneath the lateral muscles, between the ribs, are found the intercostal muscles. In the interspaces between the two great lateral muscles, both, upon the dorsal and ventral side, but chiefly upon the latter, two very slender muscular strips may be seen to pass, as in the Perca fluviatilis, and to be interrupted only by the dorsal and anal fins.
The caudal fin is moved chiefly by small thin muscles, which form two layers, a superficial and a deep, and are inserted, like those of the dorsal fins, into the rays composing it; occasionally there occurs, as in Perca, a third layer. The several rays of the caudal fin can be moved by means of these upward, downward, and laterally.
The muscles of the anterior extremities consist of two principal layers, upon each of the two surfaces of the antebrachial and carpal
bones. The superficial layer of the external side arises from the clavicle, and covers entirely that which lies beneath it; that also of the inner surface of the fin, or the one turned toward the trunk, 0 exhibits similar-relations: The latter draws the fin toward the body while the external, as abductors of the fin, move and raise it outward. 2 , . 年
The arrangement of the muscles uipon the posterior extremities, or ventral fins, when the latter are present, is of a similar kind. Here we find proper elevators and depressors in a double series, which arise from the pelvis and are inserted into the fincrays. The rudimentary pelvic bones obtain fasciculi from the lateral muscles, that correspond to an oblique abdominal muscle and a rectus.
The muscles of the anterior extremities, or pectoral fins,' are particularly developed in Lophius and in the Flying Fish, e. g. Trigla, Exocetus, among the Osseous Fishes.
The muscles of manducation are very strongly developed, and form 3 more or less a mass constituting what is called the cheek-flesh of Fishes, and which in the Trout has a particularly delicate taste. The whole depression occupying the external surface of the articular portion of the temporal bone is covered by this muscular mass; and it arises not only thence, but also from the anterior edge of the preoperculum, and is inserted partly into the upper, partly into the lower jaw. The disposition of these manducatory muscles is very different from that of the masseter and temporal muscles of the higher animals, to which, however, they correspond.

- The muscles of the Cartilaginous Fishes exhibit more noticeable diversities. In the Plagiostomi, as the Rays, the dorsal and ventral muscles are more separated by a horizontal tendinous layer, that (divides each lateral muscle into an upper and lower half. Several muscles are also given off for the cranium, so that the head can be slightly moved. Remarkably large horizontally expanded layers form, in the Rays, the muscles for the great pectoral fins, without, however; these admitting of a separation into superficial and deep layers, as in the Osseous Fishes. In the Electric Ray a pair of peculiar muscles with long tendons also occur; their fleshy part or bellies arise behind the skull from its lower surface, and are inserted into the anterior margin of the head in front of the electric organs; they have no analogue in other Fishes.

In the Cyclostomi the same numerous tendinous strips are found intersecting the lateral muscles, which are here much developed, and surround the body. In the Myxinoides we find superadded a

Abstract

$$
0
$$

system of lateral ventral muscles, which, as a rule, is absent in other Fishes, and consists of ant oblique and a straight ventral muscle ; by means of these the powerful movements and vermiform deflections of these animals are effected. titing numerous diversities, it will be best to become first acquainted with the regular arrangement of these structures as they are found in the majority of Osseous Fishes, and then to describe their varieties in the several genera and families of that sub-class; lastly, their mode of formation in the remaining orders.
The ordinary type of structure in the Brain of Osseous Fishes is to be observed in many Acanthopterygians, e. g., Perca fluviatilis, and Malacopterygians, as the Pike (Esox lucius), in both of which it presents a very close conformity; in the common Carp, however, which, from its frequent óccurrence, has been chiefly recommended for the purposes of dissection, we already encounter peculiar cerebral anomalies; and other species of that genus, as Cyprinus barbus, are therefore better suited for examination
The Brain in general does not nearly fill up the cranial cavity, so that between the dura mater that lines the internal surface of the cranium and the soft meembrane which very closely invests the brain itself, we find a free space filled up by a quantity of loose cellular tissue, interrupted throughout by adipose cells. A fluid oil is frequently found floating in large drops between the meshes of this tissue. The membranes situated between the dura and pia mater may be viewed as the arachnoid ; the analogy being still more obvious -where they cover the third ventricle. The dura mater is often of a silvery lastre, or partially coated by black pigment.
We shall do best to commence the consideration of the several parts of the brain with the medulla oblongata, which, though it differs slightly is to be list medulla from the rest of though it marrow by being broader and flatter.'. Upon the medulla oblongata may lbe distinguished four thickened tracts, two superior and two in- : ferior ; the first are slightly enlarged, from the corpora restiformia, and recede from each other in the middle line, so that the floor of the fourth yentrical or rhomboidal sinus lies freely exposed to view; they give off processes that are prolonged, forming its crura, into the cerebellum. Some transverse fibres upon the inferior sur-,

possesses a central canal. Occasionally it is very short, as in those Fishes, Orthagoriscus, Lophius piscatorius, that are provided with a short truncate vertebral column. The spinal cord, however, is usually very long, and exhibits generally a faint enlargement at the spot whence the nerves arise that supply the extremities.

As regards the Cerebral nerves, from ten to eleven pairs are distinguishable in the Osseous and true Cartilaginous Fishes, and they agree in the relations of their origin and course with those of the higher Vertebrata and Man.
,The olfactory nerves are for the most part slender in the Osseous Fishes, and arise frequently by several roots (3 to 5), from the olfactory tubercle of which they appear to be the immediate continuation. In the true Cartilaginous Fishes they are often thick and short, as in Scyllium, or, as in the Rays, frequemly long and slender; they arise from the hemispheres, being in connexion with their ventricular cavity when present, and form at their extremity very large ganglionic enlargements, comparable to the clavate extremities of the olfactory nerves in Man and Mammalia.
The optic nerve arises from the mesocerebrum (i.e. the lobi optici and that narrow part of the brain that surrounds the third ventricle in the Plagiostomi) : in the Osseous Fishes each optic nerves takes its chief origin from the optic lobe of the opposite side; both nerves thus cross each other completely, so that the left passes to the right eye, and viee versâ; in the Herring, indeed (Clupea harengus), the optic nerve of the right eye perforates that of the left, passing by means of a slit throngh its fibres, without forming a chiasma. The optic nerves form band-like strips, folded longitudinally. In the Plagiostomi and the Sturgeon the optic nerves are united by a true chiasma, some fasciculi only crossing each other.

The ocular nerves, namely, the third, fourth and sixth pair, exhibit similar relations of origin and course to those of Man. The oculo-motor nerve issues of large size from above and behind the inferior lobes; the nervus patheticus from between the optic lobes and the cerebellum, and passes to the trochlear muscle. The delicate abducens nerve arises distinctly by two roots at some distance behind the inferior lobes from the basal surface of the medalla oblongata, and passes to the rectus externus muscle. The ciliary branch of the oculo-motor nerve appears to be absent. \%

The fifth pair (n. trigeminus) is in the Cartilaginous Fishes, at least in the Rays, the most largely developed nerve, but frequently, as in the Osseous Fishes, yields in respect of size and extent to the

NERVOUS SYSTEM.
system of the vagus. It arises behind the optic lobes laterally from the medulla oblongata by a series of roots, several of which admit of being traced to behind, the fourth ventricle upon the Rhomboidal sinus. A large and small, or sensory and motor portion are found to enter into the composition of the fifth pair; several roots, e.g., in the Sturgeon, the nervous fascicula of its third and fourth root do not pass into the ganglion, which is formed by other roots, and prin-- cipally its first. Three main branches are to be distinguished, as in Man, namely, the orbitar, supra, and infra-maxillary ; and besides these, a large posterior branch (ramus opercularis), which proceeds from the posterior root, and is principally distributed externally upon the opercular apparatus of the gills; it corresponds to the seventh. pair, which does not appear to be present as a separate n. facialis.

The auditory nerve is always separate from the rest, and is far more strongly developed in the Osseous than the Cartilaginous Fishes; it takes its origin-quite close behind the fitth pair, with which it is united by a branch of communication (communicans faciei?).

The ninth, tenth, and eleventh nerves, or the glasso-pharyngeal vagus and accessory of Willis, form a common system of nerves, with many roots and united origins; we must regard as its main branch the branchial nerve (n, vagus), with which the glosso-pharyngeal nerve is frequently united, while, however, the nervus accessorius is usually free and distinet from it. This vagus arises frequently by special ganglia that are occasionally much developed, forms also upon its roots ganglionic enlargements, gives three main branches to the last three gills and to the pharyngeal maxilix, and passes then to the stomach and swimming-bladder. The twelfth cerebral nerve, or hypoglossal of Man and the higher Vertebrata, is absent in Fishes, owing to the want of mobility in their tongue; still, however, it has been-recently described as occurring in the . Sturgeon.

From the vagus and accessory nerve proceed the large longitudinal or lateral nerves of the Osseous Fishes, which run parallel with the lateral lines, and straight within the muscles, to the tail, and in their course enter into numerous communications with the spinal nerves. Another longitudinal nerve is frequently present, and is formed by two recurrent branches of the trigeminus and vagus; it passes through the supra-occipital bone, whence the nerve of either side runs near the points of the spinous processes and be-

218 PISCES 都
of Sheat-fish, and occurs in the Nile, as also in other rivers in Africa, as the Niger.
In the European Electric Rays, the Electric organs are situated 4 upon both sides of the head, occupying the space between the skull, gills, and pectoral fins, and covered only by the fascia and skin, through which they can be distinguished glistening both upon the dorsal and ventral aspects. The electric organ of one side is completely separated from that of the other, is of a flattened form, i. . , compressed from above downward, obovate in contour, being broader in front where it extends nearly to the anterior edge of the body, but narrower behind where it abuts against the gills. Upon both the upper and under surface the electric organs present the appearance of a tessellated pavement, divided into irregular obtuselyangular, polygonal or hexagonal spaces. This depends upon each organ itself being formed of a great-number of triangular or hexangular,membranous prisms or columns passing into thóse of a globular form, and thus resembling basaltic crystallizations; they may be. compared to so many galvanic- columns; each column is divided into compartments by numerous transversely-disposed horizontal lamellx, which can with difficulty be separated from each other, Each column is moreover separated from the others by a tendinous membrane or aponeurotic partition, which isolates the several columns in a manner similar to that whereby artificial galvanic batteries are carefully isolated by lateral glass rods. The number of these columns differs in individuals of the same species, and probably according to their age; in young specimens only some hundreds may be counted, while old animals, which attain a length of four feet, number above a thousand. Upon the posterior edge of the galvanic apparatus lesser rows of columns are to be observed; these are probably in a nascent condition. Each, column may perhaps contain 150 to 500 plates or septa, that may be compared with the metallic plates of a galvanic pile; the depth of the columns and * the number of their contained plates (?) varies according to age and the position of the part itself, the middlemost columns being the deepest (six to seven lines), while those upon the edges are more depressed, and in small animals measure only about a line in depth, The partitions between the columns are composed of fasciculi of fibres, similar in character to elastic tissue. The transverse plates or septa consist of a very thin and delicate prolongation inward of the fibrous membrane cómposing the intercolumnar partitions, which forms the basement membrane, invested upon both its free surfaces

electric organs.

with layers of epithelium. In the intervals between the septa is found some fluid. Upon the septa themselves may be recognised the terninal plexuses of vessels and nerves, those of the latter organs resembling the terminal plexuses within the substance of voluntary or transversely striated muscles. The electric organs, taken as a whole, are very rich in vessels and nerves. Upon either side they are supplied by four large nervous trunks, one of which, a branch of the trigeminal nerve (n. electr. trigemini), is distributed specially upon the most anterior part of the electric organ, while the three other trunks are given off by the vagus; the most anterior of these is the largest, and much more developed than the branch of the 8. fifth; the posterior is the smallest. The origin and mode of distribution of these branches offer to our notice several remarkable peculiarities. Thus the n. electricus trigemini arises, along with the inferior maxillary branch, deeper than the remaining roots of the fift pair from the medulla oblongata, and appears to correspond to the lesser or motor root of that pair of nerves. The branches proceeding from the tenth pair or n. vagus, pass to the electric organs between the branchix, and give off alternate twigs to them. The branchial branches are furnished, with ganglionic enlargements containing ganglionic corpuscules, but these are absent upon the far thicker fasciculi of the electric nerves. It appears that these motor fibres; which here reach their maximum development, correspond to the accessory nerve of the higher Vertebrata.
The structure of the electric organ is in Narcine very similar, but here its shape is the reverse of that in Torpedo, being narrower anteriorly; the nervous branch corresponding to the r. electricus nervi trigemini is much more feebly developed.
In the Electrical Eel the organ in question is situated in the tail, which, from the very anterior position of the anus, is so large in this animal as to exceed more than a quarter the length of the whole body, and is in great, part filled up by the very largely developed electric apparatus. This is divided into two detached parts and a single one consisting of two that have coalesced: the first are situated laterally and more toward the upper surface, the last inferiorly, and the extent of all three organs closely accord with that of the caudal fin. Each of the two lateral organs is invested by a tendinous membrane, and glimmers through the external integument; superiorly they abut against the muscles of the back, inferiorly against the muscular system of the caudal fin; posteriorly they run to a point. The inferior electric organ is situated above and between

220

the muscles of the caudal fin, and is also invested by an aponeurotic covering: it resembles in form a three-sided prism. The internal structure of the electric organ is essentially similar to that of the Torpedo, with this difference only, that the columns lie horizontally upon each other, instead of standing perpendicularly. They resemble a row of horizontal bands, are much shorter than in the Electric Rays, and their septa are placed perpendicularly, owing to the position of the columns. The number of the septa admits of, being only proximately reckoned; in an adult Electrical Eel there may be perhaps several millions. The nerves that enter these organs in the Eel are all spinal nerves; neither the cerebral nerves nor the lateral nerves giving branches to them. The number of nervous trunks amount always to above two hundred, and from these sensitive branches pass off also to the integument. It would appear, too, that the anterior or inferior motor roots of the spinal nerves, whose branches are distributed to , the electric organs, are more strongly developed.
In the Electric Silurus, with the more minute anatomy of which we are unacquainted, the electric organs extend immediately beneath the integument from the fore part, of the head and the branchim to the anal fin. An external and an internal organ may be distinguished, which receive their nerves parly from the n. yagus and partly from the spinal nerves.
We know now, from the numerous experiments that have been performed, principally in Europe, by eminent philosophers upon living specimens of Gymnoti, that the electricity generated in the apparatus of these animals can be discharged by the voluntary exercise of their nervous influence, and that what is called animal electricity. is perfectly analogous to that which is produced by the Leyden jar or voltaic pile. Some experimenters have gone so far as to succeed in obtaining from the Gymnotus an electric spark; aberrations also of the magnetic needle have been observed, and it is probable that heat also is developed, during the discharge. The Electric Eel is capable of producing the most violent shocks, sufficient indeed to stun and throw down men and horses.

The Eyes are generally developed in Fishes, and provided with all the parts that enter into their composition in the rest of the Vertebrata. They are lodged in a cartilaginous or bony orbit, imperfectly closed. The external integument becoming thinner in, texture and transparent, forms usually around the eyes a shallow circular - fold, beneath which muscular-fibres may be frequently seen to pass, forming a kind of sphincter. In some instances the integument - forms a transparent lamina which is continued simply over the surface of the eye, as in Fishes of, the Eel kind, Ammocectes and others. Not unfréquently an anterior and posterior plica semilunaris may be distinguished, as in Clupea, Scomber, Salmo, but particu-. larly in the Sharks, where a true nictitating membrane exists ; this, however, being wanting in the genera Scyllium and Acanthias. The Sharks possess also free eyelids, which in the Rays are soldered together.
The Sclerotic is usually dense and cartilaginons, or actually formed of thin bony plates, which in many large Fishes, as in Xiphias, coalesce to form an osseous shell, having an opening left posteriorly for the passage of the optic nerve. In front of the sclerotic is inserted the very flat Cornea, which is usually thickest at its margins. The Choroid coat is usually separated from the sclerotic by a loose mass of adipose cells, and consists frequently of two widely separated layers; the outer of these, or the pigmentary, is of a silvery Justre in the Osseous, Fishes, and consists of very delicate fibres, which almost resemble under the microscope, needle-shaped crystals; it is continued in front to form the iris, which encloses a pupil that remains probably always round and imnoveable. The inner layer
is very highly vascular, and coyered upon the internal surface by black or purple-colored pigment. Between the two layers of the choroid is situated in many Osseous Fishes what is called the vascular gland, which will be described more minutely further on. In the choroid of the true Cartilaginous Fishes (Plagiostomi) a layer of black pigment is placed externally, and internally a tapetum of metallic splendor. The ciliary body is, for the most part, feebly developed. In the Sharks the ciliary processes are most distinctly formed, but, though less so in many of the Osseous Fishes, they still

cartilaginons vestibule, and correspond to the round fenestre ; the anterior are comparable to the oval fenestre; between each of these openings and the external skin a membranous sac is placed, which is filled with a calcareous mass, and extends into the membranous vestibule. At their commencement we find a muscle arising from the integument, and serving to compress the two sacs.

The Plagiostomi have a pair of soft calcareous concretions (otoliths), composed of carbonate of chalk, appended to the walls of the sacs; the Osseous Fishes are generally furnished with three stones (lapilli), hard and densel as porcelain, and of very varied form; one of these is situated in the vestibule, two in the two chambers of the sac. ${ }^{4}$
Manifold diversities occur in the form, number, and structure of these otoliths. Thus the porcelainic otoliths are frequently, as in Cyprinus, Gadus, Scomber, toothed at the edges, and are occasionally, as in Seirna, Lepidoleprus, and others, of remarkable size. : . The form, size, width, and mode of union of the semicircular canals, with their position also in the cranium, exhibit likewise remarkable diversities ; while, e. g., in Cobitis, they are situated quite free in the cranial cavity, the external and posterior canal, or only one of the two, are partly enclosed in the bones, or, as in the Pike, Orthagoriscus, the Sturgeons, and Chimeras, they are more or less surrounded by cartilaginous coverings; this, as has already been mentioned, is their condition generally in the Plagiostomi. The ampollæ are retained in their expanded condition by peeuliar double-
coned septa, upon which the auditory nerve expands; the expansions and terminal looped plexuses of this nerve may be very easily and distinctly observed under the microscope.
In many Osseous Fishes, but particularly the Ventrales, a most remarkable commumication subsists, between ther swinming-bladder and the internal ear. The vestibule always gives off in the direction backward a canal which coalesces with that of the opposite side into a single reservoir (sinus impar); this latter is a pouch of more membranons texture than the vestibule: it is situated in the basilar portion of the occipital bone, bifurcates again in the direction back ward, and forms, constantly a reund saccule placed between the first cervical vertebra and occipital bone, and filled with the fluid of the labyrinth; it is called the sinus sphicrici s. atria sinus imparis,
4Three ossicles are placed near to the three most anterior vertebre, and are connected to their transverse processes by joints and ligaments; they are of varied form ; the most posterior, which is the

bony projections, which arise from the bottom of the dental socket; this is the case with the incisor teeth of Balistes, that thus present a double gomphosis. There is frequently a slight anchylosis of the bases of the teeth to the walls of the alveolar cavity, as in Sphyræna, Acanthurus, and others. In the majority of cases an actual fusion of the bony substance of the jaws with the sockets of the teeth exists. Before, however, this anchylosis is completed, the tooth has been united to the jaw by ligament. Occasionally, as in the posterior teeth of Lephius, the teeth are fastened by elastic ligaments to the maxillw, and so disposed that during deglatition they yield downward and backward so as to offer no obstruction to the passage of food, and again spring up into their usual erect position when the pressure is removed. The teeth of the Sharks, for the most part bifurcated inferiorly, are attached by ligaments to the partly ossified edges of the maxille. A very curious mode of attachment is exemplified by the teeth of the Eagle-Ray (Myliobatis), in which the flat hexagonal teeth are united by suture to a series of quadrangular pieces.
The form of the teeth is likewise very varied, being either conical as in most Fishes, flat, prismatic, or cylindrical. The conical kind are frequently very numerous, and in such cases so small as to appear like papillw, and may possibly serye only as instruments of touch; in other instances they are longer, almost filamentary like bristles, and divided at their apex into two or three prongs; in many Fish, e. g., in Trichiurus, they are provided at their points with hooks ; they are frequently largely developed, for instance, the canine teeth of many Carnivorous Fishes, e. g., the Sea-wolf (Anarrhicas Lupus). The ineisor teeth also may be perfectly flatened like those of the human subject, as in Sparus sargus, L., and behind these stand short cylindrical teeth with rounded flattened. crowns. Such flattened teeth differ both in form and size; their plates are cylindrical, elliptical, elongated, triangular or quadrangular, semilunar or falciform; the same flat, tessellated kind of teeth are found in the jaws of the Saw-fish. It is not rare for the teeth upon the two jaws to differ, as in the Sharks, where the teeth that are destined to rise up and replace the others when they fall out, form numerous rows lying like tiles one over the other upon the inner walls of the maxille.
The number of the teeth ranges from one to so many that they can be scarcely counted. Thus, the Myxinoidæ (e.g., Bdellostoma, Myxine) have only one single slightly-curved tooth on the palate.

The genera Ceratodus and Ctenodus have two teeth ab ve and two below, while in Chimera we find four superior and two inferior teeth.
The substance of which-the teeth in Fishes is composed presents very different characters. The teeth of the Cyclostomi belong to the category of epithelial structures, or horn-tissue. The dental plate upon the occipital process of the Carp consists of a peculiar brown, semitransparent tissue, harder than the substance of the horny teeth of the Lampreys. In most Chætodonts the teeth are delicate, flexible, and elastic, and composed of a yellow transparent tissue, this being the case also in the labial teeth of Helostomus. In most Fishes, however, the teeth consist of Osseous substance, slightly denser than that of the jaws to which they are attached. Occasionall, as in Exoccotus and Echeneis, the substance of the teeth is uniform throughout, and not invested by a layer of denser texture. In others, $\varepsilon . g$, the Sharks, the tooth is covered by a dense transparent enamelloid substance; it is not, however, true enamel, but the proportion this substance bears to the rest of the tooth may be determined from the larger quantity of earthy constituents which it contains, the finer division and more parallel arrangement of its calciferous tubules. In Sargus and Balistes the peculiar osseous substance of the tooth is still harder, and covered by a thick layer of a denser substance, which differs little from the enamel of the higher Vertebrata. In Balistes also, and some other Fishes, we find a third layer superadded, that may be compared to the cementum of the Mammalia. In Scarus there is found even a fourth material, forming a very dense ivory-like layer upon the periphery of the tooth. In Fishes the small dental tubes (canaliculi chalcophori) are extremely distinct, and the microscopic structure of the teeth in general exhibits manifold modifications, which can not be further discussed in a work like the present.
The Intestinal Canal offers for consideration a number of diversiies, which, like those of the teeth, can not be well described without entering into the anatomy of the several orders and genera.
The Cavity of the Mouth in the Osseous Fishes opens externally upon either side through the branchial fissures. Peculiar tooth-like processes stand out upon the internal edge of the branchial arches, and protect the fissures between the later from the intrusion of food. The pharynx commences in the Osseous Fishes immediately behind the pharyngeal teeth, and there is found surrounding it in this situation a strong sphincter-like musole ; an œsophagus may be

$$
2 x
$$

continued from it as a short infundibular tube, but frequently only its commencement, or the pharynx, is developed, which then forms an extremely short canal, which is surrounded throughout its entire length by an annular layer of muscular fibres. There being no larynx in Fishes, the esophageal intestine is attached to the vertebral column and pericardium by cellular tissue. A dense mucous membrane, frequently beset with tubereles and papillary projections, lines the cesophagus, and is usually disposed in coarse longitudinal folds, that are frequently continued into the stomach.
There are Fishes in which the intestinal tube is continued from the pharynx without any indication of a gastric enlargement or of convolutions, and with which no organ of secretion is connected, except the liver. It is interesting to commence with such simple structures and ascend to the more complex.
The greatest departure from the structure of the Vertebrata generally, and also from that of Fish, is furnished by the anomalous genus Amphioxus. Its internal branchial cavity is prolonged into a narrow canal, the cesophagus, which is continued into a much. wider intestine. The latter is always of a green color, as is also a cæcum that is developed from it. The green fluid or gall is secreted by a glandular layer situated in the parietes of the intestine, and which, as in many Annelides, has not yet freed itself from the intestine in the form of a more highly organized parenchymatous liver. The green-colored portion terminates by an abrupt line, and then the walls of the intestine present, as do those of the cæcum also, their natural translucency and delicate texture. The intestinal sac exhibits, upon the whole of its internal surface, a glistening epithelium and an active vibratory or twinkling movement that hitherto has not been observed in any other vertebrated animal. This remarkable fish appears to be nourished simply by swallowing the microscopic animalcules met with in the sea-water. Nevertheless, excrements are extruded from the body of a dark color and stringy form.

Devoid of convolutions, and without any special dilatation for the stomach, if we except a slight increase in its width at one particular part, the intestine runs straight from the mouth to the anus in the Cyclostomi, e. g., Petromyzon, in Myxine, where, however, it is wider, in Syngnathus, and in Chimæra, so that such is its condition in the most different orders. In many other Fish, as the Cyprini and Labri, in which the intestinal canal is long and spirally contorted, a special gastric dilatation is also absent, while in others that are fur-
nished with smaller and insignificant convolutions, we meet with a well-defined stomach, as in Gasterosteus, Gobius, and some species of Blennins and Pleuronectes. In other instances the stomach is 4 not developed directly in the course of the intestine, but to the side of the latter, and forms either an oval or spherical dilatation, as in Cobitis and Blennius viviparus, or passes from this form into that of a retort, examples of which may be seen in the majority of Bony Fish, $e . g$. the Salmon. The cardiac portion of the stomach is frequently extended into a more or less elongated cæcum, e. g. in the Eel, in Gadus, Scomber, Clupea, and many other Fish, but more especially in Ammodytes tobianus.' To the stomach, when present,

- succeeds the intestine properly so called; it makes either few or many convolutions, and is not unfrequently continued backward to form a thicker portion that-may be regarded as the large intestine, the limits of this being defined frequently by a cæcal valve, as those of the pylorus are by a constriction. Beyond this point, however, the intestine frequently narrows toward the cloaca, as in many Carps and Salmons, and it is not rare for the valve to be wanting. Occasionally a valve is found upon the cardiac orifice of the stomach. Anomalies also occur of a peculiar kind, e. g. in Lepadogaster biciliatus ; for here to a short narrow pharynx succeeds a dilatation from four to five times wider, which occupies the greatest part of the ventral cavity, and represents at once both the stomach and the small intestine, while after it comes another bag of a more oval form, the large intestine. Applicable as they may so far appear, we shall find that in other cases the names of divisions borrowed from those of the intestinal canal in the human subject are not applicable to Fishes any more than they are to some of the naked Amphibia, and that it is better to adopt the terms oral, meso, and anal intestine, as expressing the regions of the body to which the portions of intestine may happen to belong. An equal amount of variety is displayed also by the mucous membrane lining the canal ; thus it is often simply disposed in longitudinal folds, as in Pleuronectes, Silurus, Blennius, Cyclopterus, Petromyzon, or in zigzag folds, e. g. in several Cyprini, while in other Carps, and in Gasterostens, transverse folds are observable, that are particularly developed in the Salmon-tribe, in the terminal portion of the intestine. Most Fishes, however, exhibit a very varied net-work formed
by confluent longitudinal and transverse folds of mucóus membrane. It is more rare for true papille, or tongue-shaped prolongations of the folds, to be met with, as in the Pike, and many species of

Salmon, Perch, and Flounder. Still, howevel, papilla similar to those of the humai subjeet have been found upon the smooth mucous membrane, e. g. in Mugil cephalus. The mucous membrance lining the stomach is usually soff as velvet, forms delicate reticulations, but is rarely provided with papille and projecting folds. Occasionally, as in Uranoscopus scaber, we meet with clusters of secerning follicles within the intestinal cerea.
The structure of the intestinal
and Sharks, merits a seesarite canal in the Plagiostomi, or Rays and Sharks, merits a separate consideration, though an extremely near approach to it is made by the Sturgeon. They have a short but wide essphagus, continued into a large oval stomach that is furnished with muscular layers; to this wide gastric cavity succeeds a narrow intestiniform canal, which may be viewed eilher as the cardiac portion of the stomach or the duodenum, in its place we find, in the Sturgeon, a larger loop of intestine. In some instances; and perhaps these are very rare, there would appear to occur, e. g. Squalus maximus, a more compoond kind of stomach than is usually observed in the class of Fishes. In this Shark the stomach is parcelled out by constrictions and inversions into several divisions, the first of which is separated from the esophagus by two large triangular valves, and the fourth division by a strong internal pyloric projection from the remainder of the intestine. This latter, in the Sturgeon and Plagiostomi, is very wide, and (with some modifications peculiar to the different species that can not be considered in this work) distinguished by a singular structure thatt is developed in its interior. The mucous membrane here projects in the form of a plate that winds spirally like a staircase as far as the very anus, and in this way the extent of the absorbent surface of the intestine; which throughout its course is very short, becomes much increased. Posteriorly where it is continued into the cloaca the intestine narrows, and presents to our notice, as in Squalus canicula, a small ceecal appendage.
We have yet to consider, as occurring in many Osseous Fishes, a peculiar set of cexcal canals developed from the pylorus, and that are known under the name of Pyloric appendages. (These creca were formerly viewed as the analogues of the pancreatic gland, which is actually absent as a true parenchymatous viscus in many Fishes. The propriety, however, of ihus interpreting the pyloric appendages is. rendered doubtful by the fact, that these organs have been found in Fishes, e. g. the Trout, in which there exists also a compact pancreatic gland. The pyloric appendages are inyariably absent in.$\%$
those Fishes that do not possess a perfectly-formed stomach, as in the Cyprini, Gobii, and Syngnathi, but they are wanting also in other Fishes with that organ properly developed; e.g. the Pike. As * a rule, however, they are present in the latter instances, and vary. exceedingly in number. It is very rare to meet with a single cæcum, as in Ammodytes tobianus ; there are sometimes two, as in several Plaice (Pleuronectes), while other species of this genus have, like the River Perch and Common Loach, three of them; four occur, e.g.

1. in Mugil cephalus and Cottus gobio, five in Salmo spirinchus, six in Perca lucioperca and in Sargus annularis, seven to eight in Trachimus Draco, ten to thirty or more in many Salmons and Herrings, and 4 from eighty to ninety in the Salmon; but these appendages are most numerous in Gadus and Scomber, for in the Mackerel about two hundred may be counted. These cæcal appendages either encircle the pylorus, or occupy longitudinally a greater or less extent of the commencement of the intestine. In some of the Fishes already named, as in the Herring and Mackerel, the cæca begin to divide, and two of them open by a single aperture into the intestine. In Gadus Lota two or three of the twenty cæca unite to form a common trunk; in the Tunny (Scomber thynnus) they divide so as to form tufts ; in Cyclopterus, Gymnotus, and others, those of the second row are further subdivided. In the Sword-fish (Xiphias gladius) the finely-divided creca are united by cellular tissue, and invested externally by a common membranous covering, so that the whole organ resembles a gland. In the Sturgeon, indeed, the pyloric ap pendages, by being still more subdivided and again united, acquire the form of a true parenchymatous pancreas. The mucous membrane lining the pyloric appendages exhibits a reticulated appearance similar to that of the intestines. No nutritive matter is found in these cæca, but only some slimy fluid; chyme, however, has been frequently observed in them. Their function is in other respect highly problematical, though it is possible they may secrete a fluid analogous to the pancreatic juice.
In the Osseous Fishes, e. g. the Eel, Pike, Trout, we constantly find a true compact and glandular Pancreas of a yellowish-white color, which sends from two to three excretory ducts into the intestine ; these are frequently accompanied by the biliary ducts, but are so closely attached to the latter as to be easily overlooked. In the Sturgeon a second kind of pancreas has been described as also existing. The Rays and Sharks possess a lobulated and reddish-yel-
low pancreatic gland, more analogous to that of the higher Vertebrata.
2. The Salivary glànds appear to be very generally absent in Fishes, or their place to be occupied by an increased development of the mucous glands of the mouth. A small cylindrical and lobulated gland has been found in Lophius piscatorius, lying immediately beneath the integument posteriorly to the wide branchial opening; it would appear to be analogous to a salivary gland, from the fact of the branchial cavity of this Fish serving as a receptacle for its prey.
The Liver is in general of large size, and colored in different shades of red, brown, or yellow. It is frequently very simple in form, and alobular, or often tongue-shaped, e. g. in Petromyzon, Syngnathus, Esox, Salmo, and, in a word, in the most different families. It is bilobed in Siluus, Blennius, Perea, Cobitis, and the Sharks, but trilobed in Gadus, Clupea, many species of Cyprinus, and in the Rays. In other species of Cyprinus, e. g. C. barbus, carassias, it is divided into a number of lobes united by narrow bands, and placed between the convolutions of the intestine. The biliary ducts do not usually unite into a single tube, but proceed together into the gall-bladder, or into the vesical duct. The gallbladder is seldom wanting, as in Petromyzon, Cyclopterus Lumpus, and in Scomber Leuciscus. Its form is either elongated and pyriform, cylindrical, or spherical. Occasionally it is completely imbedded in the liver, and in many cases, as in Uranoscopus scaber and Orthagoriseus Mola, is of very large and disproportionate size compared to that of other Vertebrata. The gall-dust (d. choledochus), generally single, opens mostly in the vicinity of the pylorus, but sometimes at a part of the intestine remote from the latter, as in the Pike. D D Thell as to be readily overlooked, e. g. in the Cyclostomi and Lepadogaster. It is mostly of a reddish-brown color, small size, and very varied form; thus it is elongated in Blennius, triangular in the Pike, large, irregular, and slightly lebular, in Cyprinus and the Sturgeon, very large in many Sharks, and divided into lobes of unequal size, but united together. The liver and spleen do not exhibit the same symmetrical and regular position in respect to each other that they do in the higher Vertebrata ; the greater portion of the liver frequently lies to the right, but very often to the left side, while the

spleen is usually placed upon the right side, but often in the middle line above or behind the stomach.
The Peritoneum in Fishes invests the whole intestine, and is attached above to the pericardium, so as to form a kind of diaphragm or partition, though not one of a muscular texture; it also completely clothes the sexual organs, but not the kidneys. In some Fishes, as in the Plagiostomi, the Sturgeon, and Salmonidæ, a pair of openings are situated upon either side of the anus, which lead into
the cavity of the peritoneum, and allow the ingress of water to the cavity and its contained viscera. The intestine is seldom secured by a perfect mesentery, as is the case in the lower Fishes, e. g. Myxine, but this is usually effected only by some thin filaments or vasiferous bands. It is remarkable that during the embryonic ex ${ }^{*}$ istence of all Fishes a'mesentery appears to be fully formed, but disappears at a later period by absorption. When a swimming-bladder is present, it usually opens into the cesophagus, but sometimes by a second orifice into the stomach.
In the genus Lepidosiren several peculiarities occur in the organs of digestion, and both spleen and pancreatic glands are absent. 4
ser st
organs or circulation.
To give a general description of the organs of circulation in the class of Fishes is attended with much difficulty, from the many peculiar varieties of structure which they present in the several genera and families. Still, however, we may attempt a general survey of the vascular system by first selecting a normal example of the Osseous Fishes, such as the Common Perch, and a Shark or Ray, as types of the Chondropterygians.

The principal or only heart in many Fishes is a branchial heart, in other words, a heart that-is placed between the trunks of the branchial veins which it receives, and the trunks of the branchial arteries, which it gives off; it corresponds therefore to the right heart of Man and the higher Vertebrata, and is traversed by venous blood alone. The heart consists of one auricle and one ventricle, both of which are lodged within a pericardium, to the inner surface of which the heart is frequently attached, as in many Amphibia, by special filaments. In the Plagiostomi the pericardium communicates Ey openings with the peritoneum, so that it is bathed by the water brought through the apertures in that membrane, and already described as being situated near the anus. The heart is placed ben.
tween the pharyngeal jaws and the girdle supporting the anterior extremities, and is small and angular in the Bony Fishes, but broad and flat in the Plagiostomi; it varies in size, and considerably also in weight relatively to the entire body, in different genera and species ; thus Meckel has calculated the weight of the heart in the Ray at about $\frac{1}{30}$ th, that of the Carp $\frac{1}{500}$ th or $\frac{11}{600}$ th, and in other Fishes $\frac{T}{1000}$ of the weight of the body. The auricle is generally much wider and its parietes thinner than those of the ventricle, above and somewhat behind which it is placed, while between the two cavities we find mosily two, more rarely three, as in the Sturgeon, muscular valves. The thick and very muscular ventricle is characterized in most fishes by a peculiar structure, for it is composed of two muscular layers so loosely connected to each other, that the external consisting chiefly of longitudinal fibres, may be separated, like a shell, from the internal, which is formed principally of transverse fibres. The contractile trunk of the branchial arteries arises from the anterior part of the ventricle by a strongly-developed oval enlargement, called the bullus arteriosus, whlch is formed of very poiverful annular muscular fibres, and is likewise situated within the pericardium. Between it and the ventricle we usually find two valves, as in the Osseous Fishes and in Petromyzon; in the Plagiostomi and in the Sturgeon, however, several, from two to five, rows of semilunar valves are met with lying one above the other.
The ventricle discharges its blood through the aortic trunk into the gills. This trunk of the branchial arteries usually divides upon either side into four, as in most Osseous Fishes, or into five branches, as in the Plagiostomi; these becoming gradually more slender, run in a groove on the convex side of each branchial arch, and ramify \% upon the branchial leaflets, Delicate ramuscules return the blood into the trunks of the branchial veins, which are lodged in the same groove behind the arteries, being usually single, but rarely double; they run upward to the base of the skull and the commencement of the vertebral column, and here form a large circle of arterial vessels (circulus cephalicus magnus) which receives the branchial veins and gives off the arteries; posteriorly the single aorta arises from it, which sends first branches to the muscles of the branchial arches, to the mucous membrane of the mouth and pharynx, and to the upper end of the kidneys; yery near to these branches and to each other arise a ceeliac and mesenteric artery, the two branchial arteries for the pectoral fins, and some renal arteries. In fiont, or, as it were, from the most anterior branchial veins, the two large posterior and two N
smaller anterior carotids arise from the arterial circle; slight varieties and peculiar arrangements of these vessels occur, but can not be investigated in this work. The posterior carotid supplies chiefly the opercula of the gills, the pseudobranchix or retia mírabilia, and muscles of the lower jaw, with blood. The brain receives its arteries,
4. 'which are very small, from the anterior and posterior carotids: A. After the aorta has supplied the liver, the intestine, the organs of generation, and the swimming-bladder, it runs within the canal formed by the inferior spinouts processes of the vertebre to the tail, and there gives off branches to the kidneys, the museles of the trunk, and the pelvic extremities. The substance of the heart receives its blood directly from the branchial vein. The blood returning from the viscera enters partly into the inferior or posterior trunk of the vena cava, which lies below the aorta, and is usually single in the Osseous Fishes, but double in the cartilaginous ; partly also into the hepatic veins, and from, the two into a large sinus-like expansion or contractile sac of the vena cava that opens into the auricle (being frequently of larger size than the latter), but is situated external to the pericardium. The blood also from the head enters the same venous sinus by two anterior venæ cava, which are expanded into sinuses upon the cranium ; they also receive the blood from the branchie and anterior extremities. Between this'sac of the vena cava and the auricle are found a pair of valves. The number of hepatic veins is subject to variety.
A large proportion of the venous blood of the posterior half of the body passes in Fishes from finer ramifications into trunks, that are again subdivided to form a portal system. We find, as in many Amphibia, a double portal system; one for the liver, which obtains its blood from the stomach, spleen, intestinal canal, and sometimes from the generative organs; the blood from these viscera usually entering by several smaller branches into different parts of the liver, but rarely uniting, before entering that gland, into a common portal vein. The second portal system belongs to the kidneys, which organs receive venous blood from the tail, parly also from the sexual organs and swimming-bladder; blood is also sent from this system to the vene cave. The arrangement, however, of the two portal systems varies greatly, according to the species and genus.
Lymphatic vessels appear to be generally present in Fishes, and in some number; their parietes are thin and membranous; they are very wide, and form even large sacs and reservoirs, but are destitute of valves, and have no conglobate glands or plexuses developed in of valves, and have no conglobate 16

Fishes is exhibited by the Amphioxus or Lancelet. The blood is quite colorless, and has not as, yet been found to contain any corpuscules. The hearts, however, are numerous. There is found, 1st. An Arterial Heart, a tube of uniform thickness placed below the branchial thorax in the middle line where the branchial artery in other Fishes is situated, but without any trace of a pericardium; it is continued for a short extent backward as far as the end of the esophagus, where it makes a curve and joins the tubular hearts- of the venæ cavæ. $2 d$. The Bulbilli of the branchial arteries, which, given off regularly from the arterial heart, are continued into the angles between each pair of branchial arches, and represent the commencement of the branchial arteries; in young individuals we find twenty-five, but in older specimens fifty, such branchial hearts on either side. The branohial veins probably bring the blood into the aorta that lies beneath the vertebral column, but in addition to these, the blood enters the aorta through, 3d. The Cardiform aorticarches; it is a double contractile ductus Botalli arising from the median heart. 4th. A Portal heart, long and tubular in form like a vessel, and contracted throughout its whole length, runs along the ventral side of the intestine, and extends to the extremity of the cæcum. 5th. A heart of the vena cava, which lies on the opposite or dorsal side of the intestine, and is also tubular in form. Both venous hearts contract alternately. This structure of the vascular system obviously reminds us of that in the Annelida, where numerous pulsating heart-like vessels also occur.
-The Cyclostomi are also characterized by many remarkable peculiarities in their vascular system, but to describe them in the present ${ }^{*}$ work would be entering into too great detail; one distinguishing feature, however, is the want of a muscular or contractile bulbus arteriosus, the trunk of the branchial artery exhibiting a uniform structure. In Lepidosiren annectens we find a bulbus arteriosus, and a a singte auricle and ventricle. In L. paradoxa we meet with a right and left auricle imperfectly separated, the former receiving the pulmonary vein, the latter the venæ cavæ. Ces .
Among the Osseous and Cartilaginous Fishes the number of hearts is occasionally found to be also increased. Thus in Chimæra an elongated fusiform accessory heart is always developed upon the two axillary arteries destined to supply the pectoral fins. Similar axillary hearts also occur in Torpedo, but not in Raia.
In the Eel there is found, upon both sides of the last caudal ver-

tebra, a pulsating organ which receives the blood from the delicate veins of the end of the caudal fin and propels it into the caudal vein, thus constituting a caudal heart, that occurs too in Murenophis. It is a true blood-propelling organ, but occupies the same position as the already-described lymphatic reservoirs found in many Fishes, and conjectured to be contractile.
In Myxine the sac of the vena porta contracts rythmically, and so forms a heart; thus in the class of Fishes have heart-like expansions been found developed in different parts of the circulatory apparatus, and would appear to be the more necessary from the numerous plexuses of vessels through which the blood has to pass.
These plexuses, or Retia mirabilia, have been found of the most complex form and arrangement in very different organs. Thus they occur upon the hepatic, portal, intestinal veins, and coliac artery in the Tunny and several species of Shark; in the choroid gland of the Bony Fishes, in the swimming-bladder, and the so-called pseudo or Accessory branchic. These latter organs, which occur in most Osseous Fish, were formerly, from their resemblance to the true branchix, regarded as such, although they differ completely, from them in structure. They are situated mostly upon the palatal portion of the branchial cavity in front or external to the upper extremity of the branchix, like which they are pectinated and provided with cartilaginous strips for their support. The blood-vessels ramify upon their leaflets in a regular manner, like the barbs of a feather, and receive their blood, like the opercula of the gills and lingual bone, through a branch which proceeds downward from the first branchial vein. A second or glandular form of these accessory branchix also occurs; and consists of deep red vascular organs composed of several lobes, not presenting the shape of gills, although they are covered by the mucous membrane of the branchial cavity. 2. The lobules themselves, however, appear like small feathers with cartilaginous shafts, the latter being provided with lateral leaflets. Such glandular pseudobranchix are found in the Carp, Pike, and species of Gadus.
In the Sturgeon we find two accessory branchix: a large one situated against the operculum is a true respiratory pseudobranchia; the second, very small, and situated on the anterior wall of the spiricle, consists of folds and transverse lesser folds, possesses the plexiform structure of the pseudobranchix, and obtains its arterial blood from a branch of the vein upon the first branchial arch, while
f
the respiratery accessory gill receives dark-colored blood from the branchial artery. A similar pseudobranchia is possessed by the Rays and Sharks upon the valve of the anterior spiracle.

ALL Fishes respire by means of branchie or gills, for the support and pretection of which organs we find a very complicated framework of bone or cartilage developed, and exhibiting the greatest diversities of structure in the several orders and genera. The whole of this apparatus may be reduced to three principal divisions: $1 s t$. The lingual bone and branchiostegous rays. $2 d$. The branchial arches. $3 d$. The opercula or gill-covers. A fourth division of this part of the skeleton may be regarded as formed by the upper and lower pharyngeal bones or maxillæ, from the resemblance they bear to branchial arches; but as they do not support branchiæ, but only teeth, they more properly belong to the organs of digestion. \qquad $\therefore x_{1}, 3$ In the Osseous Fishes the Hyoid bone consists of a large arch, situated behind the lower jaw in front of the first branchial arch, and formed of several bony pieces symmetrically placed upon either side of a single intermediate piece. The lateral branches of the hyoid arch are of very large size in the Osseous Fishes, and correspond to the great cornua ; they are composed almost invariably of four piecees, the posterior of which, mostly style-shaped, is the medium for attachment of the hyoid to the bone that is analogous to the os quadratum; the several pieces sometimes coalesce into twe or one, but are generally united by fibro-eartilaginous bands. In front the two lateral branches abut against and are united by a single intermediate ossicle (copula) ; this represents the body of the hyoid bone, and commonly supports in front an elongated ossicle, upon which the rudimentary tongue rests; this is called the lingual bone, and is frequently provided with teeth. To the two branches externally a series of mostly narrow and slender, or frequently broad and strong ossicles, are fastened by ligaments or moveable joints ; they support the opercular membrate of the gills, and have been therefore called the Branchiostegous rays; their number varies according to the genera and species, or even sometimes the individual. In the true Cartilaginous Fishes, parts occur which correspond to the hyoid arch, but true branchiostegous rays are entirely absent.
In the above structures we meet with numerous diversities. The hyoid arch is very narrow in Muræna, Syngnathus, and others, and
in the latter genus it always consists of a single piece, but in Diodon and Tetrodon of two; in all these genera, as in Uranoscopus and Cyclopteris, the copula is wanting. The piece supporting the tongue is absent in Tetrodon, Diodon, Balistes, Murenophis, and others. The branchiostegous rays are very rarely wanting, as in
W. Syngnathus. Pelypteras has only one of these rays, while three are found in Cyprinus, Cobitis, and others ; seven in Murena anguilla, Fwenty-five in M. collubrina, and upward of thirty in Elops. The passage from the Osseous to the Cartilaginous Fishes is made by the Sturfeon, in which the hyoid arch consists of three pieces instead of fourr, and both copula and branchiostegous rays are entirely wanting. In the Sharks a cartilaginous arch is found upon either side, supporting some cartilaginous rays, divided simply in a digitate manner. In the Rays similar arches are found, supporting a pair of pseudobranchix.
Behind the hyoid bone is situated a system of bones or cartilages called the Branctial arches, very generally four in number, and which support the rascular fringes or leafets of the gills. Each arch consisist of several pieces, varying in number according to the species of fish and the several arches themselves. There are, however, never more than four pieces, mosily three, and rarely two ; upon their convex side they are channeled out for the lodgement of the branchial vessels, while on their coneave side, or that turned
4. toward the cavity of the mouth, they are mosily, beset with teeth, and the upper segments of the posterior arches are usually so strong, that. they lave been distinguished by the special name of ossa pharyngea superiora; the postero-inferior pharyngell jaws are also intimately related, both by form and position, to the last and rudimentary branchial arches. In the direction downward the branchial arches are usually attached, like ribs to a sternum, to an intermediate chain of bones or cartilages, two to four in number, which are articulated in front with the copula of the hyoid bone ; the posterior arches are frequently united to this central chain by fibrous ligaments only, for it is seldom that all the arches are directly contineed and connected to it by bone. Superiorly the branclial arches are generally attached by muscles and cellular tissue, or by true ligaments, to the basal surface of the skull, or sometimes further backyard to the first vertebre. The teeth are usually disposed in two rows upon the inner side of the branchial arches, and are rarely absent, as in Cyprinus, Murema, Murenophis, Lophius, Fistularia, and others. The median chain of ossicles uniting the

ORGANS OF RESPIRATION.

branchial arches below are seldom wanting, as in Murenophis, Synguathus, and Lophius. The Cartilaginous Fishes possess similar branchial arches, only they are cartilaginous, and five instead of four in number, of which, however, the most posterior corresponds to a pharyngeal maxilla; the arches abut, in the Sharks, against some intermediate cartilaginous pieces, and consist, themselves of: several segments; the branchial arches in the Rays resemble in general those of the Sharks, and are united inferiorly by one or two very broad sternoidal cartilaginous plates. In most Osseous Fishes the branchiall arches are situated beneath the skull, but in Fishes of the Eel kind, e.g. Muræna, Murænophis, they are situated further back beneatil the first vertebra; in the Rays and Sharks they are united still further back to the commencement of the vertebral column. In the Cyclostomi we find a very peculiar branchial skeleton, formed of narrow arch-shaped cartilaginous rays that surround the gills.
The gills, which in the earlier stages of development of Fishes were freely exposed and unprotected, are always concealed at a later period of existence beneath the skin, and protected also by special covers, or opercula ; these are most evolved in the Acanthopterygians, and ferm for the most part a large bony apparatus, seldom inferior in size to the branchial, but which is superseded in the Chondropterygians by another contrivance. There are most frequently four, or if we regard, with many anatomists, the prooperculum as the quadratal bone, three bony pieces, composing the opercula of the gills. The Preoperculum is of a semilunar form, and bounds posteriorly the series of bones belonging to the articulating or quadratal portion of the temporal bone. To this succeeds, in the direction upward and Brekward, the true Operculum, a flat and more or less quadrangular bone, the largest in size, and presenting upward and . forward a socket that articulates freely with a capsular head upon the uppermast quadratal bone. Upon the posterior and inferior edge of the operculum is situated the Postoperculum, and between this and the preoperculum, behind the lower jaw, is placed the Interoperculium. This opercular apparatus serves as a valve, where: by the fissure leading from without into the branchial cavity, and placed between the posterior edge of the operculum and the anterior girdle of the pectoral fins, may be opened or shat. The position, but more especially the size of the opercular bones, varies; one or other of them is frequently ill-developed, as in the Eel family. Among the true. Cartilaginous Fishes we find, instead of this appa- ratus, narrow, digitiform, cartilaginous plates, the analogues of the branchial rays, and which are fastened to the quadratal cariliage. The peculiar disposition of the branchix themselves in the Sharks, Rays, and Cyclostomi, renders a true operculum unnecessary.
In the majority of Fishes, but particularly in those of the Osseous
2. kind, a double row of pointed lanceolate leaffets project, like the teeth of a comb, from the convex side of each of the four branchial arches ; they are mosily separate as far as their base, where they coalesce, but are sometimes united higher up; each leaflet is provided in the midde with a thin fibro-cartilaginous plate, that keeps it siff and straight. Upon these leaflets we find a number of thin membranous - ranserverse ridges, which contribute to increase the respiratory surface, and the plexuses of blood-vessels furrther expand upon peculiar siliquose elevations; it is rare for ooly three of the branchial arches to support such pectiniform leafets, as in Lophius, Batrachus, Diodon, Tetrodon; and very rarely do three, or only one row of branchial leaffets rest upon an arch. The branchial leaflets in Syngnathus and allied genera forming the group of Lophobranchii are of an unusual form, being lanceolate, but very broad and short, so as to form tufts. All these branchial combs are lodged in a common cavity situated behind the opercular apparatus, and communicating with the mouth by the slits between the branchial arches, and externally by a single large or frequently very small slit between the edge of the operculum and the girdle of the pectoral fins. The arrangement of these parts is somewhat different in the true Cartilaginous Fishes ; upon the middee of each of their branchial arches we find a dense cellular plate, which attaches them to the external integument ; in front and posteriorly the mucous membrane of the mouth is prolonged over this plate, and forms upon if elevated folds standing perpendicularly upon the cartilaginous arches, like the branchial leaffets of the Acanthopterygians; externally the mucous membrane is continuous with the external integument ; each branchial arch is furnished with an anterior and posterior row of such branchial folds, but the anterior arch has only the posterior set, so that only four andza half gills are to be counted. From the branchix being united externally to the integument, five (and in other genera, as Hexanchus, Heptanchus, six to seven) branchial fissures are found both intermally and externally, between which the integument forms narrow bridge-ilike strips. The Cyclostomi present a still more peculiar structure. There are here from six to seven pairs of branchixie present; éach pair forms a flat
sac or pouch, upon the internal walls of which strongly-developed ${ }_{8}$. folds project, as in the Plagiostomi; each sac opens externally by a round aperture, and in the inward direction by a canal into the cesophagus, or even into a special membranous tube or bronchus, situated beneath the esophagus, and opening anteriorly into the pharynx, where it is closed by a membranous valve, and terminates blindly posteriorly.

The movement of the branchial arches, and also of the operculum and branchiostegous membrane of the Osseous Fishes, is effeeted by numerous muscles, which are absent in the Cartilaginous Fishes with fixed gills. By their action the branchial arches are separated or pproximated, the branchiostegous membrane spread out, and the operculum flapped to and fro so as to open or shut the external branchial fissure. Smaller muscles move the double row of branchial eaflets against each other. Similar muscular fasciculi are found in the Cyclostomi, and serve to expand the branchial sacs. The water taken in at and streaming through the mouth, is driven by the movement of the branchial arches and hyoid bone between the gills, where it-bathes the leaflets with their superimposed plexuses of vessels, and is again expelled through the external branchial fissures.
In many Osseous Fishes, Branchial follicles, as they are termed, that secrete a copious mucus, are found at the posterior commencement of the branchial' cavity.

In addition to this mode of respiration by branchiæ, we find that in many Fishes this function is performed by pulmonary organs. The Amphibioid Fishes, like Proteus among the true Amphibia, possess a pair of truly-developed Lungs near to the gills. In Lepidosiren annectens a partly single, partly double row of branchial filiments project from the six branchial arches with the exception of the second and third, and in the vicinity of the anterior extremity we find the single branchial fissure:. Besides these gills, however, a double sacciform lung is present, each portion being divided into several lobes; it is situated behind the kidneys against the ribs, and is internally cellular like the lung of a serpent; anteriorly it opens by a tolerably long, rarrow, and membranous tube into the cesophagus. Each ling receives a branch of the pulmonary artery which arises from the branchial arteries.
Among even the true Bony Fishes we meet with Accessory or pulmonic organs of respiration, e. g., in Silurus fossilis of Bloch, and among Fishes of the Eel kind in Amphipnous Cucia; they consist of vascular hollow sacs, which are either situated within the bran-s

compared to a glottis, but this analogy will not hold good as regards the laryngeal aperture of the higher Vertebrata, for the opening of the swimming-bladder is usually found in the dorsal wall of the gullet, and sometimes in its side, as in the Erythrini ; in Polypterus, however, the two lateral swimming-bladders open by a common slit of considerable size into the ventral walls of the gullet, so that here indeed their resemblance to lungs becomes more striking. In many Fishes, e. g., Muræna and Gadus Callarias, the tubes are conhected with the cesophagus, but there terminate blindly; a fact which is the more remarkable, since the swimming-bladder is first manifested during development as an eversion, like the lungs, from the cesophagus.
A very remarkable union of the swimming-bladder with the organs of hearing had been long ago detected in Heterobranchus, all the species of Cyprinus, Silurus glanis, Cobitis, Clupea, and others, union is in some cases, as in Cobitis, effected by means of the auditory ossicles; in others, as in Clupea and allied genera, large aircanals are given off from the swimming-bladder and enter the labyrinth.
In many Fishes we find a red Vascular gland interposed between the two coats of the swimming-bladder, usually in its inferior region This gland has been falsely compared to the thymus gland, and in this way the supposed analogy of the swimming-bladder to the lung has been further exaggerated. But the gland in question presents much more the character of a rete mirabile, and agrees in this respect with similar plexuses formed by the portal vein and choroid gland. It consists of a double plexus of arteries and veins, and these plexuses occur in many swimming-bladders, whether provided or not with an air-tube, They extend over the whole swimmingbladder in the Cyprini, so that in these Fishes we find no loeal concentration of vessels, and consequently no true vascular gland. The arteries of this organ arise from the branchial veins, while its reins enter those of the body generally.
Oue or several pairs of muscles, arising usually from the transverse processes of the adjacent yertebre, are inserted into the swim-ming-bladder of many Fishes, and appear destined to compress that organ, and thus condense the air contained within its cavity. In several Siluroidæ, and probably also in other Fishes (e. g., Ophidium), a remarkable apparatus has been discovered npon the swimmingbladder, which probably serves to rarefy or condense this air, Thus
in the genera Malapterurus, Synondontis, and others, the first vertebra is invariably provided with a large process that arises from it
A. narrow and slender, but finally expands into a large round plate, which, when at rest, is deeply imbedded upon the anterior surface of the swimming-bladder. A thick muscle arises from the internal surface of the spine of the cranium, and is inserted into this plate. When it contracts, it lifts the process from off the swimming-bladder, and by thus removing its pressure upon the latter, renders the air within it more rarefied. If this muscle be pulled in the dead fish, and then the traction withdrawn, the bony process springs back by its own elasticity, and condenses again the air in the bladder.

The swimming-bladder is almost always tightly distended with air; this air consists usually of nitrogen and a very small quantity of carbonic acid gas; in some instances, however, it has been found to contain nearly pure oxygen. Now, since the above-named gases are diffused in the blood of the vertebrata, it is probable that they have been disengaged in a free state by the vessels of the swimmingbladder. Whatever be its other uses, this organ serves, for obvious, reasons, to facilitate the ascent and descent of Fishes in the water.

urinary bladder that is rarely absent, and is always situated posterior to the intestinal canal; a position by which, according to our present knowledge, Fishes may be đistinguished from all other Verte-

* brata. The urinary bladder, or when this is wanting, as in Uranoscopus seaber, the urogenital aperture, opens behind the anus. The ureters open into different parts of the bladder, and the form of the latter varies exceedingly, being either cylindrical or fusiform, and frequently, as in many species of Gadus, prolonged into ceca or cornua.
In the Rays and Sharks the kidneys are proportionately much shorter than in other Fishes ; they are frequently more or less lobulated, and resemble the kidneys of the Chelonia ; the urinary bladder is either absent, or present, as in the Rays, where it is two-horned. The Cyclostomi have no bladder, and in Petromyzon the external rounded edge of the kidneys projects freely into the ventral cavity, and the organs themselves are prolonged infront into a dense spongy mass of adipose cells. In Lepidosiren annectens, the kidneys, long and narrow, are completely separate, and the urinary bladder opens into the posterior region of the cloaca. Some detached glandular bodies have been found in the posterior part of the ventrat cavity in the vichity of the abdominal pore in Amphioxus, and been stated to be renal organs.
As regards the more minute structure of the urinary organs, their substance is generally loose and spongy in the Osseous Fishes, but firmer in the Plagiostomi. The urinary canals are for the most part long and very tortuous, but not ramified; in the Cyclostomi, at least in Petromyzon, they form short, straight, cæcal tubes. The Malpighian bodies, or renal glomerules, are not absent, though they are of small size in Fishes, and, as would appear from injections that have been made of them, imperfectly formed.
Certain bodies have been recently discovered to occur pretty generally in Fishes, and been regarded as Renal Capsules.: They are particularly distinct in the Plagiostomi, as the Rays, but even in these large Fishes they are very small, and, as in Raia oxyrhynchus, are seen as small bean-shaped bodies, similar to the kidneys, but of a paler color. The renal capsules of either side are connected by vessels with the apex of the kidneys. In the Bony Fishes, which were previously denied to possess these organs, a pair of small red-dish-white corpuscules, mostly placed behind the kidneys against the vertebral column, have been recently found, e. g. in Cyprinus,
or laminated projections, shaped like a frill, as in the Eel and Petromyzon, take their rise, and in these the ova are developed. In such cases the oviducts are absent, and the eggs, having fallen into the ventral cavity, are expelled the body through a single or double slit lying between the anus and urinary opening, and more rarely through an aperture communicating with the ureter; the latter arrangement appears to occur generally in the Sturgeons, e. g. Acipenser Huso, stellatus and Ruthenus, but not in A. sturio, where we find the anal slits to be present; these, hawever, being absent in the other species, the ova, after having been freed from the ovaries, pass into two membranous infundibuliform tubes, which are united with and open into the two wide ureters about the middle of the kidneys; behind these apertures is a valve, to prevent the escape of the urine into the ventral cavity; the oya thas pass out of the female through the ureters.
The structure of the female sexual organs in the Plagiostomi and Chimære is more perfect, and analogous to that in Reptiles and Birds. The ovaria are here generally double, situated far forward, and each presents the form of a more or less considerable plate, rarely that of a sac, upon which the ova ripen in succession, the vitelline spheres gradually attaining a size equal to those of Birds. In some Sharks only a single ovarium is present. A common and wide abdominal opening conducts into the double oviduct, which is constructed like that of Birds, being wide, thick-walled, and lined with folded mucous membrane. The oviduct at its commencement is narrow, but dilates above the middle, and is generally surrounded in the Rays, Sharks, and Chimæras by a cordiform or reniform gland, which is sometimes, as in those Sharks, e. g. Mustelus and Galeus, that possess a nictitating membrane, and also a single ovarium, of a spiral form; it is in the majority of examples very compact, and formed of filamentary follicles, like the caudal gland of Birds. Fur4. ther backward the oviduct expands considerably into a kind of uterus, to make room for the large ova that are provided with horny shells; within this the embryos are attached and developed, as will - be described further on. The external sexual opening is situated behind the ands, and we find there a papilla, or rudimentary clitoris. In many Fishes the ovaries and oviducts are secured in their place by mesentery, in others they are free.
Two ovaria with free oviducts, thus essentially repeating the type of structure in the Plagiostomi, have been found in the Lepidosiren; the oviducts join the ureters and enter the cloaca; the ovaries are in
other respects very elongated, the ovidücts tortuous, and thus these structures approximate those in the Ichthyic reptiles.
- In Amphioxus we find, in the bladder-shaped ovaries that are situated against the sides of the body, vitelline spheres with distinct germinal vesicles and a single germinal spot. -
The Male sexual organs of the Bony Fishes exhibit the same simplicity and type of structure as the female. The testes arè sacs, mostly retained in place by mesentery, which, when in a turgid state, like the ovaries, frequently occupy the whole length of the ventral cavity: They are centinued to form the seminal ducts, which soon uuite into a short and common excretory duct behind the anus, where they frequently open upon a perforated conical projection or penis. The two testes are not always symmetrical; the right being often the largest, in others the left. In most of those fishes where the ovary is single, the testicle is also found under similar conditions; its division, however, into two halves is usually indicated. In Cobitis barbatula, however, the testicle is double though the ovary is single. The testicle is frequently plaited. like a frill, as in the Eels and Petromyzon, and granular in texture; while in the Osseous. Fishesit usually consists of slender creal tabes, that are occasionally subdivided. A glandular layer, that may be compared to the prostate, is very often developed, e.g. in Gobius and Blennius, at the end of the seminal duct. Conical and often elongated structures, resembling intromittent organs, are found in Syngrathus, Gobius, Lepadogaster, Blennius, and also Petromyzon, In the male species of Sturgeon we find similar infundibula to those of the female opening into the ureters.
Another type of structure for the male organs is furnished by the Rays and Sharks, and the structure, for example, of their testicles is of very great interest as regards the development of the spermatozoa. The structure of these glands, and their connexion with the epididymides, are best seen in the Thorny Rays (Acanthias). The testes consist of white, mostly reniform lobules, which present their convex edge externally. Within these lobules we may detect even with the naked eye a granular structure; the granules are round capsules about one, fifth of a line in size, and contain the seminal animalcules in their interior. These spermatozoa are lodged, as in the other Plagiostomi, e.g. Raia oxyrhynchus, in very neat and regular parcels within the capsules. The spermatozoa are absent in the youngest or smaller capsules, which merely contain granular matter, and are
$+$

$$
258 \quad \text { PISCES. }
$$

always surrounded by a circle of vessels. The delicate seminal canals proceed from the lobules of the testis, and from them arise nine to ten short, transverse, and parallel vasa efferentia, that run transversely toward the vas deferens; the latter is very much contorted, and continued superiorly into a dense epididymis, which was for a long time taken for a particular gland, its connexion with the testicle having been overlooked owing to its being concealed by a lobulated mass of white and granular fat, deposited upon the plexus of seminal canals, as in the Rays and Squalus canicula. The testicles and vasa deferentia frequently lie more close to each other, a's in Scymnus, where the large convolutions of the vasa deferentia distincty project above the much elongated cylindrical testes. Inferiorly the efferent'duots expand to form bladders or long sacs that are completely filled with semen. At the end of the cloaca we also find some short tubercles tolerably well developed, and reminding us very much of allied structures in the Tritons; the semen issues from their conical points, and a circular fold, surrounding them like a prepuce, completes their analogy with the penis. We find also peculiar auxiliary organs, belonging to the external generative apparatus, and consisting of long cartilaginous styliform appendages hanging, to the anal fins or pelvic extremities, and channeled by a groove, along which the semen actually escapes from the male, and is probably brought by a kind of copulative act in contact with the female genials. These parts are often seen to be red, turgid, and besmeared with a bloody slime. In their dilated or clavate extremities a number of interarticulated cartilages is recognised; these, like the whole organ, may be moved by adductor and retractor muscles.
The testes in Amphioxus consist of small bladders, similar to the oyaries.
The Spermatozoa exhibit a variety of forms ; those of the Osseous Fishes are rounded and conical, with very long and delicate tails sometimes, as in Cobitis, they have a small appended nodule. In the Plagiostomi they are very generally long and linear, with delieate tails; sometimes they are, spirally twisted at the commencement, as in the Passerine birds, but rum to a finer point, or else they are stiff and straight; they are also spirally convoluted in the Chimæræ. 7ir

- In Fishes, as in Reptiles, we find many viviparous as well as oviparous genera. Numerous diversities are visible in the form, size and structure of the ova, but these belong to the developmental

history of Fishes. In the Rays and Sharks the large vitelline spheres are frequently included in horny capsules; called "seapurses," which project into cornua or cylindrical threads. x.
Certain Sharks (e. g., Mustelus, Carcharias) attach themselves, after the manner of the Mammalia; by an umbilical chord to a placenta placed in the interior of the female genital organs; and thus constitute a very remarkable exception among the class of Fishes. In other Fishes, as in Syngnathus and allied genera, the young are developed in a peculiar cavity, or incubating organ, opening by a slit, and placed posterior to the anus beneath the tail. It is remarkable that these pouches are found only in the male Syngnathi, while in Scyphius it is the females who carry their eggs free in a mass adherent to the belly.

$$
1
$$

TO THE PRINCIPAL WORKS UPON THE ANATOMY OR FISHES.
For List of General Works upon Comparative Anatomy, see page 61. Tegumentary System.
Kuntzmann, in Verhandlungen der Gesellschaft naturforschender. Freunde in Berlin, Band 1, 1824, describes and partly figures scales of 400 species of fish.
Agassiz, poissons Fossiles, tom. 1, and in Annales des Sciences Nat. tom. 14; in tom. 11 of latter work, consult Mandl, and also his Anat. Microscopique, 2d part.
croscopique, 2d part.
Mönro, upon Structure of Fishes as compared with that of Man, \&c. Mönro, upon S Edinb. 1785.
Müller, Beiträgen zur Kenntniss der natürlichen Familien der Fische in Wiegmann's Archiv f, 1843.

Osseous System.

Rosenthal, Ichthyotomischen Tafeln. Berlin, 1839.
Agassiz, op. supra cit., and Cuvier in Hist. Nat. des poissons, upon the Common Perch.
Bakker, Osteographia Piscium. Grening, 1822.
Wellenbergh, de Orthagerisco Mola. Lugdun. Batav. 1840. Müller, Vergleichender Anat. der Myxinoiden, Erster Theil. Berlin, Muller,
Bojanus, Parergon ad Anatomen Testudinis. Vilnæ, 1821: good figures of skull of Cyprinus brama.
Arendt Diss. de capitis ossei Esocis structure. Regiom. 1824.

Tiedmann, Anat. des Fischherzens. Landshut, 1809.
Hyrtl, in Medizin. Jahrb. d. österr Staats, Band 15, 1837, upon Vascular System.

Fohmann, Saugadersystem der Wirbelthiere, Heft 1. Heídelb. 1827.
Hyrtl, in Müller's Archiv f. 1843, upon Vascular Sinuses,
Müller, in Berliner Monatsberichten f. 1841, and J. Goodsir, Trans. of
Royal Soc. of Edinb., vol. 15, on Amphioxus.
Duvernoy, in Ann. des Sci. Nat., 1837, tom. 8, on Accessory Heart.
Marshall Hall on Caudal Heart, in his Essay on the Circulation.
Eschricht, über Wundernetze beim Thunfisch in Ábh. der Berlin. Akad. f. 1841.

Rathke, op. cit. p. 181, and Müller on Myxinoidæ.
Alessandrini, de Piscium Apparatu Respirationis. Bonon. 1838
Sloimming-Bladder.

De la Roche, in Ann, du Mus. d'Hist. Nat. vol. 16.
Müller's Archiv f. 1842 ; Rathke, Cuvier and Valenciennes, op. cit. and Jacobi, de Vesica Aërea Piscium. Berol. 1840.

Urinary Organs.

Steenstra-Toussaint, Comment. de systemate uropoetico Piscium. Lugd. Bat. 1835.
Retzius, Obs. in Anat. Chondropterygioram. Lundæ, 1819.
Stannius, in Müller's Archiv f. 1839.
Sexual Organs.

Rathke, op. cit. Müller's Archiv f. 1836. R. Wagner's Prodromus Hist, Generationis.
Joh. Müller, Abhand. über glatten Hai des Aristoteles. Berlin, 1842. Hallmann, Bau des Hodens und Samenthierchen der Rochen. Müller's Archiv f. 1840.

- - - \square

Mayer, in Finn. des Sci. Nat., tom. 15. 1841.
R. Wagner, in Münnchner Denkschriften, Band 2, 1837 .

A uist is subjoined of the most useful works that treat upon the Development of the Vertebrata, this being a subject of the highest interest and importance when a general comparison is instituted between the several classes.

Baer, Rathke, and others, in Burdach's Physiol. 2d ed. 1837, have given a most complete and general survey of the development of the Vertebrata. Upon that of the Mammalia, consult Von Baer's Entwickelungsgeschichte der Thiere, Köningsb. 1837. Bischoff, Entwickelungggeschichte des Kanincheneies, Braunschweig, 1842, and Rudolph Wagner's Elements
of Physiology by Dr. Willis, part 1, on Generation, where copious biblioof hraphical references are alse given. Birds, Von Baer, über Entwickelungsgraphical references are also given. Birds, on Baer, uber Entwickelungs-
geschichte der Thiere, 1 ter Theil, 1828. Pander, Beitrage zur Entwickelungsg. des' Hönchens im Ei., Wurzburg, 1817. Reichert Entwickelungsleben im Wirbelthierreich, Berlin, 1840 . Reptiles, Baer, op. cit. Band 2, on Batrachia. Rathbe, Entwickelung der Natter, Köningsb. 1839. Reichert, op. cit. Vogt. Untersuch. über Entwickelungsg. der Geburtshelferkrōte, Solothurn, 1842. Fishes, Baer, Untersuch, über Entwickelungsg. der Fische, Köningsb. 1835, and Vogt. Entwickelungsg. der Forelle in Agassiz Hist. Nat. des Poissons d'eau douce de l'Europe, Neufchatel, 1841 .
The following Addenida comprise some new and valuable contributions to the literature and anatomy of the Vertebrata :-
Otto Köstlin, der Bau des Knochernen Kopfes in den vier Klassen der Wirbelthiere, mit 4 Tafeln, Stuttg. 1844. Reichert, Vergleichende Entwickelungsg. des Kopfes der nackten Am-
phibien, Köningsb. 1838.
Rapp, Anat. Untersuch. über die Edentaten, Tubingen, 1843.
Natalis Guillot., l'Organiz. du Centre Nerveux d'Anim. Vertébrés in Mém: de PAdcad. de Bruxelles, tom. 13. 1843. Mem. de Pacad. de Bruseles, tom.
Nots to pages 49 and 61.

The thymus gland, according to Owen, trans. Zool. Soc., vol. 1, is absent even in the foetus of the Marsupialia, but not in the Ornithorynchus. The Cloaca appears only to occur in the female Marsupials.

Dr. Rudolph Wagner found that the bulk of the creamy fuid contained in, and even the recticular membrane lining, the Ingluvial gland of an old pigeon that had died two days after hatehing her young, consisted of soft whitish granules, about $\frac{1}{50}$ th to $\frac{1}{150}$ th of a line in size, presenting in their interior small highly refractive nuclei; they consisted of protein combined with fat, but contained neither milk-sugar nor fluid casein, although the secretion of this gland has been constantly compared to the milk of a Mammiferous animal.

Tiedmann, Anat. des Fischherzens. Landshut, 1809.
Hyrtl, in Medizin. Jahrb. d. österr Staats, Band 15, 1837, upon Vascular System.

Fohmann, Saugadersystem der Wirbelthiere, Heft 1. Heídelb. 1827.
Hyrtl, in Müller's Archiv f. 1843, upon Vascular Sinuses,
Müller, in Berliner Monatsberichten f. 1841, and J. Goodsir, Trans. of
Royal Soc. of Edinb., vol. 15, on Amphioxus.
Duvernoy, in Ann. des Sci. Nat., 1837, tom. 8, on Accessory Heart.
Marshall Hall on Caudal Heart, in his Essay on the Circulation.
Eschricht, über Wundernetze beim Thunfisch in Ábh. der Berlin. Akad. f. 1841.

Rathke, op. cit. p. 181, and Müller on Myxinoidæ.
Alessandrini, de Piscium Apparatu Respirationis. Bonon. 1838
Sloimming-Bladder.

De la Roche, in Ann, du Mus. d'Hist. Nat. vol. 16.
Müller's Archiv f. 1842 ; Rathke, Cuvier and Valenciennes, op. cit. and Jacobi, de Vesica Aërea Piscium. Berol. 1840.

Urinary Organs.

Steenstra-Toussaint, Comment. de systemate uropoetico Piscium. Lugd. Bat. 1835.
Retzius, Obs. in Anat. Chondropterygioram. Lundæ, 1819.
Stannius, in Müller's Archiv f. 1839.
Sexual Organs.

Rathke, op. cit. Müller's Archiv f. 1836. R. Wagner's Prodromus Hist, Generationis.
Joh. Müller, Abhand. über glatten Hai des Aristoteles. Berlin, 1842. Hallmann, Bau des Hodens und Samenthierchen der Rochen. Müller's Archiv f. 1840.

- - - \square

Mayer, in Finn. des Sci. Nat., tom. 15. 1841.
R. Wagner, in Münnchner Denkschriften, Band 2, 1837 .

A uist is subjoined of the most useful works that treat upon the Development of the Vertebrata, this being a subject of the highest interest and importance when a general comparison is instituted between the several classes.

Baer, Rathke, and others, in Burdach's Physiol. 2d ed. 1837, have given a most complete and general survey of the development of the Vertebrata. Upon that of the Mammalia, consult Von Baer's Entwickelungsgeschichte der Thiere, Köningsb. 1837. Bischoff, Entwickelungggeschichte des Kanincheneies, Braunschweig, 1842, and Rudolph Wagner's Elements
of Physiology by Dr. Willis, part 1, on Generation, where copious biblioof hraphical references are alse given. Birds, Von Baer, über Entwickelungsgraphical references are also given. Birds, on Baer, uber Entwickelungs-
geschichte der Thiere, 1 ter Theil, 1828. Pander, Beitrage zur Entwickelungsg. des' Hönchens im Ei., Wurzburg, 1817. Reichert Entwickelungsleben im Wirbelthierreich, Berlin, 1840 . Reptiles, Baer, op. cit. Band 2, on Batrachia. Rathbe, Entwickelung der Natter, Köningsb. 1839. Reichert, op. cit. Vogt. Untersuch. über Entwickelungsg. der Geburtshelferkrōte, Solothurn, 1842. Fishes, Baer, Untersuch, über Entwickelungsg. der Fische, Köningsb. 1835, and Vogt. Entwickelungsg. der Forelle in Agassiz Hist. Nat. des Poissons d'eau douce de l'Europe, Neufchatel, 1841 .
The following Addenida comprise some new and valuable contributions to the literature and anatomy of the Vertebrata :-
Otto Köstlin, der Bau des Knochernen Kopfes in den vier Klassen der Wirbelthiere, mit 4 Tafeln, Stuttg. 1844. Reichert, Vergleichende Entwickelungsg. des Kopfes der nackten Am-
phibien, Köningsb. 1838.
Rapp, Anat. Untersuch. über die Edentaten, Tubingen, 1843.
Natalis Guillot., l'Organiz. du Centre Nerveux d'Anim. Vertébrés in Mém: de PAdcad. de Bruxelles, tom. 13. 1843. Mem. de Pacad. de Bruseles, tom.
Nots to pages 49 and 61.

The thymus gland, according to Owen, trans. Zool. Soc., vol. 1, is absent even in the foetus of the Marsupialia, but not in the Ornithorynchus. The Cloaca appears only to occur in the female Marsupials.

Dr. Rudolph Wagner found that the bulk of the creamy fuid contained in, and even the recticular membrane lining, the Ingluvial gland of an old pigeon that had died two days after hatehing her young, consisted of soft whitish granules, about $\frac{1}{50}$ th to $\frac{1}{150}$ th of a line in size, presenting in their interior small highly refractive nuclei; they consisted of protein combined with fat, but contained neither milk-sugar nor fluid casein, although the secretion of this gland has been constantly compared to the milk of a Mammiferous animal.

Note to page 106.

Stannius, see Müller's Archiv f. 1843, has found true Lymphatic hearts Brevipennes, and, in the Natatores, in the Ostrich and Cassowary among He has as yet failed to detect them in the Fowl and Turkey. Panizza was. previously acquainted with their existence in the Goose ; these hearts was near the sacral bone, are comnected with lymphatic vessels, and issues from them. As yet they have not been observed to pulsate though they exhibit distinet fasciculi of transversely-striated muscular fibre.

Note to page 117.

Tschudi, in Müller's Archiv f. 1843, describes a remarkable structure of the Tracheci and Inferior larynx in Cephalopterns ornatu's, which seem to agree closely with that in the Duck; it consists of an expansion of the the inferior larynx is also similarly dila a large elongated drum-like cavity; the inferior larynx is also similarly dilated; this structure is the more reCoracinida. The bird utters a of the order Passerinæ and family of occurs in the same latitudes, namely, S. America, as the Howling cry, and Note to page 176.
Bachthold, über die Giftwerkzeuge der Sehlangen, Tubingen, 1843, gives beautiful figures of the Poison glands of Hydrophis pelamys and Naija rhombeata. The length of the poison gland of the latter amounted, in a specimen eighteen inches long brought from the Cape, to three inches, or a sixth part of the length of the body; it is placed parallel to the vertebral column like a broad band, and surrounded by a strongly-attached
muscle, which draws the gland forward or toward the head; the gland muscle, which draws the gland forward or toward the head; the gland
consists of six perfectly parallel tubes, or long cæca, two of which unite to form a common excretory duct. The poison tooth is not, however, of large size.
Fischer's Amphibiorum, nudorum neurologiæ specimen primum, Berol, 1843, contains beautiful illustrations of the cerebral nerves of Bufo, Hyla,
Bombinator, Pelobates Bombinator, Pelobates, Pipa, Salamandra, Triton, Proteus, and Cæcilia.

 $\because 4$

[^0]: the Cetacea, the Walrus, many Seals, the Mole, Ornithorynchus and Pangolins. The ears are, on the contrary, in the African Elephant, very large pendulous flaps; they are much smaller in the Asiatic species; they are largest of all in many Cheiroptera, e.g. Plecotuis auritus, where they are nearly as long as the body, and the tragus also is greatly developed, exhibiting manifold forms throughout this order, in which the ears are very membranous. Hanging ears appear to occur in the Dogs, Pigs, and Goats, only when domes ticated. In Man the cartilage of the ear consists only of one piece, while in most Mammalia three can be distinguished. The concha is the largest cartilage, and trumpet-shaped. Above the anterior part of the convex surface of the concha lies the cartilago seutiformis, which merely serves as a surface of attachment to several muscles, but does not contribute to the formation of the concha. The cartilago annularis lies over the external auditory meatus in the lower curve of the concha, to which it is mited by ligament, and completes the meatus. While in Man the muscles of the external ear are only feebly developed, and that organ can be but slightly moved, very numerous muscles turn the ear of the Mammalia in all directions. In the Horse there are enumerated seventeen separate museles, of which the depressor, adductor, and rotator, are in particular wanting in man. In many diving animals peculiar ralye-shaped projections are found, by which the external meatus is closed and protected against the entrance of water; thus, for example, the narrow tortuous meatus of the Ornithorynchus has a valve externally, and in the Water-shrew the antitragus can close the external meatus at will. The external meatns is lined with a delicate skin, and contains the secretory sacs of the cerumen, which are not even wanting in the Cetacea. This last-named order presents further peculiarities, which here require notice. The tympanic cavity exhibits a very peculiar formation in the large sinuses, which are appended to it, and penetrate partly into bony cavities, which have been regarded as receptacles for large blood-
 vessels, but are in truth audiory sinuses, which extend partly into vessels, but are in truth auditory sinuses, which extend partly into the cranial bones, and, partly enclosed by a peculiar smooth and shining membrane, stretch over them. The completely membranous and never cartilaginous Eustachian tube extends from a large membranous sinus, with which the bony tympanic cavity is continuous, inward and upward, to open upon the external side, very high up in the bony nasal cavity. The internal lining of this tube forms several crescentic valves, which can not however completely
 \qquad

 14

[^1]: θ

