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or 18,543 Ibs. As in § 68, Fig. 25, this beam action of the post
must be neutralized, before the diagram can be drawn, as
these diagrams take no account of bending moments, for
which see Chap. IX.

We therefore apply at B C the imaginary horizontal force
bc = 5900 lbs., opposed to the direction of the reaction, and
leaving only ae, the vertical component, which is balanced by
the post; at CD we apply cd = 18,543 1bs.; and at EF, we
add ef' =12,643 lbs. The sum of these three imaginary hori-
zontal forces being zero, the stresses in the truss are not dis-
turbed. The same steps must be taken at P, the horizontal
forces mm, no, and op being obtained by the same process
from the horizontal component po of the reaction pa.

The load line therefore finally becomes bedefghikimnop,
the force D E being shifted laterally as shown, and ¢k being
the resultant of ¢j and jk The stress in D Q is readily ob-
tained by drawing deg. Then the point D of the post gives
the figure acd g r a, determining the stresses in the upper
part of the post and the brace R A. The remainder of the
diagram presents no difficulty.

The column must be designed to resist the large bending
moment to which it is liable, as well as the thrust ¢». For
bending moments, ete., see the next chapter, and also Part II.
As this structure is supposed to be open below, the lower
member should be adapted fo resist such compression as may

come upon it from the tendency of a gust of wind, entering _

beneath, to raise the roof.

CHAPTER IX.
BENDING MOMENT AND MOMENT OF RESISTANCE.

78. Load between Joints.—Having treated of the action
of external forces upon a great variety of trusses, we propose
now to investigate the graphical determination of the bending
moments which arise from the load on certain pieces, and of
the stresses due to the moments of resistance by which the
bending moments must be met.

To recapitulate some statements of earlier chapters :—1In
case the transverse components of the load upon a portion of
a rafter, or other piece of a truss, are not immediately resisted
by the supporting power of some adjacent parts, or, in other
words, unless the load on a structure is actually concentrated
at the several joints, such transverse components will exert a
bending action on the portion in question, and the additional
stress thus caused in the piece may be too great to be safely
neglected. Further, in case the piece makes any other than a
right angle with the line of action of the load, or has an
oblique foree acting upor i, the stress along it, given by the

" diagram, will be less than the maximum, and will generally be

the mean stress. Lastly, in case a piece is curved, a bending
moment will be exerted upon it by the force acting along the
straight line joining its two ends, this bending moment being
a maximum at the point where the axis or centre line of the
piece is farthest removed from the line drawn between its ends,

7). Example.—To illustrate the former statements by a
simple example :—Suppose the rafters A C and BC, Fig. 81,
to be loaded uniformly over their whole extent. Let us
assume, in the first place, that the tie AB is not used, but
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that the thrust of the rafters is resisted by the walls which
carry the roof. Consider the piece AC. Since the roof is
symmetrically loaded, the thrust at C must be horizontal, and
therefore the reaction which supports this end of A C will lie
in the line CE. The centre of gravity of the-load on A C is at
D, its middle point, and the resultant of the load will, if pro-
longed upwards, intersect CE at E. Since the rafter is in
equilibrium under the load and the reactions at C and A, the
direction of the reaction of the wall at A must also pass
through E (compare Figs. 3 and 4). Draw A E and prolong
EDto & Let EG be measured by such a scale as to repre-
sent the load on A C. The three forces meeting in the common
point E will then be equal to the respective sides of the tri-
angle AEG, drawn parallel to them ; and, since A G equals
E C, the reactions at A and C will be AE and C E.

We now decompose AE and CE into components along
and transverse to the rafter, and have A F, direct compression
on the rafter at A, and CF, direct compression at C. The

compression on successive sections of the rafter increases from '

C to A by the successive longitudinal components of the load.
The two components AL and C Q, which, combined with A F
and CF, give the original forces AE and C E, are analogous
to the supporting forces of a beam or truss, and through them
we obtain the bending action of the load on this rafter. If,
now, the rafters simply rest on the wall, being secured against
spreading by the tie A B, the reaction A Ewill be replaced by
the two components, AL the upward supporting force of the
wall, and A G, the stress exerted by the tie; these two forces
give the same stress and bending moments on the rafter as
before.

80. Comparison with Diagram.—Consider, next, the
method by diagram. The load is now to be concentrated at
the joints, and in place of E @&, we shall have AN and (B4
each one-half of the load on one rafter. Lay off 1-2 to repre-
cent the total load on the roof, make 1-3 equal to AN and
1-4 to AT, and draw3-5 and 4-5 parallel to the rafter and fie.
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A G will equal 4-5, and therefore the stress in the tie is given
correctly ; but, since AI—AN = AK = 3-4, 3-5 equals AD,
and this is the stress given by the diagram as existing from A
to C, a supposition which is true when the load is actually
concentrated at the joints, but is not true for a distributed
load. But AD, or 3-5,is equal to one-half of AF | FC, and
is manifestly the value of the direct compression at the middle
point D of the rafter; all of the load from A to D was, when
we drew the diagram, considered to be concentrated at the
joint A. To 3-5, or AD, we should add DF, to obtain the
correct compression AF at the lower end; therefore a piece
which supports a distributed load should have a compression,
equal to the longitudinal component of so much of the load as
is transferred to its lower end, added to its stress obtained
from the stress diagram. The amount to be added, however,
is generally insignificant as compared with the truss stress.

The load on the principal rafters of a roof-truss is usually
concentrated at series of equidistant points, by means of the
purlins, or short cross-beams which extend from one truss to
another, and which are themselves weighted at a series of
points by the pressure of the secondary rafters. These second-
avy rafters, when employed, carry the boards, ete., and thus
have a uniformly distributed load. Itis only in cases where
purlins rest at other points than the so-called joints that
bending action occurs in the principal rafters, or in very light
trusses where the boards are nailed directly to the main rafters.
We need to determine the maximum bending moments on
such main rafters, on the purlins and secondary rafters, in
order to intelligently provide sections sufficiently strong to
resist them.

81. Bending Moment.—TIt will first be well to explain
what bending moment and moment of resistance are. A horizon-
tal beam A B, Fig. 32, supported at its two ends, when loaded
with a series of weights, distributed in any manner, is in
equilibrium under the action of vertical forces, the weights
acting downwards and the two supporting forces acting up-
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wards. These supporting forces are easily calculated by the
principle of the lever, or by taking moments as explained in
$% 26 and 36. They will be found graphically presently. As
the beam is at rest, there must be no tendency to rotate, and
therefore, if we assume any point for an axis, the sum of the
moments, that is of the products of each force by its distance
from the axis, must equal zero. A moment which tends to
produce rotation in one direction being called plus, one which
acts in the other direction is called minus. If then we pass
an imaginary vertical plane of section through any point in
the beam, such as E, the sum of the moments on one side of
the plane of section must balance or equal that on the other.
The sum of these moments on one side or the other is called
the bending moment : the reason for the name will soon be
evident.

82. Moment of Resistance.—These bending moments on
opposite sides cf the section in question can balance one
another only through the resistance of the material of the
beam at the section where stresses between the particles are
set in action to resist the tendemcy to bend. The beam
becomes slightly convex, and the particles or fibres on the
conves side are extended, while those on the concave side are
compressed. Experiment shows that, for flexure within such
moderate limits as occur in practice, the horizontal forces
exerted between contiguous particles vary uniformly as we go
from the top of the beam to the bottom, the compressive
stress being most intense on the concave side, diminishing
regularly to zero at some point or horizontal plane, called the
neutral axis, then changing to tension and increasing as we
approach the convex side. The two sets of stresses reacting
against each other may be represented to the eye by the
arrows in the vertical section marked E'.

Since all of the external forces are vertical, these internal
stresses, being horizontal, must balance in themselves, or the
total tension must equal the fotal compression, whence it
follows that the neutral axis must pass through the centre of
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gravity of the section. To make this fact clear, let one con-
sider that the distance of the centre of gravity from any as-
sumed axis or the position of the resultant of parallel forces
is found by multiplying each force or weight by its distance
from that axis and dividing by the sum of the forces. Now if
we attempt to find the centre of gravity of a thin cross-section
of this beam, and take our axis through the point where the
centre of gravity happens to lie, the sum of the moments of
the particles on each side will balance or be equal, and we can
see that the distance of each particle from the axis will vary
exactly as these given stresses; hence the neuntral axis must
lie in the centre of gravity of each cross-section.

As these stresses are caused by and resist the external bend-
ing moment on each side of the section, the moment in
the interior of the beam, made up of the sum of the products
of the stress on each particle multiplied by its distance from
the neutral axis, or indeed from any axis, and known as the
moment of resistance, must equal the bending moment at
the given section. As the tensions and compressions on one
side of the plane of section tend to produce rotation about
the neutral axis in the same direction, their moments are
added together.

83. Formula for Bending Moment.—The bending mo-
ment, then, in the beam A B of the figure, at any section E,
will be, if P, is the supporting force on the right, W,, W,
ete., the weights,

P,. BE-W,.CE—W..DE;

or, in general, if L equal the arm of any weight, and = be
the sign of summation,

M (the bending moment) =P;. BE— 2 W . L,

it being remembered always to take only the weights between
one end and the plane of section.

The moment of resistance, being numerically equal to the
bending moment, is therefore equal to the above expzession,
and the maximum stress at any section can thence be
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determined, or the required cross-section to conform to the
proper working stress for the material. The weights on one
side of the section may all be considered to be concentrated
at their common centre of gravity, or point of application of
their resultant, so far as the bending moment at that section
is concerned ; the load when continuous is always so taken.

If the reader will take a special case, and, having a beam
of known length with weights in given positions, will first
find the supporting forces, and then calculate the bending
moment on either side of a plane of section, he will obtain
the same result with opposite signs, showing that the two
moments balance one another. The numerical result, being
the product of two quantities, is read as so many foot-
pounds or inch-pounds, according to the units employed. As
the stress in any material is usually expressed in pounds on
the square inch, the latter units are the better.

84, Equilibrium Polygon.—Let us suppose that the
weights which, in Fig. 32, rest upon the beam are transferred
to a cord at the several points ¢, d, £, and g, vertically below
their former positions C, D, F, and G, the cord itself being
attached to two fixed points @ and b, at equal distances verti-
cally from A and B. Let us further suppose that the amount
of the weight at G- alone is at present known. This cord can
be treated as if it were a frame. Taking the joint g into con-
sideration, draw 54 vertically, equal to the weight, then 5-0
parallel to ag and 4-0 parallel to gf. The two lines just
drawn must be the tensions in g and gf. For the joint £, ¢
1s now known; therefore 4-3 parallel to the weight and 3-0
parallel to fd will determine the other forces at £, The
side 4-3 must equal the weight at F, and must lie in the same
straight line with 5-4; for this triangle was constructed on
the side 4-0 previously found. Continuing the construction
for the successive anglesof the cord, we find that a vertical
line 5-1 will represent by its several portions the successive
weights, and that the tensions in the different parts of the

.cord will be given by the lines parallel to these parts, drawn
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from the points of division of the load line, and all converg-
ing to the common point 0. Draw 0-6 horizontally, and
hence parallel to ab; this line will be the horizontal com-
ponent of the tension at any point of the cord, and is here
denoted by H. The form assumed by the cord for a given
distribution of weights is called the Egquilibrium Polygon, as
the system will be in equilibrium or at rest; and it is also
called in mechanies a funicular polygon. Students of mechan-
ics will recall the fact, so easily shown here, that the hori-
zontal component H is a constant quantity at every point.

85. Reactions.—If now the cord, instead of being fastened
to fixed points at o and b, is attached to the two ends of a
rigid bar a b, and the whole system is then suspended from A
and B by two short cords, its equilibrium will not be dis-
turbed. The pull 5-0 at o will be decomposed into 0-6, com-
pression in ba, and 6-5, tension along aA. Similarly at
b, 0-1 will be decomposed into 1-6 along #B and 6-0
along a b. 6-0 balances 0-6, while 1-6 and 6-5 must be the
supporting forces at b and a. As the supporting forces do
not depend upon the form of the frame or truss, the reac-
tions which carry the beam at B and A must be these same
quantities.

86. Equilibrium Polygon, General Construction.—We
may make the construction more general by drawing an equi-
librium polygon from any point @', vertically below A, and find-
ing the outline of a cord which will sustain in equilibrium the
given weights at the given horizontal distances from A. Lay
off the weights in succession from 5 to 1; assume any point
0’ arbitrarily and connect it with all the points of division of
the load line. Begin at o/, and draw a'¢’ parallel to 5-0',
stopping at the vertical dropped from G; then draw ¢/’
parallel to 4-0’, etc., and finally ¢'d’ parallel to 1-0’. That
this will be the figure of a cord suspended from o’ and &’ fol-
lows from the preceding demonstration. Connect b’ with a';
a line, parallel to b'e/, from 0’ must strike the same point 6
which the line from 0, parallel to ba, touched. The sup-




