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porting forces, if b'a’ exists, will be 1-6 and 6-5 as before;
but 0'—6" will be the horizontal component H' for this cord.
87. The Equilibrium Polygon Gives Bending IMo-
ments.—If we turn again to the first cord, attached at ¢ and
b, the piece ab being dispensed with, the moment of all the
forces on one side of any point, such as ¢, must be the bend-
ing moment there ; but as the cord is perfectly flexible and at
rest, this bending moment will equal zero. Using, instead of
1-0, its two components 1-6 = P, and 6-0 = H, multiplying
each force by the perpendicular distance of its line of action
from e, calling the combined moments of the weights on one
side of e = W . Li as before, and denoting the tendency to pro-
duce rotation in opposite ways by opposite signs, we shall
have, for moments of forces on the right of, and around e,

P .0k—=ZW.L—H.ek=0,

H.ebh=P,.0Fk—=W. L.

But P,.bk=P,. BE,and P,. BE — S W.L = M, the bend-
ing moment at the section E of the beam, as shown in & 83 :
therefore :
M=H.ek
By a similar analysis of the lower cord we have
P, . ik —ZSW.L=(6-0).¢1=M.
From similarity of triangles le'k’ and 6" 0’6, we have
S e (I S
or
(6-0) . e'l=(6'-0) . 'k
therefore
M=(6-0). ¢k =H.cF,

as in the other case. The solution is therefore general, and
the bending moment at any section of the beam equals the
product of H from the stress diagram 015 by the vertical
ordinate, below the section, from the cord to the line connect-
ing its two extremities.
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88. Remarks.—The relative situations of ¢’ and b’ will de-
pend upon the choice of the position of 0, and this point
may be taken wherever convenient. H’is measured by the
same scale used in plotting 5-1, while e’%’ must be measured
by the scale\to which A B is laid off. The two scales, one
representing pounds, the other inches, need not be numerically
the same ; their product will be inch-pounds.

A single load on the beam will have for its equilibrium
polygon two straight lines from o’ and b, meeting at a point
vertically under the weight. A uniformly distributed load
will give a parabola with the maximum ordinate at the middle
of the span. This load may be treated as if concentrated at
any convenient number of points along the beam, as we have
done in getting the loads at the several divisions of a rafter,
and the angles of the polygon will lie in the desired parabola.
When the beam is inclined the transverse components alone of
the load produce any bending, as explained for a uniform
load in § 79. Wind pressure will act as a uniform normal or
transverse load on the piece which directly resists if.

The equilibrium polygon has much more extended applica-
tions in Parts II. and IIL

89. Moment of Resistance of Rectangular Cross-Sec-
tion.—Next, to determine the moment of resistance for a par-
ticular form of cross-section :—Consider a beam of rectangular
cross-section, represented by ABCD of Fig. 33. The inten-
sity of stress, as shown at I/, Fig. 32, varies uniformly each
way from the neutral axis which, lying through the centre of
gravity G of the cross-section, will be at EF, the middle of
the depth. The stress on a square inch will be most intense
on the fibres at the edge AB or CD, and less intense on any
intermediate layer, such as I K, in the proportion of EI to
EA. If then we draw from G the lines GA and G B, and
imagine that the layer I K is replaced by I' K’, which has its
breadth diminished in the same proportion, the total stress
on I' K/, if of the intensity found at A B, will be equal to the
total stress of less intensity actually existing on I K. The
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former stress will also have the same leverage about EF as
does the actual stress on IK. By the same reasoning for all
layers of the cross-section, we obtain two triangular, shaded
areas, ABG and G D C, which may be termed equivalent areas
of uniform stress of intensity equal to the actual maximum ;
one of them, usually the upper one, when multiplied by this
maximum intensity of stress, represents the total compression,
and the other the total tension at the section. The moments
of this tension and compression about the neutral axis will be
most readily obtained by considering the stress, which is now
uniformly distributed over the triangle, as concentrated at its
centre of action, the centre of gravity G’ of the triangle, dis-
tant two-thirds of its height from the apex G.

Let b represent the breadth and % the height of the cross-
section in inches ; the area of one triangle will be 4b.4%; and
the lever arm about EF will be 2.3/ Let f represent the
maximum stress on the square inch at AB. Since the tension
and compression tend to produce rotation in the same direc-
tion, we add the moments of the two forces together and have

bh
2(1 Jid fz) = moment of resistance = 1 b1

Putting this value equal to the bending moment M, we obtain
H ek —17b

If we select the maximum value of €%, introduce the safe
working stress f for the extreme fibres, and assume either b or
h, we can compute the other required dimension, and thus
determine the beam when of uniform section throughout. 1If
the cross-section is to vary, its moment of resistance at differ-
ent points must at least be equal to the bending moments.
As the stiffness of the beam depends principally upon h, the
depth must not be made too small. If the beam has too little
breadth the compressed edge will yield sideways.

90. Moment of Resistance of T Section.—It is easy to
compute the size of a beam of rectangular cross-section by the
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above formula, but for less regular sections the determination
of the moment of resistance by this graphical method may
prove of service. In applying it to a beam of the section
shown in Fig. 34 we must begin by finding the centre of
grayity of the section. By multiplying each rectangular area
by the distance of its centre of gravity from either the top or
the bottom, adding these products, and dividing by the
whole area, we find the distance of the neutral axis from that
edge. If GI=0,AB=0,GE =%, and CA = F/, we have
bh.3h+UF (R+4 )

T = distance of neutral axis from G L

The construction of the shaded area A P B needs no expla-
nation, as it follows the previous example. The stress on the
fibres at the edge G I will not be so great as at the edge A B,
because they are not so far from the neutral axis. If the
fibres at G I were removed to K L, so as to be equally remote
with A B, they would be equally strained. Then to reduce
the layer GI to one which, if it had the same intensity of
stress with A B, would give the same total stress which now
exists on G I, project GI to KL, draw KP and L P, and G’ I’
will be the desired reduced length. The remainder of the
shaded area for the lower rectangle follows the usual rule.
In the same way, the fibres at CD will be projected at QR,
and, by drawing Q P and R P, we determine C'D’, and thus
complete the shaded portion. These triangles, etc., can be
readily scaled, or computed from the known proportions of
the beam, their centres of gravity found and the moment of
resistance calculated.

91. Moment of Resistance of an Irregular Section.—A
good example of a section whose moment of resistance is not
readily determined by computation alone is afforded by a
deck-beam, Fig. 35, often employed in floors and roofs. It is
here drawn to one-quarter scale, showing height of section 6
inches, breadth of flange A B 38} inches, thickness of web §
inch, weight per yard 44 1bs. ; therefore the area of cross-sec-
tion is about 4.4 square inches.
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The readiest way to determine the moment of resistance of
such a cross-section is as follows i—Transfer its outlines from
the book of shapes or by such data as you have to a sheet of
heavy paper, and make a tracing for construction purposes.
Cut the section from the heavy paper, balance on a knife-edge
and thus determine the neutral axis CD. Then on the trac-
ing draw K L horizontally at the same distance from C D that
STis. AB will be projected at K I, and lines from K and
L to P, the middle point of CD, or the centre of gravity of
this section, will cut AB at A’ and B/, making A’B’ the
reduced length of AB, and now considered to have the same
stress per square inch as exists at IG. In the same way the
end M of M N will be projected at O, the point U at V, and
the lines from O and V to P will cut the horizontal lines
through M and U at new points in the desired curve. Thus
enough points are soon obtained to locate the boundary of
the shaded portion from B’ to P, The part of the web with
straight sides gives of course a triangle, found at once by
drawing a line from W to P. The curve A’P corresponds
with B'P. For the lower portion, project EF on TS, draw
lines to P, and get in a similar way enough points for this
curve. Cut out the two shaded figures from the heavy paper,
balance each one over a knife-edge and thus determine their
respective centres of gravity Q and R. Calculate the area of
one; the area of the other should exactly equal it, for the
total tension equals the total compression. Calling this area
A and the safe working stress on the square inch /> we shall
then have for the moment of resistance

F.A.PQ+f.A.PR=F.A.QR

In this example A =1.29 sq. inches, PQ = 2.12 inches, and
PR =266 inches. If therefore for a static load S =12,000
Ibs., the moment of resistance equals

12,000 x 1.29 x 4.78 = 74,000 inch-pounds.

92. Moment of Resistance of I Beam.—In simpler cases
the required size of beam to sustain a given load is more read-
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ily found by formula. If I beams are used, the web being
thin, and the top and bottom flanges alike, an approximate
formula may be used. If F represents the area in square
inches of the cross-section of either flange, W the area of the
web, & the depth from centre to centre of flanges or the entire

depth minus thickness of one flange (that is, between centres

of gravity approximately), and f the safe stress on the square
inch, the moment of resistance is nearly equal to

Fh(F+1W),




