EJEMENTS

 "
IV RITTES IRITHIETIC.

BI CHARIES DAVIES, LL. D.,
TAGR OYA FULL COURSA OF MATHVMATICS

D) AD A

OIÓN G
defi intk:
UBLISHED BY BARNES \& BURR, 51 and 53 John Street. CHICAGO: GEORGE SHERWOOD. 8T. LOEIS: KBIITE \& WOODS.

WRITPRATARTTHILETIC.

DE BIBLIOAETGORA:
PUBLISHED BY BARNES \& BURR,
$51 \& 53$ JOHN STREET.
CHIOAGO: GEORGE SHERWOOD. sT. LOUIS: KEITH \& WOODs. 1863. 14380

ADVERTISEMENT.

THE attention of Teachers is respectfully invited to the RBVISED EDITIONS of

गiduies' gritbuctiral Suries

FOR SCHOOLS AND ACADEMIES.

1. DAVIES PRMMARY ARITHMETIC.
2. DAVIES' INTELLEOTUAL ARITHMETIC.
3. DAVIES' ELEMENTS OF WRITTEN ARITHMETIC.
4. DAYIES' PRACDICAL ARITHMEIIC.
5. DAVIES' UNIVERSITY ARITHMETIC.
6. DAVIES' PRACTICAL MATHEMATICS.

The aboye Works, by Chartes Davies, LL. D., Author of a Complete Course of Mathematics, are designed as a full Course of Arithmetical Instruction necessary for the practical duties of business life; and also to prepare the Student for the more advanced series of Mathematics by the same Author.
The following New Editions of Algebra, by Professor Davnes, are commended to the attention of Teachers:

1. DAVIES' NEW ELEMENTARY ALGEBRA AND KEY.
2. DAVIES' UNIVERSITY ALGEBRA AND KEY.
3. DAVIES' BOURDON'S ALGEBRA AND KEY.

Entered according to Act of Congress, in the year one thousand eigbt hundred and sisty-tiree,
By CHARLES DAVIES,

In the Clerk's Offiee of the District Court of the United States for the Sonthern District of New York,

PREFACE.

IT has become a settled principle in the science ot teaching, that abstract principles and their elementary combinations must be first presented to the mind by the aid of sensible objects.

The eye is an active and an efficient agent in the acquisition of elementary knowledge. The elementary ideas of Number and Space, are acquired from things which are seen and handled, and the logical combinations of these elementary ideas make up the entire science of Mathematics.

It is the design of the present work, to present to the mind of the pupil the art, and to some extent, the science of Arithmetic, by a series of carefnlly constructed formulas of operation, with simple and concise rules. It is believed, that for beginners, the analysis, which explains the reasons of arithmetical operations, can, in most cases, be inferred from the operations themselves, and that elaborate explanations are hindrances, rather than aids.

The practical value of arithmetical instruction is dependent on the facility and accuracy of performing the operations. If, therefore, the operations are so arranged as to suggest the rules, the practical becomes the moving principle, and the rule, the consequence. This method of presenting the subject, suggests to the mind all the operations through the eye, and not through the rute. It is the method of reading figures, extended to the reading of formulas.

CONTENTS.

Although this book does not form a connecting link in the series, it should, nevertheless, be used after the Primary. It shonld, also, if convenient, be studied in connection with the Intellectual Arithmetic. Thus, the Formulas of Operation, the Rules, and the Analyses, will be presented separately, in their natural order, and in their proper connections.

DECDMAL FRACTIONS.
Notation and Numeration ${ }^{\text {Page }}$
Addition 100
Subtraction 102
Multiplication 105
Division 107

ELEMENTS OF ARITHMETIC.

Definitions.

1. A Unit is a single thing, or one.
2. A Nusber is a unit, or a collection of units.
3. Arithmetic is the science of numbers and the art of computation.
4. An Operation is something done with numbers.
5. An Answer is the result of a correct operation.
6. A Rule is the direction for performing an operation.

Operations of Arithmetic.

7. There are five fundamental operations of Arithmetic: Notation and Numeration, Addition, Subtraction, Multiplication, and Division.

NOTATION AND NUMERATION.

8. Nomatron is the method of expressing numbers, either by letters or figures.

Numeration is the art of reading, correctly, any number expressed by letters or figures.
There are two methods of Notation: one by letters, and one by figures. The method by letters is called, the Roman Notation; the method by figures is called, the Arabic Notation.

DECDMAL FRACTIONS.
Notation and Numeration ${ }^{\text {Page }}$
Addition 100
Subtraction 102
Multiplication 105
Division 107

ELEMENTS OF ARITHMETIC.

Definitions.

1. A Unit is a single thing, or one.
2. A Nusber is a unit, or a collection of units.
3. Arithmetic is the science of numbers and the art of computation.
4. An Operation is something done with numbers.
5. An Answer is the result of a correct operation.
6. A Rule is the direction for performing an operation.

Operations of Arithmetic.

7. There are five fundamental operations of Arithmetic: Notation and Numeration, Addition, Subtraction, Multiplication, and Division.

NOTATION AND NUMERATION.

8. Nomatron is the method of expressing numbers, either by letters or figures.

Numeration is the art of reading, correctly, any number expressed by letters or figures.
There are two methods of Notation: one by letters, and one by figures. The method by letters is called, the Roman Notation; the method by figures is called, the Arabic Notation.

Roman Notation.

9. The Roman notation employs seven capital letters. They express the following values:

All other numbers are expressed by combining these letters: 1. Every time a letter is repeated, the number which it denotes is repeated.
2. If a letter denoting a less number be written on the Tright of one denoting a greater, the number expressed will be denoted by the sum of the numbers.
3. If a letter denoting a less number be written on the left of one denoting a greater, the number expressed will be the difference of the numbers.
4. A dash $(-)$, placed over a letter, inereases the number for which it stands, a thousand times.

Arabic Notation.

10. Arabic Notation is the method of expressing numbers by figures. Ten figures are used. They are,

0	1	2	3	4	5	6	7	8	9

All numbers are expressed by these figures, employed singly, or in combination. When in combination, the value of each is determined by the following principles:

1. That the same figure may express different values;
2. That it expresses its least value, when placed in the first place on the right;
3. That it expresses, when placed in the 2 d place from the right, a value ten times as great as when in the 1st place; when put in the 3 d place, a value 10 times as great as in the $2 d$ place, and so on for every place to the left.
4. The names of the places are the following:

5. We have seen that, when a number is expressed by a single figure, as 8 , it is read by its name, eight.
When a number is expressed by two figures, as 26 , it is read from the right:

that is, 6 units and 2 tens; and from the left, twenty-six.
When a number is expressed by three figures, as 375 , it is read from the right:

Numeration Table.
 3 2. Numbers expressed by more than three figures, are separated, by a comma, into periods of three figures each, beginning at the right.
3. Each period contains three figures, except the one at the left, which may contain. one, two, or three figures.
4. The pupil should be required to commit, thoroughly,
the names of the periods, and to read the figures fluently.

Exercises in Notation and Numeration.

1. Write 1 in each place of the first period, and read the number.
2. Write 3 in the $3 d$ place of the first period, and n 's in the other places, and read the number.
3. Write 8 units, 5 tens, and 6 hundreds, and read the number.
4. Write 9 hundreds, 6 tens, and 7 units, and read.
5. Write 4 in each place of the first two periods, and read.
6. Write 3 in each place of the second period, and a 0 in each place of the first, and read.
7. Write 7 thousand, 6 hundred and fifty-five.
8. Write 5 in each place of the 3 d period, 2 in each place of the 2 d , and 1 in each place of the 1st, and read.
9. Write six hundred and forr millious, minety-five thousand, three hundred and forty-two.
10. Write 421 billions, a 0 in each place of the 3 d period, and four thousand and sixteen, and read.
11. Write 0 in each place of the first three periods, and 5 in the first place of the 4th, and read the number.

And so on for the higher numbers: hence, NBR Units of the first order are written in the first place, at the right;

Units of the second order, in the second place;
Units of the third order, in.the third place;
Units of the fourth order, in the fourth place; and so on for places to the left.

Examples in Writing and Reading.

1. Write 6 units of the first order.
2. Write four units of the first order with five of the second.
3. Write nine units of the 3 d order with 3 of the second and 1 of the first, and read.
4. Write 8 units of the 3 d order with none of the second and six of the first.
5. Write 7 units of the 5 th order with 2 of the second.
6. Write 5 units of the 6th order with 4 of the 4 th, 3 of the 3d, and 1 of the $1 s t$, and read.
7. Write 4 units of the 6th order with 5 units of the 1st order, and read.
8. Write 3 units of each order to the 6th, and read the number.
9. Write 9 units of each order to the 9 th, and read the number.

Analysis of Numbers.

Let the pupil point off and read the following numbers; then write them in words.

1.	85	7.	50482	13.	275047078
2.	137	8.	602142	14.	4127043047
3.	6704	9.	8969797	15.	9730417071
4.	3678	10.	71462108	16.	10470621048
5.	30421	11.	104000009	17.	27049632101
6.	200410	12.	570478010	18.	31047021412

Ex. 1. How many tens in 85 ? How many 2. In 137, how many hunde? How many units in the units place? How many tens in the number? How many units?
3. In 6704, how many thousands in the thousands place? How many hundreds in the hundreds place? How many tens in the tens place? How many units in the units place?

ADDITION.

12. Additron is the operation of finding the sum of two or more numbers.
The Sor contains as many units as there are in all the numbers added.

Addition Table.

13. The sign, + , is called plus, which signifies, more. When placed between two numbers, it denotes that they are to be added.

The sign, =, is called the sign of equality. When placed between two numbers, it denotes that they are equal; that is, that they contain the same number of units. Thus, $3+2=5$, and is read, 3 plus 2 equals 5 .

$$
\begin{array}{r}
3+7=\text { how many? } \\
1+2+3=\text { how many? } \\
3+4+5+1=\text { how many? } \\
1+0+2+3+3=\text { how many? }
\end{array}
$$

1. $1+3$, are how many? $\quad 21.6+9=$ how many?
2. $1+5$, are how many?
3. $6+0$, are how many?
4. $7+9$, are how many?
5. $8+7$, are how many?
6. $1+2+3=$ how many?
7. $1+6+0=$ how many?
8. $9+5$, are how many?
9. $10+5$, are how many? 22. $7+5=$ how many?
10. $9+0+1=$ how many?
11. $0+3+12=$ how many? 25. $9+6$, are how many?
12. $1+5+6$, are how many?
13. $3+9=$ how many?
14. $7+5=$ how many?
15. $9+0=$ how many?
16. $1+9+10=$ how many? $30.6+5=$ how many?
17. How many fingers are 4 fingers and 2 fingers?
18. If an apple costs 3 cents, and an orange 5 cents, what is the cost of both?

1 and 1 are how many?
2 added to 4, how many?
3 and 9 cents, how many?
9 and 10 are how many?
8 and 5 are how many?
7 and 4 are how many?
9 and 9 are how many?

8 and 5 are how many?
7 and 6 are how many?
8 and 7 are how many?
9 and 6 are how many? 7 and 10 are how many? 5 and 7 are how many? 6 and 8 are how many?
33. What two numbers, added together, will make 8?
34. What two numbers, added together, will make 10?
35. A man earned 5 dollars on Monday, 6 dollars on Tuesday, and 7 dollars on Wednesday: how many dollars did he earn in the three days?
36. If a man spends 4 dollars for boots, 10 dollars for a coat, and 6 dollars for a hat, how much does he spend in all?

Exercises for the Slate or Blackboard

14. Pupils in Arithmetic should be taught, from the very commencement, to read the figures. By reading, we mean the use of those words only which declare the final results.

For example, 2 and 2 are 4. The word four names the result arising from adding 2 and 2 together.
Having written the following, and similar examples, on the slate or blackboard, let the pupils, separately and in concert, pronounce the sum of each column.
1.

1. What is the sum of 387 dollars, 579 dollars, and 793 dollars?

The numbers in this example are written down and added according to the following

Rule

OPERATION
387
579
793
I. Write the numbers to be added, so that units of the same value shall fall in the same column; that is, units under units, tens under tens, \&c.
II. Add the column of units; set down the units of the sum, and then add the tens, if any, to the next column.
III. Add each column in the same way, and set down the entire sum of the last column.

Proof.

Begin at the top of the units column, and add all the columns downwards, carrying from one column to the other, as when the columns were added upwards. If the two results agree, the work is supposed to be right.

Un
5. $\left\{\begin{array}{llllllllll}4 & 9 & 7 & 5 & 2 & 7 & 3 & 0 & 2 \\ 3 & \underline{0} & \underline{6} & \underline{0} & \underline{1} & \underline{9} & 7 & \underline{6} & \underline{0} & \underline{1}\end{array}\right.$
6. $\left\{\begin{array}{llllllllll}0 & 3 & 4 & 5 & 6 & 8 & 9 & 2 & 1 & 0 \\ 3 & 9 & 0 & 3 & 8 & 7 & 4 & 6 & 0 & 5 \\ \underline{4} & \underline{3} & \underline{7} & \underline{7} & \underline{0} & \underline{2} & \underline{9} & \underline{3} & 9 & 7\end{array}\right.$
7. $\left\{\begin{array}{llllllllll}9 & 8 & 6 & 5 & 0 & 4 & 2 & 3 & 1 & 9 \\ 3 & 2 & 7 & 3 & 9 & 6 & 7 & 0 & 3 & 8 \\ \underline{4} & \underline{8} & \underline{0} & \underline{6} & \underline{7} & \underline{8} & \underline{4} & \underline{9} & \underline{6} & \underline{7}\end{array}\right.$

27. What is the sum of $297+496+3764+101+9056 ?$
28. Find the sum of $56+479+2764$, increased by the sum of $960+575+2300+100+205$.
29. What is the sum of $54046+75+870423+999+$ $87047+910468+874863+47049+372141 ?$
30: What is the sum of $270999+310467+21+375+$ $888880+9794967+73758941+47049+740416 ?$
31. What is the sum of $67041+80046+97041+0+$ $30967+814675+704069+70412704+90704+72304+$ 99999?
32. Find the sum of four hundred and sixty-five; one thousand, three hundred and thirty-three; four hundred and twenty-nine thousand, eight hundred and eight; forty-four millions, nine hundred and ninety thousand and sixty; five hundred and sixteen; and seven hundred thousand, seven hundred and seventy-five.
33. Find the sum of twenty-seven thousand, nine hundred and sixteen; nine millions, nine thousand and nine; one hundred and fifty-six millions, eight hundred and twenty-six thousand, eight hundred and eighty-seven; twelve hundred and forty-nine ; sixty-nine thousand and sixty-nine ; thirtyfour ; and two hundred and sixty-two.
34. Find the sum of six hundred and seventy-three billions, three hundred and twenty millions, two thousand, six hundred and one; three billions, nine hundred and sixtyseven millions, eighty-nine thousand and six; eighty-seven
thousand, nine hundred and twelve; and one handred and eleven.
35. Find the sum of forty-nine quadrillions, two thousand billions, six hundred millions, four hundred and sixty-nine thousand and seventeen; ninety-five quadrillions, fifty-nine millions, four hundred and nine thousand, six hundred and fifty-nine.

Practical Questions.

1. If an apple costs 2 cents, an orange 6 cents, and a lemon 4 cents, what will the three cost?
2. What two numbers, added together, make 12 ?
3. If James pays 15 cents for a top, 75 cents for a knife, and 87 cents for a book, what does he pay in all?
4. John was born in the year 1840 : in what year was he 21 years of age?
5. What is the cost of 3 city lots, the 1st costing 1457 dollars, the 2 d 1259 dollars, and the 3d 965 dollars?
6. Add together five thousand nine hundred and sixtyfive, 8759 , and twenty thousand 846 .
7. If two persons travel from the same point in opposite directions, the one 7 miles and the other 9 miles, how far apart will they then be?
8. James, after giving away 6 cents, spending 8 cents for a pie, and losing 9 cents, had 5 cents left: how much had he at first?
9. A boy who had bought a ball for 6 cents, wishes to sell it, so as to gain 4 cents : for what must he sell it?
10. A merchan̂t bought a barrel of flom for 7 dollars, and a tub of butter for 9 dollars: for what must he sell the two, that he may gain 6 dollars on both ? 11. A grocer bought some sugar for 8 dollars, and some tea for 7 dollars : what amount will he receive for the two, if he gains 2 dollars on the sugar and 3 dollars on the tea?
11. James and Joseph leave home in the morning, with an equal amount of money; during the day, James gains 10 dollars, and Joseph loses 7 dollars : at the close of the day, how much more has the one than the other?
12. James is 16 years old, and John is 24 years older: how old is John?
13. A merchant paid 450 dollars for sugar, 692 dollars
for teas, 275 dollars for coffee, 3760 dollars for flour, and 105 dollars for soap: what did he pay for all?
14. Suppose a merchant has 3756 dollars in bank-bills, 4793 dollars in gold, 264 dollars in silver, and 5 dollars in cents: how much has he?
15. A farmer, wishing to build a barn, estimated its cost as follows: for the lumber, 490 dollars; carpenter's work, 360 dollars; hardware, 75 dollars, and painting, 124 dollars: what was the estimated cost of the barn?
16. If a person pays 750 dollars for a lot of ground, 3986 dollars for the house on it, 642 dollars for furniture and 975 dollars for the library, what is the cost of the whole?
17. A man paid 275 dollars for a horse: for what must he sell it, that he may gain 45 dollars?
18. A person who had received a certain sum of money, paid out 675 dollars, and had 7835 dollars left : what amount did he receive?
19. What would be the wages of a year, if a person receives 75 dollars per month for 6 months, and 90 dollars per month for the remaining 6 months ?
20. James was born in 1834, and Samuel was born 25 years after him: in what year was Samuel born?
21. Daniel, who was born in 1812, was 37 years old when he died; and Reuben died 10 years after Daniel : in what year did Reuben die?
22. A drover bought some cattle for 4395 dollars, and, after having kept them for 3 weeks at an expense of 175 dollars, sold them at a profit of 396 dollars: for what did he sell them?
23. A merchant bought 25 barrels of flour for 150 dollars; 72 barrels, for 376 dollars; 317 barrels, for 1698 dollars; 764 barrels, for 4379 dollars. How many barrels did he buy, and what did they cost?
24. A gentleman bought a horse, a carriage, and harness: for the harness he paid 75 dollars; for the horse, 65 dol-
lars more than for the harness; and for the carriage, 172 dollars more than for the horse: what was the cost of the three?
25. A flour merchant bought a quantity of flour in St. Louis, for 5600 dollars, and sent it to New York: the freight amounted to 275 dollars, cartage to 196 dollars, storage to 50 dollars, and insurance to 25 dollars: for what must the flour be sold; to gain 800 dollars?
27.-A merchant has in store, merchandise worth 25642 dollars; he has debts due him, to the amount of 5719 dollars; he has in bank 7695 dollars; he owns two houses, each worth 4965 dollars, a ship worth 35450 dollars, a farm worth 11290 dellars, and a factory worth 26475 dollars: what is his fortune?
26. A father bequeathed his fortane in the following mamer: to his wife, 10600 dollars; to each of three sons, 6756 dollars; to each of 2 daughters, 4975 dollars; 2763 dollars to pay all his debts; 565 dollars to the Bible Society, and to the Education Society 725 dollars: what was the fortume?
27. A person having neglected to make a record, wished to know how many bushels of potatoes he had bought at a certain time. He had sold of them 496 bushels, had thrown away 15 bushels, given away 36 bushels, and had 247 bushels left: how many bushels had he bought?
28. The distance from Jersey City to Port Jervis is 88 miles ; from Port Jervis to Deposit, 88 miles; from Deposit to Great Bend, 24 miles; from Great Bend to Binghampton, 14 miles; from Binghampten to Elinira, 59 miles; from Elmira to Corning, 18 miles; from Corning to Hornellsville, 40 miles; from Hornellsville to Olean, 64 miles; and from Olean to Dunkirk, 64 miles: what is the distance from Jersey City to Dunkirk?

SUBTRACTION.

15. Subtraction is the operation of finding the difference between two numbers.

The Difference is such a number as, added to the less, will give the greater.

Table.

1 from 1 leaves 0	2 from 2 leaves 0	3 from 3 leaves 0
1 from 2 leaves 1	2 from 3 leaves	3 from 4 leaves 1
1 from 3 leaves 2	2 from 4 leaves 2	3 from 5 leaves 2
1 from 4 leaves 3	2 from 5 leaves 3	3 from 6 leaves 3
1 from 5 leaves 4	2 from 6 leaves 4	3 from 7 leaves
1 from 6 leaves 5	2 from 7 leaves 5	3 from 8 leaves 5
1 from 7 leaves 6	2 from 8 leaves 6	3 from 9 leaves 6
1 from 8 leaves 7	2 from 9 leaves 7	3 from 10 leaves 7
1 from 9 leaves 8	2 from 10 leaves 8	3 from 11 leaves 8
1 from 10 leaves 9	2 from 11 leaves 9	3 from 12 leaves 9
1 from 11 leaves 10	2 from 12 leaves 10	3 from 18 leaves 10
4 from 4 leaves 0	5 from 5 leaves 0	6 from 6 leaves
4 from 5 leaves 1	5 from 6 leaves 1	6 from 7 leaves
4 from 6 leaves	5 from 7 leaves 2	6 from 8 leaves 2
4 from 7 leaves 3	5 from 8 leaves 3	6 from 9 leaves 3
4 from 8 leaves 4	5 from 9 leaves 4	6 from 10 leaves
4 from 9 leaves 5	5 from 10 leaves 5	6 from 11 leaves 5
4 from 10 leaves 6	5 from 11 leaves 6	6 from 12 leaves
4 from 11 leaves 7	5 from 12 leaves ?	6 from 13 leaves
4 from 12 leaves 8	5 from 13 leayes 8	6 from 14 leaves
4 from 13 leaves 9	5 from 14 leaves 9	6 from 15 leaves 9
4 from 14 leaves 10	5 from $15 /$ leaves 10	6 from 16 leaves 10
7 from 7 leaves 0	8 from 8 leaves 0	9 from 9 leaves
7 from 8 leaves 1	8 from 9 leaves 1	9 from 10 leaves 1
7 from 9 leaves 2	8 from 10 leaves 2	9 from 11 leaves 2
7 from 10 leaves 3	8 from 11 leaves	9 from 12 leaves
7 from 11 leaves 4	8 from 12 leaves 4	9 from 13 leaves
7 from 12 leaves 5	8 from 13 leaves 5	9 from 14 leaves
7 from 13 leaves 6	8 from 14 leaves	9 from 15 leaves
7 from 14 leaves 7	8 from 15 leaves	9 from 16 leaves
7 from 15 leaves 8	8 from 16 leaves 8	9 from 17 leaves 8
7 from 16 leaves 9	8 from 17 leaves 9	9 from 18 leaves 9
7 from 17 leaves 10	8 from 18 leaves 10	9 from 19 leaves 10

2

Examples.

1 from 2 how many?	0 from 4 how many?
3 from 4 how many?	2 from 6 how many?
2 from 9 how many?	3 from 7 how many?
1 from 8 how many?	3 from 8 how many?
2 from 4 how many?	4 from 7 how many?
3 from 5 how many?	5 from 6 how many?
1 from 7 how many?	7 from 8 how many?
2 from 6 how many?	3 from 9 how many?
4 from 9 how many?	5 from 7 how many?
0 from 7 how many?	3 from 6 how many?
4 from 5 how many?	5 from 10 how many?
1 from 6 how many?	8 from 16 how many?
7 from 8 how many?	7 from 14 how many?
8 from 9 how many?	4 from 14 how many?
4 from 8 how many?	6 from 11 how many?
9 from 9 how many?	7 from 12 how many?
7 from 9 how many?	6 from 16 how many?
0 from 6 how many?	7 from 12 how many?
2 from 8 how many?	3 from 13 how many?
5 from 9 how many?	8 from 18 how many?

1. John had 7 apples, and gave away 3 of them: how many had he left?
2. John has 9 cents, and Mary has 5 : how many more has John than Mary?
3. A boy wishes to buy a ball worth 18 cents, but he has only 12 cents : how many cents more does he need?
4. If one man walks 16 miles in a day, and another 7 miles less, how many miles did the latter walk?
5. If a person earns 15 dollars in a week, and his expenses are 9 dollars, how much does he save ?
6. A mechanic who earns 12 dollars per week, wishes to save 5 dollars: how much may he spend?
7. A merchant bought some cloth for 13 dollars, and sold it for 8 dollars: how much did he lose?
8. Two men are to pay, together, 16 dollars; one is to pay 9 dollars : what must the other pay?
9. A person bought sugar for 8 dollars, and sold it for 14 dollars: what did he gain?

10 . If the number 14 be separated into two parts, one of which shall be 6 , what will the other be ?
16. The Minuend is the number subtracted from.
17. The Subtrahend is the number subtracted.
18. The Remainder is what is left.
19. The sign, - , is called minus, and denotes subiraction: Thus,

$$
5-3=2
$$

denotes that 5 is the minuend, 3 the subtrahend, and 2 the remainder; and is read, 5 minus 3 equals 2.

$$
\begin{array}{r|r}
6-4=\text { how many? } & 1-1=\text { how many? } \\
7-2=\text { how many? } & 8-4=\text { how many? } \\
9-3=\text { how many? } & 9-9=\text { how many? } \\
7-5=\text { how many? } & 8-6=\text { how many? } \\
8-3=\text { how many? } & 4-1=\text { how many? } \\
9-1=\text { how many? } & 9-1=\text { how many? }
\end{array}
$$

Let the pupil read the difference between each number and the one over it: \square
1.

1. $\left\{\begin{array}{lllllllll}1 & 4 & 3 & 6 & 5 & 9 & 8 & 7 & 2 \\ \underline{1} & \underline{1} \\ \text { 2. }\left\{\begin{array}{lllllllll}4 & 5 & 7 & 3 & 2 & 6 & 9 & 8 & 7 \\ \underline{2} & \underline{2}\end{array}\right.\end{array}\right.$?

2. Write the subtrahend under the minuend: thus,

SIMPLE NUMBERS.

	(10.)	(11.)	(12.)	(13.)	(14.)
From	436	375	679	974	899
Take	125	341	576	973	791
	(15.)	(16.)		(17.)	(18.)
From	- 570	290		695	809
Take	210	170		$\underline{364}$	705
	(19.)	(20.)		(21.)	(22.)
From	8749	9999		8847	9097
Take	2647	1789		8746	2096

Write the less number under the greater, and perform the subtraction according to the following Rule.

Let the pupil read the result in
each subtraction.
545 Minuend. $\begin{array}{llll}5 & 4 & 5 & \text { Minuend. } \\ 1 & 9 & 4 & \text { Subtrabend. }\end{array}$ $\begin{array}{ll}194 & \text { Subtrahend } \\ 351 & \text { Remainder. }\end{array}$

Rule.

I. Write the less number under the greater, so that units of the same value shall fall in the same column.
II. Begin at the right hand, and subtract each figure of the subtrahend from the one directly over it, when the upper figure is the greater.
III. When the upper figure is the less, add 10 to it, before subtracting, and then add 1 to the next figure of the subtrahend.

Proof.

Add the remainder to the subtrahend. If the work is right, the sum will be equal to the minuend.

Examples.

Ans. 671483.
21. From 674187 take 2704.
22. From 2947049 subtract 21470 .
23. Subtract 97048 from 9704909.
24. How many are $496087-22041$?
25. $479630-29472=$ how many?
26. $1100910-974609=$ how many?
27. $100000-10999=$ how many?
28. $6900760-294099=$ how many ?
29. Subtract 910969 from 1000000 .

Ans. 2925579. Ans. 9607861.
Ans. 474046
Ans. 450158.
Ans. 126301.
Ans. 89001.
Ans. 6606661.
Ans. 89031.

Practical Questions.

1. Take twenty-five from twenty-five hundred.
2. $100000-444=$ how many?
3. $1000000-404404=$ how many?
4. From ten thousand take one.
5. $2360064-194506=$ how many?
6. From a $\log 45$ feet long, 37 feet were cut off : how many feet were left?
7. If one lot of ground costs 350 dollars, and another 315 dollars, how much more did one cost than the other?
8. A person bought a quantity of goods for 1860 dollars and sold them for 2512 dollars: how much was gained?
9. A merchant sold, for 2710 dollars, goods which had cost 1964 dollars : what was the gain?
10. A man paid 3645 dollars for a house and lot, and sold them for 2987 dollars: what was the loss?
11. A vessel that cost 7682 dollars, was sold for 6995 dollars: what was the loss?
12. A gentleman received in 1860 a salary of 3000 dollars,
but now receives 495 dollars less : what is his salary?
13. A person sold his horse for 3750 dollars, and by so doing gained 968 dollars: how much had he paid for it?
14. A person in 1861 was seventy-five years old: in what year was he born?
15. A person was born in 1765 and died in 1810: how old was he when he died?
16. How many years elapsed between the landing of Columbus in 1492 and the era of the Revolution in 1775?
17. The difference of the ages of two persons was 49 years: the younger person was born in 1850: in what year was the older born?
18. The Revolutionary war began in 1775 and the Great Rebellion in 1861: how many years elapsed between these two events?

Examples combining Addition and Subtraction.

1. There were 27 pear-trees in one row, and 26 in another, and 15 were blown down: how many were left standing?
2. Laura has 75 cents in one hand, and 36 in the other; she bays an Arithmetic for 69 cents: how many cents has she left?
3. There are 100 scholars in the Primary department of Ca school, and 359 in the higher department; of the whole, 279 are boys: how many girls are there?
(TT) 4. James has 87 cents; he pays 25 cents for a whistle, and 40 cents for a knife: how much has he left?
4. A merchant bought 1250 yards of cloth of one person, 3270 yards of another, and then sold 1459 yards: how many yards had he left?
5. A farmer has 425 sheep, 30 cows, 16 horses, 20 calves, and 6 colts ; if he sells the sheep, how many animals will he have left?

7 . By the censis of 1850, the entire population of the United States was 23191876; the slave population 3204313 ; free colored 434495: what was the white population?

- 8. A man's income is 1849 dollars a jear ; he spends
for food, 450 dollars; for clothing, 129 dollars; and for other things, 627 dollars: how much does he save?

9. A grocer bought a lot of flour for 216 dollars; some rye for 127 dollars; and some corn for 420 dollars; he sold the whole for 992 dollars: what did he make?
10. Mr. Jones owes his butcher, grocer, and baker 365 dollars; he owes his grocer 219 dollars: how much does he owe the other two?
11. James and John start from the same point and travel in opposite directions; James goes 20 miles, and John 17; how far are they then apart?
12. If two men start from the same place and travel in the same direction: how far will they be apart after one has travelled 55 miles, and the other 37 miles ?
13. A father is 26 years older than his eldest son, and 52 years older than his youngest: what is the difference of the sons' ages?
14. A farmer has 50 sheep in one pasture, 38 in a second, and 25 in a third; if 9 sheep escape from the first, 3 from the second, and 1 from the third: how many sheep will be left?
15. From four thousand three hundred and twenty-seven, plus two hundred and thirty-one, subtract 287.
16. From three millions six hundred and five, plus 217 , subtract one thousand and 9 .
17. From one million, subtract one thousand plus 6.
18. From six millions, subtract $200+5$.
19. A man gains 512 dollars, then loses 401 dollars; a second time he gains 512 dollars, and loses 104 dollars: how many dollars has he left?
20. A merchant bought 120 hogsheads of sugar for 6000 dollars, and paid 325 dollars freight; he then sold the whole for 7529 dollars: how much did he gain?
21. I agree to pay Mr. Squires 36 dollars for ploughing - a piece of land; 167 dellars for feneing it, and 139 dollars for cultivating it: how much shall I owe him after paying him 287 dollars?
22. Mr. Jones has a yearly income of 6750 dollars; he pays 475 dollars for rent, 1325 dollars for family expenses, and 950 dollars for his horses and carriage: how much has he left?
23. Mr. James has a fortune of 37689 dollars, which he divides among his four sons ; he gives John 10421 dollars, William 9875 , and Charles 8751 dollars: how many dollars has Reuben?

MULTIPLICATION.

22. Muetiplication is the operation of taking one number as many times as there are units in another.
23. The Muutipucind is the number to be taken.
24. The Muitipuer is the number denoting how many times the multiplicand is to be taken.
25. The Predter is the result of the operation.
26. The Moutpurcand and Muitiplier are called Eactors.
27. The sign X, is called the sign of multiplication. When placed between two numbers it denotes that they are to be multiplied together; thus:

Once	1	is	1	2 times	1	are	2	3 times	1	are
Once	2	is	2	2	3					
Once	3	is	3	2	times	2	are	4	3	times

7 times	1	are	7	8 times	1	are	8	9	times	1			
7											are	9	
---:	:---												
7	times												
2	are	$	$										

Practical Questions.

1. If an orange is worth 6 cents, how many cents are 3 oranges worth?
2. What is the cost of 8 yards of cloth at 5 dollars a yard?
3. How much will a man earn in 6 days, if he earns 7 dollars per day? LAMMAM
4. If a man's expenses are 4 dollars per day, what are this expenses for 6 days?
5. If a horse travels 8 miles per hour, how far will he travel in 9 hours?
6. A bushel contains 4 pecks: how many pecks are there in 5 bushels?
7. If a pail holds 3 gallons of water, how many gallons are required to fill 8 pails?
8. If a father gives to each of 7 children 9 dollars, how many dollars will he give to all?
9. If 8 yards of cloth are required for a suit of clothes, how many yards will be required for 7 suits?
10. If a mechanic earns 15 dollars per week and spends 9 dollars, how much will he save in 6 weeks ?
11. If a man earns 4 dollars per day, how much will he - earn in 7 days?
12. If a sheet of paper can be folded in 8 leaves, how many leares will 9 sheets make?
13. If a carpenter, in measuring a piece of timber, lays his measuring rod, which is 6 feet long, 10 times along the piece, how long is it?
14. In how many days can 1 man do as much work as 3 men can do in four days?
15. If 6 men can do a piece of work in 7 days, in how many days can 1 man do the same work?
16. If 5 men can build a wall in 9 days, how many men can build it in 1 day?

17. Multiply 30746 by 8 . 21 . Multiply 490767 by 5.
18. Multiply 99099 by 9 . 22. Multiply 540992 by 7.
19. Multiply 670497 by 8 . 23 . Multiply 888888 by 8 .
20. Multiply 270496 by 7 .
21. Multiply 999999 by 9 .
22. $3567064 \times 9=$ what product?
23. $51606 \times 8=$ what product?
24. Moltiply sixty-five thousand six hundred and fortyeight, by eight.
25. Multiply seven hundred and eighty-six thousand nine hundred and ninety-five, by five.
26. Multiply the sum of 9756 and 2864 , by 9 .
27. Multiply the difference of 7050 and 4986 , by 6 .
28. The multiplicand is 25689 and the multiplier is 5 : what is the product?
29. If one horse costs 175 dollars, what will be the cost of 6 horses at the same rate?
30. In one cord of wood there are 128 solid feet : how many solid feet are there in 8 cords?
31. What would be the cost of 7 houses, each costing 3759 dollars?
32. What is the product of 19700685 multiplied by 8 ?

29. When the multiplier contains two or more figures.

1. Multiply 3046 by 504 .

Analyss.-The multiplicand is to be taken 504 times: taking it 4 times, we obtain 12184. When we come to take it 5 hundred times, the lozoest order of units in the product will be hundreds: hence, 0 , the first figure of the product, must be

$$
\begin{aligned}
& \text { oprratron. } \\
& \begin{array}{l}
3046 \\
504
\end{array} \\
& \begin{array}{l}
\text { Multiplicand. } \\
\hline 12184
\end{array} \\
& \begin{array}{l}
15230 \\
\hline 1535184
\end{array} \\
& \hline
\end{aligned}
$$ written in the third place.

Note. - The product obtained by multiplying by a single figure of the multiplier, is called a partial product. The sum of the partial products, is the required product.

Rule.

I. Write the multiplier under the multiplicand, placing units of the same order in the same column. II. Beginning with the units' figure, multiply the multiplicand by each significant figure of the multiplier, and write the first figure of each partial product directly under its multiplier.
III. Then add the partial produots, and their sum will be the required product.

Proof.

Write the multiplicand in the place of the multiplier, and find the product, as before. If the two products are the same, the work is supposed to be right.

Examples.

23. $450604 \times 6094=$ how many?
24. $569074 \times 21702=$ how many?
25. The multiplicand is 47568 and the multiplier is 5964 : what is the product?
26. The multiplicand is 495 and the multiplier is 17964 : what is the product?
27. What is the product of 16084 taken 1207 times?
28. Multiply one million eight hundred and sixty thousand five hundred and six, by one thousand and sixty-two.
29. Multiply two hundred and seven millions four hundred and sixteen thousand seven hundred and sixteen, by two thousand six hundred and forty-seven.
30. What is the product of 2845 and 796 ?
31. What is the product of 165,962 , and 175 ?
32. What is the product of $2,45,166$, and 205 ?
33. Multiply 1009 by one thousand and nine.
34. Multiply five hundred and six by itself.
35. Multiply the number 3000 by 46985 .
36. Multiply the number 8704057 by 6939484 .

CONTRACTIONS.

30. A Composite Nurber is one which may be produced by multiplying together two or more numbers.
31. A Factor is any one of the numbers which, multiplied together, produce a composite number.

Thus, $2 \times 3=6,2$ and 3 are the factors of the composite number 6 .
Also, 12 is a composite number, $=6 \times 2=3 \times 2 \times 2$, in which the factors are 6 and 2 , or 3,2 , and 2 .

What are the factors of 9 ? of 14 ? of 16 ? of 20 ?
What are the factors of 4 ? of 15 ? of 18 ? of 24 ?

CASE I.

32. When the multiplier is any composite number.

Rule.

I. Separate the composite number into its factors:
II. Multiply the multiplicand by one factor, and the product by a second fuctor; and so on, till all the factors have been used; the last product will be the product required.

Examples.

1. Multiply 321 by $16=4 \times 4=8 \times 2$.

2. Multiply 375 by 24.
3. Multiply 6095 by 49.
4. Multiply 7206 by 30 .
5. Multiply 6810 by 63.
6. Multiply 19760 by 56 .
7. Multiply 37568 by 40 .
8. Multiply 20270 by 35.
9. Multiply 75670 by 36 .

CASE II.

33. When the multiplier is 1 , with any number of ciphers amnezed; as, $10,100,1000$, \&c.

1. Multiply 376 by 10 .

Axalysis.- The operation is performed by simply amexing the 0's of the multiplier to the multiplicand.
oprentios. $376 \times 10=3760$.

Rule.

Annex to the multiplicand as many ciphers as there are in the multiplier, and the number so formed will be the. required product.

Examples.

1. Multiply 2756 by $10 ;$ by 100 .
2. Multiply 5680 by 1000 .
3. Multiply 7690430 by 10000 .
4. Multiply 4063 by 10 ; by 100 .
5. Prove the last example by multiplying by the factors of 10 , and of 100 .
6. Multiply 37006 by 100 ; by 1000 .
7. Multiply 570468 by 10 , by 100 , by 1000 , and by 10000 .

CASE III
34. When there are ciphers on the right of one or both of the factors.

1. Multiply 520 by 360 .

Multiply 52 by 86 and add two 0 's to the product.

Rule.

- A I. Omit the cipluers and multiply the significant figures:
II. Then place as many ciphers at the right hand of the product as there are in both factors.

DIBIBIJO Examples.

1. Maltiply 6750 by 20 . 6. Multiply 3750 by 52000 .
2. Multiply 80400 by 60 .
3. Multiply 974000 by 700 .
4. Multiply 230 by 9000 .
5. Multiply 16930 by 2500 .
6. Multiply 3000 by 3000 .
7. Multiply 2500 by 2500 .
8. Multiply 3007 by 7000 .
9. Multiply 190 by 109900 .

Practical Questions.

-

1. If one pound of butter costs 23 cents, what will be the cost of 9 pounds at the same rate? :
2. If one horse costs 125 dollars, what will be the cost of 24 horses at the same rate?
3. How many miles will a ship sail in 16 days, if it sails 245 miles a day?
4. If a gentleman's annual expenses amount to 2765 dollars, to what will they amount in 7 years?
5. In a barrel of flour there are 196 pounds: how many pounds are there in 160 barrels?
6. What is the product, when the multiplier is 3500 and the multiplicand 296400?
7. How much money is required to bay 164 barrels of flour at 7 dollars a barrel?
8. What amount of money will enable me to give 35 dollars to each of 245 laborers?
9. If a horse eats 12 bushels of oats in a month, how many bushels would 6 horses eat in 4 months?
10. How much hay would be required to feed 8 horses for 9 weeks, if one horse ate 175 pounds in one week?

11. In how many days could one man dig a treneh, if 25 men can dig it in 16 days?
12. If 40 men could build a wall in 30 days, how many men would be required to do it in one day?
13. How many days are there in 1000 common years of 365 days each?
14. Suppose a book to have 360 pages, each page to contain 35 lines, and each line to contain 11 words: how many words are there in the book?
15. If a chest of tea contains 75 pounds, and is worth 62 cents per pound, what would be the value of 45 chests of the same size and at the same price?

Examples, combining the previous Rules.

1. The cost of a horse is 145 dollars ; of a carriage 275 dollars ; and of a set of harness 75 dollars: what is the entire cost?
2. The income of a person is 4725 dollars per year, and his expenses are 2460 dollars for the same time: how much could he, at this rate, save in 36 years?
3. A person bought 275 horses at 100 dollars per head, and sold them at 135 dollars per head: what did he gain?
4. A farmer has 3 flocks of sheep, numbering respectively 50,96 , and 140 head. If, at shearing, each yields 4 pounds of wool, what will be its value at 24 cents per pound?
5. If a person, out of his monthly salary, spends 30 dollars for board, 8 dollars for washing, and saves 5 dollars, what is his monthly salary?
6. In a factory, 45 hands receive each 30 dollars per month; 24 receive each 25 dollars, and 15 receive each 20 dollars: what is the amount of the monthly payment?
7. A merehant sold 156 . yards of cloth, which cost 4 dollars a yard, at 6 dellars per yard; and 256 barrels of flour, which cost 5 dollars, at 7 dollars per barrel: how much did he gain?
8. Suppose an orchard to contain 16 rows of apple-trees, and each row to have 27 trees in it: how many bushels will the orchard produce, if 30 bushels are gathered from each tree?
9. A farmer has a farm of 175 aeres, the whole of which was sown with wheat: what will be the yield, if each acre produces 35 bushels?
10. If a lot of ground, that cost 375 dollars, were sold for 250 dollars, what would be the loss in selling 294 lots at the same rate?
11. Two men are 950 miles apart. If they travel towards
each other, one at the rate of 30 miles, and the other of 42 miles per day, how many miles will they be apart at the end of 8 days?
12. If two men, at the same time, leave the same place, and travel in opposite direetions, one at the rate of 26 miles, and the other of 19 miles per day, how far apart will they be at the end of 19 days?
13. A drover bought 180 head of cattle, in Illinois, at 25 dollars a head, and sent them to New York where he sold them at a profit of 7 dollars a head: what did he receive for the drove?
14. A lady purchased, at a dry goods store, 9 yards of eloth at 3 dollars per yard; 15 yards of satin at 2 dollars; 7 yards of merino at 1 dollar per yard; she paid for the above articles 3 twenty-dollar bills and 1 ten-dollar bill: what balance was due her?
15. A person contracted to do a piece of work for 5000 dollars. He hired 5 cartmen for 60 days at 5 dollars each, per day; 25 laborers for 75 days at 1 dollar each, per day, and two overseers for 80 days at 3 dollars each, per day: what amount did the contractor save for himself?
16. In one year, a farmer sold the produce of his farm, as follows: 300 bushels of wheat at 60 cents a bushel; 500 bushels of corn at 35 cents a bushel; 150 bushels of oats at 45 cents a bushel: what amount did he receive?
17. A fortune of 25000 dollars is so divided that each of 4 sons is to receive 3725 dollars, and each of two daughters 2575 dellars, and the widow the remainder: what is the widow's share?

DIVISION.

1. When a number is divided into 2 equal parts, each part is called, one-half of the number.

What is one-half of 4 apples? What is one-half of 4 ? How many times is 2 contained in 4?
2. When a number is divided into 3 equal parts, each part is called, one-third of the number.
What is one-third of 9 apples? What is one-third of 9 ?
How many times is 3 contained in 9 ?
3. When a number is divided into 4 equal parts, each part is called, one-fourth of the number.
What is one-fourth of 12 pears? What is one-fourth of 12 ? 4. When a number is divided into 5 equal parts, each part is called, one-fifth of the number.
Weat is one-fifth of 10 marbles? What is one-fifth of 10 ? 5. When a number is divided into 6 equal parts, each part is called, one-sixth of the number.
35. Division is the operation of dividing a number into equal parts; or, of finding how many times one number is contained in another:

36. The Dividend is the number to be divided.
37. The Divisor is the number by which we divide.
38. The Quotient is the result of the division.
39. The Remander is what is left after the operation. 40. There are three signs used to denote Division: $18 \div 4$, expresses that 18 is to be divided by 4 .
$\frac{18}{4}, \quad$ expresses that 18 is to be divided by 4.
4) 18 , expresses that 18 is to be divided by 4 .

Division Table. .

5 in 10 how many times?
8 in 16 how many times?
9 in 27 how many times?
6 in 54 how many times?

6 in 48 how many times? 8 in 96 how many times? 9 in 36 how many times? 8 in 48 how many times?

Practical Questions.

1. In how many days, at 2 dollars a day, will a man earn 16 dollars?
2. How many hats, at 3 dollars each, may be bought for 27 dollars?
3. If it takes 6 yards of cloth for a suit, how many suits may be made from 42 yards?
4. How many boxes, each holding 3 pounds, would be filled by 24 pounds of sugar?
5. A fathom is 6 feet: how many fathoms of depth are there in a river that is 24 feet deep?
6. In how many days could a man walk 63 miles, if he walked 9 miles per day?
7. In what time could a mechanic earn 42 dollars, if he earned 7 dollars per week?
8. In how many days will Daniel and Samuel together earn 72 cents, if Daniel earns 5 cents, and Samuel 3 cents per day?
9. If two men, who are 63 miles apart, should walk towards each other, the one at the rate of 3 miles, and the other of 4 miles per hour, in how many hours would they meet?
10. How many yards of cloth, at 4 dollars a yard, will pay for 6 barrels of flour at 6 dollars a barrel?
11. How many weeks' labor, at 9 dollars a weeks, will pay for 6 barrels of flour at 6 dollars a barrel?
12. Paid 24 dollars for 4 batrels of flour: what was the cost of one barrel?
13. If 8 men gained 40 dollars, how much did each gain?
14. If 54 dollars will buy 9 barrels of flour, how much wilk buy one barrel?
15. A person received 30 dollars for 6 days' labor: at what rate per day was he paid?
16. Divide 48 into 2 equal parts. opkeation. -

Divide each figure separately, by the divisor.

2. Divide 31254 by 6 .

We first say, 6 in 3 we can't; then 6 in 31, 5 times and 1 over; then 6 in 12, twice; then 6 in 5 , 0 times; then 6 in 54, 9 times.
oferation.
6) 31254
3. Divide 327 by 8 .

We divide as before, and find a opbramion. remainder of 7 . We write 8 under 7 , and the quotient is 40 and 7 divided by 8 .
8) 327

40 - 7 rem.
$40 \frac{7}{8}$ quotient.
I. Write the divisor on the left of the dividend. Begin at the left hand and divide each figure of the dividend by the divisor, and set each quotient figure under its dividend.
II. If there is a remainder after any division, annex

to it the next figure of the dividend and divide as before.
III. If any dividend is less than the divisor, write 0 for the quotient figure, and annex the next figure of the dividend for a new dividend.
D \square IV. If there is a remainder, ofter dividing the last figure, set the divisor under it, and annex the result to the quotient.

Proof.

Multiply the quotient by the divisor, and to the product add the remainder, if any : if the work is right, the result will be equal to the dividend.

Examples.

7. Divide
8. Divide
9. Divide
10. Divide
11. Divide
12. Divide
13. Divide

129 by 2. 9856 by 4. 79604 by 8 . 647617 by 6 . 819647 by 5 .

1064720 by 7.
14. Divide 10066100 by 6 .
15. Divide 16435420 by 2 .
16. Divide 90010555 by 2 .
17. Divide 14769647 by 9 .
18. Divide 39500047 by 4.
19. Divide 25046700 by 6 .
30. Divide 19507034 by 7 .
21. Divide 16039004 by 5 .
22. Divide 91001100 by 9 .
23. Divide 42006004 by 9 .
24. Divide 22002200 by 8 .
25. Divide 36709967 by 6 .
26. Divide 47000047 by 3 .
27. Divide 56700958 by 8 .
28. Divide 68704960 by 7 .
29. Divide 78490473 by 5 .
30. Divide 45704905 by 6 .
31. Divide 99904708 by 8 .
32. Divide 91979998 by 9 .

Practical Questions.

1. If 12 apples be equally divided among 4 boys, how many will each have?
2. If 24 peaches be equally divided among 6 boys, how many will each have?
3. A man has 32 miles to walk, and can travel 4 miles an hour : how many hours will it take him?
4. A farmer receives 245 dollars for 7 cows: how much is that apiece?
5. How many lead pencils could you buy for 396 cents, if they cost 6 cents apiece?
6. How many oranges could you buy for 8496 cents, if they cost 6 cents apiece?
7. A trader wishes to pack 768 hats in boxes, and can put but 8 hats in a box: how many boxes does he need?
8. If a man could build 7 rods of fence in a day, how long will it take him to build 847 rods?
9. If a man pays 56 dollars for seven yards of eloth, how much is that a yard ?
10. Nine men receive 1296 dollars for doing a piece of of work: how much does each one receive?
11. A merchant has 1344 dollars with which he is going to buy eloth at 8 dollars a yard: how many yards can he purchase?
12. James is to learn forty-two verses of Scripture in a week: how much must he learn each day?
13. A man has 994 pounds of butter, and wishes to put T pounds in a box: how many boxes does he need?
14. James goes to school for 6 weeks, and receives 264 credit marks: how many does he get each week?
15. An estate, worth 7212 dollars, is to be equally divided among 4 sons and/2 daughters: what will be the part of each?
16. If 5 bushels of wheat make 1 barrel of flow, how many barrels will 13080 bushels make?
17. If 8568 marbles are divided equally among 9 boys, how many marbles will each boy have?
18. How many barrels of flour, at 8 dollars a barrel, can be bought for 3496 dollars?
19. If an estate, worth 69741 dollars, is to be equally divided among 7 sons and 2 daughters, what is the portion of each?
20. The product of a quotient figure by the divisor must never be larger than the corresponding partial dividend; if it is, the quotient figure is too large, and must be diminished.
21. When any one of the remainders is greater than the divisor, the quotient figure is too small, and must be increased.
22. The unit of any quotient figure is the same as that of the

1. Divide the number 4564

operation. into 14 equal parts.

The operation in this and in
 all similar examples, is performed according to the following Rule.

Note.-The numbers 45, 36, and 84 are called partial dividends. Rule.
I. Write the divisor on the left of the dividend. II. Note the fewest figures of the dividend, at the left, that will contain the divisor, and set the quotient figure at the right of the dividend.
III. Multiply the divisor by the quotient figure, subtract the product from the first partial dividend, and to the re-
mainder annex the next figure of the dividend, forming a second partial dividend.
U IV. Find, in the same manner, the second and succeeding figures of the quotient, till all the figures of the dividend are brought down.

Proof.

Multiply the divisor by the quotient, and to the product add the remainder. If the work is right, the sum will be the same as the dividend.

Note 1.-There are five operations in Division: 1st, To write down the numbers; 2 d , Divide, or find how many times; 3d, Multiply; 4th, Subtract; 5th, Bring down, to form the partial dividend.
always name the unit of every quotient figure
5. The unit of a remainder is the same as that of the dividend.

Examples.

1. Divide 32641 dollars into 24 equal parts.

2. Divide
3. Divide
4. Divide
5. Divide
6. Divide
7. Divid
8. Divide
9. Divide
10. Divide
11. Divide
12. Divide 9657723 by 627
13. Divide 1320796 by 201.
14. Divide 2147735 by 156.
15. Divide 3372630 by 544 .
16. Divide 89582619 by 110 .

875 by 15 9506 by 16 . 804967 by 18 . 954678 by 15 . 479604 by 19. 327084 by 21. 697047 by 14. 591678 by 13. 927041 by 11. 900672 by 18.
19. Divide

90604 by 18 . 20. Divide 691645 by 25 . 21. Divide 1406275 by 31 . 22. Divide 25672916 by 35 . 23. Divide 19647062 by 41 .
43. Contractions, in Division, are short methods of finding the quotient when the divisor is a composite number.

UNIVIRRSTCASEI.

44. When the divisor is any composite number.

1. Divide 18576 dollars equally among 24 men. DIRE $24=2 \times 3 \times 4$.

Rule.

Divide by the factors of the divisor, in succession, and the last quotient will be the quotient required.
operation.
2) 18576
3) 9288

Examples.

1. Divide the number 19152 by $72=8 \times 9$.
2. Divide the number 3780 by $12=3 \times 4$.
3. Divide the number 19296 by $48=3 \times 4 \times 4$.
4. Divide the number 92880 by $48=2 \times 2 \times 2 \times 2 \times 3$.
5. Divide the number 111456 by $144=4 \times 4 \times 9$.
6. Divide the number 308736 by $24=3 \times 2 \times 2 \times 2$.

To find the true remainder, if any.
7. Divide 3274 by the number $24=2 \times 3 \times 4$.

[^0]
CASE II.

45. When the divisor is $10,100,1000, \& c$.
46. From 6272 marbles, how many piles can be formed, of 100 each?

Rule.

operation.
$\begin{array}{ll}\text { 1. From the right hand, cut off } & 1 \mid 00) \frac{62 \mid 72}{62-72} \mathrm{rem} .\end{array}$
are ciphers in the divisor. 1) $62 \frac{72}{100}$, quotient.
II. The figures at the left will be
the quotient, and those at the right, the remainder.

1. Divide
2. Divide
3. Divide
4. Dívide
5. Divide

Examples.

6747 by 10 .
270460 by 100 .
927000 by 1000 .
6. Divide

97469 by 1000 .
7. Divide 967000 by 10000 .
8. Divide 490400 by 1000 .
9. Divide 6972004 by 1000 .
10. Divide 4970906 by 1000 .
CASE III.
46. When the divisor contains significant figures, with

ciphers on the right of them

1. Divide 77256 by 3700 .

Rule.

 OPERATION. $772 \left\lvert\, 56<20 \frac{3256}{7 \frac{5}{00}}\right.$ 74 3256 rem .
I. Cut off the ciphers by a line, and cut off the same number of figures firom the right of the dividend.
II. Divide the remaining figures of the dividend by the remaining figures of the divisor; and if there is no remainder, the figures cut off will be the true remainder. But if there is a remainder, annex to it the figures cut off, and the result will be the true remainder.

Examples.

1. Divide the number 561754 by $20=2 \times 10$.
2. Divide the number 6934756356 by $200=$
3. Divide the number 5810636 by $5000=5 \times 1000$.
4. Divide the number 349275 by $47000=$
5. Divide the number 71692 by $6400=64 \times 100$.
6. Divide 1000664300 by $125000=125 \times 1000$.

Practical Questions.

1. If an individual earns 3 dollars per day, in what time will he earn 450 dollars?
2. If a person pays, per week, to his laborers, 4563 dollars, at the rate of 9 dollars each, how many does he employ?
3. How many cattle, at 35 dollars per head, can be bought for 1015 dollars?
4. If 45 men earn in one year 27675 dollars, how much does each earn?
5. What is the price of one boat, if 25 boats cost 900 dollars?
6. A farmer has 6944 pounds of butter, which he wishes to put into firkins, each to contain 56 pounds: how many firkins does he require?
7. A barrel of flour contains 196 pounds: how many barrels are required to hold 37436 pounds?
8. If a vessel sails 5678 miles in 34 days, how many miles does it sail per day?
9. In how many days will a vessel reach her destined port, which is 2960 miles distant from the place of sailing, if she sails 216 miles per day?
10. If one man ean earn a certain sum of money in 28 days, how long would it take 7 men to earn the same amount of money?
11. If one man can dig a trench in 279 days, in how many days could 9 men have dug the same?
12. A man has sufficient feed to keep one horse 224 days: how many days would the feed last 7 horses ?
13. A contractor engages to do a piece of work in 60 days. Supposing that one man can do it in 1320 days, how many men must be employed to finish the work in time?
14. Sappose that, in a month, a mechanic labors 26 days, and receives 3750 cents: how much does he receive a day?
15. How many times would a measure, 18 feet long, be laid down in measuring a distance of 882 feet.
16. Hom many times would a surveyor lay down a chain, 66 feet long, in measuring a distance of 47520 feet?
17. How many dozen eggs are there in a barrel, containing 2760 eggs ; and how many baskets would contain them, if each basket held 30 ?
18. A farmer wishes to fence, with rails, his fields to the length of 5280 feet. Suppose a panel to be 7 feet loug, how many panels will there be?
19. Massachusetts, by the census of 1850 , had a population of about 990600 on an area of 7800 square miles: what was the population to the square mile?
20. By the census of 1850, Maine had a population of about 570000 , and an area of 30000 square miles: what was the population to the square mile?
21. New York had a population of about 3087695 upon an area of 46085 square miles: what was the population to the square mile.
22. If the divisor be 3675 and the dividend 926100 , what is the quotient?
23. What is the divisor when the dividend is 1732800 , and the quotient 380 ?
24. A grocer has 1380 pounds of buckwleat, which he wishes to put into bags, each containing 25 pounds: how many bags would be required?

Examples in the preceding Rules.

1. If one person receives 36 dollars per month, and another 45 dollars per month, in what time will they together earn 1944 dollars?
2. A gentleman died possessed of a fortune of 50000 dollars; he directed that after paying his debts, amounting to 6000 dollars, the remainder should be equally divided among his four children : what was the portion of each ?
3. How many pounds of coffee, worth 18 cents a pound, must be given for 368 pounds of sugar, worth 9 cents a pound?
4. James has 14 calves, worth 4 dollars each; 40 sheep, worth 3 dollars each; he gives them all for a horse worth 150 dollars: does he make or lose, and how much?
5. How many barrels of flour, at 5 dollars per barrel, will pay for 20 barrels of potatoes, at 3 dollars per barrel ?
6. If a suit of clothes requires 9 yards of cloth, how many suits may be made from 12 pieces of cloth, each containing 45 yards?
7. A young man having engaged his services at the rate of 756 dollars a year, left his employer at the end of 8 months: what should he receive, at the rate agreed on? 8. A person buys a house and lot for 3500 dollars, of which sum he pays 1850 dollars cash, and agrees to pay the remainder in annual instalments of 150 dollars each : in how many years will the debt be paid?
8. A person bought 65 cattle for 1950 dollars, and sold them for 2795 dollars, what was the gain on each?
9. I bought 600 barrels of flour for 3500 dollars, and wish to gain 700 dollars, after paying 100 dollars for charges: at what price per barrel must they be sold?
10. If a drover asks 1125 dollars for a flock of 375 sheep, how many head would 159 dollars buy at that rate?
11. A person bought a farm of 192 acres for 11520 dollars, and sold 60 acres for 6000 dollars: what did he gain on each acre sold?
12. The product of two numbers is 6843020 , and one of them is 15695 : what is the other?
13. If the dividend is 2884476 , the quotient $4 \% 1$, and the remainder 72 , what is the divisor?
14. A merchant sold 45 barrels of flour at 6 dollars per barrel, and 25 barrels of potatoes at 2 dollars per barrel; and took in payment, butter at 8 dollars per firkin: how many firkins did he receive?
15. A person paid, at a hotel, 12 dollars for the first Week's board, 15 dollars for the second, 18 dollars for the Third, and 23 dollars for the fourth: what was the equal or average price per week?
16. A grocer has five boxes of sugar, containing respectively 175 pounds, 250 pounds, 523 pounds, 365 pounds, and 872 pounds: had each box contained an equal quantity of the sugar, what would have been the weight in each?
17. A shopkeeper sold on Monday to the amount of 37 dollars; on Taesday, 49 dollazs; Wednesday, 105 dollars; Thursday, 66 dollars ; Friday, 56 dollars ; and on Saturday, 125 dollars: what was the average sale of each day?
18. In a certain school, the attendance was, on Monday, 154 ; on Tuesday, 170; on Wednesday, 190; on Thursday, 184; on Friday, 172: what was the average attendance?
19. If a man's salary is 1600 dollars a year, and his expenses 850 dollars, in what time will he be worth 20000 dollars, if he is worth 5000 when his salary begins?
20. Two persons counting their money, found that together they had 684 dollars; but one had 28 dollars more than one-half of it : how much had the other?
21. What is the cost of 32568 oranges, at the rate of 25 cents per dozen? and how many pineapples, at the rate of 3 for 15 cents, will pay for the oranges?

CANCELLATION.
47. Cincelthtion is a process of shortening Arithmetieal operations in Division, by omitting, or cancelling, factors common to the dividend and divisor.

It depends on the principle that,
If the dividend and divisor be both divided by the same number, the quotient will not be changed.

2. In 5 times 35 how many times 7 ?
3. In 18 times 15 how many times 45 ?

Anaiysis.-We see that 15 opration.
 is a factor of 45 . Divide by

 this factor, write the quotient 3 under 45, and cancel 15 and 45 . Again, 3 is a factor of 18 : di-$$
\frac{\begin{array}{c}
6 \\
45 \times 18 \\
4
\end{array}}{\frac{6}{3}}=\frac{6}{1}=6
$$ vide by it, and write the quotient 6 above 18, and cancel 18 and 3: hence, the quotient is equal to 6 .

Rule.

I. Write the *ividend above a horizontal line, and the divisor below it.
II. Cancel all the factors that are common to the dividend and divisor, and then divide the product of the remaining factors of the dividend by the product of the remaining factors of the divisor.
Notes. -1 . If one of the numbers contains a factor equal to the prodnct of two or more factors of the other, they may all be cancelled.
2. If the product of two or more factors of the dividend is equal to the product of two or more factors of the divisor, they may all be cancelled.
3. If all the factors of the dividend are cancelled, the quotient 1 must be put for the facter last cancelled.

Examples.

1. Divide the product of $6 \times 8 \times 12 \times 15$ by $3 \times 4 \times 9$.
opzration.
We cancel the factor 8 , in 3 and 6. then 4 in 4 and 8 . then 3 , in 9 and 12; then 3 , in 3 and 15 .

$$
\begin{array}{ll}
2 & 24 \\
6 \times 8 \times 12 \times \$ \$ \\
\hline
\end{array}
$$

$=80$.
3
2. Divide the product of $8 \times 9 \times 5 \times 6$ by $3 \times 5 \times 2$.
3. Divide the product of $9 \times 8 \times 7 \times 6$ by $2 \times 3 \times 4 \times 5$.
4. Divide the prodact of $6 \times 5 \times 3 \times 7 \times 8$ by $4 \times 3 \times 7 \times 9$.
5. Divide the product of $4 \times 5 \times 6 \times 8 \times 9$ by $7 \times 5 \times 4 \times 3$.
6. Divide the product of $10 \times 5 \times 4 \times 3$ by $4 \times 9 \times 12$.
7. Multiply $8 \times 7 \times 5$ by $3 \times 6 \times 5$, and divide the product by $3 \times 4 \times 6$.
8. Divide the product of $15 \times 20 \times 24$ by $8 \times 5 \times 4$.
9. If the product of 20 by 12 , be divided by the product of $1,2,3$ and 4 , what will be the quotient?
10. How many loads of wood, at 4 dollars a load, must be given for 14 yards of broadeloth at 6 dellars a yard?
11. How many bushels of buckwheat, at 45 cents a bushel, must be given for 120 bushels of corn at 60 cents a bushel?
12. How many bushels of oats, at 48 cents a bushel, must be given for 6 boxes of raisins, each containing 52 pounds, at 12 cents a pound?
13. How many pounds of butter, at 25 cents a pound, will pay for 60 pounds of tea at 75 cents a pound?
14. How many sheep, at 6 dollars a piece, must be given for a drove of 36 cows at 49 dollars a piece?
15. How many lambs, at 3 dollars each, must be given for 20 tons of hay at 18 dollars a ton?
16. How much butter, at 26 cents a pound, will pay for 8 boxes of sugar, each weighing 216 pounds, if the sugar is valued at 13 cents per pound.
17. A man bought 136 yards of cloth, at 4 dollars a yard, and paid for it in hay, at 16 dollars a ton: how many tons did he give?
18. A worked for B, 36 days at 6 shillings a day, and took his pay in wheat at 9 shillings a bushel : how manybushels did he receive?
19. How many boxes of tea, each containing 48 pounds, worth 75 cents a pound, must be given for 6 barrels of sugar, each containing 200 pounds, at 9 cents a pound?
20. If sugar can be bought for 11 cents a pound, how many bushels of oats, at 66 cents a bushel, must be given for 396 pounds?
21. A person worked 125 days for 6 shillings a day, and received in payment corn at 5 shillings a bushel : how much corn did he receive?
22. How many chickens, at 3 shillings a piece, must be given for 185 turkeys, worth 9 shillings a piece?

COMMON DIVISOR.

48. An Exact Divisor of a number, is a divisor which will divide it without a remainder.
49. A Common Dirison of two or more numbers, is a divisor which will divide each, separately, without a remainder. ALERE FLAMMAM
50. The GrDatest Common Divisor of two or more numbers, is the greatest number that will divide each, separately, without a remainder.

To find the greatest common Divisor.

1. What is the greatest common divisor of 112 and 144 ?

> Rule.

optration.

Divide the greater number by 112)
the less; and then divide the divison by the remainder; and continue the operation till nothing
remains. The last divisor will be
the greatest common divisor of the two numbers.
2. What is the greatest common divisor of 75 and 275 ?
3. What is the greatest common divisor of 420 and 510 ?
4. Find the greatest common divisor of 216 and 316 .
5. Find the greatest common divisor of 24 and 1956.
6. Find the greatest common divisor of 39 and 192 .
7. What is the greatest common divisor of 1728 and 5000 ?
8. What is the greatest common divisor of 3750 and 5495 ?
9. What is the greatest common divisor of 960 and 1920 ?
10. What is the greatest common divisor of 376 and 495 ?
11. What is the greatest common divisor of 96 and 360 ?
12. What is the greatest common divisor of 113 and 7650 ?

COMMON FRACTIONS.

51. A UNIT is a single thing; as, 1 apple, 1 chair, 1 pound of tea; and is denoted by 1.

If a unit be divided into two equal parts, each part is called, one-half.

If a unit be divided into three equal parts, each part is called, one-third.

If a unit be divided into four equal parts, each part is called, one-fourth.

If a unit be divided into twelve equal parts, each part is called, one-twelfth; and if it be divided into any number of equal parts, we have a like expression for each part.

The parts are thus written:

52. The Unit of A Fraction is the single thing that is divided into equal parts.
53. A. Fractional Unit is one of the equal parts of the unit that is divided.
54. A Frachon is a fractional unit, or a collection of fractional units.

1. If an apple be divided into 30 equal parts, write the fractional unit.
2. If a pear be divided into 29 equal parts, write the fractional unit.

COMMON DIVISOR.

48. An Exact Divisor of a number, is a divisor which will divide it without a remainder.
49. A Common Dirison of two or more numbers, is a divisor which will divide each, separately, without a remainder. ALERE FLAMMAM
50. The GrDatest Common Divisor of two or more numbers, is the greatest number that will divide each, separately, without a remainder.

To find the greatest common Divisor.

1. What is the greatest common divisor of 112 and 144 ?

> Rule.

optration.

Divide the greater number by 112)
the less; and then divide the divison by the remainder; and continue the operation till nothing
remains. The last divisor will be
the greatest common divisor of the two numbers.
2. What is the greatest common divisor of 75 and 275 ?
3. What is the greatest common divisor of 420 and 510 ?
4. Find the greatest common divisor of 216 and 316 .
5. Find the greatest common divisor of 24 and 1956.
6. Find the greatest common divisor of 39 and 192 .
7. What is the greatest common divisor of 1728 and 5000 ?
8. What is the greatest common divisor of 3750 and 5495 ?
9. What is the greatest common divisor of 960 and 1920 ?
10. What is the greatest common divisor of 376 and 495 ?
11. What is the greatest common divisor of 96 and 360 ?
12. What is the greatest common divisor of 113 and 7650 ?

COMMON FRACTIONS.

51. A UNIT is a single thing; as, 1 apple, 1 chair, 1 pound of tea; and is denoted by 1.

If a unit be divided into two equal parts, each part is called, one-half.

If a unit be divided into three equal parts, each part is called, one-third.

If a unit be divided into four equal parts, each part is called, one-fourth.

If a unit be divided into twelve equal parts, each part is called, one-twelfth; and if it be divided into any number of equal parts, we have a like expression for each part.

The parts are thus written:

52. The Unit of A Fraction is the single thing that is divided into equal parts.
53. A. Fractional Unit is one of the equal parts of the unit that is divided.
54. A Frachon is a fractional unit, or a collection of fractional units.

1. If an apple be divided into 30 equal parts, write the fractional unit.
2. If a pear be divided into 29 equal parts, write the fractional unit.
3. If a barrel of flour be divided into 19 equal parts, write the fractional unit.
4. If a yard of cloth be divided into 37 equal parts, write the fractional unit.

Writing Fractions.

. Denomnator is the number written below the line, and shows into how many equal parts the unit of the fraction is divided.
56. The Numerator is the number written above the line, and shows how many fractional units are taken.
57. The Terirs of a fraction are the numerator and denominator, taken together; hence, every fraction has two terms.
58. A whole number may be expressed fractionaly, by writing 1 under it for a denominator. Thus,

1. All the parts of 1 , however it may be divided, make up the unit itself; hence, any fractional unit, multiplied by the number of parts, is equal to 1.
2. If the numerator is less than the number of parts, the value of the fraction is less than 1.

COMMON FRACTIONS

3. If the numerator is greater than the number of parts, some of the fractional units must have come from a second unit; and hence, the value of the fraction will be greater than 1.
4. To Analyze a fraction, is to name its unit, its fractional unit, and the number of fractional units taken: Thus, in the fraction $\frac{3}{4}$ of an apple, the unit of the fraction is 1 apple; the fractional unit, $\frac{3}{4}$ of an apple; and the number of fractional units taken, is 3.

Writing and Reading.

1. Write seven-eighths. Write three-fourths.
2. Write six-ninths. Write seven-ifteenths.
3. Write four-twelfths. Write nine-fifteenths.
4. Write seven-fourteenths. Write five-fortieths.
5. Write six-elevenths. Write nine-twelfths.
6. In six-fifths of an orange, what is the unit of the fraction? What is the fractional unit? How many fractional units are taken?
7. In twelve-fifteenths of a dollar, what is the unit of the fraction? What is the fractional unit? How many are taken?
8. Write eleven-thirteenths of a pound. What is the fractional unit? What is the unit of the fraction? (R)
9. In nine-tenths of a yard, what is the unit of the fraction? What is the fractional unit? How many are taken? BLIOLUM
10. Write fifteen-twentieths of a pear. What is the unit of the fraction? What is the fractional unit? How many are taken?
11. In nineteen-twentieths of an hour, what is the unit of the fraction? What is the fractional unit? How many are taken?

61. Object Teaching.

The class of boys, represented in the Diagram, is used to teach fractions in the following mamer:
Let a class be numbered from the first boy to the highest number. Suppose each boy to have an apple of exactly the same size; and suppose the apple of each boy to be divided into a number of equal parts, corresponding to his number in the class : then,
The first boy will have the entire apple;
The second boy will have the apple in two equal parts; The third boy will have the apple in three equal parts; The fourth boy will have the apple in four equal parts; The fifth boy will have the apple in five equal parts ;
And so on, to the lighest number of the class.
The parts of the apple held by the fourth boy may be derived from those of the second, by dividing each half into 2 equal parts, giving 4 fourths.

The parts held by the sixth boy may be derived from those of the second, by dividing each part by 3 ; or from those of the third, by dividing each part by 2 .

The parts of the apple held by the eighth boy may be derived from those of the second, by dividing by 4 ; and from those of the fourth, by dividing by 2 .
Q. From what boys may the parts of the apple held by the minth boy be derived?
A. From the first, by dividing the apple into 9 equal parts; and from the third boy, by dividing each of his equal parts into 3 equal parts. .
Q. From what numbers may the parts of the tenth boy be derived? Of the twelfth boy? Of the fourteenth? Of the sixteenth, \&c.

Questions.

1. Which boy has the unit of the fraction?
2. What is the fractional unit corresponding to the second boy? How many has he?
3. What is the fractional unit corresponding to the third boy? How many has he?
4. What is the fractional unit corresponding to the fourth boy? How many has he?
5. What is the fractional unit corresponding to the tenth boy? How many has he?
6. What is the fractional unit corresponding to the twelfth boy? How many has he?

Writing the Fractions.

1. Write one of the equal parts of the boy number two.
2. Write two of the equal parts of number three.
3. Write five of the equal parts of number six.
4. Write nime of the equal parts of number ten.

5 . Write twelve of the equal parts of number fourteen.
6. Write fifteen of the equal parts of number twenty.
7. Write thirty-nine of the equal parts of number fifty.
8. Write thirty-six of the equal parts of number 37 .
9. Write-sixty of the equal parts of number seventy-five.
10. Write forty-nine of the equal parts of number fifty.
11. Write sixty-nine of the equal parts of number 70.
12. Write thirty-eight of the equal parts of number 90.
13. Write 100 of the equal parts of number 100 .
14. Write sixty-nine of the equal parts of number 75.
15. Write seventy-seven of the equal parts of number 80 .
16. Write fifty-nine of the equal parts of number 60.
17. Write ninety-nine of the equal parts of number 101.
18. Write forty-nine of the equal parts of number 70.

62. Six Kinds of Fractions.

1. A Proper Fraction is one whose numerator is less than the denominator.
The following are proper fractions:

$$
\frac{1}{2}, \quad \frac{2}{3}, \quad \frac{3}{4}, \quad \frac{1}{5}, \quad \frac{4}{7}, \quad \frac{5}{8} .
$$

2. An Iaproper Fraction is one whose numerator is equal to, or exceeds the denominator.
n.

The following are improper fractions:
3. A Sinple Fraction is one whose numerator and denominator are both whole numbers.
The following are simple fractions:
$\frac{9}{3}$.
Note.-A simple fraction may be either proper or improper,
4. A Compound Fraction is a fraction of a fraction, or several fractions connected by the word of, or x
The following are compound fractions:

$$
\frac{1}{2} \text { of } \frac{1}{4}, \quad \frac{1}{3} \text { of } \frac{1}{2} \text { of } \frac{1}{3}, \quad \frac{1}{6} \times 3, \quad \frac{1}{7} \times \frac{1}{8} \times 4 .
$$

5. A Mixed Norber is the sum of a whole number and a fraction.
The following are mixed numbers:

$$
\begin{array}{llllll}
3 \frac{1}{2}, & 4 \frac{1}{3}, & 6 \frac{2}{8}, & 5 \frac{3}{5}, & 6 \frac{5}{8}, & 3 \frac{1}{7} .
\end{array}
$$

6. A Complex Fraction is one whose numerator or denominator is fractional ; or, in which both are fractional.
7. Properties of Fractions, deduced from the Diagram.

Let us now see what use may be made of the diagram in illustrating the principles of Fractions: Remember,

1. That each boy of the class has the entire apple, divided into as many equal parts as are marked by his number;
2. That the apple is the unit of the fraction;
3. That eack equal part of any apple, is a fractional unit;
4. That the denominator of any fraction will denote the number of some boy in a class;
5. That the numerator of such fraction will show how many fractional units are taken;
6. That we may pass from a larger to a smaller fractional unit, by multiplying the denominator; and from a smaller to a larger, by dividing the denominator.
7. By the aid of the above principles, the Diagram, and a sensible object to denote the unit of the fraction, the teacher can readily show to the class,
8. That multiplying the numerator, multiplies the value of the fraction as many times as there are units in the multiplier:
9. That muttiplying the denominator, diminishes the value of the fraction as many times as there are units in the muitiplier:
10. That dividing the numerator, diminishes the value of the fraction as many times as there are units in the divisor:
11. That dividing the denominator, mulliplies the value of the fraction as many times as there are units in the divisor:
12. That multiplying the numerator and denominator by the same number, does not alter the value of the fraction: and
13. That dividing the numerator and denominator by the same number, does not alter the value of the fraction.

REDUCTION

67. Reduction of Fractions is the operation of changing the fractional unit, without altering the value of the fraction.
68. How many halves are there in 2 units? Write them.
69. How many halves are there in 5 units? Write them.
70. How many thirds are there in 7 units? Write them.
71. How many sixths are there in 3 units? Write them.
72. How many eighths are there in 6 units? Write them.
73. How many tweutieths are there in 2 units? Write them.
74. How many thirds are there in $2 \frac{1}{3}$? Write them.
75. How many fourths are there in 3 and $\frac{3}{4}$? Write them.
76. How many sixths are there in 2 and $\frac{5}{6}$? Write them.
77. How many ninths are there in 3 and $\frac{4}{9}$? Write them.
78. To reduce a whole number to a fraction having a given denominator.
79. Reduce 7 to a fraction whose denominator shall be 5 . Rule.-Multiply the whole number by opreatios. the required denominator; and write the $5 \times 7=35$.
 product over the denominator.

Examples.

1. How many twentieths are there in 15 ?
2. Reduce 25 to sixteenths.
3. Reduce 47 to thirtieths.
4. How many fortieths are there in 75 ?
5. Reduce 29 to a fraction whose denominator shall be 18 .
6. Reduce 112 to a fraction whose denominator shall be 63 .

CASE II.
69. To reduce a mixed number to an improper fraction.

1. Reduce $\frac{45}{6}$ to an improper fraction.

Rule.-Multiply the whole number by the denominator of the fraction, to the produet add the numerator, and place the sum over the denominator.

Examples.

1. How many units are there in $\frac{8}{4}$? In $\frac{12}{6}$?
2. How many units are there in $\frac{16}{8}$? In $\frac{64}{32}$?
3. How many units are there in $\frac{32}{4}$? In $\frac{30}{15}$?
4. Reduce $\frac{25}{6}$ to a mixed number.
5. Reduce $\frac{38}{7}$ to a mixed number.
6. Reduce $\frac{54}{8}$ to a mixed number.
7. Reduce $\frac{73}{16}$ to a mixed number.
8. Reduce $\frac{112}{18}$ to a mixed number.
9. Reduce $\frac{750}{26}$ to a mixed number.
10. Find the value of $\frac{990}{160}$.
11. Find the value of $\frac{196}{24}$.
12. How many miles are equal to $\frac{725}{18}$ miles?
13. How many barrels are equal to $\frac{936}{7}$ barrels?
14. What number is equal to $\frac{1260}{430}$?
15. What number is equal to $\frac{816}{84}$?
16. Reduce $\frac{3896}{262}$ to a mixed number.
17. Find the value of $\frac{89475}{800}$ dollars.
18. Reduce $\frac{2002}{91}$ to a mixed number.
19. Reduce $63 \frac{7}{10}$ dellars to tenths of a dollar.
20. Reduce $45 \frac{4}{11}$ and $28 \frac{9}{10}$ to improper fractions.
21. Reduce $300 \frac{4}{7}$ and $400 \frac{7}{20}$ to improper fractions.
22. Reduce $25 \frac{3}{4}$ and $16 \frac{3}{5}$ to improper fractions.
23. Reduce $60 \frac{7}{9}$ and $59 \frac{11}{7}$ to improper fractions.

GASE III

70. To reduce an improper fraction to a mixed number.
71. Reduce $\frac{14}{5}$ to a mixed number.

Rule.-Divide the numerator by the denominator, and the quotient will be the whole or mixed number.

OPERATION. $14 \div 5=2 \frac{4}{5}$.

Examples.

72. To reduce a compound fraction to a simple one.

1. What is the value of $\frac{5}{6}$ of $\frac{3}{7}$? (II)

Rule.- Multiply the numerators- together for a new numerator, and the denominators together for a new deOPERATION nominator.

NOTE.-If there are mixed numbers, reduce them to their equivalent improper fractions.

By Cancellation.

2. Reduce $\frac{3}{7}$ of $\frac{7}{8}$ of $\frac{5}{3}$ to its lowest terms.

Rule.-Cancel like factors in the numerator and denominator.

$$
\frac{3}{7} \text { of } \frac{7}{8} \text { of } \frac{5}{3}=\frac{5}{8} \text {. }
$$

Examples.

1. Reduce $\frac{3}{4}$ of $\frac{2}{6}$.
2. Reduce $\frac{1}{2}$ of $\frac{3}{4}$ of $\frac{3}{7}$.
3. Reduce $\frac{2}{3}$ of $\frac{3}{9}$ of $\frac{1}{8}$.
4. Reduce $2 \frac{1}{2}$ of $\frac{4}{8}$.
5. Reduce $4 \frac{1}{3}$ of $\frac{5}{7}$.
6. Reduce $5 \frac{8}{6}$ of $\frac{2}{9}$.
7. Reduce $\frac{4}{9}$ of $\frac{5}{6}$.
8. Reduce $\frac{5}{8}$ of $\frac{9}{10}$.
9. A boy having $\frac{5}{8}$ of a dollar, gave away $\frac{2}{3}$ of his money: how much did he give away?
10. A cask holding $\frac{8}{9}$ of a hogshead, lost by leakage ${ }_{5}^{2}$ of its contents: how much was lost ?
11. A man haring $3 \frac{3}{4}$ dollars, gave $\frac{2}{9}$ of his money for a dinner: what was the cost of his dinner?
CASE VI.
12. To reduce fractions having different denominators, to fractions having a common denominator.
13. Reduce $\frac{1}{2}, \frac{3}{4}$, and $\frac{5}{6}$ to a common denominator.

Rule.-Multiply the nu- opgeation. merator of each fraction by $1 \times 4 \times 6=24$ 1st num. all the denominators except $\quad 3 \times 2 \times 6=36 \quad 2 \mathrm{~d}$ num. its own, for the new numera- $\quad 5 \times 4 \times 2=40$ 3d num. tors, and all the denominators together for a common
denominator.

Ans. $\frac{24}{48}, \frac{36}{48}$, and $\frac{40}{48}$.
Nomes.-1. Before multiplying, reduce all fractions to simple fractions.
2. When the numbers are small, the work may be performed mentally: Thus:

1. Reduce $\frac{4}{7}, \frac{5}{6}$, and $\frac{1}{3}$.
2. Reduce $\frac{6}{7}$ of 2 and 5 .
3. Reduce $7 \frac{1}{3}$ of 2 and 6.
4. Reduce $\frac{2}{5}, \frac{3}{2}$, and $\frac{2}{3}$.
5. Reduce $\frac{1}{7}, \frac{3}{8}$, and $\frac{1}{2}$.
6. Reduce $2 \frac{1}{2}$ and $4 \frac{1}{4}$.
7. Reduce $5 \frac{1}{3}$ and $2 \frac{3}{4}$.
8. Reduce $\frac{7}{2}$ of $\frac{2}{3}$ and $\frac{4}{5}$ of 6 .
9. Reatuce $\frac{3}{2}$ of 4 and $\frac{1}{3}$ of $5 \frac{1}{2}$.
10. Reduce $\frac{4}{2}, \frac{3}{9}$, and $\frac{4}{7}$.
11. Reduce $8 \frac{1}{2}$ of 3 and $5 \frac{1}{3}$.
12. Reduce $\frac{2}{3}, \frac{5}{6}$, and $\frac{4}{5}$.
13. Reduce $\frac{4}{7}, \frac{6}{2}$, and $\frac{1}{5}$.
14. Reduce $\frac{4}{6}, \frac{9}{12}$, and $\frac{3}{4}$.

ADDITION OF FRACTIONS.

74. Addifion of Fractions is the operation of finding the sum of two or more fraetions.

- GIIENE RINMA

CASE
75. When the fractions have the same denominator.

1. What is the sum of $\frac{7}{3}, \frac{4}{3}$, and $\frac{7}{3}$?

Rule.-Add the numerators, and OPERATION.
place their sum over the common $1+4+7=12$ denominator. Examples. Ans. $\frac{12}{3}=4$.

1. Add $\frac{3}{4}, \frac{5}{4}$, and $\frac{7}{4}$.
2. Add $\frac{1}{2}, \frac{5}{2}$, and $\frac{7}{2}$.
3. Aad $\frac{3}{5}, \frac{5}{5}, \frac{6}{5}$, and $\frac{9}{5}$.
4. Ada $\frac{13}{2}, \frac{14}{24}$, and $\frac{17}{9}$.
5. Add $\frac{6}{15}, \frac{9}{15}, \frac{12}{15}$, and $\frac{17}{15}$.
6. Add $\frac{10}{13}, \frac{7}{13}, \frac{9}{13}$, and $\frac{15}{13}$.
7. Add $\frac{5}{8}, \frac{15}{8}, \frac{39}{8}$, and $\frac{17}{8}$.
8. Add $\frac{15}{15}, \frac{11}{11}$, and $\frac{12}{12}$.
9. Add $\frac{17}{16}, \frac{19}{16}, \frac{20}{16}$, and $\frac{11}{18}$.
10. Add $\frac{14}{20}, \frac{15}{20}$, and $\frac{30}{20}$.

U N CASE II.

1. Add $\frac{3}{5}, \frac{2}{2}$, and $\frac{3}{4}$ together.

Rule.-I. Reduce the frac- opreation.

 tions to a common denominator:II. Add the numerators, and place their sum over the common denominator.

$$
\begin{array}{ll}
\quad \begin{array}{ll}
\text { oprpation, } & \\
2 \times 2 \times 4=24 & \text { 1st num. } \\
2 \times 5 \times 4=40 & 2 \mathrm{~d} \text { num. } \\
3 \times 2 \times 5=30 & 3 \mathrm{~d} \text { num. } \\
5 \times 2 \times 4=40 & \text { com. den. }
\end{array} .
\end{array}
$$

Examples.

1. Add $\frac{5}{6}, \frac{2}{3}$, and $\frac{7}{8}$.
2. Add $\frac{1}{9}, \frac{4}{7}$, and $\frac{1}{2}$.
3. $\frac{5}{6}+\frac{7}{9}=$ what?
4. $\frac{1}{10}+\frac{3}{4}+\frac{11}{2}=$ what?
5. Add $\frac{2}{7}$ of $\frac{2}{3}$ and $\frac{7}{2}$ of $\frac{4}{5}$.
6. Add $\frac{5}{9}$ of $\frac{3}{4}$ and $\frac{2}{3}$ of $\frac{3}{6}$.
7. Add $\frac{3}{5}$, $\frac{6}{6}$, and $\frac{4}{10}$.
8. Add $\frac{5}{2}$ and $\frac{3}{4}$.
9. Add $\frac{2}{3}, \frac{3}{7}$, and $\frac{5}{8}$.
10. Add $\frac{5}{9}, \frac{6}{7}$, and $\frac{3}{2}$.
11. Add $\frac{4}{7}, \frac{3}{6}$, and 2 .
12. Add $\frac{5}{9}, \frac{6}{2}$, and $\frac{1}{3}$.
13. Add $\frac{4}{5}$, $\frac{5}{9}$, and $\frac{3}{7}$.
14. Add $\frac{2}{3}$, $\frac{5}{9}$, and $\frac{1}{7}$.

CASE III.

77. When mixed numbers are to be added.
78. Add $4 \frac{1}{2}, 5 \frac{1}{3}$, and $6 \frac{1}{4}$ together.

Rule.-Add the whote numbers and fractions separately, and then unite their sums.
operation.
$4+5+6=15$.
$\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}$.
Ans. $15 \frac{13}{12}=16 \frac{1}{12}$.
Examples.

1. Add $4 \frac{1}{3}, 5 \frac{1}{2}$, and $\frac{1}{4}$. 6. Add $5 \frac{3}{7}, 6 \frac{1}{3}$, and $\frac{6}{7}$.
2. Add $3 \frac{1}{5}, 6 \frac{1}{7}$, and $3 \frac{2}{9}$. 7. Add $3 \frac{1}{7}, 5 \frac{1}{8}$, and $\frac{1}{4}$.
3. Add $\frac{3}{8}, 5 \frac{4}{9}$, and $6 \frac{7}{8}$.
4. Add $2 \frac{1}{2}, 4 \frac{1}{7}$, and 4.
5. Add $4 \frac{3}{5}, 6 \frac{2}{9}$, and $\frac{1}{8}$. 9. Add $7 \frac{7}{8}, \frac{1}{2}$, and $6 \frac{4}{5}$.
6. Add $\frac{4}{5}, 6 \frac{7}{8}$, and $5 \frac{6}{7}$.
7. Add $9 \frac{4}{7}, 3 \frac{1}{6}$, and $\frac{4}{9}$.

Practical Questions.

1. James pays $\frac{3}{7}$ of a dollar for a pair of gloves, and $\frac{3}{8}$ of a dollar for a handkerchief: how much do they cost him?
2. Nancy buys a work-box for $\frac{7}{8}$ of a dollar, a pair of gloves for $\frac{3}{8}$ of a dollar, and a comb for $\frac{2}{16}$ of a dollar: how much do they all cost ?
3. Jane buys a yard of ribbon for $\frac{2}{7}$ of a dollar, a gold 4*
pin for $\frac{5}{2}$ of a dollar, and an inkstand for $\frac{3}{14}$ of a dollar: how much did she pay in all?
4. William buys a kite for $\frac{2}{3}$ of a dollar, and a string for $1 \frac{4}{5}$ of a dollar: how much did he pay?
5. Three ducks cost $\frac{4}{3}$ of a dollar, two fowls $\frac{2}{3}$ of a dollar, and two geese $\frac{9}{6}$ of a dollar: what is the entire cost?
6. Two sheep cost $\frac{77}{2}$ of a dollar, a calf $\frac{9}{4}$ of a dollar, and a lamb $\frac{5}{4}$ of a dollar: what is the entire cost?
7. Three yards of shirting cost \& of a dollar, a handkerchief $\frac{7}{3}$ of a dollar, and a pair of gloves $\frac{1}{3}$ of a dollar: what is the entire cost?
8. A person paid $\frac{4}{5}$ of a dollar for butter, $\frac{3}{8}$ of a dollar for tea, and $\frac{9}{16}$ of a dollar for coffee: what was paid for the three articles?
9. A person received $5 \frac{4}{5}$ dollars on Monday, $8 \frac{3}{8}$ dollars on Tuesday, and 7_{3}^{2} dollars on Wednesday: how much did he receive during the three days?
10. A man who had spent $9 \frac{7}{8}$ dollars for a coat, and $2 \frac{3}{4}$ dollars for a vest, had ϵ_{7}^{2} dollars remaining: how much had he at first?
11. In doing a piece of work, a laborer was employed $9 \frac{1}{5}$ days, a second was employed $8 \frac{2}{3}$ days, and a third was engaged $5 \frac{5}{6}$ days: how many days were the three laborers employed?
12. A person who had $4 \frac{2}{5}$ dollars, earued $6 \frac{4}{7}$ dollars: if, in addition, he had received a present of $5 \frac{1}{4}$ dollars, how much would he then have had?
13. A person paid $17 \frac{4}{5}$ dollars for groceries; he lost $10 \frac{5}{12}$ dollars in going home, and had $16 \frac{7}{8}$ dollars remaining: how much had he at first?
14. A scholar, in adding several fractions, obtained $2 \frac{5}{6}$ for the sum, but he omitted to add $1_{10} \frac{9}{10}$: what was the correct sum?
15. A person paid his butcher $9 \frac{1}{5}$ dollars, which was $2 \frac{5}{8}$ dollars too little: what was the amomt due?

SUBTRACTION.

78. Subtraction is the operation of finding the difference between two fractions.

CASE I.

79. When the denominators are the same.

1. What is the difference between $\frac{5}{4}$ and $\frac{3}{4}$?

Rule.-Subtract the less numerator from the greater, and place the difference over the common denominator.

1. From $\frac{15}{8}$ take $\frac{7}{8}$.
2. From
3. From $\frac{10}{30}$ take $\frac{12}{30}$.
4. From $\frac{27}{50}$ take $\frac{9}{50}$.

Examples.

CASEII.
80. When the denominators are different.

$$
\begin{gathered}
\text { operation. } \\
5-3=2 . \\
\text { Ans. } \frac{2}{4} \text {. }
\end{gathered}
$$

5. From $\frac{19}{51}$ take $\frac{17}{54}$.
6. From $\frac{17}{45}$ take $\frac{15}{45}$.
7. From $\frac{19}{27}$ take $\frac{6}{27}$.
8. From $\frac{120}{150}$ take $\frac{115}{150}$.
I. Redrce the fractions to $a \quad 5 \times 7=35$ 1st num. common denominater: $\square \quad 3 \times 8=24 \quad 2$ num. II. Subtract the less numerta- $7 \times 8=56$ com. den. tor from the greater, and place their difference over the common denominator:

$$
\begin{gathered}
\frac{5}{8}-\frac{3}{7}=\frac{35}{56}-\frac{24}{56}= \\
=\frac{11}{56}, \text { Ans. }
\end{gathered}
$$

Notw.-If there are mixed numbers, reduce them to improper fractions, and reduce all compound fractions to simple ones.

Examples.

1. From $\frac{5}{6}$ take $\frac{3}{4}$.
2. From $\frac{7}{9}$ take $\frac{3}{5}$.
3. From $\frac{8}{11}$ take $\frac{4}{9}$.
4. From $6 \frac{1}{2}$ take $5 \frac{2}{3}$.
5. From $1 \frac{1}{2}$ subtraet $\frac{9}{16}$.
6. From $\frac{16}{19}$ take $\frac{12}{15}$.
7. From $\frac{18}{21}$ take $\frac{15}{20}$.
8. From $1 \frac{1}{5}$ take $\frac{2}{15}$.
9. From $\frac{1}{2}$ of $\frac{5}{6}$ take $\frac{9}{25}$.
10. Take $\frac{3}{4}$ of $\frac{5}{\mathrm{~J} 1}$ from $\frac{1}{27}$.
11. Take $6 \frac{3}{5}$ from 8 .
12. Take $7 \frac{2}{3}$ from $9 \frac{3}{7}$.
13. From $\frac{8}{13}$ take $\frac{3}{4}$ of $\frac{4}{27}$.
14. Subtract $\frac{3}{16}$ from $\frac{7}{15}$.
15. Subtract $\frac{7}{20}$ from $\frac{7}{10}$.
16. From $3 \frac{7}{30}$ take $\frac{9}{100}$.

Practical Questions.

1. James gave $\frac{7}{8}$ of a shilling for a top, and $-\frac{1}{3}$ of a shil ling for an orange: how much more did he give for the top than for the orange?
2. John gave $\frac{7}{8}$ of a dollar for a pair of gloves, and $\frac{3}{5}$ of a dollar for a pocket handkerchief: how much more did his gloves cost him than his handkerchief?
3. From the sum of $\frac{5}{6}$ and $2 \frac{3}{4}$ take $\frac{4}{5}$ of $\frac{4}{5}$
4. What is the difference of $2 \frac{7}{8}$ dollars and $\frac{2}{5}$ of $1 \frac{1}{2}$ dollar?
5. What is the difference of $\frac{11}{20}$ of a pound and $\frac{5}{21}$ of \bar{a} pound?
6. A person, who had $5 \frac{3}{5}$ dollars, spent $4 \frac{5}{6}$ dollars for groceries: what had he left?
7. A person paid $4 \frac{2}{9}$ dollars for a barrel of flour, and sold it for $6 \frac{1}{3}$ dollars: how much was gained?
8. If from a barrel, that contains $31 \frac{1}{2}$ gallons of wime, $15 \frac{5}{8}$ gallons are drawn: how much remains in it?
9. How much is $6 \frac{3}{7}$ greater thân $\frac{8}{4}$ of $4 \frac{2}{5}$?
10. A cap is valued at $1 \frac{5}{8}$ dollars, but the buyer has ouly $\mathrm{I} \frac{1}{5}$ doliars: how much does he require, to pay for it?

MULTIPLICATION.

81. Muutipucation of Fractions is the operation of taking one number as many times as there are units in another, when one or both are fractional.

CASE I.

82. To multiply a fraction by a whole number.
83. If one yard of cloth costs $\frac{3}{10}$ of a dollar, what will

5 yards cost?

Rule.

Multiply the numerator, or divide the denominator.

1st oprration.

$$
\frac{3}{10} \times 5=\frac{3 \times 5}{10}=\frac{15}{10}=1 \frac{1}{2} .
$$

2d oprbattos.

 $\frac{3}{10} \times 5=\frac{3}{10 \div 5}=\frac{3}{2}=1 \frac{1}{2}$.
Examples.

1. Multiply $\frac{7}{8}$ by 4 .
2. Multiply $\frac{2}{5}$ of $\frac{6}{7}$ by 9 .
3. Multiply $\frac{6}{5}$ of $\frac{3}{11}$ by 12 .
4. Maltiply $\frac{5}{8}$ of $\frac{2}{7}$ by 18 .
5. Multiply $\frac{3}{7}$ of $\frac{2}{9}$ by 17 .
6. Multiply $\frac{6}{15}$ of 2 by 15 .

7. Multiply $\frac{6}{9}$ by 8 .
8. Multiply $\frac{6}{32}$ by 16 .
9. Nultiply $\frac{25}{24}$ by 13 .
10. Multiply $\frac{14}{16}$ by 16 .
11. To multiply a whole number by a fraction.
12. If 1 yard of cloth costs 6 dollars, what will $\frac{7}{8}$ of a yard cost?

Rule.-Multiply the whole number by the numerator, and divide the product by $6 \times \frac{7}{8}=\frac{6 \times 7}{8}=\frac{42}{8}=5 \frac{1}{4}$. the denominator.

MULTIPLICATION.

85. To multiply one fraction by another.

1. If a bushel of corn costs $\frac{7}{8}$ of a dollar, what will $\frac{3}{7}$ of a bushel cost?
Rule.-Multiply the numera-
tors together for a new numerator, and the denominators together

OPERATION.

$$
\frac{7}{8} \times \frac{3}{7}=\frac{7 \times 3}{8 \times 7}=\frac{21}{56}=\frac{3}{8}
$$

Examples.

1. Multiply $-\frac{7}{9}$ by $\frac{2}{3}$.
2. Multiply $\frac{5}{6}$ by $\frac{4}{5}$.
3. Multiply $\frac{7}{8}$ by $\frac{3}{5}$.
4. Multiply $\frac{5}{12}$ by $\frac{13}{4}$.

Practical Questions.

1. If 1 yard of cloth costs $1 \frac{3}{4}$ dollars, what will $\frac{7}{8}$ of a yard cost?
2. If 1 pound of tea costs $\frac{8}{9}$ of a dollar, what will $2 \frac{1}{2}$ pounds cost?
3. Multiply 15 by 5 .

4. Multiply 18 by $5 \frac{1}{9}$.
5. Multiply 60 by $6 \frac{3}{5}$.
6. Multiply 32 by $9 \frac{7}{8}$.
7. If one barrel of flour costs 7 dollars, what will $6 \frac{2}{5}$ barrels cost ?
8. What must be paid for $9 \frac{3}{4}$ yards of cloth, at 6 dollars a yard?
9. If the wages for a month are 36 dollars, what are the wages for $9 \frac{5}{6}$ months ?
10. Multiply 45 by $6 \frac{1}{8}$.
11. Multiply 84 by $7 \frac{7}{12}$.
12. Multiply 64 by $6 \frac{3}{8}$.
13. Multiply 96 by $4 \frac{3}{12}$.
14. At $8 \frac{1}{2}$ cents a dozen, what will be the cost of $3 \frac{1}{3}$ dozen of apples?
15. James paid $9 \frac{3}{4}$ cents for a top: how much must he pay for 9 tops?
16. At $2 \frac{5}{9}$ dollars a head, what would be the cost of 15 sheep?
17. If 1 pair of gloves costs $\frac{7}{8}$ of a dollar, what will 8 pair cost?
18. If 1 bushel of barley costs $\frac{7}{8}$ of a dollar, what will $6 \frac{3}{4}$ bushels cost?
19. If one groose costs $\frac{3}{4}$ of a dollar, what will 12 geese cost?
20. What will $3 \frac{1}{2}$ pounds of butter cost, at $\frac{1}{5}$ of a dollar a pound?
21. Multiply $\frac{1}{2}$ of $\frac{3}{7}$ of 6 by $\frac{5}{7}$ of $9 \frac{1}{2}$.
22. What is the product of the three fractions, $\frac{5}{6}, \frac{7}{8}$, and $\frac{9}{10}$? NON
23. What is the product of the fractions, $\frac{1}{2}, \frac{2}{13}, \frac{4}{5}$, and $\frac{9}{11}$?
24. If a bushel of apples costs $\frac{3}{4}$ of a dollar, what will $\frac{2}{3}$ of a bushel cost?
25. If a yard of muslin is worth $\frac{3}{1_{0}}$ of a dollar, what is the worth of $\frac{7}{8}$ of a yard?
26. What vill be the cost of $7 \frac{2}{5}$ pounds of butter, at $\frac{2}{5}$ of a dollar per pound ?
27. If a person travels $3 \frac{7}{8}$ miles per hour, how far will he travel in $4 \frac{5}{6}$ hours?
28. If John earns $1 \frac{5}{8}$ dollars per day, how much will he earn in $\frac{7}{12}$ of a day?
29. A father has five children, and gives to each $\frac{3}{7}$ of a dollar: how much does he give them?
30. If Lucy can hem $1 \frac{3}{4}$ yards in 1 hour, how much can she hem in $2 \frac{1}{2}$ hours?
31. If 1 pound of tea costs $\frac{5}{7}$ of a dollar, what will be
the cost of $2 \frac{1}{4}$ pounds? A1
32. If it requires $3 \frac{1}{4}$ yards of cloth for a suit of clothes, how much will be necessary to make 6 suits?
33. If James can earn $4 \frac{1}{5}$ cents in one hour, how much can he carn in $3 \frac{1}{4}$ hours?
34. If muslin is $13 \frac{4}{5}$ cents a yard, what will be the cost of $5 \frac{3}{4}$ yards?
35. If apples are $2 \frac{7}{8}$ dollars a barrel, what will be the cost of $5 \frac{1}{2}$ barrels ?

DIVISION.

86. Division of Fraotions is the operation of finding how many times one number is contained in another, when one or both, are fractional.

CASE I.

87. To divide a fraction by a whole number.

1. If 5 yards of muslin cost $\frac{10}{11}$ of a dollar, what will 1 yard cost?

Analysis.-1 yard will cost
OPERATION. one-fifth as much as 5 yards.

$$
\frac{10}{11} \div 5=\frac{10 \div 5}{11}=1_{1}^{2}
$$

Multiplying the denominator by 5 will produce the same result.

Note.-Divide the numerator, when it is exactly divisible by the divisor: when it is not, multiply the denominator.

Rule.

Divide the numerator, or multiply the denominator, by the divisor.

Examples.

1. Divide $\frac{8}{17}$ by 2 .
2. Divide $\frac{6}{11}$ by 3 .
3. Divide ${ }^{\frac{9}{0}}$ by 7 .
4. Divide $\frac{12}{15}$ by 6 .
5. Divide $\frac{7}{8}$ by 10 .
6. Divide $\frac{16}{19}$ by 8 .
7. Divide $\frac{3}{4}$ by 4 .
8. Divide $\frac{2}{25}$ by 8 .
9. Divide $\frac{3 .}{14}$ by 10 .
10. Divide $\frac{15}{1} \frac{5}{6}$ by 9 .
11. Divide $\frac{12}{2}$ by 7 .
12. Divide $\frac{7}{2}$ of $\frac{7}{8}$ by 6 .
13. Divide $\frac{1}{3}$ of 4 by 9 .
14. Divide $\frac{3}{4}$ of $\frac{3}{7}$ by 8 .
15. Divide $\frac{6}{9}$ of $\frac{3}{4}$ by 10 .
16. Divide $\frac{5}{6}$ of $\frac{3}{7}$ by 8 ,
17. Divide $\frac{3}{6}$ of $\frac{2}{5}$ by 5 .
18. Divide $\frac{4}{7}$ of $\frac{3}{4}$ by $\frac{1}{2}$ of 2 .
19. Divide $\frac{3}{7}$ of $\frac{2}{5}$ by $\frac{4}{9}$ of 9 .
20. Divide $\frac{6}{5}$ of $\frac{2}{9}$ by $\frac{2}{3}$ of 3 .

When the dividend is a mixed number.
21. Divide $4 \frac{1}{3}$ by 6 .

Rule.

Reduce the mixed number to an improper fraction, and then divide as before.
22. Divide $2 \frac{3}{7}$ by 3 .
28. Divide $6 \frac{4}{5}$ by 5 .
24. Divide $7 \frac{2}{3}$ by 6 .
25. Divide $3 \frac{1}{7}$ by 5 .
26. Divide $7 \frac{2}{2}$ by 8 .
27. Divide $3 \frac{4}{7}$ by 9 .

OPERATION.

$$
4 \frac{1}{3}=\frac{13}{3}
$$

$$
\frac{13}{3} \div 6=\frac{13}{18} .
$$

28. Divide $18 \frac{2}{2}$ by 7 . 29. Divide 3_{10}^{10} by 16 . 30. Divide $5 \frac{6}{11}$ by 12 . 31. Divide $19 \frac{1}{5}$ by 8 . 32. Divide $6 \frac{2}{5}$ by 9 . 33. Divide δ_{1}^{1} by 15 .

Examples.

1. Divide 5 by $\frac{3}{4}$. \quad. Divide 15 by $\frac{4}{7}$.
2. Divide 9 by $\frac{2}{3}$. . $\quad 10$. Divide 20 by $\frac{5}{9}$.
3. Divide 12 by $\frac{1}{6}$. 11 . Divide 18 by $\frac{2}{9}$.
4. Divide 8 by $\frac{3}{7}$. 12. Divide 28 by $\frac{6}{5}$.
5. Divide 7 by $\frac{4}{9}$.
6. Divide 14 by $\frac{9}{10}$.
7. Divide 18 by $\frac{16}{1} \frac{1}{1}$.
8. Divide 16 by $\frac{4}{6}$.
9. Divide 30 by $\frac{2}{3}$ of $\frac{7}{8}$.
10. Divide 16 by $\frac{3}{5}$ of $\frac{1}{6}$.
11. Divide 18 by $\frac{3}{5}$ of $\frac{2}{3}$.
12. Divide 17 by $\frac{3}{8}$ of $\frac{8}{5}$.
13. How many gallons of molasses, at $\frac{3}{8}$ of a dollar per gallon, can be bought for 7 dollars?
14. Suppose a boy earns $\frac{9}{10}$ of a dollar per day: in how many days will he earn 12 dollars?
15. If an arithmetic costs $\frac{7}{20}$ of a dollar, how many can be bought for 21 dollars?

If the divisor is a mixed number, reduce it to an improper fraction, and divide as before.
20. Divide 5 by $7 \frac{1}{4}$. 25 . Divide 11 by $6 \frac{2}{7}$.
21. Divide 7 by $9 \frac{1}{7} \quad$ 26. Divide 7 by $5 \frac{3}{4}$.
22. Divide 6 by $8 \frac{4}{5}$. 27 . Divide 21 by $6 \frac{1}{3}$.
23. Divide 10 by $7 \frac{5}{3}$. 28. Divide 16 by $2 \frac{1}{2}$.
24. Divide 18 by 4_{9}^{2}.
29. Divide 24 by $2 \frac{1}{6} \cdot R$

88. To divide a whole number by a fraction. RADD D

1. Divide 6 by $\frac{3}{4}$.

Rule.-Invert the terms of the divisor, and multiply the whole number by the new fraction.
oparation.
$6 \div \frac{3}{4}=\frac{6 \times 4}{3}=\frac{24}{3}=8$.

1. Divide $\frac{8}{4}$ by $\frac{6}{7}$.

Rule.-Invert the terms of the divisor, and multiply the dividend by the new fraction.

Note-Cancel all common factors in every operation of fractions.

Examples.

1. Divide $\frac{5}{9}$ by $\frac{3}{5}$.
2. Divide if by $\frac{7}{9}$.
3. Divide $\frac{4}{9}$ by $\frac{11}{12}$.
4. Divide $\frac{8}{9}$ by $\frac{8}{9}$.
5. Divide $\frac{2}{3}$ by $\frac{7}{8}$.
6. Divide $\frac{5}{7}$ by $\frac{2}{10}$.
7. Divide $\frac{2}{5}$ by $\frac{7}{18}$.
8. Divice $\frac{4}{13}$ by $\frac{3}{2}$.
9. Divide $\frac{14}{15}$ by $2 \frac{1}{2}$.
10. Divide $\frac{2}{7}$ of ${ }_{4}^{3}$ by $4 \frac{1}{5}$.
11. Divide $8 \frac{1}{3}$ by $\frac{3}{4}$.
12. Divide $6 \frac{1}{3}$ by $\frac{7}{8}$.
13. Divide $\frac{3}{4}$ of $\frac{7}{9}$ by $2 \frac{1}{2}$.
14. Divide $\frac{3}{7}$ of $\frac{1}{3}$ by $3 \frac{1}{2}$.
15. Divide $\frac{1}{3}$ of $\frac{3}{4}$ by $\frac{1}{6}$.
16. Divide $\frac{8}{9}$ of 3 by $4 \frac{1}{6}$.
17. Divide $3 \frac{1}{3}$ by $5 \frac{1}{2}$.
18. Divide $2 \frac{1}{5}$ by $3 \frac{3}{7}$.
19. Divide $9 \frac{1}{3}$ by $3 \frac{1}{2}$.

20 . Divide $6 \frac{2}{3}$ by $5 \frac{1}{5}$.
21. At $\frac{3}{4}$ of a dollar per gallon, how many gallons of molasses may be bought for $5 \frac{3}{5}$ dollars?
22. In how many months can Samuel save $10 \frac{1}{2}$ dollars, if he saves $\frac{5}{8}$ of a dollar per month ?
23. How much flour can be bought for $\frac{9}{10}$ of a dollar, if one barrel costs $6 \frac{1}{4}$ dollars?
24. A laborer owes $6 \frac{2}{5}$ dollars: how many days, at $1 \frac{1}{8}$ dollars a day, must he labor to pay that debt?

25 . There are $5 \frac{1}{2}$ yards in a rod: how many rods are there in $28 \frac{1}{6}$ yards?
26. By what number must $\frac{7}{9}$ be multiplied, that the product may be $1 \frac{14}{5}$?
27. How many times $\frac{6}{11}$ are equal to $\frac{5}{12}$?
28. If a ton of coal costs $6 \frac{6}{25}$ dollars, how much can be bought for $\frac{15}{16}$ of a dollar?
29. How much silk can be bought for $\frac{1}{2}$ of a dollar, if one yard costs $\frac{13}{16}$ of a dollar?

Examples in the preceding Rules.

1. What is the sum of $4 \frac{1}{3}, 6 \frac{7}{8}$, and $5 \frac{3}{7}$?
2. What is the sum of $9 \frac{1}{2}, 4 \frac{6}{11}$, and $\frac{1}{12}$?
3. If James pays $\frac{3}{4}$ of a dollar for a penknife, and $\frac{2}{3}$ of a dollar for an algebra, what does he pay for both?
4. A merchant cut off, for a customer, $3 \frac{4}{7}$ yards of cloth from one piece, $6 \frac{1}{7}$ yards from another, and $5 \frac{3}{4}$ yards from a third piece: how much did he cut off in all?
5. Mr. Jones gave John $4 \frac{7}{8}$ dollars, and to Charles half that sum : how much more had John than Charles?
6. What is the difference between $5 \frac{4}{9}$ and 3_{15}^{5} ?
7. If I pay $250 \frac{7}{11}$ dollars for a horse, and $175 \frac{4}{15}$ dollars for a wagon, how much more do I pay for the horse than for the wagon?
8. If 1 dollar will buy $\frac{3}{7}$ of a cord of wood, how much will 12 dollars buy?
9. What will $2 \frac{1}{2}$ pounds of tea cost, if 1 pound costs $\frac{9}{20}$ of a dollar?
10. If a family consume $8 \frac{4}{7}$ barrels of flour in 1 year, how much will they consume in $2 \frac{1}{2}$ years?
11. If I own $\frac{3}{7}$ of a farm, and sell $\frac{5}{6}$ of it, what part of it have I left?
12. At $\frac{5}{9}$ of a dollar a pound, what will be the cost of $2 \frac{1}{5}$ pounds of tea?
13. If a knife costs $\frac{3}{4}$ of a dollar, and a slate $\frac{3}{5}$ as much, what is the difference of their cost?
14. If $\frac{3}{5}$ of $\frac{2}{3}$ of a dollar will pay for 1 pound of tea, what will be the cost of $5 \frac{7}{9}$ pounds?
15. What will $12 \frac{5}{9}$ cords of wood cost, at $3 \frac{2}{5}$ dollars a cord?
16. If 8 yards of ribbon cost $\frac{6}{7}$ of a dollar, what will 1 yard cost?
17. If 10 men consume $15 \frac{3}{7}$ pounds of meat in 1 day, how much will 1 man consume?
18. If Charles walks 15 miles in $\frac{3}{5}$ of a day, how far can he walk in 1 day?
19. If the dividend is $\frac{25}{16}$ and the divisor $6 \frac{1}{3}$, what is the quotient?
20. If 29 bushels of wheat cost $29 \frac{3}{7}$ dollars, what will be the cost of 1 bushel?
21. If $\frac{7}{9}$ of a ton of hay is worth $15 \frac{1}{3}$ dollars, what is the value of 1 ton?
22. If a bushel of apples costs $\frac{4}{5}$ of a dollar, and was sold for $\frac{7}{8}$ of a dollar, what would be the gain on 6 bushels?
23. If a mechanic received 123 dollars per week, and paid
$3 \frac{1}{2}$ dollars for board, how much will he save in 5 weeks?
24. What is the difference of $3 \frac{1}{2}$ times $\frac{5}{6}$, and $\frac{2}{3}$ times $4 \frac{1}{4}$?
25. One man carns $1 \frac{3}{8}$ dollars in a day, and another earns $1 \frac{3}{4}$ dollars : how mueh do both earn in 3 days?
26. If a person pays ${ }_{8}^{3}$ of a dollar per yard for linen, and sells it for $\frac{4}{7}$ of a dollar per yard, how much would he gain on 3 yards?
27. From the sum of $\frac{6}{7}$ and $\frac{9}{10}$ take $\frac{5}{6}$, and multiply the

Uremainder by $\frac{2}{9}$: what will be the result?
28. If sugar costs $\frac{1}{10}$ of a dollar a pound, coffee $\frac{2}{5}$ of a dollar, and tea $\frac{7}{8}$ of a dollar, what will be the total cost of 7 pounds of each?
29. If a pair of pantaloons requires $2 \frac{1}{2}$ yards of cloth, and a vest $\frac{7}{8}$ of a yard, how much will be left from a piece of 35 yards, after cutting off 3 suits?
30. How much of 50 dollars was left, after paying John for 16 days' work, at $1 \frac{1}{2}$ dollar per day, and William for 15 days' work, at $\frac{7}{8}$ of a dollar per day?

DECIMAL FRACTIONS.

90. A Dechal Fraction is one in which the unit is divided into tenths, hundredths, thousandths, \&e.

When the unit is divided into 10 equal parts, there are 10 such parts of the unit, and each part is called, one-tenth.

If each tenth be divided into 10 equal parts, there will be 100 equal parts of the unit, and each part will be $\frac{1}{10}$ of $\frac{1}{10}=\frac{1}{100}$.
If each hundredth be divided into 10 equal parts, there will be 1000 equal parts of the unit, and each part will be $\frac{1}{10}$ of $\frac{1}{100}=\frac{1}{1000}$; and smaller parts may be obtained, by dividing continually by 10 .

Notation and Numeration.

91. A period (.), called the decimal point, written before a figure, denotes the decimal division of the unit:

The second place from the decimal point, is the place of hundredths:

Thus, .01 is read, $\quad .1$ hundredth $=\frac{1}{100}$.
$.04 \quad$ " $\quad 4$ hundredths $=\frac{4}{100}$.
$.07 \quad$ " 7 hundredths $=\frac{7}{100}$.
\&c.,
sc.
17. If 10 men consume $15 \frac{3}{7}$ pounds of meat in 1 day, how much will 1 man consume?
18. If Charles walks 15 miles in $\frac{3}{5}$ of a day, how far can he walk in 1 day?
19. If the dividend is $\frac{25}{16}$ and the divisor $6 \frac{1}{3}$, what is the quotient?
20. If 29 bushels of wheat cost $29 \frac{3}{7}$ dollars, what will be the cost of 1 bushel?
21. If $\frac{7}{9}$ of a ton of hay is worth $15 \frac{1}{3}$ dollars, what is the value of 1 ton?
22. If a bushel of apples costs $\frac{4}{5}$ of a dollar, and was sold for $\frac{7}{8}$ of a dollar, what would be the gain on 6 bushels?
23. If a mechanic received 123 dollars per week, and paid
$3 \frac{1}{2}$ dollars for board, how much will he save in 5 weeks?
24. What is the difference of $3 \frac{1}{2}$ times $\frac{5}{6}$, and $\frac{2}{3}$ times $4 \frac{1}{4}$?
25. One man carns $1 \frac{3}{8}$ dollars in a day, and another earns $1 \frac{3}{4}$ dollars : how mueh do both earn in 3 days?
26. If a person pays ${ }_{8}^{3}$ of a dollar per yard for linen, and sells it for $\frac{4}{7}$ of a dollar per yard, how much would he gain on 3 yards?
27. From the sum of $\frac{6}{7}$ and $\frac{9}{10}$ take $\frac{5}{6}$, and multiply the

Uremainder by $\frac{2}{9}$: what will be the result?
28. If sugar costs $\frac{1}{10}$ of a dollar a pound, coffee $\frac{2}{5}$ of a dollar, and tea $\frac{7}{8}$ of a dollar, what will be the total cost of 7 pounds of each?
29. If a pair of pantaloons requires $2 \frac{1}{2}$ yards of cloth, and a vest $\frac{7}{8}$ of a yard, how much will be left from a piece of 35 yards, after cutting off 3 suits?
30. How much of 50 dollars was left, after paying John for 16 days' work, at $1 \frac{1}{2}$ dollar per day, and William for 15 days' work, at $\frac{7}{8}$ of a dollar per day?

DECIMAL FRACTIONS.

90. A Dechal Fraction is one in which the unit is divided into tenths, hundredths, thousandths, \&e.

When the unit is divided into 10 equal parts, there are 10 such parts of the unit, and each part is called, one-tenth.

If each tenth be divided into 10 equal parts, there will be 100 equal parts of the unit, and each part will be $\frac{1}{10}$ of $\frac{1}{10}=\frac{1}{100}$.
If each hundredth be divided into 10 equal parts, there will be 1000 equal parts of the unit, and each part will be $\frac{1}{10}$ of $\frac{1}{100}=\frac{1}{1000}$; and smaller parts may be obtained, by dividing continually by 10 .

Notation and Numeration.

91. A period (.), called the decimal point, written before a figure, denotes the decimal division of the unit:

The second place from the decimal point, is the place of hundredths:

Thus, .01 is read, $\quad .1$ hundredth $=\frac{1}{100}$.
$.04 \quad$ " $\quad 4$ hundredths $=\frac{4}{100}$.
$.07 \quad$ " 7 hundredths $=\frac{7}{100}$.
\&c.,
sc.

The third place is the place of thousandths:

The fourth place is the place of ten-thousandths; the fifth, of hundred-thousandths; the sixth, of millionths, \&c.
92. We numerate from the decimal point to the right, and name the lowest fractional unit of the decimal.

Thus, 3 tenths 0 hundredths 4 thousandths, are, three hundred and four thousanths.

93. A Mixed Number is composed of a whole number and a decimal : Thus, 27.047 is a mixed number, and is read, twenty-seven, and forty-seven thousandths.

1. Express six-tenths in figures.
2. Write, in figures, forty-one hundredths.
3. Write, in figures, fifty-nine thousandths.
4. Write, in figures, forty-seven ten-thousandths.
5. Write, in figures, ninety-five thousandths.
6. Write, in figures, eighty ten-thousandths.
7. Write three hundred and twenty-seven thousandths.
8. Write, in figures, forty-nine millionths.
9. Write, in figures, nineteen ten-thousandths.
10. Write, in figures, sixty ten-thousandths.
11. Write, in figures, forty-one millionths.

Numerate and express in words the following decimals :

(12).	(13).	(14).	(15).	(16).
.045	.6704	.0049	.21046	.1049
(17).	(18).	(19).	(20).	(21).
.4704	.2147	.0412	.00497	.40264

22. Express, in figures, four, and twenty-five hundredths.
23. Write twenty-one, and forty-seven hundredths.
24. Write sixty, and one thousandth.
25. Write three hundred, and forty-nine thousandths.
26. Write six hundred, and six hundredths.
27. Write twenty-nine, and forty-one thousandths.

Numerate the following mixed numbers:

(28).	(29).	(30).	(31).
87.0471	904.27040	3601.0004	72045.20413
(32).	(38).	(34).	(35).
6274.0470	274.0416	167.0416	1874.04132
		5	

Principles of Decimal Notation.

1. That annexing ciphers to a decimal does not change its value.
Thus, $\quad 4=.40=.400=.4000$, \&c.
2. That prefixing a cipher to a decimal diminishes its . value ten times.

Thus, if we prefix a cipher to .4 , it becomes .04 , which is one-tenth of 4 tenths.
3. That the unit of any place, is one-tenth of the unit of the place next to the left-the same as in whole numbers.
4. That the denominator of a decimal fraction, though not written, is 1 with as many ciphers annexed as there are figures in the decimal.

(21).	(22).	(23).	(24).
.04049	.04190	.2704	.67029
(25).	(26).	(27).	(28).
.00046	.04121	.0496	.270496

Numerate the following:

(29).	(30).	(31).	(32).
159.04704	169.5704	1327.0493	12704.41214
(33).	(34).	(35).	(36).
214.67049	214.0493	14.04704	16.416704

Examples.

Write the following numbers decimally:

Numerate the following decimals:

(17).	(18).	(19).	(20).
.27	.041	.0291	.1672

ADDITION.

94. Adpition of Decinins is the operation of finding the sum of two or more decimal numbers.
95. What is the sum of $3.04 \quad 2.81$, and 86.36 ?
 the same column: this brings units of the same value in the same column: then add as in whole numbers.

Rule.

1. Write the numbers to be added, so that units of the same value shall fall in the same column:
II. Add as in whole numbers, and place the decimal point in the sum directly under the points in the numbers added.

Proof.-The same as in simple numbers.

Examples.

5. Add $6.6 ; 17.17 ; 29.05 ; 275.875 ; 181.62 ; .2647$.
6. Adld .5725 ; 5 5 ; . 125 ; $5.27625 ; 19.687 ; 27.4726$.
7. Add $.05 ;(275 ; .17 ; .8 ; 2.8375 ; .1875 ; .00125 ; .5$.
8. What is the sum of $4.2+16.02+27.002+99.99+8.8$?
9. Add $1.75 ; 179.875 ; 64.32 ; 28.9375 ; 28.28$.
10. Add $100.95 ; 111.919 ; 229.619 ; 77.75625 ; .29 ; .167$.
11. Add the following decimals : Twenty-seven hundredths; two, and fifty-seven hundredths; four humdred and twelve, and one hundred and twenty-two thousandths.
12. Add thirteen, and five-tenths; one, and ninety-six hundredths; sixty-six, and five thousandths; eighty, and one hundred and thirty-nine thousandths ; five hundred and sixty-four, and twenty-four millionths.
13. What is the sum of $1.4+4.1+.04+19.006+217.5$?
14. A person bought a horse for 175.375 dollars, a carriage for 296.875 dollars, a set of hamess for 116.1875 dollars, and a quantity of feed for 38.3125 dollars: what was the cost of the whole?
15 . The expenses of a person, per week, are 5.25 dollars for board, 1.75 dollars for washing, .625 of a dollar for fuel and light, .60 of a dollar for travelling, .24 of a dollar for newspapers, and 2.25 dollars for incidental charges : what are his weekly expenses?
16. Four persons, together, purchase a ship: the first pays 2165.50 dollars; the second pays 1563.75 dollars more than the first; the third pays 5625.1875 dollars, and the fourth pays 765.6875 dollars more than the third: what was paid for the ship?
17. A gentleman bought a house for 3762.75 dollars; he paid 167.25 dollars for repairs, 112.625 dollars for painting, and 119.315 dollars for gas-fixtures ; after which he sold the house, and gained 565 dollars: what did he receive for it?
18. 'A drover had 6 horses, for which he asked the following prices: 1st, 275.50 dollars; 2d, 196.875 dollars; $3 \mathrm{~d}, 216.25$ dollars ; 4th, 317.315 dollars; 5 th, 375 dollars; and 6 th, 225.75 dollars: what was the total value of the horses?
10. A person who had 159.37 dollars, lost 85.79 dollars: how much had he left?

SUBTRACTION.

95. Subtrachiox or Decrats is the operation of finding: the difference between two decimal numbers.
96. What is the difference between 37.049 and 12.8704 ?

Rule.-I. Write the subtrahend so that its decimal point shatl fall under that of the minuend: \qquad
II. If the decimal places in the numbers are not equat, make them so by annexing ciphers:
 .

oprration. \begin{tabular}{llllll}
3 \& 7. \& 4 \& 9 \& 0

1 \& 2.8 \& 7 \& 0 \& 4

\hline 2 \& 4 \& 1 \& 7 \& 8 \& 6

3 \& 7. \& 4 \& 9 \& 0

1 \& 2.8 \& 7 \& 0 \& 4

\hline 2 \& 4.1 \& 7 \& 8 \& 6
\end{tabular}

III. Then, subtract as in whole numbers, and place the decimal point, in the remainder, under that of the subtrahend.

Proof.-Same as in whole numbers.

Examples.
11. A traveller had 97.5 miles to go: after having traveiled 69.875 miles, what distance yet remained ?
12. A person owes a debt of 246.125 dollars: should he pay 198.1875 dollars, how much would remain unpaid?
13. How much does 25.0625 dollars exceed 19.1875 dollars?
14. A farmer owes a merchant 47,5625 dollars; he pays 29.625 dollars in flour, and the rest in cash: how much cash does he pay?
15. It is proposed to raise 180.75 dollars by subscription; four persons subscribe 149.125 dollars, on condition that Mr. Jones will subscribe the remainder: how much must Mr. Jones subscribe?
16. Two boxes of sugar together weigh 39.475 hundredweight ; one weighs 23.9875 hundredweight: what does the other weigh ?
17. If two lots of ground contain 6745.25 square feet and one contains 3796.78965 square feet, how much does the other contain?
18. If I sell a house, which cost me 4716.6875 dollars, for 5910.16 dollars, what shall I gain?
19. The difference of two numbers is 27.965 , and the larger one is 31.4761 : what is the smaller one?
20. Thomas gained 57.625 dollars more than James: how much did James gain, if Thomas gained 82.175 dollars?
21. If two fields contain 641.847 aeres, and the larger one contains 375.04 acres, how many acres will there be in the smaller field?
22. Mr. James bought 37.047 pounds of tea, and gave away 12.10904 pounds to a sick family: how much had he left?

Examples in Addition and Subtraction.

1. From the sum of one tenth and one hundredth, take the sum of one hundredth and one thousandth.
2. From the sum of five, and sixty-nine thousandths, take nine ten-thousandths.
3. If from two bags of salt, each containing 375.041 pounds, you take one bag containing 275.4708 pounds, how mueh will be left?
4. If from three bags of coffee, each containing 97.946 pounds, one bag be filled containing 98.075 pounds, how many pounds will be left?
5. A gentleman received from one person 67.75 dollars, and from another 89.25 dollars; the then paid 113.18 dollars: what had he remaining?
6. A piece of cloth measured 35.375 yards; from it the tailor cut three suits, requiring respectively 6.5 yards, 7.3125 yards, and 7.875 yards : how much of the piece remained?
7. A gentleman owned a lot of land, containing 1675 acres; he sola out of this lot, at various times, 275.75 acres, 164.375 acres, 396.875 acres, and 186.25 acres: how many acres remained?
?
8. A farmer gathered from one field 762.5 bushels of wheat, and from a second field 284.75 bushels: he sold at various times, 45.6 bushels, 176.15 bushels, and 260.875 bushels: how much then remained?
8. How much must we add to the sum of 475.75 and 296.875 , to make 1062.9125 ?
9. A person owed 2563.625 dollars; he paid at different times, 156.75 dollars, 579.63 dollars, 492.16 dollars, and 297.74 dollars: how much remained unpaid?
10. If from the sum of $475.65+192.6325+99.1645$, you take the sum of $16.9725+43.1645+186.375$, what will be the remainder?

MULTIPLICATION.

96. Mulitiplication of Decimals is the operation of taking one of two decimal numbers as many times as there are units in another.
97. Multiply 20.048 by 3.21 .

The multiplier is placed under the multiplicand, and the multiplication is performed as in simple numbers. The decimal point is so placed in the product, that there shall be as many decimal places as there are in both factors.
oreration.
20.048
3.21

20048
40096
60144
64.35408

Rule.

I. Write the multiplier under the multiplicand, and multiply as in whole numbers:
II. Point off in the product, from the right hand, as many places for decimals as there are decimal places in both factors: if there be not so many in the product, supply the deficiency by prefixing ciphers.

Notw.-To multiply a decimal number by 10, $100,1000,8 \mathrm{c}$, remove the decimal point as many places to the right, as there are 0's in the multiplier.
RA DE

9. Multiply 25.04 by .04 .
14. Multiply 87.04 by .0005 .
10. Multiply .3704 by .005 . 15. Multiply 65.01 by .0001 .
11. Multiply 97.079 by 3.049 . 16. Multiply 45.049 by 10 .
12. Multiply .6703 by .0496 . 17. Multiply .045 by 100 .
13. Multiply .75 by .005. 18. Mulliply 2.4903 by 1000.
19. Multiply the mixed number 1976,4625 by 2.7 .
20. Multiply the mixed number 2364.975 by 1.62 .
21. Multiply the decimal 75646 by .6 .
22. Multiply the mixed number 47.69636 by 87 .
23. Multiply the mixed number 269.456 by 065 .
24. Multiply the mixed number 1847.6235 by 2.007 .
25. Multiply the decimal 00675 by 4.625 .
26. What is the product of .1725 and .0625 ?
27. Multiply .5 by .5 ; also, .07 by .07 .
28. Multiply the mixed number 117.675 by .06125.
29. Mintiply the mixed number 694.68325 by 1000 .
30. Multiply the mixed number 1564.375 by 600 .
31. The multiplicand is 675.8725 , and the multiplier is 875: what is the produet?
32. If in a month a person cams 267.625 dollars, what will he earn in 7.9 months?
33. If a vessel sails 215.65 miles per day, how far will it sail in 24.75 days?
34. If, in selling a barrel of flow, a merchant gains .625 dollars, how much would he gain in selling 2000 barrels, at the same rate ?
35. If a barrel of apples weighs 116.25 pounds, how much would 26.75 barrels weigh, at the same rate?
36. In a frane there are 18.75 cents: how many cents are there in 250 franes?
37. If 3.75 dollars will pay for a cord of pine wood, how much will pay for .875 of a cord?
38. How many are 675.625 times 1.87635 ?
39. What will be the cost, at .1875 of a dollar per yard, of 15 pieces of calico, each measuring 37.5 yards?
40. If each box contains 1897.75 pounds of sugar, how many pounds are contained in 29 boxes?
41. If 7.875 yards of cloth are required for one suit of clothes, how many yards are reqnired to furnish 3 regiments, each comprising 1200 men?

DIVISION.

97. Division of Decmals is the operation of finding how many times one decimal number is contained in another.
98. Divide 28.9170 by 1.05 .

Rule.-Divide as in whole numbers, and from the right of the quotient, point off as
$1.05) 28.9170(27.54$ many places for decimals as the decimal places in the dividend exceed those in the divisor; if there be not so many in the quofient, supply the deficiency by prefixing
 cipliers.
Notes.-1. If the divisor has more decimal places than the dividend, make the number equal by annexing ciphers to the dividend; all tho figures of the quotient soill then be vofiole numbers. 2. To divide by $10,100,1000, \& c$, remove the decimal point as many places to the left as there are ciphers in the divisor.
3. If the division does not terminate, write + after the quo tient, which shows that it may be continued.

Examples.

24 . The dividend is 45.675 , and the divisor is 3.95 : what is the quotient?
25. If 51.26 be divided by 1.68 , what will be the quo26. If 45 barrels of flour cost 327.1875 dollars, what will be the cost of one barrel?
27. If one box holds 63.75 pounds of tea, how many boxes will be required to hold 956.25 pounds?
28. If 6.5 bushels of oats are required to feed one horse for one month, how many horses would 318.16 bushels feed?
29. If a journey of 617.5 miles is performed in 16.25 hours, what was the rate per hour?

Miscellaneous Examples in the preceding Rules.

1. What is the sum of one-tenth and one-hundredth?
2. What is the difference between five-tenths and fivehundredths?
3. From six thousand take six-thousandths.
4. Multiply five-tenths by five-thousandths.
5. Divide one by one-tenth.
6. Divide 10 by one-hundredth.
7. From one-tenth take one-millionth.
8. Two persons are 37.6325 miles apart, and travelling towards each other; one at the rate of 3.25 miles an hour, and the other of 4.125 miles: how far will they be apart, after travelling 4 hours?
9. A person has a journey to perform of 456.75 miles. After travelling 15.375 hours, at the rate of 24.6 miles per hour, how far will he yet have to travel?
10. If 6 pounds of sugar cost .84 of a dollar, what will be the cost of one pound?
11. If 9 barrels of flour cost 57.33 dollars, what will 8 barrels cost?
12. At 12.5 dollars a ton, how much hay can be bought for 203.75 dollars?
13. A steam-ship makes the same distance every day, and in 12.3125 days grees 172.375 miles; what is her daily rate?
14. The divisor is 96.4 , the quotient 162.82 , and the remainder . 419 : what is the dividend?
15. If 1 man can build a wall 9.045 rods long in 4 days. how much wall can 5 men build in 1 day?
16. What will 37.47 yards of cloth cost, at 4.04 dollars a yard?
17. Maltiply 30.0046 by 100 .
18. Divide 1 by one-millionth.
19. If 1 yard of cloth costs 1.25 dollars, what will be the cost of 75 yards?
20. To change a common to a decimal fraction.
21. Reduce $\frac{3}{8}$ to a decimal.

Rule.-Annex decimal ciphers to the numerator, and then divide by the denominator; pointing off as in ctivi-
operation.
$8 \lcm{3.00}$

UNITED STATES CURRENCY.

100. Currency is the money of a country, established by law. It is composed of paper money and coins.

Examples.

1. Reduce $\frac{1}{2}$ to a decimal fraction.
2. Reduce $\frac{5}{8}$ to a decimal fraction.
3. Reduce $\frac{2}{5}, \frac{5}{16}$, and $\frac{9}{15}$ to decimal fractions.
4. What decimal fraction is equal to $\frac{16}{25}$?
5. What decimal fraction equals $\frac{21}{24}$?
6. Reduce $\frac{11}{32}$ to a decimal fraction.
7. Reduce $\frac{7}{40}$ and $\frac{2}{3}$ to decimal fractions.
8. Change $\frac{17}{50}$ and $\frac{16}{80}$ to decimal fractions.
9. Express $\frac{2}{5}, \frac{6}{16}$, and $\frac{9}{80}$ in deeimal fractions.
10. Reduce $\frac{240}{1250}$ and $3 \frac{7}{8}$ to deeimals.
11. Reduce $\frac{16}{975}$ and $\frac{36}{450}$ to decimals.
12. Reduce $\frac{5}{160}, \frac{16}{30}$, and $\frac{17}{200}$ to decimals.

99. To change a decimal to the form of a common fraction.

- 1. Change 88 to the form of a common fraction.

Rule.-Write the denom- 1 - ${ }^{\text {- }}$ -

inator of the decimal, and
reduce the fraction to its $.88=\frac{88}{100}=\frac{44}{50}=\frac{22}{25}$.
lowest terms.

1. Change 47 to the form of a common fraction.
2. Change 4.69 to the form of a common fraction.
3. Change 3.004 to the form of a common fraction.
4. Change 64.0049 to the form of a common fraction.
5. Change 87.490 to the form of a common fraction

Coins.

101. Corss are pieces of metal, whose values are fixed by lav.

The coins of the United States are the following:

1. Gold: Eagle, doüble-agle, half-eagle, three-dollars, quarter-eagle, dollar.
2. Silver: Dollar, half-dollar, quarter-dollar, dime, halfdime, and three-cent piece.
3. Copper: Cent, half-cent.
4. Nickel: Cent.
5. The Dollar is the unit of United States Currency. It is divided decimally, for the denominations which are less than a dollar, and multiplied by 10 for those which are greater, according to the following

- Hence, a dime is one-tenth of a dollar; a cent, one-tenth of a dime; and a mill, one-tenth of a cent. Therefore, in writing,
The dollars fall at the left of the decimal point, the

98. To change a common to a decimal fraction.
99. Reduce $\frac{3}{8}$ to a decimal.

Rule.-Annex decimal ciphers to the numerator, and then divide by the denominator; pointing off as in ctivi-
operation.
$8 \lcm{3.00}$

UNITED STATES CURRENCY.

100. Currency is the money of a country, established by law. It is composed of paper money and coins.

Examples.

1. Reduce $\frac{1}{2}$ to a decimal fraction.
2. Reduce $\frac{5}{8}$ to a decimal fraction.
3. Reduce $\frac{2}{5}, \frac{5}{16}$, and $\frac{9}{15}$ to decimal fractions.
4. What decimal fraction is equal to $\frac{16}{25}$?
5. What decimal fraction equals $\frac{21}{24}$?
6. Reduce $\frac{11}{32}$ to a decimal fraction.
7. Reduce $\frac{7}{40}$ and $\frac{2}{3}$ to decimal fractions.
8. Change $\frac{17}{50}$ and $\frac{16}{80}$ to decimal fractions.
9. Express $\frac{2}{5}, \frac{6}{16}$, and $\frac{9}{80}$ in deeimal fractions.
10. Reduce $\frac{240}{1250}$ and $3 \frac{7}{8}$ to deeimals.
11. Reduce $\frac{16}{975}$ and $\frac{36}{450}$ to decimals.
12. Reduce $\frac{5}{160}, \frac{16}{30}$, and $\frac{17}{200}$ to decimals.

99. To change a decimal to the form of a common fraction.

- 1. Change 88 to the form of a common fraction.

Rule.-Write the denom- 1 - ${ }^{\text {- }}$ -

inator of the decimal, and
reduce the fraction to its $.88=\frac{88}{100}=\frac{44}{50}=\frac{22}{25}$.
lowest terms.

1. Change 47 to the form of a common fraction.
2. Change 4.69 to the form of a common fraction.
3. Change 3.004 to the form of a common fraction.
4. Change 64.0049 to the form of a common fraction.
5. Change 87.490 to the form of a common fraction

Coins.

101. Corss are pieces of metal, whose values are fixed by lav.

The coins of the United States are the following:

1. Gold: Eagle, doüble-agle, half-eagle, three-dollars, quarter-eagle, dollar.
2. Silver: Dollar, half-dollar, quarter-dollar, dime, halfdime, and three-cent piece.
3. Copper: Cent, half-cent.
4. Nickel: Cent.
5. The Dollar is the unit of United States Currency. It is divided decimally, for the denominations which are less than a dollar, and multiplied by 10 for those which are greater, according to the following

- Hence, a dime is one-tenth of a dollar; a cent, one-tenth of a dime; and a mill, one-tenth of a cent. Therefore, in writing,
The dollars fall at the left of the decimal point, the
dimes in the first place at the right of it, the cents in the second place, and the mills in the third place. Thus,

$$
\$ 4.875
$$

expresses, 4 dollars, 8 dimes, 7 cents, and 5 mills. But the dimes are generally read with the cents; thus we say, four dollars 87 cents and 5 mills. If there are no dimes, the 0 occupies the dimes' place.

Express the following sums of money decimally:

1. Five dollars 4 dimes and 3 cents.
2. Twenty-seven dollars 6 dimes and 7 cents.
3. Forty dollars 8 dimes 2 cents and 9 mills.
4. Thirty dollars forty-three cents, and 2 mills.
5. One hundred and five dollars 6 dimes 4 cents and 4 mills.
6. Three dimes 7 cents and 8 mills.
7. Sixty-five cents and 7 mills.
8. One dollar one cent and one mill.
9. Twenty-five cents.
10. Three dollars and seventy-five cents.
11. Eight cents and eight mills.
12. Twelve dollars twelve cents and nine mills.
-13. Nine mills.
13. Two cents and two mills
14. Sixty dollars and five cents.
15. Forty-nine dollars four dimes and six mills.
16. Two hundred dollars eight dimes and three cents. DRA

Read the following numbers:

$\$ 5.625 ;$	$\$ 16.147 ;$	$\$ 23.492 ;$	$\$ 72.169 ;$	$\$ 1.196$.
$\$ 1.064 ;$	$\$.75 ;$	$\$.045 ;$	$\$.006 ;$	$\$.107$.
$\$ 67.041 ;$	$\$ 80.470 ;$	$\$.047 ;$	$\$ 87.401 ;$	$\$ 61.414$.

REDUCTION.

103. Reduction is the operation of changing the unit of a number, without altering the value of a number.

104. To reduce from a greater unit to a less.

1. In 5 dollars, how many dimes, how many cents, and how many mills?

Rute.-I. To change from any denomination to the next less, multiply by 10 .

$$
\$ 5=5 \times 10=50 \text { dimes. }
$$

II. To change from any

$$
\$ 5=50 \times 10=500 \text { cents }
$$ denomination to the second $\$ 5=500 \times 10=5000$ mills. less, multiply by 100.

III. To change from any denomination to the third less, multiply by 1000 .

Note.-If there be no decimal point in the number, perform the operation by annexing ciphers. If there is a decimal point, observe the rule for multiplying a decimal by 10,100 , or 1000 .

Examples.

1. Reduce $\$ 15.25$ to cents. Ans. 1525.
2. Reduce $\$ 47.375$ to mills. \square Ans. 47375 . "
3. How many dimes are there in $\$ 96$?
4. How many cents are there in $\$ 87.50$?
5. In 7 dimes, how many mills are there?
6. Reduce $\$ 160$ to dimes ; to cents ; and to mills.
7. Reduce $\$ 3.03$ to dimes; to cents; and to mills.
8. Reduce $\$ 16$ to cents ; and to mills.
9. Change $\$ 10.109$ to dimes ; to cents ; and to mills.
10. Change $\$ 400.754$ to dimes ; to cents ; and to mills.
11. Change $\$ 7.046$ to dimes ; to cents ; and to mills.
12. Change $\$ 12.419$ to dimes; to cents; and to mills.
13. To change from a less unit to a greater.
14. Reduce 4672 mills to dollars, cents, and mills.
Rule.-I. To change from any oreration.
denomination to the next higher, 10) 4672 divide by 10: $110 \frac{4672}{10) 467.2}$
II. To change from any denomi- 10$) 46$ nalion to the second Figher, divide 10$) 46.72$ cents. by 100 :
III. To change from (any denomination to the third higher, divide by 1000 .

\qquad
15. Reduce 5672 cents to dollars.
16. Change 72356 mills to dollars.
17. Reduce 3674 mills to dollars.
18. Reduce 12745 cents to dollars.
19. Change 26945 cents to dollars.
20. In 649 dimes, how many dollars?
21. How many dimes are there in 2469 mills?
22. How many dollars are there in 476 dimes?
23. Reduce 57 cents to dollars.
24. How many dollars and cents are there in 157 cents? How many in 75 cents? In 127 cents?
25. How many dollars, cents, and mills are there in 6749 mills? How many in 37049 mills?
26. In 40409 mills, how many dollars, cents, and mills? $R A$ How many in 904607 mills?
27. How many dollars, cents, and mills in 10460 mills? In 270460 mills, how many?
28. How many dollars, cents, and mills are there in 874904 mills? In 47049 mills, how many?

ADDITION.

106. Addition of United States Money is performed in the same manner as addition of decimals.
107. What is the sum of $\$ 37.027$, $\$ 12.49$, and $\$ 15.379$?

Rule.-Write the numbers so that units of the same value shall fall in the same column, and then add as in decimal fractions.
Proof.-Same as in decimals

Examples.

Add the following:

1. 16 dollars 15 cents 7 mills; $\$ 16.25$, and $\$ 19.004$.
2. 17 dollars 4 dimes 6 cents; $\$ 25,19$ cents 6 mills; and $\$ 75$ and 25 cents.
3. $\$ 16.125+\$ 296.875+75$ cents +10 dollars 16 cents 3 mills.
4. $\$ 96.476+\$ 179.06+37 \frac{1}{2}$ cents $+18 \frac{3}{4}$ cents $+\$ 1.956$.
5. $\$ 2716.149+17$ cents 8 mills $+\$ 1.129+\$ 62.62 \frac{1}{2}+$ D 5 cents.
lars +25 cents.
6. $37 \frac{1}{2}$ cents $+12 \frac{1}{2}$ cents +7 cents 8 mills +2 dollars +2 cents.
7. A man went to a grocery and purchased a barrel of flour for 6 dollars 25 cents, a barrel of potatoes for 3 dol-
lars 50 cents, a box of raisins for 2 dollars $12 \frac{1}{2}$ cents, and a box of candles for 5 dollars 75 cents: what was the cost of all the articles?
8. A boy was sent to the grocery to purehase various articles. He purchased $\frac{1}{2}$ pound of tea for 37 cents, 1 pound of coffee for 35 cents, 7 pounds of sugar for $-87 \frac{1}{2}$ cents, 1 ham for 1 dollar $62 \frac{1}{2}$ cents, and 1 pound of butter for 27 cents: what was the entire eost?
9. A person bought a hat for 3 dollars 75 cents, a coat for 9 dollars $87 \frac{1}{2}$ cents, a pair of pantaloons for 4 dollars $37 \frac{1}{2}$ cents, and a pair of boots for 4 dollars 18 cents: what did he pay for all?
10. A lady purchased, for a dress, 20 yards of silk for 18 dollars 18 cents, trimmings for 6 dollars 37 cents 5 mills, lining for 96 cents 6 mills, and paid 3 dollars 15 cents for making it: what did the dress cost?
11. A gentleman bought some eloth for a coat, for which he paid 16 dollars 25 cents, some lining for 3 dollars $12 \frac{1}{2}$ cents, buttons for $62 \frac{1}{2}$ eents, 1 dollar $12 \frac{1}{2}$ cents for cutting, and 2 dollars $62 \frac{1}{2}$ cents for making it: what did the coat cost?
12. A wood-dealer paid 362 dollars 88 cents for wood still lying in the forest; he paid 49 dollars 27 cents for freight, and 27 dollars for cartage: for what must he sell the wood, that he may gain 62 dollars $62 \frac{1}{2}$ cents?
13. James, during the day, earned 87 cents, and found 4 dollars 25 cents: how much would he then have, supposing that he had in the morning 10 dollars 10 cents?
14. A boy wished to buy a set of school-books, which cost as follows: Arithmetic, 50 cents; Reader, $62 \frac{1}{2}$ cents ; Geography, $87 \frac{1}{2}$ cents; Speller, 12 cents; Grammar, 65 cents; History, 49 cents, and Etymology, 37 cents : what must he pay for the set?

SUBTRACTION.
107. Subtraction of United States Currency is performed in the same manner as subtraction of Decimal Fractions.
I. From 169 dollars 27 cents and 6 mills, take 97 dollars 89 cents and 9 mills.

Rule.

- oprration.
\$1 69.276
97.899

Write the numbers and make the subtraction as in Decimal Fractions.

Proof.-Same as in Decimals.

1. From 212 dollars 16 cents 4 mills, take 97 dolla1s 29 cents 8 mills.
2. From 47 dollars 2 cents 3 mills, take 9 dollars 19 cents 6 mills.
3. Subtract 118 dollars 25 cents, from 250 dollars $12 \frac{1}{2}$ cents.
4. Subtract 1 dollar 87 cents 5 mills, from 7 dollars 10 cents.
5. How much less is 5 dollars 75 cents, than 6 dollars 18 cents?
6. Take 6 dollars 37 cents 5 mills, from 10 dollars.
7. If a person having 12 dollars 62 cents, spends 7 dollars 81 cents, what will he have left?
8. If a gentleman buys a barrel of flow for 6 dollars 38 cents, and hands the seller a ten-dollar bill, how much should be returned to him?
9. If I buy cloth for 37 dollars 35 cents, and sell it for 51 dollars 5 mills, what do I gain?
10. A lad wishes to buy a sled, the price of which is 1 dollar 62 cents; he has only 95 cents: how much more does he need?
11. A barrel of flour costs 5 dollars 75 cents, and a barrel of potatoes 2 dollars 88 cents: what is the difference in the price of the two?
12. A person owing 15 dollars 27 cents, pays 9 dollars 75 cents: what does fic still owe?
13. A mechanic, out of 25 dollars 25 cents due him, receives 18 dollars 48 cents: what is still due him?
14. A grocer bonght coal to the amount of 28 dollars 50 cents, and paid for it with groceries to the amount of 19 dollars 28 cents, and the rest in cash : how much eash did he pay?

Examples in Addition and Subtraction.

1. A farmer bought sugar for $\$ 2.62 \frac{1}{2}$, tea for 1 dollar 50 cents, coffee for 75 cents, cheese for $\$ 0.87 \frac{1}{2}$, and molasses for 96 cents; he gave in payment a quantity of potatoes that were worth $\$ 4.20$, and paid the rest in cash: what amount of cash did he pay?
2. A country merchant starts for New York city with $\$ 1000$ to buy goods. When in the city, he bought dry goods to the amount of $\$ 379.16$, groceries to the amount of $\$ 262.71$, boots and shoes for $\$ 160$, and drugs for $\$ 72.15$; his expenses for board and travelling were $\$ 26.75$: what had he left on his arrival at home?
3. A merchant, during a certain day, received the following sums : $\$ 47.61, \$ 115.23, \$ 416.37, \$ 12.72$, and $\$ 0.71$: he paid out on the same day $\$ 96.17, \$ 49.12, \$ 139.97, \$ 5.17$, and $\$ 95.95$: how much did the receipts exceed the payments?

MULTIPLICATION.

4. A pedler, at the beginning of the week, had goods to the value of $\$ 25.50$; he bought, during the week, goods to the value of $\$ 21.16$, and sold to the value of $\$ 31.27$; at the end of the week, his goods were worth $\$ 30.60$: what had he gained during the week?
5. A drover bought a horse for $\$ 160$: after keeping it for 6 months at an expense of $\$ 70$, he sold it for $\$ 212.50$: did he gain or lose, and how much?
6. A farmer sold a horse for 95 dollars 25 cents, and a cow for 47 dollars 36 cents, and received in payment a wagon worth $\$ 165.75$; the value of the wagon exceeded that of the horse and cow, and he gave another cow, which just paid the balance: what was the value of the second cow?
 formed in the same manner as Multiplication of Decimal Fractions.
7. Multiply 125 dollars 7 dimes 6 cents and 5 mills, by 8 .

Rule.-Express the sum of money operation. R) in decimals of a dollar, and multiply $\$ 125.765$ as in multiplication of decimals. S

Proof.-Same as in decimals.
$\$ 1006.120$

Examples.

1. Multiply 275 dollars 18 cents 3 mills, by 25 .
2. Multiply $\$ 116,7$ dimes 8 cents 9 mills, by 46.
3. Multiply 1693 dollars 3 cents and 7 mills, by 83.
4. Multiply 37 cents 8 mills, by $28 \frac{1}{2}$.
5. Multiply 98 dollars and 9 mills, by $36 \frac{1}{2}$.
6. If one barrel of flour eosts 6 dollars 25 cents, what will be the cost of 12 barrels?
7. What mast be paid for 23 days' work, at $\$ 1.62 \frac{1}{2}$ per day?
8. What would be the cost of 18 yards of eloth, at $\$ 2.75$ per yard?
9. At $18 \frac{3}{4}$ cents per yard, what would be the cost of $37 \frac{1}{2}$ yards of French calico?
10. If board costs $\$ 4.625$ per week, how much must be paid for 13 weeks?
11. If the wages of one man be $\$ 12.12 \frac{1}{2}$ for one week, what will be the wages of 26 men for 4 weeks?
12. If the transportation, by railroad, of one ton of merchandise costs $\$ 16$, what would be the cost of 21.75 tons?
13. The cost of constricting a railroad is $\$ 2769560$ per mile: what is the cost of construction for $65 \frac{3}{8}$ miles?
14. What is the produet of $\$ 27.65$, by $37 \frac{1}{2}$
?
15. What will 126.5 yards of muslin cost, at the rate of $27 \frac{1}{2}$ cents per yard?
16. How much money must a person have, to give $\$ 3.47$ to each of 27 poor families?
17. How much will a person save in 16 weeks, if he saves $\$ 2.37 \frac{1}{2}$ per week?
18. A drover bought a drove of cattle, comprising 35 head, at $\$ 32.14$ per head: what did the drove cost?
19. A merchant sold 67 barrels of flour, at a price by which he lost $\$ 1.87 \frac{1}{2}$ on each barrel : what was his entire loss?

Examples in the preceding Rules

1. A merchant bought 96 barrels of flour at $\$ 5.25$ per barrel, and sold them all for $\$ 600$: what did he gain?

- 2. A lady bought $12 \frac{1}{2}$ yards of muslin at 18 cents per yard, and 14 yards of calico at $12 \frac{1}{2}$ cents per yard; she handed in payment a five-dollar bill: what change should be returned?

3. A gentleman agreed to buy 8 lots of ground at $\$ 674.375$ per lot, and to pay $\$ 3715.875$ in cash, and to give a bond and mortgage for the remainder : what was the amount of the bond?
4. A person owed $\$ 2716$ on his house; at one time he paid $\$ 475.62$; at another time, $\$ 675.625$; at another time, $\$ 276.375$; and subsequently he made 3 equal payments of $\$ 276.75$ each: how much is still due?
5. A merchant bought a ship for $\$ 37160.25$, and a steamer for $\$ 107645.50$; he gave, in payment, a block of 12 houses, each valued at $\$ 4750 ; 37$ lots of ground, valued at $\$ 425.25$ per lot, and the remainder in cash: how mueh cash was paid?
6. A merchant bought 346 yards of calico at 17 cents per yard, $85 \frac{1}{2}$ yards of cloth at $\$ 1.16$ per yard, and 63 yards of silk at 73 cents per yard; for the goods he paid $\$ 125$ cash, and 25 yards of cloth worth $\$ 65.45$: what was still due?
7. A laborer worked on a farm 9 months, at $\$ 11.75$ per month ; in payment he had received 6 bushels of potatoes at $87 \frac{1}{2}$ cents per bushel, 2 barrels of flour at $\$ 6.12 \frac{1}{2}$ per barrel, 125 pounds of Indian meal at $1 \frac{1}{2}$ cents per pound, one hog, weighing 144 pounds, at $4 \frac{5}{8}$ cents per pound, and the remainder in cash: what cash did he receive?
8. A farmer sold, for cash, 25 bushels of potatoes at $62 \frac{1}{2}$ cents per bushel, 15 bushels of turnips at 18 cents per
bushel, and 50 heads of cabbage at 3 cents each: out of the proceeds, he bought 20 yards of muslin at 14 cents per yard, 36 yards of calico at 24 cents per yard, and 28 pounds of sugar at $8 \frac{1}{2}$ cents per pound : what cash had he remaining?

Bills.
Broominn, Feb. 12th, 1863.
9. Mr. James Smith LAMMAM, Bought of Samuel Wells:

25 pounds of sugar, at 9 cents per pound 3 pounds of tea, at 75 cents per pound 5 pounds of Java coffee, at 34 cents per pounc 3 gallons of molasses, at 63 cents per gallon. 7 pounds of cheese, at 12 cents per pound
11. Mr. Seth Williams

Chioago, Feb. 19th, 1863.

5 boys' caps, at $\$ 1.87 \frac{1}{2}$ each
Bought of John Spencer:
. \$
6 boys' suits, at $\$ 8.75$ each
9 coats, at $\$ 3.65$ each
10 pair of pantaloons, at $\$ 1.69$ a pair
12 dozen of shirts, at $\$ 9.50$ per dozen
\qquad
Received Payment.
12. Mr. Sylvester Thomas

Albany, Feb. 17th, 1869.
Practical Arithmetics, Bought of James Spinner:
Practical Arithmetics, at 50 cents each
12 National Readers No. 4, at 56 cents each
9 Bullion's Grammars, at 48 cents each
18 Intellectual Arithmetics, at 25 cents each
What was the amount of the above bill?

4 spools of cotton thread, at 6 cents each.
2 papers of pins, at 10 cents each

Received Payment.

3 dozen Beer's Copy-books, at $\$ 1.08$ per dozen
I Geometry, at \$1.25

For 2 pair of shoes, at $\$ 1.65$ per pair . . $\$$ -" 3 pair of boots, at $\$ 3.62 \frac{1}{2}$ per pair.
". 3 pair of slippers, at $\$.95$ per pair
" 6 yards of superfine cloth, at $\$ 2.12 \frac{1}{2}$ per yard
" 7 pair of India-rubber shoes, at $\$.96$ per pair

March 2d. Credit by Cash \qquad
What is the balance due?

DIVISION.

109. Diviston of Unimed States Currency is performed in the same mamer as division of decimals.

110. Divide 472 dollars 16 cents 5 mills by 28 .
111. Divide 1173 dollars 87 cents 7 mills by 37 .
112. Divide 567 dollars 29 cents by 45 .
113. Divide 2761 dollars 17 cents by 5 dollars 16 cents.
114. Divide 616 dollars 8 cents 5 mills by 4 dollars 17 cents 5 mills,
115. Divide 2030 dollars 6 mills by 156.
116. How many yards of cloth at $\$ 1.75$ per yard, can be AI bought for $\$ 39.20$?
117. If 8 yards of muslin cost $\$ 2.16$, what will 1 yard cost?
118. If a man for 15 days' work receives $\$ 28.75$, what was his daily wages?
119. How many barrels of flour, at 4 dollars $37 \frac{1}{2}$ cents per barrel, can be bought for 567 dollars 25 cents?
120. What would be the cost of one arithmetic, if $\$ 162.96$ were paid for 400 copies?
121. How many horses at $\$ 82.50$ each, can be bought for \$6187.50 ?
122. It is desired to raise by subscription, for a benevolent object, $\$ 846$: if each subscriber pays $\$ 2.25$, how many subscribers will be necessary to raise the amount ?
123. A merchant finds that by selling calico at $\$.18$ per yard, he has reeeived in one day cash to the amount of $\$ 450.75$: how many yards did he sell?
124. A father, at his death, left a fortune of $\$ 25650$ to be divided equally among his 5 children, after deducting one-third of it for his widow : what was the share of the widow, and what of each child?

Promiscuous Examples.

1. A farmer sold 16 bushels of potatoes at $62 \frac{1}{2}$ cents per bushel, and took his pay in sugar at $9 \frac{1}{2}$ cents per pound: how much sugar did he get?
2. A person bought 162 cords of oak wood, at $\$ 3.25$ per cord; he paid $\$ 250$ in cash, and the remainder in coal at $\$ 4.60$ per ton: how mayy tons of coal were given?
3. Two farmers agreed to exchange their farms: One farm comprised 175 acres, and wasanalted at $\$ 85$ per acre ; and the other comprised 218 acres, alued ht wher acre: the difference of value was paid in cash : how much cash was paid?
4. A was in debt to B to the amount of \$916.75; in payment he gave one lot of ground, valued at $\$ 345.60$; cash, $\$ 216.90 ; 15$ boxes of oranges, at $\$ 2.75$ each; and 40 boxes of lemons, at $\$ 2.16$ each: what was still due?
5. A laborer was employed for 5 months, at $\$ 27.50$ per month; he received, each month, $\$ 12.25$ in cash and $\$ 9.75$ in groceries: at the end of the time, what had he saved?
6. A poor man bought a barrel of flour for $\$ 6.50$; 7 pounds of sugar, at 9 cents per pound; 28 pounds of Indian meal, at 3 cents per pound; 4 pounds of batter, at $23 \frac{1}{2}$ cents per pound; and 15 pounds of ham, at 9 cents per pomm; he prid $\$ 5$ in cash, and agreed to pay for the remainder in labor at $\$ 1.25$ per day: how inany days must he labor?
7. If I pay $\$ 96$ for 25 hats, how much must I pay for 63 hats at the same rate?
8. If 36 men can be hired for $\$ 50.40$ for one day, how many men could be hired for the same time for $\$ 133.00$? 9. Find $\frac{7}{8}$ of 679 dollars 19 cents 6 mills.
9. A war-vessel captured a prize, which was afterwards sold for $\$ 37650$; $\frac{4}{5}$ of this sum was to be equally divided among 250 men: what was the share of each man?
10. How mach is $\frac{11}{12}$ of $\$ 56412.60$?
11. In how many weeks could a father and son together earn $\$ 65.75$, if the father earns $\$ 10.60$ and the son $\$ 3.75$, per week?
12. A family, consisting of father, mother, and 4 children, desires to board in the country during the summer, and can afford to pay $\$ 162$: how many weeks can they remain, if the board of each parent is $\$ 4.50$, and of each child \$2.25?
13. A gentleman bought a farm of 160 acres, at $\$ 75$ A per acre, and sold it for $\$ 19000$: what was the entire gain, and how much per acre?
14. If a merchant buys ceal at the rate of $\$ 3.75$, and sells it at $\$ 5$ per ton, how many tons must he sell in order to gain $\$ 1500$?
15. A laborer was employed for 5 months, at $\$ 27.50$ per month; he received, each month, $\$ 12.25$ in cash and $\$ 9.75$ in groceries: at the end of the time, what had he saved?
16. A poor man bought a barrel of flour for $\$ 6.50$; 7 pounds of sugar, at 9 cents per pound; 28 pounds of Indian meal, at 3 cents per pound; 4 pounds of batter, at $23 \frac{1}{2}$ cents per pound; and 15 pounds of ham, at 9 cents per pomm; he prid $\$ 5$ in cash, and agreed to pay for the remainder in labor at $\$ 1.25$ per day: how inany days must he labor?
17. If I pay $\$ 96$ for 25 hats, how much must I pay for 63 hats at the same rate?
18. If 36 men can be hired for $\$ 50.40$ for one day, how many men could be hired for the same time for $\$ 133.00$? 9. Find $\frac{7}{8}$ of 679 dollars 19 cents 6 mills.
19. A war-vessel captured a prize, which was afterwards sold for $\$ 37650$; $\frac{4}{5}$ of this sum was to be equally divided among 250 men: what was the share of each man?
20. How mach is $\frac{11}{12}$ of $\$ 56412.60$?
21. In how many weeks could a father and son together earn $\$ 65.75$, if the father earns $\$ 10.60$ and the son $\$ 3.75$, per week?
22. A family, consisting of father, mother, and 4 children, desires to board in the country during the summer, and can afford to pay $\$ 162$: how many weeks can they remain, if the board of each parent is $\$ 4.50$, and of each child \$2.25?
23. A gentleman bought a farm of 160 acres, at $\$ 75$ A per acre, and sold it for $\$ 19000$: what was the entire gain, and how much per acre?
24. If a merchant buys ceal at the rate of $\$ 3.75$, and sells it at $\$ 5$ per ton, how many tons must he sell in order to gain $\$ 1500$?

Table Reversed．

Table Reversed．

Notes．－ 1 ．The steps，or units of the scale，beginning at the lowest，are 4，12，and 20．If we begin at the highest unit，the order is reversed，and the units are 20,12 ，and 4 ．The step or comnecting link between any two denominations，is，however，the same in both cases．

2．The steps of the scale are equal only in abstract and decimal numbers：hence，these numbers alone have uniform scales．
3．Farthings are generally expressed in fractions of a penny： Thus， 1 far．$=\frac{1}{4} \mathrm{~d} . ; 2$ far．$=\frac{1}{3} \mathrm{~d} . ; 3$ far．$=\frac{3}{4} \mathrm{~d}$ ．
3．By reading the second table from left to right，we can see the value of any unit expressed in each of the lower denomina－ tions．Thus， $1 \mathrm{~d} .=4 \mathrm{far}$ ．$; 1 \mathrm{~s} .=12 \mathrm{~d} .=48$ far．$; £ 1=20 \mathrm{~s} .=240 \mathrm{~d} .=$ 960 far．

III．UNITS OF LENGTH．

I．LONG MEASURE．
117．This Measure is used to measure distances，lengths， breadths，heights，depths，\＆e． $\begin{aligned} \text { E．} & 1=10=100=1000 . \\ 1=10 & =100=1000=10000\end{aligned}$ Scale．－The steps of the scale are each 10：／hence，the scale is uniform．

II．ENGLISH OURRENCY．
116．English Currency is the Currency of Great Britain．

Table．

4 Farthings（far．）make 1 Penny，．marked d．

12 Pence
20 Shillings
21 Shillings

1 Shilling ．
．． 8
1 Pound，or sovereign，\＆
1 Guinea．

Table．

12 Inches（in．）．．make 1 Foot，．．marked ft．
3 Feet ．．．． 1 Yard，．．．．yd．
$5 \frac{1}{2}$ Yards，or $16 \frac{1}{2}$ Feet ． 1 Rod，．．．．rd．
40 Rods ．．． 1 Furlong，．．．fur
8 Furlongs，or 320 Rods ． 1 Mile，．．．．mi．
3 Miles ．．．． 1 League，．．．L ．
692⿱亠䒑⿱亠䒑十 Statute Miles（nearly），or \} 1 Degree of the \} deg. or ${ }^{\circ}$
60 Geographical Miles ．Equator，a Circumference of the Earth． 6＊

Nomes.-1. A fathom is a length of six feet, and is generally used to measure the depth of water. A pace is three feet.
2. A hand is 4 inches, used to measure the height of horses
8. SCatie. - The steps, or units of the scale, beginning at the lowest, are $12,3,5 \frac{1}{4}, 40$, and 8 .
4. The geographical mile is equal to a minute of one of the great circles of the earth.
11. SURVEYORS' MEASURE.
118. The Surveyors' or Gunter's Chain is generally used in surveying land. It is 4 rods, or 66 feet in length, and is divided into 100 links.
 are $7.92,100$, and 80 .
III. CLOTH MEASURE.
119. Cloth Measure is used for measuring all kinds of cloth, ribbons, and other things sold by the yard. foot.

Table.

	Inches	(in.)	make	1 Nail,	marked n
	Nails			1 Quarter of a yard	
	Quarters			1 Ell Flemish,	c. Fl .
	Quarters			1 Yard,	
	Quarters			1 Ell English	
	Quarters			1 Ell French	

Table Reversed.

Scaw. - . The steps, or units of the scale, beginning at the 5 , and 6 . then reckoning from the quarter-yard, are $24,4,4,3$, 5 , and 6.
2. The yard of Cloth Measure, is the yard of Long Measure, and is equal to 36 inches.
\square IV. Units of surface.
I. square measure.
120. Square Measure is used in measuring surfaces, which combine length and breadth. A
The unit of this measure, is a square, constructed on the mit of length.

A square, is a figure bounded by four equal sides, at right angles to each other. If each side be one foot, the figure is called, a square

144 Square Inches (sq. in.) make 1 Square Foot, marked sq.ft.
9 Square Feet . . . 1 Square Yard, . $8 q \cdot y l$,
$30 \frac{1}{4}$ Square Yards . . 1 Square Rod, or Perch, . P
40 Square Rods or Perches . 1 Rood, R.
4 Roods 1 Acre, A
640 Acres . . . 1 Square Mile . . . M

ALERE FL Table Reversed.

Scale.-The steps, or units of the scale, beginning at the lowest, are $144,9,30 \frac{1}{3}, 40$, and 4
II. SURVEYORS' MEASURE.
121. Surveyors estimate the area of land in Square Miles, Acres, Roods, and Perches.

Table.

$$
\begin{aligned}
& \begin{array}{lll}
& \text { A. } & 1=2 \frac{1}{2}= \\
\text { sq. mi. } & 10 . \\
4=160 .
\end{array} \\
& 1=640=2560=6400=10240 .
\end{aligned}
$$

SCALE.-The steps, or units of the seale, beginning at the lowest, are $16,2 \frac{1}{2}, 4$, and 640 .
V. UNITS OF VOLUME OR CAPACITY.
I. cubio measure.
122. Ctibic Measure is used for measuring solids; as stone, timber, earth, and other things, in which the three dimensions of length, breadth, and thickness, are considered.
The unit of this measure is a cube whose edge is the unit of length.

A cube is a figure bounded by six equal squares, called faces; the sides of the square are called edges.

A cubic foot is a cube, each of whose faces is a square foot; its edges are each 1 foot.

A cubic yard is a cube, each of whose edges is 1 yard.

Table.

1728 Cubic Inches (ou, in.) make 1 Cubic Foot, . marked cu. ft.
27 Cubic Feet.
$\left.\left.\begin{array}{l}40 \text { Feet of round, or } \\ 50 \text { Feet of hewn Timber, }\end{array}\right\} . \begin{array}{l}1 \text { Cubic Yard, } \\ 1 \text { Ton, }\end{array}\right)$ $\begin{array}{r}\text { cu. } y d . \\ .\end{array}$ T.

42 Cubic Feet. . . 1 Ton of Shipping, . \quad T.
16 Cubic Feet.
8 Cord Feet, or
128 Cord Feet, or 1 . 1 . 1 Cord, C.
Notes.-1. A cord of wood is a pile 4 feet wide, 4 feet high, and 8 feet long
2. A cord foot is 1 foot in length of the pile which makes a cord.
3. A ton of round timber, when square, is supposed to prodnce 40 cubic feet; hence, oneffift is lost by squaring.

Table Reversed

$$
\begin{aligned}
& \text { Cu. ft. cu. in. } \\
& \text { Cu. yd } \quad 1=1728 \\
& \text { T.rd.T. } I^{\text {cu. }}=1=16=27648 \\
& 27=46656 \\
& 40=69120 \\
& 50=86400 \\
& \begin{array}{l}
=50=86400 \\
=42=72576
\end{array} \\
& \text { II. LIQUID MEASURE }
\end{aligned}
$$

123. Lreuid Measure is ased for measuring all liquids. Formerly some of them were measured by Beer Measure but that measure is now not much used.

$$
\begin{aligned}
& 1=2=4=8=252=1008=2016=8064
\end{aligned}
$$

Note.-The standard unit, or gallon of Liquid Measure, in the Cnited States, contains 231 cubic inches.

III. DRy measure.

124. Dry Measure is used in measuring all dry articles, such as grain, fruit, salt, coal, \&ce.

Table.

Table Reversed.

Scale.- The steps, or units of the scale, beginning with the lowest, are 2, 8, 4, and 36
Notes.-1. The standard bushel of the United States is the Winchester bushel of England. It is a circular measure, 181 inches in diameter and 8 inches deep, and contains $2150 \frac{2}{5}$ cubie inches, nearly.
2. A gallon, Dry Measure, contains $268 \frac{4}{5}$ cubic inches.

MA
D
 VI. UNITS OF WEIGHT.

I. AVOIRDUPOIS WEIGHT.

125. By this weight all articles are weighed, except gold, silver, jewels, and liquors.

Table.

III. APOTHECARIES' WEIGHT.
127. This weight is used by apothecaries and physicians in mixing their medicines. But medicines are generally sold, in the quantity, by avoirdupois weight.

Table Reversed.

Scale. The steps, or units of the scale, beginning with the lowest, are $16,16,25,4,4$ and 20.
Notes.-1. The standard Avoirdupois pound is the weight of 27.7015 cubic inches of distilled water.
2. By the old method of weighing, adopted from the English system, 112 pounds were reckoned for a hundredweight; but now, the laws of most of the States, as well as general usage, fix the liundredweight at 100 pounds.
3. A ton of coal at the mines, is reckoned at 2240 lbs ., but at the yards, at 2000 lbs .
II. TROY WEIGHT.
126. Gold, silver, jewels, and liquors, are weighed by Troy weight.

Table.

24 Grains ($g r$. \qquad make 1 P
20 Pennyweights

- 12 Ounces

$$
1 \text { Ounce, }
$$

Ounces

Table.

20 Grains (gr.)	. make 1 Scruple, .	marked	3.	
3 Scruples	.	.	1 Dram,	.
8 Drams	.	.	.	3.
12 Ounces	.	.	Ounce,	.
	.	.	3 Pound,	.

Table Reversed

Scale,-The steps, or units of the scale, beginning with the lowest, are $20,3,8$, and 12 .

Note.-The pound and ounce are the same as the pound and ounce in Troy weight.

D B BIBJIVI. UNITS OF TLME.

128. Thm is a part of duration. The time in which the

Scale.-The steps, or units of the scale, beginning with the lowest, are 24,20 , and 12 .
Note.-The standard Troy pound is the weight of 22.794377 cubic inches of distilled water. It is less than the pound Avoirdupois.
earth revolves on its axis is called a day. The time in which it goes round the sun is 365 days and 6 hours, nearly, and is called a solar year.

Time is divided into parts according to the following

Table.

Scale. - The steps, or units of the scale, beginning with the lowest, are $60,60,24,77,52$, and 12 .

Notes.-1. The years are numbered from the beginning of the Christian Era. The year is divided into 12 calendar months numbered from January; the days are numbered from the beginning of the month; hours from 12 at night and 12 at noon.
2. The length of the solar year is 365 da .5 hr .48 m .48 sec . nearly; but it is reckoned at 365 days 6 hours.
3. Since the length of the year is computed at 365 days and 6 hours, the odd 6 hours, by accumulating for 4 years, make 1 day, so that every fourth year contains 366 days. This is called Bissextile or Leap Year. The leap years are exactly divisible by 4: 1864, 1868, 1872, 1876 will be leap years.
4. The additional day, when it occurs, is added to the month of February, so that this month has 29 days in the leap year.

Thirty days hath September,
April, June, and November;
All the rest have thirty-one,
Excepting February, twanty-eight alone.
VIII. CIRCULAR MEASURE.
129. Circular Measure is used in estimating latitude and longitude, and also in measuring the motions of the heavenly bodies.
The circumference of every circle is supposed to be divided into 360 equal parts, called degrees. Each degree is divided into 60 minutes, and each minute into 60 seconds.

Soale.-The steps, or units of the scale, beginning at the lowest, are $60,60,15,30$, and 12 .
 the number of leaves into which a sheet of paper is folded.

A sheet folded in 8 leaves,
A sheet folded in 12 leaves,
A sheet folded in 16 leaves,
A sheet folded in 18 leaves,
A sheet folded in 24 leaves,
A sheet folded in 32 leaves,
an octavo, or 8 vo
a 12 mo .
a 16 mo .
an 18 mo .
a 24 mo .
a 32 mo .

Aliquot Parts.

130. An Alequot Part of a number, is any part that will divide the number without a remainder.

Aliquot Parts of One Dollar.

50 cents $=\frac{1}{2}$ of 1 dollar. $12 \frac{1}{2}$ cents $=\frac{1}{8}$ of 1 dollar. $33 \frac{1}{3}$ cents $=\frac{1}{3}$ of 1 dollar. 10 cents $=\frac{1}{10}$ of 1 dollar. 25 cents $=\frac{1}{4}$ of 1 dollar. $8 \frac{1}{3}$ cents $=\frac{1}{12}$ of 1 dollar. 20 cents $=\frac{1}{5}$ of 1 dollar. $\quad 6 \frac{1}{4}$ cents $=\frac{1}{16}$ of 1 dollar. $16 \frac{3}{4}$ cents $=\frac{1}{6}$ of 1 dollar. 5 cents $=\frac{1}{20}$ of 1 dollar.

Aliquot Parts of Time.

6 months $=\frac{1}{2}$ of 1 year. 15 days $=\frac{1}{2}$ of 1 month.
4 months $=\frac{1}{3}$ of 1 year. 10 days $=\frac{1}{3}$ of 1 month.
3 months $=\frac{1}{4}$ of 1 year. 6 days $=\frac{1}{5}$ of 1 month.
2 months $=\frac{1}{6}$ of 1 year. $\quad 5$ days $=\frac{1}{6}$ of 1 month.
1 month $=\frac{1}{12}$ of 1 year. 1 day $=\frac{1}{30}$ of 1 month.

MA DE NUEVUTEON

REDUCTION.

131. Reduction is the operation of changing the unit of a number, withont altering the value of the number.
132. Rediction Descending is the operation of changing the unit from one of a greater to one of a less value.
133. Reduction Ascending is the operation of changing the unit from one of a less to one of a greater value.

* Reduction Descending.

1. Reduce $£ 2516 \mathrm{~s}$, and 6 d . to pence.

Rule.

\qquad
I. Multiply the number in the highest denomination by the units of the scale which connect it with the nextlower, and add to the product the units of that denomination,
if any.
II. Proceed with this result, in the same manner, through all the denominations, until the required denomination is reached.

Examples

1. Reduce 3 bu. 3 pk. 2 qt. 2. In 5 da. 6 hr .30 min ., to pints.

OPERATION.

£25 16s. 6d
 12

Reduction Ascending.

1. Reduce 1392 inches to rods.

Rule.
oprration.
I. Divide the given number by the units of the scale which connect it with the denomination next higher, and set aside the remainder, if any: the units of the scale which
$12 \lcm{1392}$

$$
1 1 \longdiv { 7 6 }
$$

II. Divide the quotient by

$$
\begin{aligned}
& 3) \frac{116}{\left.5 \frac{1}{2}\right) 38} \mathrm{ft} . \\
& 11) 76 \mathrm{ft} .
\end{aligned}
$$

$$
6 . .5 \mathrm{yd} .
$$

Ans. 6 rd .5 yd .2 ft. connect it with the next higher denomination, and so on till the required denomination is reached. The last quotient, with the several remainders annexed, will be the ansizer.

Examples.

1. In 15204 seconds, how
2. In 37469 many degrees? \qquad many bushels?
3. In $12 \mathrm{cu} . \mathrm{yd} .15 \mathrm{cu} . \mathrm{ft}$. $12 \mathrm{cu} . \mathrm{in}$., how many cubic inches?

optration.		
$\begin{gathered} \text { ca. } \mathrm{yd} \\ 12 \end{gathered}$	cu. ft .	cu. in.
	15	12
27		
99		
24		
$339 \mathrm{cu} . \mathrm{ft}$.		
339×172	+12	$=585804$

2. In 585804 cu. in., how many cubic yards, \&c.?

OPERATION.
$1728 \lcm{585804}$ cu. in.
27) $\frac{339}{12} \ldots 12 \mathrm{cu} . \mathrm{in}$.
cu. yd. ou. ft. cu. in. Ans. $12 \quad 15 \quad 12$

Examples.

1. How many pounds are there in 8445 pence?
2. How many shillings are there in 49742 farthings?
3. In 87049 inches, how many rods?
4. In 4704609 feet, how many miles?
5. How many yards are there in 87408 inches?
6. Reduce 690492 square inches to square rods.
7. Reduce 870496 square feet to acres.
8. Reduce 588967 perches to square miles.
9. Reduce 57409 square feet to square chains.
10. In 678569 cubic inehes, how many cubic yards?
11. In 87496 cord feet, how many cords?
12. In 4521624 cubic inches, how many tons of hewn timber?

Proof.

134. The proof of Reduction, either Ascending or Descending, is made by reversing the operation.
135. Reduce 6874049 quarts to tuns.
136. In 387049 pints, how many bushels?
137. In 886604 quarts, how many bushels?
138. In 72411 bushels, how many chaldrons?
139. In 27416 drams, how many quarters?
140. In 47409 ounces, how many hundredweight?
141. Reduce 875604 ounces to tons.
142. Change 4704967109 pounds to tons.
143. In 41049 grains, Troy, how many ounces?
144. Reduce 94099 pennyweights to pounds.
145. Reduce 610476 grains, Apothecaries' weight, to lb
146. Reduce 45046 scruples, Apothecaries', to pounds.
147. Change 84049 drams, Apothecaries, to pounds,
148. Change 589405 grains, A pothecaries', to pounds.
149. How many hours are there in 654604 seconds?
150. How many days are there in 869504 minutes?
151. Change 3870469 seconds to months of 30 days.
152. Reduce 6549047 minutes to common years.
153. How many leap years in 8704926 hours?
154. How many common years in 974605 minutes?
155. How many months, of 31 days each, in 87049 minutes ?
156. How many degrees in 870493 seconds?
157. How many hour angles in 764904 minutes?
158. How many signs in 270493 minutes?
159. How many circumferences in 429072 minutes?
160. How many degrees are there in 9980 seconds?
161. How many cireumferences in 80493063 seconds?
162. What will be the cost of 37 cwt .2 qr .20 lb . of sugar, at $7 \frac{1}{2}$ cts. per 1 lb .?
163. A grocer has 16 cwt. 1 qr .13 lb . of sugar, and wishes to put it into bags, each containing $\tau \mathrm{lb}$, how many bags will he require?
164. In 3 yr. 161 da. 13 hr., how many minutes are there?
165. In 19 wk. 4 da., how many half-hours are there?
166. How many weeks has a man labored, who has not worked on Sundays, and been employed 4964 hours?
167. How many minutes has a man lived, whose age is 47 years, supposing 11 of them to have been leap years?
168. In 476949 perches, how many acres?
169. How many cords of wood are there in a pile containing 674969 cubic inches?
170. Reduce $47 \mathrm{cu}, \mathrm{yd} .15 \mathrm{cu} . \mathrm{ft} .162 \mathrm{cu} \mathrm{in}$, to cubic inches.
171. Reduce 45 ch .18 bu to pecks
172. How many more feet are there in 16 miles than in 14 mi .7 fur. 29 rd .?
173. How many pints are there in a cask of wine, containing 76 gallons?
174. How many gills are there in 17 hhd. 49 gal. 1 qt. ? 19. How many bottles, containing 6 giils each, can be filled from a cask of wine, containing 48 gal ?
175. How mach must be paid for 3 pi. 1 hhd. (47) gal. 3 qt . 1 pt , of wine at 34 cents per pint?
176. Reduce 7 fur. 39 rd .4 yd .1 ft .11 in . to inches.
177. In 74 wh. 6 da. 15 hr., Liow many seeonds are there? RAJDDE
178. In $11 \mathrm{~s} .14^{\circ} 49^{\prime \prime}$, how many seconds are there?
179. In a box of sugar, weighing 15 cwt. 1 qr. 16 lb . how many ounces are there?
180. If a person has walked 24 miles, how many inches
181. In 15 tum 1 pi. 1 hid. 61 gal., how many gills are there? 10 UNUN
182. How many grains in a bar of gold, whose weight is $2 \mathrm{lb}, 7$ oz. 14 pwt. 13 gr.?
183. What must be given for 145 ch .26 bu . of coal at 25 cents per bushel?
184. How mnch will be paid for the labor of 42 weeks,
allowing 6 days to the week, and 10 hours to the day, at the rate of $\$ 0.25$ per hour?
185. Reduce 17 tons to quarter pounds.
186. Reduce 9 weeks to minutes and to sixths of minutes.
187. How many ounces are there in 2 hogsheads of tobacco, each weighiug 14 cvt . 3 qr. 15 lb . ?
188. How many pints are there in 6 casks of wine, each containing 1 hhd. 39 gal .3 qt .1 pt.?

29. Reduce 56746896 drams, Avoirdupois, to tons.

30. What will be the cost of 37608 eggs at 9 cents
dozen? 31. If a ship has on board 1525 bales of
weighing 675 pounds, T32. If ine many tons has it?
reame If one book requires 350 sheets of paper, how many
reams would be required to print 850 copies?
31. How many yards of cloth are there in
and what is its value at $\$ 2.25$ per yard?
32. Reduce 265 yd .3 qr .1 na. 1 in, to inches.
33. Reduce 569646 inches to yards.
34. Change 476 ells French to inches.

37 . How many feet are there in a telegraphic wire that
reaches a distance of 256 mi .5 fur . 17 rd .?
38. How many inches from each other are two cities
that are 63 miles apart?
39. How many yards of cithes
39. How many yards of cloth at $\$ 1.75$ per yard, can be
bought for $\$ 47.50$?
40. How many pair of pantaloons, each requiring $2 \frac{1}{2} \frac{\mathrm{yd} .,}{\mathrm{L}} \mathrm{RAI}$

can be made from $37 \frac{1}{2}$ yd of eloth?

41. If a suit of clothes requires 4
many suits can be made from 4 yd .3 qr. of eloth, how
42. If the circumference of a
many times will it turn in going a 16 ft .3 in ,, how many times will it turn in going a distance of 36 miles?

ADDITION.

135. Addition of Denominate Nusbers is the operation of finding a the sum of two or more denominate numbers.
136. What is the sum of $\mathscr{£ 6} 8 \mathrm{~s}$. 9 d ., $\mathscr{L} 75 \mathrm{~s}$. 7 d ., and £3 15s. 10d.?

Rule.-I. Write the numbers to be added, so that units of the same name shall stand in the same column:

operation.			
\&	8	d.	
6	8	9	
7	5	7	
3	15	10	
17	10	2	

Examples.

DE BIP, IOTE (Bat 1 S

bu.		qt.	lb.	cz.	dr.	0		"
13	3	6	15	12	15	27	36	37
14	2	7	13	15	6	5	15	20
13	3	5	14	9	3	6	45	50

15. A mechanic worked on Monday, 14 hr .15 min .; on Tuesday, 12 hr .3 min ; on Wednesday, 12 hr .45 min .; on Thursday, 17 hr . 16 min.; on Friday, 16 hr .25 min ; on Saturday, 14 hr .35 min. : how much time did he work during the six days?
16. What amount of sugar in 5 boxes, weighing as fol lows: 1 st, 17 cwt . $3 \mathrm{gr}: 18 \mathrm{lb} . ; 20,12$ ewt. 1 qr. 17 lb. ; $3 \mathrm{~d}, 15 \mathrm{cwt} .2$ qr. $4 \mathrm{lb} . ; 4$ th, 9 ewt. 19 lb .; and 5 th, 13 cwt. 3 qr. 13 lb ?
17. What quantity of oats in a bin into which has been
 25 bu .1 pk .3 qt ; 17 bu ; 35 bu .1 pk .6 qt . ; and 27 bu. 1 pk. 5 qt.?
18. What quantity of cloth is in the following picces: $1 \mathrm{st}, 31 \mathrm{yd} .3 \mathrm{qr} .3 \mathrm{na}$. ; $2 \mathrm{~d}, 37 \mathrm{yd}$.1 qr ; 3 da , 42 yd .3 qr . 3 na. ; 4th, 32 yd. 2 qr. 2 na.; and 5 th., 35 yd. 12 qr. 3 na.?

ADDIIION.

19. What is the sum of 275 da .11 hr .50 min .30 sec .; $106 \mathrm{da} .13 \mathrm{hr} .40 \mathrm{~min} .40 \mathrm{sec} . ; 300 \mathrm{da} .18 \mathrm{hr} .18 \mathrm{~min}$. $25 \mathrm{sec} . ; 212$ da. $6 \mathrm{hr} . ; 65$ da. 30 min .30 sec .; and 1 da. 1 hr .1 min .?
20. A gentleman bought 4 pieces of land: the first contained 85 A .3 R .14 P .; the second, 62 A . I R. 15 P. ; the third, 14 A. 3 R. 13 P.; and the fourth, 25 A. 35 P.: how much land did he purchase?
21. A silver spoon weighs 13 pwt. 16 gr.; a knife, 18 pwt. 12 gr. ; a cup, 7 oz. 5 pwt. 10 gr. ; a napkin ring; 1 oz .10 pwt . ; a candlestick, $10 \mathrm{oz} .15 \mathrm{pwt} .20 \mathrm{gr}$. : what is the entire weight of these 5 articles?
22. A ship sails, on the 1 st day, 219 mi .6 fur. 32 rd .; the $2 \mathrm{~d}, 230 \mathrm{mi}$. 3 fur . $30 \mathrm{rd}$. ; on the $3 \mathrm{~d}, 196 \mathrm{mi} .5$ fur. $20 \mathrm{rd}$. ; on the fourth, 212 mi ; on the 5 th, 216 mi .7 fur. $27 \mathrm{rd}$. ; and on the 6th day, 225 mi .5 for. $29 \mathrm{rd}$. : how far did it sail in the 6 days?
23. A merchant received 6 casks of molasses, marked as follows : 1st, 1 hhd. 23 gal. 3 qt . ; 2d, 2 hhd. 43 gal. ; 3d, 49 gal. 3 qt. ; 4th, 2 hhd. 35 gal. 1 qt.; 5 th, 1 hhd. 51 gal. 2 qt. I pt. ; and 6 th, 2 hhd. 42 gal.: what quantity was received?
24. What is the value, at 6 cents per pound, of the following lots of sugar: 1st, 3 cwt .3 qr .3 lb ; 2d, 10 cwt . $1 \mathrm{qr} .10 \mathrm{lb} . ; 3 \mathrm{~d}, 14 \mathrm{ewt} .2 \mathrm{qr} .13 \mathrm{lb}$. ; 4th, 16 cwt 2 qr. 20 lb .?
25. A farmer raised from one field, 39 bu .3 pk .6 qt . of Wheat; from 2d, 45 bu .2 pk .3 qt ; from $3 \mathrm{~d}, 26 \mathrm{bu}$. $1 \mathrm{pk} .5 \mathrm{qt}$. ; from $4 \mathrm{th}, 35 \mathrm{bu} .3 \mathrm{pk} .5 \mathrm{qt}$. ; and from 5 th , $46 \mathrm{bu} .3 \mathrm{pk} .2 \mathrm{qt}$. : what was raised from all the fields?
26. A person offers $£ 495 \mathrm{11s}$. 6 d . for a house; the owner offers to sell it at an advance of $£ 269 \mathrm{~s}$. 9 d , on the amount offered: what price was demanded for the house ?

SUBTRACTION

136. Subtraction of Denominate Numbers is the operation of finding the difference between two denominate numbers.
137. What is the difference between 8 bu .2 pk .6 qt ., and 5 bo. 3 pk. 7 at.?

Rule.-I. Set down the less number
under the greater same same value in the same column.
II. Begin with the lowest denomination, and subtract as in simple numbers,

borrowing and carrying when necessary, according to the scale.

Proof. The same as in simple numbers.

Examples.

(7.)
mi. fur. rd. yd. f

From $161 \quad 1 \quad 19 \quad 2 \quad 1$
Take $\begin{array}{lllll}79 & 6 & 27 & 4 & 2\end{array}$
8.)

Tuns. pi. hid. gal. qt. pt. gills
$\begin{array}{lllllll}226 & 1 & 1 & 21 & 3 & 0\end{array}$
$\begin{array}{lllllll}179 & 1 & 1 & 39 & : 3 & 1 & 3\end{array}$
9. What is the difference of $£ 2114 \mathrm{~s} .6 \mathrm{~d}$. and 19s. 11d.?
10. How much is 161 lb .3 oz .11 pwt .16 gr . greater than 98 lb .7 oz .15 pwt. 21 gr ?
11. Find the difference of $120 \mathrm{~A}, 1$ R. $29 \mathrm{P} .16 \mathrm{sq} . \mathrm{yd}$. 6 sq. ft., and 65 A. 3 R. 39 P. 20 sq. yd. 8 sq. ft.?
12. If, from a piece of cloth, containing 32 yd .3 qr ., a tailor cuts 14 yd .3 qr. 2 na., how much will be left?
13. From a cask of wine containing 1 hhd .15 gal ., there were drawn 39 gal. 3 qt. 1 pt. : what quantity was left?
14. A mason was engaged to put up a wall of 37 yd . 2 ft .6 in . in length : after building 19 yd .2 ft .9 in., how much remained to be built?
15. A grocer took 9 cwt .1 qr .15 lb . from a box of sugar which contained 16 cwt .10 lb .: how much was left?
16. How much does 116 ch .16 bu .2 pk . exceed 89 ch . 29 bu. 3 pk.?
17. If $17 \mathrm{H} 11 \% 731916 \mathrm{gr}$. be taken from $21 \mathrm{Hb} 6 \%$ $331 \ni 5 \mathrm{gr}$., what will be left?
18. Subtract 29 lb .10 oz .14 pwt . from 51 lb .1 oz . (1) 10 pwt. 6 gr .
19. Subtraet 19 tons 17 ewt. 1 qr. 16 lb . from 21 tons 15 cwt.
20. If a quantity of flour, which cost $£ 12316 \mathrm{~s}$. 7d., be sold for $£ 1316 \mathrm{~s}$. 6d., what will be the gain?
21. A cask can hold 2 hhd. 15 gal. : 59 gal .1 qt .1 pt . have been put in it : how much more will it hold?
22. One piece of calico contains $36 \mathrm{yd} .1 \mathrm{qr} . ;$ another piece 32 yd .3 qr .2 na.: how much more in one piece than in the other?

MULTIPLICATION.

137. Mulifpication of Denominate Numbers is the operation of taking a cenominate number as many times as there are units in the multiplier.
 nominate number, and set the mulfiplier under the lowest denomination: II.-Multiply as in simple numbers, and in passing from one de-
 nomination to another divide by the set down the remainder, and care units of the scale, next product.

Examples

(1.)

(2.)

2
3
3
${ }^{\mathrm{bun}} \mathrm{p}_{6} \mathrm{pk}, \mathrm{g}$

(3.)

9. Multiply 27 bu. 3 pk .4 qt . 1 pt. by 7 .
10. What is the product of $5 \mathrm{HJ} 8 z 436$ Э 12 gr . mul tiplied by 9 ?
11. Multiply 7 wk .6 da. 9 hr .10 min . by 5 .
12. If 1 piece of calico costs \&I $8 \mathrm{~s} .6 \frac{1}{2} \mathrm{~d}$, what will 8 pieces cost?
13. If a pipe discharges 169 gal .3 qt . I pt. of water in 1 hour, how much will it discharge in 5 hours?
14. If each of 9 plots of ground contains 3 A .1 R 25 P., how much in all the plots ?
15. Multiply 6 bu. 3 pk. 2 qt. 1 pt. by $24=4 \times 6$.

Note.-When the multiplier is a composite number, multiply by the factors separately.
16. How much calico in 12 pieces, each of which contains 377 yd .3 qr .?
17. Ten men have been employed in a factory 14 da.

15 hr .30 min. how logg must one man be employed to
do an equal amount of work?
18. What is the product of £3 8s. 9d. 3far. by 14.
19. Multiply 16 da. 8 hr . 15 min . by 28.
20. How much water will 14 casks contain if one cask holds 31 gal. 2 qt. 1 pt.?
21. If, to make one book, 1 ream 6 quires and 14 sheets of paper are required, how much will be necessary for 100 books?
22. If a vessel can carry 175 tons 1 ewt. $3 \mathrm{qr}, 18 \mathrm{lb}$. of railroad iron, how much can 7 snch vessels carry?

(6.)

wk
$\begin{array}{lll}15 & 6 & 19\end{array}$
\qquad 6
7. Multiply 3 A. 5 R. 18 P. by 6.
8. How many gallons in 3 casks, each containing 30 gal.
23. A man divided his farm among 5 sons, giving to each 121 A .1 R .35 P . : how large was the farm?
24. If a man works at his trade 9 hr . 45 sec. per day, how much does he work in 2 weeks 4 days?
25. A horse ear makes 6 trips per day over a road 3 mi .1 fur .29 rd . in length : how far does it run?
26. How many bushels in 24 barrels of potatoes, if each barrel contains 1 bu. 2 pk .4 qt .?
27. If a bottle of cider contains 1 pt .3 gi., how much will 4 dozen bottles contain?
28. If a man can mow $1 \mathrm{~A}, 2 \mathrm{R} .39 \mathrm{P}$. of grass in 1 day, how much can he mow in 11 days?
29. If a hogshead of molasses contains 61 gal. 2 qt. 1 pt., how much will 14 hogsheads contain?
30. If a vessel sails 14 L .1 mi .6 fur. 17 rd . in 1 day, how far will it sail in the month of January?
31. If a person sleeps 7 hr . 15 min .15 sec. daily, how much will he sleep in 3 weeks?
32. How many yards of cloth in 36 pieces, if each piece contains 27 yd .3 qr.?
33. If 1 silver spoon weighs 1 oz .11 pwt. 12 gr., what
will be the weight of 1 dozen of the same kind?
34. The earth revolves $0^{\circ} 15^{\prime}$ of space in 1 minute of time: how far does it revolve in 1 hour?
35. If 1 silver cup weighs 9 oz .10 pwt .16 gr ., how much will 15 such cups weigh ?
36. The multiplier is 18 , and the multiplicand 7 bu. 2 pk. 5 qt., what is the product?
37. What is the weight of 9 boxes of sugar, if each weighs 17 ewt. 1 qr. 16 lb .?
38. What is the product of 56 A .3 R .21 P . by 6 ? 39. If 4 tons. 15 cwt .1 qr .10 lb . of hay will last a horse for one year, how much would 15 horses require?

DIVISION.

138. Division of Denominate Numbers is the operation of dividing a denominate number into equal parts; or, of finding how many times one denominate number is contained in another.
139. Divide 16 cwt. 3 qr. 21 lb . by 3 .

Rule.

I. Begin with the highest denomination, and divide as in simple numbers:
II. Reduce the remainder, if any, to the next lower denomination, and add in the units of that denomination, for a new dividend:
III. Proceed in the same manner, through all the denominations.

Proof.-Multiply the quotient by the divisor.
Notes.-1. If the divisor is a composite number, we may divide by the factors in succession, as in simple numbers.
2. Each quotient figure has the same unit as the dividend from which it was derived. $\circlearrowleft 1$

Examples.

$$
\begin{aligned}
& \text { (2.) } \\
& D E B_{4} \\
& \text { (1.) } \\
& 4 \begin{array}{c}
\begin{array}{c}
2 \\
8
\end{array} \\
\hline 12 \quad 19 \\
\hline 3
\end{array} \\
& \text { TE }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (4.) } \\
& \text { 6) } \begin{array}{ccc}
\mathrm{mi} & \text { fur. } & \text { rd. } \\
56 & 5 & 4 \\
\hline
\end{array} \\
& \begin{array}{r}
8 \\
3 \\
\hline 27 \\
\hline
\end{array} \\
& \text { (5.) } \\
& \text { (5. } \\
& \stackrel{\circ}{\circ} \\
& 28 \\
& \text { ewt. qr. ib. } \\
& \text { 7) } 20 \quad 2 \quad 15 \\
& \text {. } \\
& 45
\end{aligned}
$$

(6.)					(7.)								
	yr.	mo.	da	hr.		T.	c	wt.	qr.	Ib.	oz		dr.
5) 32	31	18	18)		3	2	16	4		8

$5 \begin{array}{r}\text { yr. mo. } \\ \hline 32 \quad 3 \quad 18 \quad 18 \\ \hline\end{array}$
8) $\begin{array}{r}53 \\ \hline\end{array} \quad 3 \quad 2 \quad 16 \quad 4 \quad 8$
3. Iz 7 loads of rood contain 8 C. 6 C. ft., what will load contain?
9. What will be the weight of 1 tierce of rice, if 7 iogees weigh 1 ion 19 ext. 2 qr .12 lb .?
10. If 4 equal packages of medicines weigh 13 加 $7 \% 23$ 194 gr , what will be the weight of each.
11. How far will a wan travel in 1 day, if in 5 days he travels 122 mi .1 fir. $23 \frac{3}{4} \mathrm{rd}$?
12. If 9 , equal fields contrin 111 A. 2 R. 25 P., how much is there in each field?
13. If 9 equal pieces of calico contain 267 yd .0 qr. 3 na., how much is there in each piece?
14. If a vessel running at an equal rate, sails 47 L .

1 mi . 7 fur. 8 rd., in 8 days, how far loes she sail in 1 day?
15. If a steamer moves at the rate or $15 \mathrm{mi}, 2$ fur. 40 rd . per hour, what is the rate per minute?
16. A cartman carried 117 cords 110 feet of wood in 100 loads: how much did he carry at each lead?
17 . If a quantity of provisions will last one
2 weeks 6 days, how long will it last 50 men?
18. A person wishes to perform a journey of 165 mi . in 16 hours : at what rate must he travel?
19. How many suits of clothes, each requiring 7 yd .

2 qr ., can be cut from a piece of cloth containing 87 yd . 2 qr.?
20. A ship has 468 T. 2 cwt. 2 qr. of railroad iron, and a wagon can carry 2 tons 3 cwt. 3 qu. : how many wagonloads in the entire cargo?

ANALYSIS.

139. An Analysis is an examination of the separate parts of a question, and of their connection with each other.

In analyzing, we reason from a given number to its unit, and then from this unit to the required number, or answer.

The processes are indicated by the relations which exist between the given and required numbers, and are pursued, step by step, independently of set rules.

CASE I.

140. To find the cost of several things, when the price of a single thing is an aliquot part of 1 dollar.
141. What is the cost of 75 yards of cotton cambric, at $33 \frac{1}{3}$ cents per yard?

Avalysis. $-33 \frac{1}{3}$ cents $=\frac{1}{3}$ of a dollar: 75 operation.
yards, at $\$ 1$ a yard, would cost $\$ 75$; at $\frac{1}{3}$ of
a dollar a yard, it would cost $\frac{1}{3}$ of $\$ 75$, which is $\$ 25$: Hence, 3) 75

Rule.

Take such a part of the number of things, as the price of a single thing is of $\$ 1$.

Examples.

1. What is the cost of 200 yards of cambric, at 25 cents a yard?
2. What will be the cost of 300 pencils, at $12 \frac{1}{2}$ cents each?
3. What will be the cost of 150 tops, at $6 \frac{1}{4}$ cents apiece?
4. What will 500 melons cost, at 5 cents apiece?
5. What will be the cost of 150 gallons of molasses, at $33 \frac{1}{3}$ cents per gallon?

(6.)					(7.)								
	yr.	mo.	da	hr.		T.	c	wt.	qr.	Ib.	oz		dr.
5) 32	31	18	18)		3	2	16	4		8

$5 \begin{array}{r}\text { yr. mo. } \\ \hline 32 \quad 3 \quad 18 \quad 18 \\ \hline\end{array}$
8) $\begin{array}{r}53 \\ \hline\end{array} \quad 3 \quad 2 \quad 16 \quad 4 \quad 8$
3. Iz 7 loads of rood contain 8 C. 6 C. ft., what will load contain?
9. What will be the weight of 1 tierce of rice, if 7 iogees weigh 1 ion 19 ext. 2 qr .12 lb .?
10. If 4 equal packages of medicines weigh 13 加 $7 \% 23$ 194 gr , what will be the weight of each.
11. How far will a wan travel in 1 day, if in 5 days he travels 122 mi .1 fir. $23 \frac{3}{4} \mathrm{rd}$?
12. If 9 , equal fields contrin 111 A. 2 R. 25 P., how much is there in each field?
13. If 9 equal pieces of calico contain 267 yd .0 qr. 3 na., how much is there in each piece?
14. If a vessel running at an equal rate, sails 47 L .

1 mi . 7 fur. 8 rd., in 8 days, how far loes she sail in 1 day?
15. If a steamer moves at the rate or $15 \mathrm{mi}, 2$ fur. 40 rd . per hour, what is the rate per minute?
16. A cartman carried 117 cords 110 feet of wood in 100 loads: how much did he carry at each lead?
17 . If a quantity of provisions will last one
2 weeks 6 days, how long will it last 50 men?
18. A person wishes to perform a journey of 165 mi . in 16 hours : at what rate must he travel?
19. How many suits of clothes, each requiring 7 yd .

2 qr ., can be cut from a piece of cloth containing 87 yd . 2 qr.?
20. A ship has 468 T. 2 cwt. 2 qr. of railroad iron, and a wagon can carry 2 tons 3 cwt. 3 qu. : how many wagonloads in the entire cargo?

ANALYSIS.

139. An Analysis is an examination of the separate parts of a question, and of their connection with each other.

In analyzing, we reason from a given number to its unit, and then from this unit to the required number, or answer.

The processes are indicated by the relations which exist between the given and required numbers, and are pursued, step by step, independently of set rules.

CASE I.

140. To find the cost of several things, when the price of a single thing is an aliquot part of 1 dollar.
141. What is the cost of 75 yards of cotton cambric, at $33 \frac{1}{3}$ cents per yard?

Avalysis. $-33 \frac{1}{3}$ cents $=\frac{1}{3}$ of a dollar: 75 operation.
yards, at $\$ 1$ a yard, would cost $\$ 75$; at $\frac{1}{3}$ of
a dollar a yard, it would cost $\frac{1}{3}$ of $\$ 75$, which is $\$ 25$: Hence, 3) 75

Rule.

Take such a part of the number of things, as the price of a single thing is of $\$ 1$.

Examples.

1. What is the cost of 200 yards of cambric, at 25 cents a yard?
2. What will be the cost of 300 pencils, at $12 \frac{1}{2}$ cents each?
3. What will be the cost of 150 tops, at $6 \frac{1}{4}$ cents apiece?
4. What will 500 melons cost, at 5 cents apiece?
5. What will be the cost of 150 gallons of molasses, at $33 \frac{1}{3}$ cents per gallon?

CASE II.
141. To find the cost, when the price of I, and the number of things are given.

1. What is the cost of 48 lemons, at 3 cents apiece?

Analxsis. - Since 1 lemon costs 3 cents, 48 lemons will cost 48 times 3 cents, or 3 times 48 cents, which is 144 cents: / Hence,

Rule.

ofebation.
$\$ 1.3$

Examples.

1. What will be the cost of 54704 bricks, at 50 cents per hundred?
2. What will 1347 feet of lumber cost, at $\$ 2.25$ per C ?
3. What will be the cost of 15758 feet of boards, at $\$ 10.62$ per M ?
4. What is the value of 57046 feet of lathing, at $\$ 7$ per M ?

5 . What will be the value of 560 chickens, at $\$ 33$ per C ?
6. What is the value of 4704 pounds of butter, at $\$ 23$ per hundred?
CASE IV.
143. To find the cost of articles sold by the ton of 2000 pounds, when the price of a ton is known.

1. What is the cost of 6528 pounds of hay, at $\$ 18.50$ per ton?

Rule.-Divide the price by 2, and
operation:
then find the cost of the quantity by
2) 18.50

Examples.

1. What will 57045 pounds of plaster cost, at $\$ 4.25$ ton? U
2. What is the cost of transportation of 87415 pounds of iron from Buffalo to New York, at $\$ 7$ per ton?
D- 3. What is the cost of 75049 pounds of coal, at $\$ 7.75$ per ton? 1 ?
3. What is the cost of transporting 785674 pounds of coal from Albany to Boston, at $\$ 2.70$ per ton?

$$
\text { CASE } V \text {. }
$$

144. When the number of things is known, and their cost, to find the price of 1 thing.
145. If 36 pounds of tea cost $\$ 52.20$, what is the price per pound?
Anairsis, -1 pound will cost one thirty-sixth as much as 36 OPERATION. pounds; one thirty-sixth of $\$ 52.20$ is \$1.45. Therefore, 1 pound will 36)5 $2.20(1.45$ is \$1.45.
cost $\$ 1.45$.

Rule,-Divide the entire cost
by the number of things.

Examples.

1. Divide 1884.625 into 25 equal parts.
2. A farmer purchased 758 sheep for $\$ 3750$: how much did he pay per head?
3. A merchant bought 30 bales of goods, for which he paid $\$ 2000$: what did they cost him per bale?
4. A drover paid $\$ 2500$ for 400 sheep: what must he sell them for apiece, that he may neither make nor lose?
CASE TI.
5. When the cost of a number of things is given, and the price of 1 , to find the number.
6. If I pay $\$ 6.50$ for a ton of coal, how much can I buy for $\$ 97.50$?
Avaitysis, - As many tons as $\$ 6.50$ is contained times in $\$ 97.50$, which is 15.
 Rule.-Divide the entire

cost by the cost of 1 thing. $1 \bigcirc$| 650 |
| ---: |
| 3250 |
| 3250 |

Examples.

1. If 1 acre of land costs $\$ 77.50$, how much can be bought for \$27125?
2. How many sheep will $\$ 396$ buy, at $\$ 4.12 \frac{1}{2}$ each?
3. At $\$ 4.25$ a yard, how much ctoth can be bought for $\$ 136$?

RATIO AND PROPORTION.

146. A Ratio is the quotient obtained by dividing one number by another.
147. The terms of a ratio are the divisor and dividend: hence, every ratio has two terms.
148. The divisor is called the antecedent.
149. The dividend is called the consequent.
150. The ratio of one number to another is generally expressed by a colon; thus, $3: 12$; and is read, 3 is to 12 , or 12 divided by 3 .
151. The terms of a ratio, taken together, are called a courler.

Examples.

1. What is the ratio of 2 feet to 8 feet?
2. What is the ratio of 4 yards to 12 yards?
3. What is the ratio of 6 to 18 ?
4. What is the ratio of 9 to 27 ?
5. What is the ratio of 12 to 48 ?
6. What is the ratio of 1 to 15 ?
7. What is the ratio of 10 to 100 ?
8. If the antecedent is 6 and the consequent 12 , what is the ratio?
9. If the antecedent is 9 , and the consequent 18 , what is the ratio?
10. If the consequent is 16 , and the antecedent 2 , what is the ratio?
11. If the consequent is 24 , and the antecedent 12 , what is the ratio?
12. If 36 pounds of tea cost $\$ 52.20$, what is the price per pound?
Anairsis, -1 pound will cost one thirty-sixth as much as 36 OPERATION. pounds; one thirty-sixth of $\$ 52.20$ is \$1.45. Therefore, 1 pound will 36)5 $2.20(1.45$ is \$1.45.
cost $\$ 1.45$.

Rule,-Divide the entire cost
by the number of things.

Examples.

1. Divide 1884.625 into 25 equal parts.
2. A farmer purchased 758 sheep for $\$ 3750$: how much did he pay per head?
3. A merchant bought 30 bales of goods, for which he paid $\$ 2000$: what did they cost him per bale?
4. A drover paid $\$ 2500$ for 400 sheep: what must he sell them for apiece, that he may neither make nor lose?
CASE TI.
5. When the cost of a number of things is given, and the price of 1 , to find the number.
6. If I pay $\$ 6.50$ for a ton of coal, how much can I buy for $\$ 97.50$?
Avaitysis, - As many tons as $\$ 6.50$ is contained times in $\$ 97.50$, which is 15.
 Rule.-Divide the entire

cost by the cost of 1 thing. $1 \bigcirc$| 650 |
| ---: |
| 3250 |
| 3250 |

Examples.

1. If 1 acre of land costs $\$ 77.50$, how much can be bought for \$27125?
2. How many sheep will $\$ 396$ buy, at $\$ 4.12 \frac{1}{2}$ each?
3. At $\$ 4.25$ a yard, how much ctoth can be bought for $\$ 136$?

RATIO AND PROPORTION.

146. A Ratio is the quotient obtained by dividing one number by another.
147. The terms of a ratio are the divisor and dividend: hence, every ratio has two terms.
148. The divisor is called the antecedent.
149. The dividend is called the consequent.
150. The ratio of one number to another is generally expressed by a colon; thus, $3: 12$; and is read, 3 is to 12 , or 12 divided by 3 .
151. The terms of a ratio, taken together, are called a courler.

Examples.

1. What is the ratio of 2 feet to 8 feet?
2. What is the ratio of 4 yards to 12 yards?
3. What is the ratio of 6 to 18 ?
4. What is the ratio of 9 to 27 ?
5. What is the ratio of 12 to 48 ?
6. What is the ratio of 1 to 15 ?
7. What is the ratio of 10 to 100 ?
8. If the antecedent is 6 and the consequent 12 , what is the ratio?
9. If the antecedent is 9 , and the consequent 18 , what is the ratio?
10. If the consequent is 16 , and the antecedent 2 , what is the ratio?
11. If the consequent is 24 , and the antecedent 12 , what is the ratio?

RULE OF THREE.

PROPORTION.

152. A Propormion is the comparison of the terms of two equal ratios

Thus, the ratio of $4: 8$, is 2 ; and the ratio of $6: 12$, is 2 ; and we compare the terms by writing a double colon between the couplets; thus,

which is read, 4 is to 8 , as 6 to 12. Hence, every proportion has tuo couplets and four terms.
153. The first and fourth terms of a proportion are Called the extremes: the second and third terms, the means. Thus, in the proportion, $\begin{aligned} 4: 8: 5: 12,\end{aligned}$
4 and 12 are the extremes, and 8 and 6 the means.
154. In any proportion, the product of the means is equal to the prodnct of the extremes: Hence,

1st. Either extreme is equal to the product of the means divided by the other extreme; and
2d. Wither mean is equal to the product of the extremes divided by the other mean.

Examples.

1. The terms of the first couplet are 6 and 8 , and the antecedent of the second couplet, 4: what is the consequent?
2. The 1 st, 2 d , and 3 d terms of a proportion, are 4,6 , and 12 : what is the fourth term?
3. The 1st, 3 d , and 4 th terms of a proportion, are 6,18 and 24: what is the secoud term?

RULEOFTHREE.

155. The Rule of Three shows us how to find, from three given numbers, a fourth, to which one of the given numbers shall have the same ratio as exists between the other two
156. If 1 barrel of flour costs $\$ 7$, what will 8 barrels cost? Analysis,-It is plain that $\begin{aligned} & 8 \text { barrels will cost } 8 \text { times as bsr. } \\ & \text { mach as } 1 \text { barrel. Hence, } \\ & 1\end{aligned}: \begin{array}{ccc}8 & : & 7\end{array} 5^{8} 6$ mach as 1 barrel. Hence, $\quad 1: 8:: 7: 56$
157. If 5 yards of cloth cost $\$ 20$, what will 15 yards cost, at the same rate?
Avalysis. - The quantity,
yards, is to the quantity, $5: 15:: 20: 60$
15 yards, as $\$ 20$, the cost of
5 yards, is to $\$ 60$, the cost of

15 yards; and, generally,
 D1 B1 Quantity : quantity : cost : cost.

Notes.-1. The unit is always the same in both terms of the first couplet: in the first example, it is 1 barrel ; in the second, it is 1 yard.
2. The units of both terms of the second couplet are also always alike: in the first example, each unit is 1 dollar, and in the second example it is also 1 dollar.
3. Only one class of cases is considered

Rule.

I. Write that term which is of the same unit value with the answer sought, in the third place; the term mentioned in connection with it, in the first place; and the remaining term, in the third place:
II. Then multiply the second and third terms together, and divide their product by the first term: the quotient will be the answer. RITATIS
Examples.

1. If 5 pounds of raisins cost 80 cents, how many cents will 20 pounds cost?
[Analysis.-Since the answer
is to be cents, 80 cents aperation. written in the 3d place: then
5 (mentioned in connection with
80) is written in the first place, and 20 , the remaining number, in the second place.

Writing the numbers thas, is called the statement
2. If James can walk 12 miles in 4 hours, how-far can he walk in 20 hours?
3. If 9 hats cost $\$ 36$, how much will 40 hats cost?
4. If a family consumes 100 pounds of meat in 20 days, how much would they consume in 3 months, of 30 days each?
5. If 30 yards of cloth cost $\$ 150$, what will be the cost of 96 yards? R
6. If a flock of 40 sheep yield 240 pounds of wool, how much would be produced by a flock of 160 ?
7. If 20 gallons of molasses cost $\$ 8$, what will be the cost of 135 gallons?
8. If a man travels at the rate of 32 miles in 4 hours, how far will he travel in 16 hours?
9. If 20 yards of tape cost 75 cents, what will be the cost of 160 yards?
10. What is the cost of 8 bushels of coal, if 9 bushels cost $\$ 2.25$?
11. If 2 pipes will fill a cistern of 126 hogsheads in 5 hours, how many hogsheads would 9 pipes fill in the same time?
12. If 12 men consume 24 barrels of flour in 1 year, how much will 60 men cousume?
13. If 27 pounds of butter will buy 18 pounds of sugar how much butter will 36 pounds of sugar buy?
14. If 4 calves are worth 37 dollars, what will be the cost of 44 calves?
15. What will be the cost of 47 yards of cloth, if onequarter of a yard costs $\$ 2.40$.
16. If 24 yards of cloth cost $\$ 67.25$, what will be the cost of 72 yards?
17. If 2000 feet of boards cost $\$ 65$, what will be the cost of 5000 feet?
18. To what number has 6 the same ratio, as 5 has to 20?
19. To what number of yards of cloth has 6 yards the same ratio, as exists between the numbers 5 and 30 ? 20. What will 150 bushels of wheat cost, if 4 bushels and 3 peeks cost $\$ 14$.
ashels
21. If a man travels 25 miles a day, and rests every Sunday, how far will he travel in the month of July, when the month begins on Sunday?
22. If 24 men can be boarded 1 week for $\$ 79.16$, what will it cost to board 3 men and 6 women the same time, the women being boarded at half the price of the men?
23. If 7 yards of cloth cost 21 dollars, what will be the cost of 5 pieces, each containing 13 yards?
24. If 16 lb . of beef cost two dollars, what will 30 pounds cost?
25. If 9 bushels of wheat are of the same value as 3 yards of cloth worth 4 dollars a yard, what will be the cost of 360 bushels? O
26. If 9 sheep cost $\$ 27$, and a lamb is worth one-third as much as a sheep, what will be the cost of 54 lambs? 27. If 1500 men require 45000 rations of food for a month, how many rations will a garrison of 2400 men require?
28. What is the cost of 27 yards of velvet, if fiveeighths of a yard cost 5 dollars?
29. If I travel at the rate of 58 miles in two hours, in a railroad car, how far will I travel in 36 hours?
30. What will be the cost of 60 yards of broadcloth, at the rate of $\$ 29$ for 15 yards?
31. If 39 horses consume 400 bushels of oats in a month, how many bushels would serve 195 horses the same time?
32. If a man travels at the rate of 125 miles in 7 days, in how many days will he travel 1125 miles?
33. If 140 bushels of oats cost $\$ 56$, what will be the cost of 900 bushels?
34. What distance will a man travel in a railroad car in 26 hours, if in 7 hours he travels 287 miles?
35. If a man travels at the rate of 420 miles in 12 days, how far will he travel in a leap year, supposing him to rest on Sundays?
36. If 1 vest costs $\$ 2.50,1$ pair of pantaloons twice as much as a vest, and 3 coats 8 times as much as a pair of pantaloons, what will be the cost of 9 coats?

Promiscuous Questions.

1. If 569 be subtracted from a certain number, the remainder will be 479 : what is the number?
2. If 461 be added to a certain number, the sum will be 709: what is the number?
3. A gentleman, by mistake, paid $\$ 6714.75$, which was $\$ 126.87 \frac{1}{2}$ more than he owed: what was the debt?
4. A merchant bought a quantity of flour for $\$ 672$: he paid $\$ 60$ for freight and cartage, and $\$ 27$ for storage ; he then sold the flomr, and gained $\$ 150$: how much did he receive for it?
5. A father was born in 1809; his oldest son, who was 18 years older than the youngest, was born in 1835: how old was the father when the youngest son was born?
6. A merchant bought 225 barrels of flour, at $\$ 6$ per barrel; he sold 75 barrels at $\$ 6.50$ per barrel, 112 barrels at $\$ 6.81 \frac{1}{4}$ per barrel, and the remainder at $\$ 7$ per barrel: what did he gain?
7. If a person has a yearly salary of $\$ 1625$, and spends $\$ 965$; in what time can he pay, by annual instalments, for a house, valued at $\$ 3960$?
8. If a father earns $\$ 12$ per week, and his son $\$ 5$ per week, how long a time must they work, that they may earn, together, \$306?
9. If a person receives $\$ 1.75$ per day, in how many weeks, of 6 days each, would he have received $\$ 966.00$?
10. If a person receives a yearly salary of $\$ 1903.20$, what are his daily wages, allowing 52 weeks to the year, and 6 days to the week?
11. A merchant bought 25 hogsheads of sugar, at $\$ 149$ apiece; he paid $\$ 2$ each for storage, $\$ 1.50$ a piece for cartage, and $\$ 1$ each for other expenses; he sold the sugar for $\$ 4000$: how much was gained?
12. Jolin earns $\$ 15$ per week, Thomas earns $\$ 17$, and Samuel $\$ 18$: in what time can they together earn $\$ 750$?
13. How many days were there between January 1st. and July 16 th, both inclusive?
14. A farmer bought a horse and cow for $\$ 165.50$; he paid $\$ 36$ more for the horse than for the cow: what did he pay for each?
15. The divisor is 475 , and the quotient is 362 : what is the dividend? VERITATIS
16. The divisor is 650 , the quotient is 437 , and the remainder is 212 ; what is the dividend?
17. A scholar in performing an example, obtained a quotient 512; but before dividing, he ought to have multiplied the dividend by 24 , wlich he omitted: what was the true quotient?
18. Find the amount of the following bill:

$$
\begin{aligned}
& \text { Mi. James Richmond Brooklinn, March 20th, } 1863 . \\
& \text { Bought of Samuel Jones: }
\end{aligned}
$$

12 lb . of butter, at 24 cents per lb .
28 lb . of sugar, at $9 \frac{1}{2}$ cents per lb .
7 lb . of cheese, at 11 cents per lb .
$\frac{1}{2} \mathrm{lb}$. of tea, at 33 cents per lb .
2 lb . of coffee, at 32 cents per 1 bb .
3 gal. of syrup, at 56 cents per gal.

> Amount . \$
\qquad

Received Payment.

19. At the rate of $\$ 1620$ for 12 horses, what would be the cost of 475 horses?
20. How many pounds of tea, at 95 cents per pound, can be bought for 15 barrels of flour, at $\$ 6.25$ per barrel?
21. What is the cost of 720 egrss, at 18 cents per
22. What is the cost of 24648 steel pens, at the rate of 45 cents per gross?
23. How many barrels of flour would be required to fill 75 bags, each bag to contain 25 lb. ?
24. The grounds of a country residence have a front of 250 feet, which is to be fenced with panels 10 feet long : how many posts are required?
25. Suppose that, in the before-mentioned fence, 31 posts were to be used, what would be the length of a panel?
26. How many posts would be required to fence the 4 sides of a lot, that is 260 feet long and 180 feet wide, if each panel is 10 feet long?
27. A gentleman bought an equal number of oranges and lemons for $\$ 1.50$; he paid 3 cents apiece for oranges, and two cents for lemons : how many of each kind did he buy?
28. A manufacturer employed an equal number of men and boys ; each man received $\$ 10$ per week, and each boy $\$ 4$; and the weekly wages of men and boys amounted to \$168: how many of each class were employed?
29. What is the greatest common divisor of 1728 and 276?
30. What is the largest number that will exactly divile, at the same time, 576 and 1016 ?
31. What is the greatest common divisor of 296 and
1760 ? 1760 ?
32. A drover has two flocks of sheep-one containing 275 head, and the other 475 head; he wished to divide eaeh flock into an exact number of smaller flocks of the same size, so as to have as few flocks as possible: what must be the number in each flock?
33. What will be the cost of 8 lb . of tea, at 75 cents per half-pound?
34. How many eighths of a dollar are there in $\$ 9 \frac{3}{8}$?
35. How many sixteenths are there in the sum of 7 and $9 \frac{5}{18}$?
36. A gentleman wishes to change a double-eagle for quarter-dollars : how many should he receive?
37. A person has 125 quarter-dollars: how many dollars has he?
38. In $\frac{5967}{16}$ of a mile, how many miles are there?
39. Change $\frac{144}{1250}$ to an equivalent fraction, in its lowest terms.
40. What divisor will reduce $\frac{75}{180}$ to its lowest terms?
41. What fraction, in its lowest terms, is equal to $\frac{144}{1728}$?
42. A merchant owning $\frac{7}{8}$ of a vessel, sold $\frac{1}{5}$ of his share to the captain: what part of the vessel did the captain buy? 43. If $\frac{1}{16}$ of a vessel was sold for $\$ 4500$, what was the value of the vessel?
43. How mueh is $\frac{3}{5}$ of $\$ 56915$?
44. If a ship is valued at $\$ 69475$, what is the value of $\frac{3}{16}$?
45. Change $\frac{2}{3}, \frac{4}{5}$, and $\frac{5}{6}$ into equivalent fractions, that
ve a like denominator. have a like denominator.
46. Show which of the two fractions, $\frac{7}{9}$ or $\frac{8}{11}$, is the larger.
47. A fortune was thens divided: $\frac{1}{3}$ of it to a daughter; $\frac{1}{4}$ of it to a son; $\frac{1}{3}$ of it to the widow, and the remainder to benevolent institutions: what part of it did the institutions receive?
48. What is that number, from which, if you take $\frac{1}{1} \frac{1}{2}$,
the remainder will be $\frac{5}{6}$? pair of gloves, and had $\$ 1 \frac{2}{5}$ remaining: how much had he at first?
49. How much must be taken from $\frac{5}{6}$, that the remainder may be z ?
50. If a mechanic receive $\$ 1 \frac{7}{8}$ per day, and spend $\$ 12$, how much will he save in 9 days?
51. A person, having $\$ T_{4}^{3}$, spent $\frac{2}{5}$ of it for a pair of shoes, and $\$ 2 \frac{1}{5}$ for a hat: what had he left?
52. A person bought 12 lb . of butter, at $\$ \frac{6}{25}$ per lb . and gave, in payment, a $\$ 3$ bill : how much change did he receive?
53. What is the cost of 75 eggs, at 15 cents per dozen?
54. By what must $4 \frac{1}{3}$ be increased, that the result may be $6 \frac{1}{2}$?
55. A merchant offers to sell me a hogshead of sugar, containing 1675 lb ., for $\$ 100.50$: at this rate, what is the value of 7 lb .?
56. If $9 \frac{1}{8}$ yards of cloth cost $\$ 16 \frac{3}{4}$, what will be the cost of $15 \frac{1}{4} \mathrm{yd}$. at the same rate?
57. If $\frac{7}{8} \mathrm{yd}$. of cloth cost $\$.3 \frac{1}{2}$, how much cloth can be purchased for $\$ 3$?
58. If $\frac{7}{9}$ hogshead of wine cost $\$ 147$, how many gallons can be bought for $\$ 62 \frac{4}{5}$?
59. How much must be paid for $\frac{15}{16}$ cord of wood, at the rate of $\$ 6 \frac{1}{2}$ per cord?
60. If 25 bbl . of flow, valued at $\$ 5 \frac{3}{4}$ per bbl., be given for 24 cords of hickory, what is the value of 1 cord?
61. If a laborer receives $\$ 9 \frac{1}{4}$ per week, and spends $\$ 7 \frac{3}{5}$, how much will he save in 6.5 weeks?
62. What will be the cost of paving 314.75 yd . of D (54 . What will be the at the rate of $\$ 2.05$ per running yard?
63. A gentleman having a farm of 242 acres, retains 150 acres, and sells the remainder at $\$ 96.25$ per acre: what did he receive for the acres sold?
64. A gentleman expends $\$ 15423$ in purchasing a farm, at the rate of $\$ 145.50$ per acre: how many acres did he buy?
65. What will be the cost of 5645 feet of lumber, at the rate of $\$ 3.25$ per 100 feet?
66. How much must be paid for $\$ 12650$ feet of lumber, at the rate of $\$ 2.87 \frac{1}{2}$ per 100 feet?
67. If a barrel holds 3 bushels of potatoes, how many barrels can be bought for $\$ 176.2$, at the rate of $\$.62 \frac{1}{2}$ per busbel?
68. If a person is 36 years of age, how many seconds has he lived?
69. How many more minutes has a person lived, who is 59 years old, than one who is 47 years old?
70. Suppose a man to sleep exactly 6 hours every day, how many weeks is passed in slecp, in a common year? 77. 73. A beam, after being squared, is 15 inches by 15 incles, and 56 feet long: what length of plank, 3 inehes thick, can be cat from the beam, if nothing is lost in sawing?
I4. What will be the cost of 4 pieces of cloth, each containing 47 yd . 3 qr. at $\$.56 \frac{1}{4}$ per quarter ?
71. If 7 Ab . of sugar cost 91 cents, what must be paid for 1 cwt .3 qr . 15 ll . at the same rate?
72. How much sugar can be bought for $\$ 10$, if 7 lb . cost 84 cents?
73. If 3 cwt. 2 qT, 20 lb . of sugar cost $\$ 40.70$, what is the cost of one pound?
74. If a single rail, of a railroad, be 9 feet in length, how many rails would be required for a road, whose length is 12 mi .5 fur .3 rd .4 yd ?
75. The circumferenee of a wheel is 14 ft .9 in .: how many times will it turn in going a distance of 16 miles?
76. A piece of muslin was found to be 37 yd .1 qr. 3 na. long; after being wet, it was found to be 36 yd . 3 q. 1 na. long : how much had it shrunk ?

A NSWERS.

67. What will be the cost of 5645 feet of lumber, at the rate of $\$ 3.25$ per 100 feet?
68. How much must be paid for $\$ 12650$ feet of lumber, at the rate of $\$ 2.87 \frac{1}{2}$ per 100 feet?
69. If a barrel holds 3 bushels of potatoes, how many barrels can be bought for $\$ 176.2$, at the rate of $\$.62 \frac{1}{2}$ per busbel?
70. If a person is 36 years of age, how many seconds has he lived?
71. How many more minutes has a person lived, who is 59 years old, than one who is 47 years old?
572. Suppose a man to sleep exactly 6 hours every day, how many weeks is passed in slecp, in a common year? 77. 73. A beam, after being squared, is 15 inches by 15 incles, and 56 feet long: what length of plank, 3 inehes thick, can be cat from the beam, if nothing is lost in sawing?
I4. What will be the cost of 4 pieces of cloth, each containing 47 yd . 3 qr. at $\$.56 \frac{1}{4}$ per quarter ?
75. If 7 Ab . of sugar cost 91 cents, what must be paid for 1 cwt .3 qr . 15 ll . at the same rate?
76. How much sugar can be bought for $\$ 10$, if 7 lb . cost 84 cents?
77. If 3 cwt. 2 qT, 20 lb . of sugar cost $\$ 40.70$, what is the cost of one pound?
78. If a single rail, of a railroad, be 9 feet in length, how many rails would be required for a road, whose length is 12 mi .5 fur .3 rd .4 yd ?
79. The circumferenee of a wheel is 14 ft .9 in .: how many times will it turn in going a distance of 16 miles?
80. A piece of muslin was found to be 37 yd .1 qr. 3 na. long; after being wet, it was found to be 36 yd . 3 q. 1 na. long : how much had it shrunk ?

A NSWERS.

ANSWERS.

38. || 24 | 8999991 || 25 | 32103576 || $26 \mid 412848$
38. || $27|525184||28| 3934975$ || 29 | 113580
38. || 30 | 12384 || 31 | 128445 || 32 | 1050 || 33 | 1024
38. || 34 | 26313 || 35 | 157605480 || $40 .||4| 12972$
40. || 5 | 161028 || $6|1284304||7| 146148||8| 1564175$
36. || 1 | 18 || $2 \mid 40$ || $3|42||4| 24||5| 72||6| 20$ 36. || T| 24 || $8 \mid$ र $63|||9| 56|| 10|135||11| 28$
36. || 12 | 72 || 13 | 60 || $14|12||15| 42||16| 45$ 38. || 5 | $90294||6| 212891||7| 196832||8| 37773 \mathrm{C}$ 38. || 9 | 732900 || 10 | 7763368 || 11 | 7874181
29. || 12 | 103 || $13|1||14| 108||15| 360||16| 120$ 29. || $17|331||18| 104||19| 6102||20| 8210||21| 101$ 29. || 22 | $7001||30 .||1| 4937|| 2| 2145||3| 13662$
 30.|| $8|9999||9| 12962||10| 22285|||11| 60204$ 30. || 12 | $25943||13| 832||14| 94967||15| 369547$ 30. || 16 | $819900^{5 R}| ||17| 888| ||18| 809| | 19 \mid 6868$ 30.|| 20 | $6945||21| 671483||22| 2925579||23| 9607861$ 30. || $24|474046||25| 450158||26| 126301||27| 89001$ 30. || 28 | $6606661||29| 89031| \mid 31$. || $1|2475||2| 99556$ 31. || $3|595596||4| 9999 \| 5|2165558 /||6| 8|| 7 \mid 35$ 31. || $8|652||9| 746||10| 658||11| 687||12| 2505$ 31. || $13|2782 \| 14| 1786||15| 45||16| 283||17| 1801$ 31. || 18 | 86 || 32.|| $1|38||2| 42||3| 186||4| 22$ 32. || 5 | $3061||6| 72||7| 19553068||8| 643||9| 236$
32. || $10|146 \| 11| 37||33 .||12| 18|| 13| 26||14| 100$ 33.|| 15 | $4271||16| 2999813||17| 998994||18| 5999795$ 33. || 19 | $519||20| 1204||21| 55||22| 4000||23| 8642$
40. || $9 \mid 1523808$ || $10 \mid 32543875$ || 11 | 75132634
40. || 12 | 54584008 || $13|46550590 \||4| 117571625$
40. || 15 | 15893814 || 16 | 13381368 || $17 \mid 38109392$
40. || 18 | 631747382 || $19|2715093675||20| 353744824$
40.|| 21 | $9685689325||22| 160190606212| \mid 41$. || $23 \mid$
41. || $2745980776||24| 12350043948$ || 25 | 283695552

| $41 .\|26\| 5892180\| \|$ | 27 | 19413388 | $\|\mid$ | 28 | 197872 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 41. || 29 | $549032047252||30| 2264620||31| 27777750$

41. || 32 | 1568700 || 33 | 1018081 ||| 34 | 1256036
42. || 35 | $140955000 \| 36|60401664286588||42 .||2| 9000$ 42. || $3|298655||4| 216180||5| 429030||6| 1106560$ 42. || $7 \mid 1502720$ || 8 | 709450 || 9 | 2724120 43. || $1|27560 ; 275600||2| 5680000||3| 76904300000$ 43. || $4 \mid 40630 ; 406300$ || 6 |. $3700600 ; 37006000$
43. || T| $5704680 ; 57046800 ; 570468000 ; 5704680000$
44. || 1 | 135000 || $2|4824000 \| 3| 681800000||4| 2070000$

| 43. \|| $8 \mid 6250000$ | $\\|$ | 9 | 21049000 | $\|\mid$ | 10 | 20881000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

44. || $1 / 207| | 2|3000||3| 3920| | 4|19355||5| 31360$

 44 || 14 | $138600|\mid 15$ | 209250$| \mid 15$.|| 1 [495 || $2 \mid 58890$ 45. || 3 | $9625||4| 27456||5| 43||6| 2250||7| 824$
 46. || 12 | 855 || 13 | $5760||14| 6||15| 1385||16| 42250$ 46. || 17 | $\left.4950\left|\left|52 .\left||4| 4790 \frac{3}{6} \| 5\right| 13925 \frac{1}{7}\right|\right| 6 \right\rvert\, 93384 \frac{4}{9}$

- 52. || $7 \left\lvert\, 64 \frac{1}{2}\right.$ || 8 | 2464 || 9 | $9950 \frac{4}{8}\left|\left||10| 107936 \frac{1}{6}\right.\right.$

 \begin{tabular}{l|l|l|l||l|l}
\hline $52 .\left||14| 1677683 \frac{2}{6}\right.$ \& $|\mid$ \& 15 \& 8217710 \& $|\mid$ \& 16

 $45005277 \frac{1}{2}$

\hline $52 . \mid 17$ \& $1641071 \frac{8}{9}$ \& $|\mid$ \& 18 \& $9875011 \frac{3}{4}$ \& $|\mid$ \& 19

$| 4174450$ 52. \| $20\left|2786719 \frac{1}{7} \| 22\right| 3207800 \frac{4}{5}|||22| 91001100| \perp \cap N A$

\hline $52 .| |$ \& $23 \left\lvert\, 4667333 \frac{7}{9}\right.$ \& $|\mid$ \& 24 \& 2750275 \& $|\mid$

\hline
\end{tabular} 52. || $26|47000047||27| 7087619 \frac{6}{8}\left|\left||~ 28| 9814994 \frac{2}{2}\right.\right.$ 52. || 29 | $15698094 \frac{3}{5}$ ||| $30 \left\lvert\, 7617484 \frac{1}{6}\right.$ || $31 \left\lvert\, 12488088 \frac{4}{8}\right.$ 52. || $32|10219999||1| 3||2| 4||3| 8||53 .||4| 35$ 53. || 5 | 66 || $6|1416||7| 96||8| 121||9| 8||10| 144$ 53. || 11 | 168 || 12 | $6||13| 142||14| 44||15| 1202$

53. || 16 | 2616 || $17\left|\begin{array}{l|l|l||l|l} & 17 & 18 & 437 & \mid 19\end{array}\right| 749$ $56 .\left||4| 58 \frac{5}{15}\left\|\left.5\left|594 \frac{2}{16} \| 6\right| 44720| | 7 \right\rvert\, 63645 \frac{3}{15}\right.\right.$ | $56 .\| \|$ | 8 | $25242 \frac{6}{19}$ | $\|\mid$ | 9 | $15575 \frac{9}{21}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |$\left||10| 4978 \frac{1}{14}\right.$

 56. || $14\left|15403 \frac{42}{627}\left\|15\left|6571 \frac{25}{201} \||6| 13767 \frac{83}{156}\right.\right.\right.$ 56. || 17 | $6199 \frac{374}{544}\left||18| 752795 \frac{14}{119}\right|\left||19| 50381 \frac{18}{8}\right.$
 56. || $23\left|479196 \frac{26}{41}\right||24| 39377 \frac{204}{245}\left|\left||25| 128259 \frac{92}{286}\right.\right.$ 56. || 26 | $1218698 \frac{94}{384} \| 27\left|405096 \frac{684}{1352}\right||28| 2270081 \frac{2635}{3045}$
 56. || 32 | $12008 \frac{1347}{5943}\left||33| 21776 \frac{1182}{3742} \| 57\right.$. || 1$| 266$ 57. || 2 | $315||3| 402||4| 1935||5| 774||6| 12864$
 $57 .\left||12| 42986 \frac{19}{21}\right||13| 8791 \frac{12}{35}| ||14| 91436 \frac{20}{81} 1$
 57. || $18\left|263321 \frac{8}{36}\left\|19\left|4709068^{\frac{2}{3} 2}\right|\left|58 . \||1| 674 \frac{7}{10}\right.\right.\right.$ $58 .\left\|2\left|2704 \frac{60}{100}\left\|\left|=|927 \| 4| 704_{1003}^{9000}\right||5| 239 \frac{4704}{10000}\right.\right.\right.$ 58. $\left.\left\|6\left|97 \frac{469}{1000}\right||7| 96 \frac{7000}{10000}\right\||8| 490_{1}^{4000} \frac{400}{1000}| | 9 \right\rvert\, 6972_{1000}^{4}$ 58. || $10\left|4970 \frac{906}{1000} \|\left|\left|59 .\left|\left|1 / 28087 \frac{14}{20}\right|\right| 2\right| 34673781 \frac{156}{200}\right.\right.$ 59. || $3\left|1162 \frac{636}{5000}\left\|4\left|7 \frac{20275 \|}{27000}\left\|5\left|11 \frac{1292}{6400} \| 6\right| 8005 \frac{39300}{125000}\right.\right.\right.\right.$ $59 .||1| 150||2| 507| | 3|29||4| 615| | 5|36||6| 124$ 59. || $7|191||8| 167\left||9| 18 \frac{152}{216}\right||10| 4||60 .||11| 31$ 60. || $12|32||13| 22\left||14| 144_{26}^{6} \| 15\right| 49||16| 720$

61. || $1|24||2| 11000||3| 184||4|$ he loses 26 dollars
61. || $5|12||6| 60||7| 504||8| 11||9| 13||10| 7 \mid 1090$
$61 .||11| 53\|62 .||12| 40 \||3| 436||14| 6124$
62. || $15|40||16| F 17|||17| 437|| 18|73||19| 174$
62. || $20 \mid 20$ years || $21|314||22| 13570 \||64 .||2| 72$
64. || 3 | $25 \frac{1}{5}\left||4| 6 \frac{2}{3}\right||5|\left|20 \frac{4}{7}\right||6| 1 \frac{7}{9}||7| 350||8| 45$

 66. 4 | $3|30\|4|4||5| 12\| 6| 3\|7|8||8| 5\| 9 \mid 960$

75.	2	$\frac{10}{2}$	$\\|$	3	\mid	$\frac{21}{3}$	$\\|$	4	18	$\frac{48}{6} \\|$
75	5	$\frac{48}{8}$	$\\|$	6	$\frac{40}{20}$					
7										

75. $\left\|3\left|\frac{1440}{30}\left\|4\left|\frac{3000}{40}\left\|5\left|\frac{522}{18}\left\|6\left|\frac{7056}{63}\|76\| 1.\right| \frac{36}{7}\right.\right.\right.\right.\right.\right.\right.$
76. $\left\|2\left|\frac{20}{3}\left\|/ 3\left|\frac{54}{5}\left\|4\left|\frac{151}{9}\left\|5 / \frac{1.51}{8}\right\| 6 / \frac{155}{6} \| / 7\right| \frac{3 n 1}{8}\right.\right.\right.\right.\right.$ 76. || $8\left|\frac{637}{10}\left\|9\left|\frac{499}{11} ; \frac{289}{10}\left\||10| \frac{2104}{7} ; \frac{8007}{20}\right\| 11\right| \frac{103}{4} ; \frac{83}{5}\right.\right.$ 76. || $12\left|\frac{547}{9} ; \frac{424}{7}\||77\|1|2 ; 2||2| 2 ; 2\| 3| 8 ; 2\right.$

77. || $14\left|2 \frac{400}{430}\right||15| 9 \frac{60}{81}\left||16| 14 \frac{228}{262}\right|\left||17| 111 \frac{675}{800}\right.$
78. || $18|22|\left|78 .\left||1| \frac{3}{4}\right|\right| 2\left|\frac{4}{5}\right||3| \frac{7}{8}\left||4| \frac{1}{3}\right||5| \frac{4}{7}$
79. || $6\left|\frac{7}{9}\right||7| \frac{16}{95}\left||8| \frac{1}{12}\right||9| \frac{32}{81}\left||10| \frac{1}{11}\right||11| \frac{3}{40}$ 78. || $12\left|\frac{4}{225}\right||13| \frac{25}{116}\left||14| \frac{48}{175}\right||15| \frac{419}{63} 7\left||16| \frac{3}{5}\right.$ 78. || $1\left|\frac{1}{4}\right||2| \frac{9}{56}\left\|3\left|\frac{1}{36}\left\|4\left|1 \frac{1}{4}\left\|5\left|3 \frac{2}{21} \| 6\right| 1 \frac{11}{27}\right.\right.\right.\right.\right.$ 78. || $7\left|\frac{10}{27}\right||8| \frac{9}{16}||c|||c| c||c| c||c| c\left|\left|\frac{5}{12} 710\right| \frac{16}{45}\right||11| \frac{5}{6}$ 79. || $1\left|\frac{72}{126}, \frac{105}{126}, \frac{42}{126}\right||2| \frac{12}{30}, \frac{45}{30}, \left.\frac{20}{30}| | 3 \right\rvert\, \frac{16}{112}, \frac{42}{112}, \frac{56}{112}$ 79. || $4\left|\frac{20}{8}, \frac{34}{8}\left\|5\left|\frac{64}{12}, \frac{33}{12}\left\|6\left|\frac{5}{15}, \frac{72}{15} \| 7\right| \frac{48}{8}, \frac{22}{8}\right.\right.\right.\right.$ 79. || $8\left|\frac{12}{7}, \frac{35}{7} \|| | \begin{array}{l|l|l|l|l|}\hline \frac{44}{3}, & \frac{18}{3} & \| & 10 & \frac{252}{126}, \\ \frac{42}{126}, & \frac{72}{126} \\ \hline\end{array}\right.$ 79. || $11\left|\frac{153}{6}, \frac{32}{6} \||12| \frac{60}{90}, \frac{75}{90}, \frac{72}{90}\right||13| \frac{180}{315}, \frac{210}{315}, \frac{63}{315}$ 79. || $14\left|\frac{192}{384}, \frac{288}{384}, \frac{288}{384}\|80\|.\right|\left|3 \frac{3}{4}\left\||2| 6 \frac{1}{2}\right\| 3\right| 4 \frac{3}{5}$ 80. || $4\left|4 \frac{8}{9}\left\|5\left|2 \frac{14}{15}\left\|6\left|3 \frac{2}{13}\left\|7|7||8| 3 \frac{5}{11}\right\| 9\right| \frac{4}{4} \frac{3}{16}\right.\right.\right.\right.$ 80. || $10\left|2 \frac{19}{20} \|\right| 81$. || $1\left|\frac{342}{144}=2 \frac{3}{8}\left\|2\left|I_{123}^{26} \| 3\right| 1 \frac{11}{18}\right.\right.$ 81. || $4\left|1 \frac{23}{30}\right||5| 2104\left||6| \frac{3}{4}\right||||2|| 8| 3 \frac{1}{4}\left||9| 1 \frac{121}{125}\right.$ 81. || $10\left|2 \frac{115}{126}\right||11| 3 \frac{1}{14}\left||12| 3 \frac{8}{9}\right|\left||13| \frac{4}{5}\right||14| 1 \frac{23}{63}$
 81. || $5\left|13 \frac{149}{280}\right|\left||6| 12 \frac{13}{21}\right||7| 8 \frac{29}{56}\left||8| 10 \frac{9}{14}\right||9| 15 \frac{7}{40}$ 81. || $10\left|13 \frac{23}{126}\right||1| \frac{45}{56}\left||2| 1 \frac{3}{8}\right||3| 3\left|\left|\left|82 .\left|\left||4| \frac{15}{5}\right.\right.\right.\right.\right.$
 82. || $10\left|18 \frac{51}{56}\right||11| 23 \frac{7}{10}\left||12| 16 \frac{31}{140}\right||13|\left[44 \frac{31}{120}\right.$
$D \equiv \frac{\left.82 .\left\|14+4 \frac{11}{15}\right\| 15\left|11 \frac{03}{40}\|83 .\| 1\right| \frac{8}{8}=1 \| 2 \right\rvert\, \frac{4}{9}}{82}$ 83. || $3\left|\frac{4}{30}=\frac{2}{15}\left\|4\left|\frac{18}{50}=\frac{9}{25}\left\|5\left|\frac{1}{27}\left\|6\left|\frac{2}{45} \| 7\right| \frac{13}{27}\right.\right.\right.\right.\right.\right.$ 83. || $\left.8\left|\frac{1}{30}\right| \right\rvert\, 84$. || $1\left|\frac{1}{12}\right||2| \frac{8}{45}\left||3| \frac{28}{99}\right||4| \frac{5}{6}\left||5| \frac{15}{16}\right.$ 84. || $6\left|\frac{4}{05}\left\|\left.7\left|\frac{3}{28}\left\|\left|\left|\left|1 \frac{1}{15}\right|\right| 9\right| \frac{77}{300}\right\|\right| 10 \right\rvert\, 3 \frac{959}{1188}\right.\right.$ 84. || $11\left|1 \frac{2}{5}\left\|12\left|\frac{1}{216} \| 13\right| \frac{59}{117}\left||14| \frac{67}{240}\right||15| \frac{7}{20}\right.\right.$
 84. || $5\left|\frac{131}{120}\left\|6\left|\frac{23}{30}\left\|||21|| 8\left|15 \frac{7}{8}\left\|9\left|3 \frac{9}{70} \| 10\right| \frac{17}{40}\right.\right.\right.\right.\right.\right.$ 85. || $1\left|3 \frac{1}{2}\left\|2\left|5 \frac{1}{3}\left\|3|3||4| 13 \frac{13}{24}\right\| 5\right| 14\right\| 6\right| 3 \frac{3}{3}$ 85. || $7\left|35 \frac{5}{5}\left\||-8| 3 \frac{3}{14}\right\|\right|^{9}\left|\frac{13}{21}\|10|12 \| 86 .||1| 3\right.$ 86. || $2\left|7 \frac{7}{9}\left\|3|124||4| 14 \frac{2}{3}\right\| 5 / 75\left\|6\left|30 \frac{8}{17} \| 7\right| 75\right.\right.$

 87. || $1\left|\frac{14}{27}\left\|-2\left|\frac{1}{21}\right||F| \frac{21}{40}\right\| 4\right| 1 \frac{17}{48}\left||5| 10 \frac{1}{8} \| 6\right| \frac{3}{70}$ 87. || $7\left|\frac{8}{35}\left\||8| \frac{1}{8}\right\|\right| 1\left|1 \frac{17}{32}\left\||2| 2 \frac{2}{3}\left||3| 28 \frac{1}{3} \| 4\right| 87 \frac{3}{4}\right.\right.$
 88. | $10\left|8 \frac{71}{98}\right||11| \frac{21}{32}\left||12| \frac{36}{715}\right||13| \frac{1}{2}\left||14| \frac{21}{81}\right.$ 88. || $15\left|2 \frac{24}{25}\right||16| 18 \frac{35}{48}\left||17| \frac{91}{96}\right||18| 27\left||19| 4 \frac{3}{8}\right.$ 88. || $20\left|1 \frac{17}{28}\right|\left||21| 13 \frac{1}{2}\right||22| 13_{20}^{13}| | 23\left|79 \frac{7}{20}\right||24| 15 \frac{13}{16}$ 89. || $1\left|\frac{4}{17}\right||2| \frac{2}{11}\left||3| \frac{9}{70}\right||4| \frac{2}{15}$ or $\frac{12}{90} \| 5 \left\lvert\, \frac{7}{\text { so }}\right.$
80. || $6\left|\frac{2}{19}\right||7| \frac{3}{16}\left\|8\left|\frac{2}{200}=\frac{1}{100}\left\|9\left|\frac{3}{140} \| 10\right| \frac{5}{48}\right.\right.\right.$
 89. || $16\left|\frac{5}{112}\right||17| \frac{1}{25}\left||18| \frac{3}{7}\right||19|\left||20| \frac{2}{15}\right.$

 90. || $\left.32\left|\frac{32}{45}\right||33| \frac{11}{20}\left||34| 10 \frac{1}{8}\right||35| 7 \frac{1}{20} \| 36 \right\rvert\, 6 \frac{1}{3}$ 90. || $37 \left\lvert\, 4 \frac{1}{6}\right. \| 91$. || $1\left|6 \frac{2}{3}\right||2| 18 \frac{1}{2}||3| 72||4| 18 \frac{2}{3}$ 91. || 5 | $15 \frac{3}{4}\left\|6\left|15 \frac{5}{9}\left\|7\left|12 \frac{3}{8}\right||8| 24\right\| 9\right| 26 \frac{1}{4}||10| 36\right.$
81. || $11|81||12| 23 \frac{1}{3}\left\||13| 51 \frac{3}{7}||14| 160 \| 15| 45\right.$ 91. || $16\left|28 \frac{1}{5}\right||17| 18 \frac{2}{3}||18| 131||19| 60\left||20| \frac{20}{29}\right.$ 91. || $21\left|\frac{49}{64} \| 22\right| \frac{15}{22}\left||23| 1 \frac{11}{34}\right||24| \frac{4}{10}\left||25| 1_{4}^{3}\right.$
 92. || $1\left|\frac{25}{27}\left\|2\left|\frac{54}{72}\right||3| \frac{16}{33}||4| 1||5| \frac{16}{21}\right\| 6\right| \frac{50}{63}$
 92. || $12\left|7 \frac{5}{21}\left\||13| \frac{7}{30}\right\|\right| 4\left|\frac{2}{49} \||15| 1 \frac{1}{2}\right||16| \frac{16}{25}$ 92. || 17 | $\frac{20}{33}\left||18| \frac{77}{120} \||19| 22\right||20| 1 \frac{11}{39}\left||21| 7 \frac{7}{15}\right.$ 92. || 22 | $16 \frac{4}{5}\left||23| 6 \frac{17}{8}\right||24| 5 \frac{5}{45}\left||25| 5 \frac{4}{33}\right||26| 1 \frac{1}{5}$ 92. || $\left.27\left|\frac{55}{72}\right||28| \frac{125}{832}\left||29| \frac{8}{13}\right| \right\rvert\, 93$. || $1|\mid 161078$ 93. || $2\left|14 \frac{17}{132}\right||3| 1_{1 \frac{5}{12}}| ||4| 1 \frac{13}{28}\left\|5\left|2 \frac{7}{16} \||6| 1 \frac{98}{99}\right.\right.$ 93. || $7\left|75 \frac{61}{165}\right||8| 5 \frac{1}{7}\left||9| 2 \frac{1}{4}\right||10| 21 \frac{3}{7}\left||11| \frac{1}{14}\right.$ 93. || $12\left|1 \frac{2}{9}\right||13| \frac{3}{10}\left||14| 2 \frac{14}{45}\right||15| 42 \frac{31}{45}\left||16| \frac{3}{28}\right.$ 94. || $17\left|1 \frac{19}{35}\right||18| 25\left||19| \frac{55}{304}\right||20| 1 \frac{3}{203}\left||21| 19 \frac{5}{7}\right.$ 94. || $22\left|\frac{9}{20}\right||23| 45 \frac{1}{2}\left|\left||24| \frac{1}{12}\right|\right| 25|93||26| \frac{11}{56}$
 97. || 1 | . $6||2| .41| \mid / 3$ |. $059||4| .0047||5| .095$ 97. || $6|.0080||7| 300.027||8| .000049||~ 9| .0019$
82. || $10|.0060||11| .000041||22| 4.25||23| 21.47$ 97. || 24 | $60.001||25| 300.049||26| 600.06$ || $27 \mid 29.041$
 98. || $6\left|\begin{array}{ll|l|l|l|l|l|l}4.06 & \mid & 7 & 12.5 & |\mid & 8 & 15.07 & |\mid \\ \hline\end{array}\right| 20.015$ $98 .||10| 19.56||11| 9.105| | 12|10.016||13| 9.019$
83. || $14|.0150||15| 4.50||16| 6.540 \| 99 .||37| 59.3$
84. || $38|45.16||39| 64.004||40| 69.010||41| .00054$
85. || $42|400.029||43| 5.000007||44| 4006.000049$
86. || 45 | 56.0006 || $46 / 1500.0000015$ || 47 | 39.640
87. || $48|5000.005||49| 36000000.000036||50| 31000-$
88. || . $000049||51| .00075||52| 51.000051||53| 60000.060$

| $100 .\| \| 1$ | 13.3397 | $\|\|45.3739\|\| 3\|67.64049\|\|4\| 347.6997$ |
| :---: | :---: | :---: | :---: |

100. || 5 | $510.5797||6| 53.82085||7| 4.82125||8| 156.012$ 101. || $9\left|303.1625 \|^{* 10}\right| \quad 520.70125||11| 414.962$ | $101 .\| \|$ | 12 | 725.604024 | 13 | 13 | 242.046 | $\|\mid$ | 14 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

102. || $6 \mid 494.8125 \|(7|17.9375||8| 217.275 \| 9 \mid 16.065$
103. || $10|73.58||11| 27.625||12| 47.9375| 13 \mid 5.875$

103.	14	17.9375	$\|\mid$	15	31.625	$\|\mid$	16
\mid	15.4875						

103. || $17|2948.46035\|18|1193.4725 \| 19| 3.5111)] \circlearrowleft \sqrt{||\mid}$

104. || $1|.099\|2|5.0681\|3|474.6112 \| 4| 195.763$ 104. || $5|43.82||6| 13.6885 \| 7|651.75||8| 514.625 \mathrm{|c|}$

| 104. | 9 | 290.2875 | $\mid 10$ | 1037.345 | $\|\mid$ | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$| 520.935$

105. || $1 \mid 2.68172$ || 2 | . 9893359 || 3 | 30.8204286
106. || $4|.03587869||5| 100.78||6| 54906.3||7| 47.04$
107. || 8 | 6974.3 || 106. || $9 \mid 1.0016$ || $10 \mid .001852$ 106. || 11 | 295.993871 || 12 | . 03824688 || $13 \mid .00375$ 106. || $14 \mid .04352$ || $15|.006501||16| 450.49||17| 4.5$
108. || $18|2490.3||19| 5336.44875$ || $20 \mid 3831.263550$
109. || $21|4.53876||22| 41.4958332||23| 17.514640$
110. || 24 | 3708.1803645 || 25 |. 03121875 || $26 \mid .01078125$
111. || 27 | $25 ; .0049$ || $28 \mid 7.20759375$ || $29 \mid 694683.25$
112. || $30|9386.250000||31| 591.3884||32| 1914.2375$
113. || 33 | $5337.3375||34| 1250.000||35| 3109.6875$
114. || $36|4687.50||37| 3.28125 \| 107 .||38| 1267.70896875$
115. || 39 | 105.46875 || $40|55034.75||41| 28350.000$

| $108 . ~\| \| ~$ |
| :--- |$|6.12||3| 6.4||4| 12263||5| 2.7046||6| .61046$

108. || $7|.47043||8| 17.54755+\| 9|36.7||10| 62.80866+$
109. || $11|10932.8125||12| 62607.213||13| 4076.39635$
110. || 14 |. 096147 || 15 | $10001||16| 19929.6||17| .001$
111. || 18 | 12.5 || $19+1.55263+\| 20 \mid 147.490268$
108.|| $21|10000 \| 22| .02567||23| 100||24| 11.56329+$

| $108 .\|\|25\| 30.511904+\\|$ | 26 | $7.27083 \frac{1}{3}$ | 27 |
| :--- | :--- | :--- | :--- | Y_{15}

D D $108 .||28| 48.94769+||29| 38|| 109 .||1| .11||2| .45$

109.|| $7|.099999||8| 8.1325||9| 78.525||10| .14$
109. || 11 | 50.96 || 12 | $16.3||13| 14||14| 15696.267$

| $109 .\|\|15\| 1.30625 ~\| \mid ~$ | 16 | 151.3788 | $\|\mid$ | 17 | 3000.46 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

109.|| 18 | 1000000 || 19 | 93.55 || $110 .||1| .5$ || 2$| .625$
110.|| 3 |.4; .3125; . 6 || 4 |. 64 || 5 |.875 || $6 \mid .34375$
110.|| 7 | $.175 ; .66666+||8| .34 ; .2||9| .4 ; .375 ; .1125$
110.|| $10|.192 ; 3.875||11| .0164102+; .08| | 12 \mid .03125$;

112. || 3 | $40.829||4| 30.432||5| 105.644||6| .378||7| .657$ 112. || 8 | 1.011 || 9 | 25 || 10 | 3.75 || 11 |.088 || $12 \mid 12.129$ 112. || 13 | $009||14| .022||15| 60.05||16| 49.406||17| 200.83$ 113. || $1 |$| 1525 |
| :--- |
| $1\|2\| 47375)\| \| 3\|960\|\|4\| 8750\| \| 5 \mid 700$ | 113. || $6|1600 ; 16000 ; 160000||\mid$ ($30.3 ; 303 ; 3030$ 113. || 8 | 1600; 16000 || 9 | 101.09; 1010.9; 10109 113. || 10 | $4007.54 ; 40075.4 ; 400754| | 11 \mid 70.46 ; 704.6$;
113. || 7046 || 12 | 124.19; 1241.9; 12419 || 114. || 1 | 56.72
114. || 2 | 72.356 || 3 | 3.674 || 4 | $127.45||5| 269.45||6| 64.9$
115. || 7| $24.69||8| 47.6||9| .57||10| 1.57 ;$. $75 ; 1.27$
116. || $11 \mid 6$ dollars 74 cents 9 mills; 37 dol. 4 cents 9 mills
117. || 12 | 40.409 9 904.60 7 || $13 \mid 10.460 ; 270.460$
118. || 14 | $874.90 \frac{4}{4} ; 47.04 .9 \| 115$.|||1|51.411||2|117.996 RAI
119. || 3 | $323.913||4| 278.0545$ || 5 | 2780.131$||6| 62.99$
120. || 7 | 2.598 || 8 | 17.625 || 116 . || 9 | 3.49 || $10 \mid 22.18$
121. || 11 | $28.671||12| 23.75||13| 501.775||14| 15.22$
122. || 15 | 3.63 || $117 .||1| 114.866|| | ~|~| ~ 37.827| | 3 \mid 131.875$

ANSWERS.
117. || 4 | $5.225||5| .43||6| 3.625||7| 4.81||8| 3.62$
 118. || $13|6.77||14| 9.12||1| 2.51||2| 99.23||3| 206.26$ 119. || $4|15.21||5| 17.50$ lost || $6|23.14||1| 3144.125$
119. || $2|5372.294||120 .||3| 140522.071|| 4 \mid 10.773$ 120.||5|3577.3285 || 6 | 75 || $7|37.375||8| 49.50$ 120. || 9 | $70.3125||10| 60.125||11| 1261.00$-|| 12 | 348 120. || 13 | $1810599.85||14| 10368.75||15| 34787.5$ 120. || 16 | $93.69||17| 38.00||18| 1124.90||19| 125.625$

 121. || 5 | $72071.50 \| 6|13.54||7| 65.84| | 8 \mid 6.005$ 122. || 9 | $8.93||10| 26.86||123 .||11| 225.625|| 12 \mid 23.03$ 123. || 13 | $28.745\left|\left|124 .\left||1| 16.863 \frac{1}{28}\right|\right| 2\right| 31.726 \frac{1}{3} \frac{5}{7}$ 124. || $3\left|12.60 \frac{29}{37}\right||4| 535 \frac{57}{516} \| 5\left|147 \frac{2360}{4175}\right||6| 13.01285+$ | 124. \|| $7\|22.4\| 8\|.27\| \mid$ | 9 | $1.91 \frac{2}{5}\|\|125 . \\| 10\| 12923$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | $\sqrt{|A 125 .||11| .4074|||12| 75||13| 376||14|} 2504 \frac{1}{6}$ 125. || 15 | 8550 wid.'s ; 3420 child's || $1|105.5||2| 60 \frac{5}{49}$ 125. || $3|821\|4 \mid 226.60\|$ |26. || 5$| 27.50 \| 6 \mid 4_{1}^{265}$

 126. || $11|51711.55||12| 4 \frac{167}{287}||13| 9||14| 7000$ entire 126. || gain ; 43.75 gain per A || $15|1200 \| 142 .||3| 77$ 142. || 4 | $757 \frac{1}{2} \| \mid$ 143. || $8|19140| 9|2196 \| 10| 294||11| 4262||12| 59$

143.||29| $1882||30| 12579||31| 50765||32| 164367$
143.|| $33|986765||31| 2674445\left||35| 27981 \frac{1}{4}\right||36| 2633760$
145. || $1 \mid$ | 235 |3s. 9d.|| $2 \mid £ 51$ 16s. 3d. 2far. || $3 \mid 439 \mathrm{rd}$.
145. \|| $3 \frac{1}{2}$ yd. 1 in. \| $4 / 891 \mathrm{mi} .0$ fur. 7 rd. 4 yd .1 ft .6 in .
145. || 5 | $2428\left||6| 17\right.$ P. $17 \frac{3}{4}$ sq. yd. 7 sq. ft. 12 sq. in.
$145 .\left\|7 \left\lvert\, 19 \mathrm{~A} .3 \mathrm{R} .37 \mathrm{P} .11 \frac{8}{4} \mathrm{sq} . \mathrm{yd} .7 \mathrm{sq} . \mathrm{ft}\right..\right\| 8 / 5 \mathrm{sq} . \mathrm{mi}$, 145. || 481 A. 7 P. $\|\left.\right|_{\mid} \mid 3$ sq. ch. 2 P. $25 \frac{1}{2}$ sq. yd. 7 sq. ft.

$145 .\|\| \|$
$10 \mid 14 \mathrm{cu} . \mathrm{yd} .14 \mathrm{cu} . \mathrm{ft}$.
$1193 \mathrm{cu} . \mathrm{in} .\|\|11\| 10937$

145. || 12 | 52 T. 16 cu . ft. 1176 eu. in. || $13 \mid 312 \mathrm{bbl}$.

| $145 . \mid 16$ gal. 2 qt. 1 pt. \|| $14 \mid 1755$ pi. 1 hhd. 53 gal. |
| :--- | :--- | :--- | :--- |

145. $\mathbb{1 5} / 6819$ tuns 1 hibd. 61 gal. 1 qt. \|| $16 \mid 6047$ bu.
146. || 2 pk .4 qt .1 pt. \|| $17 \mid 27706 \mathrm{bu} .1 \mathrm{pk} .4 \mathrm{qt}$.
147. || 18 | $2011 \mathrm{ch} .15 \mathrm{bu} .||19| 4 \mathrm{qr} .7 \mathrm{lb} .1$ oz. 8 dr .
148. || $20 \mid 29 \mathrm{cwt} .2$ qr. $13 \mathrm{lb} .1 \mathrm{oz} .||21| 27$ T. 7 ewt. 1 qr. 40 z.$$
146.|| $22 \sqrt{2352483 ~ T . ~} 11 \mathrm{cwt} .9 \mathrm{Bb},||23| 85 \mathrm{oz} .10 \mathrm{pwt} .9 \mathrm{gr}$.
149. || $24 \mid 392 \mathrm{lb} .19 \mathrm{pwt}$. || $25 \mid 105 \mathrm{tb} 113_{5}^{7} 631916 \mathrm{gr}$.
 146. || $28\left|102 \mathrm{~b} 3 \mathrm{~m}^{2} 75195 \mathrm{gr} . \| 29\right| 181 \mathrm{br} .50 \mathrm{~m} .4 \mathrm{sec}$.

| $146 .\|\|30\| 603$ da. $19 \mathrm{hr} .44 \mathrm{~m} .\|\|31\| 1 \mathrm{mo} .14 \mathrm{da} .19 \mathrm{hr}$. |
| :--- | 146. || $7 \mathrm{~m} .49 \mathrm{sec} .||32| 12 \mathrm{yr} .167$ da. 22 hr .47 m | $146 .\|\|33\| 990$ yr. 365 da. $6 \mathrm{hr} .\|\|34\| 1 \mathrm{yr} .311$ da. 19 hr .25 m . |
| :--- |
| $146 . \mid$ |

| $146 .\left\|\|35\|\right.$ mo. 29 da. 10 hr. $49 \mathrm{~m} .\left\|\|36\| 241^{\circ} 48^{\prime} 13^{\prime \prime}\right.$ |
| :--- | :--- | :--- | :--- |

ANSWERS.

| 146. \|| 37 | 849 hr. an. $13^{\circ} 24^{\prime}\| \|$ | 38 | $150 \mathrm{~s} .8^{\circ} 13^{\prime}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

146. || $39\left|19 \mathrm{c} .311^{\circ} 12^{\prime}\right||40| 27^{\circ} 43^{\prime} 24^{\prime \prime}| | 41 \mid 62 \mathrm{c} .39^{\circ} 11^{\prime} 3^{\prime \prime}$
147. || 1 | 63329 || $2|45327600||3| 1238449$ || 4 | 24656
148. || 5 | $1520640|\mid 147$.|| 6$| \$ 282.75||7| 234||8| 1809420$
149. || 9 | 6576 || 10 | 34 wk. 2 da. 20 hr . || $11 \mid 24719040$
150. || 12 | 2980 A. 3 R. 29 P. || 13 | 3 C. $6 \mathrm{cu} . \mathrm{ft} .1049 \mathrm{cu} . \mathrm{in}$,

$147 .\|\|14\| 2218914\|\|15\| 6552\| \| 16\|65538\|\|17\| 608$

147. || 18 | 35848 || 19 | $256||20| \$ 1329.74||21| 128960$

$148 .\|\|26\| 90720-544320$	$\|\mid$	27	47680	$\|\mid$	28
$\|c\|$	4938				
148	29	110			

148.|| 29 | 110 T. 16 cwt. 2 qr. 17 lb. 9 oz. || $30 \mid \$ 282.06$
148. || $31 \mid 514$ T. 13 ewt. 3 qr. || 32 | 619 re. 15 qu. 20 sh.
$\left.148 .||33| 422 \mathrm{yd} .-\$ 949.50$ cost || 34$| 102 \frac{1}{4}| | 35 \right\rvert\, 15823 \mathrm{yd}$.
148. || 2 qr. || 36 | 25704 || 37 | $1355260 \frac{1}{2}||38| 3991680$

$148 .\| \|$	39	$27 \frac{1}{7}$	40	15	41	16	42	$11697 \frac{9}{39}$

149. || $1 \mid £ 10$ 1s. 4 d . || $2|26 \mathrm{yd} .2 \mathrm{ft} .6 \mathrm{in} .||3| £ 18 \mathrm{ls}$.
149.|| 9.. 3far. \|4|42 bu. 2 pk. 2 qt. $\| 5 \mid 45 \mathrm{lb} .1 \mathrm{oz} .8 \mathrm{dr}$.
150. || $6\left|39^{\circ} 37^{\prime} 47^{\prime \prime} \|\right| 150$. $\|$ T|£15 2s. 7 d . $\| 8 \mid £ 184$
151. \| 19s. $6 \frac{1}{2} \mathrm{~d} . \| 9|208 \mathrm{mi} .7 \mathrm{fmi} .27 \mathrm{rd} .||10| 240 \mathrm{~T}$.
152. || 5 cwt. 3 qr. $13 \mathrm{lb} . \|$ 11| 170 cwt .2 qr .13 lb .4 oz.
153. || $12 \mid 195 \mathrm{lb} .8$ oz. 17 pwt. $1 \mathrm{gr} .||13| 168 \mathrm{mi} .5 \mathrm{for}$.
150.|| 12 rd. 4 yd. $\left||14| 2\right.$ A. 2 R. 39 P. $15 \frac{3}{4}$ sq. yd. 6 sq. ft.
154. || 68 sq.in. || $15 \mid 3$ da. $15 \mathrm{hr} .19 \mathrm{~m} .||16| 3$ T. 8 ewt. 3 qr.
155. || $21 \mathrm{lb} .||17| 136 \mathrm{bu} .2 \mathrm{pk} .3 \mathrm{qt}$. || 18 | 180 yd .3 na .
151.|| 19 | 2 yr. $231 \mathrm{da} .3 \mathrm{hr} .21 \mathrm{~m} .5 \mathrm{sec} .||20| 188$ A. 37 P .
151.|| $21|1 \mathrm{lb} .9 \mathrm{oz} .3 \mathrm{pwt} .10 \mathrm{gr} .||22| 1301 \mathrm{mi} .5 \mathrm{fur} .18 \mathrm{rd}$.
156. || $23 \mid 2$ tuns 3 lihd. 58 gal. 1 qt. 1 pt. || $24 \mid \$ 272.76$ 151. || $25 \mid 194$ bu. 2 pk. 5 qt. $\||26| £ 522$ 1s. 3 d.
 152. || $4 \mid 64$ T. 17 cint. $2 \mathrm{ct} . ~ 171 \mathrm{~b} . \| 5 \mid 1 \mathrm{cwt} .12 \mathrm{lb}, 12 \mathrm{oz}$. 152. || f| 181 yd. 2 qr. 2 na. $\left||7| 81 \mathrm{mi} .2\right.$ fur. $31 \mathrm{rd} .2 \frac{1}{2} \mathrm{yd}$. $152 .| | 2 \mathrm{ff}$., or 81 mi. 2 for: 31 wd. 3 yd. 6 in. || $8 \mid 46$ tums 152. 1 I pi. 1 hhd. $44 \mathrm{gal}$. B gt. 1 gi . || $153 . \| 9 \mid £ 114 \mathrm{~s} .7 \mathrm{c}$. 153. || $10 \mid 62 \mathrm{lb} .3 \mathrm{cz}$. 15 pwt. $19 \mathrm{gr} .| | \mathrm{II}) 54 \mathrm{~A} .1 \mathrm{R}$. 153. || 29 P. $25 \frac{1}{4}$ sq. yd. 7 sq. ft. \|| $12 \mid 17$ yel. 3 qr. 2 na. 153. || 13 | 38 gal. 0 qt. 1 pt. || $14 \mid 17$ yd. $2 \mathrm{ft}, 9 \mathrm{in}$. 153. || $15|6 \mathrm{cwt} .2 \mathrm{qk}, 20 \mathrm{lb},|||16| 26 \mathrm{ch} .22 \mathrm{bu} .3 \mathrm{pk}$. 153.|| $17 \mid 3$ Hf $6333299 \mathrm{gr} .||18| 21 \mathrm{lb}, 20 \mathrm{z} .16$ pwt. 6 gr . 153. 19 | 19 T. 17 cwt. 2 cir. 9 16. || $20 / \mid$ \&゙ $9 \mathrm{~s}, 11 \mathrm{~d}$. 103. | $21 \mid 1$ hhd. 18 gal. 2 qt. 1 pt. || $22 \mid 3$ jd. 1 qr. 2 na. 154. || 1 |E12 19s. | 2 $\mid 34$ bu. 2 pk. 6 qt. || $3 \mid 20 \mathrm{cwt}$. 154. || 2 qr. $15 \mathrm{lb} .|4| 79$ yd. 4 in. $\| 5 \mid 160 \mathrm{mi} .4$ fur. 30 rd . 154. \| $6 \mid 95$ wk. 5 da. $18 \mathrm{hr} . \||7| 26$ A. 0 R. 28 P. 154. || $8 \mid .1$ hhd. 29 gal. $2 \mathrm{qt} .1 \mathrm{pt} .||155 .||9| 195 \mathrm{bu}, 7 \mathrm{qt} .1 \mathrm{pt}$. 155. || $10 \mid 51$ to 6573238 glv $\| 11 / 39$ wh. 3 da, 21 hr .50 m. 155. || $12 \mid £ 118 \mathrm{~s} .4 \mathrm{~d}$.|| 13 | 13 hhd. 30 gal .1 qt. 1 pt . 155. || 14 | 30 A. 2 R. 25 P. || $16 \mid 4533 \mathrm{yd}$. || $17 \mid 146$ da. 11 hr . 155. || $18|\& 482 \mathrm{~s} .6 \mathrm{~d} .||12| 457 \mathrm{da} .15 \mathrm{hr} .||20| 442 \mathrm{gal} .3 \mathrm{qt} R A]$. 155. || $21 \mid 132$ re. 18 qu. 8 sh. || $22 \mid 1225$ T. 13 cwt. 2 qr. 11 b. 156. || $23 \mid 607$ A. 1 R. 15 P. || $24 \mid 6$ da. 0 hr .12 m. 156. || 25 | 19 mi .2 fur. 14 rd .|| $26|39 \mathrm{bu} .||27| 10 \mathrm{gal} .2 \mathrm{qt}$. 156. || $28 \mid 19$ A. 0 R. 29 P. || $29 \mid 862$ gal. 3 qt.
157. || $30 \mid 452$ L. 1 mi .7 fur. $7 \mathrm{rd} .||31| 152 \mathrm{hr} .20 \mathrm{~m} .15$ sec. 156. || 32 | 999 yd. || $33 \mid 1$ lb. 6 oz. 18 pwt. || $34 \mid 15^{\circ}$ $\left.$\begin{tabular}{l}
\hline $156 .||35| 11 \mathrm{lb} .11 \mathrm{oz} .| |$

\hline

 36 \right\rvert\, 137 bu .3 pk .2 qt. 156. || 37 | 156 cwt. 2 qr. 19 Ib. $||38| 341$ A. 1 R. 6 P. 156. || 39 | 71 T. 10 ewt. I qr. || 157. || $1 \mid$ £3 4s. 9d. 157. || $2 \mid 6$ bu. 3 pk. 6 qt. || $3 \mid 2$ ewt. 3 qr. 20 lb. 157. || $4 \mid 9 \mathrm{mi} .3$ fur. $20 \frac{4}{6} \mathrm{rd}$.\(\| |

5\) \& $9 \mathrm{~s} .9^{\circ} 27^{\prime} 35^{\prime \prime}$

\hline

\hline 158 yr. 5 mo. 15 da, $18 \mathrm{hr} .||7| 6$ T. 12 ewt. 2 qr.

\hline
\end{tabular} 158. || 16 lb .4 oz .8 dr . $||8| 1$ C. $2 \mathrm{C} . \mathrm{ft} .||9| 5 \mathrm{ewt} .2 \mathrm{qr}$. 158. || 16 lb . || $10 \mid 3 \mathrm{mb} 43631$ Э 16 gr . || $11 \mid 24 \mathrm{mi} .4$ fur.

158. || $4 \frac{15}{20} \mathrm{rd} .||12| 12$ A. 1 R. 25 P. || 13$| 29$ yd. 2 qr. 3 па.
159. || $14 \mid 5$ L. 2 mi. 6 fur. $36 \mathrm{rd}. \||15| 2$ fur. 2 rd.

160. || $1|\$ 50||2| \$ 37.50||3| \$ 9.375||4| \$ 25||5| \$ 50$
161. || $1|318.75||2| 21.60||3| 14188.50||4| 10186.00$

| $160 .\| \| 5$ |
| :--- | $1215.00||161 .||1| 273.52$ || 2 | 30.3075

161. || $3 \mid 167.34996 \| 4$ | $399.322||5| 184.80||6| 1081.92$

$161 . \mid 1$	121.220625	2	305.9525	$\|\mid$	3	290.814875

161. || $4|1060.6599||162 .||1| 75.385|| 2 \left\lvert\, 4.947 \frac{174}{758}\right.$

D
162. || 3 | $66.6666 \frac{2}{3}\left\|^{4}|6,25 \| 1+350||2| 96| | 3 \mid 32\right.$
163. || $1|4||2| 3||3| 3||4| 3||5| 4||6| 15||7| 10$ 163. || 8 | $2 \| 9|2||10| 8| | 11|2| \mid 164$. || $1\left|5 \frac{1}{3}\right||2| 18$ 164.|| 3 | 8 || $165 .||4| 4||5| 72| | 6|20||166 .||2| 60$ 166. || $3|160\|4|450\|5|480\|6|960||7| 54\| 8| 128$ 167. || $9|6.00||10| 2.00||11| 567||12| 120||13| 54$
167. || $14|407||15| 451.20||16| 201.75||17 \cdot| 162.50$

168.|| 27 | 72000 || $28|/ 216|||29| 1044||30| \mid 16$

168. || 31 | $2000||32| 63||33||360||34| \mid 1066$ 168. || $35|10990||36| 120||169 .||||1048|| 2| 248$ | $169 .\|\|3\| 6587.875\|\|4\| 909\| \|$ | 5 | $44\|\|6\| 16.50\|\|7\| 6$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

 170. || 12 | $15||13| 197||14| 100.75 ; 64.75| | 15 \mid 171950$ 170.|| 16 | $284262||17| 12288||18| 8.79 \frac{1}{2}||19| 64125$ 170. || $20\left|98 \frac{13}{19}\right||21| 10.80|\mid 171$. || 22$| 77.021$ || $23 \mid 9119$ 171. || $24|26||25| 8 \mathrm{ft} .4 \mathrm{in} .||26| 89||27| 30| | 28 \mid 12$ 171. $29|12||30| 8||31| 8||32| 25||33| 12.00||34| \frac{75}{8}$ 172. || $35\left|\frac{262}{16}\right||36| 80||37| 31.25||38| 372 \frac{15}{16}\left|\left||39| \frac{72}{625}\right.\right.$ 172. \| $40\left|\frac{5}{12}\left\|41\left|\frac{1}{12}\left\|42\left|\frac{7}{40}\|43|72000 \| 44| 34149\right.\right.\right.\right.\right.$
172. || $45|21710.9375||46| \frac{60}{90}, \frac{72}{90}, \left.\frac{75}{90}| | 47 \right\rvert\, \frac{77}{98}, \frac{72}{99}$
172. || $48\left|\frac{13}{60}\left\||49| I_{\frac{3}{4}}^{4}| | 50\left|3 \frac{7}{40} \| 51\right| \frac{11}{18}| | 173\right.\right.$.|| $52 \left\lvert\, 4 \frac{11}{40}\right.$
173. || $\left.53\left|2 \frac{9}{20}\left\|54|.12||55| .93 \frac{3}{4}\right\| 56\right| 2 \frac{1}{6} \| 57 \right\rvert\, .42$
173. || 58 | $27 \frac{145}{148}\left||59| \frac{3}{4}\right||60| 20^{14}| | 61\left|6 \frac{3}{32}\right||62| 5.98 \frac{23}{24}$
173. || 63 | $10.725||64| 645.2375||65| 8855.00||66| 106$
174. || $67|18346.25||68| 363.6875||69| 94||70| 1136-$

174. || $74|429.75||75| 24.70\left||76| 83 \frac{1}{3} \mathrm{Ib} .||77| .11\right.$
174. || $78\left|7413 \frac{7}{18} \||9| 5727 \frac{27}{59}\right|||80| 2$ qr. 2 na.

ghaw surios of Guithmotits.

DAVIES' NEW PRIMARY ARITHMETIC. DAVIES' NEW INTFILECIUAL ARITHMETIC. DAVIES' ELEMENTS JE W.RITTEN ARITHMETIC. DAVIES' NEW PRACTICAL ARITHMETIC. DAVIES' NEW TNIVERSITY ARITHMETIC.

PRIMIRY ARESHMEIFE. This work is constrncted on the principle of objeet texciing. The combinations of numbers are illustrateu by sensible objects. The mind of the pupil is gradually led, by a series of illustrations, from what is visible and tangible, to the abstract properties of numbers. This work is a specimen, it method, arrangement, style, and typagraphy, of the new series (Price, 15 cents.)
AEU INTELLEOTUAL ABITHMETIC, This work is constmet. ed on the principle, thaf every operation in Arithmetic has reference to the unit 1 . The whole subject is treated with reference to this fret. The work differs essentially from the one which preceded it. It is, Indeed, a new development of the sulject, and is confidently commended to the notice of teachers, (Price, 250ts.)

CLEMFATS OF WBITTEN ARVTHMETIC. This is a new work, flesigned as a Practical Intraduetion to the stndy of Arithmetic. It explains the operations of Arithmetio by Practical Eximples, carefilly selected and graded. It enibraces the five fundan tal rules, Common and Decimal Fractions, and Denomit Numbers, (Priec, 25 cents.)

PBICTICIL ARITHMEMES Th's work is a carefully rey rini imp goud, "tien of the New School Arithmetie. churesy wor foon ictue 㨁sary, in the old work, to bring it hat may with. th. eflact parts of the New Series. It
 name-that-il agght sufid esiffundell with previaus editic and that it might liare in the many improvernents whfel h been introdncel int - Ide Kew Series. (Price. 45 eficts.)

IIIVERSITY ARITAME. IC, The object of this work is to teaus the eneral prinoinies tac eience of Numbers, and also to extend th applieations, noit ti ctengo the methor of application-thene and shoutd be the sume (Price, 75 cents.)

[^0]: 4 8. Divide the number 9. Divide the number
 10. Divide the namber
 11. Divide the number
 12. Divide the number

 5088 by $16=2 \times 2 \times 2 \times 2$.
 8974 by $15=$
 6446 by $18=2 \times 3 \times 3$.
 312176 by $24=$
 13. Divide the number 307697 by $35=$
 14. Divide the number 7406342 by $81=9 \times 9$.
 15. Divide the number 9468933 by $45=$
 16. Divide the number 2346912 by $64=2 \times 4 \times 8$.
 17. Divide the number 1000000 by $72=$
 18. Divide the number 9479564 by $36=6 \times 6$.
 19. Divide the number 4709063 by $42=2 \times 3 \times 7$.

