

$||||||||||||||||||||||||||||||||\mid$

1

UNIVERSIDAD AUTÓN MA DE NUEVO:LEÓN
DIRECCIÓN GENERA DE BIBLIOTECAS

RESEARCHES

In

GRAPHICAL STATICS.

BY
HENRY T. EDDY, C. E., Ph. D.,
Professor of Mathematics and Civil. Engineering in the University of Cincinnati.

Illustrated by Forty-one Engravings in Text and Nine Folding Plates.
UNIVERSIDAD AUTÓN MA DE NUEVOLEON DIRECCIÓN GENERA DE BIBLIOTECAS

PREFACE.

At a meeting of the American Association for the Advancement of Science, held in August, 1876, at Buffalo; the writer read two papers, entitled respect ively, "Certain New Constructions in Graphical Statics," and "A New Fundamental Method in Graphical Statics." These papers, with considerable additions and amplifications, are presented on the following pages; and to them is added a third on The Theory of Internal Stress.

The paper, entitled Nero Constructions in Graphical Statics, is largely occupied with the various forms of the elastio arch. The possibility of obtaining a complete graphical solution of the elastic arch in all cases depends upon a theorem not hitherto recognized as to the relative position of the equilibrium curve due to the loading and the curve of the arch itself. The demonstration of this theorem, which may be properly named the Theorem Respecting the Coincidence of Closing Lines, as given on page 12, is somewhat obscure. However, a second demonstration is given on page 98 , and this latter, stated at somewhat greater length, may also be found in the American Jownal of Pure and Applied Mathematics, Vol. I, No. 3. Prof. Wm. Cain, A.M., C.E., has also published a third demonstration in Van Nostrand's Magazine, Vol. XVIII. The solution of the elastic arch is further simplified so that it depends upon that of the straight girder of the same cross section. Moreover, it is shown that the processes employed not only serve to obtain the moment, thrust and shear due the loading, but also to obtain those due to changes of temperature, or to any cause which alters the span of the areh. It is not known that a graphical solution of temperature stresses has been heretofore attempted.
A new general theorem is also enunciated which affords the basis for a direct solution of the flexible arch rib, or suspension cable, and its stiffening truss.
These discussions have led to a new graphical solution of the continuous girder in the most general case of variable moment of inertia. This is accompanied by an analytic investigation of the Theorem of Three Moments, in which the general equation of three moments appears for the first time in simple form. This investigation, slightly extended and amplified, may be also found in the American Journal of Pure and Applied Mathematics, Vol. I, No. 1.

Intermediate between the elastic and flexible arch is the arch with blockwork joints, such as are found in stone or brick arches. A graphical solution of this problem was given by Poncelet, which may be found in Woodbury's treatise on the Stability of the Arch, page 404. Woodbury states that this solution is correct in case of an unsymmetrical arch, but in this he is mistaken. The solution proposed in the following pages is simpler, susceptible

PREFACE.

At a meeting of the American Association for the Advancement of Science, held in August, 1876, at Buffalo; the writer read two papers, entitled respect ively, "Certain New Constructions in Graphical Statics," and "A New Fundamental Method in Graphical Statics." These papers, with considerable additions and amplifications, are presented on the following pages; and to them is added a third on The Theory of Internal Stress.

The paper, entitled Nero Constructions in Graphical Statics, is largely occupied with the various forms of the elastio arch. The possibility of obtaining a complete graphical solution of the elastic arch in all cases depends upon a theorem not hitherto recognized as to the relative position of the equilibrium curve due to the loading and the curve of the arch itself. The demonstration of this theorem, which may be properly named the Theorem Respecting the Coincidence of Closing Lines, as given on page 12, is somewhat obscure. However, a second demonstration is given on page 98 , and this latter, stated at somewhat greater length, may also be found in the American Jownal of Pure and Applied Mathematics, Vol. I, No. 3. Prof. Wm. Cain, A.M., C.E., has also published a third demonstration in Van Nostrand's Magazine, Vol. XVIII. The solution of the elastic arch is further simplified so that it depends upon that of the straight girder of the same cross section. Moreover, it is shown that the processes employed not only serve to obtain the moment, thrust and shear due the loading, but also to obtain those due to changes of temperature, or to any cause which alters the span of the areh. It is not known that a graphical solution of temperature stresses has been heretofore attempted.
A new general theorem is also enunciated which affords the basis for a direct solution of the flexible arch rib, or suspension cable, and its stiffening truss.
These discussions have led to a new graphical solution of the continuous girder in the most general case of variable moment of inertia. This is accompanied by an analytic investigation of the Theorem of Three Moments, in which the general equation of three moments appears for the first time in simple form. This investigation, slightly extended and amplified, may be also found in the American Journal of Pure and Applied Mathematics, Vol. I, No. 1.

Intermediate between the elastic and flexible arch is the arch with blockwork joints, such as are found in stone or brick arches. A graphical solution of this problem was given by Poncelet, which may be found in Woodbury's treatise on the Stability of the Arch, page 404. Woodbury states that this solution is correct in case of an unsymmetrical arch, but in this he is mistaken. The solution proposed in the following pages is simpler, susceptible
of greater accuracy, and is not restricted to the case when either the arch or loading is symmetrical about the crown.

The graphical construction for determining the stability of retaining walls is the first one proposed, so far as known, which employs the true thrust in its real direction, as shown by Rankine in his investigation of the stress of homogeneous solids. It is in fact an adaptation of that most useful conception, Coulomb's Wedge of Maximum Tlarust, to 'Rankine's investigation.

It has also been found possible to obtain a complete solution of the dome of metal and of masonry by employing constructions analogous to those employed for the arch ; and in particular, it is believed that the dome of masonry is here investigated correetly for the first time, and the proper distinctions is here investigated correctly for the first tim
pointed out between it and the dome of metal.

In the paper entitled, 4 Nero General Method in Graphical Statics, a fundamental process or method is established of the same generality as the well-known method of the Equilibrium Polygon The new method is designated as that of the Frame Pencil, and both the methods are discussed side by side in order that their reciprocal relationship may be made, the more apparent. The reader who is not familiar with the properties of the equilibrium polygon will find it advantageous to first read this paper, or, at least, defer the others until he has read it as far as page ss.

As an example affording a comparison of the two methods, the moments of inertia and resistance have been disoussed in a novel manner, and this is accompanied by a new graphical discussion of the distribution of shearing stress.

In the paper entitled, The Theory of Internal Stress in Graphical Statics, there is considerable new matter, especially in those problems which relate to the combination of states of stress, a subject which has not been, heretofore, sufficiently treated.

It is hoped that these graphical investigations which afford a pictorial representation, so to speak, of the quantities involved and their relations may not present the same diffieulties to the reader as do the intricate formulae arising present the same diffeulies to the reader as do the intricate formulae arising
from the analytic solutions of the same problems. Indeed, analysis almost from the analytic solutions of the same problems. Indeed, analysis almost
always requires some kind of uniformity in the loading and in the structure always requires some kind of uniformity in the loading and in the structure
sustaining the load, while a graphical construction treats all cases with the sustaining the load, while a graphical construction treats all cases with the
same ease; and especially are cases of discontinuity, either in the load or - structure, difficutt by analysis but easy by graphics. structure, difficult by analysis but easy by graphics.

DIRECCION GENERA

CONTENTS.

NEW OONSTRUCTIONS IN GRAPHICAL STATICS.

The Fundamental Propositions and Equations of the Elastic Arch. PAGE.
Arch Rib with Fixed Ends. 14
Arch Rib with Fixed Ends and Hinge Joint at the Crown. 20
Temperature Strains. 23
Unsymmetrical Arches 25
Arch Rib with End Joints 25
Arch Rib with Three Joints.. 27
Arch Rib with One End Joint... 28
Arch Rib with Two Joints. 29
Suspension Bridge with Stiffening Truss... 30
Continuous Girder with Variable Cross Seetion. 36
Theorem of Three Moments. 41
Flexible Arch Rib and Stiffening Truss43
Arch of Masonry. 45
Retaining Walls and Abutments 49
Foundations in Earth 53
Spherical Dome of Metal. Spherical Dome of Masonry. 53
Conical Dome of Metal. 59 59
Conical Dome of Masonry61
Other Vaulted Structures.
65
Reciprocal Figures67
Roof Truss, Wind and Weight Stresses68
Bridge Truss, Maximum Stresses72

Water Wheel with Tension-Rod Spokes.
Equilibriam Polygan for Fores in One Plane.
Frame Pencil for Forees in One Plane 76
Equilibrium Forces for Parallel Forces. 78
Frame Pencil for Parallel Forces 80
Summation Polygon.. 82
Girder with Fixed Ends, by both Methods..................................... . . 83
Any Forces in Que Plane applied at Given Points.......................... 86
Kernel, Moments of Resistance and Inertia, treated by the Equilibrium
Polygon.
Kernel, Moments of Resistanee and Inertia, treated by the Frame Pencil..... 90
Uniformly Varying Stress in General 91
Distribution of Shearing Stress....
Relative Stresses................
Stresses in a Horizontal Chord.
Addendum to Page 12.....
Addendum to Page 10...

Introductory Definitions, ete

Problems in Plane Stress.

Problems in Solid Stress.

THE THEORY OF INTERNAL STRESS IN GRAPHICAL STATICS,

General Properties of Plane Stress.
Combination and Separation of States of Stress.
Properties of Solid Stress... . . . 119

ERRATA
Page 12, line 12, first column, for "these " put "their."
" 42, " 16, "
" $M i)$
" (M, i).
" 51, " 4 , " \quad " $a b$ " $a a^{\prime}$
" 51, " 4 , " \quad " $a^{\prime} b^{\prime}$ " $b b^{\prime}$
" 55, " 26, " \quad " $a \quad$ " a_{1}
" 66, " 11 , second " " B. Cremona put L. Cremona.

UNIVIERSID.A.AUTONOMA DE NUEVO LEÓN
DE BIBLIOTECAS

UNIVERSIDAD AUTONC

NEW CONSTRUCTIONS
${ }_{\mathrm{IV}}$

GRAPHICAL STATICS.

CHAPTER I.
IT is the object of this work to fully dis cnss the stability of all forms of the arch, flexible or rigid, by means of the equili
brinm polygon-t he now well recognizel

- briam polygon-the now well recognized One or two other constructions of inter est may also be added in the sequel The disenssion will pre-suppose an elementary knowledge of the properties o the equilibrium polygon, and its accompanying force polygon, for parallel forces.
As ordinarily used in the diseussion o the simple or continuous girder, the ficial relation to the problemi in artiand the particular horizontal stress as sumed is a matter of no consequence sumed is a matter of no consequence;
but not so with respect to the arch. As will be seen, there is a special equilibrium polygon appertaining to a given arch and load, and in this particula polygon the horizontal stress is the ac tual horizontal thrust of the arch. When this thrust has been found in any given case, it permits an immediate determthe stresses. This questions respecting termined differently in arehe to be de termined differently in arches of differupon the number, kind, and position of the joints in the areh.
The methods we shall use depend upon our ability to separate the stresses in-
dnced by the loading into two parts; one
part being sustained in virtue of the reaction of the arch in the same manner as an inverted suspension cable (i.., as an der in virtue of lineareh), and the remainThese two ways in which the loading is astained are to be considered somewhat part from each other. To this end it ppears necessary to restate and discuss, in certain aspects, the well-known equations applicable to elastic girders acted and the resistances of the supports load Let P represelit any one of the var. ressures, P, P, P plied to the girder.
Consider an ideal cross section of the Cier at any point 0 .
Let $x=$ the horizontal distance from O to the force P.
Let $R=$ the radius of currature of the girder at 0 .
At the cross section O, the equation
st mentioned section
Shearing stress, $\quad S=\Sigma(P)$
Moment of flexture, $M=\Sigma(P x)$
Curvature, $\quad P=\frac{1}{R}=\frac{M}{E I}$
Total bending, $B=\Sigma\left(P^{\prime}\right)=\Sigma\left(\frac{M}{E I}\right)$
Deflection, $D=\Sigma\left(P^{\prime} x\right)=\Sigma\left(\frac{M F}{E I}\right)$
in which E is the modulus of elasticity surface is the polygon or curve, above of the material, and I is the moment of described, is considered to have the inertia of the girder; and as is well same effect as a series of concentrated known, the summation is to be extended loads proportional to the ordinates from the point O to a free end of the $y p$ acting at the assumed points of girder, or, if not to a free end, the sum- division. If the points of division be mation expresses the effect only of the assumed sufficiently near to each other quantities included in the summation.

Let a number of points be taken at Let a number of points be taken at If a polygon be drawn in a similar
manner by joining the extremities of the equal distanees along the girder, and let manier by joining the extremities of the the values of $\mathcal{A}, M, M_{\text {, }}$ (3), it is known that this polygon is an puted for these points by taking a equilibrium polygon for the applied these points successively, and also erect weights P poly it can also be constructordinates at these points whose lengths ed directly without computation by the are proportional to the quantities computed. First, suppose I is the same at each of the points oliosen, then the values of these ordinates may be expressed as follows, if a, b, c, etc,, are any real constants whatever

$$
\begin{align*}
& y_{p}=a \cdot P \\
& y_{s}=b \cdot \Sigma(P) \cdot \\
& y_{m}=c \cdot \Sigma(P x)=c \cdot M \cdot \\
& y_{b}=d \cdot \Sigma(M) \cdot(1) \\
& y / a=e \cdot \Sigma(M x) \cdot
\end{align*}
$$

If I is not the same at the different cross sections, let $P=M \div 1$; then the last three equatious must be replaced by the following:
$y m^{\prime}=f \cdot P \quad . \quad\left(3^{\prime}\right)$
$y b=g \cdot \Sigma\left(P^{\prime}\right) \cdot \quad . \quad\left(4^{\prime}\right)$
$y d=h \cdot \Sigma\left(P_{x}^{\prime}\right) \cdot \quad . \quad\left(5^{\prime}\right)$ The ordinates $y m$ and $y m^{\prime}$ are not
equal, but can be obtained one from the equal, but can be obtained one ratio of the moments
sections.

Equation (1) expresses the loading and y_{p} may be considered to be the depth of some uniform material as earth, shot or masonry constituting the load. Lines joining the extremities of these ordinates will form a polygon, of approximately a curve which is the uper surface of such a load. When the load is uniform the surface is a hori zontal line.
For the purposes of our investiga For the purposes of our investiga
tion, a distributed load whose upper
ed directly without computation by the sumed horizontal stress.
Now, it is seen by inspection that Now, it is seen by inspection that
equations (3) and (5), or $\left(3^{\prime}\right)$ and $\left(5^{\prime}\right)$ have the same relationship to each other that equations (1) and (3) have. The relationship may be stated thus:-If the ordinates y_{m} (or $y_{m}{ }^{\prime}$) be regarded as the depth of some species of loading, so that the polygonal part of the equiliorium polygon is the surface of suc load, then a second equilibrium polygon its ordinates proportional to y d. But these last are proportional to the actual deflections of the girder.
Hence a second equilibrium polygon, so constructed, might be called the deflection polygon, as it shows on an exaggerated scale the shape of the neutral axis of the deflected girder.
The first equilibrium polygon having the ordinates $y m$ may be called the moment polygon.
It may be useful to consider the physical signifieance of equations (3), (4), (5), or $\left(3^{\prime}\right),\left(4^{\prime}\right),\left(5^{\prime}\right)$.
Aecording to the accepted theory of perfectly elastic material, the sharpness of the curvature of a uniform girder is directly proportional to the moment of
the applied forces, and for different cirders or different portions of the same girder, it is inversely proportional to the girder, it is inversely proportional to the
resistance which the girder can afford. Now this resistance varies directly as I varies, hence curvature varies as $M \div I$, which is equation (3) or (3^{\prime}).
Now curvature, or bending at a point, is expressed by the acute angle between two tangents to the curve at the distance
of a unit from each other; and the total
bending, i.e. the angle between the tan- due to the forces applied to the arch will gent at O, and that at some distant point be sustained at those points which are A is the sum of all such angles between not flexible, partly in virtue of its being bending is proportional to $\Sigma(M \div I)$, approximately an equilibrium polygon, the summation being extended from O and partly in virtue of its resistance as a to the point A, which is equation (4) or girder.
(4).

Again, if bending occurs at a point It is evident from the nature of the distant from O, as A, and the tangent equilibrium polygon that it is possible A be considered as fixed, then O is de- an arch of such form (viz, that of an muke A be considered as fixed, then O is de- an arch of such form (viz., that of an equiflected from this tangent, and the librium polygon) as to require no bracing
amount of such deflection depends both whatever, since in that case there will upon the amount of the bending at A, be no tendency to bend at any point. and upon its distance from O. Hence Also it is evident that any deviation of the deflection from the tangent at A is part of the arch from this equilibrium proportional to $\Sigma\left(M_{x} \div I\right)$ which is polygon would need to be braced. As, equation (5) or (5).
It will be useful to state explicitly $\begin{aligned} & \text { for example, in case two distant points } \\ & \text { be joined by a straight girder, it must }\end{aligned}$ several propositions, some of which are be braced to take the pirder, it must implied in the foregoing equations. The the arch. Furthermore, the greater the importance and applicability of some of deviation the greater the bending mothem has not, perhaps, been sufficiently ment to be sustained in this manner. ecognized in this connection.
Prop. I. Any girder (straight or other- in the proposition.
wise) to which vertical forces alone are It will be noticed that the moment
applied (ich vertical forces alone are called into action, at any point of a straight (i.e, there is no horizontal girder, depends not only on the applied thrust) sustains at any cross-section the girder, depends not only on the applied stress due to the load, solely by develop- of the equilibrium polygon, but also on ing one internal resistance equal and op- the resistance which the girder is eapaposed to the shearing, and another equal and opposed to the moment of the applied e sustaining at joints or supports, or the like. For example, if the girder rests freely on its end-supports, the mo-
forces. ment of resistance vanishes at the ends, and the "closing line" of the polygon joins the extremities of the polygonal
part. If however the ends are fixed part. If however the ends are fixed
horizontally and there are two free (hinge) joints at other points of the girder, the polygonal part will be as before, but the closing line would be drawn so hat the moments at those two point that the moments at those two points
vanish. Similarly in every ease (though the conditions may be more complicated than in the examples used for illustration) the position of the closing line is fixed by the joints or manner of support of tions which the moments (i.e., the ordinates of the equilibrium (i.e., the ordinates of the equilibrium polygon) must form girder without joints and fived form girder without joints and fixed
horizontally at the ends, the conditions are evidently these; the total bending vanishes when taken from end to end, and the deflection of one end below the horizontal component, then the moment tangent at the other end also vanishes. Pros.
Prop. II. But any flexible cable or arch with hinge joints can offer no re sistance at these joints to the moment of the applied forces, and their moment is sustained by the horizontal thrust developed at the supports and by the ten sion or compression directly along the cable or arch.
It is well known that the equilibrium polygon reeeives its name from its being
the shape which such a flexible cable, or equilibrated arch, assumes under the may say for brevity, that the forces are of its being an equilibrium polygon.
Prop. III. If an areh not entirely flexible is supported by abutments agains which it can exert a thrust having

Prop.IV. If in any arch that equilibrium various, and so cannot be considered in polygon (due to the weights) be construct- a general demonstration. The obscurity, ed which has the same horizontal thrust however, will disappear after the treatas the arch actually exerts; and if its ment of some particular cases, where we closing line be drawn from consideration the proposition evident. We may, howof the conditionsimposed by the supports, ever, make a statement which will posetc.; and if furthermore the curve of the sibly put the matter in a clearer light by etc.; and if furthermore the curve of the saying that $A^{\prime \prime}$ is a figure easily found, rium polygon due to some system ofload- and we, therefore, employ it to assist in rium polygon due to some system line be also known, and of A which is partially un-
ing not given, and its closing line ing not giren, and its elosing tine be also known, and of A which is partially un-
found from the same considerations re- known. And we arrive at the peculiar found from the same considerations re- known. And we arrive at the peculiar specting supports, etc, then, when these two polygons are placed so that these closing lines coincide and their areas partially cover each other, the ordinates intercepted between these two polygons are proportional to the real bending moments acting in the arch.
Suppose that an equilibrium

Suppose that an equilibrium polygon
due to the weights bo drawn having the due to the weights be drawn having the
same horizontal thust as the arch. We same horizontal thrust as the arch. are in fact unable to do this at the out-
set as the horizontal thrust is unknown. set as the horizontal drust is unknown.
We only suppose it drawn for the purpose of discussing its properties. I also the closing line be drawn, whi may be done, as will be seen hereafter, Call the area between the closing line and the polygon, A. Draw the elosing line of the curve of the arch itself (regarded as an equilibrium polygon) according to the same law, and eall the area between this closing line and its
eurve A^{\prime}. Further let A^{\prime} be the area of a polygon whose ordinates represent the actual moments bending the arch, and Since the sapports etc, must inflnence the position of the closing line of this polygon in the/same manner as that
A, we have by Prop. III not only

$$
A=A^{\prime}+A^{r}
$$

which applies to the entire areas, but
also also
 as the relation between the ordinates of these polygons at any of the points of division before mentioned, from which the truth of the proposition appears, This demonstration in its general form
property of A ", that itsclosing line isfound
in the same manner as that of A, by noticing that the positions of the closing lines of A and A^{\prime} are both determined in the same manner by the supports, etc. for the same law would hold when the rise of the arch is nothing as when it has any other value. But $A^{\prime \prime}$ is the dif farence of A and A^{\prime}. Hence what is rrue of A and A separately is true of being a mere matter of summation.
From a mere matter of summation.
From this proposition it is also seen that
he curve of the arch itself may be regarded as the curved closing line of the polygon whose ordinates are the actual sending moments, and the polygon it self is the polygonal part of the equili It is belygon due to the weights.
It is believed that Prop. IV contains an important addition to our previous knowledge as to the bending moments in
an arch, and that it supplies the ba an arch, and that it supplies the basi
for the heretofore missing method obtaining graphically the true eqnilibrinm polygon for the varions kinds of arches. If bending moments M act tal distares girder at horizonal dstances x from O, the amount of the vertical deflection y / d will be the same as that of a horizontal girder of the same cross section, and having the same horizontal span, upon which the same moments M act at the same horizontal distances x from O. Also, if bending moments M act as before, the amount of the horizontal deflection, say x_{t}, will be the same as that of a vertical girder of the same oross section, and having the same height, upon which the same moments M act at the same heights.

Let the moment M act at A, produc ing according to equation (5) the deflection
$O C=e \cdot M \cdot A O$
whose vertical and horizontal components are
$y_{d}=O E$ and $x_{d}=O E$
For the small defleetions occurring in a girder or arch, $A O C=90^{\circ}$

$$
\begin{aligned}
& \therefore A O: O F: O O: O E \\
& \therefore O E=\frac{O C}{A O} \cdot O F=e \cdot M \cdot O F \\
& \therefore y d=O \cdot M x \\
& \text { Also, } A O: A F: O C: O E \\
& \therefore O E=\frac{O Q}{A O} \cdot A F=e \cdot M \cdot A F \\
& \therefore x_{d}=e \cdot M y
\end{aligned}
$$

The same may be proved of any other moments at other points; hence a simi- tioned to resist these moments. Since this is the case, it is of no particular proves the proposition. It may be thonght that the demonstra- such as to entively/avoid bending mo-
tion is deficient in rigor by reason of the ments when not under the aetion of the tion is deficient in rigor by reason of the assumption that $A O C=90$ Such, however, is not the fact as ap-
pears from the analytic investigation of pears from the analytic investigation of tempted graphical discussion of the areh
in Vol. VII of this Magazine, in which the only approximation employed is that admitted by all anthors in assuming that the enrvature is exactly proportional to the bending moment.
We might in this proposition substi tute $f . M \div T$ for e, M, and prove a imilar but more general proposition a ments at certain points. The considerasimilar but more general proposition re- tions set forth furnish a guide to a new
assumption which shall be more suitable, are of a circle ; having a chord or span it being necessary to make the form of the arch conform more closely to that of the equilibrium polygon for the given loading.
The question may be regarded as one of economy of material, and ease of construction, analogons to that of the
truss bridge. In this latter case, construetors have long since abandoned any idea of making bridges in which the inclination of the ties and posts should be such as to require theoretically the minimum smonot of material. Indee the amount of material in the case of a
theoretic minimum, differs by such theoretic minumum, dufers by such an
inconsiderable quantity from that in cases in which the ties and posts have a very different inclination, that the attainment of the minimum is of no practiea consequence.
Similar do
Similar considerations applied to the arch, lead us to the conclusion that the form adopted can in every ease be composed of segments of one or mor circles, and that for the purpose of conmet as fully as by the more complicate transcendental curves found by the writers previously mentioned. If considerations of an artistic nature render it desirable to adopt segments of para-
bolas ellipses or other ovals, it will be a bolas, ellipses or other ovals, it will be a
matter of no more consequence than is matter of no more consequence than is
the particular style of truss adopted by the particular style os
rival bridge builders.
We can also readily
解 inverse the problem system of loading, of which the assumed curve of the arch is the equilibrium polygon. From this it will be known polygon. From this it will be known shall be no bending moments in it.
This, as may be-seen, is often a very useful item of information; for, by leav ing open spaces in the masoury of the spandrils, or by properly loading the quently render a desirable form may fre quently render a desirable form entirely
stable and practieable.

CHAPTER II

the arch mb with fixed ends,
Ler us take, as the particular case be treated, that of the St. Louis Bridge, which is a steel arch in the form of
are of a circle ; having a chord or span of 518 feet and a versed sine or rise of
one-tenth the span, i.e. 51.8 feet. The are-tenth rib is firmly inserted in the immense skew-backs which form part of the upper portion of the abutments. It will be assumed that the abutments do not yield to either the thrust or weight of the arch and its load, which was also assumed in the published computations tpon which the arch was actually con-
structed. Further, we shall for the stracted. Further, we shall for the present assume the cross section of the
rib to have the same moment of inertia, I, at all points, and shall here only tia, , at all points, and shall here only
consider the stresses induced by an consider the stresses induced by an
assumed load. The stresses due to changes in the length of the arch itself, due to its being shortened by the loading, and to the variations of temperature, are readily treated by a method similar to the one which will be used in this article, and will be treated in a subsequent chapter.
Let $b, a b_{\prime}^{\prime}$ in Fig. 2, be the neutral axis of the arch of which the rise is onetenth the span. Let $a x y z$ be the area
representing the load on the left half of the areh, and $a x^{\prime} y^{\prime} z^{\prime}$ that on the right, so that $y p=a . P=x y$ on the left, and $y_{p}=x^{\prime} y^{\prime}$ on the right.
Divide the span into sixteen equal parts $b b_{1}, b b_{1}^{\prime}$, ete, and consider that the oad, which is really uniformly distributed, is applied to the arch at the points a, a_{1}, a_{1}, etc., in the verticals weights P are applied at each equal points on the left of a each of the weights $\frac{1}{2} P$ at each point on the right weights $\frac{1}{2} P$ at each point on the
of a, while $\frac{3}{4} P$ is applied at a.
Take b as the pole of a force polygon or these weights, and lay off the weights which are applied at the left of a on the vertical through b_{4} viz., $b_{2} v_{1}=\frac{1}{2} P=$ the weight coming to a from the left ; $0_{1} 20_{2}=P=$ the weight applied at a_{1}; Using b still as the pole fay at $a_{\text {, }}$, etc. 1. $P=$ the weight coming the off $b^{\prime} w_{1}^{\prime}=$ $P=$ the weighit coming to a from the right; $x_{3}, v_{2}=\frac{1}{\frac{1}{2}} \boldsymbol{P}=$ the weight applied thing as if all the weights were laid off in the same vertical. Part are put at the left and part at the right for convenience of construction. Now draw Dno, until it intersects the vertical 1 at c_{1}, then draw $c_{1} c_{2} \| b o_{2}$; and $c_{2} c_{8} \| b o_{3}$;
then
etc. In the same manner draw bro, to negative loading must be equal numericetc. In the same manner draw $b w_{1}^{\prime}$ to negative loading must be equal numernc-
c_{1}^{\prime}; then $c_{1}^{\prime} c_{2}^{\prime} \| b v_{2}^{\prime}$, etc. Then the ally to the whole positive loading, if we c_{1}; then $c_{3} c_{7}, b o_{3}$, etce equilibrium are to have $\Sigma(M)=0$. Next, as the bolygon due to the weights on the left closing line is to be straight, the negapolygon due to the weights on the left civeng load $c_{8} c_{8}^{\prime} h_{8} h_{8}^{\prime}$ ' may be considered weights on the right. Had the polygen in two parts, viz, the two triangles, been constructed for the uniformly dis- $c_{\mathrm{a}} c_{5}^{\prime} h_{\text {, }}$ and $c_{8}^{\prime} h_{\mathrm{s}} h_{\mathrm{a}}^{\prime}$. Let the whole tributed load (not considered as concen- span be trisected at t and t^{\prime}, then the trated), on the left we should have a total negative loading may be considered parabola passing through the points to be applied in the verticals through bc,..c, and another parabola on the t and t^{\prime}, since the centers of gravity of right through be, $\ldots c_{8}$. From the the triangles fall in matis it easily Again, the positive loading we shall find properties of this parabola it is easily Again, the posive it convenient to distribute in this man-
 test the accuracy of our construction. the vertical throught l, the parabolic area This test is not so simple in cases of $b c_{1} \ldots c_{8}$ in the vertical 4 which conmore irregular loading. tains its center of gravity, and the paraThe equilibrium polygon $c, b c_{2}^{\prime}$ is that bolic area $b c_{1}^{\prime} \ldots c_{n}^{\prime}$ in 4 . due to the applied weights, but if these Now these areas must be reduced to weights act on a straight girder with equivalent triangles or rectangles, with fixed ends, this manner of support re- a common base, in order that we may quires that the保 $b b=m m^{\prime}$ is the positive load due to the and triangle $c, b c^{\prime}$ and $\frac{2}{3} c, p=p p$ an does not change under the action of the $\frac{2}{3} c_{1}^{\prime} \epsilon_{0}^{\prime}=p^{\prime} p_{1}^{\prime}$ are the positive loads due weights, hence the positive must cancel to the parabolic areas. the negative bending. To express this Now assume any point q as a pole by our equations
for the load line p and find the cente $y b=\therefore \Sigma(M)$
$\Sigma(M)=0 \therefore \Sigma(M)=0$. of gravity of the positive loading by This is one of two conditions which sides are parallel to the lines of this re to enable us to fix the position of the force polygon: viz, use $q p$ and $q p$ as true closing line $h_{0} h_{n}^{\prime}$ in this ease. The the 1st and 2nd sides, and make $p q^{\prime} \| q p^{\prime}$, that the algebraic sum of all the deflec- intersect at q_{1}; therefore the center of ions of this straight cirder must be gravity of the positive loads must lie in zero if the ends are fixed horizontally. the vertical through q.
This is evident from the fact that Now the negative loading must have when one end of a girder is built in, if its center of gravity in the same vertical, a tangent be drawn to its neutral axis in order that the condition $\Sigma(M x)=0$ at that end, the tangent is ummoved may be satisfied, for it is the numerator whatever deflections may be given to of the general expression for linding the girder; and if the other end be also the center of gravity of the loading. fixed, its position with reference to this the question chen assumes this form tangent is likewise unchanged by any what negative loads must de applied girder. To express this by onr equations: snm may be p ? and that they may girder. To express have their center of gravity in the verti$y d=f: \geq(M x)=0 \therefore \sum(M c)=0 \quad$ eal through q_{0}.
The method of introducing these con- The shortest way to obtain these two ditions is due to Mohr. Consider the segments of $p_{1} p_{1}$ is to join r and r^{\prime} area included between the straight line which are in the horizontals through $c_{4} c_{5}$ and the polygon $c_{8} b c_{5}$, as some p_{3} and p_{1}, and draw an horizontal species of pius loading; we wish to and throng q_{0}, whin is the intersection of what minus loading will fulfill the above $r r^{\prime}$ with the vertical through q_{1}; then
two conditions. Evidently the whole $r r_{\text {a }}$ and $r^{\prime} r^{\prime}$ are the required segments
of the negative load. For, let $r_{r}=p_{1}{ }^{\prime} p_{1}$
and take r as the pole of the load and take r as the pole of the load $r_{r} r$ hen, since $r_{1} q_{0} \| r_{2} r^{\prime}$ and $q_{0} r^{\prime} \| r r^{\prime}$ we filling the required conditions.
Now these two negative
$r_{1}^{\prime} r^{\prime}$ and r_{i}, are the required heights of the triangles $c_{,} h_{0} c_{s}^{\prime}$, and $c_{c} c_{\mathrm{s}}^{\prime} h_{d}$; therefore lay off $c_{n} h=r^{\prime} c^{\prime}$ and $c_{s}^{\prime} h_{3}^{\prime}=x_{1}$.
The closing line $h_{3} h$, can then be drawn, and the moments bending the straight girder will then be proportional to $h_{1} c_{0} h_{1} c_{3}$ eto., the points of inflexion
being where the closing line intersects being where the closing line intersects
the polygan. If the construction has the polygon. If the construction has
heen correctly made, the area above the closing line is equal to that below, a test easy to apply. turn to the consideration it as in equilibrin arch itself, and treat rise of the aroh is such a small fraction of the span, the curve itself is rather flat for our purposes, and we shatl therefore multiply its ordinates $a h_{\text {, }} a_{2} b_{1}$, etc., by any number convenient for our purpose:
in this case, say, by 3 . We thereby in this case, say, by 3 . We thereby get
a polygon $d, d d$ such that $d b=3$ ab, a polygon $d_{2}, d d_{8}$ such that $a b=3$ ab,
$d_{1} b=3$
$=3$
$d_{1} b$, etc. If a curve be de$a_{1} b_{1}=3 d_{1} b_{0}$ etc. If ${ }^{3}$ curve be dethe are of an ellipse, of which d is the extremity of the major axi
If we wish to find the closing line te, of this gurve, such that it shalt make $\sum\left(M(B)=0\right.$ and $\sum\left(M,{ }^{2}=0\right.$, the same process we have just used is here applicable; but since the curye is symmetrical, the object can be effected more
easily. By reason of the easily. By reason of the symmetry
about the vertical through b, the center of gravity of the positive area above the span. The increase of ordinates, then through b. The center of gravity of the manis a decrease of pole distance in the negative area lies there also; hence the known, the prodnct of the As is well negative area is symmetrical about the by the ordinate of the equilibrium poly-
center vertical; the colosing line must then center vertical; the cosing line must then gon is the bending moment. This probe horizontal. It only remains then to find duct is not changed by changing the the height of a rectangle having the same pole distance.
area as the elliptical segment, and hav- Again, suppose the vertical load-lise very approximately by taking (in this position, and the pole to be moved ver-
ease where the span is divided into 10 tieally to a new position. equal segments) $\frac{1}{8}$ the sum of the ordi- or horizontal dimension of the force
nates b, d, ete.
We thus find the height $b /$ and the horizontal throngh k is the required neither will any such dimension of the olosing line.
Before effecting the comparison which the new position of the pole be differ-

We intend to make between the polygons c and d (as we may briefly desig. nate the polygons $c_{s} b c_{n}^{\prime}$ and $\left.d_{A} d d_{*}^{\prime}\right)$, let us notice the significance of certain operations which are of use in the construemultiplication of the of these is the polygon or curve a to obtain those of d polygon or curve a to obtain those of d.
If a was inverted, certain weights might be hung at the points a_{2}, a_{2}, ete., such that the curve would be in stable equilibrium, even though there are flexible joints at these points. Equilibrium would still exist in the present upright position under these same applied
weights, though it wonld be wnst weights, though it would be unstable.
If now, radiating from any point If now, radiating from any point, we
draw lines, one parallel to each of the draw lines, one parallel to each of the
sides $a a_{1}, a_{1} \alpha_{2}, a a_{1}^{\prime}$, etc., of the polygon, sides $a \alpha_{1}, a_{1} \alpha_{,}, a a_{1}^{\prime}$, ete., of the polygon,
then ary vertical line intersecting this pencil of radiating lines will be cut by it pencil of radiating lines will be cut by it weights needed to make a their equilibriam polygon. By drawing the vertical line at a proper distance from the pole, its total length, i, e., the total load on the arch can be made of any amonnt we please. The horizontal line from the pole to this vertical will be the actual horizontal thrust of the arch measured on the same scale as the load. If a like
pencil of radiating lines be drawn paralpencil of radiating lines be drawn paral-
el to the sides of the polygon d and the bad be the same as that we had the osed upon the polygonat a, it is at supseen that the pole distance for d is onethird of that for a; for, every line ind has three times the rise of the corresponding one in a, and hence with the me rise, only one-third the horizontal neans a decrease of pole distance is the
ame ratio, and vice versa. As is well polygon is affected by this change, equilibrium polygon corresponding to ent from that in the polygon corre-
sponding to the first position of the pole; determining the pole distance of the me drection of the elosing line, how- polygl thrust of the arch measured on losing line of. Thus we see that the the scale of the weights $v_{1} v_{0}$, etc. The can be made to coincide with any line physical significance of this condition not vertieal, and that its ordinates will may be stated aceording to Prop. V, be nnehanged by the operation. It is thus: if the moments M_{d} are applied to unnecessary to draw the force polygon a uniform vertical girder $b d$ at the points to effect this change. $\quad b, b^{2}, b_{*}{ }^{\prime}, b_{5}{ }^{5}$, etc., at the same height Now to make clear the relationship $\begin{aligned} & \text { with } b_{\text {, }}, d_{2} \text {, etc., they will cause the same } \\ & \text { total deflection } x d=6, \Sigma(M d y) \text { as will }\end{aligned}$ between the polygons c and d, let ns total deffection $x d=6, \Sigma(M d y)$ as will suppose, for the instant, that the poly- the moments M_{c} when applied at the gon e has been drawn by some means same points. Hence if mare ased as as yet unknown, so that its ordinates a species of loading, we can obtain the from d_{1}, viz., $\epsilon_{1} d_{1}=y_{2}, e_{2} d_{2}=y_{2}$, etc., are Suppose the load at d_{1}, is $d_{2} k_{n}$, and that proportional to the actual moments M_{6} at $d_{\text {}}$ is $d_{2} l_{0}$ e etc., then that at δ_{0} is
The conditions which then hold reThe conditions which then hold re-
specting these moments M_{e}, are three:-

$$
\Sigma\left(M_{e}\right)=0, \Sigma\left(M_{e x}\right)=0, \Sigma\left(M_{e y}\right)=0 .
$$

The first condition exists because the total bending from end to end is zero when the ends are fixed. The second
and third are true, becanse the total deand third are true, because the total de-
flection is zero both vertically and horiflection is zero both vertically and horzontally, since the span the position of the tangents well as the position of the tangents at
the ends. These results are in accord the ends. These results are in accord-
ance with Prop. V. Now by Prop. III ance with Prop. V_{c}. Now by prop. IIf
these moments the moments of a straight girder and of the arch itself; hence the polygon 6 is simply the polygon c in a new position and with a new pole distance. A moments are unchanged by such trans formations, et as denole these moments
 $1 b_{s} k_{\text {s. }}$. This approximation is sufficiently accarate for our purposes. Now lay off on $l_{s} l_{n}^{\prime}$ as a load line $d m_{s}=\frac{1}{\frac{1}{2}} b_{,} k_{,}, m_{s} m_{\mathrm{s}}=d_{,}, k_{0}, m_{,} m_{0}=d_{\mathrm{s}} k_{g}$
ete. The direction of these loads must be changed when they fall on the other se changed when they fall on the other
side of the line $k ; e . g ., m_{3} m_{1}=k_{1} d_{\text {a }}$. If this process be continued through the entire arch m_{0}^{\prime} (not drawn) will fall as ar to the right of d as $m_{\text {a }}$ does to the eft, and the last load will just reach to d again. This is a test of the corectness with which the position of the ne b, k_{0}^{\prime} has been found. Now using any point as b for a pole, draw $b m$, to f, ,
then draw $f, ~ l l ~ b m, ~$ The curve $b f$ is then the exaggerated The curve $b f$ is then the exaggerated
hape of a vertical girder $b d$, fixed at b under the action of that part of moments Hd which are in the left half of the arch. The moments M_{d} on the right may act on another equal girder, having he same initial position bd, and it will d. We equally deflected to the right of bad. This is not drawn. ixed at b are bent instead by the $\therefore\left(M_{c}-M_{c}\right)=0$, and $\Sigma\left(M_{c}-M_{c}\right) x=0 \begin{aligned} & \text { moments } M_{c} \text {. We do not know just } \\ & \text { how much these moments are, though we }\end{aligned}$ $\therefore \Sigma\left(M_{d}\right)=0$ and $\Sigma(M d x)=0$

$$
\begin{aligned}
& \text { how much these moments are, though we } \\
& \text { do know that they are proportional to }
\end{aligned}
$$ Trom this it is seen that the polygon

 is in accordance with Prop, IV.

Again, $\Sigma\left(M_{e y}\right)=\Sigma\left(M_{0}-M_{a}\right) y=0$

$$
\Sigma(M c y)=\Sigma(M d y)
$$ the ordinates of the polygon c. Theremust just return to d. This tests the accuracy of the work in determining the position of $h_{s} h_{E}$.

Now using b.
trnct the deflection pole as before, construct the deflection curves $b g$ and $b g^{\prime}$ This last condition we shall use for and $g g^{\prime}$ ought to be the same, this faet
informs us that each of the ordinates muitiply the ordinates of the arch by $h_{1} c_{1}, h_{2}, c_{2}$, must be increased in the ratio some number greater than 3 .
of $\frac{1}{2} g g^{\text {to } d f}$, in order that when they As a final test of the accuracy of the are considered as loads, they may pro- work, let us see whether $\Sigma\left(M_{i y}\right)$ is ac duce a total deflection equal to $2 d f$. To effect this, lay off $b j=d f$ and $b i=$ $\frac{1}{2} g g^{\prime}$, and draw the horizonts the, $y=d_{7} l_{7}$, and M_{C} is proportional i and j. At any convenient distance to $d_{,} e_{r}$. Then $d_{7} s_{7}^{2}$ is proportional to draw the vertical $i_{0} j_{\text {, }}$ and draw $b i_{\text {a }}$ and $M_{e y}$ at that point if $c_{7} s_{7}$ is the are of draw the vertical $i_{j} j$, and draw $b j_{\text {, and }}$ a circle, of which $e_{9} l_{\mathrm{s}}$ is the diameter. effect the required proportions for any example falls above $d_{4}{ }_{8} s_{5}$, the eirele e_{4} for ordiuntes on the loft, and these or two be described above $d_{\text {, }}$, the eircle mus lines of the same slope on the right to be described do the same thing on the righity, E. $g \cdot$ as a diameter, and $d_{1} s_{4}{ }^{2}$ is proportiona lay off the ordinate $h^{\prime}=h_{2}$, then to a mement of different sign from that the required new ordinate is $b j$. Then , of the monrents at the different points lay off $k \theta_{0}^{\prime}=b j^{\prime \prime}$. In the same man- $\begin{aligned} & \text { along the arch, by putting different }\end{aligned}$
ner find $k e$ from h, b, and k, e, from h, c. nates \mathcal{F}, etc. be fonnd ; ont this is not the best way to determine the rest not the best way to determine the rest and pole distance of the polygon e.
As we have previonsly seen, the
distance is decreased in the same patio as the ordinates of the moment curve are increased, therefore prolong $l i_{\text {t }}$ to v and draw a horizontal line through intersecting bj, at v, and the middle vertical at v; then is $v_{2} v_{0}$, the pole distance decreased in the required ratio. Hence we move up the weight-line wo, 20 , to the position $u_{,} u^{2}$, vertically through v_{2} i and for convenience, lay off the weights v_{0}, w_{3} at $u^{\prime}, u_{2}^{\prime}$, etc.
Furthermore, we know that the new position of the pole o so that find the ocenr, draw bo parallel to $h h$, and from v the horizontal vo. As is well known v divides the totalweight into the two seg-
ments, which are the vertical resistances ments, which are the vertical resistances
of the abutments, and if the pole 0 is on the same horizontal wit closing line will be horizontal. Now having determined the position of the points $e_{0}, e_{,} e_{0}$, starting from one etc.; then if the work be accurate, the polygon will pass through the other two
points oand e!. The bending moments points oand e! . The bending moments of the arch d or the arch a at a_{v}, a_{v}, etc., is the product of the pole distance $v_{0} v_{2}=v^{\circ} \sigma$ by the ordinates $d_{1} b_{5}, d_{3}$ points a similar product gives the moment with sutticient accuracy. It would signs before the letter 8 . It wonld have been slightly more accurate to have used only, one-half the ordinates $b, 6$ and ' ' ${ }_{s}$ ', but as they nearly equal in this case and of opposite sign, we have introduced no appreciable error.
Now at any point s lay off $s s_{0}=d_{s} s_{2}$, ard at right angles to it $s_{7}, s_{2}=b_{3} s_{2}$, then at right angles to the hypothenuse $8 s$ make $s_{s} s_{s}^{\prime}=d_{s}^{\prime} s_{b}^{\prime}$, etc. Then the sum of the positive squares is $s s_{1}^{\prime}$, and simis. If these are equal, then $\Sigma(M, y)$ van these are equal, then \sum (Moy)
vanishes as it should, and the construcvanishes as it should,
tion is correctly made.
It would have been
It wonld have been equally correct to uppose the two vertical girders fixed at ould have determined the required ratio equally well from this construction arther, in proving the correctness of he construction by taking the algebraic nm of the squares, we could have reckoned the ordinates, y, from any, other To find the resultant stress in
Tol $l_{\text {. }}^{\text {. }}$ To find the resultant stress in he different portions of the, arch we must prolong v'o to o, say, not drawn) so that the pole distance σ, will be the resultant stress in the segment $b, a ; o^{\prime} u$, will be the stress in segment $b_{,}, a ; o u$, will be the stress in
$a_{\text {a }} a_{n}$, tot., measured in the same scale as the weights $20_{1} 20_{2}$, etc. This resultant stress is not directly along the neutral axis of the arch.
ed in the same manner as for a girder, be nsefol for the sake of accuracy to between the verticals 7 and 8 , another
through $w_{\text {w }}$ between 7 and 6 , ete. (not moments at the left. The same two drawn). Then the shear will be the ver- equalities hold also on the right. From tical distance between $v o$ and these hori- this we at once obtain the ratio by which that the shear will change sign on the be altered to obtain those of the polyvertical through b, with our present gon e. loading.

This last approximation also shows us解 through the center of gravity of the points of inflection when the bending first and last sides of the polygong c. A below the closing line. It is frequently weight $=\frac{1}{2} P=v 0_{0}$ to, ought, however, a sufficiently close approximation in the first to be applied at b, and another case when the moving load covers only $=\frac{+}{} P=v_{0}^{\prime} x_{0}^{\prime}$ at b_{0}^{\prime}. The shearing part of the span to derive the ratio stress under a distributed load will needed by supposing that the sum of all actually change sign on the vertical so the ordinates, both right and left, above found. It will not pass far however The resultant stress is the resultant of the horizontal thrust and the vertical shearing stress, and it ean be resolved into a tangential thrust along the areh
and a normal shearing stress, This and a normal shearing stress.
resolntion will be effected in Fig. 3 of resolntion will be
the next chapter.
As to the position of the moving load
As to the position of the moving load ing moments, we may say that the posiing moments, we may say that the posi-
tion chosen, in which the moving load covers one-half the span, gives in general nearly this case. It is possible, however, to increase one or two of the moments slightly by covering a little more than half the span with the moving load.
The loading which produces maximum moments will be treated more fully in subsequent chapters

The maximum resultant stress and maximum vertical shear occur in gen-
eral when the moving load covers the whole span. The construction in this case is much simplified, as the polygon c is then the same on the right of b as it now is on the left, and the center of gravity of the area is in the center vertical; so that the closing line $h_{n} h_{i}$ is horizontal, and can be drawn We shall not, even in this case, be under We sinall not, even in this case, be under
the nedessity of drawing the curves ho and $b g^{\prime}$, which would be both alike; for as may be readily seen, the sum of the ositive moments M_{0} on the left must be very approximately equal to the positive moments $M d$ on the left, and the same thing is true for the negative
the closing line in the polygon c must be increased, so that it shall equal the corresponding sum in the polygon d. If the sums taken below the closing lines give a slightly different result, take Thus the single
iven in Fig. given in Fig. 2, and one other much
impler than this, which can be obimpler than this, which ean be ob-
ained by adding a few lines to Fig. 2 , give a pretty complete deterFig. 2, give a pretty complete deter-
mination of the maximum stresses on the assumptions made at the commencement of the article.
One of these assumptions, viz, that constant cross section (i.e. $I=$ constant), deserves a single remark. In the St. Louis Arch I was increased one-half at each end for a distance one-twelfth of the span. This very
considerable change in the value of I slightly reduced the maximum moments sightly reduced the maximum moment
computed for a constant eross section. From other elaborate calculations, partieularly those of Heppel,* on the Britan uia Tubular Bridge, it appears that the variation in the moments caused by the changes in eross section, which will adapt the rib to the stresses it must sustain, are relatively small, and in ordinary cases are less than five per cent, of the
total stress. The same considerations are not applieable near the free ends of are not applieable near the free ends of a continnous girder, where I may theo-
retically vanish. In the case before us, where the principal part of the stres arises not from the bending moments, but from the compression along the arch, the effect of the variation of I is arch, the effect of the varia
very inconsiderable indeed. $\frac{\text { Pthitaontaical Magatine, Vol. it }}{\text { - }}$

CHAPTER III.
ARCH RIB WITH FIXED ENDS AND HINGF JoLNT AT THE CROWN.
\qquad the proportions of the arch we shall use to illustrate the method to be applied to arches of this character. The areh a is segmental in slrape, and has a rise of one-
fifth of the span. It is unnecessary to assume the particular dimensions in feet as the above ratio is sufficient to deter mine the shape of the arch.
The arch is supposed to be fixed in the abutments, in such a manner that the position of a line drawn tangent to the curve a at either abutment is not changed in direction by any deflection which the arch may undergo. At the crown, however, is a joint, whien is perfectly free to
turn, and which will, then turn, and which will, then, mot allow the propagation of any bendung momen
from one side to the other. In ordem that we may effeet the construction more accarately, let us multiply the ordinates of the curve a by some convenient number, say 2 , though a still larger multiplier would conduce to greater accuracy We thus obtain the polygon d.
Having divided the span b into twelve equal parts b, b, etc, a a larger number of parts wotld be better for the discussion of an actual case), we lay off below the heri-
yontal line $/$ on the end vericals which express on some verticals, lengths weights which may be supposed to be concentrated at the points of division of the arch. If $a l$ is the depth of the loading on the left and $a l=\frac{-1}{2} a l$ that on the right, theu $b_{1}, v_{1}+b_{n}^{\prime} v_{2}^{\prime}=$ the weight concentrated at $a ; w_{i} v_{3}=$ the weight at a_{i};
T- $\quad \begin{aligned} & w_{1}^{\prime}-x x_{2}^{\prime}=\text { the weight at a }{ }^{\prime} \text { ', ete. Using } \\ & \delta_{\text {as }} \text { as pole, draw the equilibrum polygon }\end{aligned}$ c, whose extremities c, and
$w_{2} w_{1}$, and $v_{1}^{\prime} w_{1}^{\prime}$ respectively.
Now to find the elosing
equilibrium polygon so that line of this equilibrium polygon so that its ordinates
shall be proportional to the bending moments of a straight girder of the same span, and of a milforma moment of inertia
I, which is buil in horizentally at ther \bar{t}, which is buile in horizontally at the ends and has a hinge joint at its center; We notice in the first place that the bend-
ing moment at the finge ing moment at the hinge is zero, and hence the ordinate of the equilibrian polygon at this point vanishes. The
closing line then passes through b the point in question. Furthermore it is
evident that if we consider the parts of the girder at the right and left of the center as two separate girders whose ends are joined at the center, these ends have each the same deflection, by reason of this connection.
This is expressed by means of our equations by saying that $\Sigma(M x)$ when the summation is extended from one end to the center is equal to $\Sigma(M x)$ when the
summation is extended from the other end to the center for these are the other and to the center, for these are then prothe center. We may then write it thus :

$$
\Sigma_{b_{6}}^{b}(M x)=\sum_{b_{6}}^{\delta} \cdot(M x)
$$

The equation has this meaning, viz: that the center of gravity of the right and left moment areas taken together is in the center vertical ; for, taking each moment M as a weight, x is its arm, and Ine its moment about the center.
Iraw the closing line throngh b so that Itraw the closing line through b so that
it sause the moment areas towether to have their center of gravity in the center vertical through b, let us draw a econd equilibrium polygon using the noment areas as a species of loading. The area on the left included between any assumed closing line as $b b_{e}$ (or $b h_{e}$) and the polygon be may be considered to consist of a positive triangular area co, (or bc $h_{\text {f }}$) and a negative parabolic rea be, ce, c_{0}; and similarly on the right a ive area $b c, b c_{0} b_{s}^{\prime}\left(\right.$ or $\left.b c_{6}, l_{\mathrm{c}}^{\prime}\right)$ and a negaAt any conv he center as at p and p^{\prime}, lay oft from loads to some convenient scale. It is, perhaps, most convemient to redrce the homent areas to equivalent triangles aving each a base equal to half the span: then take the altitudes of the triangles as the loads. This we have done, so that $p p_{1}=f c_{c} \rho^{\prime}$, and $p^{\prime} p_{1}^{\prime}=\frac{s c_{0}}{} c_{3}^{\prime}$,
Now assume, for the instant, that closing tine is $b b_{0}^{\prime}$, whieh of course is incorrect, and make $p_{1} p_{2}=b_{p_{0}}$ and $p_{1}^{\prime} p_{2}^{\prime}=b_{6} e_{6}$, Wren these are the foads due to the positive triangular areas at the left and right respectively, while $p p_{1}$ and $p_{1}^{\prime} p_{1}^{\prime}$ are the negative parabolic loads.
Take o^{\prime} as the pole of these loads, then \bar{M}^{\prime} may be taken for the first side of the second equilibrium polygon. Draw $p q$
$\| o^{\prime} p_{1}$ and $p^{\prime} q^{\prime} \| o^{\prime} p_{1}^{\prime}$, and then from q
and q^{\prime} draw parallels to $o^{\prime} p_{s}^{\prime}$ respective- apply Prop. IV, for the determination of ly. These last sides intersect at q_{0}. The the bending moments vertical through q_{2}, then contains the That Prop. IV is true for an arch of center of gravity of the moment areas this kind is evident; for, the loading when $b_{8} b_{6}^{7}$ is assumed as the closing causes bending moments proportional to line.
A few trials will enable us to find the itself is fitted to neutralize, in virtue of position of the closing line which causes its shape, moments which are proportional the center of gravity to fall on the center to $k_{0} d_{0}, k_{0} d_{v}$, etc. The differences of trials so as to lead at once to the required nates are what actually produce bending closing line as follows. Since, evidently, in the arch
$b c+i c^{\prime}=h c+h^{\prime} c^{\prime}$ it is seen that the Now the ordinates of the type the are sum of the positive loads is constant. not drawn to the same sale as those of the Therefore make $p, p=p_{1} p_{1}^{\prime}$, and use p, p, type $k d$, for each was assumed regardless and $p_{1}^{\prime} n^{\prime}$ ' as the positive loads, in the of the other. In order that we may find same manner as we used $p_{1} p_{2}$ and $p_{1}^{\prime} p_{0}^{\prime}$, the ratio in which the ordinates he must previousily, This will be equivalent to assuming a new position of the elosing line. The only change in the second equilibrium polygon will be in the position of the
last two sides. These must now be drawn parallel to $O^{\prime} p_{\mathrm{a}}$ and $\sigma^{\prime} \rho_{3}^{\prime}$ respectively; and they intersect at q_{3}. The vertical through q, contains the center of gravity for this assumed closing line. Another trial gives us q. \qquad of the closing line had changed gradually, then the intersection of the last sides of the second equilibrium polygon would have described a curve through q, q, and q. I
one of these points, as q, is near the cenone of these points, as q, is near the cen-
ter vertical, then the are of a circle q, will intersect it at q indefinitely nea to the point where the true locus of the points of intersection would intersect the center vertical.
Let us assume that q_{0} is then determined with sufficient exactness by the girenlar aro $\left.q_{2} q_{2}\right\}$, and draw $q q$, and $q^{\prime} q$, as the last two sides of the second equilibrium polygon. Now draw o'p, II $q q_{0}$, and $o^{\prime} p_{0}^{\prime} / l q^{\prime} q_{0}$, then $p_{,} \boldsymbol{p}_{=}=c, h_{0}$ and $p_{1}^{\prime} p_{3}^{\prime}$
$=c_{0}^{\prime} h_{0}^{\prime}$ are the required positive loads, $=c_{1} h_{6}^{\prime}$ are the required positive coads,
and $h h_{l}^{\prime}$ is the position of the closing and $h_{r} b h_{\text {' }}^{\prime}$ is the position of the closing lime such that the center of gravity ortithe moment areas is in the center verti-
cal. polygon d considered as itself an equilib rium polygon is the horizontal line throagh d, for that will cause the center of gravity of the moment areas on the left and right, between it and the polygon d, to fall on the center vertical.
The next step in the construction is to
be changed to lay them off on the same cale as kd it is necessary to use another quation of condition imposed by the
$\sum_{b_{6}}^{a}\left(M_{a}-M_{c}\right) y=\sum_{b_{6}}^{a}\left(M_{a}-M_{c}\right) y$
or $\quad 2_{b_{6}}^{d}\left(M_{d}-M_{c}\right) y=2_{b_{6}}^{d}\left(M_{d}-M_{c}\right) y$
The left hand side of the equation is the horizontal displacement (i.e., the total deflection) of the extremity a of the left half of the arch, due to the actual bending moments ($M_{d}-M_{0}$) acting upon it: displacement of a the extremity of the displacement of a the extremity of the ctually bending it. These are eqnal becuse connected by the joint eqnal beThe construction of the deflection curves due to these moments will enable us to find the desired ratio.
The ordinates $k d$ and hc are rather longer than can be used conveniently, to epresent the intensity of the moment concentrated at d_{1}, d_{2}, ete, and c_{1}, c_{2}, etc. so we will use the halves of these quan
tities instead. Therefore lay off $\mathrm{dm}=$ $k_{0} b_{0}, m_{\mathrm{m}} m_{\mathrm{a}}=\frac{1}{2} k, d_{0}, m_{t} m_{\mathrm{a}}=\frac{1}{2} k \mathrm{k} d_{\mathrm{a}}$ etc,
 We use only one-quarter of each end ordinate because the moment area supposed to be concentrated at each end has only one half the width of the moment areas concentrated at the remaining points of division.
Using b as a pole we find the deflection curve f^{b} due to the moment M_{a} or $M_{\text {d }}$
we should find a deflection $d f^{\prime}=d f$ not vertieal through t, Then $t t_{\text {, }}$ is the actual drawn, and similarly a deflection $d g^{\prime}$ not horizontal thrust of this arch due to the equal to dg.
Now the equation we are using requires in the segment a, b_{i}, of the arch, which that the ordinates $h c$ shall be elongated may be resolved into two components so that when used as weights the deflec- $o r$, and v, r, respectively parallel and pertions shall be identical : i.e., we must have $d j^{\prime}=1 g g^{\prime}$. To effect the elongation,
lay off $a j=d f^{\prime}$ and $a i=t q g^{\prime}$; and at any ay off $a j=d f$ and $a i=\frac{1}{2} g g^{\prime}$; and at any thrust directy and $v_{v} r_{0}$, respectively, the convement distance on the horizontals $i i$, rectly across the segment a, b of the and j, draw the vertical $i j$; then the arch Similarly or and v, r represent lines ω_{0} and aj, will effect the required the thrust along, and the shear across elongation. For example, lay off $a i_{0}=$ the segment a, a_{0}, and so on for other h_{0}. from which we obtain $\eta_{k}=k_{2} e_{0}$ for segments. These quantities are all the left end ordinate, and similarly 'aj!' $=$ measured in the same scale as that of the kis'e' The pole distance tt, of the original The shear chat
The pole distance $t_{\text {, }}$, of the original The shear changes sign twiee, as will polygon c must be shortened in the be seen from inspection of the directions same ratio in which the ordinates are elongated. Hence the new pole distance of the polygon e is t_{0}.
Since k, z_{0}, is the co
polygon e, and is horizontal, line of the polygon e, and is horizontal, the pole of
e is o, on the horizontal throngh h; for hos is the part of the applied weight suistained by the left support, weight Now if the weight line be moved up
to t so that the applied weights are $z u$, to t so that the applied weights are $u_{1} u_{3}$ at the center, etc., and σ is the pole, the polygon e may be described starting from \$, and it will finally cut off the end ordi nates
Then will the ordinates of the type d be proportional to the moments actually be proportional to the moments actuall
bending the arch, and the moments wil be equal to the products of de by u, in which de is measured on the scale of distance, and $t t_{2}$ on the scale adopted for the weights $w_{0} w_{v}$, etc. The accuracy of the constructio shearing stas The accuracy of the construction is when the arch is entirely covered by the
finally tested by taking $\Sigma(d s)^{\prime}=0$, an moving load, or when it may oceur when TT $\begin{aligned} & \left.\text { equation deduced from }-2 M_{k}-M_{o}\right) y=0, \text { the moving load is near its present posi- } \\ & \text { as explained in the previous article upon tion, it being dependent upon the rise of }\end{aligned}$ the St. Lonis Arch. It is unnecessary to the arch, and the ratio between the morexplain the details of this construction ing and permanent load.
since as appears from Fig. 3 it is in all
respects like that in Fig. 2 . respects like that in Fig. 2 . tangential compression along the areh and of the shearing normal to the arch. Since the pole distance t_{2}, refers to the difference of ordinates between the polygons d and e, whose ordinates are double the actual ordinates, if we wish now to return to the actual arch a whose ordi-
nates are halves of the ordinates of d we must take a pole distance $t t_{2}=2 t t_{2}$ and move the weight line so that it is the now investigate for both of the kinds of
now investigese latter stresses we shall
occur when the moving load coverssions occur when the moving load covers the
entire arch. The stresses obtained by entire arch. The stresses obtained by supposition that the arch has a constant cross-section, so that its moment of ineria does not vary, and no account is taken of the stresses caused by any changes of the length of the arch rib, due to variations of temperature or other now investigate for both of the ke sher ches which have been treated. in which the quantities of the type $v r$ are drawn. The shear is zero wherever the curves α and e are parallel to each , at a and at some point between at ${ }_{n}$, at α_{2} and The maxima and minima shearing tresses are to be found where the inclination between the tangents to the curves and e are greatest.
The statements made in the previous article, respecting the position of the moving load which causes maximum bending moments, are applicable to this
kind of arch also. The of arch also.
The maximum normal shearing stress will occur for the parts of the arch near the center, when the moving load is near its present position, covering one half of the arch. But the maximum normal hearing stress near the ends, may our hoving load, or when it may occur -

CHAPTER IV.
temperatube stratis.
\qquad and stresses arising from a variation in the length of the arch, under the head of temperature, as such stresses could evidently have been brought about suitable variations of temperature.
The stresses of this kind which are of sufficient magnitude to be worthy of consideration, besides temperature stresses
are of two kinds, viz. the elastic shortening of the arch under the compression to which it is subjected, and the yielding of the abutments, under the horizonta thrust applied to them by the arch. This latter may be elastio or otherwise. It was, I believe, neglected in the computation of the St. Louis Arch, and no doubt with sufficient reason, as the other stresses of this kind were estimated with a sufficient margin to cover this also. Anything which makes the true span of the arch differ from its actual span causes strains of this character. By true deep in the . The polygon is intimitely san is meant the span which the arch a line parallel to \boldsymbol{H}. This fixes its direcwould have if laid flat on its side on a tion. plane surface in such a position that Its position is fixed from the considerathere are no bending moments at any tion that the total bending is zero, (bepoint of it, while the actual span is the cause the direction of the tangents at distance between the piers when the the extremities a and b, are unchange arch is in position. If the arch be built
in position, but joined at the wrong temin position, but joined at the wrong tem-
perature the true and actual spans do not agree and excessive temperature strains are caused.
Taking the coefficient of expansion of steel as ordinarily given, a change of $\pm 80^{\circ} \mathrm{F}$. from the mean temperature
would cause the St. Louis Areh to be would cause the St. Louis Arch to be fitted to a span of about 3 in inches, greater or less than at the mean.
The problem we wish to solve then is
The problem we wish to solve then is
very approximately this: What horivery approximately this: What hori-
zontal thrust must be applied to increase zontal thrust must be applied to increase
or decrease the span of this arch by $3 \frac{1}{4}$
in or decrease the span of this arch by
inches, and what other stresses are induced by this thrust. In Fig. 4 the half span is represented on the same scale as in Fig. 2. The only forces applied to the half arch are an unknown horizontal thrust H at δ_{8} and an equal opposite given in Chapter I, in which D_{y} is thrust H at a. The arch is in the same the horizontal displacement, it is seen condition as it would be if Fig. 4 repre- that if the actual moments are used for sented half of a gothic areh of a span = weights, and $E I$ for the pole distance, we was the new crown at which a weight of polygon, a deflection curve whose ordi-
nates are the actual deflections due to by using the polygon d instead of the the moments. By actual moments, actual curve of the ellipse, and to small errors deflections, etc, is meant, that all of the in measurement. With a larger figure quantities in the equation are laid off to and the subdivision of the span into a the scale of distance, say one $n^{\text {th }}$ of the greater number of parts this error could
actual size.
be reduced. The value of $I I$ found for
Now let the equation be written
From which in is seen that if the oritiFrom which it is seen that if the ordipaper they are of the same size as in the arch, we must use one $n^{\prime} t$ of the former pole distance, all else remaining un
Now for the St. Louis Arch, EI= 39680000 foot tons. Let us take 100 tons to the inch, as the seete of force and since $b u=3$ inches, the scale of di -
tance n is found from the proportion
3 in. $:: 51.8 \mathrm{ft} .:: 1: m=210$ nearly,
and $E T \div 100 x^{2}=9$ in, nearly,
which is the pole distancenecessary to with the actual deflection $\frac{1}{2}$ of $8 \frac{1}{4} \mathrm{in}$. $=$ 15 in ., in order that the moments may be measured to scale. As it is inconvenient to use so large a distance as 9 in . on our paper, let us take $\frac{3}{8}$ of 9 in . $=3 \frac{1}{8} \mathrm{in}$.
mearly
$=d z$ for the pole distance nearly $=d z$ for the pole distance, and 4 of is in. $=\frac{4}{3} \mathrm{in} .=d y$, for the deflee.
tion. Now with z as a pole and the weights dm, in mo, ete, draw the deflection curve $b f$, having the deflection $=d f$. The mo ments M_{d} must be increased in such a ratio that the deflection will be increased from if to $d y$. Therefore draw the
straight lines bf and $b y$, which will enable ns to effect the increase in the required applied causing the moments due to its
is increased to $b j$, and $d m=b j$ is increased To find the tangential stress and shear,
to 15 . Now measuring $b j$ in inches and lay off in Fig, 4 av $=I I$ and on it as a dimultiplying by 210 and by 100 , we have
found that 21000 bj=1802 foot tons= the moment at d or a.
And again, $210006 j=3747$ foot
$=$ the moment at b_{\circ}. By measurement $210 \mathrm{~d} k=17 \mathrm{ft}$. and $210 \mathrm{bk}=34.8 \mathrm{ft}$.
$\therefore H=1809 \div 17=106$ tons, +
or $H=3747 \div 34.8=108$ tons -.
These results should be identical, and the difference between them of less than 2 per cent, is due to the error ecesioned ing as the temperature is increased
and these tangential and normal com- are the products of the deflections by ponents, of course, change sign with H. the pole distance, will be unchanged by Itshould also be noticed in this connec- this process.
tion that thrusts and bending moments, Now inerease the ordinates in such a which are numerically equal but of opposite sign, are induced by equal conractions and expansions.
The stresses due to variation of temperature in the arch of Fig. 3, having a It is evident from reasoning similar to It is evident from reasoning similar to that the closing line $d k_{\text {s }}$, of the polygon d is the equilibrium polygon of the thrust H induced by variation of temperature. Suppose we have changed the equation of deflections to the form,

$$
m D_{y} \cdot \frac{E I}{m n^{2}}=\Sigma\left(\frac{M}{n} \cdot \frac{y}{n}\right),
$$

in which, if $m D_{y}=d y$ and $E I \div m n^{2}=d z$ then the moments M and the ordinates y will be laid off on the scale of 1 to n.
This is equivalent to doing what was This is equivalent to doing what was done in the previous case, where m was equal to $\frac{5}{\text {. The remainder of the pro- }}$ cess is that previously employed. Figs. 4 and $\overline{5}$, incidentally disenssed Figs, 4 and 5 , meidentally discussed two new forms of arches, viz: in Fig. 4 that
of an arch having its ends fixed in direction, but not in position; i.e., its ends may slide but not turn, and in Fig. 5 , that of an aroh sliding freely and turning freely at the ends. The first of these arches has the same bending moments as a straight girder, fixed in direction at the bending moments as a simple girder supported at its ends.

Errata. -The measurements of Fig. 4 giren on page 24 do not agree with the

giren on page 24 do not agree with the
scale on which the drawing is engraved The following equations and quantities agree with the dimensions of Fig. 4, and
are to be substituted instead of those given on page 24 .

given on page 2

the inch, and since force be $8 d=4 \frac{1}{3}$ inches tons to the inch, and since $8 d=4 \frac{1}{2}$ inches, $4 \frac{4}{2}$ in.
$: 51.8 \mathrm{ft} .: 1: n=140$ mearly, and $E I \div$ $100 n^{2}=20 \mathrm{in}$. nearly, which is the pole distance to use with the actual deflection of the half span $=1 \frac{5}{8} \mathrm{in}$.
Now take one fourth of this pole dis-
tance $=5 \mathrm{in} .=d 2$, and four times the tance $=5 \mathrm{in} .=d z$, and four times the deflection $=6 \frac{1}{2} \mathrm{in},=d y$, as being more cover the two-thirds of the span at the convenient to use; the moments, which left, and a uniform load having a deptl
atio that the deflection will be increased from if to $d y$. For example, the moment $d m_{1}=b i$ is increased to $b j$, and $d m_{\text {, }}$ $=b i_{\text {e }}$ is increased to $b j$. Now by measuring bj in inches and multiplying by 40 and by 100 we have found $14000 \mathrm{bj}=$ 809 foot tons $=$ the moment at α or d. nd again, 14000

By measurement, $140 \mathrm{dk}=17 \mathrm{ft}$.
and $140 \quad b k=34.8 \mathrm{ft}$.
$\therefore H=1809 \div 17=106$ tons + ,
Near the bottom of the second column of page 24, instead of $a r_{3}, a r_{4}, v r_{8}, a r, v r$, Thad $a v_{s}, a v_{n}, v v_{p}, a v, v v$.
The scale used in the last construction Fig. 4, is about $38 \frac{1}{3}$ tons to the inch.

> UNSYARMETRTCAL ABCHES.

The constructions which have been given have been simplified somewhat by the symmetry of the right and left hand halves of the arch, but the methods which have been used are equally pplicable if such symmetry does not exist, as it does not, if, for example, the butments are of different heights.
In particular, for the unsymmetrical arch, its closing line is not in general arizontal, and must be found precisely
as that for the equilibrium polygon due to the applied weights.
It, in Fig. 3 , the hinge joint is not situated at the center, the arch is unthe ctocical, and the determination of weights, is not dine due to the rypplied It ill tot quite so simple as in Fig. ines through the joint by whe trial nes through the joint by which the

CHAPTER V .
ARCM RIB WITH END JOINTS. Let the curve a of the arch to be as represented in Fig. 6, and having divided the span into twelve equal parts, make the ordinates of the type br twice he ordinates $a b$.
Let a uniform load having a depth an
$x y^{\prime}=\frac{1}{2} x y$ cover the one-third of the obtain the center ordinate $b e$, for ex -
span at the right. Assume any pole dis- ample, make $a i^{\prime}=b h \therefore a j^{\prime}=b e$. To
 tance, as of one-third of the span, and find the new pole o, draw $b v$ parallel to
lay off $b w,-x y=$ one-half of the load c, c, and vo horizontal, as before exlay off $b_{2}, v_{1}-x y=$ one-half of the load $c_{0} o^{\prime}$ and
supposed to be concentrated at the cen- plained. supposed to be concentrated at the cen-
ter; $2 v, 2 x,=2 x y=$ the load concentrated ter; $v_{0}, v_{2}=2 x y=$ the load concentrated If $a i_{\text {, }}$ euts the load line at t_{1} and the
 $b_{1}, 2 x_{1}=x y=$ one-half the load above $\}$; the vertieat hrough $z_{\text {, }}$ is the new position $w_{1}^{\prime \prime} w_{1}^{\prime}=2 x y=$ the load above $b_{1}^{\prime} ; w_{1}^{\prime \prime} w^{\prime}$, of the load lis.
$=x y+x y^{\prime}=1 \times y y=$ the load above $b_{2}^{\prime} ;$ zontal thrust.
to ' =xy = the load above b, , ete. Now using o as the pole of the load From this force polygon draw the line $\psi_{1} u_{1}^{\prime}$ etc., through $t_{\text {, }}$ draw the equiequilibrium polygon c, just as in Figs. 2 librium polygon starting from e. It
and 3 . and 3 .
Now the elosing line of the equilibrium polygon for a straight girder with ends free to turn, mest eviidently pass so that the end moments vauish. Hence co is the closing line of the polygon c, an ord is the closing lime of the polygon d^{2}
drawn according to the same law. The arawn according to the same haw.
remaining condition by which to determine the bending moments is:
$\Sigma\left(M_{d}-M_{c}\right) y=0 \quad \therefore \Sigma\left(M_{(y}\right)=\Sigma\left(M_{c}\right)$ which is the equation expressing the condition that the span is invariable, the summation being extended from end to end of the arch
This summation is effected first as in Figs. 2 and 3, by laying off as loads quantities proportional to the applied
moments concentrated at the points of mivision of the arch, and thus finding the second equilibrium polyzon, or deflection polygon of two upright girders, bent by
these moments.
Let us take one-fourth of each of the ordinates $b d$ for these loads, i.e. $b m=\frac{1}{\circ}$ of $\frac{1}{\frac{1}{2} b i, m m=\frac{1}{2} b, d_{\text {, }} \text { etc.: also } m, n n, \text { etc., }}$ equal to similar fractions of the ordinates
of the curve o. Using d as the pole for of the curve a Using d as the pole for
this load, we obtain the total deflection if, on the left, and the same on the right of, on the left, and the same on the right
(not drawn) due to the bending moments ${ }_{\mu}$
Similarly $g g_{0}^{\prime}$ is the total deflection right and left due to the moments M_{c}. Now the equation of condition re-
quires that $\frac{1}{2} g \%$, $=b f$. That this may occur, the ordinates of the polygon c must be elongated in the ratio of these deflections. To effect this, make $a i=$ $\frac{1}{2} g 9$ ' $^{\text {a }}$ and a $j=b f^{\prime} \%$ and on the horizontance draw the vertical $i f$ then the lines $a i$, and $a j$, will effect the required elongation, as previously explained. To
the accuracy of the construction.
The construction may now be completed just as in Fig. 3 , by doubling the pole dietance, and finding the tangential
thrust along the arch and the normal thrust along the areh and the normal shear directly across the arch in the
segments into which it is divided. The segments into which it is divided. The obtained when the line load covers the entire span.
To compute the effect of changes of emperature and other causes of like nature in producing thrust, shear, bending moment etc., let us put the equation of deflections in the following form

$$
\begin{equation*}
m D_{y} \cdot \frac{E I}{m n^{2} n^{\prime}}=\Sigma\left(\frac{M}{n n^{\prime}} \cdot \frac{y}{n}\right) . \tag{D}
\end{equation*}
$$

This equation may perhaps put in
more intelligible form the processes used more intelligible form the processes used in Figs, 4 and 5 , and is the equation
which should be used as the basis for the Which should be used as the basis for the discussion of temperature strains in the by which the rise of the arch number divided to reduce it to bod, i.e., it is the scale of the vertical ordinates of the type bd, in Fig. 6 , so that if $b d$ was on the same seale as the arch itself, n would be unity. Again, n is the scale of force i.e, the number of tons to the inch; and m is a number introduced for convenience oo that any assumed pole distance p may be used for the pole distance of the second equilibrium polygon. In Fig. $6, p$
$=b, d$ We find m from the equation,

$$
p=\frac{E I}{m n^{2} n^{\prime}} \quad \therefore m=\frac{E I}{m^{2} n^{\prime \prime}}
$$

from which m may be computed, for $E I$ is a certain known number of foot tons when the cross-section of the rib is given, p is
a number of inches assumed in the draw- the middle of that live load, and is ver a number of inches assumed in the draw- the middle of that live load, and is very
ing, n and n are also assumed. Now approximately the largest which can be be D_{y}, is the number of inches by which approximately the largest which by a live load of this intensity, D_{y} is the number of inches by which induced by a live load of this intensity,
the span is increased or decreased by the while the greatest moment of opposite the span is increased or decreased by the once laid off on the drawing.
The quantities in equation (D) are so related to each other, that the left-hand member is the product of the pole dis-
tance and ordinate of the second equitance and ordinate of the second equi-
librium polygon, while the right-hand librium polygon, while the right-hand member is the bending moment pro-
dueed by the loading $M \div-n^{n}$, which loading is proportional to M. The curve f was construeted with this loading, and only needs to have its loads and ordinates elongated in the ratio of $b f$, to $\frac{1}{2} m D_{y}$ to determine the values of $M \div \because n^{2}$ at the various points of division
of the arch. One-half of each quantity of the arch. One-half of each quantity is used, because we need to use but onehalf the arch in this computation. Two lines drawn, as in Figs. 4 and 5, effect the required elongation.
The foregoing discussion is on the implied assumption that the horizontal ture is applied in the closing line $b b$, of ture is applied in the closing line $8 b_{6}$ of
the arch, which is so evident from previous discussions as to require no proof here.
The quantity determined by the fore going process is $M \div n n^{\prime}=q$ say, a cer
tain number of inches. Then $\grave{K}=n n^{\prime} q$, and $H=M \div y=n^{\prime} q \div \frac{y}{n}$, in which $\frac{y}{n}$ is the length of the ordinate in inches on the Tha wing at thepoint at which M is applied. tangential stress induced by H is found tangential stress induced by H is found
by using H as the diameter of a circle, by using H as the diameter of a circle,
in which are iuseribed triangles, whose sides are respectively parallel and perpendicular to the segments of the arch,
precisely as was done in Figs. 4 and 5 . The whole diseussion of the arch with end joints may be applied to an unsymmetrieal arch withend joints. In that case it would be necessary to draw a curve f at the right as well as f at the left, and the two would be unlike, as g and g^{\prime} are.
This, howvever, would afford no difinulty either in determining the stresses dne to the loads, or to the variations of temperature.
When the live load extends over two hirds of the span, as in the Fig, the maximum bending moment is nearly in these stresses by analogons methods.
sign is found near the mid
loaded third of the span.
If the curve of the arch were a parabola instead of the segment of a circle, these statements would be exact and not approximate, as may be proved analytically. This matter will be fur-
ther treated hereafter.

CHAPTER VI.

ARCH RIB WITH THREE JOINTS,
Let the joints be at the center and ends of the arch, as seen in Fig. 7. Let the same as that used in Fig. 6. Now since the bending moment must vanish at each of the joints, the trne equilibrium curve must pass through each of the joints; i.e., every ordinate of the polygon c must be elongated in the ratio of $d b$ to $b h$. To effect this, make $d i=b h$, and at a convenient distance on the horizontals through b and i draw the vertical i, b.
Then the ratio lines $d i$ and $d b$ will Then the ratio lines $d i$ and $d b$, will find the new pole distance $t i$, diminished in the same ratio, by drawing the horizontal ti through i. The new pole o is found in the same manner as in Fig. 6. Now with the new pole a and the new load line through t, we can draw the polygon e starting at d. It must then pass through $b_{\text {, and }} b_{0}^{\prime}$ which tests the They of the construction.
in thrust, and tangential tress is attained when the live load avers the entire span.
Variations in length
temperature induce no to changes ments in this arch, but there may be slight alteration in the thrust, ete., produced by the slight rising or falling of shortening of the arch. This is so small a displacement that it is of no importance to compute the stresses due to it, previous and subsequent constructions, omitted to conpute the constructions, from the displacement which the arch undergoes at various points by reason of its being bent. It would be quite posthese stresses by analogous methods.

(R)

The construction above given is appli- verticals containing b and b is slightly cable to any arch with three joints. The to the right of its true position, as it three joints can be situated at any points from the vertical through b to that of the arch as well as at the points through δ_{3}. This does not affect the chosen above.

Thure of the process however

CHAPTER VII.

 THE ARCH RIB WITH ONE END JOINT. Let the arch be represented by Fig. 8 , in which the load, eto., is the same as in Fig. 6. The closing line must pass through the joint, for at this joint the bending moment vanishes.A second condition which must b fulfilled is, that the total deflection be low the tangent at the fixed end of straight girder having one end join fixed. This is expressed by the equation fixed. This is expressed b
$\sum(M x)=0$,
in which the summation is extended from end to end.
This condition will enable us to draw the elosing line of the polygon c, and also that of d. The problem may be
thus stated:-In what direction shall closing line such as e h^{\prime} be drawn from c, so that the moment of the negative trisigular area $c_{c} c_{0} / K$ about $c_{\text {c }}$ shall be
equal to the moment of the positive equal to the moment of the positive
parabolic area coto' To solve this problem, first find the center of gravity of the parabolic are area $c, b b^{\prime}$ is a segment of a single parabola whose area is $\frac{A}{3} b_{0} b_{0}^{\prime} \times c_{0} c_{2}=\frac{1}{2} h_{1}$ $\times b_{0} b_{6}^{\prime}$, when $h_{4}=$ the height of an equivalent triangle having the span for its bas $\therefore h_{1}={ }^{\circ} c$
($\quad \begin{aligned} & \text { Lay of } l_{0},=c_{0}, \text { and draw } l_{b} b_{3}^{\prime}\end{aligned}$ Again, c_{2} p is proportional to the weight of the triangle $c_{0} c^{\prime} c^{\prime}{ }^{\prime}$. The parabolic
area $c_{2}^{\prime} c_{0}^{\prime}=\frac{2}{3} c_{0}^{\prime} c_{1}^{\prime} \times b_{2}^{\prime} b_{6}^{\prime}=\frac{1}{2} h_{2} \times b_{d} b_{6}^{\prime}$, as found as h, was before.
Let $h_{2}==p P_{1}$, then on taking any pole, as c_{0}, of this weight line, we draw $q q_{1} \|$ center of gravity in the vertical through q_{1}, and the triangular area in that through q, we draw $q q_{1}^{\prime} \| c_{2} p$, to the vertical through q_{1}^{\prime}, which contains the center of gravity of, the right parabolic area.

Then $q_{1} q_{2} \| c_{2} p_{1}$ and $q_{1}^{\prime} q_{2} \| c_{2} p_{2}$ give q in the vertical through the center of grav ty of the total positive area. The negaer of gravity in the vertical through of er of gravity in the vertical through c_{2}
Now if the total positive bending ment be considered to be concentrated at its center of gravity and to act on a straight girder it will assume the shape $q_{2}{ }_{2}$, of this second equilibrium polygon, and if a negative moment must be applied such that the deflection vanish, the remainder of the girder must be $r_{1} r_{2}, 8$ prolongation of r_{1}. Now draw $c_{2} p_{2} \|$ r_{1}^{\prime} and we have $p_{2} p_{3}=c_{6}^{\prime} / h^{\prime}$ the height of the triangle of negative area. Henc ch^{2} is the closing
quired conditions.
Again, to draw the elosing line b, according to the same law we know that the center of gravity of the polygonal area d is in the center vertical. To find the height $p_{1} p^{\prime}$, of an equivalent riangle having a base equal to the span, we may obtain an approximate result, as in Fig. 2, by taking one twelfth of the sim of the ordinates of the type bd, but it is much better to obtain an exact result by applying Simpson's rule which ordinates. The rule is found to reduce in this case to the following:-The required height is one eighteenth of the sum of the ordinates with even subscript plus one ninth of the sum of the rest. Now this positive moment concentrated in the center vertical and a negativ moment such as to cause no total deflection in a straight girder, will give as a second equilibrium polygon rq, ${ }^{\prime}{ }^{\prime}{ }^{\prime}$. and if $c_{2} p_{3}^{\prime} \| r_{1}^{\prime}$, then $p_{2}^{\prime} p_{2}^{\prime}=b_{0}^{\prime} k$ is the and the closing line is $b \mathrm{f} E$. Now the remaining condition is that he span is invariable, which is expressed by the equation
$\Sigma\left(M_{d}-M_{c}\right) y=0$, or $\Sigma\left(M_{d} y\right)=\Sigma\left(M_{c} y\right)$
Let us construct the deflection curve aue to the moments M_{d} in a manne The position of q midway between the lay off quantities $d m_{s}, m_{0} m_{s}$, etc.,
equal to one-fourth of the corresponding in Fig. 9. Let the loading, etc., be as ordinates of the curve d, and $d n_{s}$, in Fig. 6.
$n_{2} n_{0}$, etc., one-fourth of the ordinates The closing line evidently passes of the curve c. We use one-fourth or through the two joints, as at them the any other fraction or maltiple of both bending moment vanishes.
which may be convenient, By using b The remaining condition to be fulfilled for a pole we obtain the deflection curves is that the deflection of the right half of M_{d}, and the curves g and g for those shall be the same as that of the left proportional to M_{0}. half.
Now, Prop. IV. requires that the or- Let us then suppose that the straight inates of the polygon c should be in- girder $b_{0}^{\prime} p^{\prime}$ perpendicular to the closing
creased so that $g q^{\prime}$ shall become equal to line, is fixed at b^{\prime} and bent first by $f f^{\prime}$. Make $d i=g g^{\prime}$ and $d j=f f^{\prime}$ and draw the moments M_{d} giving us the deflection as before the ratio lines d_{i} and d_{j}, then curve $b_{\mathrm{e}}^{\prime} f^{\prime}$ when ${h_{0}}_{\mathrm{o}}$ is taken as the pole, the vertical through t_{1} is the new position and the loads of the type mam are oneof the load line. Find the new length of $b h$ which is of the polygon d; and secondly, by the polygon e starting at pole o. It must pass moments M_{c} giving us the deflection polygon e starting at e. It must pass curve $b_{a} g$ when draw with the same through b_{c}. The new pole o is found pole, and the loads of the type $n n$ also weight line into two parts, which are nates of the polygon c. It should be the vertical resistances of the abutments. noticed that the points at which these From v draw $v, o \| k \cdot k^{\prime}$, then the closing moments are supposed to be concentraline of the polygon e has the direction $k \kappa^{\prime}$. ted in the girder $b_{0}^{\prime} p^{\prime}$, are on the paralA single joint at any point of an mn- lels to $k k^{\prime}$ through the points d_{w}, d_{o} symmetrical arch can be treated in a similar manner.
A thrust produced by temperature strains will be applied along the closing line $k N$, and the bending moments in auced will be proportional to the ordin
ates of the polygon d from this closing line. The variation of span must be computed not for the horizontal span, but for the projections of it on the closing line $k: k \%$. The construction of this component of the total effect will be like that previously employed. Another effect will be caused in a line perpendicular to $\mathrm{l} \cdot \mathrm{K}$. The variation of span for
this constriction, is the projection of the this construction, is the projection of the
total horizontal variation on a line pertotal horizontal variation on a line per-
pendicular to $7 . k^{\prime}$, and the bending moments induced by this force applied at δ_{v}, and perpendicular to the closing line will be propertional to the horizenta
distances of the points of division from
b. As these constructions are readily
made, and the shearing and tangential
stresses determined from them, it is not
stresses determined from them, it is not
thought necessary to give them in detail.

CHAPTER VIII

ARCH RIB WITH tWO JOLNTS.
Center and one the two joints, at the

Similarly let $f f$, and f_{2}, f, be the deflecion curves of the straight girder $d_{2} p$ (using $d_{\text {, as }}$ as the pole distance), under the We have nsed
We have used now a pole distance liffering from that used in the right half
of the arch. These pole distances must have the same ratio that the quantity EI has for the two parts of arch. If $E I$ is the ame in both parts of the arch the same pole distance must be used to obtain the eflection curves in both sides of the middle. In the same manner the curves $g g_{3}$ and $g_{2} 9$ are found. Now must the moments M_{0} causing the total deflection s $g^{\prime}-g g_{0}=\frac{1}{2}$ ai be elongated so that they shall cause a total deflection $1 p-j f=$
$\frac{1}{2} a j$. The ratio lines $a i, a j$ will enable is to find the new position t, of the load ine to effect this. To find o the new pole, through , which divides the load line into parts which are the vertical resistances
of the piers, draw $v o \| b / \mathrm{l}$. Then draw the polygon e as in Fig. 7 , starting from d. It must pass through b. We ean
find also whether ke, has the required find also whether ke has the required which will further test the ratio lines, which wil
the work

®

The construction above given is appli- verticals containing b and b is slightly cable to any arch with three joints. The to the right of its true position, as it three joints can be situated at any points from the vertical through b to that of the arch as well as at the points through δ_{3}. This does not affect the chosen above.

Thure of the process however

CHAPTER VII.

 THE ARCH RIB WITH ONE END JOINT. Let the arch be represented by Fig. 8 , in which the load, eto., is the same as in Fig. 6. The closing line must pass through the joint, for at this joint the bending moment vanishes.A second condition which must b fulfilled is, that the total deflection be low the tangent at the fixed end of straight girder having one end join fixed. This is expressed by the equation fixed. This is expressed b
$\sum(M x)=0$,
in which the summation is extended from end to end.
This condition will enable us to draw the elosing line of the polygon c, and also that of d. The problem may be
thus stated:-In what direction shall closing line such as e h^{\prime} be drawn from c, so that the moment of the negative trisigular area $c_{c} c_{0} / K$ about $c_{\text {c }}$ shall be
equal to the moment of the positive equal to the moment of the positive
parabolic area coto' To solve this problem, first find the center of gravity of the parabolic are area $c, b b^{\prime}$ is a segment of a single parabola whose area is $\frac{A}{3} b_{0} b_{0}^{\prime} \times c_{0} c_{2}=\frac{1}{2} h_{1}$ $\times b_{0} b_{6}^{\prime}$, when $h_{4}=$ the height of an equivalent triangle having the span for its bas $\therefore h_{1}={ }^{\circ} c$
($\quad \begin{aligned} & \text { Lay of } l_{0},=c_{0}, \text { and draw } l_{b} b_{3}^{\prime}\end{aligned}$ Again, c_{2} p is proportional to the weight of the triangle $c_{0} c^{\prime} c^{\prime}{ }^{\prime}$. The parabolic
area $c_{2}^{\prime} c_{0}^{\prime}=\frac{2}{3} c_{0}^{\prime} c_{1}^{\prime} \times b_{2}^{\prime} b_{6}^{\prime}=\frac{1}{2} h_{2} \times b_{d} b_{6}^{\prime}$, as found as h, was before.
Let $h_{2}==p P_{1}$, then on taking any pole, as c_{0}, of this weight line, we draw $q q_{1} \|$ center of gravity in the vertical through q_{1}, and the triangular area in that through q, we draw $q q_{1}^{\prime} \| c_{2} p$, to the vertical through q_{1}^{\prime}, which contains the center of gravity of, the right parabolic area.

Then $q_{1} q_{2} \| c_{2} p_{1}$ and $q_{1}^{\prime} q_{2} \| c_{2} p_{2}$ give q in the vertical through the center of grav ty of the total positive area. The negaer of gravity in the vertical through of er of gravity in the vertical through c_{2}
Now if the total positive bending ment be considered to be concentrated at its center of gravity and to act on a straight girder it will assume the shape $q_{2}{ }_{2}$, of this second equilibrium polygon, and if a negative moment must be applied such that the deflection vanish, the remainder of the girder must be $r_{1} r_{2}, 8$ prolongation of r_{1}. Now draw $c_{2} p_{2} \|$ r_{1}^{\prime} and we have $p_{2} p_{3}=c_{6}^{\prime} / h^{\prime}$ the height of the triangle of negative area. Henc ch^{2} is the closing
quired conditions.
Again, to draw the elosing line b, according to the same law we know that the center of gravity of the polygonal area d is in the center vertical. To find the height $p_{1} p^{\prime}$, of an equivalent riangle having a base equal to the span, we may obtain an approximate result, as in Fig. 2, by taking one twelfth of the sim of the ordinates of the type bd, but it is much better to obtain an exact result by applying Simpson's rule which ordinates. The rule is found to reduce in this case to the following:-The required height is one eighteenth of the sum of the ordinates with even subscript plus one ninth of the sum of the rest. Now this positive moment concentrated in the center vertical and a negativ moment such as to cause no total deflection in a straight girder, will give as a second equilibrium polygon rq, ${ }^{\prime}{ }^{\prime}{ }^{\prime}$. and if $c_{2} p_{3}^{\prime} \| r_{1}^{\prime}$, then $p_{2}^{\prime} p_{2}^{\prime}=b_{0}^{\prime} k$ is the and the closing line is $b \mathrm{f} E$. Now the remaining condition is that he span is invariable, which is expressed by the equation
$\Sigma\left(M_{d}-M_{c}\right) y=0$, or $\Sigma\left(M_{d} y\right)=\Sigma\left(M_{c} y\right)$
Let us construct the deflection curve aue to the moments M_{d} in a manne The position of q midway between the lay off quantities $d m_{s}, m_{0} m_{s}$, etc.,
equal to one-fourth of the corresponding in Fig. 9. Let the loading, etc., be as ordinates of the curve d, and $d n_{s}$, in Fig. 6.
$n_{2} n_{0}$, etc., one-fourth of the ordinates The closing line evidently passes of the curve c. We use one-fourth or through the two joints, as at them the any other fraction or maltiple of both bending moment vanishes.
which may be convenient, By using b The remaining condition to be fulfilled for a pole we obtain the deflection curves is that the deflection of the right half of M_{d}, and the curves g and g for those shall be the same as that of the left proportional to M_{0}. half.
Now, Prop. IV. requires that the or- Let us then suppose that the straight inates of the polygon c should be in- girder $b_{0}^{\prime} p^{\prime}$ perpendicular to the closing
creased so that $g q^{\prime}$ shall become equal to line, is fixed at b^{\prime} and bent first by $f f^{\prime}$. Make $d i=g g^{\prime}$ and $d j=f f^{\prime}$ and draw the moments M_{d} giving us the deflection as before the ratio lines d_{i} and d_{j}, then curve $b_{\mathrm{e}}^{\prime} f^{\prime}$ when ${h_{0}}_{\mathrm{o}}$ is taken as the pole, the vertical through t_{1} is the new position and the loads of the type mam are oneof the load line. Find the new length of $b h$ which is of the polygon d; and secondly, by the polygon e starting at pole o. It must pass moments M_{c} giving us the deflection polygon e starting at e. It must pass curve $b_{a} g$ when draw with the same through b_{c}. The new pole o is found pole, and the loads of the type $n n$ also weight line into two parts, which are nates of the polygon c. It should be the vertical resistances of the abutments. noticed that the points at which these From v draw $v, o \| k \cdot k^{\prime}$, then the closing moments are supposed to be concentraline of the polygon e has the direction $k \kappa^{\prime}$. ted in the girder $b_{0}^{\prime} p^{\prime}$, are on the paralA single joint at any point of an mn- lels to $k k^{\prime}$ through the points d_{w}, d_{o} symmetrical arch can be treated in a similar manner.
A thrust produced by temperature strains will be applied along the closing line $k N$, and the bending moments in auced will be proportional to the ordin
ates of the polygon d from this closing line. The variation of span must be computed not for the horizontal span, but for the projections of it on the closing line $k: k \%$. The construction of this component of the total effect will be like that previously employed. Another effect will be caused in a line perpendicular to $\mathrm{l} \cdot \mathrm{K}$. The variation of span for
this constriction, is the projection of the this construction, is the projection of the
total horizontal variation on a line pertotal horizontal variation on a line per-
pendicular to $7 . k^{\prime}$, and the bending moments induced by this force applied at δ_{v}, and perpendicular to the closing line will be propertional to the horizenta
distances of the points of division from
b. As these constructions are readily
made, and the shearing and tangential
stresses determined from them, it is not
stresses determined from them, it is not
thought necessary to give them in detail.

CHAPTER VIII

ARCH RIB WITH tWO JOLNTS.
Center and one the two joints, at the

Similarly let $f f$, and f_{2}, f, be the deflecion curves of the straight girder $d_{2} p$ (using $d_{\text {, as }}$ as the pole distance), under the We have nsed
We have used now a pole distance liffering from that used in the right half
of the arch. These pole distances must have the same ratio that the quantity EI has for the two parts of arch. If $E I$ is the ame in both parts of the arch the same pole distance must be used to obtain the eflection curves in both sides of the middle. In the same manner the curves $g g_{3}$ and $g_{2} 9$ are found. Now must the moments M_{0} causing the total deflection s $g^{\prime}-g g_{0}=\frac{1}{2}$ ai be elongated so that they shall cause a total deflection $1 p-j f=$
$\frac{1}{2} a j$. The ratio lines $a i, a j$ will enable is to find the new position t, of the load ine to effect this. To find o the new pole, through , which divides the load line into parts which are the vertical resistances
of the piers, draw $v o \| b / \mathrm{l}$. Then draw the polygon e as in Fig. 7 , starting from d. It must pass through b. We ean
find also whether ke, has the required find also whether ke has the required which will further test the ratio lines, which wil
the work

®

Any ansymmetrical arch with joints which the cables exert upon the towers, situated differently from the case consid- without its being neeessary to make the ered can be treated by a like method. inclination of the eable on both sides of The temperature strains should be the saddle the same. There is, therecansed by a thrust along the closing line. turn the towers and they need only be Those at right angles to this line vanish proportioned to bear the vertical stresses as the joints allow motion in this direc- coming npon them as the joints allow motion in this direc-
tion. The shearing and tangential stresses can be found as in Fig. 3.
Arches with more than three hinge joints are in unstable equilibrium, and cal only be used in an inverted position as saspension bridges. These will be treated subsequently. If the joints, however, possess some stiffnes so that they are nolonger hinge joints
but are block-work joints, or analobut are block-work joints, or anal gous to such joints, we may still con
struct arches which are stable within struct arohes which are stable within
certain limits although the number of joints is indefinitely increased. Such are stone or brick arches. These wil also be treated subsequently.
The constructions in Figs, G
can be tested by a process like that em ployed in Figs. 2 and 3. In Fig. 2, for of the squares of the quantities of the type ss, and showed that such sum yan types. We can obtain the same result in all cases.

CHAPTER IX.
the cincinnati and covington stspensIon brdage. (Fig. 10.)
The main span of this bridge lias a length of 1057 feet from center to cen ter of the towers, and the end spans are
each 281 feet from the abutment to the center of the fower. The deflection of center of the tower. The deflection of
the cable is 89 feet at a mean temperature, or about $1-11.87$ th of the span. There is a single cable at each side of the bridge. Each of these cables is made up of 5200 No. 9 wires, each wire having a cross-section of 1 -60th of a square ineh and an estimated strength of 1620
lbs. Ench of these cables hasa diameter lbs. Ench of these cables has a diameter
of $12 \frac{1}{3}$ inches, and an estimated strength of $12 \frac{1}{3}$ inches, and an estimated strength
of 4212 tons. Each cable rests at the of 4212 tons. Each cable rests at the
tower upon a saddle of easy curvature, ower upon a saddle of easy curvature, der freed a lateral girder and a suspen32 rollers lafticem withe cable. This trussing is a which run upon a cast iron bed-plate tending across two panels, and its chord 8×11 feet, which forms part of the top are both made with slip joints every 30 of the tower. Since the bed-plate is feet. the exact perpendicularity of the force ment of flooring with the girders and
trusses attached to it possesses a very carried to the top of one tower, the eight small amount of stifness, in the floor- plat the tower are fastencd to tend to ing itself. It will permit a very large pall the tower into the river; the remaineflection, say 25 feet, up or down from its normal position without injury. Its ite is somthis the tower, and rest on a small independ fice is something quite different from ent saddle, beside the main saddle, and are of a them of thastened to the middle aspension bridge. It certainly serves portion of the side spans as shown in Fig short distances, but not to the extent re- the abutment.
quired, if that were the sole means of In view of the indeterminate nature preserving the cable in a fixed position of the problem, it has seemed best to under the action of moving loads. Its suppose that the stays should be proporrue function is to destroy all vibrations tioned to bear the whole of any excess and undulations, and prevent their pro- of loading of any portion of the bridge, pagation from point to point by the over the uniformly distributed load enormous frictional resistance of these (which latter is of course borne by the slip joints. When a wave does work cable itself); and further that the truss against elastic forces, the reaction of really does bear some fraction of the those forces returns the wave with unbalanced load, and that the benaing bes work sainet friction it is itself amounts as if they sistsined the entire destroyed. unbalanced load This fraction, howThe means relied on in this bridge to ever, is quite unknown owing to the imresist the effect of unbalanced loads is a possibility of finding any approximate system of stays extending from the top value of the moment of inertia I for the of the tower in straight lines to those combined wood and iron work of the parts of the roadway which would be roadway.
most deflected by such loads. There are This method of treatment has for our 76 such stays, 19 from the top of each present purpose this advantage, that the tower. The longest stays extend so far construction made use of is the same as as to leave only 350 feet, i.e, a little that which must be used when there are over which they do not extend. Each moments induced by the live loads are stay being a cable $2 \frac{1}{4}$ inches in diameter borne by the stiffness of the truss alone, has an estimated strength of 90 tons. Now in order to determine the tension They are attached every 15 feet to the in any stay, as for instance that in the roadway at the lower joints of the truss- longest stay leading to the right hand ing, and are kept straight by being fast- tower, lay off $v_{1} v_{2}$ equal to the greatest ened to the suspenders where they eross unbalanced weight, which under any them. This system is shown in Fig. 10 in circumstances is concentrated at its lower which all the stays for one cable are extremity. This weight is sustained by drawn, together with every third sus- the longitudinal resistance of the floorpender. The suspenders oceur every 5 ing, and the tension of the stay. The
 shown in the figure except those attach- by the weight, are found by drawing at the same points as the stays.
These stays must sustain the larger allel v_{1} and $v_{\text {, }}$ the lines $v_{1} o$ and $v_{2} o$ parpart of any unbalanced load, at the same flooring. Then $v_{0} o$ is the tension of the time producing a thrust in the roadway stay, and that of the other stays may be against either the abutment or tower. found in a similar manner.
It is really an indeterminate ques- It is impossible to determine with the ton as to how the load is divided same certainty how the stress ov paralbetween the stays and trussing; and lel to the flooring is sustained. It may this the more, because of the manner in be sustained entirely by the compression re attached Of the nineteen stays between the weight and the tower oring
abutment; or it may be sustained by the amount of the stresses in the stiffening tension produced in the flooring at the truss, on the supposition that the actual left of the weight; or the stress $o v_{s}$ may stresses are some unknown fraction of two parts of the flooring may represent the tension at the left the only means of stiffening the eable and ov the compression at the right of We, therefore, have to determine only and 00_{2} the compression at the right of We, therefore, have to determine only that the induced stress is borne in the stays, and then divide each stress obease before us by the compression of the tained by n (at present unknown) to obflooring at the right, for the flooring is tain the results required. Let us draw ill suited to bear tension both from the the equilibrium polygon d which is due slip joints of the iron work and the want to a uniform load of depth $x y$, and which of other secure longitudinal fastenings; has a deflection $b d$ six times the central but on the contrary it is well designed defleotion of the cable. The loading of to resist compression. The flooring the cable is so nearly uniform, that each must then be able at the tower to resist the sum of the compressions produced b
all the unbalanced weights which be at once concentrated at the extremities of the nineteen stays.
There is one considerable element of stiffness whieb has not been taken account
of in this treatment of the stays of in this treatment of the stays, which
serves very materially to diminish the max serves very materially to diminish the max-
imum stresses to which they might otherimum stresses to which they might other-
wise be subjected. This is the intrinsic wise be subjected. This is the intrinsic
stiffness of the cableitself which is formed stiffness of the cable itself which is forme into a single cable, by placing sir them around the seventh central cable and enclosing the whole by a substantia wrapping of wire, so that the entire cable having a diameter of $12 \frac{1}{8}$ inches, affords a resistance to bending of from one sixth to one half that of a hollow cylinder of the same diameter and equal fraetions to adopt depends somewhat fractions to adopt depends somewhat on the tightness and stiffness of the It is this intrinsic stiffness of the cabl whichis largely depended upon in the cen-
tral part of the bridge, between the two longest stays, to resist the distortion caused by unbalanced weights. of the ordinates of the type $b d$, may be considered with sufficient accuracy to be ix times the corresponding ordinate of
the cable. Any multiple other than six might have been used with the same might have been used with the same
facility. In order to cause the polygon acility. In order to cause the polygon
o have the required deflection with any assumed pole distance it is necessary to ssume the scale of weights in a particuar manner, which may be determined easily in several ways. Let us find it hus :
Let $W=$ one of the concentrated weights Let $D=$ central deflection of cable. Let $S=$ span of the bridge
$M=$ central bending moment due to the applied weights.
Then, if the pole distance $=\frac{1}{8} S, M=\frac{1}{3} S$ $\times 6 D=2 S D$, for the moment is the prouct of the pole distance by the ordinate of the equilibrium polygon. Again, computing the central moment from the ap-
lied forces,
$M=\frac{1}{2} \times \frac{1}{2} S-5 W \times \frac{1}{2} S=\frac{3}{2} W S$,
which the first term of the right hand member is moment of the resistance of the piers, and the second term is the moAs migh are actually much greater in the part of the bridge than elsewhere central at their center of gravity.
they would have been by far the greater in these parts of the bridge where the stays are, had the stays not been used. stable while it is undergoing quite coly siderable oscillations, as may be readily seen by a simple experiment with a rope or chain.

$$
W S=2 S D \therefore W=1 D,
$$

Hence, if one-third of the span is to represent the pole distance or true horizontal tension of an equilibrium curve having six times the deflection of the the span is divided into weight whel parts, is represented by a twelve equal parts, is represented by a length equal to
$\frac{4}{3}$ of the deflection of the cable. The
true horizontal tension of the cable will in which the first term of the second be six times that of the equilibrium member is the moment of the resistance polygon, or it will be represented, in the of the right pier, and the second term and the span. Now taking b as the pole, at applied at their center of gravity.
distances $b b=b b^{\prime}=\frac{1}{\delta}$, By similar computations we may prove $b_{1} w_{1}^{\prime}=\frac{1}{2} W=3 D$, so that they together the following equalities
represent the weight concentrated at b; and let $v, v_{2}=W$, represent the weight concentrated at b, etc. Then can the equilibrium polygon d be constructed by equilibrium polygon $d d_{1}\left\|\hbar v_{2}, d_{1} d_{2}\right\| b v_{2}$, etc. If $b d$ $=6 D$ the polygon must pass through b, and $b_{c}{ }^{\prime}$, which tests the accuracy of the work,
Now to investigate the effect of an unbalanced load covering one-half the pan, let us take one half the load on the right half of the span and place it upon
its left, so that $x z$ and $x b$ represent the its left, so that αz and $x b$ represent the the left and right half of the span re spectively, the total load being the same as before. If it is desirable to conside that the total load has been increase by the unbalanced load we have simply to change the soale so that the sam length of load line as before, (viz, b' w $+6,20_{0}^{\prime}$) shall represent the total loading This will give a new value to the hor-
zontal tension also. Nowntal let a new equilibrium polygon c be
Now drawn, which is due to the new distribution of the concentrated weights. It is necessary to have the closing line of this polygon c horizontal, and this may be accomplished either, by drawing the polygon in any position and laying off the ordinates of the type be equal to those in the
polygon so drawn, or better as is done polygon so drawn, or better as is done
in this Figure by laying off in each weight line that part of the total load weight line that part of the total load
which is borne by each pier, which is Which is borne by each pier, which is
readily computed, as follows. The distance of the center of gravity of th
loading divides the span in the ratio of 17 to 27 . Hence $3 f$ and if of the total load are the resistances of the piers, or since the total load $=11 \mathrm{~W}$, we hare $b_{i} u_{0}$ $=u^{2} \mathrm{~W}$ and $b_{2} u_{0}=12 \mathrm{~W}$. Now make u_{0}, $u_{0}=$ the weight concentrated at b_{s}, etc., and $b_{1}^{\prime} u_{2}+b_{1} u_{2}=$ that at b_{1}. Then draw the polygon c.

The polygon c has the same central deflection as the polygon d; for compute as before,

$$
\begin{gathered}
d_{3} c_{3}=d_{c_{1}} c_{3}-d_{1}^{\prime} c_{2}^{\prime}=-d_{3}^{\prime} c_{3}^{\prime} ; \\
d_{1} c_{4}=d_{2} c_{2}=-d_{2}^{\prime} c_{2}^{\prime}=-d_{4}^{\prime} c_{2}^{\prime} ; \\
d_{3} c_{2}=-d_{2}^{\prime} c_{1}^{\prime} .
\end{gathered}
$$

The quantities of the type de are proportional to the bending moments which the stiffening truss must sustain if it pre-
serves the cable in its original shape, serves the cable in its original shape,
when acted on by an unbalanced load of depth $b x$, on the supposition that the fruss has hinge joints at its ends, and is truss has hinge joints at its ends, and is
by them fastened to the piers. For in that case the cable is in the condition of an arch with hinge joints at its ends. The condition which then holds is this:
$\quad \Sigma\left(M_{a} y\right)=\Sigma\left(M_{c} y\right)$
$\Sigma\left(M_{d}-M_{c}\right) y=0 \therefore \Sigma(c d) y=0$.
This last is fulfilled as is seen by the above equations, for to every prodact above equations, for to ever prother
such as $+b_{3} d_{1}, d_{d} c_{1}$ corresponds another such as $+b_{1}^{3} d_{1} \times d_{1} c_{1}$ corresponds another
$-b_{1}^{\prime} d_{1}^{\prime} \times d_{1}^{\prime} c_{1}^{\prime}$ of the same magnitude but opposite sign.
The polygon c could have been obained by a second equilibrium polygon in a manner precisely like that used before, but as it appears useful to show the connection between the methods of reating the arch rib which is itself stiff, nd the flexible areh or cable, which is
tiffened by a separate truss, we have ciffened by a separate truss, we have
departed from our previonsly employed departed from our previonsly employed method for determining the polygon c,
as it is easy to do when both. c and d are parabolic. Now let us compute the bending moment
$=d_{2} c_{\mathrm{s}} \times \frac{1}{3} S=M^{c}-M_{d}$
$M_{c}=y^{2} \mathrm{~W} \times{ }^{2} S=2 \mathrm{~W} S$
$M_{0}=4 H^{2} N \times S=14 \mathrm{WS}$
$M_{d}=H^{2} N \times \frac{1}{2} S=1+\mathrm{W} S$
Compute also the bending moment at the vertical through $b_{\text {e }}$,
$M_{c}=\frac{2 q}{4} W \times+S-i W \times+4 S=W S$ $M_{d}=\frac{1}{2} W \times \frac{1}{6} S-W \times{ }_{12}^{1} S=8 W S$ $M_{0}-M_{a}=\frac{1}{8} W S$

Similar computations may be made for By flexible cable or arch is meant one the remaining points, and this note- which has hinge joints at the points Worthy result will be found true, that where it supports the stiffening truss. It
the bending moments induced in the need not actull the bending moments induced in the need not actually have hinge joints at
stiffening truss by the assumed loading, these points: the condition is sufficiently are the same as would have been induced fulfilled if it is considerably more flexiby a positive loading on the left of a ble than the truss which it supports. depth $y z$, and a negative loading on the The truth of Prop. VI has been reco right of an equal depth yb. For com- nized by previous writers upon this subpute the moments due to such loading ject in the particular case of the parabolic at the points b, and b.
The resistance of the pier due to such
loading $=\ddagger W$
and $\quad \therefore M_{i}=\frac{4}{4} W \times 12 S=A_{S} W S$
$M_{4}=\frac{4}{4} W \times \frac{1}{6} S-\frac{1}{2} W \times i=S=\frac{1}{6} W S$, etc.

We arrive then at this conception of the stresses to which thie stiffening trus is subjected, viz:- the truss is loaded with the applied veights seting down-
ward, and is drawn upward by ward, and is drawn upward by a uni
formly distribnted negative whose total amount is equal to the posi tive loading, so that the load actuall applied at any point may be considered to be the algebraic sum of the two loads of different signs which are there applied. This conception might have been derived
at once from a consideration of the fact that the cable can sustain only a uniform load, if it is to retain its shape; but it
appears aseful in several regards to show appears aseful in several regards to show
the numerical agreement of this state ment with Prop. IV of which in stateis a partionlar case. It is unnecesary to make a general proof of this agree ment, but instead we will now state a proposition respecting stiffening trusses, the truth of which is sufficiently evident from considerations previously adduced. Prop. VI. The stresses induced in the stiffening truss of a flexible cable or arch, by any loading, is the same as that which would be induced in it by the that which to it of a combined positive and application loading distributed in the followive manner, viz: the positive following actual loading, and the negative loading is equal numerically to the positive load ing, but is so distributed as to cause no bending moments in the cable or areh, i.e., the cable or arch is the equilibrium polygon for this negative loading.
suspension cable, and it has been erroneously applied to the determination of the bending moments in the arch rib in general. It is inaccurate for this purpose in two particulars, inasmuch as in the first place the arch to which it is applied is not parabolic, thongh the negative loadand in the second place the horizontal thrust is not the same for the different kinds of arch rib, while this assumes the same thrust for all, viz: that arising from a flexible arch or one with three or more joints.
A similar proposition has been introdnced into a recent publication on this ubject but in that work the truss stiffens a simple parabolie cable, and the thess is not supposed to be fastened to
the piers, so that it may rise from either pier whenever its resistance becomes negative. As this should not be permitted in a practical construction the case will not be discussed. In accordance with Prop. VI let us determine anew the bending moments due to an unbalanced load on the left of an intensity enoted by $b z$. As before seen this prouces the same effect as a positive loading of an intensity $y z=f m=\frac{1}{2} b z$ on the sity $y b=f n=\frac{1}{2} \delta z$. Now nsing g an intenwith a pole distance of using g as a pole
of $=0$ e the span lay off the concentrated weight $p_{1} p_{2}=$ that applied at $b_{\text {, eted }}$, etc., on the same scale as the weights were laid off in the previons construction, and in such a position that g is opposite the middle of the total load, which will cause the closing line to be horizontal. Then draw the equilibrium polygon a due to these weights. The ordinates of the type $a f$ are by Prop. VI proportional to
the bending moments indur stiffening truss by the unbalanced the when the truss is simply fastened to the * Grapbical Statics, A. J. Du Bois, p. 399, published
by Johir Wiley © Son, New Yorto
piers at the ends, and, as we have seen, the position of $k \cdot k$; then the ordinates each of the quantities of is identical with ke will be proportional to the bending the corresponding quantity cd . moments of the stiffening truss. If the stifening at its ends a closing line horizon- must from the loading which canses the bendtaly at $=0$, and as it is evident that it must di- in any simple truss. The horizontal ten= 0 , and as it is evident the equilibrium polygon symmetri- sion in the cable, is the same whenever cally it passes through f its central the total load on the span is the same, point. and is not changed by any alteration in As stated in a previous article, the the distribution of the loading, which maximum bending moments at certain fact is evident from Prop, II. The points of the span are caused when the maximum tension of the cable is found unbalanced load covers somewhat more when the live load extends over the than half of the span. In the case of a entire span, and is to be obtained from a parabolic cable or arch the maximum force polygon which gives for its equiliwhen this load extends over two-thirds itself, as would be done by using the of the span, as is proved by Rankine in weights $20, w_{0}$, etc., and a pole distance of his Applied Mechanics by an analytic six times $b b_{4}=$ twice the span
process. Let the load extend then over The temperature strains of a stiffening all except the right hand third of the truss of a suspension bridge are more span with an intensity represented by severe than those of the truss stiffening $b z=q, q_{4}^{\prime}$. Then if $f^{\prime} q_{\mathrm{s}}=\frac{1}{2} f^{\prime} q^{\prime} \dot{\prime}^{\prime}$, the an arch, because the total clongation of truss may by Prop. VI be considered to the cable in the side spans as well in the sustain a positive load of the intensity main span, is transmitted to the main $f_{\prime}^{\prime \prime} q_{\text {, on the left of } b^{\prime} \text {, and a negative span and produces a deflection at its }}$ load of the intensity $f_{\prime}^{\prime} q_{1}^{\prime}$ on the right center. This is one reason why stays of $b_{\mathbf{\prime}}^{\prime}$. Using g^{\prime} as the pole and the furnish a method of bracing, particularly same pole distance as before, lay off the appucable to suspension
weight q, concentrated at b, etc,, so supposing that the truss bears part of that g^{\prime} is opposite the middle of the the bending moment due to the elongaweight line. We thus obtain the equili- tion of the eable, it is evident that when brium polygon e, in which the ordinates the truss is simply fastened to the piers, of the type of are proportional to the the bending moments so induced are bending moments of the truss under the proportional to the ordinates of the type assumed loading, when its ends are simply fastened to the piers.
Now $b d$ was the ordinate of an equilibrium polygon having the same horizontal tension, and under a load of the same intensity covering the entire span. It
will be found that $b d=8, f, e_{\text {, }}$, which may be stated thus:- the greatest bending moment induced in the stiffening truss, by an unbalanced load of uniform in tensity is four twenty-sevenths of that
produced in a simple truss nuder a load of the same intensity covering the entire span. This result was obtained by Rankine analytically. If the truss is fixed horizontally at its ends, we must draw a
closing line $k \cdot k$, which fulfills the condiclosing line $k k$, which fulfills the condi-
tions before used for the straight girder tions before used for the straight girder
fixed at the ends, as discussed previously fixed at the ends, as discussed previously
in connection with the St. Lonis Arch. By the construction of a second equilibrium polygon, as there given, we find ered.
$b d$, for by the elongation of the cable, it transfers part of its uniformly distrib-
That load which the esble still susains, is uniformly distributed, if the that transferred to the truss is uniformly
When the truss is fixed horizontally t the piers, the closing line of the curve must be changed so that $\Sigma(M)=0$, nd the bending moments induced by variations of temperature, will be proportional to the ordinates betwe
curve d and this new closing line.
It remains only to discuss the stability of the towers and anchorage abutments. The horizontal force tending to overturn the piers comes from a few stays only, mall amount that it need not be considered.

The weight of the abutment in propose a new solution of the continuous the case before us is almost exaetly propose a new solution of the continuous the case before us is almost exactly girder in the most general case of varia-
the same as the ultimate strength
ble moment of inertia, the girder resting
of the cable. Suppose that st $=s v$ are of the cable. Suppose that $s t=s v$ are
the lines representing these quantities in having any different height
consistent with the limits of elasticigy their position relatively to the abutment. the girder. This solution will verify the Since their resultant ov intersects the remarksmade, and enable us easily to see base beyond the face of the abutment, the mannerin which the variation of the the abutment would tip over before the moment of inertia affects the distribution cable could be torn asunder. And since of the bending moments, and by means the angle $v 3 r$ is greater than the angle of it the arch rib with variable moment of friction between the abutment and
the ground it stands on, the abutment if the ground it stands on, the abutment if would slide before the cable could be torn asunder. The smallest valne which the factor o safety for the cable assumes under a maximum loading is computed to be six. Take $s t^{\prime}=\frac{1}{d} s t$ as the greatest tension ever induced in the cable, then $s r^{\prime}$ th resultant of so and st' outs the base so that the abutment tas on is apparen that against overturning, and the angle $v^{\prime} r^{\prime}$ of the angle of friction between the abutment and the earth under it, that the abutment would not be near the point of sliding even if it stood on the surface of the ground. It should be noticed tha all the suspenders in the side span assist in reducing the tension of the cable as we approach the abutment, and conduce by so much to its stability
Also the thrust of the road wasy may as sist the stability of the abotment a with respect to overturning and sliding

CHAPTER X

the contivuous girder with varrable
In the foregoing chapters the discussion arches of various kinds has been shown to be dependent upon that of the straight girder; but as no graphical discussion has ap to the present time, been published which treats the girder having a variable discussion has been limited to the case of arches with a constant mo the case or tia.
Certain remarks were made, however in the first chapter tending to show the close approximation of the results in case of a constant moment of inertia to those obtained when the moment of
inertia is variable. We, in this chapter,
inertia can be treated directly.
Besides the importance of the connuous girder in ease it constitutes the hat the continuous girder is peeuliarly suited to serve as the stiffening trass of any arched bridge of several spans in which the arches are flexible. Indeed, it is the conviction of the writer that the tiff arch rib adopted in the construction f the St. Louis Bridge was a costly misake, and that, if a metal arch was desirble, a flexible arch rib with stiffening russ was far cheaper and in every way Let us write
Let us write the equation of deflection the form

$$
\frac{E I_{o}}{m n^{2} n^{\prime}}=\Sigma\left(\frac{M i}{n n^{\prime}} \cdot \frac{x}{n}\right)
$$

n which n is the number by which any horizontal dimension of the girder must be divided to obtain the corresponding dimension in the drawing, n^{\prime} is the divisor by which force must be divided o obtain the length by which it is to be represented in the drawing, m is an rbitrary divisor which enables us to se such a pole distance for the second quilibrium polygon as may be most of the girder at any particent of inertia ion assumed as andicular cross sec the values of I at other cross section are compared, and other cross sections
$i=I \div I$ is the ratio of $I_{\text {o }}$ (the standard moment of inertia), 6 I (that at any other eross-section) For the purpose of demonstrating the general properties of girders, theequation need not be encumbered with the coefficients $m n n^{\prime}$, but for purposes of explaining se graphical construction they are very iseful, and can be at once introduced inIn the equation
D. $E I_{0}=\Sigma_{a}^{\infty}(M i x)$

If the piers are b and b^{\prime} as in Fig. 11 let us suppose that O coincides with stant that I is constant, so that the in stant that is constant, so that $i=1$ at
all points of the girder. Then we have

in which D_{6} is the deflection of b below he tangent at b^{\prime}, \bar{x} is the center of gravity of the moment area due to the applied weights from b, while \bar{x}, and \bar{x}_{2} are the distances of the centers of gravity of the negative areas from b. In Fig. 11 let cec a^{\prime} be the positive area due to the weights and repre.
senting $\Sigma_{b^{b}}^{b}\left(M_{0}\right)$, while $\Sigma_{b^{\prime}}^{b}\left(M_{3}\right)$ and Σ_{b}^{b} $\left(M_{2}\right)$ are represented by $h c e^{\prime}$ and $h h^{\prime} c^{\prime}$ espectively. Let the center of gravity of $c_{c} e^{\prime}$ be in $q q_{0}$, while the centers of Let the negative areas are in $t r$ and $t^{\prime} r$ '. Let the height of a triangle on some asamed base, and equivalent in area to in Fig. 2 it is evident that $r r$, and $r r$ are the heights of the right and left negative triangles, having the assumed ase, on the supposition that the girder fixed horizontally over the piers.
Now introducing the constants man' into the last equation and into the equaion before that, the relation of the quanlied is such that if the moments be apgravity with the pole distance $p t=F I-$ $m n^{2} n^{\prime}$, the equilibrium polygon so atained will be tangent at the piers to the exaggerated deflection curve obtained when the distributed moments are used as weights; and the deflection at the pier b from the tangent at b^{\prime} will be the same s that or this exaggerated deflection curve, and vice versa.
Let $p m=r=p^{\prime}, m^{\prime}=r$, and $p^{\prime \prime}=p^{\prime} t$,
then t and t^{\prime} constitute the pole, p_{m} and then t and t^{\prime} constitute the pole, $p m$ and $p^{\prime} m^{\prime}$ the negative loads, and $p m+p^{\prime} m$ the positive load. Then is btqe b the The deflection of b below $b^{\prime} t^{\prime}$
Thanish The it should in case the girder is fixed horizontally over the pier.
Now let the direction of
Now let the direction of the tangents tangents to the exaggerated deflection carve assume the directions $b t_{1}$ and $\psi^{\prime} t_{i}^{\prime}$ Then the load line and force polygon assume a new position, such that $t_{\text {, and }} t_{1}$ orm the pole, and $-d n=p m$-and $d^{\prime} n^{\prime}=$ $p^{\prime} m$ ' comprise the positive load while $n p_{1}$ and $n^{\prime} p_{1}^{\prime}$ are the new negative loads Which will cause the equilibrium polygon its sides ' $b t$, and $b^{\prime} t^{\prime}$ ' in the directions umed 1 ,
There are sev
in the several relations of quantilies in this figure to which we wish to
direct attention. It is evident case I is not constant, that from the area $c c_{c} c^{\prime}$ whose ordinates are proporfional to M_{6}, the actual bending moments due to the weights, another area
whose ordinates are proportional to
M_{i}, the effective bending moments, can be obtained by simple multiplication, since i is known at every point of the
girder. Moreover, the vertical through the center of gravity of this positive effeetive moment area can be as readily found as that through the actual positive moment area. Call this vertical "the positive center vertical." Again, the negative moment areas proportional to angular areas proportional to M, and M, by simple multipfication, and if we pro ceed to find the verticals through their centers of gravity we shall obtain the same verticals whatever be the magnitude of the negative triangular areas since their vertical ordinates are al changed in the same ratio by assuming the negative areas differently. Let us
call these verticals the "left" and call these verticals the "left" and $i=1$, as in Fig. 11, the left and right verticals divide the span at the one-third points. This matter will be treated more fully in connection with Fig. 18. Again, let us call the line $t_{1} t_{i}^{\prime}$ "the third closing line." It is seen that whatever may be the various positions of the tangent $b t$, the ordinate $d n$, be-
tween the third closing line and $t a$ protween the third elosing line and ℓ, q, proonged, is invariable; for the triangle $q_{t} t_{3}$ is invariable, being dependent on
the positive load and pole distance alone By similarity of triangles it then follows that the ordinate, such as $l \sigma^{\prime}$, on any assumed vertical continues invariable; and when there is no negative load at t, then $b t q$, becomes straight, o^{\prime} coincides with b and n with p. Similar relations
hold at the right of q. The quantity d_{p}, is of the nature of a correction to be when the girder is fixed horizontally at mediate pier, and let the number of lines the piers in order to find the negative relative moment of inertia. Assume the moment when the tangent assumes a new \quad moment of inertia where there are three position, for $n p_{1}=d n-d p_{1}$. The negative lines, as at a, a_{4}, etc., as the standard or moments can consequently be found from I_{a}, then $i=1$ at $a, i=\frac{3}{2}$ at $a_{2}, i=\frac{3}{4}$ at a_{c}^{\prime}, the third olosing line and the tangents et at the piers; while the remaining lines $q_{2} t_{1}$ and $q_{1}{ }^{\prime} t_{1}$ will test the correctriess of the work. Before applying these properties of the deflection polygon and its third closing line to a continuous girder it is necessary to prove a geometrical
theorem from Fig. 12 .
Let the variable triangle $x y z$ be such that the side αz always passes through
the total length of the girder into such a
number of equal parts or panels, say 15 , mbtracted from the necrative moment mat one division shall fall at the inter-

the fixed point g, the side xy always passes through the fixed point p, and the vertices ayz are always in the vertical through those points; then by the proporties of homologous triangles the sid liso has a fixed point f in the straigh
line . Furthermore, if there is a point ne g7. Furthermore, if there is a point positions of z it is at the same constant positions of z it is at the same constant
distance from z, then on the line $y z^{\prime}$ there is a fixed point y^{\prime} where the vertical through f intersects $y z^{\prime}$; for, if z^{\prime} maintains its distance $z z^{\prime}$ invariable, then must any other point as g^{\prime} remain contantly at the same vertical distance from f, as appears from similarity of triWhen, for instance, the trian g^{\prime} is also ames the position $x y z$, then a moves mes the position a, then of moves Let
scussi now apply the foregoing to the ree piers $p^{\prime \prime} p p^{\prime}$ as shown in inder over ree piers $p^{\prime \prime} p p^{\prime}$ as shown in Fig. 18 which the lengths of the spans hav ratio to each other of 2 to 3 . Divid

Let the polygons c and c^{\prime} be those due the weights in the left and right spans espectively. Then the ordinates of the type be are proportional to M in the
eft span. The figure be b is the positive effective $b c_{1}{ }_{1} c_{3}{ }_{0}{ }_{3} c_{3}{ }^{b} c_{1}{ }_{c} o_{4} c_{0} c_{8}$ in the left span, end its ordingtes are proportional to M i. Its center of gravihas been found, by an equilibrium

polygon not drawn, to lie in the positive polygon be drawn due to the effective center vertical $q q_{0^{*}}$ A similar positive moments as loads, two of its sides must effective moment area on the right has intersect on vo, beoause it contains the its center of gravity in the positive cen- center of gravity of contiguous loads. ter vertical q ' q_{0} '. Now assume any negative area, as hat included between the lines and ane eighth of the sum of the ordiand draw the lines $h b$, and $h b^{\prime}$, dividing height of a triangle having a base $=4 b b$, the negative area in each span into right and an area equal to the effective moand left triangular areas. Let the quan- ment area in the left span. Also $r^{\prime} r_{1}^{\prime}$ is M, $h d$ to M type $h b$ be proportional to the height of a triangle having the same ordinates of $b b_{1} b_{1}{ }_{1} b_{2}{ }^{2} b_{3}{ }^{"} b_{5} b_{0} b_{4}{ }^{"} b_{b} h$ are proportional to M_{i}, , and the center of gravity of this area has been found to lie in he right negative vertical $t_{,} r_{\text {. }}$. Similary, the left negative vertical containing moment area in the left span, messured , the left negative vertical containing in the same manner, while sp is that on the center of gravity of the left negative the left when the girder is fixed horizoneffective moments, is $t_{2} r^{*}$. In the right tall at the piers. We obtain $s^{\prime} r^{\prime}$ and
 cals would not be changed in position and take the the arbitrary divisor $m=1$,
 whatever of the line d by which the $o u$ is the constant intercept on the nega-
negative moments were assumed, for ou is the constant intercept on the nega-
tive eenter vertical, between the third
such change of position would change closing line in the left span, and a side all the ordinates in the same ratio. of the type qt. Also ou' is a similar the center of gravity of the effective to the right span. Make rentical due the center of gravity of the effective to the right span. Make $r_{2} n_{2}=r_{2} n_{1}$ and
moment area, corresponding to the actual n, m =sr, then $l b$ is a similarinvariable moment area $b, h b$:. It is found by a intercept; as is $i^{\prime} b ;$, which is obtained polygon not drawn to be vo. Call vo in a similar manner.
"the negative center vertical." It is Now the negative center vertical ov unchanged by moving the line d. If a was obtained from the triangle $b_{\mathrm{s}} h b_{\mathrm{s}}, i, i$,
M_{i}, the effective bending moments, can be obtained by simple multiplication, since i is known at every point of the
girder. Moreover, the vertical through the center of gravity of this positive effeetive moment area can be as readily found as that through the actual positive moment area. Call this vertical "the positive center vertical." Again, the negative moment areas proportional to angular areas proportional to M, and M, by simple multipfication, and if we pro ceed to find the verticals through their centers of gravity we shall obtain the same verticals whatever be the magnitude of the negative triangular areas since their vertical ordinates are al changed in the same ratio by assuming the negative areas differently. Let us
call these verticals the "left" and call these verticals the "left" and $i=1$, as in Fig. 11, the left and right verticals divide the span at the one-third points. This matter will be treated more fully in connection with Fig. 18. Again, let us call the line $t_{1} t_{i}^{\prime}$ "the third closing line." It is seen that whatever may be the various positions of the tangent $b t$, the ordinate $d n$, be-
tween the third closing line and $t a$ protween the third elosing line and ℓ, q, proonged, is invariable; for the triangle $q_{t} t_{3}$ is invariable, being dependent on
the positive load and pole distance alone By similarity of triangles it then follows that the ordinate, such as $l \sigma^{\prime}$, on any assumed vertical continues invariable; and when there is no negative load at t, then $b t q$, becomes straight, o^{\prime} coincides with b and n with p. Similar relations
hold at the right of q. The quantity d_{p}, is of the nature of a correction to be when the girder is fixed horizontally at mediate pier, and let the number of lines the piers in order to find the negative relative moment of inertia. Assume the moment when the tangent assumes a new \quad moment of inertia where there are three position, for $n p_{1}=d n-d p_{1}$. The negative lines, as at a, a_{4}, etc., as the standard or moments can consequently be found from I_{a}, then $i=1$ at $a, i=\frac{3}{2}$ at $a_{2}, i=\frac{3}{4}$ at a_{c}^{\prime}, the third olosing line and the tangents et at the piers; while the remaining lines $q_{2} t_{1}$ and $q_{1}{ }^{\prime} t_{1}$ will test the correctriess of the work. Before applying these properties of the deflection polygon and its third closing line to a continuous girder it is necessary to prove a geometrical
theorem from Fig. 12 .
Let the variable triangle $x y z$ be such that the side αz always passes through
the total length of the girder into such a
number of equal parts or panels, say 15 , mbtracted from the necrative moment mat one division shall fall at the inter-

the fixed point g, the side xy always passes through the fixed point p, and the vertices ayz are always in the vertical through those points; then by the proporties of homologous triangles the sid liso has a fixed point f in the straigh
line . Furthermore, if there is a point ne g7. Furthermore, if there is a point positions of z it is at the same constant positions of z it is at the same constant
distance from z, then on the line $y z^{\prime}$ there is a fixed point y^{\prime} where the vertical through f intersects $y z^{\prime}$; for, if z^{\prime} maintains its distance $z z^{\prime}$ invariable, then must any other point as g^{\prime} remain contantly at the same vertical distance from f, as appears from similarity of triWhen, for instance, the trian g^{\prime} is also ames the position $x y z$, then a moves mes the position a, then of moves Let
scussi now apply the foregoing to the ree piers $p^{\prime \prime} p p^{\prime}$ as shown in inder over ree piers $p^{\prime \prime} p p^{\prime}$ as shown in Fig. 18 which the lengths of the spans hav ratio to each other of 2 to 3 . Divid

Let the polygons c and c^{\prime} be those due the weights in the left and right spans espectively. Then the ordinates of the type be are proportional to M in the
eft span. The figure be b is the positive effective $b c_{1}{ }_{1} c_{3}{ }_{0}{ }_{3} c_{3}{ }^{b} c_{1}{ }_{c} o_{4} c_{0} c_{8}$ in the left span, end its ordingtes are proportional to M i. Its center of gravihas been found, by an equilibrium

polygon not drawn, to lie in the positive polygon be drawn due to the effective center vertical $q q_{0^{*}}$ A similar positive moments as loads, two of its sides must effective moment area on the right has intersect on vo, beoause it contains the its center of gravity in the positive cen- center of gravity of contiguous loads. ter vertical q ' q_{0} '. Now assume any negative area, as hat included between the lines and ane eighth of the sum of the ordiand draw the lines $h b$, and $h b^{\prime}$, dividing height of a triangle having a base $=4 b b$, the negative area in each span into right and an area equal to the effective moand left triangular areas. Let the quan- ment area in the left span. Also $r^{\prime} r_{1}^{\prime}$ is M, $h d$ to M type $h b$ be proportional to the height of a triangle having the same ordinates of $b b_{1} b_{1}{ }_{1} b_{2}{ }^{2} b_{3}{ }^{"} b_{5} b_{0} b_{4}{ }^{"} b_{b} h$ are proportional to M_{i}, , and the center of gravity of this area has been found to lie in he right negative vertical $t_{,} r_{\text {. }}$. Similary, the left negative vertical containing moment area in the left span, messured , the left negative vertical containing in the same manner, while sp is that on the center of gravity of the left negative the left when the girder is fixed horizoneffective moments, is $t_{2} r^{*}$. In the right tall at the piers. We obtain $s^{\prime} r^{\prime}$ and
 cals would not be changed in position and take the the arbitrary divisor $m=1$,
 whatever of the line d by which the $o u$ is the constant intercept on the nega-
negative moments were assumed, for ou is the constant intercept on the nega-
tive eenter vertical, between the third
such change of position would change closing line in the left span, and a side all the ordinates in the same ratio. of the type qt. Also ou' is a similar the center of gravity of the effective to the right span. Make rentical due the center of gravity of the effective to the right span. Make $r_{2} n_{2}=r_{2} n_{1}$ and
moment area, corresponding to the actual n, m =sr, then $l b$ is a similarinvariable moment area $b, h b$:. It is found by a intercept; as is $i^{\prime} b ;$, which is obtained polygon not drawn to be vo. Call vo in a similar manner.
"the negative center vertical." It is Now the negative center vertical ov unchanged by moving the line d. If a was obtained from the triangle $b_{\mathrm{s}} h b_{\mathrm{s}}, i, i$,
on the supposition that the aetual mo- there were more spans still at the right ment over the pier is the same whether of these, we should use g^{\prime} for the deterit be determined from the left or right mination of another fixed point, as we of the pier. It is evident that while the have used g to determine it
mediate pier, the moment at that pier is g^{\prime} have been found and d precisely as g and mediate pier, the moment at that pier is g have been found, and draw the third points infinitesimally near to it, but that through p the construction is accurate. when the constraint is removed an equali- Make $u u^{\prime}=v v^{\prime \prime}$, then is n, m, the negazation takes place. tive effective moment at the left, and Since out and ou' are derived from $n_{i}^{\prime} m_{i}^{\prime}$ that at the right of the pier.
the positive effective moments, it appears Let $b w$ be the effective moment area that when the tangent at p is in such a corresponding to the triangle $h 6 b$, and position that the two third closing lines
intercept a distance verured in the same manner as the
mes and the
positive area was, by taking one eighth intercept a distance $v w^{\circ}$ on ov and the positive area was, by taking one eighth
two lines of the type $q t$ when prolonged of its ordinates, and let $b w=n m_{;}$; then two lines of the type $q l$ when prolonged
interseet on its ordinates, and let $b w$, the moments over the as the effective moment $b w$ is to the pier will have become equalized pier will have become equalized.
of the tangent at which will equse thi is the effective moment $b \sigma_{1}$ or n, m_{1} to to be true, by finding the proper position it. The same moment $b k$ is also found of the third closing lines in the two spans. from $n_{1}\left(m_{1}^{\prime}\right.$, by an analogous construcMove the invariable intercepts to a tion at the right of b, which tests the acmore convenient position, by making curacy of the work.
$0, z=0$, and $o z^{\prime}=h^{\prime}$. Now by making Several other tests remain which we the arbitrary divisor $m=1$, as we did, the ordinates of the deflection polygon became simply D, i.e., they are of the
same size in the drawing as in the girder same size in the drawing as in the girder,
hence the difference of level of p^{\prime}, p and p^{\prime} must be made of the actual size. By changing m this can be increased or diminished at will.
Now we propose to determine two fixed points g and g^{\prime}, through which the third closing line in the left span must pass, and similarly g^{m} and g^{\prime} on the right
If the girder is free at p^{γ} then as shown in connection with Fig. 11, the third $\frac{c l o s i n g ~ l i n e ~ m u s t ~ p a s s ~ t h r o u g h ~}{} g$, if $g p^{\prime}=$ the third closing line, and complete the triangle $\alpha y^{\prime} z$ as in Fig. 12 .
Then is $x y^{\prime}$ the tentative position of the tangent at p, and since the third closing line in the right span must pas through y^{\prime}, and make an intercept on the negative center vertical equal to un', then ' z ' ' $^{\prime}$ is its corresponding tentative
position. But wherever $g z$ may be position. But wherever $g z$ may be drawn, every line making an intercept
$=u u^{\prime}$ and intersecting t, r, in such a $=v \omega^{\prime}$ and intersecting $t_{1} r_{2}$ in such a
manner that the tangent passes through p must pass through the fixed point g^{\prime}, found as described in Fig. 12. There fore the third closing line in the righ span passes through g^{\prime}. Similarly, if
ill briefly mention.

Prolong $p^{\prime \prime} t_{2}$ to q, and $p^{\prime} t_{2}^{\prime}$ to q^{\prime}, then in and η^{t} mnst intersect on the negaive center vertical at o_{2} so that $o_{0} y^{\prime}=$
ou'. Also $v v^{\prime}$ must be equal to
Again t, v^{\prime} passes through f^{\prime}, and t^{\prime}, through f^{\prime}. Also yo, intersects qo on the fixed vertical $f g^{\prime \prime}$ at e, and $y^{\prime} o^{\prime}$ intersects $q^{\prime} O_{2}$ on the fixed vertical $f^{\prime} g^{\prime}$ at ϵ^{\prime}. That these must be so is evident from a consideration of what occurs during a
supposed revolution of the tangent i, ℓ_{1}^{\prime}, supposed revolution of the tangent $i_{1} \ell_{1}^{\prime}$,
to the position $x y^{\prime}$. to the position xy'.
Now having det
Now having determined the moment true closing lines of the moment the gons c and c^{\prime} Call moment polylines c, then the ordinates type loc will represent the bending moments at different points of the girder. The points of the contra flexure are at the points where the closing lines intersect the polygons c and c^{\prime}. The directions of the closing lines will permit at ance the determination of the resistances any piers and the/shearing stresses at any point.
The parti
construction in ense of constant and of variable moment of inertia, is seen to be in the positions of the center verticals positive and negative, and the right and pau passes through $\%^{\prime}$.

The small change in their position due extend the summation to c, calling the The small change in their position due extend the summation to c, caling the
to the variation in the moment of inertia,
deflection at a, D_{a}. When the origin is is the justification of the remarks previ- at b and the summation extends to c, let ously made respecting the close approxi- the deflection be D_{b}. Let also $y_{a} y_{b}$ and mation of the two cases.
It is seen that the process here devel oped can be applied with equal facility to a girder with any number of spans. Also if the moment of inertia varies continuously instead of suddenly, as assumed
in Fig. 13, the panels can be taken short in Fig. 13, the panels can be taken short quired degree of aceuracy to this case.

CHAPTER XI.

the theorem of three moments.
The preceding construction has bee in reality founded on the theorem of three moments, but when the equation expressing that theorem is written in the usual manner, the relationship is difficult to see. Indeed the equation as given by Weyrauch* for the girder having a variable moment of inertia, is of so
complicated a nature that it may be complicated a nature that it may be
thonght hopeless to attempt to associate meehanical ideas with the terms of the equation, in nny clearly defined relationship. We propose to derive and express the equation in a novel manner, which will at once be easy to understand, and not difficult of interpretation in conne tion with the preceding construction. Let us assume the general equation of
deflections in the form.
$D=\Sigma(M x \div E I)$, or $D \cdot E I_{0}=\Sigma(M i x)$
in which I is the variable moment o inertia, I_{0} some particular value of I as-
sumed as the standard of comparison sumed as the standard of comparison,
$i=I_{0} \div I$, and x is measured horizontally $i=1, \div 1$, and x is measured horizontally
from the point as origin, where the defleetion D is taken to the point of applieation of the actual bending moment M. The quantity $M i$ is called the effective bending moment, and the deflection D is the length of the perpendicular from the origin to the line tangent to the deflection curve at point to which the sum-
mation is extended. mation is extended.
Now consider two contiguous span of a continuous girder of several spans, and let aeb denote the piers, o being the intermediate pier. Let the span ac=l intermediate pier. Let the span $a c=$
and $b c=l^{\prime}$. Take the origin at a and

y_{c} be the heights ofa, b and c respective-
ly above some datum level. Then, as may be readily seen,

$$
\begin{aligned}
& D_{a}=y_{a}-y_{c}-l_{c}, \\
& D_{b}=y_{b}-y_{c}-l^{\prime} c_{c}^{\prime},
\end{aligned}
$$

if t_{c} is the tangent of the acute angle at c on the side-towards a between the tanand the horizontal, and $t^{\prime}{ }^{\prime}$ is curve at of the corresponding acute angle on the ide of c towards b Now if we con efer to the span l the equation (7) to be taken to be made up of three parts, irder, M, dependent weights on the irder, M_{1} dependent on the moment I_{0} at $c_{\text {, }}$ and $M I_{2}$ dependent on the moman r_{a}. moments in the cr. We may then write the equations of deflections in the two spans when the ummation extends over each entire span as follows: $E I_{0}\left(y_{a}-y_{c}-u_{0}\right)=\Sigma_{c}^{a}\left(M_{d} i x\right)-\Sigma_{c}^{a}\left(M_{1} i x\right)$ $-\Sigma_{c}^{a}\left(M_{2} ; x\right)$
$E I_{0}\left(y_{b}-y_{c}-l^{\prime} t_{c}^{\prime}\right)=\Sigma_{c}^{b}\left(M_{0}^{\prime} z^{\prime} x^{\prime}\right)$
$-\Sigma_{0}^{b}\left(M_{1}^{\prime} i^{\prime} x^{\prime}\right)-\Sigma_{o}^{b}\left(M_{z}^{\prime} i^{\prime} x^{\prime}\right)(9)$
in which x is measured from a, and x^{\prime} from b towards c. Now if the girder is originally straight, $t_{0}=-t_{0}^{\prime}$, hence we can combine these two equations so is to eliminate t_{c} and t_{c}^{\prime}, and the resultng equation will express a relationship between the heights of the piers, the ending moments (positive and negative), heir points of application and the moents of inertia; of which quantities the negative bending moments are alone un-
known. The equation we should thus nown. The equation we should thus
btain would be the general equation of which the ordinary expression of the heorem of three moments is a particular case. Before we write this general quation it is desirable to introduce cerain modifications of form which do not iminish its generality. Suppose that
$\bar{x}_{1} \Sigma_{c}^{a}\left(M_{1}\right)=\Sigma_{c}^{a}\left(M_{i} i x\right)$ hen is x, the distance from a to the centhen is $x_{\text {, }}$, the distance from a to the cen-
ter of gravity of the negative effective
moment area next to c. As was shown resents the negative actual moment area in connection with Fig. 13, the position next to c in the span l.
of this center of gravity is independent be found from the equation,

for M, is proportional to α. Similarly it may be shown that

$$
\begin{equation*}
\overline{x_{2}}=\frac{\int_{0}^{0} i(l-x) x d x}{\int_{0}^{n} i(l-x) d x} . \tag{11}
\end{equation*}
$$

is the distance of the center of gravity
of the negative effective moment area next to a.
Again, suppose that

$$
i_{1} \Sigma_{c}^{a}(M)=\Sigma_{0}^{a}(M i)
$$

then is i, an average value of i for the negative effective moment area next to c, which is likewise independent of the ing like that just adduced respecting x_{1}. ing like that just adduced respecting x_{1}.
Hence i, may be found from the equation Hence i, may be found from the equatio
$\int_{i x d x}^{a}$

$$
i=\frac{\int_{c}^{a} i x d x}{\int_{0}^{a} x d x}
$$

Similarly it may be shown that

$$
=\frac{\int_{e}^{a} i(l-x) d x}{\int_{e}^{a}(l-x) d x}
$$

Similarly, we have the equations

$\Sigma_{c}^{a}\left(M_{2}\right)=\frac{1}{2} M_{a} l, \quad \Sigma_{c}^{b}\left(M_{1}^{\prime}\right)=\frac{1}{2} M_{c}^{\prime} l^{\prime}$, $\Sigma_{0}^{b}\left(M_{a}^{\prime} l^{\prime}\right)=\frac{1}{2} M_{b} l^{\prime}$.
If there is no constraint at the pier then must $M_{c}=M_{c}^{\prime}$.
Now making the substitutions in equations (8) and (9), which have been indi-
cated in the developments just comcated in the developments just com-
pleted, and then eliminating t_{c} and t_{0}^{\prime},
EI. $\left\{\frac{y_{a}-y_{c}}{l}+\frac{y_{b}-y_{c}}{l^{\prime}}\right\}-\frac{x_{0} i_{0}}{l} \Sigma_{0}^{a}\left(M_{0}\right)-$ $\frac{x_{0}^{\prime} i_{0}^{\prime}}{l^{\prime}} \Sigma_{0}^{b}\left(M_{0}^{\prime}\right)=\frac{1}{2}\left[M_{a} \bar{x}_{2} i_{2}+M_{c}\left(\bar{x}_{1} i_{1}+\bar{x}_{1}^{\prime} i_{1}^{\prime}\right)\right.$
$+M_{\left.b \dot{x}_{2}^{\prime} i_{2}^{\prime}\right] \ldots \text { (15) }}$ in which \bar{x}_{0} is the distance from a of the center of gravity of the positive effective moment area due to the weights in
the span $l_{\text {, and }}{ }^{\prime}$ ' is a similar distance from b in the span l^{\prime}, while i_{0} and i_{0}^{\prime} are average values of i for these areas de-
ived from the equations in

$$
i_{0}=\Sigma\left(M_{0} i\right) \div \Sigma\left(M_{0}\right)
$$

It may frequently be best to leave the expressions containing the positive moments in their original form as expressed
12) in equations (8) and (9).

Equation (15) expresses the theorem of three moments in its most general form. Let us now derive from equation (15), theorem of three moments, for a girder theorem of three moments, for a girde having a constant cross section. $i=1$, and we wish to find the value of the term $\Sigma\left(M_{0} x\right)$ in each span. Let of the term $2\left(M_{\alpha} x\right)$ in each span. Let
M, be caused by several weights P ap-
in which θ is the average value of i for he negative effective molue of i for the n
to a.
The integrals in equations (10), (11) (12), (13), and in others like them referring to the span l^{\prime}, which contain i must be integrated differently, in case i is discontinuous, as it usually is in a truss, from the case where i varies continuonsly. When i is discontinuous the integral extending from c to a must be separated into the sum of several integrals, each of the span l in which i varies continnously Furthermore we have
$\sum_{c}^{a}\left(M_{1}\right)=\frac{1}{2} M_{c} l$ since each member of this equation rep
plied at distances a from a, then the mo-
ment dne to a single weight P at its ment dne to a single weight P at its point of application is

$$
M_{z}=P z(l-z) \div l,
$$

which may be taken as the height of the triangular moment area whose base is which is caused by P. This triangle whose area is $\frac{1}{2} M_{2} l$ is the component of $\Sigma\left(M_{0}\right)$ due to P and can be applied as a concentrated bending moment at its center of gravity at a distance x from a. weights P at once
$\Sigma^{a}\left(M_{0} \dot{x}\right)=\frac{1}{6} \Sigma_{c}^{a}\left[P\left(l^{2}-z^{2}\right) z\right]$. Also in equation (15) we have in this
$\bar{x}_{1}=\frac{1}{3} l, \bar{x}_{2}=\frac{3}{3}, \quad \bar{x}_{1}^{\prime}=\frac{1}{3} l^{\prime}, \bar{x}_{2}^{\prime}=\frac{2}{8} l^{\prime}$ $\therefore 6 E I\left\{\frac{y_{a}-y_{c}}{l}+\frac{y_{b}-y_{c}}{l^{\prime}}\right\}$
$-\frac{1}{l} \Sigma_{c}^{a}\left[P\left(l^{2}-z^{z}\right) z\right]-\frac{1}{l^{\prime}} \Sigma_{c}^{b}\left[P^{\prime}\left(l^{\prime 2}-z^{\prime 2}\right) z^{\prime}\right]$

$$
\begin{equation*}
=M_{a} l+2 M_{c}\left(l+l^{\prime}\right)+M_{b} l^{\prime} \tag{16}
\end{equation*}
$$

Equation (16) then expresses the theorem of three moments for a girder having a constant moment of inertia I, and
deflected by weights applied in the span deflected by weights applied in the span at distances z from a, and also by
weights in the span l^{\prime} at distances z^{\prime} from
Let us also take the particular case of equation (15) when the moment of inertia $i=1$, and if we let A_{0} and A_{0}^{\prime} be the positive moment areas due to the weights we have

$$
6\left\{\frac{1}{l} A_{0} \bar{x}_{0}+\frac{1}{l^{\prime}} \mathrm{A}_{0}^{\prime} \bar{x}_{0}^{\prime}\right\}=
$$

$$
\begin{equation*}
M_{a} l+2 M_{c}\left(l+l^{\prime}\right)+M_{b} l \tag{17}
\end{equation*}
$$

This form of the equation of three mo ments was first given by Greene.*
The ad vantage to be derived in discus moments, instead of the applied weights moments, instead of the applied weight graphical treatment. The extreme com plexity of the ordinary formulae arises
from their being obtained in terms of from their being obtained in terms of
the weights the weights.
In order to complete the analytic solution of the continuous girder in the gennecessary to use the well known onuations,
$\sqrt{1} \begin{aligned} M & =M_{c}+S_{c} z_{c}-\Sigma_{c}^{0}\left(P z_{\mathrm{e}}\right) \\ S_{\mathrm{c}} & =\frac{1}{l}\left[M_{a}-M_{0}+\Sigma_{c}^{d}(P z)\right] .\end{aligned}$

$$
S_{e}^{\prime}=\frac{1}{l^{\prime}}\left[M_{b}-M_{c}+\Sigma_{b}^{b}\left(P z^{\prime}\right)\right]
$$

$$
R_{\mathrm{c}}=S_{c}+S_{\mathrm{e}}^{\prime}
$$

$$
S=S_{0}-\Sigma_{c}^{0}(P)
$$

In (18) M is the bending moment any point O in the span l, S_{o} is the shear the to the weights in the span l, and z_{0}, is the distance from O towards c of the applied forces P and S_{o} in the seg-
ment $O c$.

- Graphlical Method for the Azuly) yis of Bridge Trueses
York,
Cotreene. Publithed by D. Vai Nostrand. New

Equation (19) is derived from (18) by taking O at a, and (20) is obtained similarly in the span l^{\prime}, R_{c} is the reaction of the pier at c. S is the shear at O in
the span l. These equations also comthe span l. These equations also complete the solution of the cases treated in
(16) and (17).

CHAPTER XII.

he flexible arch rib and stifeening truss.
Whenever the moment of inertia of an arch rio is so small, that it cannot afford a sufficient resistance to hold in equilibrium the bending moments due the weights, it may be termed a flexiIt must
to resist the have a sufficient cross section to resist the compression directly along the rib, but needs to be stiffened by a
truss, which will most conveniently be made straight and horizontal. The rib. may have a large number of hinge joints which must be rigidly connected with the truss, usually by vertical parts. It is then perfectly flexible.
If, however, the rib be continuous without joints, or have blockwork joints,
it may nevertheless be treated feetly flexible, as this supposition perbe approximately correct and on the side of safety, for the bending moments in.duced in the truss will be very nearly as great as if the rib were perfectly flexible, in case the same weight would cause a much greater deflection in the rib than in the truss. It will be sufficient to describe the construction for the flexible rib without a figure, as the construction structions already given have the constructio Lay off on some assumed scale the applied weights as a load line, and the us call this vertical load line wow'. Divide the span into some convenient number of equal parts by verticals, which will divide the curve a of the rib into segments. From some point b as a pole draw a pencil of rays parallel to the segments of a, and across this penci
draw a vertical line tance from b that the distance $2 \mathrm{~m}^{\prime}$ be tween the extreme rays of the pencil is equal to $w w^{\prime}$. Then the segments of $u u^{\prime}$ made by the rays of the pencil are the loads which the arch rib would sus-
tain in virtue of its being an equilibrium the center and distributed in the same polygon, and they would induce no bend- manner as the segments of $u u^{\prime}$: for it ing moments if applied to the arch. ly distributed. By Prop. VI the bending y distributed. By Prop. Ti the bending moments induced in the truss are those actually resting on the arch at each point, and the weight of the same total amount distributed as shown by the segments of the line $u u^{\prime}$.
Now lay off a load line vé made up of weights which are, these differences of the segments of $\sim u u^{\prime}$ and 'vio', taking care to observe the signs of these dif-
ferences. The algebraic sum of all the ferences. The algebraie sum of all the
weights vu' vanishes when the weights which rest on the piers are included, as appears from inspection of the construction in the lower part of Fig. 10. The
construction above described will differ construction above described will differ from that in Fig. 10 in one particular. The rib will not in general be parabolic and the loads which it will sustain in virtue of its being an equilibrium polygon will not be uniformly distributed, the loading of the stiffening truss do
the not generally constitute a uniformly distributed load.
The horizontal thrust of the arch i the distance of $w u^{\prime}$ from b measured on the scale on which the londs are taid off, and the thrust along the arch at any point is length of the corresponding ray thrusts depend only on the total weight thrusts depend only on the total weight of the stiffening truss depend on the manner in which it is distributed, and on the shape of the arch.
Having determined thas the weight applied to the stiffening truss, it is to be treated as a straight girder, hy method previously explained according to the way is

iers.

The effect of variations of temperature is to make the crown of temperature and fall by an amount which can be readily determined with sufficient exact ness, (see Rankine's Applied Mechanics Art. 169). This rise or fall of the arch produces bending moments in the stiffen-
ing truss, which is fastened to the top ing truss, which is fastened to the tops of the piers, which are the same as would
be produced by a positive or negative be produced by a positive or negative
loading, causing the same deflection at
is such a distribution of loads or pressures which the rib' can sustain or produce. A similar set of moments can be induced in the stiffening truss by length ening the posts between the rib and trus.
When this deflection and the value of EI in the truss are known, these moments can be at once constructed by methods like those already employed. A judicious amount of cambering of this ture what may be called "initial stiffture what may be called "initial stiff-
ness." The St. Louis Arch is wanting in ness." The St. Louis Arch is wanting in
initial stiffness to such an extent that the weight of a single person is sufficient to cause a considerable tremor over an entire span. This would not have been possible had the bridge consisted of an arch stiffened by a truss which was anchored to the piers in such a state of bending tension as to exert considerable pressure npon the arch. This tension of the truss, would be relieved to some ex-
tent during the passage of a live load. The arch rib with stiffening truss, is a form of which many wooden briages were erected in Pennsylvania in the earlier days of American railroad building, but its theory does not seem to have been well understood by all who erected them, as the stiffening truss was itself usually made strong enough to bear the applied weights, and the arch was added for additional security and stiffness,
while instead of anchoring the truss to the piers and causing it to exert a pres. sure on the arch, a far different distribution of pressures was adopted. Quite a number of bridges of this pattern are figured by Haupt* from the designs of the builders, but most of them show by the manner of bracing near the piers that the engineers who designed them did not know how to take advantage of the peculiarities of this combination.
This further appears from the fact, that This further appears from the fact, that
the trussing is not usually continuous. the trussing is not usually continuous.
A good example, however, of this A good example, however, of this
combination constructed on correct principles is very fully described by Haupt on pages 169 et seq. of his treatise. It is a wooden bridge over the Susquehanna River, $5 \frac{1}{2}$ miles from Harrisburg on the

Pennsylvania Railroad, and was designed Let us take for discussion the brick Pennsylvania Raiiroad, and was designed Let us take for discussion the brick
by Haupt. It consists of twenty-three arch erected by Brunel near Maidenhead spans of 160 feet each from center to England, to serve as a railway viaduct. center of piers. The arehes have each It is in the form of an elliptic ring, as a span of $149 \frac{1}{4}$ feet and a rise of 20 represented in Fig. 14, having a span of ft . 10 im. and are stiffened by a Howe 128 ft . with a rise of $24 \frac{1}{4}$ feet. The Truss which is continuous over the thickness of the ring at the crown is $5 \frac{1}{4}$ piers and fastened to them. It was ft , while at the pier the horizontal thickerected in 1849. Those parts which were ness is 7 ft .2 inches. protected from the weather have rebeen replaced, as often as they have de eayed, by pieces of the original dimencayed, by pieces of the original dimen-
sions. This bridge, though not designed for the heavy traffic of these days, still stands after twenty-eight years of use, a proof of the real value of this kind of combination in bridge building.

CHAPTER XIII.

the arch of masonry.
Arches of stone and brick have joints which are stiff up to a certain limit beyond which they are unstable. The loading and shape of the arch must be so adjusted to each other that this limit shall not be exceeded. This will appear in the course of the ensuing discussion.

Divide the span into an even number of equal parts of the type $b b$, and with a radius of half the span describe the semicircle gg . Let $b a=24 \frac{1}{4} \mathrm{ft}$. be the venient the intrados, and from any convenient point on the line $b b$ as b draw us to find tha g. These lines will enable of the ind the ordinates be of the ellipse the circle by from the ordinates $b g$ of the circle, by decreasing the latter in the ratio of $b g$ to $b a$. For example, draw a then a vertical throngh i cutting $b_{2} g$ at i, i, then will a horizontal throngh $;$ cut off a, b, the ordinate of the ellipse corresponding to b_{2}, g_{3} in the circle, as appear rom known properties of the ellipse. Similarly let $b q=64 \mathrm{ft} .+7 \mathrm{ft} .2 \mathrm{in}$. and with $b q$ as radius describe a semicir-
cle. Let $b d=24 \frac{\mathrm{ft}}{}+5 \ddagger \mathrm{ft}$. be the rise

of the extrados, and from any convenient by them; and will, therefore, not increase point on $b b$, as b, draw lines to d and q. beyond the least amount eapable of balThese will enable us to find the ordinates ancing the active forces."
$b d$ of the ellipse of the extrados, from those of the circle, by decreasing the latter in the ratio of $b q$ to $b d$. By this
means, as many points as may be desired means, as many points as may be desired,
can be found upon the intrados and extrados; and these curves may then be trados; and these curves may then be
drawn with a curved ruler. We can use the areh ring so obtained for our construction, or multiply the ordinates by any convenient number, in case the arch
is too flat for couvenient work. Indeed we can uss the semicircular ring itself if desirable. We shall in this construction
employ the arch ring ad which has just employ the arc
been obtained.
We shall suppose that the material the surcharge between the extrados and a horizontal line tangent at d causes by arch. That this assumption is nearly correct in case this part of the masonry is made in the usnal manner, cannot well be doubted. Rankine, however, in his Applied Mechanics assumes that the pressures are of an amount and in a direction
due to the conjugate stresses of an homodue to the conjugate stresses of an homo-
geneons, elastic material, or of a material
which like earth has an angle of slope due Which like earth has an angle of slope due
to internal friction. While this is a correct assumption, in case of the arch of 1 tunnel sustaining edrth, it is incorrect for the case in hand, for the masorry of the surcharge needs only a vertical resist-
ance to support $i t$, and will of itself proance to support it, and will of itself pro-
duce no active thrust, having a horizonduce no active thrust, having a horizon-
tal component. tal component
This is further evident from Moseley's
principle of least resistance, which is principle of least resistance, which is
stated and proved by Rankine in the stated and proved by Rankine in the
following terms:
"If the forces which balance each other in or upon a given body or structure, bed respectively, active and systems, called respectively, active and passive,
which stand to each other in the rela. tion of cause and effect, then will the apassive forces be the least which are capable of balancing the aetive forces, consistently with the physical condition of the body or structure.
For the passive forces being caused by the application of the active forces to the body or structure, will not increase
after the aetive forces have been balanced

A surcharge of masonry can be sustained by vertical resistance alone, and
therefore will exert of itself a therefore will exert of itself a pressure
in no other direction upon the hanches in no other direction upon the haunches
of the areh. Nevertheless this surcharge will afford a resistance to horizontal pressure if produced by the arch itself. so that when we assume the pressures due to the surcharge to be vertical alone, we are assuming that the arch does not avail itself of one element of stability which may possibly be employed, but which the engineer will hesitate to rely apon, by reason of the inferior character of the masonry usually found in the surcharge. The difficulty is usually avoided, Bridge, by forming a reversed arch over briage, by forming a reversed aroh over
the piers which can exert any needed horizontal pressure upon the haunches. This in effect increases by so much the thickness of the arch ring at and near the piers,
The pressure of earth will be treated in connection with the construction for
the Retaining Wall. the Retaining Wall. On combining the
pressures there obtained with the weight, pressures there obtained with the weight,
the load which a tunnel arch sustains me load which a tunnel arch sustains,
may be at once found, after which the equilibrium polygoon may be drawn and a construction executed, similar in its general features to that, about to be employed in the ease before us.
Let us assume that the arch is loaded with a live load extending over the left half of the span, and having an intensity which when reduced to masonry of the ame specific gravity as that of which If to the surcharge. Now if the number of parts into which the span is divided be considerable, the weights which may be supposed to be concentrated at the points of division vary very approximately is the quantities of the typpe af. This approximation will be found to be sufficieutly exact for ordinary cases; but
should it be desired to hould it be desired to make the construction exact, and also to take account
of the effect of the obliguity of the joints of the effect of the obliquity of the joints
in the arch ring, the reader will find the in the arch ring, the reader will find the
method for obtaining the centers of gravity, and constructing the weights, in ravity, and constructing the weights, in
Voodbury's Treatise on the Stability of he Aroh pp. 405 et seq. in which is
given Poncelet's graphical solution of scribed limits near the crown and near the arch.
With any convenient pole distance, as
ae half the span, lay off the weights one half the span, lay off the weights.
We have nsed b as the pole and made $b_{1} 0_{1}=\frac{1}{2}$ the weight at the crown $=$ $t^{\prime}\left(a j^{\prime}+a d\right)=b_{0}^{\prime} w_{1}, 0_{0}, w_{2}=a_{2} f_{i}, v_{2}, o_{0}=$, Figure: viz, to , ete. From the force poiygon so obtained, draw the equili brium polygon e as previously explained The equilibrium polygon which ex presses the real relations between the loading and the thrust along the arch, is
evidently one whose ordinates are proevidently one whose ordinates are prop. portional to the ordinates of the polygon

It has been shown by Rankine, Woodbury and others, that for perfect stability, to open, and every joint bears over its entire surface, -that the point of application of the resultant pressure must everywhere fall within the middle third of the arch ring. For if at any joint the pressure reaches the limit zero, at the intrados or extrados, and uniformly increases to the edge farthest from that, the resultant pressure is applied at one
third of the depth of the joint from the farther edge.
farther edge.
The locus of this point of application of the resultant pressure has been called the "curve of pressure" and is evidently
the equitbrium carve due to the weights the equifbrium curve due to the weights
and to the actual thrust in the arch. If and to the actual thrust in the arch. If
then it be possible to use such a pole distance, and such a position of the pole that the equilibrium polygon can be in scribed within
thickness of the arch ring, the arch is stakie. It may readily oecur that this is stable. It may readily oecur that this is
impossible, bat in order to ensure sufficient stability, no distribution of live
load should be possible, in which this condition is not fulfilled.
We can assume any three points at will, within this inner third, and canse a
projection of the polygon c to pass projection of the polygon c to pas
throngh them, and then determine by in spection whether the entire projectio lies within the prescribed ilimits. In
order to so assume the points that a new order to so assume the points that a new
trial may most likely be unnecessary, we take note of the well known fact, that in arches of this character, the curve of
pressure is likely to fall without the pre-
the haunches. Let us assume e at th middle of the crown, e_{6}^{\prime} at the middle of $a_{0}^{\prime} d^{\prime}$, and e_{s} near the lower limit on $a_{s} d_{s}$. This last is taken near the lower limit, because the curvature of the left half of the polygon is more considerable than
the other, and so at some point between it and the crown it may possibly rise to it and the crown it may possibly rise to
the upper limit. The same consideration would have induced us to raise $e_{\text {' }}$ to the upper limit, were it not likely that such a procedure would cause the polygon to rise above the upper limit on the right of e^{\prime}.
Draw
Draw the closing line $k k$ through e e e_{2}^{\prime}, and the corresponding closing line hh through c_{c}, c^{\prime}, and decrease all the ordi-
nates of the type $h c$ in the ratio of $h b$ to ce, by help of the lines $b n$ and $b l$, in a e, by help o that previously explained. For exतmple $h, c,=n, o$, and $l, o=k, e_{0}$. By this means we obtain the polygon e which is found to lie within the required imits. The arch is then stable: but is the polygon e the actual curve of pressures? Might not a different asumption respecting the three points hrough which it is to pass lead to a dif-
ferent polygon, which would also lie ferent polygon, which would also lie
within the limits? It certainly might. Which of all the possible curves of presWure fulfilling the required condition, is o be chosen, is determined by Moseley's principle of least resistance, which applied to the case in hand, would oblige as to choose that curve of all those lying within the required limits, which has the least horizontal thrust, i.e, the smallest firect particular attention to this, as a irect particuiar attention to teent publication on this subject asserts that the true pressure line is that which approaches nearest to the middle of the arch ring, so that the pressure on the most compressed joint edge is a mininum; a statement at variance with the theorem of
Now tof find the purtieler arree has the least pole particular curve which necessary that the curve should have its ordinates as large as possible. This may be accomplished very exactly, thus: he u e where the polygon approaches ther point limit more closely than at any ther point near the crown, assumea new position of e_{1} at the upper limit; and be-
of the extrados, and from any convenient by them; and will, therefore, not increase point on $b b$, as b, draw lines to d and q. beyond the least amount eapable of balThese will enable us to find the ordinates ancing the active forces."
$b d$ of the ellipse of the extrados, from those of the circle, by decreasing the latter in the ratio of $b q$ to $b d$. By this
means, as many points as may be desired means, as many points as may be desired,
can be found upon the intrados and extrados; and these curves may then be trados; and these curves may then be
drawn with a curved ruler. We can use the areh ring so obtained for our construction, or multiply the ordinates by any convenient number, in case the arch
is too flat for couvenient work. Indeed we can uss the semicircular ring itself if desirable. We shall in this construction
employ the arch ring ad which has just employ the arc
been obtained.
We shall suppose that the material the surcharge between the extrados and a horizontal line tangent at d causes by arch. That this assumption is nearly correct in case this part of the masonry is made in the usnal manner, cannot well be doubted. Rankine, however, in his Applied Mechanics assumes that the pressures are of an amount and in a direction
due to the conjugate stresses of an homodue to the conjugate stresses of an homo-
geneons, elastic material, or of a material
which like earth has an angle of slope due Which like earth has an angle of slope due
to internal friction. While this is a correct assumption, in case of the arch of 1 tunnel sustaining edrth, it is incorrect for the case in hand, for the masorry of the surcharge needs only a vertical resist-
ance to support $i t$, and will of itself proance to support it, and will of itself pro-
duce no active thrust, having a horizonduce no active thrust, having a horizon-
tal component. tal component
This is further evident from Moseley's
principle of least resistance, which is principle of least resistance, which is
stated and proved by Rankine in the stated and proved by Rankine in the
following terms:
"If the forces which balance each other in or upon a given body or structure, bed respectively, active and systems, called respectively, active and passive,
which stand to each other in the rela. tion of cause and effect, then will the apassive forces be the least which are capable of balancing the aetive forces, consistently with the physical condition of the body or structure.
For the passive forces being caused by the application of the active forces to the body or structure, will not increase
after the aetive forces have been balanced

A surcharge of masonry can be sustained by vertical resistance alone, and
therefore will exert of itself a therefore will exert of itself a pressure
in no other direction upon the hanches in no other direction upon the haunches
of the areh. Nevertheless this surcharge will afford a resistance to horizontal pressure if produced by the arch itself. so that when we assume the pressures due to the surcharge to be vertical alone, we are assuming that the arch does not avail itself of one element of stability which may possibly be employed, but which the engineer will hesitate to rely apon, by reason of the inferior character of the masonry usually found in the surcharge. The difficulty is usually avoided, Bridge, by forming a reversed arch over briage, by forming a reversed aroh over
the piers which can exert any needed horizontal pressure upon the haunches. This in effect increases by so much the thickness of the arch ring at and near the piers,
The pressure of earth will be treated in connection with the construction for
the Retaining Wall. the Retaining Wall. On combining the
pressures there obtained with the weight, pressures there obtained with the weight,
the load which a tunnel arch sustains me load which a tunnel arch sustains,
may be at once found, after which the equilibrium polygoon may be drawn and a construction executed, similar in its general features to that, about to be employed in the ease before us.
Let us assume that the arch is loaded with a live load extending over the left half of the span, and having an intensity which when reduced to masonry of the ame specific gravity as that of which If to the surcharge. Now if the number of parts into which the span is divided be considerable, the weights which may be supposed to be concentrated at the points of division vary very approximately is the quantities of the typpe af. This approximation will be found to be sufficieutly exact for ordinary cases; but
should it be desired to hould it be desired to make the construction exact, and also to take account
of the effect of the obliguity of the joints of the effect of the obliquity of the joints
in the arch ring, the reader will find the in the arch ring, the reader will find the
method for obtaining the centers of gravity, and constructing the weights, in ravity, and constructing the weights, in
Voodbury's Treatise on the Stability of he Aroh pp. 405 et seq. in which is
given Poncelet's graphical solution of scribed limits near the crown and near the arch.
With any convenient pole distance, as
ae half the span, lay off the weights one half the span, lay off the weights.
We have nsed b as the pole and made $b_{1} 0_{1}=\frac{1}{2}$ the weight at the crown $=$ $t^{\prime}\left(a j^{\prime}+a d\right)=b_{0}^{\prime} w_{1}, 0_{0}, w_{2}=a_{2} f_{i}, v_{2}, o_{0}=$, Figure: viz, to , ete. From the force poiygon so obtained, draw the equili brium polygon e as previously explained The equilibrium polygon which ex presses the real relations between the loading and the thrust along the arch, is
evidently one whose ordinates are proevidently one whose ordinates are prop. portional to the ordinates of the polygon

It has been shown by Rankine, Woodbury and others, that for perfect stability, to open, and every joint bears over its entire surface, -that the point of application of the resultant pressure must everywhere fall within the middle third of the arch ring. For if at any joint the pressure reaches the limit zero, at the intrados or extrados, and uniformly increases to the edge farthest from that, the resultant pressure is applied at one
third of the depth of the joint from the farther edge.
farther edge.
The locus of this point of application of the resultant pressure has been called the "curve of pressure" and is evidently
the equitbrium carve due to the weights the equifbrium curve due to the weights
and to the actual thrust in the arch. If and to the actual thrust in the arch. If
then it be possible to use such a pole distance, and such a position of the pole that the equilibrium polygon can be in scribed within
thickness of the arch ring, the arch is stakie. It may readily oecur that this is stable. It may readily oecur that this is
impossible, bat in order to ensure sufficient stability, no distribution of live
load should be possible, in which this condition is not fulfilled.
We can assume any three points at will, within this inner third, and canse a
projection of the polygon c to pass projection of the polygon c to pas
throngh them, and then determine by in spection whether the entire projectio lies within the prescribed ilimits. In
order to so assume the points that a new order to so assume the points that a new
trial may most likely be unnecessary, we take note of the well known fact, that in arches of this character, the curve of
pressure is likely to fall without the pre-
the haunches. Let us assume e at th middle of the crown, e_{6}^{\prime} at the middle of $a_{0}^{\prime} d^{\prime}$, and e_{s} near the lower limit on $a_{s} d_{s}$. This last is taken near the lower limit, because the curvature of the left half of the polygon is more considerable than
the other, and so at some point between it and the crown it may possibly rise to it and the crown it may possibly rise to
the upper limit. The same consideration would have induced us to raise $e_{\text {' }}$ to the upper limit, were it not likely that such a procedure would cause the polygon to rise above the upper limit on the right of e^{\prime}.
Draw
Draw the closing line $k k$ through e e e_{2}^{\prime}, and the corresponding closing line hh through c_{c}, c^{\prime}, and decrease all the ordi-
nates of the type $h c$ in the ratio of $h b$ to ce, by help of the lines $b n$ and $b l$, in a e, by help o that previously explained. For exतmple $h, c,=n, o$, and $l, o=k, e_{0}$. By this means we obtain the polygon e which is found to lie within the required imits. The arch is then stable: but is the polygon e the actual curve of pressures? Might not a different asumption respecting the three points hrough which it is to pass lead to a dif-
ferent polygon, which would also lie ferent polygon, which would also lie
within the limits? It certainly might. Which of all the possible curves of presWure fulfilling the required condition, is o be chosen, is determined by Moseley's principle of least resistance, which applied to the case in hand, would oblige as to choose that curve of all those lying within the required limits, which has the least horizontal thrust, i.e, the smallest firect particular attention to this, as a irect particuiar attention to teent publication on this subject asserts that the true pressure line is that which approaches nearest to the middle of the arch ring, so that the pressure on the most compressed joint edge is a mininum; a statement at variance with the theorem of
Now tof find the purtieler arree has the least pole particular curve which necessary that the curve should have its ordinates as large as possible. This may be accomplished very exactly, thus: he u e where the polygon approaches ther point limit more closely than at any ther point near the crown, assumea new position of e_{1} at the upper limit; and be-
low ϵ_{4}^{\prime} where it approaches the lower at the most exposed edge a factor of only limit most nearly on the right, assume a $3 \frac{1}{2}$ instead of 5
new position of e^{\prime} at the lower limit. It may be desirable in a case like that At the left e, may be retained. Now on under consideration, to discuss the passing the polygon through these points changes occuring during the movement it will fulfill the second condition, which of the live load, and that this may be is imposed by the principle of least resist- effected more readily, it is convenient to ance.
A more direct method for making the the live and dead loads separatefy. The polygon fulfill the required condition latter can be drawn once for all, while
It is seen in the 18.
It is seen in the case before us, the
changes are so minute that it is useless changes are so minute that it is nseless
to find this new position of the polygon, and its horizontal thrust. The thrust obtained from the polygon e in its present position is sufficiently exact. The hori zontal thrust in this case is found from the lines $l m$ and $b l$. Since $2 v v_{2}$ is the
horizontal thrust, i.e. pole distance of the polygon c, $2 v v$, is the horizontal thrust of the polygone.
By unsing this pole distance and a pole properly placed, we might have drawi the polygon e with perhaps greater ac curacy than by the process employed
but that being the process employed in but that being the process employed in
Figs. 2, 3, etc., we have given this as an Figs. 2, 3, etc., we have given this as an
xample of another process.
The joints in the areh ring should be approximately perpendicular to the direction of the pressure, i.e normal to he curve of pressures.
With regard to what factor of safety is proper in struetures of this kind, al engineers would agree that the materia at the most exposed edge should never be subjected to a pressure greater tha ne the manner in which the pressure is a to the manner in which the pressure is as
sumed to be distributed in those joints where the point of application of the resultant is at one third the depth of the joint from the edge, its intensity at thi edge is double the average intensity o the pressure over the entire joint. are then led to the following conclasion hat the total horizontal thrust (or pres ure on any joint) when divided by the rea of the joint where this press is fricted, and applies to all unsymmetrical ustained ought to give a guotient forms of arches or of loading, or both. sustained ought to give a quotient at As previously mentioned, a similar conthe material. The brick viaduct which sustaining the pressure case of an areh we have treated is remarkable in using in that case, however, the water or earth; perhaps the smallest factor of safety in plied vertically and the weight line beany known structure of this class, having comes a polygon.

IN GRAPHIOAL STATICS.

OHAPTER XIV

 retaining wails and abutarents. Let $a a^{\prime} b^{\prime} b$ in Fig. 15 represent the cross section of a wall of masonry which retains a bank of earth having a surface $a a_{0}$. Assume that the portion of thewall and earth under consideration is wall and earth under consideration is bounded by two planes parallel to the plane of the paper, and at a unit's dis-
tance from each other: then any plane containing the edge of the wall at b, as $b a_{a}, b a_{i}$, ete., euts this solid in a longitudinal section, whieh is a rectangle having a width of one unit, and a length $b a_{\psi}, b a_{i}$, etc.
The resultant of the total pressure distribnted over any one of these reetangles of the type $b a$ is applied at one sultant pressure exerted by the eart sultant pressure exerted by the earth a distance of $b k=\frac{7}{3} b a$ from b.

$$
\begin{aligned}
& \text { That the resultant is to be applied at } \\
& \text { this point, is due to the fact that the dis- }
\end{aligned}
$$

we proceed from any point a of the surface toward b : the center of pressure is then at the point stated, as is well known. Again, the direction of the pressures gainst any vertical plane, as that at $b a_{0}$, is parallel to the surface $a a_{0}$. This fact is usually overlooked by those who treat his subject, and some arbitrary assumppressure.
That the thrust of the earth against a vertical plane is parallel to the ground urface is proved analytically in Ranwhich Applied Mechanics on page 127; elementary manner by considering the mall parallelopiped $m n$, whose upper and lower surfaces are parallel to the ground surface. Since the pressure on any plane parallel to the surface of the
ground is due to the weight of the earth abouve it, the pressure on such a plane is above it, the pressure on such a plane is
vertical and uniformly distributed. If $m n$ were a rigid body, it would be held

$$
\begin{aligned}
& \text { this point, is due to the fact that the dis- } \\
& \text { tributed pressure increases uniformly as }
\end{aligned}
$$ in equilibrium by these vertical pressures, which are, therefore, a system of forces

THRUST OF EARTH
retaining wall
in equilibrium; but as ma is not rigid it \mid Then is $\delta b_{1} t_{1}$ the triangle of forces holdmust be confined by pressures distributed ing the prism $a_{0} b a_{\text {, in }}$ equilibrium, just over each end surface, which last are dis- as it is about to slide down the plane $b a$ tributed in the samemanner on each end, for $b b_{1}$ represents the weight of the because each is at the same depth below the surface. Now the vertical pressures and end pressures hold $m n$ in equilibrium! brium. But the vertical pressures are inbrium, Bat the vertical pressures are in-
dependently in equilibriam, therefore the end pressures alone form a system which is independently in equilibrium. That this may occur, and no couple be introduced, these must directly oppose each other;
i.e. be parallel to the gronnd line aa i.e. be parallel to the gronnd line $a a_{\text {s }}$ Draw kp $\| a a_{\text {, }}$, it then represents the
position and direction of the resultant position and direction of the resultant
pressure upon the vertical ba ${ }_{0}$. Draw pressure upon the vertical $b a_{0}$. Draw
the horizontal $k i$, then is the angle $i k y$. called the obliquaty of the pressure, it called the obliquaiy of the pressure, the pressure and the normal to the plane upon which the pressure acts.
Let $e b i c=\Phi$ be the angle of friction, i.e the inclination which the surface of ground would assume if the wall were removed.
The obliquity of the pressure exerted by the earth against any assumed plane, such as $b a_{2}$ or $b a_{\text {, }}$ must not exceed the angle of friction; for should a greater
obliquity occur the prism of earth, $a, b a$ or $a_{0} b a$, would slide down the plane, $b a$ or $b a_{0}$ on which such obliqnity is found For dry earth Φ is usually about 30°;
for moist earth and especially moist clay, for moist earth and especially moist clay,
Φ may be as small as 15°. The inclinaΦ may be as small as 15°. The inclina-
tion of the ground surface $a a_{4}$ cannot be tion of the groun
greater than Φ.
greater than Φ.
Now let the points a_{1}, a_{v}, a_{v}, etc., be assumed at any convenient distances assumed at any convenient distances
along the surface: for convenience we along the surface: for convenience we
have taken them at equal distances, but have taken them at equal distances, but
this is not essential. With b as a center and any convenient radius, as be, deseribe a semi-circumference cutting the lines $b a_{1}, b a_{2}$, etc. at c_{2}, c_{y}, etc. Make ee $=e c$; also $e_{e} e_{1}=e_{c} c_{1} e_{0} e_{0}=c c_{0} e_{2}$, etc.: then be has an obliquity ϕ with $b a_{0}$, as has also $b e_{1}$ with $b a_{1}, b e_{3}$ with $b a_{2}$, etc.; for $a_{0} b e_{9}$ $=a_{1} b e_{1}=a_{1} b e_{2}=90^{\circ}+\Phi$.
Lay off $b b_{,}, b b_{\text {, }}, b b_{\text {, etc., proportional }}$ the weights of the prisms of to the weights of the prisms of earth $a_{0}, a_{1}, a_{0} b a_{2}, a_{0} b a_{0}$, etc.: we have effected
this most easily by making $a_{0} a_{1}=b b_{1}$, $a_{0} a_{2}=b b_{b}, a_{0} a_{2}=b b_{0}$, etc. Throngh $b_{,} b_{1} b_{2}$, etc., draw parallels to $k p$; these will intersect $b e_{s}, b e_{1}, b e_{2}$, ete., at b, t_{1}, t_{2}, ete prism, $b_{1} t_{1}$ is the known direction of the thrust against $b a_{\text {, }}$, and $b t_{1}$ is the direetion of the thrust against $b a_{1}$ when it is
just on the point of sliding: then is $t . b$ the greatest pressure which the prism the greatest pressure which the prism
can exert against $b a_{0}$. Similarly $t_{2} b_{7}$ is the greatest pressure which the prism $a, b a_{2}$ can exert. Now draw the curve t_{1}, t_{2}, etc., and a vertical tangent intersecting the parallel to the surface through b at t; then is $t b$ the greatest pressure
which the earth can exert against $b a$ which the earth can exert against $b a_{0}$. This greatest pressure is exerted approximately by the prism or wedge of earth
cut off by the plane $b a$, for the pressure which it exerts a gainst the vertical plane which it exerts against the vertical plane
through b is almost exactly $b, t=b t$. This is Coulomb's "wedge of maximum thrust" correctly obtained: previous determinations of it have been erroneous when the ground surface was not level, for in that case the direction of the press-
ure has not been ordinarily assumed to ure has not been ordinarily assumed to be parallel to the ground surface.
In case the ground surface is level the wedge of maximum thrust will always
be cut off by a plane bisecting the be cut oft by a plane bisecting the angle
$c b e_{\text {, a }}$ as may be shown analytically, which fact will simplify the construction of that case, and enable us to dispense with drawing the thrust curve t.
The pressure $t b$ is to be applied at k and may tend either to overturn the wall or to cause it to slide.
In order to discuss the stability of the wall under this pressure, let us find the weight of the wall and of the prism of earth $a b a_{\text {c }}$. Let us assume that the secific gravity of the masonry compos Make $a^{\prime} h=b b^{\prime}$, then the area $a b b^{\prime} a^{\prime}=$ ake $a^{\prime} h=a b^{\prime}$, then the area $a b b^{\prime} a^{\prime}=$
$a b h=a b h_{1} ;$ and if $a h_{2}=2 a h$, then $a \bar{h}$ represents the weight of the wall reduced to the same scale as the prisms of earth before used. Since $a \pi$ is the weight of $a b a_{0}, a h_{2}$ is the weight of the mass on the right of the vertical $b a_{0}$ against Which the pressure is exerted.
Make $b q=a_{0} h_{\text {, }}$, and draw $t q$, which of the resultant to be applied at amoun the resultant pressure applied at k where sects the vertical gro through the center of gravity g of the mass $a a_{0} b b^{\prime} a^{\prime}$. The
center of gravity g is constructed in the wall will sustain without sliding up some following manner. Lay off $a^{\prime} h=b b^{\prime}$, and plane such as $b^{\prime} a_{3}^{\prime}$ or $b^{\prime} a_{a^{\prime}}$, etc. The $b l=a a^{\prime}$; and join k. Join also the mid- difference in the two cases is that in the die points of $a b$ and $a^{\prime} b^{\prime}$: the line so former case friction hindered the eart drawn intersects $h l$ at g_{1} the center of from sliding down, while it now hinders
gravity of $a a^{\prime} b b$. Find also the center it from sliding up the plane on which it of gravity g_{2}, of $a b a_{0}$, which lies at the rests. intersection of a line parallel to $a a_{0}$, and Lay off $e^{\prime} e^{\prime}=e e_{0}$; then taking any cutting $b a_{\mathrm{a}}$ at a distance of $\frac{1}{3} b a_{4}$ from a_{6} points $a_{2}^{\prime} a_{3}^{\prime}$, etc. on the ground surface
 lay off $g_{2} f_{1}$ and $g_{1} f_{2}$ on them proportional parallels through b_{2}, b_{3}, ete., we obtain lay off $g_{2} f_{1}$ and $g_{1} g_{2}$ on them proportional to the weights applied at g_{2} and g_{2}
respectively. We have found it convenient to make $g_{5} f_{1}=\frac{1}{2} a h_{2}$, and $g_{1} f_{2}=\frac{1}{2}$ $a a_{0}$. Then $f_{1} f_{2}$ divides $g_{2} g_{2}$ inversely as the applied weights; and g, the point of intersection, is the required center of
gravity.
Let or be parallel to $t q$; since it
intersects $b b^{\prime}$ so far within the base intersects $b b^{\prime}$ so far within the base, the wall has sufficient stability against
overturning. The base of the wall is so overturning. The base of the water than is necessary for the support of the weight resting upon it, that engineers have not found it necessary that the resultant pressure should
intersect the bsse within the middle third intersect the base within the middle third of the joint. The practice of English engineers, as stated by Rankine, is to permit this intersection to approach as near it to approach as near as $16 b^{\prime}$ only. In it to approach as near as $\frac{1}{6} b^{\prime}$ only. In
all cases of buttresses, piers, chimneys, all cases of buttresses, piers, chimneys,
or other structures which call into play or other structures which call into play
some fraction of the ultimate strength some fraction of the ultimate strength
of the material, or ultimate resistance of the foundation as great as one tenth, or one fifteenth, the point should not approach b^{\prime} nearer than $\frac{1}{3} b b^{\prime}$.
Again, let the angle of friction bet ween the wall and the earth under it be
Φ^{\prime} : then in order that the thrust Φ^{\prime} : then in order that the thrust at k angle wor must be less than Φ^{\prime}.
angle wor must be less than Φ^{\prime}. When, however, the angle Φ^{\prime} is less than stability by some means, as for example by continuing the wall below the surface of the ground lying in front of it. Let $a_{0}^{\prime} a_{0}^{\prime}$ be the surface of the ground which is to afford a passive resistance to precisely analogous to that just employed frecisely analogous to that just employed for finding the greatest active pressure
which earth can exert against a vertical plane, we now find the least passive pressure which the earth in front of the $b d$, and join $b a_{1}, b a_{2}$, etc.: then are the

(R)

 parallels through b_{3}, b_{3}, etc., we obtainhe thrust curve t_{1}, t^{\prime}, etc. The small prism of earth between $b^{\prime} a_{0}^{\prime}$ and the wall adds to the stability of the wall, and can be made to enter the construction if desired, in the same manner as did aba。
The vertical tangent through s^{\prime} shows us that the earth in front of the wall can
withstand a thrust having a horizontal withstand a thrust having a horizontal
component $b^{\prime} s^{\prime}$ measured on a scale such component $b^{\prime} '^{\prime}$ measured on a scale such prism of earth $a_{0} b^{\prime} b^{\prime} a_{2}^{\prime}$.
This scale is different from that used same seale lay off from b, the distance $b^{\prime} d$ seale lay off from b, the distances $b^{\prime} d_{\mathrm{o}}$ and $b^{\prime} d_{0}^{\prime}$ proportional to the perpendieulars from b on $a a_{a}$ and b^{\prime} on $a_{1}{ }^{\prime} a_{i}^{\prime}$ respectively. In the case before us, as me ground surfaces are paralle $b^{\prime} d_{0}=b a_{0}$ and $b^{\prime} d_{0}=b^{\prime} a_{0}^{\prime}$
Then from any convenient point on $b^{\prime} b^{\prime}$, as v, draw $v d_{0}$ and $v d_{0}^{\prime}:$ these lines will reduce from one scale to the other. We find then that $x d$ is the thrust on the scale at the left corresponding to
$c d=b^{\prime} g^{\prime}$ $x d=b^{\prime} g^{\prime}$ on the right: i.e., the earth under the surface assumed at the right can withstand something over one fourt

portion of found that a certain smal portion of the earth near a_{0}^{\prime} has a thrust curve on the left of b, but as it needed in our solution it is omitted. If any pressure is required in pounds, as for example $8 b$, it is founds as follows. -the length of $a h_{\mathrm{e}}$ is to that of $s b$ as the weight of $b b^{\prime} a a^{\prime}$ in lbs. is to the pressure b in lbs.
Frequently the ground surface is not a plane, and when this is the case it often In that case, draw some convenient line In that case, draw some convenient
as $a d_{1,}$, and lay off $a d_{1}, d_{1} d_{2}$, etc. at will, as $a d_{1}$, and lay off $a d_{1}$, $d_{1} d_{2}$, etc. at wil,
which for convenience we have made
plane $b a_{1}$ when $c b a_{1}=$
$c b a_{0}$ as before stated.

This produces a horizontal resultan pressure at k equal to the weight of the pressure at k equal to the weight of the
wedge. Now the total pressure on $a b$ is the resultant of this pressure, and the weight of the wedge $a b a_{0}$. The force
to be compounded are then proportiona to be compounded are then proportiona
to the lines $a, a=b v$ and $a a_{0}$. By simi to the lines $a_{1} a_{0}=b v_{6}$ and $a a_{0}$. By simi-
larity of triangles it is seen that $r o$ the resultant is perpendicular to $a b$.
It is seen that by making the inclination of $a b$ small, the direction of ro can be made so nearly vertical that the dam will be retained in place by the pressure
of the water alone, even though the dam of the water alone, even though the dam
be a wooden frame, whose weight may be be a wooden
disregarded.
We can now construct the actual pressures to which the arch of a tumnel surcharged with water or earth is subto find the pressure of such a surcharge on the voussoir $a_{4} d_{4} d_{0} a_{5}$ Fig. 14. Find the resultant pressure against a vertical plane extending from d_{b} to the upper surface of the surface and call it P_{s}.
Draw a horizontal through d and Draw a horizontal through d_{4} and let its intersection with the verticalthe resiltant pressure against the vertieal plane extending from $d^{\circ}{ }^{\circ}$ to the surface, and oall it p_{0}. fied at such a point of d, st that p shall be the resultant of p_{0}
and p. Then will the resultant press and p_{ρ}^{\prime}. Then will the resultant press of f. and the weight of that part of the surcharge directly above it.
foundations in earth.
A method similar to that employed in the determination of the pressure of earth against a retaining wall, or a tunne arch, enables us to investigate the sta-
bility of the foundations of a wall standing in earth.
Suppose in Fig. 15 that the wall $a b b^{\prime} a^{\prime}$ is a foundation wall, and that the pressure which it exerts upon the plane
is vertical, being due to its own weigh and the weight of the building or other in shape construction is hemispherical
applies equally to domes of any different as the hoop tension or compression along form generated by the revolution of the any of the conical rings into which the arc of some curve about a vertical axis: dome may be supposed to be divided
such forms are elliptic, parabolic or hy- by a series of horizontal planes perbolic domes, as well as pointed or by a series of horizontal planes. gothic domes, etc. Let the quadrant aa divided into any number of parts, which in Fig. 18, represent the part of the we have in this case, for convenience, meridian section of a thin metallic dome made equal. Let these equal parts of the between the crown and the springing typedube the distances between horizoncircle. The metallic dome is supposed tal planes such that the planes through to be so thin that its thickness need not the points $d_{,}, d_{2}$, etc., cut small circles from
be represented in the Figure: the thickbe represented in the Figure: the thick- the hemisphere which pass through the
ness of a dome of masonry, however, is a point a, a, etc., and similarly the ness of a dome of masonry, however, is a point a_{1}, a_{2}, etc., and similarly the planes
matter of prime importance and will be through u, u, etc., cut small circles whioh treated subsequently.
In a thin metallic dome the only thrust thickness of this dome to be uniform, along a meridian section is necessarily and if $a b$ be taken to represent the weight in a direction tangent to that section at of a quadrantal lune of the dome included each point of it. This consideration will between two meridian plants makin enable us to determine this thrust as well some small angle with each other; then
from the well-known expression for the of the equation gives the height of it area of the zone of a sphere it appears that above b as $\frac{1}{2}(\sqrt{5}-1) r$, corresponding to $a d$, will represent the weight of that about $51^{\circ} 49^{\prime}$. Now consider any zone, as, $a u$ is the weight of the lune $a g_{1}$; is g, a_{2} : the upper edge is subjected to a $a d_{2}$ the weight of $a a_{2}$, ete.
This method of obtaining the weight applies of course in case the dome is any segment of a sphere less than a hemisphere and of uniform thickness. If the thickness increases from the crown, the
weights of the zones cut by equi-distant weights of the zones cut by equi-distan horizontal planes increase directly as ne
thickness. In case the dome is not spherical the weights must be determined by some process suited to the form of the dome and its variation in thickness. Now the weight of the lune $a \pi$, is sus tained by*a horizontal thrust which the resultant of the horizontal pressure in the meridian planes by which it i bounded, and by a thrust, as before remarked, in the direction of the tangent at a. Draw a horizontal line through d, at a : these intersect at s, then is ads s the triangle of forces which hold in equilibrium the lune $a a_{\text {a }}$. Similarly, $a u, t_{1}$ is the triangle of forces holding the une $a g$, in equilibrium, etc. Draw a curve $s t$ throagh the points thus determned. This curve is a well-known cubic which when referred to $b a$ as the axis of x and $b g_{9}$ as that of y has for its equation

$$
\frac{y^{2}}{x^{2}}=\frac{r-x}{r+x}
$$

On being traced at the right of a it has in the other quadrant of the dome a part like that here drawn forming a loop; it passes through b at an inclination of 45° and the two branches below b finally become tangent to a horizontal line
drawn tangent to the circle aa of the drawn tangent to the circle $a a$ of the dome. The curve has this remarkable
property:-If any line be drawn from a,
property :-If any line be drawn from a,
cutting the curve here drawn and, also,
cutting the curve here drawn and, also,
the part below $b g_{\text {, }}$ the product of these
two radii vectores of the curve from the pole a is constant, and the locus of the intersection of the normals at these two points is a parabola.
Draw a vertical tangent to this curve the point of contact is very near t, and g, the corresponding point of the dome is nation of this maximum point by means
is $g_{,} a_{2}$: the upper edge is subjected to a
thrust whose radial horizontal compothrust whose radial horizontal compohorizontal thrust against its lower edge is proportional to $d_{2} s_{2}$, and the difference $x_{2} x_{2}$, between these radial forees produces a hoop compression around the zone proportional to $8_{3} x_{2}$. It will be seen that hese differences which are of the type x or $t y$, change sign at $t_{g^{\circ}}$. Hence al prown, are subjected to a hoop compression which vanishes at that distance from a, while all parts of the dome below this are subjected to hoop tension. This may be stated by saying that a thin dome of masonry would be stable under hoop compression as far as $51^{\circ} 49^{\prime}$ from the crown, but unstable below that, being liable to crack open along its meridian sections. A thick dome of masonry, thrust at every point of its meridian thrust at every point of its meridian
section in a direction which is tangential o its surface,-this will be discussed Its
It is
It is necessary to determine the actual hoop tension or compression in any ring in order to determine the thickness of the dome such that the metal may not be subjected to too severe a stress. (we shall use the word tension to in(we shall use the woth tension and compression) is : Multiply the intensity of the radial Multiply the intensity of the radial
pressure by the radius of the hoop, the roduct is the tension at any meridia is his rule appears at once from consideration of fluid pressure in a tube, in which tremities of a diameter prevent the expressure on that diameter from tearing tue trbe asunder.
Now in the case before us t, y is the radial force distributed along a certain une. The number of degrees of which the lune consists is at present undetermined : let it be determined on the supposition that it shall be such a number of force against it shall the total radial hoop tension. Call the be equal radial tore P and the hoop tension T, then the lune
is to be such that $P=T$: Also let θ be the number of degrees in the lune, then of the dome, and $90 P \div \theta$ is the radial force against a quarter of the dome, which last must be divided by $\frac{1}{2} \pi$ to obtain the hoop tension; beeause if p is the intensity of radial pressure, $\frac{1}{2} \pi \tau p$ is the as previously stated, is the hoop tension, as previously stated, is the hoop tension. must divide the total radial pressure in every case to obtain hoop tension

$$
\begin{aligned}
& \frac{180 P}{\theta \pi}=T, \therefore \theta=\frac{180^{\circ}}{\pi} \\
& \text { for } P=T \quad \therefore \theta=57^{\circ} .3
\end{aligned}
$$

This is the number of degrees of which the lane must consist in order that when ab represents its weight,,y, shall rep-
resent the hoop tension in the meridian section a, g. The expression we have found isindependent of the radius of the ring, and hence holds for any other ring as $g y_{1} a$, in which $s_{3} a_{0}$, is the hoop tension,
eto. To find what fraction this lune is of the whole dome, divide θ by 360°

$$
\frac{\theta}{360}=\frac{180}{860 \pi}=\frac{1}{2 \pi}=\frac{4}{25} \text { nearly, }
$$

from which the scale of weight is easily
from which the scale of weight is easily
found, thus; let W be the total weight found, thus; let W be the total
of the dome and r its radius, then
$2 \pi r: W:: 1: n$, the weight per unit, or the hoop tension per unit of the distances ty or $8 x$.
Distances $a t$ or $a s$, on the same scale, represent the thrust tangential to the dome in the direction of the meridian an are of $57^{\circ} .3-:$ e.g. if we divide at measured as a force by $\theta \times u_{2} g_{3}$ measured as a distance we shall obtain the intensity of the meridian compression at the joint cut from the dome by the horizontal plane through α_{2}.
Analogous constructions hold for domes not spherical and not of uniform
thickness. Approximate resnlts may thickness. Approximate results may be
obtained by assuming a spherical dome or a series of spherieal zones approximating in shape to the form which it is desired to treat.

CHAPTER XVI.
SPHERICAL DOME OF MASONRY Let the dome treated be that in Fig. 18 in which the uniform thickness of the masonry is one-sixteenth of the internal diameter or one-eighth of the radius of the intrados. Divide $a b$ the radius of ber of equal parts, say convenient numetc.: a much parts, say eight, at u, u_{2}, preferable in actual construction. A the points a_{1}, a_{2}, etc., on the same levels with $u_{\text {, }}, u_{v}$, etc. pass conical joints norof each of the cones.
If we consider a lune between meridian planes making a small angle with each other, the center of gravity of the parts of the lune between the conical joints lie at g_{1}, g_{2},etc. on the horizontal midway points are not exactly upon the central points are not exactly upon the central is large, the difference is inappreciable. We assume them upon $a a$. That they fall upon the horizontals through d, d ete., midway between those through u u_{2}, ete., is a consequence of the equality in area between spherical zones of the same height.
In finding the volume of a sphere it may be considered that we take the sum bases form the surface of the sphere, and whose height is the radius. Hence if any equal portions of the surface of a sphere be taken and sectorial solids be formed on them as bases and having their vertices at the center, then the sectorial solids have equal volumes. The lunes of which we treat are equal
ractions of such equal solids.
Draw the verticals of the type $b g$ The weights applied at these points are equal and may be represented by are $u_{2} u_{3}=v_{1} v_{2}$, etc. Use a as the pole and $v_{1} b_{2}=v_{1} v_{0}$, etc. Use a as the pole and
$w_{2} w_{s}$ as the weight line; and, beginning at the point f_{f}, draw the equilibrium polygon c due to the weights.
We have
We have used for pole distance the greatest horizontal thrust which it is possible for any segment of the dome to exert upon the part below it, when the from the crown. rom the crown.
vanishes we shall not assume that the
bond of the masonry is sneh that it can bond of the masonry is such that it can resist the hoop tension which is developed. The upper part of the dome will be then carried by the parts of the lunes
below this point by their united action as a series of masonry arches standing as a series of
side by side.
Now it is seen that the curve of equilibrium c, drawn with this assumed horizontal thrust falls within the curve of the lune, which signifies that the dome will not exert so great a thrust as that as sumed. By the principle of least resistance, no greater horizontal thrust will be ealled into action than is necessary to oause the dome to stand, if stability is
possible. If a less thrust than that just employed be all that is developed in the dome, then the point where the hoop compression vanishes is not so far as 51° 49^{\prime} from the crown, and a longer portion of the lune acts as an arch, than has been supposed by previous writers on this subject,* none of whom, so far as known, have given a correct process for the soluarrived at have been somewhat approximately correct. To ensure stability, the equilibrium third of that part of the meridian section of the lune which is to act as an arch; as appears from the same reasons which were stated in comnection with arches of masonry
And, further, the hoop compression will vanish at that level of the dome
where the equilibrium curve, in departing where the equilibrium curve, in departing
from the crown, first becomes more nearly vertical than the tangent of the meridian section; for above that point the greatest thrust that the dome can exert, cannot be so great as at this point where the thrust of the arch-lune is equal to that of the dome
Now to determine in what ratio the ordinates of the curve c must be elongated to give those of the curve e which
fulfills the required conditions, we draw the line $f o$, and cut it at p, p, ete. by the horizontals $m_{1} p_{1}, m_{2} p_{2}$, ete., the quantities $m b$ being the ordinates of exterior of the inner third. Again draw verticals through p_{3}, p_{3}, etc., and cut them at q_{i} S See a paper read before the Royal Inst. of Britiah
Architecter 7 on the Mrathematical Theort of Dones,

q_{2}, q_{2}, etc. by horizontals through e_{2}, c_{2},
c_{2}, etc. Through these points draw the curve $q q$, whose ordinates are of the type gh. Some one of these ordinates is to be elongated to its corresponding ph,
and in such a manner that no gh shall then become longer than its corresponding $p h$. To effect this, draw oq tangent to the curve $q q$; then will $o q$, enable us to effect the required elongation: e.g. let the horizontal through c_{4} eut $o q_{2}$ at j_{0} and then the vertical through j, cuts $f 0$ at i_{s}, then is e_{s} (which is on the same level with $i_{\text {, }}$) the new position of $c_{\text {, }}$ Similarly, we may find the remaining determine the new pole distance, and uso this method as a test only. The curve oq made only
truction for tinding the ratio lines for so elongating the ordinates of the curve , that the new ordinates shall be those of a curve e tangent to the exterior line of the inner third, may be applied with equal facility to the construction for the arch of masonry. This furnishes us with ne employed in connection with Fig. 14. To find the new pole distance draw ijll oq, cutting 2010 at j, then will i the intersection of the horizontal through j, he the new position of the weight line $v v$, having its pole distance from a diminished in the required ratio.
The equilibrium curve e will be parallel to the curve of the dome at the points where the new weight line $v v$ cuts the
curve st. It should be noticed that the pole distance which we have now determned is still a little too large becanse the true equilibrium curve; and as the polygon has an angle in the limitin curve $m m$ the equilibrium curve is not yet high enough to be tangent to the limiting curve. If the number of divithe sire of Fir Figure diarger (which the size of our Figure did not permit)
this matter would be rectified The por yona be rectified
without the required limits, this would be partly rectified by slightly decreasing the pole distance as just suggested; the point, however, would still remain just withont the limit after the pole distance is decreased, and by so much is the dome
unstable. A dome of which the thick
ness is one fifteenth of the internal diameter, is almost exactly stable.
It is a remarkable fact that a semicylindrical arch of uniform thickness and without surcharge must be almost exactly three times as thick, viz., the thicknes must be about one fifth the span in order that it may be possible to inscribe the equilibriom curve within the inner third which I have the dimensions, which is thick enough to be perfectly stable with out extraneous aid such as hoops or ties is the Gol Goomuz at Beejapore, India It has an internal diameter of $137 \frac{1}{2}$ feet, and a thiekness of 10 feet, it being slightly thicker than necessary, but it probably carries a load upon the crowi which requires the additional thickness. The hemispherical dome of uniform thfokness is a very faulty arrangemen
of material. It is only necessary to of material. It is only necessary to
make the dome so light and thin for 51° 49^{\prime} from the crown that it cannot exer so great a horizontal thrust as do the so great a horizontal thast as do the
thicker lunes below, to take complete advantage of the real strength of this form of structure. A dome whose thicknes gradually decreases toward the crow takes a partial advantage of this, but nothing short of a quite sudden change near this effectiv
The

e necessary thickness to withstand

 the hoop compression and to withstand thrust can be found as previously show in the dome of metal.Domes are usually orowned with lantern or pinnacle, whose weight must
be first laid off below the pole a after be first laid off below the pole a after
having been reduced to the same unit as that of the zones of the dome. crown or below there is an eye, at, the crown or below, the weight of the matetracted, so that a is then to be placed tracted, so that a is then to be placed
belowitspresent position. The construc tion is then to be completed in the same
manner as in Fig, 18 .
It is at once seen that the effect of an additional weight, as of a lantern, at the crown, since it moves the point a upward a certain distance, will be to cause the the left of their present poxcept b to suffic the left of their present position, and If the hoop encircles the dome at 51 especially the points in the upper part of
the curve, thus making the point of no 9^{\prime} or any other less distance from the hoop tension much nearer the crown than all points above the hoop. Suppose the
hoop to be at $51^{\circ} 49$, then the curve e given leads to the method previously hould, below that point, be made to given for the dome of metal. pass through the points f_{2} and f_{1}, from The dome of St. Paul's, London, is one made thinner than at present, and the by reason of the novel means criticism horizontal thrust caused will be less. to overcome the difficulties inherent in so The tension of the hoop would be that large a dome at so great a height above due to a radial thrust which is the dif- the foundations of the building. The erence between that given by the curve exterior dome consists of a framework of t for this point aud the horizontal thrust oak sustained by conical dome of brick (pole distance) of the polygone when it which forms the core. There is also a passes through f_{j} and f_{s}. That the curve parabolie brick dome under the cone e passes through these last mentioned of least resistance.
Again, suppose another hoop ancircles
he dome at f : the curve e must pass through f, and f, and in this part of the lune will have a corresponding horizontal thrust. The curve e must also pass
through f and f but in this int of the through f_{s} and f_{2}, but in this firt of the
lune will have a horizontal thrnst cor responding to it, differing from that in the part between f_{n}, and f_{0} : indeed the horizontal thrust in the segment of a
dome above any hoop depends exclusively upon that segment and and is unaf fected by the zone below the hoop. The tension sustained by the hoop is, how ever, due to the radial force, which
the difference of the horizontal thrust of the zones above and below the hoop.
It is It is seen that the introduction of second hoop will still further diminish the thickness of lune necessary to susness is required to sustain the meridian compression.
Had a single hoop been introduced at with none above that point, the dom above f, should then be investigated, just as if the springing circle was situated at
that point. The curve e must then start that point. The curve e must then start from $f_{\text {s }}$, as it before did from f_{s}, and be
made to become tangent to the limitmade to become tangent to the limit-
ing curve at some point between f and ing curve a
the crown.
By the method here employed for By the method here employed for
finding the tension of a hoop it is possible to discuss at once the stresses induced in the important modern domes constructed with rings and ribs of metal and having the intermediate panels elosed with glass. \qquad On introducing a large number o
rings at small distanees from each other rings at smal it will be seen that the discnssion just in the ring g, g, is represented by t, y, ,

4

FIG. IV.

GRAPHICAL STATICS.

Aut general processes used in the equilibrium. Now any system of forces graphical computation of statical prob- in equilibrium may be represented in lems consist, in their last analysis, in a
systematized application of the proposi-
a closed polygon, a fact which follows systematized application of the proposi- a closed polygon, a fact which follows
tion known as the "parallelogram of at once from the doctrine of the parallelotion known as the parallelogram of at once from the doctrine of the parallelo-
forces," which states that if two forces
gram of forces. Such a polygon is called be applied to a material point, and if the polygon of the applied forces. they be represented in magnitude and Again, the forees which act at any direction by two determinate straight joint of a frame are in equilibrium, and lines, then their resultant is represented hence there is a closed polygon of the in magnitude and direction by the forces acting at each joint. The forces
 Whose sides are the just mentioned de- longitudinal tensions or compressions of
terminate lines. This is the basis of all the pieces meeting at that joint, together terminate lines. This is the basis of all the pieces meeting at that joint, together
grapho-statical construction, but the
with any of the applied forces whose grapho-statical construction, but the
methods by which it is systematized, and the auxiliary ideas incorporated in the question. Draw a diagram of the frame processes, have so enlarged its possi- and the applied forces all of which we bilities of usefulness, that Graphical will suppose lie in a single plane. Call Statics may perhaps claim to be a science this the "frame diagram:" it represents of itself;-the science of the geometrical the position and direction of all the treatment of force.
In order to introduce to the public a
forces acting in and upon the frame.
The frame diagram necessarily has at In order to introduce to the public a
new set of anxiliary ideas, which shall
least three dines meeting at each joint. new set of auxiliary ideas, which shall
constitute a new method, of a character constitute a new method, of a character
equally general with that now in use and which constitutes part of the
frame does not necessarily have both DIRECCION GENERA equally general with that now in use and
known as the "equilibrium polygon does not necessarily have both
its extremities attached at joints of the method," it has seemed best to give, in frame; one extremity may be firmly atthe first place, a brief review of the prin- tached to any immovable object. The cipal ideas already employed by the cul- frame diagram is, therefore, not necestivators of this science. sarily made up of closed figures. sarily made up of closed figures.
Now draw the closed polygon of the rectiprocal figures. forces applied to the frame, and at each When a framed structure, such as a
of the joints where forces are applied
coof or bridge truss, is subjected to the action of certain weights or forces, these which meet at that joint, using so far as applied forces form a system which is in possible the lines already drawn as sides
of the new polygons, and at the same Magazine, vol. 27, 1864; in which is time draw polygons for the forces acting stated, what is also evident from conat each of the remaining joints. If this siderations already adduced above, that process be effected with care as to the mutually "reciprocal figures are me order of procedure, as well as to the chanically reciprocal; that is, either may
order in which the forces follow each be taken as representing a system of other in the polygon of the applied points (ie. joints) and the ather as rep forces, then the resulting "diagram of presenting the magnitudes of the force forces," which is formed of the combi- acting between them."
nation of the polygon of the applied The subject has also been treated by forces with the polygons for each joint, Professor B. Cremona in a memoir enwill contain in it a single line and no titled "Le figure reciproche nelle statica more parallel to each line of the frame grafica." Milan, 1872
diagram. In that case the foree dia- We shall now give examples of this gram is said to be a reciprocal figure to method of computing the forces acting not exereised in the particulars men- with certain extensions by which wether not exereised in the particulars men- with certain extensions by which we are
tioned some of the lines in the force enabled to treat moving loads diagram will have to be repeated, and The method is correctly called "Clerk the figure drawn will not be the recipro- Maxwell's Method." The notation emcal of the frame diagram, nevertheless ployed, which is particularly suitable for it will give a correct construction of the the treatment of reciprocal diagrams, is quantities sought.
If the frame diagram diagram are both elosed force they are mutually elosed figures then $\begin{aligned} & \text { him in his work entiled "Economics of } \\ & \text { Construction." London, } 1873 \text {. In }\end{aligned}$ hey are mutually reciprocal. The work will be found a very properties of reciprocal figures were of frame and force diagrams drawn by Clerk Maxwell, in the Philosophical this method
Clerk Maxwell, in the Philosophical Let the right hand part of Fig.

Fig.1. ROOFTRUSS temperatere stresse
represent a roof truss having an in-| This force is considered thus apart from clination of 30° to the horizon, of all others because it is a force between which the lower chord is a polygon in two joints, and must enable us to obtain
scribed in an arc of 60° of a circle. If a pair of mutually reciprosal figures the lower extremities of the truss abut such as weights and other applied forces against immovable walls a change of seldom give
temperature causes an horizonțal force It is seen that the force between these between these lower joints, the effect of joints might be suppored to be caused which upon the different pieces of the by a tie joining these points; and in truss is to be constructed. No other general it may be stated that the diaweights or forces are now considered gram of forces due to any cambering o
pieces, is mutually reciprocal to the effected by following the polygon for rame diagram.
Let any piece of the frame be denoted
any joint completely around and noting
wher the forces aet toward or from Let any piece of the frame be denoted whether the forces act toward or from
by the letters in the spaces on each side the joint: e.g. at the point fghrf, from by the letters in the spaces on each side the joint: e.g. at the point fghrf, from
of it; thus the pieces of the lower chord following the diagrams of preceding are $q a, q c, q e$, ete.; and those of the joints in the manner stated, it will be upper chord are $r b, r d$, etc., while $a b, b c$, found that $f g$ is under tension, and acts ete., are pieces of the bracing, and $q r$ is the tie whose tension produces the stress under consideration.
In the force diagram upon the left, let $q r$ represent, on some assumed scale of $q r$; and complete the triangle aqr with $q r$; and complete the triangle aqr with verge to the joint aqr; then must this triangle represent the forces which are in equilibrium at that joint. Next, with
$a r$ as one side, complete the triangle $a b r$, ar as one side, complete the triangle $a b r$, by making its sides parallel to the pieces
metting at the joint of the same name:metting at the joint of the same name:-
its sides will represent the forces in its sides will represent the forces in
equilibrium at that joint. In a similar equilibrium we proceed from joint to joint, manner we proceed rom using the stresses already obtained in determining those at the successive joints.
It is not possible to determine in general more than two unknown stresse in passing to a new joint, unless aided by some considerations of symmetry Which may exist at such a joint as $g h i j q$.
Now from the left hand figure as frame diagram, in which stresses are induced by causing tension in the tie $q r$ we can construet the right hand figure as a force diagram, but it must be noticed in that case that $r b, r h, r f, r d$ are separate and distinct pieces meeting at the joint r, although they all lie in the same right line, and that the same is true along the line o considerations of a general
One or two nature should be recalled in this con nection. rom the joint; consequently, $g h$ which acts toward the joint is under compression, as are also the two remaining pieces. Hence if the tension in the tie qr be replaced by an equal compression in a part,
tending to move the lower extremities of the roof from each other, the sign of every stress in the roof will be changed, but the numerical amount will remain unchanged, and no change will be made the force diagram.
roof truss.
As another example let us take a roof russ represented in Fig. 2, acted upon Suppose that the effeet of the wind against the right hand side of the truss is such as to cause a deviation of the force applied at the joint $a^{\prime} b^{\prime} e^{\prime} f^{\prime}$ of the amount indicated in the figure. Such a eviation may of course occur at several oints of a roof, but the treatment of e single joint at which the force of the rated, will sufficiently indicate the me thod to be employed in more intricat xamples.
Suppose that this pressure of the wind is sustained by the left abutment. The manner in which it is really sustaine depends upon the method by which the oof is fixed to the walls.
This horizontal pressure of the wind is not directly opposed to the thrust of the left abutment, consequently a couple is
brought into play by these forces, whose effect is to transfer a part of the weight effect is to transfer a part of the weight A polygon encloses the space q; in from the right to the left abueffer
the reciprocal figure the lines parallel to compute the amount of this effect, draw its sides must all diverge from the point an horizontal line through this joint (or q: and if the upper chord had been a in case the wind acts at several joints the polygon, instead of being of uniform horizontal line has to be drawn through slope, the lines parallel to its sides would the center of action of the wind pressure) diverge from the point r. As it is, ra, and prolong it until it intersects the $r b, r d, r m$ etc., form the rays of such a vertical at the right abutment at 3 . Let
pencil, in which several rays are super-
14 be equal to the pressure of the wind. pencil, in which several rays are superThe determination of the question as to whether the stress in a given the vertical through 4 at 5 , then is 45 piece is tension or compression is the left abutment is increased, and that

upon the left abutment decreased. 'For let $k: \overline{14}=\overline{12}$. then $k, \frac{45}{4}=23$. Now the couple due to the wind $=23$. Now the 14 but k. $\overline{23}, \overline{14}=\overline{12}, \overline{23}=k . \overline{12} \cdot \overline{45}, \therefore \overline{23}$ $14=\overline{12}, 4 \overline{5}$. The right hand side of this ast equation is the couple equivalent to the wind couple, having the arm 12 and structints. The accuracy of the cona pair of equal and apposite forces repre- of the will be tested by the closing sented by 45 . Let 45 be added to half process.
the weit of sy pon the roof to obtain the vertical re the force diagram at the left is the action of the left abutment, and sub- reciprocal figure of the diagram of the action of the left abutment, and sab- frame and applied forces at the right, vertical reaction of the right abutment. but the figure at the right is not the re
If any doubt occurs as to the manner eprocal or that at the left since it is not in which the wind pressure is distributed a closed figure with at least three lines between the abutments that distribution should be adopted which will cause the reatest stresses upon the pieces, or it may be stated in better terms, each As a further example take the bridge piece should be proportioned to bear the sented as of disproportionsh is repregreatest stress which any distribution of $\begin{aligned} & \text { sented as of disproportionate depth in } \\ & \text { order to fit the diagram to the size of th }\end{aligned}$ at pressure can cause.
Let us suppose that a horizontal compression is exerted upon the tontal com- fication of that given by Mr. Charles H . pression is exerted upon the truss due to Tutton on page 385, vol. XVII of this temperature or other cause, and repre-
sented by the width 26 of the rectangle at the right abutment, then the reaction at that point is the resultant 92 of this compression and the vertical reaction; joints x, x, applied at the upper while at the left abutment the total hori- each of these weights when laid off to zontal reaction 71 is the sum of this seale be represented by the laid off to compression and the resistance called $z y^{\prime \prime \prime}=v e$, then the horizontal lines Δx and resultant reaction at the left a 81 as the $y^{\prime \prime \prime} o$ include between them ordinates resultant reaction at the left abutment. which represent these weights.

Let the live load consist of one or of the load at x_{2} sustained by the same more locomotives which stand at the abutment, and $z_{2} y_{2}^{\prime}=\bar{L}^{13} y^{\prime} y^{\prime}$ is a similar
joints x, and x, and a uniform train of part of load at $x_{\text {a }}$. Let the sum of these joints x_{2} and x_{2}, and a uniform train of part of load at x_{2}. Let the sum of these cars which covers the remaining joints. Weights sustained by the left abutment be represented by $y^{\prime \prime \prime} y^{\prime}=v^{\prime}$, and the ex- figure. Upon $c_{2} e$ lay off $c_{1} c_{4}=v o+v^{\prime}$ bess above this of the load at each of the $+20^{\circ}, c_{2} c_{2}=w+w 0^{\prime}+20^{\circ}, c_{2} c_{4}=w+w^{\prime}$, etc.,
cent cess above this of the load at each of the $+20^{\circ}, c_{2} c_{2}=v+20+20, c_{2} c_{1}=v+w$, , et..,
joints covered by the locomotives be equal to the loads applied at x_{1}, x_{3}, ete. represented by $y^{\prime} y^{\prime}=v 0^{\prime}, \therefore w+v^{\prime}+v 0^{\circ}$. We are now prepared to construct a dia$=c_{1} c_{2}=z y^{\prime \prime}=c_{2} c_{3}$ is the load at x_{1} and at gram of forces which shall give the , and $w+w^{\prime}=c, c=a y^{\prime}$ is the x^{\prime} and
and at each of the remaining joints.
Draw $y^{\prime} o, y^{\prime} o$ and $z o$, then is $z, y_{1}^{\prime \prime}$
 which is sustained at the left abutment, greater stresses in the chords of the as appears from the principle of the bridge than any other possible position. lever. Again $z_{2} y_{3}^{\prime \prime}=\frac{1}{14} z^{4} z y^{\prime}$ is that part The demonstration is quoted nearly ver-
batim from Rankine's Applied Mechanies, It is unnecessary to complete the and though not strictly applicable to the figure above e unless to check the case in hand, since it refers to a uni- process. The stresses obtained for the formly distributed load, it is substan- corresponding pieces in the right half of tially true for the loading supposed, the truss would, upon completing the When the excess of weight in the loco- diagram, be found to be slightly less practice. not greater than occurs in "For For a given intensity of load per There are no locomotives at the right. Whole length, a uniform load over the of the lower chord are $e b$, eb, etc, and of flexpan produces a greater moment on the upper chord are $a c$ a cte of flexure at each cross section than any partial load."
"Call the extremities of the span 1 and 2 , and any intermediate cross section 3. Then for a uniform load, the moment ing equal to the upward moment of the supporting force at either 1 or 2 rela supporting force at either 1 or 2 rela-
tively to 3 , minus the downward moment of the uniform load between that end and 3. A partial load is produced by removing the uniform load from part of the span, situated either between 1 and 3 , between 2 and 3 ,or at both sides of 3 . First, let the load be remoyed from any part of the span between 1 and 3. Then of the load between 2 and 3 is unaltered, and the upward moment, relatively to 3, of the supporting force at 2 is diminished in consequence of the diminution of the force; therefore the moment of flexure is diminished. A similar demonstration applies to the case in which the load is removed from a part of the span beof those two operations takes place effect the load is removed from portions of the span lying at both sides of 3 , so that the removal of the load from any portion of the beam diminishes the moment of flexure at each point."
The stress upon a chord multiplied by the height of the truss is equal to the moment of flexure; hence in a truss of aniform height the stresses upon the of flexure, and when one to the moments value the other has also.
The sides of the tria sents the forces in equilibrium c_{1}, reprejoint $c, e b$, at the left abutment 1 . The polygon $c_{2} c_{2} b_{1} a_{2} c_{2}$ represents the forces in equilibrium at the joint of the same name, i.e., at the joint α_{1}. The forces at
the other joints are found in a similar the other joints are found in a similar
manner.
on upper chord are $a_{0} c_{s}, a_{c} c$, etc.
To determine the greatest stress upon the pieces of the bracing (posts and ties) it is necessary to find what distribution of loading causes the greatest shearing force at each joint, since the shearing forces are held in equilibrium by the bracing. We again quote nearly word for word from Rankine's Applied Me-
chanics. " For .
unit of a given intensity of load per unit of length, the greatest shearing span takes place when the longer of the two parts into which that section divides the span is loaded, and the shorter "Call the
"Call the extremities of the span, as before, 1 and 2 , and the given cross-
section 3 ; and let 13 be the lone section 3 ; and let 13 be the longer part,
and 23 the shorter part of the span. In and 23 the shorter part of the span. In
the first place, let 13 be loaded and 23 the first place, let 13 be loaded and 23 is equal to the supporting force at 2 , and consists of a tendency of 23 to slide upwards relatively to 13 . The load may be altered either by putting weight between and 3 , or by removing weight between and 3. If any weight be put between weight is added to the supporting force weight is added to the supporting force
at 2 , and, therefore, to the shearing force at 3 ; but at the same time a force equal the owhole of that weight is fakee equal from that shearing force; therefore the shearing force at 3 is diminished by this alteration of the load. If weight be renoved from the load between 1 and 2, the shearing force at 3 is diminished
also, because of the diminution of the also, because of the diminution of the
supporting force at 2 . Therefore supporting force at 2. Therefore any in which the longer segment 13 is loaded, and the shorter segment 23 is unloaded, Tinishes the shearing force at 3 ." esultant vertion force at any point is the and can be computed by subtracting
from the weight which rests upon either est stresses on the successive inclined
abutment the sum of all the weights be- members of the bracing. abutment the sum of all the weights be-
tween that point and the abutment, i.e., by taking the algebraic sum of all the external forces acting upon the truss from either extremity to the point in question; the reaction of the abutment is, of course, one of these external forces.
The greatest stress upon the brace $a_{1} b_{1}$ is that already foun
If the live load be moved to the right so that no live load rests upon x_{1}, and pieces b, a and a, b, will sustain their greatest stress. To find the shear at x in that case, we notice that the change in position of the live load has changed the reaction $c_{e} e$ of the left abutment by
the following amounts : the reaction has the following amounts : the reaction has been diminished by the quantity $y_{1} \quad y_{1}^{\prime \prime}$ $=\frac{15}{8}\left(w^{\prime}+v 0^{\prime \prime}\right)$, since the load at x, ased
been removed, and it has been increased by $y_{1}^{\prime} y_{s}^{\prime \prime}=13{ }^{\prime} 20^{\prime \prime}$, since x, is loaded more ction of the abutment has on the who been decreased by the total amount $\left(15 t v^{\prime}+2 t 0^{\prime \prime}\right)$.
Now the shear at x_{2} is this reaction diminished by the load wo at x_{2}. In order o construct it, draw $y y_{14}$ parallel to $y^{\prime} 0$, then $y y^{\prime}=\frac{9}{10} 10^{\prime}, \quad \therefore$ Shear at x_{9} $=e c_{1}-10-\frac{1}{10}\left(1520^{\circ}+210^{\circ}\right)=e c_{1}-x_{1} y_{1}$.
Lay off $o_{1} c_{2}^{\prime}=x, y$, then the shear Lay off $o_{1} c_{2}^{\prime}=x_{1} y_{1}$, then the shear at
$x_{1}=e c_{2}^{\prime}=$ the greatest stress in the brace $b_{1}^{2} a_{3}$; and $b_{2}^{\prime} c_{2}^{\prime}=$ the greatest stress

Again, to find the greatest shear at x Again, to find the greatest shear al load has moved one panel further to the right, we have the equation: Shear at $x=e c,-w-\frac{14}{}\left(w w^{\prime}+w w^{2}\right)$ $+\frac{12}{12} 10^{\circ}=e c^{\prime}-20-\frac{1}{15}\left(1420^{\prime}+2 v 0^{\circ}\right)=e c_{3}$ $-x_{y} y_{2}$. Lay off $c^{\prime} c_{3}^{\prime}=x_{1} y_{\text {, }}$, then the
shear at $x=e c^{\prime}$, which is the greatest stress in the piece $b_{2} a_{3}$, while $b_{3}^{\prime} c_{2}$, is the greatest stres in $b_{3} a_{3}$
In similar manner lay off, $c_{1} c_{1}^{\prime}=x y_{3}$ $c_{4},=x, y_{,}$, etc, untin the exhausted, then are eco, ec, ec ' ec ' e te the successive shearing stresses at the the successive shearing stresses at the stresses, and consequently these stresses are the greatest stresses on the succes sive vertical members of the bracing, while $c_{1} b_{1}, c_{2}^{\prime} b_{2}^{\prime}, c_{3}^{\prime} b_{3}^{\prime}$, etc., are the great-

Had the greater load, such as the locopanels, the line over a larger number off a larger fraction of $y^{\prime} y^{\prime}$. Suppose or instance, that the locomotives bad covered the joints $x_{1} x_{8}$ inclusive, then the line y, y would have passed through
y_{s}^{\prime}, and beef parallel to its present posiy_{s}, and beef parallel to its present posi-
tion. In that case the ordinates $x_{i} y_{1}$ tion. In that case the ordinates x, y_{n},
$x_{2} y_{\text {, }}$ would have been successively subtracted from the reaction of the abutment due to a live load covering every oint, in order to obtain the shearing orces, just as at present, until we arrive at $x_{\text {e }}$, after which it would be necessary o subtract the ordinates $x_{0} y_{8}{ }^{\prime \prime}, x_{0} y_{0}{ }^{\prime \prime}$, etc The counter braces are drawn with on each side of the middle under the kind of loading which we have supposed. It is convenient, and avoids confusion in lettering the diagram to let $a_{0} b_{0}$, for instance, denote the principal or counter indifferently, as both are not subject to tress at the same time.
The devices here used can be applied to a variety of cases in which the loading is in this case. in general.
This method permits the determina we of the stresses in any frame when we know the relative position of it pieces and the applied forces, provided admit of a determinatien of is such as to The determination of what the applied frces are in case of a continuous girder or areh is a matter of some complexity depending upon the elasticity of the materials employed, and the method in its present form affords little assistance in nding them.
Some autho
Some authors have applied the method to find the stresses induced in the various pleces of a frame by a single force first
applied at one joint, and then at another, and so on, and finally, to find the stresses induced by the action of several imultaneous forces, by taking the algebraic sum of their separate effects. This is theoretically correct but laborious in practice in ordinary cases. Usually, some pposition respecting the applied force
all the other suppositions which must be the rim is under compression. Let the made, can be derived with small labor. greatest weight which the wheel ever sus The bridge truss treated was a remarka- tains be applied at the hub of the wheel ble case iepoint.

Wherl with tension-rod spokes. on the left, and let this weight be rep resented by the force $a a^{\prime}$ on the right which is also equal to the reaction o A very interesting example is found the point of support upon which the which the spokes are tension rods, and
force acting between two joints of this

frame. The same effect would be cansed upon the other members of the frame by "keying" the rod aa' sufficiently to cause this force to act between the hub and the lowest joint.
the weights of the parts in passing, that the weights of not here considered the wheel itself are not here considered; their effect
will be considered in Fig. 5 . Also, the will be considered in Fig. 5. Also, the
construction is based upon the supposition that there is a flexible joint at the extremity of each spoke. This is not an incorrect supposition when the flexibility of the rim is considerable compared with the extensibility of the spokes, a cond tion which is fulfilled in practice.
A similar statement holds in the ca of the roof truss with continuous rafters,
or a bridge truss with a continnons or a bridge truss with a continuous upper
chord. The flexibility of the rafters or the upper chord is sufficiently great in comparison with the extensibility of the bracing, to render the strêsses practically the same as if pin joints existed at the extremities of the braces.
Furthermore, the extremities of the spokes are supposed to be joined by
straight pieces, since the forces be
ween the joints of the rim act in those irections. Such forces will cause smal joining moments in the arcs of the rim Each aro of the rimities of the spokes. to a force along its chord or span, and it can be treated by the method applicable to arches. This discussion is unimportant in the present case and will be
omitted. Upon completing the force polygon in the manner previously described, it is found that the stress on every spoke is
fres the same in amount, and is represented by a side of the regular polygon abcd, etc. upon the left, while the compression of the pieces of the rim are represented y the radii oa ob, etc.
As previously explained these diagrams are mutually reciprocal, and it
bappens in this case that happens in this case that they are also
similar figures. We then
uch a wheel each spoke ought to be such a wheel each spoke ought to be
proportioned to sustain the total load, and that the maker should key the spokes until each spoke sustains a stress
at least equal to that load, Then in no

position of the wheel can any spoke be- The discussion of the stresses appears position of loose. The load here spoken of however, to have deen heretofore frro-
come includes, of course, the effeet of the neously made.*
most severe blow to which the wheel Let the weight $p p^{\prime}$, at the highest may be subjected while in motion.
WATER WHEEL WITH TENSION-ROD SPOKES.
The effect of a load distributed uniformly around the cireumference of such a wheel as that just treated is repre sented in Fig. 5. Should it be desirable to compute the effect of both sets of forces upon the same wheel, it will be
sufficient to take the sum of the separate sufficient to take the sum of the separate
effects upon each piece for the total effect upon that piece, though it is
perfeetly possible to construct both at
joint of the wheel, be sustained by the rim alone, since the spoke $a a^{\prime}$, cannot assist in sustaining $p p^{\prime}$, as $a a^{\prime}$ is suited to resist tension only. Conceive, for the moment, that two equal and opposite horizontal forces are introduced at the highest joint such as the two parts of $\frac{t}{p} p^{\prime}=p q=p^{\prime} q^{\prime}$ being sustained by each of the pieces ap, $a^{\prime} p^{\prime}$ ' respectively we have apq and ' $a^{\prime} p^{\prime} q^{\prime}$ ' as the triangles which together represent the forces at
the highest joint. The force $a a^{\prime}$ on the right is the upward force at the axis equal and opposed to the resultant of the total load upon the wheel, and the apparent peculiarity of the diagram is
due to this:- the direction of the reaction or sustaining force of the axis passes or sustainng force of the axis passes
through the highest joint of the wheel and yet it is not a force acting between those joints and could not be replaced by keying the tie connecting those joints.
In other particulars the foree diagram is by keying the tie connecting those joints.
In other particulars the foree diagram is
.". A Mannul of the Steam. Engline, eto.," by W. J. Xt
Ravkine. Puge 16, Thi ED . hose joints and could not be replaced
perfee.
We shall suppose a uniform distribution of the loading along the circumference in the case of the Water Wheel, because in wheels of this kind such is
practically the case so far as the spokes practically the case so far as the spokes
are concerned, since the power is transmitted, not through them to the axis, but, instead, to a cog wheel situated near the center of gravity of the "water are." This arrangement so diminishes the
necessary weight of the wheel, and the necessary weight of the wheel, and the
consequent friction of the gudgeons, as consequent friction of the gudgeons, as to render its adoption very desirable. becactically the case so far as the sp
all the other suppositions which must be the rim is under compression. Let the made, can be derived with small labor. greatest weight which the wheel ever sus The bridge truss treated was a remarka- tains be applied at the hub of the wheel ble case iepoint.

Wherl with tension-rod spokes. on the left, and let this weight be rep resented by the force $a a^{\prime}$ on the right which is also equal to the reaction o A very interesting example is found the point of support upon which the which the spokes are tension rods, and
force acting between two joints of this

frame. The same effect would be cansed upon the other members of the frame by "keying" the rod aa' sufficiently to cause this force to act between the hub and the lowest joint.
the weights of the parts in passing, that the weights of not here considered the wheel itself are not here considered; their effect
will be considered in Fig. 5 . Also, the will be considered in Fig. 5. Also, the
construction is based upon the supposition that there is a flexible joint at the extremity of each spoke. This is not an incorrect supposition when the flexibility of the rim is considerable compared with the extensibility of the spokes, a cond tion which is fulfilled in practice.
A similar statement holds in the ca of the roof truss with continuous rafters,
or a bridge truss with a continnons or a bridge truss with a continuous upper
chord. The flexibility of the rafters or the upper chord is sufficiently great in comparison with the extensibility of the bracing, to render the strêsses practically the same as if pin joints existed at the extremities of the braces.
Furthermore, the extremities of the spokes are supposed to be joined by
straight pieces, since the forces be
ween the joints of the rim act in those irections. Such forces will cause smal joining moments in the arcs of the rim Each aro of the rimities of the spokes. to a force along its chord or span, and it can be treated by the method applicable to arches. This discussion is unimportant in the present case and will be
omitted. Upon completing the force polygon in the manner previously described, it is found that the stress on every spoke is
fres the same in amount, and is represented by a side of the regular polygon abcd, etc. upon the left, while the compression of the pieces of the rim are represented y the radii oa ob, etc.
As previously explained these diagrams are mutually reciprocal, and it
bappens in this case that happens in this case that they are also
similar figures. We then
uch a wheel each spoke ought to be such a wheel each spoke ought to be
proportioned to sustain the total load, and that the maker should key the spokes until each spoke sustains a stress
at least equal to that load, Then in no

position of the wheel can any spoke be- The discussion of the stresses appears position of loose. The load here spoken of however, to have deen heretofore frro-
come includes, of course, the effeet of the neously made.*
most severe blow to which the wheel Let the weight $p p^{\prime}$, at the highest may be subjected while in motion.
WATER WHEEL WITH TENSION-ROD SPOKES.
The effect of a load distributed uniformly around the cireumference of such a wheel as that just treated is repre sented in Fig. 5. Should it be desirable to compute the effect of both sets of forces upon the same wheel, it will be
sufficient to take the sum of the separate sufficient to take the sum of the separate
effects upon each piece for the total effect upon that piece, though it is
perfeetly possible to construct both at
joint of the wheel, be sustained by the rim alone, since the spoke $a a^{\prime}$, cannot assist in sustaining $p p^{\prime}$, as $a a^{\prime}$ is suited to resist tension only. Conceive, for the moment, that two equal and opposite horizontal forces are introduced at the highest joint such as the two parts of $\frac{t}{p} p^{\prime}=p q=p^{\prime} q^{\prime}$ being sustained by each of the pieces ap, $a^{\prime} p^{\prime}$ ' respectively we have apq and ' $a^{\prime} p^{\prime} q^{\prime}$ ' as the triangles which together represent the forces at
the highest joint. The force $a a^{\prime}$ on the right is the upward force at the axis equal and opposed to the resultant of the total load upon the wheel, and the apparent peculiarity of the diagram is
due to this:- the direction of the reaction or sustaining force of the axis passes or sustainng force of the axis passes
through the highest joint of the wheel and yet it is not a force acting between those joints and could not be replaced by keying the tie connecting those joints.
In other particulars the foree diagram is by keying the tie connecting those joints.
In other particulars the foree diagram is
.". A Mannul of the Steam. Engline, eto.," by W. J. Xt
Ravkine. Puge 16, Thi ED . hose joints and could not be replaced
perfee.
We shall suppose a uniform distribution of the loading along the circumference in the case of the Water Wheel, because in wheels of this kind such is
practically the case so far as the spokes practically the case so far as the spokes
are concerned, since the power is transmitted, not through them to the axis, but, instead, to a cog wheel situated near the center of gravity of the "water are." This arrangement so diminishes the
necessary weight of the wheel, and the necessary weight of the wheel, and the
consequent friction of the gudgeons, as consequent friction of the gudgeons, as to render its adoption very desirable. becactically the case so far as the sp
constructed as previously described and tive examples that any such problem, is sufficiently explained by the lettering. which is of a determinate nature, Should the spoke $a a^{\prime}$ have an initial ten- readily solved by this method. But in sion greater than p^{\prime}, then there is a case the problem under discussion has residual tension due to the difference of reference to the relations of forces among those quantities whose effect must be themselves, it is necessary to assume ound as in Fig. 4.
Should the wheel revolve with so great other body, in order to obtain the rea velocity that the centrifugal force quired relationship. Certain general nerease the tenser, its effect will be to forms of assumed framing have properby the same amount, -the amount due treating such problems, thal assistance in to the deviating force of the mass sup- to such an extent that even though the posed to be concentrated at the extremity form of framing to which the forces are of each spoke. The compression of the applied is given, it is still advantageous rim may be decreased by the centrifugal to assume, for the time being, one of the orce, but as this is a temporary relief, forms baving properties not found in occurring only during the motion, it does ordinary framing. The special framing to which the rim will be subjected. We conclude then, that every must be proportioned to endure a ten whose various properties will be treated sion as great as $h h^{\prime}$ from the loading of framing, which we have yentured to alone; and that if other forces, due to call the Frame Pencil, with equally entrifugal force or to keying, are to act advantageous properties which will also they must be provided for in addition. be treated in due order.
Furthermore, we see that the rim must It may be mentioned here, that the
be proportioned to bear a compression and that the centrifugal force will n, increase this, but any keying will not spokes beyond that sufficient to produce an initial tension on each spoke as great as $p y^{\prime}$ must be provided for in addition,
The diagram could have been constructed with the same facility in case the applied weights had been supposed
unequal. It can
ferential equation of the that the dif scribing the polygon abed, ete of Fircum
most frequently met with in practice. In case of parallel forces the properties of che equilibrium polygon and frame pen-
cil are more numerous and important than those belonging to the general case alone. We shall first treat the general case, and afterwards derive the additional properties belonging to parallel forces.
the equilibrium polygon for any forces in one plane,
Let $a b, b e, c d$, de Fig. 6 be the diagram of any forces lying in the plane of the paper, and abcde their force polygon, then, as previously shown, ae the closing epresents polygon of the applied forces forces in amount and direction. Assume any point p as a pole, and draw the force pencil p-abcde. The object in view which equation is not readily integrable When, however, the number of spokes indefinitely increased, it appears from
simple geometrical considerations that this curve becomes a cycloid having its cusps at q and q^{\prime}.
assumed framing.

From any convenient point as 2 draw Thus far, we have treated the effect
it intersects the line of action of the force of known external forces upon a given ab, and from that intersection draw the the previous discussions and the illustra-

parallel respectively to the rays of the same and is represented by $p q \| 23$. It pencil p.
The polygon p and the given forces
is usual to call 23 a a cosing p live or point q divides the The polygon p and the given forces polygon p. The point q divides the $a b, b c$, etc, then form a force and frame resultant ae into two parts such that
diagram to which the pencil $p-a b c d e$ is gapq and epqe are triangles whose sides diagram to which the pencil p-abcde is
reciprocal, and of which it is the force
represent forces in equilibrium, i.c., the diagram. It is seen that no internal forces at the points 2 and 3 ; hence, qo bracing is needed in the polygon p, and and eq are the parts of the total resultant hence it is called an equilibrium (frame) which wonld be applied at 2 and 3 polygon: it is the form which a funicular respeotively.
polygon, catenary, or equilibrated arch, This method is frequently employed would assume if occupying this position to find the forces acting at the abutments and aeted upon by the given forces. of a bridge or roof truss such as that in As represented in Fig. 6 the sides of Fig. 2. But it appears that it has often the polygon p are all in compression so
that p repenesents an ideal arch. If the first ascertained whether the reaction at that p represents an ideal arch. If the firse ascertaned whently in the direction so that it be considered to be the span of a a for the forces considered. It may the arch having the points of support 2 often happen far otherwise. If the and 3 , then this arch exerts a thrust in surfaces upon which the truss rests withthe direction 23 which may be borne out friction are perpendicular to ae, then either by a tie 23 or by fixed abutments this assumption is probably correct; as,
2 and 3 : the force in either case is the for instance, when one end is mounted
on rollers devoid of frietion, running taken upon $p q$. Now draw the force on a plate perpendicular to ae. But in taken upon $p q$. Now draw the force cases of wind pressure against a roof equilibrium polygon for the same forces truss the assumption is believed to be in ab, bc, etc. This equilibrium polygon ordinary cases quite incorrect. Indeed, has all its pieces in tension except $p^{\prime} c$. bridge has of the rollers at end of it is to be noticed that the forees are material deviation from the cause a employed in the same order as in the tion founded on this assumption It is previous construction, because that is the to be noticed that any point whatever is order in the polygon of the applied $p q$ (or $p q$ prolonged) naight be joined to the polygon of the applied forces is in a and efor the purpose of finding the re- the commencement, applied forces is, at aetions of the abutments. Call such a ence, for the construction did not indifferpoint on (not drawn), then ax and exmight upon any particular succession of the be taken as two forces which are exerted forces. at two and 3 by the given system, It appears ecessary the callacions attention to this point, as the fallacious determination of published article upon this subject.* We shall return to the subject again while treating parallel forces and shall extend the method given in connection with Fig. 2 to certain definite assumptions, such as will determine the maximum
stresses which the forces stresses which the forces can produce. polygon p until they meet. It is evident polygon p until they meet. It is evident
that if a force equal to the resultant a e be applied at this intersection of $a p$ and ep prolonged, then the triangles $a p q$ and epq will represent the stresses produced at 2 and 3 by the resultant. But as these are the stresses actually produced by the forces, and as the resultant should cause the same effects at 2 and 3 as the forees,
it follows that the intersection of a ep must be a point of the resultant and ep must be a point of the resultant ae; be drawn parallel to the resultant ae, it will be a diagram of the resultant, showing it in its true position and
direction. This is in reality a geometric relationship and can be proved from geometric considerations alone. It is sufficient for our purposes, however, to have estab static considerations which may be med garded as mechanical proof of the geometric proposition.
The pole p was taken at random: let any other point p be taken as a pole. To avoid multiplying lines p^{\prime} has been
of as previonsly shown, the intersection ant, and the p^{\prime} ' is a point of the resultwith the line joining this intersection above is parallel to ae.
Again, prolong the corresponding sides of the two equilibrium polygons unti they intersect at 1234, these points fall
upon one line parallel to $p p^{\prime}$. For, supupon one line parallel to $p p^{\prime}$. For, sup-
pose the forces which are applied to the lower polygon p^{\prime} to be reversed in direction, then the system applied to the polygons p and p^{\prime} must together be in equilibrium; and the only bracing needed is a piece $23 \| p p^{\prime}$, since the upper forces produce a tension $p q$ along it, and the lower
forces a tension $q p^{\prime}$, while the parts rorces a tension $q p^{\prime}$, while the, parts $a q$
aud $q e$ of the resultant which are applied and $q e$ of the resultant which are applied
at 2 and 3 arein equilibrium. The same result can be shown to hold for each of the forces separately; e.g. the opposite forces ab may be considered as if applied at opposite joints of a quadrilateral whose remaining joints are 1 and 2 : the force polygon corresponding to this quadrilat-
eral is $a p b p^{\prime}$, hence $12 \| p p^{\prime}$ Hence eral is apbp , hence $12 \| p p^{\prime}$. Hence
1234 is a straight line. The intersection of $p c$ and $p^{\prime} c$ does not fall within the of $p c$ and p 'c does not fall within the
limits of the figure. It is to be notic tion just proved respecting the collinearity of the intersections of the corresponding sides of these equilibature polygons is one of a geometric nature and is susceptible of a purely
geometric proof. geometric proof.
The frame penoil for any forces in one plane.
Let $a b, b c, c d$, $d e$ in Fig. 7 represent a system of forces, of which abcde is the apon the line of action of each of these

FRAME PENCILS.

forces, and join these points to any as- of forces; for that is a point at which if sumed vertex v^{\prime} by the rays of the frame the resultant be applied it will cause the pencil $a^{\prime} b^{\prime} c^{\prime} d^{\prime} e^{\prime}$. Also join the success- same stresses along the pieces $a e^{\prime}$ and ee ive points chosen by the ines which form sides of what we shall call sely if the point e^{\prime} in the force polygon be given forces to be borne by the frame moved along $e^{\prime} d^{\prime}$, the locus of the interpencil and frame polygon as a system of section of the corresponding positions of bracing, which system exerts a force at the resultant ray a'e and the last side eé the vertex v^{\prime} in some direction not yet will be the resultant ae. It would have known, and also exerts a force along been unnecessary to commence the equisome assumed piece $e e^{\prime}$, which may be regarded as forming a part of the frame of $a a^{\prime}$ been known. Having obtained regarded as forming a part of the frame of $a a^{\prime}$ been known. Having obtained polygon. The stresses upon the rays of equilibrating polygon could be drawn the sides of $a b^{\prime} c^{\prime} d^{\prime} e^{\prime}$ which we shall call by commencing at any point of $a a_{1}$ II the equilibrating (force) polygon; while aa'.
the equilibrating (force) polygon; while
the stresses in the frame polygon are In cases like that in the Fig., where given by the force lines $b b^{\prime}, c c^{\prime}$, etc. If a there is no reason for choosing the points resultant ray $a^{\prime} e^{\prime}$ be drawn from v^{\prime} par- which determine the sides of the frame allel to the resultant side at of the polygon otherwise, it is simpler to make equilibrating polygon it will intersect ec me in that case be called the frame
line. Then the force lines are parallel fruitful with that of the equilibrium to each other and to $a a^{\prime}$ also. This is a polygon. practical simplification of the general ease of much convenience.
It should be noticed here that the equilibrium polygon, as well as the straight line, is one case of the frame polygon. The interesting geometrie rethe frame and equilibrinm constructing the frame and equilibriam polygons as
coincident must be here omitted coincident must be here omitted.
Suppose that it is desired to find the point q which divides the resultant into
two parts, which would be applied in the direction of the resultant at two such points as 8 and 9 : draw $a 6 \| w^{\prime} 8$
and $\epsilon^{\prime} 6 \| v^{\prime} 9$ and then through 6 draw and $e^{\prime} 6 \| v^{\prime} 9$ and then through 6 draw $q q^{\prime} \| 89$. This may be regarded as the same geometric proposition, which was proved when it was shown that the locus of the intersection of the two outside
lines of the equilibrium polygons (recip hnes of the equilibrium polygons (recip
rocal to a given force pencil) is the re sultant, and is parallel to the closing side of the polygon of the applied forces. The proposition now is, that the locus of the intersection of the two outside lines
of the equilibrating polygon (reciprocal to a given frame pencil) is the resolving line, and is parallel to the abutment metrically equivalent. A sume
Assume a different vertex v^{*}, and
draw'the frame ing equilibrating polygon $a^{\prime} b^{\prime} c^{d} d^{\prime} e^{e}$. If $a_{1} 5$ and $e 5$ be drawn parallel to $v^{*} 8$ and $v^{\circ} 9$ respectively their intersection is upon $q Q$ as before proven.
Again, the corresponding sides of these
two equilibrating polygons intersect at two equilibrating polygons intersect at
1234 upon a line parallel to $v^{\prime} v^{\prime \prime}$, for this is the same geometric proposition respecting two vertices and their equili-
brating polygons which was previonsly brating polygons which was previously proved respecting
It would be inter
geometric relations involved in different geometred related frame polygons, as for example, those whose corresponding sides in tersect upon the same straight line, but as our present object is to set forth the essentials of the method, a consideration of these matters is omitted. Enough
has been proven, however, to show that has been proven, however, to show that pendent method equally general and
equilbriua polygon for parallet FORCES.
Let the system of parallel forces in ne plane be four in number as represented in Fig. 8, viz: $v_{1} v_{2}, w_{2} c_{2}$, etc., force diagram on the left. Let the points of support be in the verticals 1 and 6.
The force polygon at the right reduces, in case of vertical forces, to a verical line ww. Assume any arbitrary point p as pole of this force polygon, (or weight line, as it is often designated) and, parallel to the rays of the force
pencil at p, draw the sides of the equilipencil at p, draw the sides of the equili-
brium polygon ee, in the manner previously described. Draw the closing ine lek of this polygon ee, and parallel o it draw the closing ray $p q$; then, as previously shown, $p q$. divides the resultant w, vo, at q into two parts which are the reactions of the supports. The position of the resultant is in the vertical
mm which passes through the intersection of the first and last sides of the polygon ee, as was also previously hown. ee, as was also previously
Designate the horizontal distance from s to the weight line by the letter H. It happens in Fig. 8 that $p v_{1}=\mathrm{H}$, but in any case the pole distance H is the horizontal compenent of the force $p q$ acting ong the closing line.
ow by similarity of triangles
$k_{1} e_{2}\left(=h_{1} h_{2}\right): k_{2} e_{2}:: p m o_{1}: q^{2}$
he moment of flexure, or bendin ment at the vertical 2 , which would be caused in a simple straight beam or girder under the action of the four given forces and resting upon supports in the ert
Again, from similarity of triangles,
$h_{1} h_{2}\left(=k_{1} f_{3}\right): k_{2} f_{2}:: H: q w_{1}$
$h_{3} h_{1}\left(=e_{2} f_{3}\right): e_{3} f_{3}:: H: v v_{1} v_{2}$
$H\left(k_{3} f_{3}-e_{3} f_{3}\right)=H \cdot k_{2} e_{3}$
he moment of flexure of the sin der at the vertical 3 .
Similarly it can be shown in general that

EQUILIBRIUM POLYGON.

i.e. that the moment of flexure at any are proportional to the bending moments vertical whatever (be it one of the of a girder supporting the given weights verticals 234 , etc., or not) is equal and resting without constraint upon a to the product of the assumed pole single support at their center of gravity. distance H multiplied by the vertical Let us move the pole to a new position brium polygon ee and the closing line and in such a position that the new closbrium polygon ee and the closing line and in such a position that the new clos-
$k k$ at that vertical. $k k$ at that vertica rom this it is evident that the be horizontal.
One object in doing this is to furnish
i.e. its vertical ordinate at any point a sufficient test of the corven of the span is proportional to the a sufficient test of the correctness of the bending moment girder sustaining the and supported by simply resting without position co such that its ordinates may and supported by simply resting without position $c c$ such that its ordinates may constraint apon piers at its extremities. be measured from an assumed horizontal From this demonstration it appears that $H . e_{3} f_{3}=w_{1} v_{2}, h_{2} h_{3}$ is the moment of forces are applied, so that the girder that $H_{2}, f_{3}=w_{1} v_{0} h_{3} h_{3}$ is the moment of forces are applied, so that
the force $w v_{1} w v_{2}$ with respect to the verti- itself forms the closing line.
cal 3 ; and similarly $H . m_{1} m_{s}=10, v 0_{2}, e_{2} m_{1}$. The polygon $c c$ must have its ordinates is the moment of the same force with $h c$ equal to the corresponding ordinates respect to the vertical through the center of gravity. Also, $H . y_{1} y_{2}=w v_{1} w_{2} \cdot h_{2} h_{0}$ is the moment of the same force with
is the moment of the same force with Also the segments of the line $m m$ are
respect to the yertieal 6 .

ke, for

$M=H \cdot k e=H \cdot h c$ similarly m, m_{3}, is proportional to the the line $m n$ for similar reasons. moment of all forces at the right, and Again, as has been previously shown, $m_{1} m_{\mathrm{s}}$ to all the forces left of the center the ell) of the polygons (and diagonals of gravity, but $m_{2} m_{2}+m_{a} m_{\mathrm{a}}=0$, as should as well) of the polygons $e e$ and $c c$ interbe the ease at the center of gravity, sect upon the line $y y \| p p$.
about which the moment vanishes. These equalities and inte
From these considerations it appears nish a complete test of the correctness of that the segments mm of the resultant the entire construction.
vertical distance V multiplied by the ing line.
The moment of flexure at any point of the girder may be found by drawing a line tangent to the equilibrating polygon (or curve) parallel to a ray of the frame pencil at that point, the intercept $r_{r} r$ of this tangent is such that $V . r_{1} r$ is the moment required

Also by similarity of triangles

$$
\begin{array}{r}
o 2: v 6:: u_{2} d_{2}: w_{1} w_{2} \\
\therefore V \cdot u_{2} d_{2}=v_{0} w_{0}, o 2
\end{array}
$$

$02(=03+32): v 6:: u_{3} l: v_{1} w_{3}$
$32: v 6:: d_{2} l: w_{2} w_{5}$
$\because V\left(u_{3} l-d_{3} l\right)=V \cdot u_{3} d_{3}$
$=w_{1} w_{2} .02+w_{2} w_{3} .03$
i.e. the horizontal abscissas $u d$ between the equilibrating polygon $d d$ and its cal distance V multiplied by the vertical distance V are the algebraic sum of center of gravity. The single force about the center of gravity being the difference between two succes ive algebraic sums may be found thus: draw $d_{2} i \| u u$, then is $V . d_{3} i$ the moment of $w_{1} w_{2}$ about the center of gravity, as may be also proved by similarity of triangles.
Again by proportions derived from similar triangles, precisely like those already employed, it appears that
$V \cdot w_{2} d_{2}=w_{1} w_{2} \cdot 26$
is the moment of the force w, w, about the point 6. And similarly it may be shown that

$$
V . w_{3} d_{3}=w_{1} w_{2} \cdot 26+w_{2} w_{2} \cdot 36
$$

sum totals being the moment of a sing

 force, a parallel to the pseudo side en any force about the once the moment of II worce about the point, e.g. draw $d_{d} i^{i}$ about 6 .Now move the vertex to tion v^{\prime} in the same vertical with posiwill cause the closing side of the o : thi brating polygon (parallel to $v^{\prime} o$) to coin cide with the weight line. The new equilibrating polygon $b b$ has its sides parallel to the rays of the frame pencil whose vertex is at v^{\prime}. If V is unchanged the abscissas and segments of the resolving line are unchanged, and $v v^{\prime}$
is horizontal. Also is horizontal. Also $x x v^{v}$ contains and diagonals of the equresponding sides gond diagonals of the equilibrating poly
ghese statements are cally equivalent to these geometriproved in connection with made and brium polygon and force pencil.
.In Figs. 8 and 9 we have taken ence the following equations will bo found to hold,
$k_{2} e_{2}=r_{1} r_{2}, k_{3} e_{3}=r_{1} r_{3}, k_{4} e_{4}=r_{1} r_{4}$, etc. $m_{1} m_{2}=u_{2} d_{2}, m_{1} m_{3}=u_{9} d_{3}, m_{1} m_{4}=u_{4} d_{4}$, ete $y_{1} y_{2}=w_{2} d_{2}, y_{1} y_{3}=w_{2} d_{3}, y_{1} y_{4}=v v_{4} d_{4}$, etc.
$m_{2} m_{5}=d_{2} i$, etc., $y_{4} k_{6}=d_{6} i^{\prime}$, ete.
By the use of etc. we refer to the more general case of many forces. From these equations the nature of the relaframe pencils and their equilibrce and equilibrating polygons becomes and Let us state it in words.
The height of the vertex (a vertical is the moment of distance), and the pole distance (a hori-
 specially related to the points of applica- found between the various parts of the tion 1234 , we have thus proved the figures.
polygon: if a pseudo resultant ray of he frame if a pseudo resultant ray of gon (rerdinates of the equilibrium polyf the frame line, then to any point segments of the resolving correspond to the解 on and a sideen the equilibrating poly- to the bending moments proportional ind parallel to that ray, girder sustaining the given of a simple (which may be called a pseudo closing resting without constraint upon supports side), are proportional to the sum total at its two extremities.
of the moments about that point of those The segments of the resultant line forces which are found between that (vertical distances) correspond to the abscissa and the end of the weight line abscissas of the equilibrating polygon Trom which this pseudo side was drawn. (horizontal forces) each of these being The difference between two successive proportional to the bending moments of
the four given forces cuts 16 :
Furthermore, the lines $w, ~$ parallel to the abutment rays $v 1$ and $v 6$ of the frame pencil intersect on $r r$ the resolving line, which determines the point of division q of the reactions of the two supports, as was before shown. vertex and the frame line be denoted by

Thas different values at the different joints of the frame polygon: in every case v is the vertical distance of the the vertex. It will be found in the sequel that this possible variation may in certain constructions

By similarity of triangles we have

$$
\begin{aligned}
& 12: v 6:: r_{2} r_{2}: w_{1} q \\
& \text { V. } r_{1} r_{2}=v_{1} q \cdot 12=M_{2} \text {, }
\end{aligned}
$$

the bending moment of the girder at the
Draw a line through w_{1} parallel to $v 3$ this line by chance coincides so nearly with w_{1}, s_{1} that we will consider that it is the line required, though it was drawn
for another purpose. Again, by similarity of triangles
$13: v 6:: r_{1} s_{1}: w_{1} q$
$V\left(r_{2} s_{1}-r_{3} s_{1}\right)=V \cdot r_{1} r_{3}$
he bending moment at 3
Similarly it may be shown that V. $r_{2} r_{n}=M_{n}$,

In Fig. 9 it happens that $v 6=V$. i.e. that the moment of flexure at any If the frame polygon is not straight, or point of application of a force to th
a simple girder sustaining the given the girder, so supported. It is possible weights and resting without constraint to induee such a moment at one point of upon a support at their center of gravity. support as to entirely remove the weight The segments of any psendo resultant line, parallel to the resultant, which are eat off by the sides of the equilibrium polygon, are proportional to the bending moments of a girder supporting the given weights and rigidly built in and supported at the point where the line intersects the girder; to these segments equilibrating polygon and a pseudo side equilibrating polygon and a pseudo side
of it parallel to the psendo resultant ray. The two different kinds of support which we haye supposed, viz. support without conswaint and support with constraint, can be treated in a somewhat more general mamer, as appears when we consider that at any point of support there may be, besides the reaction of the support, a bending moment, such
would be induced, for instance, wh the span in question forms part of a con timnous girder, or when it is fixed at the support in a particular direction. In such a case the closing line of the equilibrium polygon is said to be moved to a new position. It seems better to call it Th its new position a pseudo olosing line the ord the equilibrinm poly propertional to the bending moments of
pport as to entirely remove the weight reaction wher, and cause it to exert no ase may occur in which the total weigh the span is divided between the supports in any manner whatever. When he weight is entirely supported at h_{6} en $y_{1} e_{2}$ is the pseudo closing seudo resolving line, and in general the rdinates between the pseudo closing ine and the equilibrium polygon corre poud to the segments of the pseudo resolving line, and are proportional to he bending moments of the girder. This general case is not represented in igs. 8 and 9 ; but the particular case hown, in which the total weight orne by the left pier, gives the equa
$e_{2} f_{2}=v_{0}, x_{2}, e_{4} f_{4}=v_{1}, x_{3}, e_{8} f_{0}=w_{3} x_{4}$, etc.
In order to represent the general case in which the weights, supported by the piers, are not the same as in the case of he simple girder, by reason of some kind f constraint, we propose to treat the case of the straight girder, fixed horizontally first to discuss the following anxiliary construction.
chosen is that of an indicator card taken dividing land. It is much more exfrom page 12 of Porter's Treatise on peditions in application than the Richard's Steam Indieator, it being a method of triangles founded on Euclia, card taken from the cylinder of an old- and is also, in general, superior to Africa. The scale is such that a, b, is whether the partial areas are then Africa. The scale is such that $a_{1} b_{1}$ is
26.9 whether the partial areas are then
por square inch and 06
computed as trapezoids or by Simpparallel to the atmospheric line is the son's Rule; for it reduces the number length of the stroke.
Divide the figure by parallel lines $a_{1} b_{\text {, }}$ $a_{2} b_{2}$, etc. into a series of bands which are approximately trapezoidal. A sufficient number of divisions will cause this approximation to be as close as may be desired. The upper and lower bands
may in the present case be taken as apmay in the present case be taken as apareas. Let 06 be perpendicular to a, b etc., then will 01,12 , etc., be the height of the partial areas. Lay off
$h_{0} h_{1}=\frac{2}{8} a_{1} b_{1}, \quad h_{0} h_{2}=\frac{1}{2}\left(a_{1} b_{1}+a_{2} b_{2}\right)$,

$$
h_{0} h_{2}=\frac{1}{2}\left(a_{2} b_{2}+a_{2} b_{2}\right) \text {, etc }
$$

then will these distances be the bases of the partial areas. Assume any point at a distance b from 06 as the common point of the rays of a pencil passin through. $0,1,2$, etc.; and draw the
parallels $h s$: then from any point v_{0} o parallels $h s$: then from any point v_{0} of $s_{1}, s_{2}\left\|\mathrm{cl}, s_{2} s_{3}\right\| c 2$, etc.
$s_{1} s_{2} \|_{\text {The polygon } s s} c s_{2}$ is called the summation polygon, and has the following properties.
By similarity of triangles
$l: 01:: h_{\mathrm{o}} h_{1}: v_{0} v_{1}, \quad \therefore 01 . h_{0} h_{1}=l . v_{\mathrm{o}} v_{1}$
is the area of the upper band. Similarl $12 . h_{\mathrm{o}} h_{\mathrm{z}}=l . v, v_{2}$ is the area of the next band, and finally
$06 \Sigma\left(h_{0} h\right)=l . v_{0} v_{\mathrm{e}}=l p$
is the total area of the figure.
In the present instance we have taken $l=06$, the length of stroke, consequently p is the average pressure during
the stroke of the piston, and is 21.25 pounds, which multiplied by the volume of the cylinder gives the work per stroke. This method of summation, which ob. tains directly the height p of a rectangl of given base l equivalent in area to any given figure, is due to Culmann, and is applicable to all problems in planimetry; it is especially convenient in treating the problems met with in equalizing the bankment, and is frequently of use in
son's Rule; for it reduces the
of ordinates and permits them to be placed at such points as to make the bands approximate much more closely true trapezoids than does the method
f equidistant ordinates. f equidistant ordinates.

GIPDER WTH FIXED wND

It is to be understood that by a girder with fixed ends, we mean one from which if the loading were entirely removed, without removing the constraint at its ends, there would be no bending moment at any point of it, and, when the loading he extremities to maintain their original lirection unchanged, but furnish no hrection unchanged, Under those circumstances the girder may not be straight, and may not have its supports on the same level, but it will be more convenient to think of the girder as straight and level, as the monents, etc., are the same in both cases.
Suppose in Fig. 11 that any weights $w_{1} v_{2}$, ete. are applied at $h_{2}, h_{3}, h_{4}, h_{\text {, }}$ to gurder which is supported and fixed pole of a force pencil draw the equilibrium polygon ee as in Fig. 8. The resultant passes through m. It is shown in my New Constructions in Graphical Statics, Chapter II, that the position of the pseudo closing line $k^{\prime} k^{\prime}$, In case the girder has its ends fixed as above stated, is determined from the onditions that it shall cut the curve ee
in such a way that the moment area above $K^{\prime} W^{\prime}$ shall be equal to that below $k \cdot k^{\prime}$, and also in such a way that the center of gravity of the new moment area shall be in the same vertical as the riginal moment area.
To find the center of gravity of the moment area ek; determine the areas of the various trapezoids of which it is comgon $8 s$. In constructing $s s$, we make $h_{2} 1=k_{2} e_{2}, h_{2} 2=k_{2} e_{2}+k_{2} e_{v}$, etc., and using v as the common point of the pencil we
the sumation polygon.
In Fig. 10 let aabb be any closed
figure of which we wish to determine the
area

shall have $h_{2} v \cdot h_{1} 2_{6}=$ twice the area of treating this matter in the New Conthe moment area, We have used the structions in Graphical Statics, $z t_{0}^{\prime}$ and trapezoid instead of half that quantity ments at theortional to the bending mofrapezoidenstead of half that quantity ments at the extremities of the fixed gird-
er. In this case, since we have taken
 $z_{2} z_{1}=h_{1} z_{3}$, etc., as a weight line and $k_{i}^{\prime} k_{0}^{\prime}=\frac{1}{2} t z_{0}$ are the end moments, and assume the pole p^{\prime}.
Of the triangle $h_{1} h_{2} e^{\prime}$, one-third they fix the position of the pseudo closrests at h_{4} and two-thirds at h_{i}; and $q^{\prime} w_{0}$, the reactions of the piers. The make $z z z^{\prime}=\frac{1}{2} z_{2}, z^{\prime}$, it is the part of the pseudo resultant is at m^{\prime}.
area applied at $\%$. Of the area
area appled at h. Of the area $h_{\text {e }}, e^{j} h_{\text {a }}$ To obtain the same result by
one half, approximately, rests at h, and help of a frame pencil, one half at h_{1}. Bisect 2,2, at 2 , ${ }^{\text {, and }}$, then represent a frame pencil, let Fig. 12
 other quantities $z_{3} z_{0}$ ete. except $z_{1} z_{v}$, in Choose the vertex v and frgw the

- which make $z_{0} z_{3}=\frac{1}{3} z_{2} z_{4}$. With the equilibrating polygon $d d$, etc. as in Fig. weights $z^{\prime} z^{\prime}$ so obtained, construct the 8. Make $h_{2} 1=r_{1} r_{2}, h_{2} 2=r, r,+r, r$, ete., second equilibrium polygon $y y$, which since these quantities are proportional
shows that the center of gravity of the to shows that the center of gravity of the to the bending moments as previously moment area is in the vertical through shown. With v as the common point of
n. There is a balancing of errors in this the rays of a pail approximation which renders the posi- of the summation polyd $h_{1} z$, by the help approximation which renders the posi- of the summation polygon ss just as in
tion of n quite exact; if, however, Fio greater precision is desired, determine Fig. 11.
the centers of gravity of the trapezoids etc., just as in Fig. 11, and with $z_{0} z_{1}^{\prime}$, as forming the moment area, and use new vertex construct the second equilibrating verticals through them as weight lines, polygon $x<$. Then as readily appears with the weights $z z$ instead of the $z n \| z a$ determines n the center of weights $z z$. into three equal parts, - they cut the span $n y$, at t_{1} and $t_{\text {, }}$ and trey cut $n y_{1}$ and the span into three eqult t_{2} and t_{2} divide Then is t_{2}, and t_{3}, and draw $p t \| t t_{\text {, }}$ horizontal three equal parts, then the due to the for an equilibrium polygon ing to t^{\prime} in Fig. 11 .
the forces $z_{0} t^{\prime}$, and $t^{\prime} z_{3}$, applied at t, and resolving the position of the pseudo t_{3} respeetively. As explained when portional to the its segments pro-
ments, lay off $r, j=\frac{1}{2}\left(t^{\prime} z_{s}-z_{0} t^{\prime}\right)$ the differ- ing line. Thence follows the proof that ence of the bending moments at the the bending moments are proportional ends, and make $r_{1} \| r_{2} w_{1}$ and prolong to intercepts upon this line in a manner u_{0}, , until they meet at r. Which is on the precisely like that employed in Fig. 9. pseudo resolving lo. $r^{\prime}=\frac{1}{2} z t^{\prime}$ and $r^{\prime}=\frac{1}{2} t^{\prime} z_{0}^{\prime}$ upon this then are i and $i_{\text {, }}$ the points of inflexion pseudo resolving line $r^{\prime} q^{\prime}$, then $r^{\prime} r_{2}^{\prime}, r^{\prime} r_{3}^{\prime}$, of the girder when the bending moment pseudare are the bending moments when the vanishes, being in reality points of supgirder is fixed at the ends. For by simi- port on which the girder could simply larity of triangles
rest without constraint and have the

$$
h_{2} h_{0}: V:: r_{1}^{\prime} r_{0}^{\prime}: q q^{\prime},
$$ pseudo resultant in that case as the true pesultant.

In Figs. 11 and 12 we have taken is the moment, and $q q^{\prime}$ is the weight $H=V$, consequently the new moments which is transferred from one support to can be directly compared, the ordinate the other by the constrain, the correct position of the pseudo resolv-l segments $r^{\prime} r$.

Apparently in this example Fig. 12 give rise to a frame pencil and equilipresents a construction somewhat more brating polygon by the illustrious compact than that of Fig. 11, it is cer- Poncelet* who by their use determined tainly equally good.
It remains to remark before proceeding to further considerations of a slight ly different character, that we owe to the genius of Culmann* the establishment equilibrium polygoon.
equilibrium polygon.
He adopted the funieular polygon, some of whose properties had long been
known, and upon it founded the general known, and upon it founded the general processes and methods of systemati work which are now employed by all.
Furthermore it should be stated that parallelograms of forces were compounded and applied in such a way as to - Graphische Statik, Zurich, 1866.
\qquad orees, I am not informed, as my knowledge of Poncelet's memorial is derived from so much of his work as Woodburyt has incorporated in his Wraphical construction for the stone arch.
So far as known, the method has been advanced by no one of the numerous
 t Tremoritace on tho stat
iry, New York, 188 .
which would certainly have been the the amount of alteration already found ease had Poncelet established its claim to be due to the horizontal components to be regarded as a general method. cil may now fairly claim an equal penerality and importance with that of the equilibrium polygon.
any forges lying in one plane, and applled at giyen poivts.
We have previously referred to this problem, having treated a particular case
of it in Fig. 2; and subsequently certain statements were made respecting the indeterminateness of the process for finding the reactions of supports in case the applied forces were not vertical.
The case most frequently encountered in practice is wind-pressure combined with weight, and we can take this case as being sufficiently general in its nature; precise points of application of each of precise points of application of each of may be that the reaction of the supports cannot be exactly determined, but in all cases an extreme supposition can be made
which will determine stresses in the which will determine stresses in the
framework which are on the safe side. framework which are on the safe side,
For example, if it is known that one For example, if it is known that one
of the reactions must be vertioal, or normal to the bed plate of a set of supporting rollers, this will fix the direetion of one reaction and the other may then be found by a process, like that employed
in Fig. 2, of which the steps are as folin Fig. 2, of which the steps are as fol
Resolve each of the forces at its point of application into components parallel and perpendicular to the known direction eal for convenience, since the process is the same whatever the direction may be, By means of an equilibrium polygon or
frame pencil find the line of action of the resultant of the horizontal components, whose sum is known. Then this horizontal resultant, can be treated pr cisely as was the single horizontal force ation of the vertical determine the alterreactions due to the couple eaused by the horizontal components.
Also, find by an equilibrium polygon, or frame pencil, the vertical reactions due
to the vertical components. Correct the to the vertical components. Correct the point of division q of the weight line as
found from the vertical components by
to be due to the horizontal components
Call. this point q^{\prime}, then the polygon of
the applied forces must be closed by two the applied forces must be closed by two must meet on a horizontal through q^{\prime} but one of them has a known direction, hence the other is completely determined. This determination causes the entire horizontal component to be included in a single one of the reactions, and it is asually one of the suppositions to be ion of a support is normal to the plane of the bed joint.
Another supposition in these circumstances is that the horizontal component is entirely included in the other reaction and a third supposition is that the horizontal component is so divided between the reactions that they have the same ally enable us to find the greatest possible ally enable us to find the greatest possible taking that stress for each piece which is the greatest of the three.
In every supposition care must be taken to find the alteration of the vertical components due to the horizontal components. This is the point which has been usually overlooked heretofore.
KERNEI, MOMENTS OF RESISTANCE AND inertia: equilibrium polygon method. The accepted theory respecting the flexure of elastic girders assumes that the stress induced in any cross section
by a bending moment inereases uniformby a bending moment increases uniform-
ly from the neutral axis to the extreme ly from
fiber.
The cross section considered, is supposed to be at right angles to the plane of action or solicitation of the bending
moment, and the line of intersection of this plane with that of the cross section is called the axis of solicitation of the cross section.
The radius of gyration of the cross section about any neutral axis is in the direction of the axis of solicitation,
It is well known that these two It is well known that these two axes intersect at the center of gravity of the
cross section, and have directions which are conjugate to each other in the ellipse which is the locus of the extremities of the radii of gyration.

We shall assume the known relation

$M=S I \div y$

in which M is the magnitude of the bending moment, or moment of resistance of the eross section, S is the stress on the extreme fiber, I is the moment of inertia about any neutral axis x, and y is the distance of the extreme fiber in the direction of the axis of solicitation, i.e the distance between the neutral axis x and that tangent to the cross section
which is parallel to x and most remote from it, the distance being measured along the axis of solicitation.
Let $M=S m$ in which m is called the "specific moment of resistance" of the cross section; it is, in fact, the bending moment which will induce
stress of unity on the extreme fiber.
Now
$I=k^{2} A$
in which k is the radius of gyration an
A is the area of the cross section.
Let $\quad x^{2} \div y=r, \therefore m=r A$, is the specific moment of resistance about x, and when the direction of varies, r varies in magnitude: r is called the "radius of resistance" of the cross section. The locus of the extremity of axis of solicitation, is called the "ker axis of solicitation, is called t
nel."
The kernel is usually defined to be the locus of the center of action of a stress uniformly increasing from the tangent to the cross section at the extreme fiber. It was first pointed out by Jung,* and subsequently by Sayno, that the radiu vectistance of the cross section measure resistance of the cross section measured also appear from our construction by a method somewhat different from that heretofore employed.
Jung has also proposed to determin values of k, by first finding r; and ha given methods for finding r. We shal obtain r by a new method which render the proposal of Jung in the highest degree useful.
Culmann and other invertore employed by Culmann and other investigators has
been to find values of k first, and then having drawn the ellipse of inertia to

construct the kernel as the locus of the antipole of the tangent at the extreme reverse of this, as it constructs several radii of the kernel first, then the correponding radii of gyration, and from hem the ellipse, and finally completes the kernel. In the old process there are nconvenient restrictions in the choice of pole distances which are entirely avoided ne new process.
Let the cross section treated be that of the T rail represented in Fig. 13, We have selected a rail of uniform hickness in order to avoid in this small figure the numerous lines needed in the summation polygon for determining the area; but any cross section can be treated with ease by using a summation polygon for finding the area.
To find the center of gravity, let the weights $w_{1} w_{3}$ and $v_{0} w_{2}$, which are proport b, b, and b, b, be applied at their centers of gravity α and $a_{\text {, }}$, respectively; then the equilibrium polygon c_{2}, c_{2}, having the pole p_{1}, shows that o is the required center of gravity.
Let the area $b_{2} b_{3}$, be divided into two parts at 0 , then $20,20_{0}$ and $20_{0} 0_{1} 0_{2}$ are weights proportional to the areas $b_{2} 0$ and $o b_{0}$ respectively; and $c_{1} c_{2} c_{1}$ is the equilit their polygors of gravity a and a The centers of gravity a, and
ously shown to be proportional to the products of the applied weights by their distances from the center of gravity 0 . We have heretofore spoken of these products as the moments of the weights about their common center of gravity 0 . But the weights in this case are areas is a volume . is a volume. Let ames so generated "stress solids." The elementary stress solids obtained by multiplying each elementary area by its distance from the neutral axis will correctly represent the stresses on the diferent parts of the cross section, and they will be contained between the cross section and a plane intersecting the cross section along the neatral axis and mak-

If b, b, is the ground line b, b and $d d$ are the traces of the planes between

which the stress solid lies on a plane at area is divided into narrow bands paral right angles to the neutral axis. lel to the nentral axis the points of appliof the stress solids from o are also the of gravity of the bands.
distances of the points of application of Now take any pole p_{2} and construct a the resultant stresses, and the magnitude second equilibrium polygon ee due to the of the resultant stresses are are propor- stress solids applied in the verticats tional to the stress solids. The stress through $g_{2} g_{2} g_{2}$. solids may be considered to be some kind The last two sides e n_{1} and e, $n_{\text {, }}$ are
of homogeneous loading whose weight necessarily parallel and have their interof homogeneous loading whose weight necessarily parallel and have their interproduces the stress upon the cross section. section at infinity, for the total stress is ment of this stress with respect to 0 .
Now the intercept $m_{2} m_{1}$ represents The intercept $n_{1} n_{\&}$ is not drawn through the weight of the stress solid whose stress solids, i.e. it is not on the of the profile is $o b d_{1} d_{\text {. }}$ Its point of applica- on the line of the resultant stress, bu tion is g_{2}, if $o g_{2}=\frac{3}{3} \circ b_{2}$. Similarly the since parallels are everywhere equidis veight $m_{2} m_{2}$ has its point of application tant this intercept is proportional to th at g_{2} if $o g_{2}={ }_{2} o b_{2}$. And the weight $m_{1} m_{2}$ moment of the stresses about their cente is applied in the vertical through g_{1}; for of gravity; in other words $n_{2} n_{4}$ when zoid b, b, d, d, and g, is its center of grave- multiplied successively by the two pol ity found geometrically. In case the to effect would be I. We shall not need

Prong $\mathrm{c} m$ to e on the tangent to peanlt as that juet ohtained.
In our Fig. the extreme fiber and draw $c_{0} m_{0} \| p_{2} c_{2}$, both circles intersect at h. then $m_{1} m_{2}$ represents the product of the It is known from the symmetry of total weight-area v_{1}, v_{0} by $o b_{1}=y$ the dis- figure of the cross section that k_{1} is one tance of the extreme fiber, or $m_{3} m_{0}$ is of the principal axes.
proportional to the volume of a stress In similar manner we construct the solid whose base is the entire cross sec- radius of resistance, etc., when $b_{2} b_{3}$ is tion and whose altitude is $b_{1} d_{1}=o b_{2}$.
Suppose this stress to be of the same sign as that at the right of o, let us combine it with the stress already treated. Its point of application is necessarily at 0 , and its amount is $m_{1} m_{0}$ if easure Draw $n, e_{0} \| p, m$, then is k, on the vertiDraw through e e the point of application of the combined stresses. But the combined stresses amount to a stress whose profile is included between $d_{1} d_{3}$ and a horizontal line through a_{1}, i.e. to a stres uniformly increasing from b, to b_{3}; hence k_{k} is a point of the kernel as usually defined.

If c, m, be prolonged to c, and we draw $c_{4} m_{\mathrm{s}} \| p_{2} v_{\mathrm{f}}$, then $m_{4} m_{\mathrm{s}}$ (not shown) is the weight of' a stress solid of a uniform depth $b_{3} d_{2}$ over the entire cross section; and if we draw $n_{e} e_{6} \| p_{2} m_{s}$, then will k_{2} and if we draw $n_{e} e_{5} p_{2} m_{s}$, then win the vertical through e_{8} be also in like manner a point of the kernel, i.e. the
point of application of a stress uniformly point of application of a stress uniformly
increasing from b, to b. increasing from b_{3} to b_{1}.
But now let us examine our construc tion further in order to gain a more exact understanding of what th
tances $r_{1}=o k$ and $r_{2}=o k_{0}$, signify.

$$
\begin{aligned}
& \text { tances } r_{1}=o k k_{1} \text { and } r_{2}=o k_{2} \text { signify. } \\
& \text { We have shown that } m_{2} m_{0} \text { repr }
\end{aligned}
$$

the product of the area of the cross sec the product of the area of the cross sec fiber, i.e. the quantity $A y_{\text {, }}$; but $n_{1} n_{4}$ represents the moment of this weight when applied at $k_{\text {, }}$ i.e the product $A y_{y_{r}}$.
Also as previonsly shown n, n, repreAlso as previonsly shown $n_{1} n_{4}$ repre-
sented I on the same scale, hence sented I on the same seale, hence
$I=A y, r, ~ b u t ~$
$=A k^{2} \therefore r=k_{0}{ }^{2} \div y$
$I=A y_{2}$, , but $I=A l_{1}$ and r is the radi In order to determine the radius of can be readily completed by making r gyration k_{1}, which is a mean proportional in every direction a third proportional to k_{i} as a and y_{k}, describe a circle on the distance of the
then , as a diameter intersecting $m m$ at h, the semi-axis of the ellipse \quad We are assisted in drawing the kernel
then of inertia conjugate to mm as a neutral by noticing that to each straight side of axis, The accuracy of the construction by noticing that to each straight section there corresponds a is tested by using b, k, as a diameter and single point in the kernel, and to each is tested by using $b_{2}, k_{\text {, as }}$ a a diameter and single poinan angular point a side of the finding the mean proportional between non-re-entrant anguar point ine mutual re-
lation of polar and anti-pole with respeet $\mid k_{1}^{\prime} h_{0}^{\prime}$ at the very obtuse angular points to the ellipse of inertia, as shown by the of the kernel correspond to the upper equation $k^{3}=r y$. In Fig. 13 the point k, corresponds to The two remaining angular points of the the left hand vertical side, the point k_{2} kernel correspond to tangent lines when to the right hand vertical side, and the they just tonch the corners of the flange
sides $k_{i} k_{1}^{\prime}, k_{0} k_{3}^{\prime}$ to the angular points at and web, while the intermediate sides the upper and lower extremities of the correspond to the angles at the extremileft side respectively, while the points
lies of these lines. left side respectively, while the points ties of these lines.

Kernel, moments of resistance AND rays through b, b, etc., and make 01, 02 ,
inertia: frame pencil method.
Let the cross section treated be that shown in Fig . 14 , which is nearly that of a 56 Listing . steel rail, the difference con angles. angles.
lines perpen cross section be divided by tryes perpendicular to the axis of symmeand the total area may be found by a summation polygon.
Thation polygon. Take c as the common point of the $\left\lvert\, \begin{aligned} & \text { center of gravity, etc., of the cross sec- } \\ & \text { tion. Let } a, a, a, \text { etc., be the }\end{aligned}\right.$
etc., proportional to the mean ordinates of the areas standing on the bases $b_{1} b_{0}$, $b_{2} b_{2}$, etc. respectively. Draw $s_{1} u_{1} \| c b_{2}$, sus, c_{s}, etc., then will the segments of the line vou represent the respective partial areas, and $u_{1} u$, will represent the total area.
Divide the vertical line rovo into segis wow the weight line for finding the
center of gravity, etc., of the cross secon. Let a_{1}, a_{2}, a_{2}, etc., be the centers
of gravity of the partial areas, and let zontal line $d w_{1}\left(=d_{1}, d^{\prime}\right)$ represents $A y_{1}$, v be the vertex of a frame pencil whose the product of the total weight $v 0_{0}, v_{\text {, }}$, rays pass through these centers of (i. e. the total area of the cross sec gravity. Draw the equarlel to the rays fiber $o b=y$. Use this as a stress solid gon dd with its sides paralel the ray vo or resultant stress applied at o and hav of this frame pencil, then the ray $v o$ or resurtanh to $z z_{1}=d_{1} d$, and draw oj $\| z f_{1}$, parallel to the closing side $y y$ of the j being at the same vertical distance from center of gravity o of the cross section, $b b$ as v is; then is k_{n}, which on the same according to principles previously explained.
It will be convenient to divide the cross section into two parts by the verti eal line oi, which we shall take as the neutral axis. The partial areas $b_{0} o$ and ob, have a_{3}^{\prime} and $a_{2}^{\prime \prime}$ as their centers of corresponds to u divides the weight line into two parts, representing the areas each side of the neutral axis, and the polygon $d d$ can be completed by drawing $d_{0} d_{2} \| v a_{3}{ }^{\prime}$ and $d_{0} d_{4} \| v a_{3}{ }^{\prime \prime}$. It has been previously shown that the abscissas $y d$ represent the sum of the products of the weights (i.e. areas) by
their distances from o; and any single their distances from 0 ; and any single
product is the difference of two successproduct is the difference of le lengths $y d$ upon the horizontal $z z$ by lines parallel upon the horizontal $2 z$ by lines paralel the products just mentioned. But these employed in process being similar to that products are the stress solids or resultant ployment of the frame stresses before mentioned. Hence $z z$ is the equitibrium polygon.
to be used as a weight line and is trans- It is to be noticed that the closing side ferred to a vertical position at the left f_{2}, , of the second equilibrating polygon of the Fig. The points of application of $f f$ is parallel to a resultant ray which ble error be taken at the centers of plication of the resultant of the applied ble error be taken at the centers of gravity $a_{1} a_{2}$ etc., of the partial areas ex-
cept in case of the segments of the web cept in case of the segments of the web
on each side of o. For these, let $o g^{\prime}$, $=\frac{2}{2} \circ b_{v}$, and $\circ g_{3}^{\prime \prime}=\frac{{ }_{2}^{\prime}}{2} o b$, then g_{3}^{\prime} and $g_{2}^{\prime \prime}$ are the required points of application.
are the required points of applicatho whight line z, which
consists partly of negative loads, and
with the same vertex v construct the
second equilibrating polygon $f f$, then second equilibrating polygon $f f$, then $z_{2} f_{1}$ represents the moment of inertia of the cross section, it being proportional
the moment of the resultant stresses the cross section, it being proportional and 14 are applicable also to any uni-
the moment of the resultant stresses formly varying stress, for a stress which
uniformly increases from any neutral about o. It is seen that the sides f, f. uniformly increases from any neutral and $f_{0} f_{4}$ are so short that any small de- axis x through the center of gravity of viation in their directions would not the cross section can be changed into a greatly affect the result, and that there stress which uniformly increases from would therefore have been little error if same parallel axis x at a distance $y_{\text {a }}$ would therefore have been the web had from x by simply combining with the
the resultant stresses in ther a stress uniformly distributed
been applied at a^{\prime} and $a_{\text {, " }}$.
been applied at a_{1}^{\prime} and a
Again, draw $d d_{1} \| v b_{1}$, then the hori- over the oross-section and of such intens-
the products jast mentioned. Big these employed in Fig. 13, except in the emtresses, i. e. the stresses form a couple. When the ellipse of inertia has been found by determining the magnitude and direction of two conjugate axes, the ker-
nel can be readily completed as has been nel can be readily completed as has been
shown in connection with Fig. 18 shown in connection with Fig. 13.
\qquad The methods em

R

 (R) vertical at j, a point of the kernel. For k_{1} is such a point that the product of oo $\left.=r_{1}\right)$ by the weight $z z_{2}\left(=A y_{1}\right)$ is $z_{1} f_{1}=$ neasured same scale as I was previously SimilarlySimilarly draw $v v_{0} d_{8} \| v b_{7}$ and make , another point of the kernel as appears rom reasons like those just given in case of k.
Use b.
.
Use $b_{1} l_{1}$ as a diameter, then oh is a emi-axis of the ellipse of inertia. The h, as a diameter. Another semi-axis the ellipse of inertia with reference to bb as a neutral axis, and conjugate to h can be determined, using the same partial areas, by finding the centers of ravity and points of appliaation of the tresses of the partial areas on one side
ormir vatya shat
The methods employed in Figs, 13 formly varying stress, for a stress which axis x through the center of gravity
ity as to make the resultant intensity then $n y_{1}=p_{1}{ }^{\prime}-n y_{0}=p_{1}^{\prime}-p_{0}$ zero along x^{3}.
In the construction given in Figs, 13 or $n y_{3}=n y_{0}-p_{2}^{\prime}=p_{0}-p_{2}^{\prime}$ and 14 it is only necessary to use the $:$ proposed line x^{\prime} at a distance y_{0} from o, 0 $p_{0}: p_{1}-p_{2}: p_{0}-p_{2}$ fiber at a distance y_{1} or y, from o, when in which r_{1} and r_{2} are the two radii of we wish to determine the weight or the kernel.
volume of the resultant stress solid, its moment about o, and its center of gravity or application.
Since the locus of the center of application of the resultant stress is the antipole of x^{\prime} with respect to the ellipse of mertia, it is evident that when the proposed axis x^{\prime} lies partly within the cross resultant stress is without the of the and that when x^{\prime} is entirely without the cross section its center of application is within the kernel.
It is frequently more convenient t determine the center of application from the kernel itself than from the ellipse of inertia. This can be readily found
from the equation which we are now state $1 r_{0} y_{0}=A r_{1} y_{1}=I$,
in which equation $A y_{0}$ and $A y$ are the volumes of the stress solids which if with the strstibuted and compounded any distance y from the neutral axis, and with the stress whose neutral axis is a, q is the intensity of the shearing stress wil cause the resultant stresses to vanish at the same distance, I is the moment of at distances y_{0} and $y_{\text {serpectively }}$ respertia of the cross section about the While r_{0} and r, are the distances from o
of the respective centers of axis, T is the total shear at this of these stresses. The truth of t from the fact that equation is evident in finding the moment of inertia which of any stress solid uniformly distributed o is situated at a greater distance than y is zero, hence the composition of such a we were finding the value of q at b, stress with that previously acting will
leave its moment unchanged From the equation just stated w have

$$
y_{0}: y_{1}:: r_{1}: r_{0}
$$

from which r_{0} can be found by an elementary construction, since y_{0}, y_{1} and r are known quantities. When it is de the intensities of the retual stresses
let $p_{0}=n y_{0}$ be the mean stress; and let $p_{1}^{\prime}=n\left(y_{0}+y_{0}\right)$ be the greatest, and let $p_{2}^{\prime}=n\left(y_{0}-y_{2}\right)$ be the least intensity at the extreme fiber:
if measure x is the width of the girder that part of one of the stress solids used
distribution of shearing stress.
It is well known that the equation $d M=T d z$, expresses the relation of the total shearing stress T sustained at any $d M$ of then of a girder to the variation parallel the bending moment M at a small distance section situated at the tioned cross section.
We have already treated the normal components of the stress caused by the
bending moment M : we shall now treit benaing moment M : we shall now treat the tangential component or shear which
accompanies any variation of the bendaccompanies any variation of the bend-
ing moment.
We shall assume as already proved We shall assume as already proved he following equation* which expresses the intensity q of the shearing stress at any point of the cross section: ith respect to om, as the neutral axis then V would signify the stress solid whose profile is $d_{1} d_{2} b_{2} b_{1}$. It, however, makes no difference whether we define V as the stress solid situated at the left or at the right of b; for, since the total cero, that on either side of negative, is plane is the same. The first step in the intensity of the shear at the neutral xis, which we denote by q_{0}; and if we also call x_{0} the width here and V, the volume of either of the two equal stress
solids between this axis and the extreme Now the length of the arm d is found fiber, we have in Fig. 13 by prolonging the middle side
$I_{q_{0} x_{0}}=T V_{0}$, but $I=V_{0} d$
when d is the distance between the centers of application of the equal stress solids, $i . e ., d$ is the arm of the couple of the resultant stresses. Also $T=A \bar{q}$ when A is the total area of the cross section and \bar{q} is the mean intensity of the shearing stress. Hence at the neu tral axis we have the equation

$$
q_{0} x_{0} d=A_{q}=T
$$

(i.e. the side through n_{s}) of the second equilibrium polygon until it intersects the first side and the last. These inter ections will give the posiavity of the stress solids on centers of gravit
either side of o.
In Fig. 14 the same points are found y drawing rays from v parallel respectively to $z_{1} f_{0}$ and $f_{1} f_{0}$ until they intersect a,
In Fig. 15 the points f_{3} and f_{2} are found by either of these methods and $f_{1} f_{2}=d$ is the required distance.

Now in Fig. 15 let the segments u, Now draw from any point i rays to u_{i}, of the summation polygon be obtained u and u_{i}, and also a parallel to $i u_{1}$ at a just as in Fig, 14, and parallel to $u \mu$ distance \bar{q} and intersecting iu at some width of the through s representing the point t_{0} such that $t_{0}=\bar{q}$ to such a scale scale as before used in constructing the as may be convenient. The summation polygon. Also make $s u_{,}\| \|$ity q is $t t_{\mathrm{o}} \| u u_{\text {. }}$. Then from the proposed - f_{2} and $s u \| f_{,}, c$ being the common $t y$, antion we have the proportion point in the rays of the pencil of the
summation polygon for finding the area.

Then ar represents the product a
on same scale that $u_{1} u_{7}$ represents A. or $\quad u u_{1}: u_{2} u_{7}:: t t_{6}: t_{1}$

Hence t_{2}, represents the intensity of the lines joining y_{y}, y_{2}, ete., should be shearing stress at the neutral axis on slightly curved, but when they are the same scale that t_{0} represents the straight the representation is quite mean intensity.
This first step of our process has determined the intensity of the stress at stress; the second step will determine the intensity of the stress at any other point relatively to the stress at the nentral axis. When this last point is all that is desired the first step may be omitted.
The equation $I x q=T V$ may be written $x q=e V$, in which $c=T$. V is a constan
At the neutral axis this equation is
$x_{0} q_{0}=c V_{0}$ or $V_{0}: q_{0}:: x_{0}: c$
In Fig. 15 lsy off the segments of the line $z s$ just as in Fig. 14; then z, z, rep resents the weight or volume \bar{V}; also make $x 0, x 2, x$, , etc., proportional to
width of the girder at $0, Z_{2}, b_{2}$, etc., and lay off $z_{1} r_{0}=s_{0} r_{0}^{\prime}=t t_{0}^{\prime}$. $0, p_{2}, v_{2}$, etc., an angles

$$
\begin{gathered}
z_{1} z_{0}: z_{1} r_{0}:: x 0: x p \\
V_{0}: q_{0}:: x_{0}: e
\end{gathered}
$$

$\therefore p x$ represents the constant c.
Now the several segments z, z, z, z_{0}, z, z etc., represent respectively the values of $V_{p}, V_{b} V_{0}$ or the stress solids between one extreme fiber and $b_{w}, b_{,}, b_{\text {, }}$, etc.; it is of no consequence which extreme fibe
is taken as the stress solid is the same in either case.

Now using
2.345 eto., and make $z, r, p 2, r$ rays to ete., then by similar triangles
$z_{1} s_{3}: s_{1} r_{2}:: x 2: c$, or $x_{2} q_{0}=c V_{2}$
and $z_{1} z_{1}: z_{1} r_{2}:: x s: c$, or $x_{2} q_{3}=c V_{3}$ etc., etc., and $s_{i} r_{3}, s_{r}, r_{y}$ etc., represen the intensity of the shearing stresses a $b_{\text {, }}, b_{\text {, }}$, etc. These can be constructe parallel to the rays at p, from which w obtain $z_{2} r_{3}^{\prime}=z_{1} r_{2}, z_{2} r_{2}^{\prime}=z_{1} r_{2}$, etc, Now lay off $b_{2} y_{2}=z_{1} r_{3}, b_{3} y_{2}=z_{1} r_{v}$, etc.,
then the ordinates b_{y} of the polygon $y y$ represent the intensity of the shearing stress on the same scale that $\pi_{0}=z_{1} r_{\text {r }}$ rep-
resents the intensity q at the neutral resents the intensity q_{0} at the neutra
axis, and on the same scale that $t t_{0}=o y$ represents the mean intensity \bar{q}°. Th
belative stresses.
It is proposed here to develop a new construction which will exhibit the relative magnitude of the normal compo-
nents of the stresses produced by a given system of loading in the various cross-sections of a girder having a variable cross section. The value of such a construction is evident, as it shows graphically the weakest section, and inposition of the material for sustaining the given system of loading sustaining The constructions heret or the kernel and moments of resistance at any given cross section admit of the immediate comparison of the normal components of the stresses produced in that single cross section when different neutral axes are assumed, but by this
proposed construction, a comparison is proposed construction, a comparison is different cross sections of the same girder or truss.
In the equation previously used

$$
M=S I \div y=S A k^{2} \div y=S A r
$$

$$
\begin{aligned}
& \text { in which } M \text { is the moment of flexure } \\
& \text { which produces the stress } S \text { in the ex- }
\end{aligned}
$$ which produces the stress S in the extreme fiber of a cross section whose area

is A and whose radius of resistance is we see, since the specific moment of sistance $m=A r$ is the product of two factors, that the same product can result fom other and very different factors.
For example, let $m=A_{\mathrm{r}} r^{\prime}$ in which $A_{\text {。 }}$ is the area of some cross section which is assumed as the standard of comparison, and $r=A r \div A_{0}=a r$, when $a=A \div A_{0}$.
Then is $A_{r} r^{\prime}$ the specific moment of reThen is $A_{c} r^{\prime}$ the specific moment of rearea A_{a} which has a different disposition of material from that whose specific moment of resistance is A r, but the cross sections A and A_{0} are equivalent to each other in this sense, that they have the same specific resistance, and consequently the same bending moment
will produce equal stresses in the will produce equal
The two cross
the same moment of inns do not have deflections of the girder would be
changed by substituting one cross sec- - area A_{0}, but of such disposition of matetion for the other. We shall then speak rial that its specific moment of resistance of them as equivalent only in the former is $A_{0} r^{\prime}=A r$ at corresponding cross secense, and on the basis of this definition, tions.
state the result at which we have The proposed substitution is especially
arived thus: Equivalent cross sections easy in case of a truss, for in it the value under the action of the same bending of r varies almost exactly as its depth, moment, have the same stresses at the as may be seen when we compute the extreme fiber (though they are not value of $m=\mathrm{A} k^{2} \div y=A r$ equally stiff); hence in comparing in this case.
stresses equivalent cross sections may be Since the material which resists substituted for each other (but they may bending is situated in the chords alone not be so substituted in comparing de- and is all approximately at the same lections).
It is proposed to utilize this result by $l k=y=r=\frac{1}{b} h$ very nearly when h is the substituting for any girder or truss hav- \quad distance between the chords, $\therefore m=\frac{1}{2} A h$ ing a variable cross section A or a varia- nearly. Even when the two chords are ble specific moment of resistance whose of unequal cross section and the neutral magnitude is expressed by the variable axis not midway between them the same quantity $A r$, a different one having a result holds when the ratio of the two cross section everywhere of constant cross sections is constant.

In Fig. 16 let $x x$ be the axis of a gird- $A_{0} r^{\prime}=A r=x y$, $x y$ varies as r^{\prime}, the radius er sustaining at the points x_{1}, x_{2}, etc., of resistance of a girder having at every the weights $c_{1} c_{3}, c_{2} c_{c}$, etc. Lay off the
ordinates $x y$ at each of the points at a cross section $A_{\text {, }}$,
to be equivalent to that of the given which weights are applied, so that $x y=$ girder $x x$.
which weights are applied, so that $x y=$
Ar on some assumed seale; then since Assume some form of framing con-
necting the points $x y$ as shown in the dependent upon the loading and upon Fig., and suppose the weights applied the position of y_{1}, y_{2}, ete., and is not at the points $y y$ of the lower chord, the dependent upon the position of the points of support being at y_{o} and $y_{\text {o }}$. joints in the upper chord. Ot this fact Fig. 3, we obtain the total stresses ea, derived from the known relations be$e a_{3}$, ea we etc., in the segments of the tween the frame and force polygons. upper chord which are opposite to y_{1}, y_{2}, We know, if any joint of the upper y_{2}, ete. Now these total stresses are chord, such as ea b_{2}, for example, he reresisted by a cross section of constant moved to a new position, such as v, that area $A_{\text {, consequently they have the so long as the weights } c_{1} c_{0}, c_{2} c_{0}, \text {, ete., are }}$ same ratio to one another as the intensi- unchanged, that the vertex b_{1} of the trities per square unit; or further, they angle e e $a_{2} b$, in the force polygon must be represent, as we have just shown, the found on the force line $c_{1} f_{4} \| y_{\mathrm{a}} y_{1}$. We relative intensitins of the stresses on the shall show that while the side ea, is unextreme fiber of the given girder. It is well known from mechanical $c_{1} f_{1}$; hence conversely, so long as $c_{1} f_{1}$ i considerations, that the stress in the the locus of $b_{1}, e a_{2}$ is unchanged, since several segments of the upper chord is there can be but one such triangle.

In Fig. 17 let the two triangles $a b e, h n k$, figures, hence $m n \| a e$. There are two T have the sides meeting at b and n cases, according as $m n$ is above or belo matuall paris. Le be the the removed to any point d such that $b d \| \hbar k$, upper chord be removed to v, then the then will the vertex n be removed to a segments $e a, a, a$, etc., are unchange point m such that $m n \| a e$. segments $e a_{2}, a_{2} a_{2}$, etc., are unchanged, For, prolong $a d$ and $e b$, and draw the assumed framing reduces to the bf $\| e d$ and dc\|ab, then is abfedea a frame pencil whose vertex is v. The hexagon inscribed in the conic section corresponding force polygon is the consisting of the two lines af and ec, eq hence by Pascal's Theorem, the opposite diagonals ea and of intersect on the the ence the frame pencil can be used as site diagonals $e a$ and ef intersect on the the assumed framing just as well as any
same line as the remaining pairs of oppo- other form of framing, and it is unnecessite diagonals, $a b \| d c$ and $e d \| b f$. But sary to use any construction except that this line is at infinity, hence cf\|ae of the frame pencil and equilibrating Also $c^{\prime} f^{\prime} \| c f$, from elementary considera- polygon for finding the relative stresse. tions; and $c^{\prime} f^{\prime} \| m n$ from similarity of $e a_{2}$, ea ${ }_{2}$, etc.

STRESSES' in A HORIZONTAL Chord.
If Fig. 16 be regarded as representing an actual bridge truss, whose chords are that the total stresses on the horizontal chord are given by the segments ea, ea chord are given by the segments $e a_{\text {, }}$, e $a_{\text {a }}$,
etc., which are found from the equilbrating polygon alone without regard to the kind of bracing in the truss, which it is unnecessary to consider; and this method can be used to take the place of that given in connection with Fig. 3 for chords.

This construction sheds new light upon the significance of the frame pencil and equilibrating polygon. The frame pencil is the limiting case of a truss when the joints along one chord are remay be regarded as compounded of a ension member and a compression member, having the same direction, e.g., the tension member of which $y_{1} v$ is compounded has the stress $d_{1} a_{2}$, and the if the mession member the stress $d_{2} a_{2}$, but if the two be
tension is $d_{1} d_{v}$.
The equilibrating polygon $f f$ was con-
The equilibrating polygon ff was constructed to determine the reactions of outer sides of the polygon $f f$ interseet at g which determines e as explained
Fig. 7 in a manner different from that given in Fig. 3.
lh ase $2 y$ is the equilibrium curve due to the applied weights, and v falls meet at the pole and the lines ed, ed coincide with $a a$, so that the polygon $d d$ is at the pole and infinitely small, and he stress in every segment of the upper chord is equal to the pole distance de.

The truth of Proposition IV is, perhaps, not sutficiently established in the demonstration
heretofore given. As it is a fundamintal proosition in ihe graphical treatment of arche nd as it is desirable thant no doubt exist as to
ts validity, we now offer a second proof of it which, it is thought, avoids the difflculties of the former demonstration.
Prop. IV. If in any arch that equilibrium polygon (due to the weights) be construeted which has the same horizontal thrust as the are rawn fy the more, the curve of the arch itself be regarded as another equilibrium polygon due to some system of foading not given, and its closing line be also found from the same considerations respecting supports, cle.; then when these two polygons are so placed that their closing lines coincide, and their areas partially cover each other, the ordinates intercepted be tween these two polygons are proportional to he rin bomcal are pria the arch. The bending moments at every point of an
arch are due to the applied forces and to the arch are due to the app.
shape of the arch itself.
The applied forces are these : the vertical forces, which comprise the loading and the
vertical reactions of the piers; the horizontal thrust; and the bending moments at the piers,
then caused by the constraint at these points of sup:- propositio
ort. The loading may cause all the other aplied forces or it may not: in any case the pendence or want of dependence of the thrust, te, upon the loading. lue to the constraint at the piers are concerned, due to the constraint at the piers are concerned
they cause the same bending moments at any point of the archi as they would when applied
to a straighit girder of the same span, for neither are the forces nor their arms different
in the two cuses. in the two cases.
But the horizon
sume at every point of the arch, causes a bending moment proportional to its arm,
which is the distance of its line of an which is the distance of its line of ap-
plination from the curve of the arch. This Mine of application is known to be the closing
line
ine; hence the ordinates which line, hence the ordinates which represent the
bending moments due to the horizontal thrust bending moments due to the horizontal thrust,
are included between the curve of the arch and a closing line drawn in surve of tha arch an
fulfill the conditions imposed by to fulfill the conditions impused by manner as to
kind of support at the piers, hence the curved kind of support at the piers, hence the curve
neutral axis of the arch is the equilibrium or moment polygon due to the horizontal thrust.
But the same conditions fix both the closing
line of the equilibrium polygon which repre. ine of the equilibrium polygon which repre-
sents toe bending moments due to the loading
and to the constraint at the piers, and the clos sents the bending moments due to the loading
and to the constraint at the piers, and the clos
ing line of the equilibrium polygon due to the and to the constraint at the piers, and the clos
ing line of the equilibrium polygon due to the
horizontal thrust. Hence the resultant bendhorizontal thrust. Hence the resultant bend-
ng moment is found by taking the difference
of the ordinates at anct of the ordinates at each point, or by laying
them off from one and the same closing line exactly as de
proposition.

THE THEORY OF INTERNAL.STRESS
in
GRAPHICAL STATICS.

Stress includes all action and reaction entire investigation within the reach of of bodies and parts of bodies by attrac- any one who might wish to understande tion of gravitation, cohesion, electric it, and would also be of assistance to repulsion, contact, etc., viewed espe- those who might wish to read the analyt cially as distributed among the particies ic investigation. composing the and reaction are necessarily equal, pal parts: in the first part the inherent stress is included under the head of properties of stress are set forth and Statics, and it may be defined to be the proved by a general line of reasoring equilibrium of distibibuted forces. which entirely avoids analysis, and Internal stress may be defined as the which, it is hoped, will make them well action and reaction of molecular forces. understood; the second part deals with Its treatment by analytic methods is the problems which arise in treating necessarily encumbered by a mass of stress. These problems are solved formulæ which is perplexing to any ex- graphically, and if analytio expressions necessarily so encumbered, because the pressions will result from elementary treatment consists in a comparison of considerations appearing in the graphihe stresses acting upon planes in vari- eal solutions. The constructions by ous directions, and such a comparison which the solutions are obtained are involves transformation of quadratic many of them taken from the works of fanctions of two or three variables, so the late Professor Rankine, who emthat the final expressions contain such ployed them principally as illustrations, a tedious array of direction cosines that and
even the mathematician dislikes to em- gations.
It is thus proposed to render the ploy them. It is thus proposed to render graphical, Now, since the whole difficulty really treatment of stress exclusively grapte the lies in the unsuitability of Cartesian co- and by so doing to add a branch to the ordinates for expressing relations which
seience of Graptical
tre dependent upon the parallelogram of
not heretofore been recognized as susare dependent upon the parallelogram of not heretofore been recognized as forces, and does not lie in the relations
themselves, which are quite simple, and, seems unnecessary to add a word as themselves, which are quite simple, and, sear the importance, not to say necessity, to
which no doubt, can be made to appear wo in quaternion or other suitable nota- the engineer of a knowledge of the tion; it has been thought by the writer theory of combined internal stress, since graphical stand point would put the knowledge.

Stress on a Plane.-"If a body be area: this is called the intensity of the conceived to be divided into two parts stress.
by an ideal plane traversing it in any direction, the force exerted between those two parts at the plane of division is an internal stress."-Rankine.
A State of Internal. Stress is such a state that an internal stress is or may be exerted upon every plane passing exists.
It is assumed as a physical axiom that the stress apon an ideal plarie of division which traverses any given point of
a body, cannot change suddenly, either a body, cannot change suddenly, either
as to direction or magnitude, while that plane is gradually turned in any way plane is gradually turned in any way
about the given point. It is also assumed as axiomatie that the stress at any point upon a moving plane of divi-
sion which undergoes no sudden changes sion which undergoes no sudden changes
of motion, cannot change suddenly of motion, cannot change suddenly either as to direction or amount. A a surface where there is take place at material.
general properties of plane stress. -We shall call that stress a plane stress which is parallel to a plane; e.g., let the plane of the paper be this plane and let which is at right angles to the plane of the paper be parallel to the plane of the paper, then is such a stress \% plane stress.
The obliquity of a stress is the angle included between the direction of the stress and a line perpendicular to the deal plane it acts upon. This last plane we shall for brevity call the plane
of cection of the stress, and any line of action of the stress, and any line
perpendicular to it, its normal. In plane
stress, the planes of action are shown by their traces on the plane of the paper and then their normals, as well as their directions, the magnitudes of the stresses, and their obliquities are correctly represented by lines in the plane of the
papert. papert: The definition of stress which has been given is equivaleut to the state-
ment that stress is force distributed over an area in such wise as to be in equili brium.
In order to measure stress it is necessary to express its amount per unit o

Stress, like force, can be resolved into components. An oblique stress can be
resolved into a component perpendicular to its plane of action called the normal to its plane of action called the normal
component, and a component along the plane called the tangential component or shear.
When the obliquity is zero, the entire stress is normal stress, and may be either a compression or a tension, i.e., a thrust or a pull. When the obliquity is ± 90, tial stress or shear If a con a tangenconsidered as a positive normal strese it is possible to consider a normal tension as a stress whose obliquity is $+180^{\circ}$, and the obliquities of two shears having opposite signs, also differ by 180°.

Conjugate Stresses.-If in Fig. ny state of stress whatever exists at o, and xar be the direglion of the stress on a plane of action whose trace is $y y$, then is $y y$ the direction of the stress at o on the plane whose trace is $2 x$. Stresses so elated are said to be conjugate stresses. For consider the effect of the stress upon a small prism of the body of which $a_{1} a_{2} \alpha_{3} a_{4}$ is a right section. If the stress is uniform that acting upon $a_{2} a_{4}$ is equal and opposed to that acting upon $a_{2} a_{3}$, and therefore the stress upon these faces of the prism are a pair of forces in equilibrium. Again, the stresses upon which are in equilibrium, becanse the prism is uumoved by the forces acting upon it. But when a system of forces in equilibrium is removed from a system in equilibrium, the remaining forces are in equilibrium. Therefore the removal of the pair of stresses in equilibrium acting upon $a_{1} a_{4}$ and $a_{2} a_{3}$ from four faces, which are also in equilibrium, leaves the stresses upon $a_{1} a_{\text {a }}$ and $a_{i} a_{\text {in }}$ in, equilibrium. But if the stress is uniequilibrium. But if the stress is uni-
form, the stresses on $a_{1} a_{2}$ and $a_{a} a_{\text {, }}$ must
be parallel to $y y$, as otherwise a couple must result from these equal but not directly opposed stresses, which is in consistent with equilibrium.
This proves the fact of conjugate stresses when the state of stress is uni,
form: in case it varies, the prism can be form: in case it varies, the prism can bl uniform in the space oecupied by it, and the proposition is true for varying stres in case the prism be indefinitely diminished, as may always be done.

Tangential Sthesshs.-If in Fig. the stress at o on the plane $x x$ is in the direction $2 x$, i.e. the stress at o on $x x$ consists of a shear only; then there necessarily exists some other plane through o, as $y y$, on which the stress consists of a shear only, and the shear upon each of the planes $x x$ and $y y$ is or the same intensity, le opposite sign.
For let a plane which initially coincides with $x x$ revolve continuously through 180° about o, until it again co-
incides with incides with $x x$, the obliquity of the
stress upon this revolving plane has changed gradually during the revolution through an angle of 360°, as we shall show.
Since the obliquity is the same in its final as in its initial position, the total change of obliquity during the revolution is 0° or some multiple of 360°. It cannot be 0°, for suppose the shear to be
due to a couple of forces parallel to $x x$, having a positive moment; then if the having a positive moment; then if the
plane be slightly revolved from its plane be slightly revolved from its
initial position in a plas direction, the stress npon it has a small normal com ponent which would be of opposite sign, if the pair of forces which cause it were reversed or changed in sign; or, what is equivalent to that, the sign of the small normal component would be reversed if initial position in a minus direction. Hence the plane $25 x$, on which the stress
is a shear alone, separates those planes hrough o on which the obliquity of the tress is greater than 90° from those on which it is less than 90 , i.e., those havhaving a minus normal component.
Since in revolving through $+180^{\circ}$ the lane must coincide, before it reaches its nade a slight minus rotation, it is evident that the sign of the normal component changes at least once during a revolution of 180°. But a quantity can change sign only at zero or infinity, and since an infinite normal component is inadmissible, the normal component must vanish allution. Hence the obliqaity is changed by 360° or some multiple of 360° while the plane revolves 180°. In fact the normal component vanishes but once, and the obliquity changes by once 360° only, during the revolution. It is not in every state of stress that here is a plane on which there is no stress except shear, but, as just shown, wecessarily another $y y$, and all planes necessarily another $y y$, and all planes
through o and cutting the angles in which are b_{1} and b, have normal components of opposite sign from planes through o and cutting the angles in which are b_{2} and b_{4}.
To show that the intensity of the shear on $x x$ is the same as that on $y y$, consider a prism one uni
long and having the indefinitely smal right section b, b, b, b_{4}. Let the area of its upper or lower face be $a_{1}=b_{1} b_{v}$, that its upper or lower face be $a_{1}=b_{1} b_{2}$, that
of its right or left face be $a_{3}=b_{2}$, , then $a_{1} s_{1}$ and $a_{2} s_{3}$ are the total stresses on these respective faces if s, and s, are the
intensities of the respective shears intensities of the respective shears per square unit. Let the angle xoy $=i$, then

$$
a_{1} s_{1}, a_{2} \sin . i
$$

the moment of the stresses on the pper and lower faces of the prism, and

$$
\text { the } a_{2} s_{2} \cdot a_{1} \sin \text {. }
$$

the moment of the stresses on the ght and left faces; but since the prism is unmoved these moments are equal.

These stresses are at once seen to be of opposite sign.
 if $a x$ and $y y$ are any two planes at right angles to each other, then the intensity at o of the tangential component of the stress upon the plane $2 x$ is necessarily the same as that upon the plane $y y$, but these components are of opposite sign.
these components are of opposite sign.
For the normal components acting apon the opposite faces of a right prism are necessarily in equilibrium, and by a demonstration precisely like that jus employed in connection with Fig. 2 it is
seen that for equilibrium it is necessary seen that for equilibrium it is necessary
and sufficient that the intensity of the tan gential component on $2 x$ be numerically equal to that on $y y$, but of opposite sign.
State of Stress.-In a state of plane stress, the state at any point, as 0 , completely defined, so that the intensity and obliquity of the stress on any plaue traversing o can be determined, when the intensity and obliquity of the stress on any two given planes traversing that point are known.
For suppose in Fir. 4 that the intensi ty and obliquity of the stress on the given planes $x \times x$ and $y y$ are known, to
find that on any plane $m n \| x^{\prime} x^{\prime}$ then the indefinitely smaw prism one unit in length whose right
section is mno, is held in equilibrinm by the forces acting upon its three faces The forces acting upon the faces om and on are known in direction from the p_{y} are the respective intensities of p_{x} and p_{y} are the respective intensities of the
known stresses, then the forces om. p_{x} and on. p_{y} respectively. The reom. p_{x} and on. p_{y} respectively. The re-
sultant of these forces and the reaction which holds it in equilibrium, together constitute the stress acting on the face $m n$: this resultant divided by $m n$ is the intensity of the stress on m n and its

It should be noticed that the stress at on two planes as $2 x$ and $y y$ cannot be wsumed at random, for such assumption he properties inconsistent shown very state of stress to possess. For instance we are not at liberty to assume the obliquities and intensities of the we compute these quantities for when plane compute these quantities for any plane $x^{\prime} x^{\prime}$ and another plane $y^{\prime} y^{\prime}$ at
fight angles to $x^{\prime} x^{\prime}$ in the manner just indicated, it shall then appear that the tangential components are of unequal intensity or of the same sign. Or, again, we are not at liberty to so assume these stresses as to violate the principle of conjugate stresses
But in But in case the stresses assumed are of equal intensity and different sign on any pair of planes, or in case any stresses are assumed on a pair of planes at right are assumed on a pair of planes at right
angles such that their tangential components are of equal intensity but different sign, we know that we have made a consistent assumption and the state of stresb sossible and completely defined.
The state of stress is not completely plane is when the stress upon a single plane is known, because there may be any amount of simple tension or com-
pression along that plane added to the pression along that plane added to the
state of stress without changing either the intensity or obliquity of the stress on that plane. \square in Principal Stresses. - In any state of stress there is one pair of conjugate stresses at right angles to each other, i.e. there are two planes at right angles on which the stresses are normal ouly. Stresses so related are said to be principal stresses.

It has been previously shown that if angles to this, that is another plane on plane be taken in any direction, be the direction of the stress acting on it be 0 found, then en have completely established pair of conjugate stresses of which either the proposition respecting the existence
may be taken as the plane of action and of principal stresses which may be the other as the direction of the stress restated thus:
seting upon it.
Cansider first the case in which the state of stress is defined by a pair of conjugate stresses of the same sign; i.e., the normal components of this pair of conjugate stresse
or both tensions.
It is seen that they are of opposite coingides with one of these conjugat coincides with of action be continuously revolvei planes of actill coincides with the other
until it finall the obliquity must pass through all in termediate values, one of which is 0°, and when the obliquity is 0° the tangential component of the stress vanishes. Bu as has been previously shown the thi which has the same tangential compowhich has the stress is normal on this plane also.
plane also.
Consider next pair of conjugate stresses which define the state of stress are of opposite sign, i.e, the normal component on one plane is a compression and that on the other a tension.
In this case there is a plane in some intermediate position on which the stress is tangential only, for the normal com ponent cannot change sign except at
zero. It has been previously shown that in ease there is one plane on which the stress is a shear only, there is plane also on which the stress is a shear A material fluid can actually sustain ondy and this the stress, but it is convenient equal intensity with the first bnt of to include both compression and tension opposite sign. Let us consider then that under one head as fluid stress, the properopposite sign. Let us consider the
the state of stress, in the case we are ties of which we shall soon discuss. the state of stress, in the case we are
now treating, is defined by these opposite shears instead of the conjugate now treating, is defined the conjugate defined by unequal principal stresses of
site shears instead of the same sigu an oblique stress. This
stresses at first considered. Now let a plane which initially coin- may be taken to include fluid stress as ides with one of the planes of equal the particular case in which the ineshear revolve continuously until it finally quality is infinitesimal. In this state of coincides with the other. The obliquity stress there is no plane on which the gradually changes from $+90^{\circ}$ to -90°, stress is a shear only, and the normal gradually changes from $+90^{\circ}$ to -90 , stress is a shear ons, as on any plane
during the revolution, hence at some component of the stress during the revolution, hence at some
intermediate point the obliquity is 0°; and since the tangential component has principal stresses. and since the tangential component has $\begin{gathered}\text { principaltseresses. } \\ \text { Furthermore let us cah that state }\end{gathered}$

Let us call a state of stress which is
Any possible state of stress can be completely defined by a pair of norma stresses on two planes at right angles to each other.
As to the direction of these principal planes and stresses, it is easily seen from considerations of symmetry that in case equal and opposite shears on a pair o planes, that the principal planes bisect the angles between the planes of equal shear, for there is no reason why they other. We have before shown that the planes of equal shear are planes of planes of equal shear are planes of
separation between those whose stresses separation between those whose stresses
have normal components of opposite sign: hence it appears that the principal stresses are of opposite sign in any state f stress which can be defined by a pai of equal and opposite shears on two Itanes.
It will be hereafter shown how the irection and magnitude of the principal tresses are related to any pair of congresses are related to any par of coate stresses. ugate stresses.
For convenie
or convenience of notation in discussy plane stress let us denote compression放 sign, and tension by the sign
\qquad
of stress which is defined by a pair be yy two planes at right angles, on of shearing stresses of equal intensity which the stress at o is normal, of equal and different sign on two planes at
right angles to each other a right intensity and of the same sign; then the shearing stress. We shall have occasion stress on any plane, as $x^{\prime} x^{\prime}$, traversing o immediately to discuss the properties of is normal, of the same intensity and this kind.of stress, but we may advan- same sign as that on $x x$ or $y y$.
tageously notice one of its properties in For consider a prism a unit long and this connection. It has been seen pre of infinitesimal cross section having the viously from considerations of symmetry $\begin{aligned} & \text { of infinitesimal cross section having the } \\ & \text { face } m n \| x^{\prime} x^{\prime} \text {, then the forces } f \text { and } f,\end{aligned}$ that the principal stresses and planes acting on the faces $a m$ and on are such which may be used to define this state that
of stress, bisect the angles between the
planes of equal shear. Hence in right $\quad f_{x}: f_{y}:: o m: o n$.
shearing stress the principal stresses Now $n m=\sqrt{o m^{2}+o n^{2}}$, and the resnlt make angles of 45° with the planes of ant foree which the prism exerts against equal shear. We can advance one step further by considering the symmetrical position of the planes of equal shear with respect to the principal stresses and show that the principal stresses in a stat of right shearing stress are equal but of
opposite sign. opposite sign.
We wish to
We wish to call particular attention to fluid stress and to right shearing stress,
as with them our subsequent discuse are to be chiefly concerned : they are the special cases in which the principal stresses are of equal intensities, in one case of the same sign, in the other case of different sign.
Let us call a state of stress which is defined by a pair of equal shearing stresses of opposite sign on planes not at right angles an oblique shear
ing stress. The principal stresses, which in this case are of unequal intensity and bisect the angles between the planes of equal shear, are of opposite sign. A right shearing stress may be
taken as the particular case of oblique taken as the particular case of obliqu
shearing in which the obliquity is in shearing in which the obliquity is in
finitesimal. We may denote a state of stress as + or - according to the sign of its large principal stress.
 m is which the prism exerts against $f=\sqrt{f_{x}^{2}+f_{y}{ }^{3}}$
But $f=0$ is $f_{x}: f:: o m: m n$ But $f_{x} \div o m$ is the intensity of the of the stress on $x^{\prime} x$, and these are equal. Also by similarity of triangles the result. ant f is perpendicular to $m n$.

Right Shearing Stress.-In Fig. 6 t $x x$ and $y y$ be two planes at right angles to each other, on which the stress is normal, of equal intensity, but of pposite sign; then the stress on any lane, as $x x$, traversing o is of the same intensity as that on $x x$ and $y y$, but it obliquity is such that $x x$ and $y y$ respectively, bisect the angles between the direction m of the resultant stress, and the normal $y^{\prime} y^{\prime}$ to its plane of action. For, if the intensity of the stress on $x x$ be computed in the same manner a same as that on $x x$ or $y y$; for the stresse same as that on $x x$ or $y y$; for the stresses
to be combined are at right angles and are both of the same magnitude. The only difference between this case and nd $\begin{aligned} & \text { only difference between this case and } \\ & \text { that in Fig. } 5 \text { is this, that one of the }\end{aligned}$
component stresses, that one nermal to $y y$ say, has its sign the opposite of that in Fig. 5. In Fig. 5 the stress on $x^{\prime} x^{\prime}$ tain angle $y o y^{\prime}$ with $y y$, In Fig a 6 th resultant stress on $x^{\prime} x^{\prime}$ must then make an equal negative angle with $y y$, so that yor = yoy'. Hence the statement which has been made respecting right shearing stress is seen to be thas established.
Combination and Separation.-Any states of stress which coexist at the same point and have their principal stresses in the same directions $x x$ and $y y$ combine to form a single state of stress whose principal stresses are the sums of the respective principal stresses lying in the same directions $2 x$ and $y y$: and conversely any state of stress can be separated into several coexistent stresses by separating each of its two principal stresses into the same number of parts in any manner, and then grouping these parts as pairs of principal stresses in any manner whatever.
The truth of this statement is nec essarily involved in gee fact that stresse are forces distributed over areas, and that as a state of stress is only the grouping
together of two necessarily related together of two necessarily related
stresses, they must then necessarily folstresses, they must then necessarily fol-
low the laws of the composition and resolution of forces.
For the sake of brevity, we shall use the following nomenclature of which the meaning will appear without further ex planation.

The terms applied to The terms applied to forces and stresses are: states of stress are: Compound, Combine, Compousition
 Composition,
 Resolve,
 Resolve,
 Resolution, Resultant.
 Combine,
 Component state, Separate,

Other states of stress can be combined besides those whose principal stresses combination is less simple than that of the composition of forces; such comb nations will be treated subsequently.

Component Stresses.-Any possible state of stress defined by principal stresses whose intensities are p_{x} and p_{y} on the planes $x x$ and $y y$ respectively is equivalent to a combination of the fluid stress whose intensity is $+\frac{1}{2}\left(p_{x}+p_{y}\right)$ on each of the planes $x x$ and $y y$ respectively, and the right shearing stress whose intensity is $+\frac{1}{2}\left(p_{x}-p_{y}\right)$ n $x x$ and $-\frac{1}{2}\left(p_{x}-p_{y}\right)$ on $y y$.
For as has been shown, the resultant stress due to combining the fluid stress with the right shearing stress is found by compounding their
Now the stress on $x x$ is

$$
\frac{1}{2}\left(p_{x}+p\right)+\frac{1}{2}\left(r_{x}-p_{y}\right)=p_{x}
$$ and that on $y y$ is

$$
\frac{1}{2}\left(p_{x}+p_{y}\right)-\frac{1}{2}\left(p_{x}-p_{y}\right)=p_{y}
$$

and hence these systems of principal Iresses are mutually equivalent
In case $p_{y}=0$, the stress is complete-
y defined by the single principal stress ly defined by the single principal stress
p_{x}, which is a simple normal compression or tension on $x x$. Such a stress has been called a simple stress.
A fluid stress and a right shearing stress which have equal intensities comine to form a simple stress.
ate of stress by its principlion of a is a definition of it as a combination of two simple stresses which are perpendicular to each other. There are many other ways in which any state of stress can be separated into component stresses, though the separation into a fluid stress and a right shearing stress has thus far proved more usegraphical treatment will depend upon it. It may be noticed as an instance of a different separation, that it was shown that the tangential components of the stresses on any pair of planes $x x$ and $y y$ at right angles to each other are of equal intensity but opposite sign. These tangential components, then, together form a right shearing stress whose principal planes and stresses $x^{\prime} x^{\prime}$ and $y^{\prime} y^{\prime}$
bisect the angles between $x x$ and $y y$, while the normal components together define a state of stress whose principal stresses are, in general, of .unequal intensity.

In Fig. 7 let the principal stresses at o that a state of stress defined by its two be a on $y y$ and b on $a x$; and on some $\begin{aligned} & \text { principal stresses } a \text { and } b \text { can be separ- } \\ & \text { convenient scale of intensities let } o a=a \\ & \text { ated into a fluid stress having a normal }\end{aligned}$ and $o b=b$. Let $w v$ show the direction intensity $\frac{1}{2}(a+b)$ on every plane, and a of the plane through o on whieh we are right shearing stress whose principal to find the stress, and make on perpendic- stresses are $+\frac{1}{2}(a-b)$ and $-\frac{1}{2}(a-b)$ reular $u v$., Make $o a^{\prime}=o a$ and $o b^{\prime}=o b$.
Bisect $a^{\prime} b^{\prime}$ at n, $n a^{\prime}=\frac{1}{2}(a-b)$. Make $x o l=x=\frac{1}{2}(a+b)$ and $n a^{a}=\frac{1}{2}(a-b)$. Make xol=xon and com- stress on any given stress causes a normal he diagonal or $=r$ the resultant stress which is the amount of force distributed on the given plane in direction and intensity.
The point r can also be obtained more imply by drawing $b^{\prime} r \| a x c$ and $a^{\prime} r \| y y$. We now proceed to show the correctness of the constructions given and to discuss several interesting geometrical properties of the figure which give to it which complexity is, however, quite unnecessary in actual construction, as will be seen hereafter. It has been shown $/$ shearing stress.
plete the para stress on any given plane, its intensity is given plane which is due to the right
problems in plane stress.
Prosuan 1.-When a state of stress is defined by principal stresses which are of unequal intensity and like sign, i.e., in a state of oblique stress, to find the inensity and obliquity of the stress at o over one unit of the given plane. Since, urther, it was shown that a right shearwith stress causes on any plane a stress stress biseliquity such that the principal tion bisects the angle between its direc tion and the normal to the plane, and causes a stress of the same intensity on every plane, we see that om= $\frac{1}{2}(a-b)$
represents, in direction and amount, the hearing strestich is due to the right

To find the resultant stress we have only to compound the forces on and om which give the resulta

The obliquity nor is always toward the greater principal stress, which is here assumed to be a.

It is seen that in finding r by this method it is convenient to describe one
circle about o with a radins and another with a radins $\quad g=-\frac{1}{2}(a+b)$, sfter which any parallelogram $m n$ cal be readily completed. Let $n r$ and $m r$ intersect $x x$ and $y y$ in $h k$ and $i j$ respect ively; then we have the equations of angles
$n o h=h h o=\frac{1}{2} k n o, n o k=n k o=\frac{1}{2} h n o$,
$m o i=m i o=\frac{1}{2} j m o, m o j=m j o=\frac{1}{2} i m a$
hence $h n=k n=o n=\frac{1}{2}(a+b)$
$\therefore h k=a+b$,
and $r k=r j=a, r h=r i=b$.
It is well known that a fixed point on a line of constant length as $h k=a+b$ or $\ddot{j}=a-b$ describes an ellipse, and such an arrangement is called a tramme point r it y are the coordinates of the $x=a \cos x n, y=b \sin x n$, in which $x n$ signifies the angle between $x x$ and the normal on.
$\therefore \frac{x^{2}}{2}+\frac{y^{2}}{b^{2}}=1$ is the equation of the stress ellipse which is the locus of r; and $a n$ is then the eccentric angle of r. Also, since $n o h=n h o, n b^{\prime} r=n r b^{\prime}$; hence $b^{\prime} r \| x x$ and a' $r \| y y$ determine r. In this method of finding r it is conrenient to describe circles about o with
radii a and b, and from a^{\prime} and b^{\prime} where the normal of the given plane intersects them find r.
We shall continue to use the notation employed in this problem, so far as applicable, so that future constructions nay be readily compared with this. It will be convenient to speak of the angle on as $x n$, nor as $n r$, etc.
Problem 2.-When a state of stress is defined by principal stresses of unequal intensity and unlike sign, i.e. in a state of oblique shearing stress, to find the intensity and obliquity of the stress at o on any assumed plane having the direction $u v$.

In Fig. 8 the construction is effected according to both the methods detailed in Problem 1, and it will be at once apSince a and b are of unlike signs $a+b$ $=o n$ is numerically less than $a-b=a^{\prime} b^{\prime}$ The results of these two problems are expressed algebraically thus:
$=\frac{1}{4}(a+b)^{2}+\frac{1}{4}(a-b)^{2}+\frac{1}{2}\left(a^{2}-b^{2}\right) \cos 2 x n$ $r^{2}=\frac{1}{2}\left[a^{2}+b^{2}+\left(a^{2}-b^{2}\right) \cos 2 x n\right]$
or, $r^{2}=a^{2} \cos ^{2} x n+b^{2} \sin ^{2} x n$.

Fig. 8.

If r be resolved into its normal and tangential components ot $=n$ and $r t=t$ then, $n=\frac{1}{2}[a+b+(a-b) \cos 2 x n]$, or, $n=a \cos ^{2} x n+b \sin ^{2} x=$ $t=\frac{1}{2}(a-b) \sin 2 x n=(a-b) \sin x n \cos x n$ It is evident from the value of the normal component n, that the sum of the normal components on any two planes at right angles to each other is the same and its amount is $a+b$: this is also a eneral property of stres ind adition to
\qquad
就 $x=\frac{a \cot x n+b \tan x n}{a \cos }$
The obliquity $n r$ can also be found
rom the proportion
$\sin n r: \frac{1}{2}(a-b):: \sin 2 x n: r$.
In the case of fluid stress the equations
reduce to the more simple forms:

$$
a=b=r=n, t=0
$$

For right shearing stress they are:
$a=-b= \pm r, n= \pm a \cos r n$
$t= \pm a \sin r n, \quad r n=2 x n$.

In Fig. 7 let the principal stresses at o that a state of stress defined by its two be a on $y y$ and b on $a x$; and on some $\begin{aligned} & \text { principal stresses } a \text { and } b \text { can be separ- } \\ & \text { convenient scale of intensities let } o a=a \\ & \text { ated into a fluid stress having a normal }\end{aligned}$ and $o b=b$. Let $w v$ show the direction intensity $\frac{1}{2}(a+b)$ on every plane, and a of the plane through o on whieh we are right shearing stress whose principal to find the stress, and make on perpendic- stresses are $+\frac{1}{2}(a-b)$ and $-\frac{1}{2}(a-b)$ reular $u v$., Make $o a^{\prime}=o a$ and $o b^{\prime}=o b$.
Bisect $a^{\prime} b^{\prime}$ at n, $n a^{\prime}=\frac{1}{2}(a-b)$. Make $x o l=x=\frac{1}{2}(a+b)$ and $n a^{a}=\frac{1}{2}(a-b)$. Make xol=xon and com- stress on any given stress causes a normal he diagonal or $=r$ the resultant stress which is the amount of force distributed on the given plane in direction and intensity.
The point r can also be obtained more imply by drawing $b^{\prime} r \| a x c$ and $a^{\prime} r \| y y$. We now proceed to show the correctness of the constructions given and to discuss several interesting geometrical properties of the figure which give to it which complexity is, however, quite unnecessary in actual construction, as will be seen hereafter. It has been shown $/$ shearing stress.
plete the para stress on any given plane, its intensity is given plane which is due to the right
problems in plane stress.
Prosuan 1.-When a state of stress is defined by principal stresses which are of unequal intensity and like sign, i.e., in a state of oblique stress, to find the inensity and obliquity of the stress at o over one unit of the given plane. Since, urther, it was shown that a right shearwith stress causes on any plane a stress stress biseliquity such that the principal tion bisects the angle between its direc tion and the normal to the plane, and causes a stress of the same intensity on every plane, we see that om= $\frac{1}{2}(a-b)$
represents, in direction and amount, the hearing strestich is due to the right

To find the resultant stress we have only to compound the forces on and om which give the resulta

The obliquity nor is always toward the greater principal stress, which is here assumed to be a.

It is seen that in finding r by this method it is convenient to describe one
circle about o with a radins and another with a radins $\quad g=-\frac{1}{2}(a+b)$, sfter which any parallelogram $m n$ cal be readily completed. Let $n r$ and $m r$ intersect $x x$ and $y y$ in $h k$ and $i j$ respect ively; then we have the equations of angles
$n o h=h h o=\frac{1}{2} k n o, n o k=n k o=\frac{1}{2} h n o$,
$m o i=m i o=\frac{1}{2} j m o, m o j=m j o=\frac{1}{2} i m a$
hence $h n=k n=o n=\frac{1}{2}(a+b)$
$\therefore h k=a+b$,
and $r k=r j=a, r h=r i=b$.
It is well known that a fixed point on a line of constant length as $h k=a+b$ or $\ddot{j}=a-b$ describes an ellipse, and such an arrangement is called a tramme point r it y are the coordinates of the $x=a \cos x n, y=b \sin x n$, in which $x n$ signifies the angle between $x x$ and the normal on.
$\therefore \frac{x^{2}}{2}+\frac{y^{2}}{b^{2}}=1$ is the equation of the stress ellipse which is the locus of r; and $a n$ is then the eccentric angle of r. Also, since $n o h=n h o, n b^{\prime} r=n r b^{\prime}$; hence $b^{\prime} r \| x x$ and a' $r \| y y$ determine r. In this method of finding r it is conrenient to describe circles about o with
radii a and b, and from a^{\prime} and b^{\prime} where the normal of the given plane intersects them find r.
We shall continue to use the notation employed in this problem, so far as applicable, so that future constructions nay be readily compared with this. It will be convenient to speak of the angle on as $x n$, nor as $n r$, etc.
Problem 2.-When a state of stress is defined by principal stresses of unequal intensity and unlike sign, i.e. in a state of oblique shearing stress, to find the intensity and obliquity of the stress at o on any assumed plane having the direction $u v$.

In Fig. 8 the construction is effected according to both the methods detailed in Problem 1, and it will be at once apSince a and b are of unlike signs $a+b$ $=o n$ is numerically less than $a-b=a^{\prime} b^{\prime}$ The results of these two problems are expressed algebraically thus:
$=\frac{1}{4}(a+b)^{2}+\frac{1}{4}(a-b)^{2}+\frac{1}{2}\left(a^{2}-b^{2}\right) \cos 2 x n$ $r^{2}=\frac{1}{2}\left[a^{2}+b^{2}+\left(a^{2}-b^{2}\right) \cos 2 x n\right]$
or, $r^{2}=a^{2} \cos ^{2} x n+b^{2} \sin ^{2} x n$.

Fig. 8.

If r be resolved into its normal and tangential components ot $=n$ and $r t=t$ then, $n=\frac{1}{2}[a+b+(a-b) \cos 2 x n]$, or, $n=a \cos ^{2} x n+b \sin ^{2} x=$ $t=\frac{1}{2}(a-b) \sin 2 x n=(a-b) \sin x n \cos x n$ It is evident from the value of the normal component n, that the sum of the normal components on any two planes at right angles to each other is the same and its amount is $a+b$: this is also a eneral property of stres ind adition to
\qquad
就 $x=\frac{a \cot x n+b \tan x n}{a \cos }$
The obliquity $n r$ can also be found
rom the proportion
$\sin n r: \frac{1}{2}(a-b):: \sin 2 x n: r$.
In the case of fluid stress the equations
reduce to the more simple forms:

$$
a=b=r=n, t=0
$$

For right shearing stress they are:
$a=-b= \pm r, n= \pm a \cos r n$
$t= \pm a \sin r n, \quad r n=2 x n$.

And for simple stress they become:

$b=0, r=a \cos m, n=a \cos ^{2} m$, $t=a \sin m \cos m, m n=x n$.

Problem 3.-In any state of stress defined by its principal stresses, a and b, to find the obliquity and plane of action of the stress having a given intensity r intermediate between the intensities of the principal stresses.
To find the obliquity $n r$ and the direetion wo let Fig. 7 or 8 be constructed as follows: assume the direetion wo and its normal on, and proceed to determine the position of the principal axes with re-
spect to it. Lay off $o a^{\prime}=a, o b^{\prime}=b$, in spect to it. Lay off $o a^{\prime}=a, o b^{\prime}=b$, in
the same direction if the intensities are of like sign, in opposite directions if unlike. Bisect $a^{\prime} b$ at n, and on $a^{\prime} b^{\prime}$ as a diameter draw the circle $a^{\prime} r b^{\prime}$. Also, about o as a center and with a radius $o r=r$ draw a eircle intersecting that previously drawn at r; then is $n r$ the required obiquity; and $x x \mid, b r, y y \| a r$ with respect to the normal on.

Peorar 4. In ato
Problem 4.-In a state of stress de fined by two given obliquities and intensities, to find the principal stresses, ard the relative position of their planes of action to each other and to the principal stresses.

mal $o n$, and $o r_{1}=r_{1}, o r_{3}=r_{2}$ the given inensities. As represented in the figure should they have different signs, it will be necessary to measure one of them from o in the opposite direction, for a change of sign is equivalent to increasing the obliquity by 180°, as was previously shown.
Join $r_{1} r_{2}$ and bisect it by a perpendicular which intersects the common normal at n. About n describe a circle $r_{r} r_{2} a^{\prime} b^{\prime}$; then $o a^{\prime}=a, o b^{\prime}=b, a^{\prime} r_{1}, b^{\prime} r_{r}$,
are the directions of the principal stresses with respect to r and $b^{\prime} r, a^{\prime} r$, with rewith respect to r_{3} and $b r_{2}, a^{\prime} r_{2}$ with re-
spect to $r_{2}, i . e ., b b^{\prime} r_{1}=x n_{1}$ and $o b^{\prime} r_{2}=\alpha n_{\text {, }}$ $\therefore n_{1} n_{2}=o b^{\prime} r_{3}-o b^{\prime} r_{1}=r_{2} b^{\prime} r_{1}=r_{2} a^{\prime} r_{1}$
In case the given obliquities are of opposite sign, as they must be in conjugate stresses, for example, it is of no consequence, in so far as obtaining principal
stresses a and b is concerned, whether these given obliquities are constructed on the same side of on, or on opposite sides of it; for a point on the opposite side of om, as r_{2}, and symmetrically situated with respect to r_{2}, must lie on the same circle about n. But in case opposite obliquities are on the same side of on we have $r_{1} n_{2}=o b^{\prime} r_{1}+o b^{\prime} r_{2}=r^{\prime} b^{\prime} r_{2}^{\prime}$
It is unnecessary to enter into the proof of the preceding construction as
its correctness is sufficiently evident from preceding problems.
The algebraic relationships may be written as follows:
$\frac{1}{4}(a-b)^{2}=\frac{1}{4}(a+b)^{2}+r_{2}^{2}-r_{1}(a+b) \cos n_{1} r_{1}$ $\frac{1}{4}(a-b)^{2}=\frac{1}{4}(a+b)+r_{3}{ }^{2}-r^{2}(a+b) \cos n_{2} r$, $\therefore(a+b)\left(r_{1} \cos n_{1} r_{1}-r_{2} \cos n_{2} r_{3}\right)=r_{1}{ }^{2}-r_{2}{ }^{2}$ Also $(a-b) \cos 2 x n_{1}+a+b=2 r_{1} \cos n_{1} r_{1}$ $(a-b) \cos 2 a m_{2}+a+b=2 r_{2} \cos n_{2} r_{1}$
which last equations express twice the respective normal components, and from them the values of $x n_{1}$ and $x n_{2}$ can be computed
Problem 5.-If the state of stress be defined by giving the intensity and obliquity of the stress on one plane, and its inclination to the principal stresses, and also the intensity of the stress on a In Fig. 9 let $n r_{3}, n r_{3}$ be the given second plane and its inclination to the obliquities measured from the same nor- principal stresses, to find the obliquity of
the stress on the second plane, and the magnitude of the principal stresses.
Let the construction in Fig. 9 be effected thus: from the common normal on lay off or to represent the obliquity and intensity of the stress on the first plane; draw od so that nod $=x n_{1}-x n_{1}$ the difference of the given inchations of the normals of the two planes
through r_{1} draw $r_{1} r_{2}$ perpendicular to od about o as a center describe a circle with radius r_{3} the given intensity on the second plane, and let it intersect r, r, a r_{3} or r^{\prime}, then is $n r_{\text {, the required obliquity }}$, This is evident, because
$x n_{1}=n b^{\prime} r_{1}=\frac{1}{2} a^{\prime} n r_{1}, x n_{2}=n b^{\prime} r_{2}=\frac{1}{2} a^{\prime} n r_{2}$, \therefore nod $=o n e=\frac{1}{2}\left(o n r_{1}+o n r\right.$,

$$
=180^{\circ}-\left(x n_{2}\right.
$$

If $x n_{1}$ and $a n_{2}$ are of different sig braic sum.
The construction is completed as in Problem 4.
Problem 6.-In a state of stress de fined by two given obliquities and either both of the normal components or both of the tangential components of the in tensities, to find the principal stresse and the relative position of the two planes of action.
If in Fig. 9 the obliquities $n r_{1}, n r_{2}$, and the normal components ot $t_{1}=n_{1}, o t_{2}=n$ $t_{\text {a }}$ intersecting or ond ond or, at r_{1} and r_{3} respectively.
spectively. and $t_{2} r_{2}=t_{2}$ are given instead of the normal components, draw at these distance parallels to on which intersect or, or, at ${ }_{r}, r_{r}$ respectively. Complete the con-

Problea 7.-In a state of stress de fined by its principal stresses a and b, to find the positions and obliquities of the stresses on two planes at right angles to each other whose stresses have a given tangential component t.
Fig. 9, slightly changed, will admit of the required construction as follows: lay bisect $a^{\prime} b^{\prime}$ at n; erect a perpendicul

; a perpendicular principal stresses; on $a^{\prime} b^{\prime}$ as a diameter
r_{3} at r_{1} and r_{2} respectively. Then the stresses or $r_{1}=r_{0}$, or $r_{3}=r_{\text {, }}$ have equal tan gential components, and as previously
hown these belong to planes at right ngles to each other provided these tanential components are of opposite sign. So that when we find the position of the planes of action, one obliquity, as $n r$, nust be taken on the other side of on, as $n r^{\prime}$. The rest of the construction is he same as that already given.
Problem 8.-In a state of stress dened by its principal stresses, to find the intensities, obliquities and planes of action of the stresses which have maximum tangential components.
In Fig. 9 make $o a^{\prime}=a, o b^{\prime}=b$ and In rig. 9 make $o a^{\prime}=a, o b^{\prime}=b$ and
describe a circle on $a^{\prime} b^{\prime}$ as a diameter; then the maximum tangential component is evidently found by drawing a tangent it r parallel to on, in which case $t=a-b$, nd $r b^{\prime}, r a$ the directions of the principal stresses make angles of 45° with on, which may be otherwise stated by saying that the planes of maximum ween the principal stresses; ween the principal stresses, or con-
versely the principal stresses bisect the versely the prineipal stresses bisect the
angles between the pair of planes at right angles to each other on which the tangential stress is a maximum.
It is unnecessary to extend further the list of problems involving the relations just employed as they will be readily lu by the reader.
In partioular, a given tangential and intensity and obliquity on any plane. We shall now give a few problems which exhibit specially the distinction between states of stress defined by principal stresses of like sign and by principal stresses of unlike sigu, (i.e. the distinction betweeñ oblique stress and blique shearing stress
Problem 9.-In a state of stress defined by like principal stresses, to find the inclination of the planes on which the obliquity of the stress is a maximum, to find this maximum obliquity and the intensity.
${ }_{\text {, }}$, then $n r_{0}$ is the required maximum
obliquity and or, the required intensity. It is evident from inspection that in the given state of stress there can be no greater obliquity than $n r_{\text {. }}$. The direcas has been before shown.
as has been perore shown.
obliquity, and or ${ }^{\text {r }}$, planes of maximum they are situated symmetrically about the principal axes.
Bisect $n r_{\text {, }}$ by the line od, then

- $o a^{\prime} r_{0}=y m \therefore o n r_{0}=2 y n_{\text {, }}$ but
$o n r_{0}+n o r_{0}=90^{\circ}$ or, $2 y n n+n r_{0}=90^{\circ}$ $\therefore \frac{1}{2} n r_{0}+y n=45^{\circ}$, but
$o d r_{0}=d o a^{\prime}+o a^{\prime} d \therefore o d r_{0}=-45^{\circ}$,
hence the line bisecting the angle maximum obliquity bisects also t angle between the principal axes. This final position of the planes of maximun obliquity with reference to the principal axes.
\int (\int (roblem 10.-In a state of stress defined by its maximum obliquity and the intensity at that obliquity, to find the principal stresses.
In Fig. 10 measure the obliquity nr from the normal on and at the extremity of or $=r$, erect a perpendicular inter-
secting the normal at n. Then complet secting the normal at n. Then complete
the figure as before. The principa axes make angles of 45° at o with od which bisects the obliquity $n r_{\text {。 }}$.
The algebraic statement of Problems 9 and 10 is:
$\sin n r_{0}=\frac{a-b}{a+b}=-\cos 2 x n, r_{0}^{2}=a b$.
$=a \cot x n=b \tan x n, \therefore a=b \tan ^{3} x n$ The normal and tangential compo. nents are:

$$
n_{0}=\frac{2 r_{0}{ }^{2}}{a+b}, \quad t_{0}=\frac{r_{0}(a-b)}{a+b} .
$$

Problem 11.-When the state of stress is defined by like principal stresses, to find the planes of action and intensities of a pair of conjugate stresses having a given common obliquity less than the maximum.

Fig. 10 let $n r_{1}=n r_{2}$ be the given obliquity; describe a circle on $a^{\prime} b^{\prime}$ as a diameter; then or $=r_{1}$, or $r_{2}=r_{2}$ are the required intensities. The lines $a^{\prime} r_{0}, b^{\prime} r$,
show the directions of the principal axes show the directions of the principal axes
with respect to or, and $a^{\prime} r^{\prime}, b^{\prime} r^{\prime}$, with with respect to $o r_{1}$, and ar $r^{\prime} r^{\prime}$ with
respect to or $r^{\prime}=o r$. The obliquities of conjugate stresses are of opposite sign, and for that reason r_{2}^{\prime} is employed for finding the position of the principal stresses. The algebraic expression of these results can be obtained at once from those in Problem 4
Problem 12.-W hen the state of stress is defined by the intensities and common obliquity of a pair of like conjugate stresves, to find the principal stresses and maximum obliquity.
This is the case of Problem 4, 80 far a finding the principal stresses is concerned and the maxi. in Fig. 10.
Problem 1s.- Let the maximum obliquity of a state of oblique stress be given, to find the ratio of the intensities of the pair of conjugate stresses having a given obliquity less than the maximum.
In Fig, 10 let $n r$, be the given maximum obliquity, anid $n r$ the given ob liguity of the conjugate stresses. At any convenient paint on or r_{0}, as $r_{\text {, erect }}$ the perpendicular $r_{0} n$, and about n (its point of intersection with on) as a center
describe a circle with a radius $n r$, which
cuts $n r_{1}$ at r_{4} and r_{3}; then or $\div o r_{3}=r_{1}$
$\rightarrow r$ is the required ratio, $\div r_{3}$ is the required ratio.
It must be noticed that the scale on which or r_{1} and or are measured is un kal stresses is unknown although thei ratio is $o b^{\prime} \div o a^{\prime}$. In order to expres these results in formulæ, let r represent either of the conjugate stresses, then as previously seen
$\frac{7}{4}(a-b)^{2}=\frac{1}{4}(a+b)^{2}+r^{2}-r(a+b) \cos n r$ $\therefore 2 r=(a+b) \cos n r \pm$
$\left[(a+b)^{2} \cos ^{2} n r-4 a b\right]^{3}$
Call the two values of r, r, and r and as previously shown $r_{0}^{2}=r_{1} r_{2}$; als

$$
\cos . n r_{0}=r_{0} \div \frac{1}{2}(a+b)
$$

$\therefore \frac{r_{1}}{r_{3}}=\frac{\cos n r-\left(\cos ^{2} n r-\cos ^{2} n r_{0}\right)^{x}}{\cos n r+\left(\cos ^{2} n r-\cos ^{2} n r_{0}\right)^{3 / 6}}$
When $n r=0$ the ratio becomes

$$
\frac{b}{a}=\frac{1-\sin n r_{0}}{1+\sin n r_{0}}
$$

Problem 14.-In a state of stress defined by unlike principal stresses, to find the inclination of the planes on which the stress is a shear only, and to find its intensity
\qquad a, $o b^{\prime}=b$, the iven principal stresses of unlike sign on $a^{\prime} b^{\prime}$ as a diameter describe a circle at o erect the perpendicular or cutting the circle at r_{0}; thren is or $=r_{0}$ the re quired intensity, and $b^{\prime} r, a^{\prime} r$, are the d
It is evident from inspection that there
It is evident from inspection that there, which will cause the stress to redace to
a shear alone. Hence as previously stated the principal stresses bisect the angles between the planes of shear.
Problem 15.-In a state of stress de
fined by the position of its planes of shear and the common intensity of the stress on these planes, to find the principal stresses.
In Fig. 11 let $o r_{0}=r_{0}$, the common in tensity of the shear, and $o r_{0} b^{\prime}=x n$ $r_{0} a^{\prime}=y n$ the given inclinations of a the principal stresses.
The algebraic statement of Problems

14 and 15 , when n_{0} denotes the norma to a plane of shear, is:

$= \pm a \cot x n_{0}= \pm b \tan 2 n_{0} a=-b \tan ^{2} x n_{0}$ Problem 16.-When the state of stress is defined by unlike principal tresses, to find the planes of action and intensities of a pair of conjugate stresses having any given obliquity.
In Fig. 11 let $n r_{1}$ be the common obiquity, $o a^{\prime}=a$, ob $=b$, the given principal stresses. On $a^{\prime} b$, as a diameter, describe a circle cutting or at r_{1} and r_{3}; hen $0 r_{1}=r_{1}, o r_{2}=r_{1}$ are the requires r_{3} conjugate stresses are of unlike sign, the ines $r_{1}^{\prime} a^{\prime}, r_{1}^{\prime} b^{\prime}$ show the directions of the principal stresses with respect to $0 n_{1}$
and $r_{3} a^{\prime}, r_{3} b^{\prime}$ with respect to on. n_{2}.
Problem 17.-When the state of stress is defined by the intensities and common obliquities of unlike conjugate stresses, to find the principal stresses and planes of shear.
In finding the principal stresses this problem is constructed as a case of Problem 4, and then the planes of shear are found by Problem 14. The construction is given in Fig. 11
Problem 18.-Let the position of the
planes of shear be given in a state of sent the position and magnitude of these oblique shearing stress, to find the ratio principal stresses. Since the given of the intensities of a pair of conjugate stresses are right shearing stresses stresses having any given obliquity
In Fig 11 at In Fig. 11 at any convenient point r planes of shear bisect the angles between nake or $b=x n$, or $a^{\prime}=y n$, the given previously shown that the intensity of ngles whin of the stress cansed by the principal stresses planes of shear. On $a a^{2}$ a diameter $a_{2}=-b_{1}$ is the same on every plane ommon abliquity make n, equal to the traversing 0 : the same is true of the obiquity of the conjugate principal stresses $a_{2}=-b_{2}$: hence, when stresses;
The ratio . of the same intensity on every plane Problem 13, may be expressed as in traversing o. This resultant state of Problem 13, and after reducing by the
relations
$r_{0}^{2}=-a b, \quad r_{0} \div \frac{1}{2}(a+b)=-\tan 22 n_{,}$
we have,
$\frac{r_{1}}{r_{3}}=\frac{\cos n r+\left(\cos ^{2} n r+\tan ^{2} 2 x n_{n}\right)^{1 / 2}}{\cos n r-\left(\cos ^{2} n r+\tan ^{2} 2 x n\right)^{1 / 2}}$
$r_{2} \cos n r>\left(\cos ^{2} n r+\tan ^{2} 2\right.$
When $n r=0$ the ratio becomes $-\frac{a}{b}=\frac{1+\cos 2 x n_{0}}{1-\cos 2 x n_{0}}$
combination and separation of states
Problem 19.- When two given states of right shearing stress act at the same point, and their principal stresses have a given inclination to each other, to combine these states of stress and find the resultant state.
In Fig. 12 let $o x_{1}$, ox, denote the di-
rections of the two given principal stresses, and let $a_{1}=o n_{1}, a_{2}=o n_{3}$ repre
 stress evidently does not cause a normal tress on every plane, hence the resultant state must be a right shearing stress,
het us find its intensity as follows : principal stresses $a_{1}=-b$, cause a stress on on the plane $y_{i} y_{1}$, and the principal stresses $a_{3}=-b_{3}$ canse a stress $o m_{2}$ on the same plane in such a direction that $x_{0} o m_{9}=x_{0} a x_{0}$, as has been before shown. Complete the parallelogram $n_{1} o m_{\mathrm{z}} r_{3}$; hen or, represents the intensity and direction of the stress on y, y_{1}. But the
principal stresses bisect the angles beprincipal stresses bisect the angles be-
tween the normal and the resultant intensity, therefore, ox, which bisects $x_{0}, r_{\text {, }}$, is the direction of a principal stress of the resultant state, and or $=0 r_{2}=a$ is he intensity of the resultant stress on any plane through o.
The same result is obtained by finding the stress the plane $y_{1} y_{2}$, in which case
we have on $n_{2}=a_{3}$ acting normal to the plane, and $o m=a$ in such a direction that $x_{1} o m_{1}=x_{1}, o x_{1}$. The sides and angles of $n_{2} 0 m_{1} r_{2}$ and $n_{1} o m_{2} r_{2}$ are evidently equal, hence the resultants are the same, $r_{1}=o r_{3}=a_{3}$ and $o x$ bisects $x_{2} o r$
The algebraic solution of the problem is expressed by the equation,
from which a may be found, and, finally, the position of or is found from the proportion,
$\sin 2 x x_{1}: a_{2} \because: \sin 2 x x_{2}: a_{1} \because: \sin 2 x_{1} x_{3} ; a$. Problem 20.-When any two states of stress, defined by their principal stresses, aet at the same point, and their principal stresses have a given inclination to each other, to combine these states and find the resultant state.
Let a_{1}, b_{1}, and a_{2}, b_{2}, be the given prin-
cipal stresses, of which a_{1} and a_{2} have and the principal stresses bisect the the same sign and are inclined at a angles between the given planes. known angle $x_{1} x_{2}$, but in so taking a_{1} Separate the remaining state of stress and $a_{\text {a }}$ they may not both be numerically into the fluid stress $+\frac{1}{2}\left(a_{n}+b_{n}\right)$ and greater than b_{1} and b_{2} respectively.

Separate the pair of principal stresses $a b_{1}$ into the fluid stress $+\frac{1}{8}\left(a_{1}+b\right)$, and stress with that due to the tangential the right shearing stress $\pm \frac{1}{2}\left(a_{1}-b_{1}\right)$ as components. The final result is found, thas been previously done; and in a simi- just as in Problem 20, by combining the lar manner the principal stresses $a_{2} b_{2}$ fluid stress $\frac{1}{2}\left(a_{n}+b_{n}\right)$ with the resulting into $+\frac{1}{2}\left(a_{2}+b_{2}\right)$ and $\pm \frac{1}{2}\left(a_{2}-b_{2}\right)$. Then right shearing stress.
the combined fluid stresses produce a This problem can also be solved in a fluid stress of $+\frac{1}{2}\left(a_{1}+b_{1}+a_{2}+b_{2}\right)$ on manner similar to that employed in every plane through 0 ; and the com- Problem 6.
bined right shearing stresses cause a The result is expressed by the equastress whose intensity and position can tions,
be found by Problem 19.
The total stress is obtained by bining the total fluid stress with sultant right shearing stress.
Of course, any greater number
states of stress than two, can be com
bined by this problem by combining the resultant of two states with a third state resultant of
The algebraic expression of the combination of any two states of stress is as follows:
$(a+b)=\left(a_{1}+b_{1}+a_{2}+b_{2}\right)$,
$(a-b)^{2}=\left(a_{1}-b_{3}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}$
$+2\left(a_{1}-b_{1}\right)\left(a_{2}-b_{2}\right)$
$a=\frac{1}{(}\left(a_{1}+b_{1}+a_{2}+b_{2}+\left[\left(a_{1}-b_{1}\right)^{2}\right.\right.$
$\left.\left.+\left(a_{2}-b_{2}^{2}\right)^{2}+2\left(a_{1}-b_{1}\right)\left(a_{2}-b_{2}\right) \cos 2 x_{1} x_{2}\right]^{1 / 2}\right)$,
$b=\frac{1}{2}\left(a_{1}+b_{1}+a_{2}+b_{2}-\left[\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{5}\right)^{2}\right.\right.$,
$\left.\left.+2\left(a_{1}-b_{1}\right)\left(a_{2}-b_{2}\right) \cos 2 x_{1} x_{2}\right]^{12}\right)$,
in which α and b are the resultant prin
cipal stresses. Also, $\sin 2 x x_{1}: a_{2}-b_{2}$
$: \sin 2 x x_{2}: a_{1}-b_{1}:: \sin 2 x_{1} x_{2}: a-b$.
Problim 21.-In a state of stress
defined by the stresses upon two planes
at right angles to each other, to find the principal stresses.
Let the given stresses be resolved into tangential and normal components; it has been shown that the tangential components upon these planes aro of equal intensity and unlike sign. Let the inensity of the tangential component be a_{t} and that of the normal components problem is one of frequent oceurrence, a_{n} and b_{n} respectively. The tangential and hence of any namber of simple components together constitute a state stresses lying in the same plane.
of right shearing stress of which the This prohlem is of such importance given planes are the planes of shear, that we think it useful to call attention
to another solution of it, suggested by the algebraic expressions just found
In Fig. 13 let
$o^{\prime} a^{\prime}=a_{1}, o^{\prime} b^{\prime}=a_{2} \therefore o^{\prime} r^{\prime}=\sqrt{a_{1} a_{2}}=o i$.
Now, if oir $=x_{1} x_{2}$, then or $=o^{\prime} r^{\prime} \sin x_{1} x_{2}$ $\therefore \overline{o r^{2}}=o a^{\prime} . o b^{\prime}=o^{\prime} a^{\prime} . o^{\prime} b^{\prime} \sin ^{2} x^{2} x_{2}$ $\therefore 0 a^{\prime}=a$ and $o b^{\prime}=b$.

This solution is treated more fully in Problem 23.
Prohiem 23.-When a state of stress is defined by its principal stresses, it i required to separate it into two simple stresses having a given inclination to each other.

It was shown in Problem 22 that $a+b=a_{1}+a_{2}$, and $a b=a_{2} a_{2} \sin x_{1} x_{2}$.
Let us apply these equations in Fig 13 to effect the required construction. Make $o a^{\prime}=a, o b^{\prime}=b$; then $a^{\prime} b^{\prime}=a_{3}+a_{2}$ At o erect a perpendicular to a cut ing the cirole of which $a b$ is the dia meter at r; then $o r^{2}=a b$, the product of
the principal stresses. Also make $a^{\prime} o i$ $=x, x$, the given inclination of the simple stresses, and let $r i \| l a^{\prime} b^{\prime}$ intersect o at i; then or $=o i \sin x_{1} x_{2} \therefore \overline{o r^{2}}=a, a$
Make $a j=a i$ and draw $j r^{\prime} \| a^{\prime} b^{\prime}$, then
$\begin{aligned} & o^{\prime} r^{\prime}=o i, ~ a n d ~ o^{\prime} a^{\prime} \cdot o^{\prime} b^{\prime} \\ & \because o^{\prime} a^{\prime}=a_{1}^{\prime} r^{\prime} \\ & \text { and } o^{\prime} b^{\prime}=a_{2},\end{aligned}$
the required simple stresses. This conthe required simple stresses. This con given principal stresses are of like or given principal stresses are of like or
unlike sign, and also equally whether the two simple stresses are required to have like or unlike signs.
Problem 24, - Wheni a state of stress is defined by its principal stresses, find the inclination of two given simple stresses into which it can be separated

In Fig. 13 let $o a^{\prime}=a, o b^{\prime}=b$ be the intensities of the principal stresses, and given simple stresses. It has been already shown that $a+b=a_{1}+a_{2}$. Draw the two perpendiculars or and $o^{\prime} r^{\prime}$ through r draw $r i \| l$
$=a^{\prime} b^{\prime}$; make $o i=0$
$=o^{\prime} r^{\prime}$; then is oir $=i o a^{\prime}$ the required $=o^{\prime} r^{\prime}$; then is oir $=10 a^{\prime}$ the required inclination, for it is such that

$$
a b=a_{1} a_{2} \sin ^{2} x_{1} x_{2}
$$

Problem 25.-To separate a state of right shearing stress of given intensity into two component states of right shear ing stress whose intensities are given, and to find the, mutual inclination of the principal stresses of the component

In Fig. 12, about the center o, deserib circles with radii $o n_{1}=a_{1}, o n_{2}=a_{2}$, the given component intensities; and also inout o at a distance $o_{1}=a$, the given $r, m_{1}=o n^{\prime}, r_{n}=o n$ cutting the first $r_{1} m_{1}=m_{2}, r_{0} n_{0}=n_{1}$ cutting the first
mentioned circles at $m_{\text {, }}$, and n_{2}; then is $\frac{1}{2} n_{2}, m_{1}=r x_{3}$, the required mutual inclina tion of the principal stresses of the component states. This is evident from considerations previously adduced in connection with this figure. The relative position of the principal stresses and rincipal component stresses is also readhe figure
Problem 26.-In a state of right shearing stress of given intensity to separate it into two component states of right shearing stress, when the intensity of one of these components is given and also the mutual inclination of the principal stresses of the component states. In Fig. 12, about the center o describe a circle r, with radius or $=a$, the intensity of the given right shearing stress, and at n_{1}, at a distance on $n_{2}=a_{1}$ from which is the inteusity of the given component, make $x_{2} n_{1} r_{2}=2 x_{1} x_{2}$, twice the given mutual inclination ; then is n, r intensity of the required component stress. The figure can be completed as was done previously.
It is evident, when the component a exceed a, that there is a certain maxi mum value of the double inclination, which can be obtained by drawing n, r
tangent to the circle $r r$, and the given inclination is subject to this restriction. Other problems concerning the combination and separation of states of stress can be readily solved by method like those already employed, for such problems can be made to depend on the combination and separation of the fluid stresses and right shearing stresses into which every state of stress can be separated.
properties of solid stress.
We shall call that state of stress at a point a solid stress which causes a stress on every plane traversing the point. In no mention was made of a stress o lane of the paper, to which the plane of the paper, to which the plane
stress was assumed to be parallel. It is, evidently, possible to combine a simple stress perpendicular to the plane of the paper with any of the states of stress eretofore treated winout chang the tress on any plane perpendicular to the paper.
Hence
Hence in treating plane stress we have Iready treated those cases of solid stress which are produced by a plane stress combined with any stress perpendicular to its plane, acting on planes also perpendicular to the plane of the paper. We now wish to treat solid stress in a somewhat more general manner, but as most practical cases are included in plane ment of solid stress are much greater than those of plane stress, we shall make much less extensive investigation of its properties.
Conjugate Stresses.-Let $x x, y y, z z$ be any three lines through o; now, if any state of stress whatever exists at O, and $x x$ be the direction of the stress on the plane $y o z$, and $y y$ that on zox, then is $z s$ the direction of the stress on xoy: i.e., each of these three stresses lies in the intersection of the planes of action o the other two.
Reasoning like that employed in con nection with Fig. 1, shows that no other direction than that stated could cause is a state of equilibrium, hence follows the truth of the above statement.

Tangential Components.-Let $x x$, $y y, z z$ be rectangular axes through o then, whatever may be the state of stress at 0 , the tangential components along $x=x$ and $y y$ are equal, as also are those along $y y$ and $z z$, as well as those along $z z$ and The truth of this statement flows a once from the proof given in connection with Fig. 3.
It shonld
It should be noticed that the total hear on any plane xoy, for example, is penents which are along $x x$ and $y y$ re ponents whi
State of Stress.-Any state of solid tress at o is completely defined, so that he intensity and direction of the stress on any plane traversing o can be completely determined, when the stresses on any three planes traversing o are given in magnitude and direction.
This truth appears by reasoning simiar to that employed with Fig. 4, for the three given planes with the fourth enclose a tetrahedron, and the total dislane is ince acting against the fourth flane is in equilibrium with the result
Peincipal Stresses.-In any state of solid stress there is one set of three conjugate stresses at right angles to each other, i.e. there are three planes at right ngles on which the stresses are normal

Si the tirection of the ons any Since the direction of the stress on any
plane traversing a given point o can only change gradually, as the plane only change gradually, as the plane through o ehanges in direction, it is
evident from the directions of the stresses on conjugate planes that there must be at least one plane through o on which the stress is normal to the plane Take that plane as the plane of the paper; then, as proved in plane stresses, there are two more principal stresses lying in the plane of the paper, for the
stress normal to the plane of the paper stress normal to the plane of the paper
has no component on any plane also perpendicular to the paper.
Fluid Stress.-Let the stresses on three rectangular planes through o be
normal stresses of equal intensity and $\frac{1}{4}(a-b-c)$ along c, and
like sign; then the stress on any plane through o is also normal of the same intensity and same sign.
This is seen to be true when we comFig. 5 , another'stress of the same intensity normal to the plane of the paper.
Right Sabaring Stress.-Let the stresses on three rectangular planes through a be normal stresses of equal intensity, but one of them, say the on along $x x$, of sign unlike that of the other two; then the stress on any plane through o, whose normal is $a^{\prime} x^{\prime}$ ', is of the sam intensity and lies in the plane cooc' in such a direction $r r$ that $a x$ and the plane $y z$ biseet the angles in the plane coox' be tween or and its plane of action, and rox' respectively.
The stress parallel to $y z$ is a plane uid stress, and eauses therefore a norma ress on the plane xox'. Hence the re as was proved in Fig. 6.
Component States of Stress.-Any state of solid stress, defined by its prin cipal stresses abc along the rectangla axes of xyz respectively, is equivalent to the combination of three fluid stresses, as follows

$$
\text { ong } x \text { and } y,-\frac{1}{2}(a+b) \text { along } z \text {; }
$$

$\frac{1}{2}(a+b)$ along 2 , $\frac{1}{4}(b-c-a)$ along y, and $\frac{1}{4}(c-a-b)$ along z, and along y and z ong x and y It will be seen that the total stresses ystem of $x y$ are $a b c$ respectively. This ystem of component stresses is remarkable because it is strictly analagous in its geometric relationships to the trammel imply state this relationship without imply state this relationship without
proof, as we shall not use its properties inoof, as we shall not use its properties
in our construction. If the distances p
elaid off along a straight line from the pont p, and then this straight be moved so that the points $a_{1} b_{1} c_{1}$ move respectively in the planes $y z, z x, x y$; then p will describe an ellipsoid, as is well known, whose principal semiaxes are long $x y z$ and are $a b c$ respectively. aid off in the same direction from p or in different directions; so that, in all, four different combinations can be made, ither of whick will describe the same llipsoid. But the position of these our generating lines through any asamed point x_{y}, y_{1}, of the ellipsoid is suc hat their equations are
$\frac{a}{x_{1}}\left(x-x_{1}\right)= \pm \frac{b}{y_{1}}\left(y-y_{1}\right)= \pm \frac{c}{z_{1}}\left(z-z_{1}\right)$ Now if the fluid stress $+(a+b+c)=o r_{1}$ be laid off along the normal to any plane, e. parailel to that generating line which in the above equation has all its signs positive, and the other three right shearing stresses $r_{r} r_{2} r_{1} r_{2}, r_{,} r_{2}$ be laid of uccessively parallel to the other generating lines, as was done in plane stresses,
the line or, will be the resultant stress on the plane.

PROBLEMS IN SOLID STRESS. Problem 27.-In any state of stress defined by the stresses on three rectangular planes, to find the stress on any given plane.

Let the intensities of the normal components along $x y z$ be $a_{n} b_{n} c_{n}$ respectTvely, and the intensities of the pairs of
tangential components which lie in the planes which interseet in $x y z$ and are
$\frac{1}{2}(b+e)$ along y and $2,-\frac{1}{2}(b+e)$ along y lowing combination:
$\frac{1}{2}(a+b)+\frac{1}{2}(c+a)-\frac{1}{2}(b+c)=a$, along x $(a+b)-\frac{1}{2}(c+a)+\frac{1}{2}(b+c)=b$, along y
In case $b=0$ and $c=0$ this is a simple stress along x.
Component Stresses,- Any state of solid stress defined by its princip stresses can aiso be separated into a faid
stress and three right shearing stresses, as follows:
$\frac{1}{4}(a+b+c)$ along $x, y, z ;$
perpendicular to those axes be $a_{t} b_{t} e_{t}$ re- In Fig. 14 let a plane parallel to the spectively, e.g., α_{t} is the intensity of the given plane cut the axes at $x_{1} y_{t} z_{1}$; then tangential component on $x o y$ along y, or the total forces on the area $x_{1} y_{1} z_{2}$ along its equal on xoz along z. xyz are respectively:

$\overline{x_{i} y_{2} z_{1}} \cdot a_{1}=\overline{y_{1} o z_{1}} \cdot a_{n}+\overline{x_{1} o y_{2}} \cdot b_{t}+\overline{z_{1}, x_{1}} \cdot c_{t}$ $x_{1} y_{1} z_{2}, b_{1}=y_{i} o z_{1}, c_{t}+x_{1} o y_{1} \cdot a_{t}+\overline{z_{1} o x_{1}} \cdot b_{n}$ $\overline{x_{1} y_{2} z_{1}} \cdot c_{1}=\overline{y_{1} o z_{1}} \cdot b_{t}+\overline{x_{1} o y_{2}} \cdot c_{n}+\overline{z_{1} o x_{1}} \cdot d$ in which $a_{1} b_{1} c_{1}$ are the intensities of the components of the stress on the plane $x_{1} y_{1} z_{1}$ along $x y z$ respectively. Now
$\overline{y_{2} o z_{2}} \div \overline{x_{1} y_{1} z_{1}}=\cos x n$
$\frac{z_{1} o x_{1}}{x-x_{1} y_{1} z_{1}}=\cos y n$
$\overline{x_{1}, y_{1}} \div x y_{1} z_{1}=\cos 2 n$. $x_{1}, y_{2} \div x_{1}, y_{2} z_{1}=\cos 2 n$. $\therefore \begin{aligned} a_{1} & =a_{n} \cos x n+b_{t} \cdot \cos z n+c_{t} \cos y n \\ b_{1} & =c_{t} \cos x n+a_{t} \cdot \cos z n+b_{n} \cos y n\end{aligned}$
$b_{1}=c_{t} \cos x n+c_{t} \cdot \cos 2 n+b_{n} \cos y n$
$\epsilon_{1}=b_{t} \cos x n+c_{n} \cdot \cos 2 n+a_{t} \cos y n$
and $r^{2}=a{ }^{2}+b^{2}+c^{2}$, therefore the result ant stress r is the diagonal of the right
 In order to construct a_{i}, b_{t}, it is only $o c_{t}=c$, and also let $o a_{t}=a_{t} o b_{t}=b_{t}$, necessary to lay off $a_{n} b_{n} c_{n}, a_{t} b_{t} c_{t}$ along the normal, and take the sums of such Let $a_{2} b_{2} c_{3}, a_{3} b_{2}^{\prime}{ }^{\prime} c_{2}^{\prime}{ }^{\prime}$ be the respective projections along $x y z$ as are indicated in projections of the points $a_{n} b_{n} c_{n}, a_{t} b_{t} c_{t}$ he above values of a, b, c_{1}.

The ground line between the planes of xoy and xoz is ox. The planes roz and yoz on being revolved about $o x$ and oy respectively, as in ordinary descriptive
geometry, leave $o z$ in two revolved posigeometry, leave oz in two revoived
tions at right angles to each other. The three projections of the normal The three projections of the normal
at o to the given plane are, as is well known, perpendicular to the traces of the given plane, and they are so represented. Let $o d_{z}$ be the projection of the normal on xoy, and oay that on xoz. To find the true length of the normal, revolve it about one projection, say about $o a_{z}$, and if $a_{z} a_{n}=a_{2} a_{y}$ then is position of the normal.
Upon the normal let
${ }_{0} C_{n}=\rho_{n}$, the given normal $o a_{n}=a_{n}$,

Thus, in Fig. 14, let $x_{1} y_{1} z_{1}$ be the lines parallel to oz, similarly a_{y}, etc., are traces of a plane, and it is required to projections by parallels to oy, and a_{z}^{\prime}, the stress upon a plane parallel etc., by parallels to $0 . x$.
to it through o. We have taken the stresses c_{n} and c_{ℓ} of
different sign from the others, and so a stress on that plane whose intensity is have called them negative and the others $a_{n}=o a_{n}$, then is $a_{n} \cos m n=0 a_{2}$ the inpositive. It is readily seen that the first of the acting on the plane yoz. The normal above equations is constructed as fol-component of this latter intensity is
lows:

$$
a_{1}=o a_{1}=o a_{2}+b_{t} b_{z}^{\prime}-c_{z}^{\prime} c_{2}^{\prime}
$$

Similarly, the other two equations become: and it is obtained by making $o a_{3}{ }^{\prime}=o a_{2}$ $a_{1}^{\prime} a_{z}{ }^{\prime} \| x_{1} y_{1}$, and $a_{z}{ }^{\prime \prime} a_{2} \| o y$. The tan gential component on $y o z$ is od in mag
nitude and direction, and it is thus: make $a_{z}{ }^{\prime} d=a_{2}{ }^{\prime} a_{1}^{\prime}$, then in the right angled triangle $d a_{s} a_{n}^{\prime}, d a$, is the magnitade of the tangential component; now make $o d^{\prime}=d a_{2}$. This tangential component can be resolved along the axes of y and z. The stress on the pr manner, since the tangential in componar manner, since the tangential componangles to each other and in a direction perpendicular to their intersection are, as has been shown, equal; the complete construction will itself afford a test of its accuracy.
Other simple stresses may be treated in he same manner, and the resultant stres on either of the three planes, due to thes agether the cous found by combining the components which act o tresses.
due to each of the simple From these results it is easy to show stresses,
or the complete and combination. It is sufficient to take the principal stresses. This is property of solid stress in a general acting on the plane, and then the algethose previously stated. braic sum of the tangential component
20. Any along two are ine plane whic
ing defined by given simple stresses, to yoz.
find the stresses on three planes at right The treatment of conjugate stresses in angles to each other. \quad general appears to be too complicated to In Fig. 14 let a simple stress act along at present construct the probe shall no the normal to the plane $x_{1} y_{1} z_{1}$, and cause in its treatment.

SCIENTIFIC BOOKS

pudusizd by
D. VAN NOSTRAND,
${ }_{23}$ Murray Street and ${ }_{27}$ Warren Street, NEW YORK.

Any Book in this Catalogue, sent free by mail on receipt of price.

> Weisbach's Mechanics. Fourth Edition, Revised. 8ro. Cloth. \$10.00. A Manual or Turonerical Mreranics. By Julius Weisbach, Ph. D. Translated from the fourth argmented and improved German edition, with an introduction to the Calculus, by Eckley B. Coxe, A. M., Mining Engineer. 1100 pages and 902 wood-cut illustrations.

Francis' Lowell Hydraulics.
Third Edition. 4to. Cloth. \$15.00.
Lowell Hydraulic Experiments-being a Selection from Experiments on Hydraulic Motors, on the Flow of Water over Weirs, and in ments on Hydraunic Motors, on tanals of Uniform Rectangular Section, made at Lowell, Mass, By J. B. Francis, Civil Engineer. Third edition, revised and enlarged, including many New Experiments on Gauging Water in Open Canals, and on the Flow through Submerged Orifices and Diverging Tubes. With 23 copperplates, beautifully engraved, and about 100 new pages of teat.

Kirkwood on Filtration.

4to. Cloth. \$15.00
Report on the Filitration of River Waters, for the Supply of Cities, as practised in Europe, made to the Board of Water Commis ilone of the City of SE Couis, By Jamzs P. Kirewood, Illustrated by 30 double-plate engravings.

Rogers' Geology of Pennsylvania. 3 Vols, 4 to, with Portfolio of Maps. Cloth. $\$ 30.00$.
The Geology of Penngyivania. A Government Survey. With a genThe Geology of Pexnsyivania, A Government Survey. With a general view of the Geology of the United States, Essays on the Coal ForAmerica and Great Britain. By Hzvry Darwir Roarrs, Late State Geologist of Pennolvania Splandidly illustrated with Plates and Engravings in the Tex

Merrill's Iron Truss Bridges.

 Third Edition. 4to. Cloth, $\$ 5.00$.Iron Truss Bridars yor Rathroads. The Method of Calculating Strains in Trusses, with a careful comparison of the most prominent Trusses, in reference to economy in combihation, etc., etc. By Brh. Col. Wieliay E. Merrile, U.S.A., Corps of Eagineers, Nine lithographed plates of illustrations.

Shreve on Bridges and Roofs.

 $8 \mathrm{ro}, 87$ wood-cut Illustrations. Cloth. $\$ 8.00$.A Treatise on the Strengtil of Bhedges and Roofs-comprising the determination of Algebraic formulas for Strains in Horizontal, Inclined or Rafter, Triangular, Bowstring, Lenticular and other Trusses, from fixed and moving loads, with practical applications and examples, for the use of Students and Engineers. By Samuel II. Shreve, A. M., Civil Engineer.

The Kansas City Bridge 4to. Cloth. 86.00
With an Account of tieg Regimen oy the Missouri River,-and a description of the Methods used for Founding in that River. By 0. Chanute, Chief Engineer, and George Morison, Assistant En Illustrated with five lithographic views and twelve plates of plans.

Clarke's Quincy Bridge

$$
\text { 4to. Cloth. } \$ 7.50
$$

Drscription of the Inon Railiway. Bridge across the Mississippl River at Quincy, Illinois. By Thomas Curtis Clarke, Chief Engineer. With twenty-one lithographed plans.

Whipple on Bridge Building.
New edition. 8vo. Mustrated. Cloth. \&s
an Elementary and Practical Treatise on Bridge Building. By S. Whipple, C. E. \qquad -

$$
\begin{aligned}
& \text { Roebling's Bridges. } \\
& \text { Imperial folio. Cloth } \$ 25.00 \text {. }
\end{aligned}
$$

Toyo and Short Span Railway Bridges. By fohn A. Roebling, C. E. With large copperplate engravings of plans and views.

Dubois' Graphical Statics.

80. 60 Ilustrations. Cloth. $\$ 2.00$

The New Method of Graphical Statics. By A. J. Dubois, C. B., Ph. D.

Eddy's Graphical Statics.

8vo. Illustrated. Cloth
New Constructions in Graphical Statics. By Prof. Henry T. Eddy, C. E., Ph. D. With ten engravings in text and nine folding plates.

Bow on Bracing.
150 mustrations on Stone. 8ro. Cloth. \$1.50.
A Treatiee on Bracing,-with its application to Bridges and other Structures of Wood or Iron. By Robert Henry Bow, C. E.

Stoney on Strains.

New and Revised Edition, with numerons Milistrations. Royal 8 ro , 664 pp .
Tife Tigory of Strains in Girdirs-and Similar Structures, with Observations on the Application of Theory to Practice, and Tables of Strength and other Properties of Materials. By Bindon B. Stoney, B. A.

Henrici's Skeleton Structures.

8vo. Cloth. \$1.50.

Sketeton Structures, especially in their Application to the building of Steel and Iron Bridges. By Olaus Henrici.

- 4

Burgh's Modern Marine Engineering.

 One thick sto vol. Cloth. $\$ 25.00$. Half morocco. $\$ 30.00$.Modern Marine Exgineering, applied to Paddle and Screw Propulsion. Consisting of 36 Colored Plates, 259 Practical Wood-cut Illussion. Consisting of trations, and 403 pages of Desoriptive Matter, the whole being an exposition of the present practice of the following firms: Messrs, J. Penn position of the present practice of the iollowing irms: Messrs, J. Penn
\& Sons; Messrs. Maudsiay, Sons \& Field; Messrs. James Watt \& Co. Messrs. J. \& G. Rennie; Messrs. R. Napier \& Sons ; Messrs. J. \& IV Dudgeon ; Messrs. Ravenhill \& Hodgson; Messrs. Humphreys \& Ten ant; Mr. J. T. Spencer, and Messrs. Forrester \& Co. By N. P. Burgi Engineer.

King's Notes on Steam.
Nineteenth Edition. 8 ro. $\$ 2.00$
Lessors and Practical Notes on Steam, -the Steam Engine, Propellers, sc., \&c., for Young Engineers. By the late TV. R. King, U. S. N. Revised by Chief-Engineer J. W. Kixa, U. S. Nary.

Link and Valve Motions, by W. S. Auchincloss.
Sirth Edition. 8ro. Cloth. 83.00 .
Application of the Slide Valve and Link Motion to Stationary, Portable, Locomotive and Marine Engines. By Wilinam S. Auchiscloss. Designed as a hand-book for Mechanical Engineers. Dimensions of the valve are found by means of a Printed Scale, and proportions of the link determined without the assistance of a model. With 37 wood-cuts and 21 lithographic plates, with copperplate engraving of the Travel Scale.

Bacon's Steam-Engine Indicator 12mo. Cloth. $\$ 1.00$ Mor. $\$ 1.50$.
A Treatise on the Rictards Stram-Enging Indicator,-with directions for its use. By Charles T. Porter. Revised, with notes and large additions as developed by American Practice, with an Appendix containing useful formuleo and rules for Engineers. By F. W. Bacos, M. E., Illustrated. Second Edition.

Isherwood's Engineering Precedents. Two Yols. in One. 8 ro. Cloth. $\$ 250$.
Exginerring Precedents for Steam Machinery.-By B. F. Isiepwood, Chief Engineer, U. S. Navy. With illustrations.

Slide Valve by Eccentrics, by Prof. C. W. MacCord.

$$
\text { 4to. Mustrated. Cloth, } \$ 3.00
$$

A Practical Treatise on the Slide Valve by Ecoentrics, A Pramining by methods the action of the Eccentric upon the Slide Valve, and explaining the practical processes of laying out the movemente, Valve, and explaining the practical processes of thaying out the movements,
adapting the valve for its various duties in the steam-engine. For the use of Engineers, Draughtemen, Machinists, and Students of valve motions in general. By. C. W. MacCord, A. M., Professor of Mechanical Drawing, Stevens' Institute of Technology, Hobolen, N. J.
Stillman's Steam-Engine Indicator.
12mo, Cloth. \$1.00

The Steam-Engine Indicator,-and the Improved Manometer Steam and Vacuum Gauges ; their utility and application. By Paul StillmaN. New edition. \qquad ndicator
Porter's Steam-Engine Indicator.
hird Edition. Revised and Enlarged. 8vo. Hustrated. Cloth. $\$ 3.50$.
A Treatise on the Richards Steam-Engine Indicator,-and the Development and Application of Force in the Steam-Engine. By Charles T. Porter.

McCulloch's Theary of Heat.
8 ro. Cloth. 3.50 .
A Treatise on the Mechanical Theory of Heat, and its Applications to the Steam-Engine. By Prof. R. S. McCulloch, of the Washington and Lee University, Lexington, Va.

Van Buren's Formulas.
8 vo . Cloth. $\$ 2.00$.
Infestiontions of Formulas, - for the Strength of the Iron parts of Steam Machinery. By J. D. Yux Bupev, Jr, C. E. Illustrated

Stuart's Successful Engineer 18mo. Boards. 50 cents.
How to Breome a Succrssfut Evarinerr. Being Hints to Youths intending to adopt the Profession. By Bervard Stuabt, Engineer. Sixth Edition.

6

SCIENTIFIC BOOKS PUBLISHED BY

Stuart's Naval Dry Docks.
Twenty-four engravings on steel. Fourth edition. 4to. Cloth. Sa.00. The Nayal Dry Doces of the United States. By Charles B. Stuart, Engineer in Chief U. S. Nary.
LER Ward's Steam for the Million. 8vo. Cloth. $\$ 1,00$.
Stean yor the Millios. A Popular Treatise on Steam and its Applieation to the Useful Arts, especially to Navigation. By J. H. WARD, Commander U. S. Navy.

Tunner on Roll-Turning.
1 rol-8vo. and 1 voL folio plates. $\$ 10.00$.
A Treatise on Roll-Turning for the Mayufacture of Iron, by Peter Tunarr. Translated by John B. Pearse, of the Pennsylvania Steel Works. With numerous wood-cuts, 8vo., together with a folio atlas of 10 lithographed plates of Rolls, Measurements, \&c.
Grüner on Steel.

$$
\text { 8ro. Cloth. } \$ 350 .
$$

The Manufacture of Sterl. By M. L. Grüner; translated from the French. By Levox Smith, A.M., E.M. ; with an Appendix on the Bessemer Process in the United States, by the translator. Illustrated by lithographed drawings and wood-cuts.

Barba on the Use of Steel. 12ma. Mustrated. Cloth. \$1.50.
The Use of Steel in Construction. Methods of Working, Apply ing, and Testing Plates and Bars. By J. Barda, Chief Naval

Constructor. Translated from the French, with a Preface, by A. L
Hollex, P.B. Hollex, P.B.
Bell on Iron Smelting.

$$
\text { 8ro. Clotk. } 86,00
$$

Chemical Paenomexa of Iron Smelting. An experimental and practical examination of the circumstances which determine the practical examination of the circumstances which determine the
capacity of the Blast Furnace, the Temperature of the Air, and the capacity of the Blast Furnace, the Temperature of the Air, and the
Proper Condition of the Materials to be operated upon. By Proper Condition of
I. Lowthian Bele.

The Useful Metals and their Alloys; Scoffren, Truran, and others.
Fifth Edition. 8vo. Half call. $\$ 3.75$
Tie Useful Metals and their Alloys, employed in the conversion of Iron, Copper, Tin, Zinc, Antinony, and Lead Ores, with their applications to the Industrial Arts. By Joun Scor fren, William Truran, William Clay, Robert Oxland Filliny Fatrbairx, W, C. Aitkin, and Whliam Vose Picegtt.
Collins' Useful Alloys.

$$
\begin{aligned}
& \text { 18mo. Flexible. } 50 \text { cents. } \\
& \text {. }
\end{aligned}
$$

The Private Book of Useful Alloys and Memoranda for Gold smiths, Jewellers, etc. By James E. Collins.

Joynson's Metal Used in Construction. 12 mo . Cloth. 75 cents.
Tife Aletals Used in Construction : Iron, Steel, Bessemer Metal, etc., etc. By Fraxcis H. Joynson. Illustrated.
Dodd's Dictionary of Manufactures, etc. 12 mo . Cloth. $\$ 1.50$.
Dictionari of Manufactures, Mining, Machinery, and the Iydustrial Abts. By George Dodd.

Von Cotta's Ore Deposits.
8vo. Cloth. \$4.00.
Treatise on Ore Deposits. By Bernhard Von Cotta, Professor of Geology in the Royal School of Mines, Freidburg, Saxony. Translated from the second German edition, by Frederice Prime, Jr., Mining Engineer, and revised by the author; with numerous illustrations.

Plattner's Blow-Pipe Analysis. Third Edition. Revised. 568 pages, 8ro. Cloth. $\$ 5.00$.
Plattaer's Manual of Qualitative and Quantitative Analysis with the Blow-Pipe. From the last German edition, Revised and enlarged. By Prof. Th. Richter, of the Royal Sayon Mining Academy. Translated by Professor H. B. Cornwall; assisted by Johs H. Caswble. With eighty-seven wood-cuts and Lithographis Plate.

Prescott's Proximate Organic Analysis. 12mo. Cloth. $\$ 1.75$
The Blow-Pipe: A Guide to its Use in the Determination of Salts The Blow-Prpe: A Guide to its Use in the Determination of Salts
and Minerals. Compiled from various sources, by Geonge W. and Minerals, Compiled from rarious sources, by George N.
Plymptos, C.E., A.ML, Professor of Physical Science in the Polytechnic Institute, Brooklyn, N.Y.

Pynchon's Chemical Physies.
New Edition. Revised and enlarged. Crown 8ro. Cloth. $\$ 3.00$.
Introduction to Cuemical Paysics; Designed for the Use of Academies, Colleges, and High Schools. Dlustrated with numerous engravings, and containing copious experiments, with directions for preparing them. By Troasas Ruggles Praichox, M.A., President of Trinity College, Hartford.
Eliot and Storer's Qualitative Chemical New Edition. Analysis.
New Edition. Revisod. 12 mo , Hostrated. Cloth. $\$ 1.50$.
A Compendious Manual of Qualitative Chemical analysis. by Charles W. Eliot and Frank H. Storer. Revised, with the coöperation of the Authors, by Wileras Ripley Nichols Professor of Chemistry in the Massachusetts Institute of Technology,

Prescoty's Proximate Orga
Outlines of Proximate Organic Analysis, for the Identification, Separation, and Quantitative Determination of the more commonly occurring Organic Compounds. By Albert B. Prescott, Professo of Organic and Applied Chemistry in the University of Michigan.

Prescott's Alcoholic Liquors. 12mo. Cloth. \$1.50.
Ciemical Examination of Alcoiolic Liquors.-A Manual of the Constituents of the Distilled Spirits and Fermented Liquors of Commerce, and their Qualitative and Quantitative Determinations. By Albert B. Prescott, Professor of Organic and Applied Chemistry in the University of Michigan.
Prescott and Douglas's Qualitative Chemical Analysis.
Second Edition. Revised. 8vo. Cloth. $\$ 3.50$
A Guide in the Practical Study of Chemistry and in the Work of Analysis,
Pope's Modern Practice of the Electric Telegraph.

Giimore's Limes and Cements.

 Fith Edition. Revised and Enlarged. 8vo. Cloth. \$4.00.Practical Treatise on Limes, Hypraulic Cements, and Mortars. By Q A. Gilmore, Lt-Col. U, S. Corps of Engineers. Brevet Major-General U. S. Army.

Gillmore's Coignet Beton Nine Plates, Views, eta. 8vo. Cloth. $\$ 250$.
Cohget Beton and Other Artifictal Stone.-By Q. A. Gill mork, Lt-Col. U. S. Corps of Engineers, Brevet Major-General U.S. Army.
Gillmore on Roads. Seventy Illustrations. 12mo. Cloth. $\$ 2.00$
A Practical Treatise on the Constauction of Roads, Streets, and Payemeyts. By Q. A. Gillmore, Lt-Col. U. S. Corps of Engineers, Brevet Major-General U. S. Army.

Gillmore's Building Stones.

$$
\text { 8vo Cloth } \$ 1.00
$$

Report on Strengti of the Buildina Stonks in tife Unitei Etates, etc.

Holley's Railway Practice

$$
1 \text { vol. folio. Cloth. } \$ 12.00
$$

American and Europgan Ratlway Practice, in the Economical Generation of Steam, including the materials and construction of Coal-burning Boilers, Combustion, the Variable Blast, Vaporization Circulation, Super-heating, Supplying and Heating Feed-water, \&c and the adaptation of Wood and Coke-burning Engines to Coalburning; and in Permanent Way, including Road-bed, Sleepers Rails, Joint Fastenings, Street Railways, etc., eto. By Alexander L. Holley, B.P. With 77 lithographed plates.

Useful Information for Railway Men

$$
\text { Pocket form. Horoceo, gilt. } \$ 2.00 \text {. }
$$

Compiled by W. G. Hasmiton, Engineer. New Edition, Rayise and Enlarged. 577 pages.

Stuart's Civil and Military Engineers America.
8ro. mustrated. Cloth. \$5.00.

The Civil and Mifitary Engineers of America. By Genera Cen Baval Dry Docks of the Unite States," etc., ete. Embellished with nine finely-executed Portrait on steel of eminent Engineers, and illustrated by Engravings of som of the most important and original works constructed in America

Ernst's Manual of Military Engineering 193 Wood-cuts and 3 Lithographed Plates. 12mo. Cloth. $\$ 5.00$.
Munal of Practical Military Enginekring. Prepared for thancal of Cadets of the U. S. Military Academy, and for Engineer Pr Capt O. II. Eryst, Corps of Engineers, Instructor in Practical Military Engineering, U. S. Military Academy.

Simms' Levelling.

$$
\text { 12mo. Cloth. } \$ 2.50
$$

A Treatise on the Priveiples and Practice of levelling, showing its application to purposes of Railway Engineering and the Construction of Roads, etc. By Frederick W. Simms, C.E. From the fifth London edition, Revised and Correcta, with Ray Curves. Mr. Law's Practical Examples for Setting-out Rainay

$$
\begin{aligned}
& \text { Illustrated with three lithographic plates and numerous } \\
& \text { Jeffers' Nautical Surveying. }
\end{aligned}
$$ Ilustrated with 9 Copperplates and 31 Wood-cut Ilustrations. 8vo. Cloth. 80.00 . Nautical Surveying. By Wilham N. Jeffers, Captain U. S. Nary. \qquad

Text-book of Surveying.
8 vo. 9 Lithograph Plates and seyeril Wood-cuts. Cloth. $\$ 2.00$. Text-book on Surveying, Projections, and Portable Instbuments, for the use of the Cadet Midshipmen, at the U. S. Naval Academy.

> The Plane Table.
> 8vo. Cloth. $\$ 2.00$.

Its Uses in Torographical Surveying. From the papers of the U. S. Coast Survey.

Chauvenet's Lunar Distances.

 8va. Cloth. $\$ 2.00$.New Mrthod of Correcting Lunar Distances, and Improved Method of Finding the Error and Rate of a Chronometer, by equal altitudes. By War. Cuauvexer, LL.D., Chancellor of Washington University of St. Louis.

Burt's Key to Solar Compass.
Second Edition. Pocket-book form. Tuck. $\$ 2.50$.
Key to the Solar Conpass, and Surveyor's Companion; comprising all the Rules necessary for use in the Field ; also Description of the Linear Surveys and Public Land System of the United States, Notes on the Barometer, Suggestions for an Outfit for a Survey of Four
Months, eto. By W. A. Months, eto. By W. A. Burt, U. S. Deputy Surveyor.

Howard's Earthwork Mensuration

$$
\text { 8vo. Mllustrated. Cloth. } \$ 1.50 \text {. }
$$

Earthwork Mexsuration on the Basts of the Prismoddal Formule. Containing simple and laborsaving method of obtainin Prismoidal Contents directly from End Areas. Illustrated by Examples, and accompanied by Plain Rules for practical uses, By Cosway R. Howard, Civil Eugineer, Richmond, Vu.

Morris' Easy Rules.

78 Mivestrations. 8 ro. Cloth. \$1.50.
Easy Rules for the Measuremext of Earthworks, by means of the Prismoidal Formula. By Elwood Morris, Civil Engineer.
Clevenger's Surveying.

A Treatise on the Metriod of Goocket git. 8250
A Treatise on the Method of Government Surveyina, as prescribed by the U. S. Congress and Commissioner of the General
Land Office. With complete Mathematical, Astronomical, and Prac Land Office. With complete Mathematical, Astronomical, and PracStudents who contemplate engaging in the business of Public Surveying. By S. V. Clevenger, U. S. Deputy Surveyor.
Hewson on Embankments.

$$
\text { 8vo. Cloth. } \$ 200 \text {. }
$$

Principles and Practice of Embanking Lands from River Floods, as applied to the Levees of the Mississippi. By Wimitas Hewsox, Civil Eugineer

Minifie's Mechanical Drawing.

$$
\text { Ninth Edition. Royal 8vo. Cloth. } \$ 4.00 \text {. }
$$

A Text-Boof of Grometrical Drawing, for the use of Mechanics and Schools. With illustrations for Drawing Plans, Seetions, and Elevations of Buildings and Machinery ; an Introduction to Isometri cal Drawing, and an Essay on Linear Perspective and Shadows With over 200 diagrams on steel. By Willian Mixtfie, Architec With an Appendix on the Theory and Applicatio

Minifie's Geometrical Drawing.
New Edition. Enlarged. 12 mo . Cloth. $\$ 2.00$.
Grometrical Drawing. Abridged from the octaro edition, for the use of Schools. Illustrated with 48 steel plates.

Free Hand Drawing. Profusely Illustrated. 18 mo . Boards. 50 cents.
A Guide to Ornamental, Figure, and Landscape Drawing. By an Art Student.

The Mechanic's Friend. 12 mo . Cloth. 300 Illustrations. $\$ 1.50$.
Tife Mechanic's Friend. A Collection of Receipts and Practical Suggestions, relating to Aquaria-Bronzing-Cements-Drawing-Dyes-Electricity-Gilding-Glass-working-Glues-Horology-Lac-quers-Locomotives-Magnetism-Metal-working-Modelling - Pho-tography-Pyrotechny-Railways - Solders - Steam-Engine - Tele graphy-Taxidermy-Varnishes-Waterproofing-and Miscellareous Tools, Instruments, Machines, and Processes connected with the Chemical and Mechanical Arts. By William E. Axon, M.R.S.L.

Harrison's Mechanic's Tool-Book. 44 Illustrations. 12mo. Cloth. \$1.50.
Mrchanics' Tool Book, with Practical Rules and Suggestions, for the use of Machinists, Iron Workers, and others. By W. B. Harrisox. Randall's Quartz Operator's Hand-Book.
12 12mo. Cloth $\$ 200$.
Quartz Operator's Hand-Book. By P. M. Randall. New edition, Revised and Enlarged. Fully illustrated.

Joynson on Machine Gearing.

 8vo. Cloth ' $\$ 2.00$.The Meczanic's And Student's Guide in the designing and Construction of General Machine Gearing, as Eccentrics, Screws, Toothed Wheels, etc., and the Drawing of Rectilineal and Curved Surfaces. Edited by Franers H. Joynson. With 18 folded plates.

Silversmith's Hand-Book.
Fourth Edition, Hustrated 12 mo . Cloth, $\$ 3.00$.
A Practical Hand-Book for Miners, Metallurgists, and Assayers By Julius Sinverssitif. Illustrated

Barnes'Submaxine Warfare.
8ro, Cloth. sc.00.

Submartag Warfare, Defensive and Offenstye. Descriptions Submarlase Warfabe, Defensive and Offensiye. Descriptions
of the various forms of Torpedoes, Submarine Batteries and Torpedo Boats actually used in War. Methods of Ignition by Machinery, Contact Fuzes, and Electricity, and a full account of experiments made to determine the Explosive Force of Gunpowder under Water. Also a discussion of the Offensive Torpedo system, its effect upon Also a discussion of the Offensive Torpedo system, its effect upon
Iron-clad Ship systems, and influence upon future Naval Wars. By Iron-clad Ship systems, and influence upon future Naval Wars. By
Lieut.-Com. John S. Barnes, U.S.N. With twenty lithographic plates and many wood-cuts.
Foster's Submarine Blasting.

$$
\text { 4to. Cloth } \$ 3.50
$$

Submarine Blasting, in Boston Harbor, Massachusetts-Removal of Tower and Corwin Rocks. By John G. Foster, U. S. Eng. and Byt. Major-General U. S. Army. With seven plates.

Mowbray's Tri-Nitro-Glycerine

$$
\text { 8ro. Cloth. Ilustrated. } \$ 3.00 \text {. }
$$

Tri-Nitro-Glycrrine, as applied in the Hoosac Tunnel, and to Sub-Tri-Nitro-Glycerine, as applied in the Hoosac Tunnel, and to Sub-
marine Blasting, Torpedoes, Quarrying, eto. marine Blasting, Torpedoes, Quarrying, etc.

Williamson on the Barometer.

$$
\text { 4to. Cloth. } \$ 15.00 \text {. }
$$

On the Use of the Barometer on Surveys and Reconnatssances. Part I.-Meteorology in its Connection with Hypsometry. savces. Part 1.-Meteorology in its Connection with Hypsometry.
Part II.-Barometric Hypsometry. By R. S. WriliAnsos, Bvt. Lt.-Col. U. S. A., Major Corps of Engineers. With illustrative tables and engravings.

Williamson's Meteorological Tables

4to. Flexible Cloth. $\$ 2.50$.
Prictical Tapieg in Metrorology and Hypsoyetry, in connection with the use of the Barometer. By Col. R. S. Williamson, U.S.A.

Butler's Projectiles and Rifled Cannon.

$$
\text { 4to. } 36 \text { Plates, Cloth. } \$ 7.50
$$

Prorecil A Critical Discussion of the Proueches and Riflad Cannon. A Cher with Praction Suge Preipal Syster ore Corps, U. S. A.

Benet's Chronoscope.
second Edition. Hustrated. 4to. Cloth, $\$ 3.00$
Electro-Ballistic Machines, and the Schuitz Chronoscope
Electro-Ballistic Machines, and the Schultz
Lt-Col. S. V. Benet, Chief of Ordnance U. S. A.
Michaelis' Chronograph

$$
\text { 4to. Illustrated. Cloth. } \$ 3.00 \text {. }
$$

The Le Boulengé Cirronograpir. With three lithographed folding plates of illustrations. By Brt. Captain O. E. Mrciaelis, Ordnance Corps, U. S. A.

Nugent on Optics
19mo. Cloth. \$1.50.
Treatise on Optics ; or, Light and Sight, theoretically and practically treated; with the application to Fine Art and Industrial Pursuits. By E. Nugent. With 103 illustrations.

Peirce's Analytic Mechanics. 4to. Cloth \$10.00.
System of Analytic Mechanics. By Benjamit Peirce, Proystem of Analytic Mrchanics. By Bexjamin Perrce,
fessor of Astronomy and Mathematics in Harvard University.

Craig's Decimal System
Square 32 mo . Limp. 50 c
Weigits and Measures. An Account of the Decimal System, with Tables of Conversion for Commercial and Scientific Uses. By B. F.

Alexander's Dictionary of Weights and Measures.

$$
\text { Ner Edition. } 8 \text { ro. Cloth, } \$ 3.50 \text {. }
$$

Daiversal Dictioxary of Weights and Measures, Ancient and riversal Dictioxary of Weighis and Unasura, Ancient and By J. H. Alexander

Elliot's European Light-Houses 51 Engravings and 21 Wood-cuts. 8vo. Cloth, $\$ 5.00$
Europeax Light-House Systems. Being a Report of a Tour of Inspection made in 1873. By Major George H. Elliot, U. S. Engineers.

Sweet's Report on Coal
With Mrape. 850 . Cloth \$3.00
Special Report on Coal. By S. H. Sweet.
Colburn's Gas Works of London.
12 ma . Boards. 60 cents.
Gas Works of Loxdon. By Zerai Colburn.
Walker's Screw Propulsion. 8 ra . Cloth. 75 cents.
Notes on Screw Propulsiox, its Rise and History. By Capt. W. IH. Walker, U. S. Nayy

Pook on Shipbuilding.
8ro. Cloth, Illustrated. $\$ 5.00$.
Metiod of Preparing the Lines and Draughting Vessel.s Propeleed by Sail or Stean, including a Chapter on Laying-off on the Mould-loft Floor. By Samuer M. Poor, Naval Constructor

> Saeltzer's Acoustics.

Trentise on Acoustics in connection with Ventilation. By Alex. ander Sablitzer.

Eassie on Wood and its Uses. 250 Illustrations. 8 vo . Cloth. $\$ 1.50$.
A Hand-book for the Use of Contractors, Builders, Architects, Engineers, Timber Merchants, etc., with information for drawing up Designs and Estimates.

Wanklyn's Milk Analysis.

$$
\text { 12mo. Cloth. } \$ 1.00 \text {. }
$$

Mrik Avalysis. A Practical Treatise on the Examination of Milk and its Derivatives, Cream, Butter, and Cheese. By J. Alfred $\mathrm{W}_{\text {ankity, }}$ M.R.C.S.

Rice \& Johnson's Differential Functions.

$$
\text { Paper, 12mo. } 50 \text { cents. }
$$

On a New Method of Obtaning the Differentials of Fuxc tions, with especial reference to the Newtonian Conception of Rate or Veloities. By J. Mrrot Rice, Prof of Mathematice, U. S. Nawy, and W. Woorsex Jourson, Prof. of Mathematics, St. John's College, Annapolis. \qquad
Coffin's Navigation. Fith Edition, 12 mo . Cloth. $\$ 3.50$.
Navigation and Nautical Astronomy. Prepared for the use of the U. S. Naval Academy. By J. H. C. Covern, Professor of Astronomy, Navigation and Surveying ; with 52 wood-cut illustra-
tions.

Clark's Theoretical Navigation,

 8vo. Cloth. $\$ 3.00$.Theoretical Navigation and Nautical Astronomy. By Lewis Clark, Lieut.-Commander, U. S. Navy. Illustrated with 41 woodcuts, including the Vernier.

Toner's Dictionary of Elevations.

8vo. Paper, $\$ 3.00$ Cloth, $\$ 3,75$.
Dictionary of Elevations and Climatic Rrgister of the Dictionary of Elevations and Climatic Register of the Uxited States. Containing, in addition to Elevations, the Latitude Mean Annual Temperature, and the total Annual Rain Fall of many
Localities ; with a brief introduction on the Orographio and Physical Peculiarities of North America. By J. M. Toser, M.D.
xili. A Practical Treatise on the Gases Met Witil in Coal Mises. By the late J. J. Athinson, Government Inspector of Mises. By the late J. J. Athinson, Gove
Nines for the County of Durham, England.
XIV. Frictiox of Air in Mines. By J. J. Ateinsos, author of "A Practical Treatise on the Gases met with in Coal Mines."
XV. Skew Arches. By Prof. E. W. Hyde, C.E. Illustrated with numerous engravings and three folded plates.
XVI. A Graphic Method for Solving Certain Algebrate Equations. By Prof. George L. Vose. With Illustrations.
XVII. Water and Water Supply, By Prof. W. H. Corfield, M.A., of the University College, London.
XVIII. Sewerage and Sewage Utilization. By Prof. W. H. Corfield, M.A., of the University College, London.
XiX. Strengtil of Beams Under Transverse Loads. By Prof. W. Aleana, author of "Theory of Arches," With Illustrations.
XX. Bridar and Tunnel Centres. By Johy B. MeMasters, C.E. With Illustrations.
XXI. Safety Valves. By Richard H. Buel, C.E. With Illustrations.
XXII. Higi Masonry Dams. By John B. McMasters, C.e. With Illustrations.
XXIII. The Fatigue of Metals under Repeated Strains, with various Tables of Results of Experiments. From the German of Prof. Ludwig Spangenberg. With a Preface by S. H. Sureve, A.M. With Illustrations.
xxiv. A Practical Tatitise on tere Teete of wheris, with the A Practical treatise of the use of Robinson's Odontograph. By S. W. Robissox, Prof. of Mechanical Engineering, Ilinois Industrial University.
XXV. Theory and Calculations of Continuous Bridges. By Maxsfield Merriman, C.E. With Illustrations.
XXVI. Practionl Treatise on the Properties of Contincous Bridges. By Charles Bender, C.E.

Michaelis' Chronograph

(too. Illustrnted. Cluth. $\$ 8.00$
The Le Boulenge Chrosograph. With three lithographed folding plates of illustrations. By Brevet Capt. O. E. Michaelis, First Lieutanant Ordmance Corps, If. S. Army
ALERE FL Bonet's Chronoscope.
WR Second Edition. Mustrated. 4to. Cloth. $\$ 3.00$.
Electro-Ballistic Machines., and the Schultz Chronoscope. Dy Electro-Balustic Machuses., and the Schultz
Gemi, S. V. Benct, Chief of Ordnance, U. S. Army.
Dufour's Principles of Strategy and Grand
Tactics. \rightarrow
Tactics.

Tife Prisciples of Strategy and Ganan Tactics. Translated Tire Principles of Strategy And Grand Tactics. Translated
from the French of Genemal G. II. Dufour. By William P. Craighill, from the Trench of Gencral G. II. Dufour. Dy Wiliam P. Crigghill,
U. S. Engr, and Jate Assistant Professor of Engineering, Military Academy, West Point. From the Last French edition. Ilustrated.
Jomini's Life of the Emperor Napoleon.

$$
\text { - } 4 \text { rols 8ro., and Athas, Cloth. Hall Call. }
$$

Mritary and Political Life of tire Emperor Napolzox. By Baron Jomini, General-in-Chief and Aid-de-Camp to the Emperor of Russia. Translated from the French, with Notes, by II. W. Halleck, LL.D., Major-General U. S. Army. With Co Maps and Plans

Jomini's Campaign of Waterloo.
Third Eaition, 12 mo . Cloth. $\$ 1.25$.
The Political and Minitary Histony of the Campatay of TVaterioo. Translated from the Irench of General Baron de Jomini, by Genl. S. V. Benet, Chief of Ordnance.

Jomini's Grand Military Operations. 2 vols. 8 roo, and Aths. Cloth, $\$ 15.00$. Hall Calt or Morocoo, $\$ 21$. Half Rassin,
Treatise on Grand Militaity Operations. Illustrated by a Critical and Military History of the Wars of Frederick the Great. With a Summary of the Most Important Principles of the Art of War. Dy Baron de Jomini. Mustrated by Maps and Plans. Translatad from Baron de Jomini. Ilustrated by Maps and Plans. Translated if
the Freneh by Col. S. D. Holabird, A. D. C., U. S. Army.

Rodenbough's Everglade to Canon. Royal 8vo. Hustrated with Chromo-Lithographs. Extra Cloth. 57.50 . Everglade to Canox, with the Second Dragoons (Second U. S. Caralry), an authentic account of service in Florida, Mexico, Virginia and the Indian Country, including Personal Recollections of Distinguished Officers. By Theo. F. Rodenbough, Colonel and Brevet BrigadierGeneral, U. S. Army.

History of Brevets

Crown svo. Extra Cloth, $\$ 3.50$.
The Histony and Legal Effects of Begvets in the Armies of Great Britain and the United States, from the origin in 1002 until the present time. By Gen. James B. Fry, U. S. Army.
Barre Dupareg's Military Art and History. 8 80. Cloth. $\$ 5.00$.
Elements of Military Ant and Histois. By Edward de la Dairé Elements of Military Ant and Hision. By Dunio dinne, and Dupareq, Chef do Bataillon of Professor of the Military Art in tho Imperia.
Translated by Colonel Geo. W. Cullum, U. S. E.

Discipline and Drill of the Militia. Crown 8vo. Flexible cloth. $\$ 2.00$.
Tie Discipline and Drill of the Militia. By Major Frank S, Arnold, Assistant Quartermaster-General, Rhode Island.

Wallen's Service Manual. 12mo. Cloth, $\$ 150$.
Skrvice Manval for the Instruction of newly appointed Commissioned Officers, and the Rank and File of the Army, as compiled from Army Regulations, The Articles of War, and the Customs of Service. By Henry D. Wallen, Bvt. Brigadier-General U. S. Army.

Boynton's History of West Point.
Second Daition, 8vo. Fancy Cloth. $\$ 3,50$.
Histony or West Ponst, and its Military Importance during the American Revolution; and the Origin and Progress of the United States Military Academy. By Bvt. Maj. Edward C. Boynton, A. M Adjutant of the Niilitary Academy. With 30 Maps and Engraving

MILITARY BOOKS PUBLISHED BY

Wood's West Point Scrap-Book.

 8ro, Extra Cloth. $\$ 5.00$The West Ponit Scrap-Book. Being a Collection of Legends, Stories, Songs, \&e. By Lieut. O. E. Wood, U. S. A. With 60 wood-cut Hlustrations. Beautifully printed on tinted paper.
MIERE WM West Point Life Oblong 8ro. Cloth. $\$ 2.50$.
Fest Point Lafe. A Poem read before the Dialectic Society of the United States Military Academy. Illustrated with twenty-two fullpage Pen and Ink Sketches., By A Cadet. To which is added the song, "Benny Havens, Oh!"

Gillmore's Fort Sumter
8vo. Cloth - $\$ 10,00$. Hall Russia, $\$ 12.00$.
Guluore's Fort Sumter. Official Report of Opeat .int it
Gillmore's Fort Sumter. Official Report of Operations against the Defences of Charleston Harbor, 1863. Comprising the descent upon Morris Island, the Demolition of Fort Sumter, and the siege and reduction of Forts Wagner and Gregg. By Maj-Gen. Q. A. Gill-
more, U. S. Engineers. With 76 lithographic plates, views, maps, etc.
Gillmore"s Supplementary Report on Fort

$$
\begin{aligned}
& \text { Sumter. } \\
& \text { svo. Cloth. }
\end{aligned}
$$

Supplemextary Report to the Engineer and Artillery Operations against the Defences of Charleston Harbor in 1863. By Maj.-Gen. Q A. Gillmore, U. S. Engineers. With Seven Lithographed Maps and Views.

$$
\begin{aligned}
& \text { Gillmore's Fort Pulaski. } \\
& \text { 8vo. Cloth, } \$ 2.50
\end{aligned}
$$

siege and Reductiox of Fort Pulaski, Georgia. By Maj.Gen. Q. A. Gillmore, U. S. Engineers, Illustrated by Maps and Views.

Barnard and Barry's Report.

$$
8 \mathrm{ro} \text {. Cloth. } 84.00 \text {. }
$$

Bepont of tite Engineer and Artillery Oferations of the Army of the Potomac, from its Organization to the Close of the Peninsular Campaigb. By Maj-Gén. J. G. Barnard, U. S. Engineers, and Maj.-Gen. W. F. Barry, Chief of Artillery. Illustrated by 18 Maps, Plans, \&e.

D. VAN NOSTRAND.

Guide to West Point. 18mo. Flexible Cloth. \$1,00
Guide to West Point and the U. S. Military Academy. With Maps and Engravings.

Barnard's C. S. A., and the Battle of Bull Run. 8vo. Cloth, $\$ 2.00$.
The "C. S. A.," and the Battle of Bull Run. By Maj-Gen. J. G. Barnard, U. S. Engineers. With five Maps.

Barnard's Peninsular Campaign. 8ro, Cloth. \$1.00. 12mo. Paper 30 c .
The Pexinsular Campaige and its Antecedents, as developed by the Report of Maj.-Gen. Geo. B. McClellan, and other published Documents. By Maj.-Gen. J. G. Barnard, U. S. Engineers.

Barnard's Notes on Sea-Coast Defence.
Notes on Sea-Coast Defence. Consisting of Sea-Coast Fortificia tion ; the Fifteen-Inch Gun; and Casemate Embrasufe. By Major Gen. J. G. Barnard, U. S. Engineers. With an engraved Plate of the 1 IFinch Gun.

Henry's Military Record of Civilian
Appointments, U. S. A.
2 Vols. 8 vo . Cloth. $\$ 10.00$
Military Record of Civilian Appointments in tife United States Army. By Guy V. Henry, Brevet-Colonel U. S. A.

- Harrison's Pickett's Men. Preketr's Mev. A Fragment of War History. By Col. Walter Harrison. With portrait of Gen. Pickett

Todleben's Defence of Sebastopol 12 mo . Cloth. $\$ 2.00$.
Todleben's (Gexkral) History of the Depence of Sebastopol. By William Howard Russell, LL.D., of the London Times.

Hotchkiss and Allan's Battle of Chancellors-

Tue Battleytieds of Vheista. Chancellorsville, embracing the Operations of the Army of Northern Virgimin. From the First Battle Operations of the Army of Northern Lirginia. From the First Battle
of Fredericksburg to the Death of Lt.-Gen. T. J. Jackson. By Jed. of Iredericksburg to the Death of Lt-Gen. T. J. Jackson. By Jed.
Hotchkiss and William Allan. Illustrated with five Maps and Portrait of Stonewall Jackson.

Andrews' Campaign of Mobile. Campaign
8ro- Cloth 8350

Mobile.
Tire Camphias or Monies, including tha Cooperation of General Wilson's Cavalry in Alabama. By Brevet Maj.-Gen. C. C. Andrews. With five Maps and Views.
Stevens' Three Years in the Sixth Corps. New and Revised Edition. Sva. Cloth. $\$ 3.00$
Thire Tears is une Sixth Corrs, A concise narrative of events in the Army of the Potomac from 1801 to the Close of the Rebelion. April, 1885. By Geo. T. Stevens, Surgeon of the 77th Regt. New York Voluntgers. Mlustrated with 17 engrivings and six stel portraits.
Lecomte's War in the United States. 12ma. Cloth, sion.
Tue War in tue United Statres. A Report to the Swiss Military Department. By Ferdinand Lecomte, Lieut.Col. Swiss Confederation. Translated from the French by a Staff Officer.

Roberts' Hand-Book of Artillery.
Hasd-Boook or Artilurry. For the service of the United States Hasd-Book of Arthlerry. For the service of the Unied States
Army and Militia. Tenth edition Joseph Roberts, Lt.-Col. 4th Artillery and ard greaty enlarged. By Army.

Instructions for Field Artillery.
Instructions for Fired Artmikry, Prepared by a Board of Artillery Officers. To which is added the "Evolutions of Batteries," translated from the Frenech, by Brig.Gen. R. Anderson, U. S. A. 122
phates.

Haupt's Militaxy Bridges

Mititary Bridges; For the Passage of Infantry, Artillery and Bag. gage Trains; with suggestions of many new expedients and constructions for crossing streams and chasms. Including also designs for Trestle and Truss-Bridges for Military Railroads, adapted specially to the wants of the Service of the Cnited States. By Herman Haupt, Brig-Gen. U. S. A., nuthor of "General Theory of Bridge Constructions," \&c. Illustrated by 69 lithographic engravings.
Lendy's Maxims and Instructions on the 5 (1) Art of War.
Maxims and Instructions on tie Art of War. A Practical Military Guide for the use of Soldiers of All Arms and of all Countries. Translated from the French by Captain Lendy, Director of the Practical Military College, late of the French Staff, etc., etc.
Benet's Military Law and Courts-Martial.: Sixth Edition, Revised and Enlarged. Svo. Law Sheop. St50. vita Benet's Military Law. A Treatise on Military Law and the Prac tice of Courts-Martial. By Gen. S. V. Benét, Chief of Ordnance U. S. A late Assistant Professor of Ethics, Law, \&c., Military Academy, West late Ass
Point.

Lippitt's Special Operations of War. - Illustrated. 18mo. Cloth. \$L00.

Lippitt's Field Service in War. 12ma. Cloth. \$1.00.

Lippitt's Tactical Use of the Three Arms.
Limo. Cloth. si.00.
Lippitt on Intrenchments.
41 Engravings 12mo. Cloth. s.25.
Lippitt on Intrenchments.
Kelton's New Bayonet Exercise. Fith Edition. Rerised. 12mo. Cloth. $\$ 200$. New Bayoset Exerctse, A New Manual of the Bayonet, for the Army and Militia of the United States, By General J. C. Kelton, U. S. A. With 40 beautifully engraved plates.

Craighill's Army Officers' Companion 18ma. Full Roan. $\$ 2.00$.
Tie Ary Onyicere Pocket Companios. Principally designed for The Arar I M. de Rourre, Lieurican, French, and English authorities. By Wm. Craighill, Major U. S. Corps of Engineers, late Assistant Professor of Engineering at the U. S. Military Academy, West Point.

> Casey's U. S. Infantry Tactics.
U. S. Infantry Tactics. By Brig.Gen. Silas Casey, U. S. A. 3 vols., 24 mo . Vol. I.-School of the Soldier; School of the Company; In struction for Skirmishers. Vol. II.-Sehool of the Battalion. Vol III.-Evolutions of a Brigade; Evolutions of a Corps d'Armée. Lithographed plates.
United States Tactics for Colored Troops.
United States Tactics for
U. S. Tactics for Colored Troops. U. S. Infantry Tactics for the sie of the Colored Troops of the United States Infantry. Prepared under the direction of the War Department.

Morris' Field Tactics for Infantry. Mlustrated. 18 mo . Cloth. 75 c .
Eifld Tactics gon Ifyantry. By Brig.-Gen. Wm. H. Morris, U. S. Vols., late Second U. S. Infantry
Monroe's Light Infantry and Company Drill. 32 mo . Cloth. 73 c
Light Infantry Company and Skirmisi Drill. Bayonet Fencing; with a Supplement on the Handling and Service of Light Infantry. By J. Monroe, Col. Twenty-Second Regiment, N. G., N. Y. S. M. formerly Captain U. S. Infantry.

Berriman's Sword Play

Fourth Edition. 12mo. Cloth. \$1.00,
Sword-Play. The Militiaman's Manual and Sword-Play without a Master. Rapier and Broad-Sword Exercises, copiously explained and illustrated; Small-Arm Light Infantry Drill of the United States Army ; Infantry Manual of Percussion Musket ; Company Drill of the United States Cavalry. By Major M. WV. Berriman.

Morris' Infantry Tacties

Arnold's Cavalry Service.

 Illustrated 18 mo . Cloth. 75 c$$
\begin{aligned}
& 2 \text { vols. } 2 \text { tmo. } 82.00 .2 \text { vols. In } 1 . \text { Cloth. } \$ 1,50 . \\
& \text { Infintry TActics. By Brig.Gen. William H. Morris, U. S. Vols, } \\
& \text { and late U. S. Second Infantry. }
\end{aligned}
$$ and late U. S. Second Infantry

ALC Le Gal's School of the Guides. 16 mo . Cloth. 60 c .
Tine School of the Guides. Designed for the use of the Militia of the United States. By Col. Eugene Le Gal.
Duryea's Standing Orders of the Seventh

$$
\begin{aligned}
& \text { Regiment. } \\
& \text { New Eition. } 16 \mathrm{mo} \text {. Cloth. }
\end{aligned}
$$

Standing Orders of the Seventh Regimext National Guards By A. Duryea, Colonel.

Heth's System of Target Practice.
18mo. Cloth. 75c.
System of Target Practice; For the use of Troops when armed sistem of Target Practice; For the use of Troops when armed
with the Musket, Rifle-Musket, Rifle, or Carbine. Prepared principally from the French, by Captain Henry Heth, Tenth Infantry, U. S. A.

Wilcox's Rifles and Rifle Practice. New Edition. Hllustrated. Sro. Cloth. $\$ 2.00$.
rifies and Riele Practice. An Elementary Treatise on the Theory of Rifle Firing; with descriptions of the Infantry Rifles of Europe and the United States, their Balls and Cartridges. By Captain C. M Wilcox, U. S. A.

Viele's Hand-Book for Active Service. V 12 mo . Cloth. $\$ 1.00$. Tand-Book for Active Service, containing Practical Iustrections in Campaign Duties. For the use of Volunteers. By Brig-Gen. Esbet L. Viele, U. S. A.

Nolan's System for Training Cavalry Horses. 24 Plates. Cloth $\$ 2,00$.
Nolan's System yor Training Cavaley Horses. By Kemee Garrard, Bvt. Brig-Gen. U, S. A

36
MILITARY BOOKS PUBLISHED BY
Patten's Artillery Drill:
12mo. Paper. 50c.
Arthlert Drill. Containing instruction in the School of the Piece, and Battery Manceurres, compiled agreeably to the Latest Regulations and Battery Manceurres, compiled agreeably to the Latest Regulations
of the War Department. From Standard Military-Authority. By of the War Department. From Standard Minitary Authority. By
Georgo Patten, late U. S. Army.

Andrews Hints to Company Officers.
Hints to Company Officers on their Mifitaity Duties. By General C. C. Andrews, Third Regt., Minnesota Vols.

Thomas' Rifled Ordnance.
Fith Edition, Revised. Illustrated. 8vo. Cloth. 82.00 .
Rifled Ordxance; A Practical Treatise on the Application of the Principle of the Riffe to Guns and Mortars of every calibre. To which is added a new theory of the initial action and force of Fired Gunpowder. By Lynall Thomas, F. R. S. L.
Brinkerhoff's Volunteer Quartermaster. Volunteer Q
12mo. Clath. $\$ 2.50$.
The Volunteer Quartebmaster. By Captain R. Brinkerhoff, Post Quartermaster at Washington.
Hunter's Manual for Quartermasters and Commissaries.
12ma Cloth. \$1.25. Flexible Moroceo, \$1.50.
Manual for Quartermasters and Commissabies. Containing Instructions in the Preparation of Vouchers, Abstracts, Returns, etc. By Captain R. F. Hunter, lato of the U. S. Army. 12mo. Cloth. 81.25.

T J J $\quad \begin{aligned} & \text { Greener's Gunnery, } \\ & \text { 8vo. Cloth. } 84.00 \text {. Full Call. sci.00 }\end{aligned}$
 8vo. Cloth. \$4.00. Full Call. s6.00.

Guxnery in 1858. A Treatise on Rifles, Cannon, and Sporting Arms. By Wm. Greener, R. C. E.

Head's System of Fortifications. Illustrated. 4to. Paper. \$1.00.
A New Systear op Fortifications. By George E. Head, A. M., Capt. Twenty-Ninth Infantry, and Bvt. Major U. S. A.

