The Steam Engine,

The above example is applied to steam of the atmo-
spheric pressure and. corresponding temperature, but any
other temperature might have been chosen, and the same
reasoning would have applied. Just as in the case of the
isothermals, so with the adiabatic lines, a separate one can
be drawn for every separate degree.

We have now examined into the nature of the expansion
lines of gases and steam for two separate cases, viz. first, the
case of the temperature being maintained constant through-
out the change, and second, the case of no heat being
allowed to'escape from or reach the gas and steam by
conduction,iradiation, &c., from or to other matter.

It is evident, however, that these are not the only
possible cases, for we might, had we wished, have supplied
or abstracted any quantity of heat we chose, to or from the
gas, during the process of alteration of volume and pressure,
and thus have made the shapes of the curves ot expansion
anything we pleased. The two cases above described are,
however, the most important.

CHAPTER IIL
I'HEORETICALLY PERFECT HEAT ENGINES.
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The last chapter contained a sketch of the 1\1‘\(11'.15'1(_-~ of the
science of heat and an account of the effects of h-.-.L‘t upon
The present chapter will deal with the

gases and water. _ Y s
conversion of heat into mechanical work through the instru-
mentality of heat engines, and will contain an account of an
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:deal heat engine which is perfect in theory ; that is T.U_.\.‘;},
no other conceivable engine can get more work out of the

e
heat supplied to it than the one about to be desc r].n‘u].
Practical difficulties render the realisation of such an engine
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impossible, but the study of it is nevertheless of the greatest
importance, as enabling us to find out the deficiendies of
existing engines, and to ascribe to each of these deficiencies
its due share in causing waste of heat.

On account of the greater simplicity of gas, it will be
found convenient, first to describe the mode of operation of
the ideal engine when worked with gas or air, and afterwards
to apply the results obtained to the case of steam. Before
doing so, however, it will be necessary to recapitulate the
laws affecting gases which were explained in the last chapter,
but with greater numerical exactitude, and then, from these
laws, to make certain deductions, which, as they refer to the
power of doing work through the medium of gases, are
commonly classed under the head of the Thermodynamics
of Gases.

Numerical application of Boyle's law to gases —The first
of the laws referred to is Boyle’s law, connecting the pressure
and the volume of the gas when the temperature is main-
tained constant. The algebraical expression for this law was
shown to be o=

If one pound’s weight of air be taken, at the pressure g,
of the atmosphere, equal to 21168 lbs. on the square foot,
at the temperature 32° then the volume of this pound of air,
or 7y, multiplied by the pressure on the square foot has been
proved by Regnault’s experiments to be

20v=26,214 foot-pounds.

This quantity, 26,214 foot-pounds, is therefore the value of
the constant ¢, so long as the temperature remains 32°

If the temperature be changed, the value of the constant
is changed also. This leads us to Gay Lussac’s law (see
page 46) connecting the pressure and volume with the
temperature. This law states that the product pov is in-
creased when the temperature is raised from 3z" to 212%
in the ratio of 1 to 13654 ; and that for each: of the 180
degrees intermediate between 32° and 212° the increase is

Boyle's Law applied to Gases.

tisth -part of the increase at 212°. If then f..:'T hL 'th:lz
pressure and volume at 32° and po hc‘ ‘Lhu pressure an
volume at any other temperature #°, then if #=212°,
Po=pgo+ 3054 PoT'0s
and if # be any other temperature then
2U= po? + ‘:r;";‘(f- —32°) o
This rate of increase of course applies also when the tem-
perature is raised above 212°. : 5 |
It was also shown (see page 5r1) that if the tempera-
ture be reckoned from the bottom of the tube of the air
thermometer, which was shown to be 492 1|Fll:\\' 32
Fahrenheit, the above law could be greatly simplified. :
For, the product of the pressure and volume of a portion
of gas is proportional to the absolute temperature, 50 that if
+° be the absolute temperature corresponding to #° ; then,
remembering that 492°6° absolute, corresponds to 32 on
the ordinary scale, and attac hing the same values as before
to all the other symbols, we have-—
P05 T Pty - 492°6

- f,,__ ,r"w”u
T T

Now g7 as stated above=26,214

Hence we get
which is a very simple expression, connecting the pressure,
the volume, and the absolute temperature.

/

2 t aindzien e > . #
Specific heat of gases at constant volume, and al consi
-~ - o <

arni
pressiure—The next law, which is now mentioned for the I'n'jl_
ltimr. relates to the specific heat of gases, and asserts that, if
a gas be heated at constant pressure, it requires the same

Jantity of heat to raise its temperature from any point, say

i‘ g 1 + 117 ke 3
212° to 213°% as it does from any other point, say 32° to

33°% In other words, the specific heat of a gas at constant
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pressure does not change with the temperature, as is the case
with water,

Tlhe capacity of air for heat, that is, the amount of heat
required to raise one pound of it through 1° of temperature,
the pressure being maintained constant, is, according to
Regnault’s experiments, 02375 thermal units, equal to
183'35 foot-pounds. This quantity of heat is, as has been
shown before, not all expended in merely raising the tem-
perature of the air ; for, the heating having been accom-
Plished at constant pressure, part of the iwat has been
spent in doing external work.

Let #y,7, vy7, be the original and final volumes and
absolute temperatures of a pound of air ; and let # be the
pressure which remains constant. Then the external work
1Is measured by the increase in the volume, viz. 7,—2
multiplied by the pressure #; therefore 3

External work=(v,—2,)z ;
and, as we have seen, zp=53"2.7 ; therefore

The external work =53°2 (7,—1,).

A%so the total heat expended equals the specific heat multi-
phed. by the number of foot-pounds in one thermal unit
multiplied by the number of degrees of rise of temperature.
The usual symbol for the specific heat at constant pressure
mL}lt?p]ied by the number of foot-pounds in one thermal
unit 1s K, ;1 and as the rise in temperature is 79—, we have

Total heat expended=K (r,—r,).

Hence the heat expended in doing internal work—that is. in
merely raising the temperature of the air—is the diffcre;lcc
petween the total heat expended and that part which is spent
n doing external work

e e e

K, and I.\\. are spoken of hereafter for the sake of brevity and in
accordance with a usual custom as specific heats; but in reality a
specific heat is only a ratio, whereas K, and K, are absolute quantities
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Therefore the internal work = (r,—1;) (K,—532).

Now this latter quantity within the right-hand bracket is
also the value of the specific heat of air when heated at
constant volume ; because, as we know by Joule’s experiment
(see page 54), the mere separation of the particles of air
requires no heat to effect it when no external work is done,
and as the heat is only expended in doing external and
internal work, and as, moreover, when the air is heated at
constant pelume no external work is done, therefore the
specific heat of air heated at constant volume is the same
as the internal specific heat at constant pressure, and, calling
the specific heat at constant volume K,, we have

K,=K,—532=130"25 foot-pounds.

Consequently the heat required to raise the temperature of
one pound of air at constant volume from r,° to 75° is

Kv("z_rl)~

From the equation K,=K,— 532 we get, by simply
transposing, K,—K,=53'2. That s to say, the difference in
the two specific heats of air is equal to the constant quantity
53°2, which, as we have seen before, when multiplied by the
absolute temperature, equals the product pe.

From the result given above for the value of the heat
expended in internal work, when the air was heated at con
stant pressure, viz. (K,—53°2) (ra— 1) = K, (r5— 1), We see
that the internal work is proportional to the change of
temperature, and is equal to the change of temperature
multiplied by the specific heat at constant volume.

This result is true whether the air be heated at constant
pressure, or at constant volume, or partly in the one way
and partly in the other, or in fact in any way we can con-
ceive of. Tor, as an example, first change the air from
volume 7, and temperature 7, to volume 5, keeping the
pressure constant at #,; let the new temperature be r ; then
by the above the heat expended in internal work is K(r—7,).




The Steam Engine.

Next change the pressure from p to p,, the volume being
- S e L Al . 5 2
kept constant at 2, To do this we must add heat to
the gas, raising its temperature to r, ; the heat spent is
K,(ry — ), which is all internal work ; adding to this the
heat spent in deing internal work during the first part of
the operation, we get

Total heat spent in internal work = K (r —

=K, (73—7).

This result might be proved to be true for any other case
which might arise, by similar reasoning to the above, but it
may also be shown to be generally true from the following
considerations. : 1

Cydle of Operations.—1If a substance such as gas or water
be subjected to the action of heat, and be thus brought
through a series of changes of state, and eventually brought
back to its original condition, it is said to have undergone a
Cydle of Operations. During these changes of state heat has
been expended in doing two things only, viz external work,
and internal work of various sorts, such as altering the
temperature or the molecular condition of the substance.
When, however, the body is brought back to its original
condition, the sum of all the quantities of heat expcndéd in
doing internal work must be nil, because if during one part
of the operation heat has been thus expended, ‘when the
substance is brought back to its original condition this heat
is again liberated or rejected.

_i.\ow when the state of gas or air is changed by the
action of heat in any way whatever we can analyse the ope-
ration into three distinct sets of processes, viz.,

1st. Heating at constant pressure, the volume being
changed ; 2

2nd. Heating at constant volume, the pressure being
changed ; and
3rd. One or more cyclical processes.

Now during the latter processes no heat is spent in
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internal work, and during the two former the heat thus spent
is as we have seen = K (r,—;). Hence the proposition is
universally true that when the state of a gas is change« by
the action of heat, the quantity of heat spent in doing internal
work depends only on the difference of temperatures of the
two states, and is equal to the specific heat at constant
volume multiplied by this difference of temperatures.

From the above fundamental laws we are enabled to
reason on all the questions which may arise regarding the
thermodynamics of gases. -All that we require to know is,
how much heat is expended in doing external, and how
much in doing internal work. The total heat expended is
equal to the sum of these two quantities. When we possess
this information we can deduce all that it is requisite to
know regarding the pressure and temperature at every stage
of the process. Conversely if we know the pressure and
temperature we can calculate the external and internal work
done, and the expenditure of heat. The internal work is,
as has been proved above, always given by the expression
K,(ry—m,). The external work is different in different cases.
For instance, if during the changes of volume and pressure
sufficient heat be supplied to keep the temperature uniform,
we get a certain quantity of external work. If on the
contrary no heat be supplied we get quite another quantity,
and if more than enough or less than enough heat be sup-
plied to keep the temperature uniform, we get still different
quantities of external work done in each case.

The quantity of external work done is perhaps best
calculated and exhibited by means of diagrams. We have
seen (see page 44) how the varying pressure and volume of
a portion of gas can be represented by the ordinates of a
line GD, fig. 11. We also saw (see page 63) how work done
could be represented by the area of a rectangle. An exten-
sion of these methods will now be explained.

Let az, O, fig. 18, represent the initial, and &4, 4O the
final pressures and volumes of a portion of gas. Let the
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intermediate co-ordinates of the curve ab 1'epre‘sent the in'terw
mediate pressures and volumes while the gas is expapdmg,
Draw a line ¢, indefinitely near and p_:imllel.to the line ac.
While the volume of the gas has been increasing from O¢ to
Of, the pressure has been falling from r.a'c'to ef. .NOW the ex-
ternal work done is represented by the increase in mlumc cf,
multiplied by the pressure. The pressure in this case is not
uniform, but decreases as the ordlna‘tes of the curved line
ae. We must therefore multiply the increase of volume by
the average pressure. It is difficult to I'fnd the average
pressure when the line a¢ is curved ; but if we l:ch_cf as
being very near indeed to @ we may regard ae as being to

P
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Fig. 18

all intents and purposes a straight line, and in this case the
average pressure will be represented by the mean between

. ac+ef, k £
the two lines ac and ef, viz. 2 4 The external work

done is therefore represented by the expression ¢f X

actef,
2

But this expression also represents the area of the strip acfe,
therefore the external work done while the volume of the
oas is increasing from Oc¢ to Of is represented by the area
;zrj}. We can divide the whole figure abdc up into a series
of such strips, and the above reasoning would hold good for
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each of them. Now the sum of the areas of these strips
equals the area of the figure @lds; therefore when the
volume of a portion of gas increases from Oc to Od, the
pressure at the same time varying as the vertical ordinates
of the line a4, the external work done during the process is
represented by the area inclosed by the base line o7 repre-
senting the increase of volume, the vertical lines ac and &4
representing the initial and final pressures, and the line ab,
which represents the way in which the pressure varies.

The line @b may be anything that we please. For
instance, if during the expansion of the gas enough heat
vere supplied to it to keep the pressure uniform throughout,
it would be a straight line drawn through a, parallel to ov.
If enough heat were supplied to keep the temperature uni-
form, the line would, as has been proved, be an isothermal,
which for gases is a common rectangular hyperbola denoted
by the equation gz = constant.

If no heat were supplied and none allowed to escape, the
line would be an adiabatic, the equation for which will be
shown to be po¥ = constant. The symbol y which is of very
constant occurrence denotes the ratio I\-'

Most of the lines occurring in the theory of the heat
engine are denoted by the equation p" = constant, where
the index z varies according to the supply of heat. For
instance, the two preceding cases are special instances of this

equation in the first of which #=1, and in the second n=1,
The area of the figure addc depends, of course, upon the

special form of the line @4, and can be readily calcu
each case by those who are familiar with the processes of
analytical geometry.

We can now examine into the most important cases
that arise.

1. Heat expended in changing the state of a gas when
the temperature remains constant throughout the change.
The total heat expended == the internal work done + the

G
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external work done. The internal work in this case is nil,
because the temperature does not change, and consequently
the expression K, (r,—,) vanishes.

The external work is obtained by calculating the area of
the diagram aéde (see fig. 18). We assume that the initial
pressure and volume are represented respectively by the line
ac, drawn to scale so as to represent pounds on the square
foot, and O¢ drawn to represent cubic feet. Similarly the
lines 44 and Od represent the final pressure and volume to
the same scale. As the temperature is uniform the line ab
is a rectangular hyperbola, having for its asymptots OV and
01) .

and the area' of the figure abde=ac x Oc x log, Ood.

o

Also, as by the principle of the hyperbola acxOc=

bd x Od

! e ; 0d
. the area is also = 44 x Od x log, Oz

It will be noted that the logarithms used are hyperbolic.

A table of the hyperbolic logarithms of the most useful

numbers will be found at the end of the book (see page 498).

1 The area is calculated in the fnlinming manner ;

Let a &, fig. 18, be a curve of the equation.
P v =constant.
The area abde, is the sum of a number of small strips such as af.
By making these strips indefinitely narrow they may each be repre-
sented by the expression p x dw, where p represents the height, and
d v the indefinitely small width.
Letac=p,; Oc¢=v,and éd=p2,; Od= L/

Then the area=| "2 5.4,
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The ratio of the final volume O to the initial volume O is
called the ratio of expansion, and is generally denoted by the
symbol 7. Calling the initial and final volumes 7, and 2,
and the initial and final pressures g, and p, respectively, the
expression for the area becomes 2,7, log, », or p,v, log, »
foot-pounds. Also if r be the absolute temperature of the
gas, then, aswe have seen, p,v,=p.v,=cr,

the area=¢r log, » foot-pounds.
This quantity is, therefore, the expenditure of heat in
foot-pounds when a gas expands isothermally from volume
“ to 7y
2. Let the curve a, instead of being an hyperbola of the
€quation po=constant, be a curve of the form

Fv"=constant,
where # may have any value we like to assign to it except
unity. In this case the area! of the figure abdc

— P10 — a0y
7n—1

! The area is calculated in the following manner
Let ad, fig. 18, be a curve of the
2
To find the arc abd
Letac=p,; O¢
also et p be any pressure ordin

Then the ar
Now as pz

and substituting
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Let 7, be the initial, and 7, the final absolute tempera-
tures. The expression for the area becomes then

sty = o ik (ri—72).
n—1I n—1
As before, the heat expended=the internal work +the
external work
'
=K. {ro—7
Ky (ra—71) + e
Also, as has been proved before, c=K,—K, ;

R K,—K_ ¢
e e i R U e
n—1I i—1I n—1I

s g & s
». substituting this value of — (r)—7s) In the above
= N—1

equation, we get heat expended

=(r2—1‘1)([\'.:. -+ Ko 1\’) =7y *T])(—HI\"_I\’).
n—1 n—1

3. Let no heat be communicated to or taken from the gas
during the expansion. In other words, let the line ab be
an adiabatic curve.

The last expression for heat expended, viz. (ry—r;)

nkK, —K, :

( ;}:TL) must, when no heat is expended, equal zero.
Hence one or other of the terms within the brackets must
equal zero. We know, however, that (r, —r;) cannot equal
zero ; because during the expansion the temperature falls,
and therefore r, is less than r,. If, therefore, we make

. 7N
the other term, viz. ¥ 2 —o, we get
}{f‘
K,

R =Ko e ==t
The equation pz"=constant, becomes therefore pz =
constant for the case of adiabatic expansion.
As no heat is supplied to the gas, the external work

o
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must be done at the expense of the heat already existing in
the gas, consequently the temperature falls, and the internal
work done is of a negative character

The temperature at the end of the expansion may be
found in the following manner, using the same symbols as

before. We have ¢ry= £,2), and ¢rqa= 2,7.
1 211 ) —

Now p,2,Y=p,v5"  Pals

which, as y=1'408 becomes r

an expression which, when the initial pressure and volume
and the ratio of expansion are given, enables us to find the
final temperature.

Supposing in all the above examples that the gas were
compressed back to its original condition, the varying pres-
sures and volumes could be represented graphically, just as
in the case of expansion. If the conditions of compression

were the same as those of expansion, the same curve would

represent each operation. For instance, if the temperature
were maintained constant the curve would be an hyperbola
If no heat were added or abstracted, the compression curve
would be an adiabatic line, and the temperature would rise
as the compression continued. If the conditions of the
compression were different to those of the expansion, the

curve would also be different.

THE IpEaALLY PERFECT HEAT ENGINE

We are now in a position to 2xamine into the theory and
conditions of working of the ideal heat engine referred to at
the beginning of the chapter. This engine requires to be

made of materials which do not exist in practice ; the only
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object in discussing it is therefore to separate the action of
the heat on the gas from the accidents of its surroundings,
so that we may be enabled to ascribe to the surroundings in
actual engines their proper influence. The efficiency of the
action of this engine does not depend in any way upon the
mechanism by which its motion may be converted, but only
on the manner in which it receives and rejects heat. We will
therefore, for the sake of simplicity, suppose it to consist of

receive it from the gas. The bottom of the cylinder is, on
the contrary, supposed to be made of a substance which
though it has no capacity for heat itself, is nevertheless a
perfect conductor of heat. C is a source of heat having the
absolute temperature 7. D is similarly a body having a
temperature ry less than 7, which is used for the reception
of the heat rejected by the gas. B is a cover made of
the same material as the sides of the cylinder which, when
applied to the bottom AP, renders it perfectly non-con-
ducting like the rest of the cylinder.

Let the piston commence to move forwards from the
position 1. To prevent the temperature of the gas from
falling, apply the source of heatC to the end of the cylinder.
As this end is a perfect conductor, heat will flow into the
gas and maintain the temperature constant. Let the co-
ordinates of the point 1’ with reference to the lines OV, OP
denote the initial volume and pressure of the gas. So long
as the body +, is kept in contact with the cylinder end, the
gas will expand isothermally, and the variations in its pres-
sure and volume will be denoted by the co-ordinates of the
hyperbolic curve 1'2. When the piston has reached the
point 2, the exact position of which will be presently deter-
mined, withdraw the body r, and apply the non-conducting
cover B. The gas will now continue to expand adiabatically,
as represented by the curve 2’3’. During this part of the
expansion the temperature will fall, and the point 2" must
be so chosen that the temperature will, when the piston
has reached the end of its stroke, have fallen to that of the
cold body, viz. r,, The piston must now be caused to
return in the opposite direction. As the engine is single-

a working cylinder, connected by means of a piston and
connecting rods with a crank.

Let AP, fig. 19, be the working cylinder which contains
etwee o s AP he Dict 1 T
th_\‘\.un the {.ﬂd..\l .'amAl the piston when at its initial
position 1 a certain quantity, say one pound, of gas at the
temperature r,.  The space in front of the piston is sup-
posed to be a perfect vacuum, so that the engine is singl

(= frns o

acting, this can only be done by the application of forces
external to the engine. The piston when returning will
compress the gas and do work upon it. To prevent the
e temperature from rising apply the cold body D to the end

acting. The sides il i
ting. The sides of the cylinder are supposed to be made

of an ideal substance whi . i oy : F
an ideal substance which can neither give heat to nor isothermally, at the temperature r,, along the hyperbolic

of the cylinder. The compression will then take place
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curve 3'4.  When the piston has reached the point 4—the
position of which will be presently determined—the cold
body must be withdrawn, and the non-conducting cover
reapplied to the end of the cylinder. The compression of
the gas must then be continued, and as no heat can escape
it will take place adiabatically along the line 4't’. During
this part of the compression the temperature will rise, and, if
the point 4 has been rightly chosen, it will reach r, when
the piston has returned to its original position.

During the first operation the gas has been receiving
heat, and doing external work. which is represented by the
area of the figure 1’ 2’ 9, ;. During the second operation
the gas has received no heat from without, but, at the
expense of the heat which it already possessed, it has done
external work, represented by the area 2’ 3/ 77, 5. During
the third operation, work has been done upon the gas,
measured by the area 3' 4’ 2, #;, and the gas has rejected
heat into the body D ; and during the fourth and last
operation work has been done upon the gas represented by
the area 4’ 1’ 2| 7,, with the result of restoring it to the
original pressure, volume, and temperature. We see there-
fore that the work done by the gas exceeds the work doneupon
the gas, by the difference between the sum of the two first,
and the sum of the two last-mentioned areas. This difference
is equal to the area 1’ 2’ 3’ 4/, which therefore represents
the effective work done by the engine.

Caleulation of the cfficiency of perfect heat engines.
We must now calculate the heat expended, and the work
done. During the first operation, the heat supplied to the
gas is all expended in doing external work : for no internal
work is done, as the temperature of the gas is not raised.
The heat supplied therefore in foot-pounds is equal to the

/

area 1' 2' 7, v;=p' v log»r =¢r, log.7, where 7 is as

before the ratio 2 During the second operation no heat
"

is supplied to the gas. During the third operation, the gas
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rejects heat equal in amount to the work done upon the gas

=c¢r; log.7, where 7 is the ratio =® which will be presently
g 1087, i
proved:;'?. During the fourth operation the gas rejects
7 :
no heat. The total heat supplied therefore =<7, log.7, and
the total heat rejected = ¢r,log.7.

The work done can be calculated in two ways. We may
either compute the area 1’ 2’ 3’ 4, or we may make use of
the principle of the cycle of operations. For since the gas
returns to its original condition no heat is spent in doing in-
ternal work upon thé gas and the heat expended must there-
fore equal the external work done, plus the heat rejected.

Consequently the external work

=c¢ry log.#—¢rg logr=(r,—1,) ¢ log.7.

The efficiency of the engine is the ratio of the work

done to the heat expended

. ~(ry—rg) clogr r—
= __T-_L-i_ .Il)g,,f‘. o 7.-|

That is to say the efficiency of the engine is the ratio of
the difference of temperatures of the sources of heat and of
cold to the temperature of the source of heat ; the tempera-
tures being reckoned in absolute measure.

The efficiency of the engine can only become equal to
unity, i.e. the (‘:n;r_inc can only turn the whole of the heat
:'411}1]‘|1ic(l to it into mechanical work, when the temperature
ro=0 ; that is to say, when the cold. body has the absolute
zero of 1Cm]:cmmrc': a result which is of course unattain-
able,

On the other hand, the nearer to unity the fraction

ILT72 hecomes, the greater is the efficiency of the engine.
TW ; -
This result can only be attained by making r;—r, as
nearly as possible equal to ;. To do this we must make

r, as large and r, as small as possible.




