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6,211,100__ “
o 025,110 1bs.  Also as the diameter of the bore

$ six Inches, its area is 28-27 square inches, and the average

pressure per squ 0 i
I Juare inch= b?i_" 21,970 lbs., or a little

less than ten tons,

: Similarly take the case of the steam engine given in Ex.
(5) p- 153. The moving parts which weigh 400 Ibs. attain a
maximum velocity towards the mide lle of the stroke ‘
is reduced to nothing at the end of the stroke. Required
to find the work whicl h the moving parts are capable of 1domrr
after having attained their maximum velocity, the length of
stroke bn_m'f 15 feet and the number of ruol,uuuns 200 per
minute,. The path described by the crank- pin in ngh

rev.=1i= ft.=5'236 ft. and the v
elocity of the crz
per second : s

, Which

5'236 X 200

6o
The energy stored up in th‘, mmmfr m

=175 ft.

ass at this velocity

a —,

is obtained from the formul
| ’|‘l‘)‘
400X 175 X175 p
— — ==I1002
B 1902 foot-pounds.

This energy is given out while the piston

is tr
half the stroke,! i

. ten inches, and is consequently equiva-
lent to a pressure of 1992 X 12
a pressure of -° —~=2282"4 lbs.. acti
] = 22824 lbs,, acting through
this space. As the area of the piston is 785, 4 square inches
the energy stored up in the moving parts is equivalent to
! 282
an average pressure of 22> %—20'06 Ibs i
- 38 — 2 ) o J ara
- =t 9’06 1bs. per square inch
during the latter half of t]n stroke.
1 Thi ta - 1
This statement is only true when the conne cting rod is infinitely

t is also true for finite connec ting
r rods if taken to appl 3
mean of the forward and bacl sl

long.

k strokes.
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Motion of bodies tn circles—In all the cases hitherto
considered, the motion has been in a straight line, but in
dealing with the mechanics of the steam engine cases of
great importance occur in which the motion takes place in
a circular path. Such for instance is the motion of the fly-
wheel, which is a wheel having a heavy rim. It is ;melly
keyed to the crank axle of the engine, and is used for
modifying the effects of any irregularity either in the driving
power or in the resistance to be overcome. When, for
instance, the driving power is in excess of the resistance to
be overcome, the surplus is expended in increasing the
velocity of the fly-wheel ; and, zice versd, when the resistance
is in excess of the driving power, the energy stored up in
the fly-wheel is expended in helping to overcome the
resistance, during which opuatmn its velocity is lowered.

The consideration of the motion of bodies in circles is
somewhat complicated by the fact that different parts of the
bodies may be at diffe-
rent distances from the
centres of the circles in
which they are moving,
and as the velocities
necessarily vary directly
with the distance from
the centre, so also do
the quantities of motion.

Take, for instance, such
a body as a fly-wheel re-
presented by fig. 27. It
is composed of a rim, a
set of arms, and a central
boss. The velocity of
the rim is many times greater than that of the boss, and
again the velocity of the exterior pmtlon, a, of the rim is
greater than that of the interior ]mmon b ”‘H"L‘“Uk‘“'ll)'
it is usual in calculations respecting fly-wheels, to consider
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the whole of the weight as concentrated at a certain distance
from the centre, where its effect will be the same as the sum
of the effects of the various portions of the real wheel, each
acting at its own distance from the centre. It is very often
a complicated calculation to determine this distance with
accuracy, but for all practical purposes we shall be suffi-
ciently correct if we take the mean radius of the rim as the
distance at which the whole of the weight is supposed to be
concentrated.

The laws of motion, as already stated and illustrated,
apply equally when the direction of the motion is in a
circle. Thus, for instance, if a weight 2 move round a
centre with a velocity 7, the energy stored up in it:?‘:‘ﬂrz. For

“5
a given number, N, of revolutions per second the velocity
v varies with the length of the radius 7, and equals 277N,
Substituting this expression for # in the above equation we
have wyntr N2

Energy= ;

2o
-5

and consequently the energy varies as the square of the
radius, that is of distance of the weight moved from the
centre. A fly-wheel, therefore, of a given weight, the mean
radius of the rim of which is five feet in length, is rather
more than twice as efficient as a reservoir of energy as if

its mean radius were 3'5 feet.

EXAMPLE (6).

How much energy is stored in a fly-wheel of 5,000 lbs, weight, the
mean radius of the rim of which is 4 feet,
00 per minute? N.B.—The whol

and the number of revolutions
e of the weight is, for simplicity, sup-
posed to be concentrated at the end of the mean radius,

2.7.4.60

The mean velocity per second, z= 2513 feet.

"’.7:' _ 5,000 x 631'5

The energy =-
2 h_;q_

= 49,029 foot-pounds,
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EXAMPLE (7)-

A fly-wheel weighs 5,000 1bs. and the mean rim moves \\'1LIE a 111{:1;1-
mum velocity of 35 feet per second. On account of the mcqua‘!n) uft}u
force transmitted to the crank, the fly-wheel has, durmglill ‘P“”l‘l’” 2 ‘LM

snergy ; what will its velocity be
stroke, to expend 9,000 foot-pounds of energy ; what wi y
after having done so?
i 5,000 X 35 ¥ 35 _ 5,108 foot-pounds.
c 3 1M ENCIgy == e ..93,
The maximum energy G
After expending 9,000 foot-pounds, the energy remaining
= 95,108 — 9,000 = 86,108 foot-pounds.
. 26,108,

20

“5>
D= tﬁ'IOhfLE‘;‘.’: 1109.

5000

*. 9=133'3 feet per second,

being a loss of 17 foot per second from the maximum velocity, which is
2 7 %l T
equivalent to a variation of 4°8 per cent. from the maximum or of 24

per cent. from the mean velocity.

Centrifugal force.—By the first law of motion a body will
continue to move in a straight line unless compelled to do
otherwise by impressed forces. When a body moves in a
circle it is, however, changing its direction from Instant to
instant, and consequently must be continuously under the
influence of some force. Suppose this force were removed,
the body would no longer move in the circle, but would fly

off in a straight line at a tangent to the circle from the point

at which the force was removed. This is true ott any and
every point on the circumference, from which it is evident
that the direction of the force which compels the body to
move in the circle is always at right angles to the tangent at
any point, and consequently always 1_:01}115‘10 th‘.j centre. This
force, which keeps a body moving in a circle, is, on account
of its direction, always called the centripetal to‘rrc. I'he
resistance which the mass of the body opposes to l_n.:mg mm'cd
towards the centre, and which by the third law of motion is
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equal to the centripetal force, is called centrifugal force. This
force may be measured as follows.

Let a body be supposed to start from the point a, fig. 28,
and move in the circle represented, with the uniform velocity
v feet per second. If the centripetal force F were removed,

the body would during a very

b short time # move in a straight

line over the space ab. By the

second law of motion the effect

of the centripetal force would

therefore be to cause the body

to move over the space ¢ during
the time £

By a well-known proposition

in Euclid &¢ x 6d = ab®. Calling

be=x we have x (27+x)=al?

As ab is supposed to be very small, and consequently also
b, we may neglect 2? and put ab=ac.

serr=ac o=

r
Also, since the motion in the circle is uniform, and since ac¢
is the space moved in the time 4 we have

{{2;.'.!

2y

ac=a. . Xt=

Calling the weight of the body 2, and f the velocity which
the centripetal force F can generate in 2 in one second, we
have

We have next to express £ in terms of  and ». Now x
is the space &c which the body would move over from rest
under the influence of the centripetal force in time # secs.
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Therefore the veloeity at the end of time #'=2x per '

25X

=___ per sec.
b4
Therefore the velocity which would be acquired at the
end of one second is
2%

= a

and substituting the value of x as given above, we have

This important expression which is constantly made use
of gives the centripetal force in terms of the weight of the
body, its velocity, and the radius of the circle in which it
moves.

If the velocity is given in revolutions per second, », we

have
V= 2mIn,

and the above formula becomes

o
o

= on?r ¥ 1°220.
If the revolutions are given as so many per minute, N, we

have N
n—=—
6o

A F=w (612)2 r X 1°226.

= wN?7 X 0'00034.
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CONVERSION OF THE PRESSURE OF STEAM ON THE PISTON
iNTo RoraTive EFFECT ON THE CRANK AXLE.

One of the most important applications of mechanical
science to questions relating to the steam engine is, to
ascertain the exact effect which the pressure of the steam on
the piston has in causing the crank to rotate. In dealing
with this question there are several points to consider :—

First of all, in the great majority of cases the pressure
of the steam varies considerably at different parts of the
stroke.

Secondly, this variable pressure is transmitted to the
crank-pin through a connecting rod, which is constantly
changing its angle of inclination to the axis of the
cylinder, as it swings between its extreme positions on either
side of this axis.

Thirdly, the varying pressure transmitted through the
connecting rod meets the crank at an angle which is
constantly changing. The pressure may be resolved at the
crank-pin into two components, one in the direction of the
crank, and the other at right angles to it, i.e. tangential to
the circle described by the crank-pin. Of these the latter
alone produces any turning effect on the crank, the former
producing merely pressure on the bearing. The tangential
component, or turning effort on the crank, as it may be
called, varies in value continually, for it depends not only on
the net pressure of the steam on the piston, but also on the
varying angles of inclination of the connecting rod, and the
crank.

Fourthly, the effective turning effort on the crank
depends not only on the above-mentioned variables, but

also on the weights and velocities of the reciprocating parts,
viz. the piston, and piston and connecting rods; for, as we

have seen before, p. 153, Ex. 5, a considerable proportion of
the steam pressure may, during a portion of the stroke, be

Twisting Moment on Crank Shafis.

absorbed in merely imparting motion to the reciprocating
parts, and may consequently never reach the crank-pin at
all ; while on the other hand these parts as they come to rest
may impart a considerable pressure to the crank-pin quite
independently of the pressure due to the steam on the
piston.

The problem will be investigated in the first instance
freed from all possible complications.  The pressure of the
steam will be supposed to be uniform throughout the
stroke. The connecting rod will be taken to be of infinite
length, in other words 1t will be supposed to act always
parallel to the axis of the cylinder. Lastly, the moving
parts will be imagined to be without weight, or their velocity
may be supposed to be so small that no appreciable part of
the steam pressure is absorbed in imparting motion to them.

In the next instance the pressure of the steam will be
supposed to vary during the stroke ; then the angular vibra-
tion of the connecting rod will be taken into account, and
finally the effects of the weights and velocities of the reci-
procating parts will be considered In every case graphical
methods will be employed, in preference to analytical, to
investigate the problems.

In the diagram, fig. 29, let the circle ABC represent
the path of the crank-pin.  Let AC represent the direction
of the axis of the cylinder. Let the pressure of the steam
on the piston throughout the stroke be P Ibs. per square
inch, and let the scale of the diagram be such that the
length of the radius OA represents P lbs. The reason for
so doing will soon become apparent. First assume that the
crank lies in the position AO. The pressure transmitted
through the crank at this moment acts radially through the
centre O, and has no effect whatever in turning the crank.
The same is true when the crank occupies the position OC
hence the two positions OA, OC are called the dead centres.
Next suppose the crank to occupy the position OB, at
right angles to the dead centres. As the connecting rod is

M2
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supposed to be of infinite length it acts in the direction
B'B parallel to AC, and consequently the whole of the force

Fig. 20.

transmitted has the effect of turning the crank. The arm of
the lever with which the force acts is BO, viz. the radius of
the crank, and the turning moment per square inch area of
piston=P x BO. The same is true for the position D dia-
metrically opposite to B. Hence we see that while the
crank is at A and C the steam pressure has no effect whatever
in turning it, at B and D, on the contrary, its whole effect is in
turning. Atany other pointin any of the four quadrants the
force of the steam is partly expended in turning the crank,
and is partly transmitted through the crank as mere pressure
on the main bearing at O.

Take, for instance, the point E. At this position, the
force acts with a leverage measured by the length of the
perpendicular let fall from the point O on the direction
of EE/, viz. E"O=EF=EO sin ¢, and the turning moment
consequently

=P x EO sina.

The tangential force which acts at the end of the crank,
and tends to turn it round, as distinguished from the
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turning moment is got by dividing the above quantity by the
length of the crank arm. Calling this force P, we have
p —PXEOSina=sz—ina.

= £O s

This expression is equally true for any point on the
circumference of the circle. Hence, we see that the tangen-
tial pressure on the crank, when the connecting rod is
infinitely long, is equal to the pressure on the piston
multiplied by the sine of the angle of inclination of the
crank to the axis of the cylinder.

The same result may be got by resolving the force P at
the point E, into two components, viz. one acting radially,
ER, and the other tangentially, ET. Of these, ER merely
produces pressure on the main bearing, while ET alone
tends to turn the crank.

Now, ET=EE'sin EE'T.

Also, EE'=P=EQ, the scale of the figure being such
that EO represents P.

And the angle EE'T=a, because E'T is parallel to EO
and the angles ETE’ and EFO are both right angles. There-
fore the two triangles are equal, and ET=EF=P sin a.

Thus we see that, though the pressure on the piston may
be perfectly uniform throughout the stroke, the turning effort
on the crank is very variable, and begins by being zero at
the dead centre, increases to a maximum when the crank
is at right angles to the axis of the cylinder, again decreases
to zero by the time the other dead centre is reached, and so
on during the return stroke, or second half of the revolution.

It may be here noted that it was this fact, that the
tangential pressure on the crank is always less than the
pressure on the piston, except for two positions of the crank,
which led old writers on the steam-engine into the blunder
of asserting that there is a loss in the employment of the
crank as a means for converting reciprocating into circular
motion. We now know, by the definition of work, that
there is no such loss ; for, although the average tangential
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pressure on the crank is much less than the pressure on the
piston, on the other hand, the path traversed by the crank
in a revolution is greater than that traversed by the piston in
a double stroke, in the ratio of the circumference of a circle
to its double diameter, i.e. 2 : # =1 : 1°57079.

By the principle of work, the lesser average pressure on
the crank, multiplied by the path described by the crank-
pin, must equal the greater pressure on the piston multi-
plied by the space traversed by the latter.

Graphic representation of the langential effort on the crank-
pin.—The variable tangential pressure on the crank-pin

|
G

throughout a revolution can be very well shown, graphically,
by means of a diagram. Let the semicircle ABC (fig. 30)
represent the path described by the crank-pin during half a
revolution. Draw Oa to represent the uniform pressure on the
piston to scale, and with centre O and radius Oa, draw the
inner semicircle abe. Divide the circumference of this semi-
circle into 10 equal divisions, for thesake of convenience, and
draw radial lines through each point of division, intersecting

the semicircle ABC. Then, at each position of the crank
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represented by the points of division of the outer semicircle,
the tangential force on the crank is equal to the pressure on
the piston multiplied by the sine of the angle of the crank.
As aQ represents the pressure on the piston, the tangential
forces are represented in magnitude by the perpendiculars
1, 2, 3 4 5 &c. let fall from the points of division of the
inner circle on the line 20. On the prolongations of the
radial lines beyond the outer circle set off the lines 1/, 2, 3/
4, 5, &c., equal, respectively, to 1, 2, 3, 4, 5. Join the
extremities of these lines by the curved line ADC. Hence,
ADC represents, graphically, the tangential pressure at every
position of the crank ; since, for any position, we have only
to draw a radial line through the point in question, and the
piece intersected between the outer circle and the curved
line will represent the tangential force. If the tangential
pressure were uniform all round the circle the curved line
ADC would be a circle concentric with the path of the
crank-pin. Its deviation from concentricity is the measure
of its want of uniformity. The average tangential pressure
on the crank-pin may be represented by drawing the circle
EFG from the centre O, the line EA which represents this
average pressure being obtained by the following proportion

EA :aDorPii2: x

When the engine is running at a uniform rafe of speed,
this average langémial pressure on the crank, is, of course,
exactly equal to the resistance which the work to be done
offers to the motion of the crank-pin ; for, if the resistance
were greater, the speed would be reduced, and if the resis-
tance were less, the speed would be increased, and In
neither case would the engine be running uniformly. Con-
sequently, this average tangential pressure circle may
equally well be called the Resistance Circle.

The diagram (fig. 30) only shows the tangential pres-
sures for one half of the revolution, but the other half is, of
course, a precisely similar figure, and need not, therefore, be




