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PREFACE.

Ar a meeting of the American Association for the Advancement of Science,
held in August, 1876, at Buffalo; the writer read two papers, entitled respect-
ively, “Certain New Constructions in Graphical Statics,” and “A New Funda-
mental Method in Graphical Staties.” These papers, with considerable addi-
tions and amplifications, are presented on the following pages; and to them
i-‘i 11!]11(‘\1 a t]lil‘d on 7/1 T/zvvu"l/ 4:/' 1//" l'/d'// n\'f/'f.:.\',

The paper, entitled New Constructions in Graphical Statics, is largely
occupied with the various forms of the elastic arch. The possibility of obtain-
ing a complete graphical solution of the elastic arch in all cases depends upon
a theorem not hitherto recognized as to the relative position of the equilibrium
curve due to the loading and the curve of the arch itself. The demonstration
of this theorem, which may be properly named the Theorem Respecting the
Coincidence of Closing Lines, as given on page 12, is somewhat obscure. How-
ever, a second demonstration 18 given on page 08, and this latter, stated at
somewhat greater length, may also be found in the American Journal of Pure
and Applied Muathematies, Vol. I, No. 3. Prof. Wm. Cain, AM., C.E, has
also published a third demonstration in Van Nostrand’s Magazine, Vol, XVIIL
The solution of the elastic arch is further gimplified so that it depends upon that
of the straight girder of the same cross section. DMoreover, it is shown that
the processes employed not only serve to obtain the moment, thrust and shear
due the ]n:uiin:__f, but also to obtain those due to changes of temperature, or to
any canse which alters the span of the arch. It is not known that a graphical
solution of temperature stresses has been heretofore attempted.

A new general theorem is also enunciated which affords the basis for a
direct solution of the flexible arch rib, or suspension cable, and its stiffening
truss,

These discussions have led to a new graphical solution of the continuous
girder in the most general case of variable moment of inertia. This is accom-
panied by an analytic investigation of the Theorem of Three Moments, in
which the general equation of three moments appears for the first time in
gimple form. 'This investigation, slightly extended and amplified, may be also
found in‘the Awmerican Journal oft Pure-and Applied Mathematics, Vol. 1, No. 1.

Intermediate between the elastic and flexible arch is the arch with block-
work joints, such as are found in stone or brick arches. A graphieal solution
of this problem was given by Poncelet, which may be found in Woodbury’s

treatise on the Stability of the Arch, page 404. Woodbury states that this

“
solaution is correct in case of an unsymmetrical arch, but in this he is mis-

taken. The solution proposed in the following pages is simpler, susceptible
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vi PREFACE.

of greater accuracy, and is not restricted to the case when either the arch or
loading is symmetrical about the crown.

The graphical construction for determining the stability of retaining walls
is the first one proposed, so far as known, which employs the true thrust in
its real direction, as shown by Rankine in his investigation of the stress of
homogeneous solids. It is in fact an adaptation of that most useful conception,
Coulomb’s Wedge of Maximum. Thrust, to Rankine’s investigation,

It has also been found possible to obtain a complete solution of the dome
of metal and of masonry by employing comstructions analogous to those em-
ployed for the arch; and in particular, it is believed that the dome of masonry
is here investigated correctly for the first time, and the proper distinctions
pointed out between it and the dome of metal.

In the paper entitled, A New General Method in Graphical Statics, a
fundamental process or method is established of the same generality as the
well-known method of the Equilibrium Polygon = The new method is designated
a8 that of the Frame Pencil, and both the methods are discussed side by side
in order that their reciprocal relationship may be made.the more apparent. The
reader who is not familiar with the properties of the equilibrium polygon will
find it advantageous to first read this paper, or, at least, defer the others until
he has read it as far as page S8.

As an example affording a comparison of the two methods, the moments of
inertia and resistance haye been discussed in a novel manner, and this is ac-
companied by a new graphical discussion of the distribution of shearing stress,

In the paper entitled, 7'/ 7'//«/w‘j/ '1/" Internal . Stress in h'/'vl/-/(!'wlf. Staties,
there¢ is considerable new matter, especially in-those problems which relate to
the combination of states of stress, a subject which has not been, heretofore,
sufficiently treated.

It is hoped that these graphical investigations which sfford a pictorial repre-
sentation, so' to speak, of  the quantities involved and their relations may not

present the same diffienlties 1o theé reader as do the intricate formulae arising
from the analytic solutions of the same problems,

Indeed, analysis almost
always requires some kind of uniformity in the loading and in the structure
sustaining the load, while a graphical construction treats all cases with the
same ease; and especially are cases of discoutinuity, either in the load or
structure, diffioult by analysis but easy by graphics.

CONTENTS.

NEW CONSTRUCTIONS IN GRAPHICAL STATICS.
The Fundamental Propositions and Equations of the Elastic Arch.......
Arch Rib with Fixed Ends. ...
Arch Rib with Fixed Ends and Hinge Joint at the Crown
Temperature Strains.........
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Arch Rib with End Joints
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Arch Rib with One End Joint....
Arch Rib with Two Joints. .......
Suspension Bridge with Stiffening Truss
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NEW CONS

CHAPTER I,

It is theobject of thisworkte fully dis-
cuss thestability of all forms of the arch,
,'li‘\”nlr,- or l'l‘_‘\’l!i. by
briam polygon—
instrument f
One or

means of the equili-
. l'

1e now well recognized
aphical investigation.
uctions of inter
est mna) added in the sequel.
I'he i will pre suppose an ele-
mentary knowledee of the properties of

LW
also he

INESION

librium polyg

po

As ordinarilyused in the diseussion

simple or continuous girder, the
hag an entirely arti
‘hand,

RIress 18-

: "';Aig'i'-".rll ]-v'l_\"_" i
ficial relation to the P oblam
and the '

< .x:Al'll

in
particular horizontal
is a

matter of CONSCAULNEE *
|

-
but/not so with respect to the arch.

will- be i
brium polyzon
arch and load,

tl
Uil

As
t"!?li'n}-

appertdining to @ given

seéen, there is a Spec

and in this
polygon worizontal stress 1s the ac-
arch. When
in any given
case, It permite an immediate determ-

tual horizontal thrust of the
this t

thrust has been fonnd

mation of all other questions respecting
the ; ;

L St
t

OSKeS

This thrust has to be de-

ermined diff

ferently in arches of differ-
the method heing dependent
1e number, kind, and l-mliti--n
& in the arch.
hods we shall use depend upon
1o se ate the >!l'1~‘w»lir.-

» Joading into two parts: one

TRUCTIONS

ing sustained in virtue of tl

Lie re-

{ f the arch in the same manner as
an inverted suspension cabl

2 (6., as
, and the r

equilibrated lineararch
der in virtue of its reaction as

These two ways in which the loading is
‘H\[illllk"'i ¢ to be 0! \.’.'),»',n d somew!
each other. To

sessary to rest

apart from this end it
3li'!'0‘«1"~'.‘.!(‘
N certan ~KUHOWnN
tons ap) able to elastic

on by ver

and discuss,
.:\!w' sv!H'l-
rders acted
pressures due to the léend
and the resistances of the supports:

Let

P v preseut any one ol thevarious

P, P, P, applied to the

ider an ideal cross section of the
girder at any point 0.

horizontal distance from 0
2 Torge /'.
he radins of curvature of t}

Lie
~at O.

cross section O, the equations
2 hecome

S=

M

Shearing stress, = (P)
Moment of flexure, 2 (Pr)

Curvature,
'l‘nT'ni .’Ji'i]'i;!b.:. /":: :.-4 l’.»
Deflection

, D == (Pz)
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in which Z is the modulus of elasticity
of the material, and 7 is the moment of
inertia of the girder; and as is well
known, the summation is to be v'-.th-lc-ll
from the point O to a free end of the
girder, or, if not to a free end, the sum-
mation expresses the effect only of the
quantities included in the snmmation.

Let a number of points be taken at
equal distances along the girder, and let
the walues of P&, M B, ]/. be ¢oms-
puted for these points by taking € at
these points suceessively, and also ereet
ordinates at these points, whese lengths
are proportional to the f|_11:|||titiv> com-
puted. First, suppose I 1s the same at
each of the ~points chosen, then the
values of these ordinates may, be ex-
pressed as follows, if a4, 4, ¢, ete,, are any
real constants whatever:

yp=1a.P

s =1b, 3(P)

ym = . S(Fr)=0. M.
vy =d .2 M)

o = o DB
If 7 is not the sameat the different
cross seetions, let P=M-=-I7 then the
last thiree equations must be replaced
by the followig:
_’/m'_ /.. >

w'=g.2(F) .

va = k2P, (5")

The ordinates ym and ym' are not
eqnal, but can be obtained nn'-_frnm‘ the
other when we know the ratio of the
moments of inertia at the different cross
sections.

Equation (1) expresses the 1‘::ui'lll‘:‘,
and yp may be considered to \v.c the
depth of. some upiform Il}:\lu_r'.hl a8
earth, shot or masonry constituting thg
load. Lines joining the extremities of
these ordinates will form a polygon,or
approximately a curyve which i.-«. the up-
When the
load is uniform the surface is a hori-
zontal line.

per surface of such a load.

¢

For the purposes of our investiga-
tion, a distributed load whose upper

surface is the polygon or curve, :11:(}\'0
deseribed, is considered to have the
same effect as a series of (-(_uu-wnt.r:ttml
loads ]-1‘0[nl-1‘l§mn:&l to the Ul‘.'llll:il%’bj
yp acting at the :l\’.\‘lllllt:jl points of
division, If the points of division be
assumed sufficiently near to each other,
the assumption is sufficiently accurate.

If a polygon be drawn in a similar
manner by joining the extremities of l'h(-
ordinates ym computed from equation
(3), itis known that this polygon is an
equilibrium polygon for the applied
weichts P, and it can also be construct-
ed ;liruu!l_\' without computation by the
help of a force polygon having some as-
sumed horizontal stress.

Now, 'it is seen by inspection th.:}L
equations (3) and (5), or (3") and (5°),
have the same relationship to each other
that equations (1) and (3) have. '1‘1{-;~ re-
lationship may bhe stated thus —If the
ordinates ym (or ym') be regarded as
the depth of some species of loading, so
that the polygonal part of the equili-
brium polygon is the surface ol such
load, then a second equilibrium polygon
constructed for this loadingawill have for
its ordinates proportional 1o wd. But
these 1ast ave proportional to the actual
deflections of the girder.

Hence a second equilibrium polygon,
g6 constructed, might be called the de-
flection polygon, as it shows on an ex-
aggerated scale the shape of the neutral
axis of the deflected girder.

The first equilibrinm polygon having
the ordinates ym may be called the mo-
ment polygon.

It may be useful to consider the physi-
cal significance of equations (8), (4), (5),
or (3", (£)4.(8").

Aecording to the :\l't.'v'lu[ml lh-;u]'.\' of
perfectly elastic material, the sharpness
of the curvature of a uniform girder is
directly proportional to the moment of
the applied forces, and for different
'_'n'-lvz‘l or different portions of the same
girder, it is'inversely proportional to thi
Tl“;'\?'klf"l‘ \\"Ii-.']l Tll\‘ _’_‘i]'l]!‘r can ;1ﬂ-(.r4].
Now this resistance varies |HI'<,I.'1I:\' as 1
varies, hence curvature varies as M= 1T,
which is equation (3) or ';:‘.'-

Now curyature, or bending at a point,
is expressed by the acute angle between
two tangents to the curve at the distance

of a unit from each other; and the total

IN GRAPHIC

JAL STATICS. 11

bending, i.e. the angle between the tan-
gent at 0, and that at some distant point
A is the sum of all such angles between
O and the point 4. Hence the total
bending is proportional to =Z(M=-T),
the summation being extended from O
to the point A4, which is equation (4) or
(4).

Again, if bending occurs at a point
distant from O, as A, and the tangent at
A be considered as fixed, then O is de-
fleeted from this tangent, and the
amount of such deflection depends both
upon the amount of the bending at A,
and upon its distance from Q. Hence
the deflection from the tangent at A is
proportional to = (Me-+7/) which is
equation (5) or (5°).

It will be useful to state explicitly
several propositions, some of which are
implied in the foregoing equations, The
importance and applicability of some of
them has not, perhaps, been sufficiently
recognized in this connection.

Prop. I. Any girder (straight or other-
wise) to which vertical forces alone are
applied (é.e, there is no horizontal
thrust) sustains at any cross-section the
stress dne to the load, solely by develop-
ing one internal resistance equal and op-
posed to the shearing, and another equal
and opposed to the moment of the applied
forces,

Prop. II. But any flexible cable or
arch with hinge joints can offer no re-
sistance at these joints to the moment
of the applied forces, and their moment
is sustained by the horizontal thrust de-
veloped at the sapports and by the ten-
sion or compression directly along the
cable or arch.

It is well known that the equilibrium
polygon receives its name from its being
the shape which such a flexible cable, or
equilibrated arch, sssumes under the
action of the forces. In this case we
may. say for brevity, that'the forces are
sustained by the cable or arch in vi
of its being an « quilibriam polygon.

Prop. TIL -If an arch not entirely flexi-
ble is supported by abutments against
which it can exert a thrust haying a
horizontal component, then the moment

due to the forces applied to the arch will
be sustained at those points which are
not flexible, partly in virtue of its being
approximately an equilibrium polygon,
and partly in virtue of its resistance as a
girder.

It is evident from the nature of the
equilibrinm polygon that it is possible
withany given system of loading to make
an arch of such form (viz., that of an equi-
librium polygon) as to require no bracing
whatever, since in that case there will
be no tendency to bend at any point.
Also it is evident that any deviation of
part of the arch from this equilibrium
polygon would need to be braced. As,
for example, in ease two distant points
be joined by a straight girder, it must
be braced to take the place of part of
the arch. Furthermore, the greater the
deviation the greater the Iwnlnng_f mao-
ment to be sustained in this manner,
Hence appears the general truth stated
in the pr--p<)>itinn.

It will be noticed that the moment
calledinto action,atany pointof astraight
girder, depends not only on the applied
forees which furnish the polygonal part
of the equilibrium polygon, but also on
the resistance which the girder is eapa-
ble of sustaining at joints or supports, or
the like. For example, if the girder
rests freely on its end-supports, the mo-
ment of resistance vanishes at the ends,
and the “closing line” of the polygzon
joins the extremities of the polygonal
part, If however the ends are fixed
horizontally and there are two free
(hinge) joints at other points of the cir-
der, the polygonal part will bé as before,
but the closing line would be ‘drawn so
that the moments at those two points
vanish, Similarly-in every case (though
the conditions may be more complicated
thanin the examples used for illustration)
the position of the closing line iz fixed
by the joints or manner of support of
the girders, for these furnish the condi-
tions which the moments (7. «.. the ordi-
nates of the equilibrinm polygon) must
fulfill. For example, in a straigl

fnl'xn 4_!"5':|rl‘ ‘.\"l”:HHT ‘:Hih?‘ :H‘I‘]
horizontally at the ends, th i
are evidently these; the

vanishes when taken from end to end.
and the defleetion of one end below the
tangent at the other end also vanishes.
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Prop. IV. If inany arch that equilibriuin
]u'.l_\'v;nn (due to the weights) be construct-
ed which has the same horizontal thrust
as the arch actually exerts; and if its
closing line be drawn from consideration
of the conditions imposed by the supports,
eto.« and if Turthermotethe curvewof the
arclritself be regarded as another equilib-
rium ]ml\ gon dite to some system of load-

ine ot eiven, and its closing line be also

found from 11 ame- considerations ve-
r]n-"'."" S .;1’) Wwis C. en, when these
two  polygons are. pliees that these
¢losing lines comcide  and thenr areas
['-l!':i v cover each other, the ordinates
interce 14.[1“} befween thes¢ two ]t'x‘ FON
are propartional to the real bending mo-
Ments ::c‘lih;_" in the arch,

Sappose that an equilibrivw polygon
due to the we :'h:\ be drawn having the
game horizontal thrast as the arch. We

in faet vmqln to do this atthe out-
the horizontal thraust is unknown.
suppose it (l! twn for [llv P,
mgsing its ‘properties. Let
i ] be drawn, which
n hereafter.
the elosing lific

Drasw

eurye

a poivgon

actual moments bher ;,u :\.,
drawn on the sam
Sifice the sapports eve, must inf
the position of the ‘1'*‘11'_{ line

l..;l\‘:’un in thesame ma hag.t

A, we have by Prop. III not only

» ordinates of
points of
1:
1 which
the proposition appears.
nstration in its general form
mav seem obscure sinee the conditions

imposed by the supports, ete., are quite

various, and so eannot be considered in
a oeneral demonstration. The obseurity,
however, will disappear after the treat-
ment of some particular cases, where we
shall tuke pains to rvender the truth of
the yn.pmmnx' evident. We may, how-
. make a statement which will pos-
Iy put the matter in a clearer light by
wying that A” is a figure easily found,
and we, therefore, emp ln. it to assist in
the, determination 4" which is un-
kpown, and of A which is partially un-
known.\. And we arrive at the peculiar
property af A" thatitselosing line isfound
in the s manner as that of A4, by no-
ticing that the positions of the closing
lines of 4 and A" are both determined
in the samemanner by the supports, ete. ;
for the'same law would hold when the
rige of the areh is nothing as when it
has any other value. But A" is the dif-
arence of 4 and A4'. Hence what is
true of 4 and A’ separately is true of
their difference A°, ‘:)n law s]m]\i;l: of
being a mmere matter of summation.

Fyonut IvE proposition it is alsoseen that
the curye of the arch itsel may be re-
garded as the enrved closing line of the
polygon-whose ordinates are the actual
l nding moments, and the polygon it-
self is the polygonal part of the equili-
brium polygon due to the weights.

is believed that Prop, IV contains

L ion to our previous

+ bel ‘]A]( rmoments lH

ind tha 1 st -I-I 8 Tl(’ |'1\|~.

haretofore ] MIA.E method of

nng graphically the true equili-

brinm polygon for the various kinds of
wrches,

Prop. V. If bending moments M aet
on a nniform inelined _'j]'(lcl‘ at horizon-
tal distances z from O, the amount of the

al deflection ya will be the same

a horizontal girder of the

same cross section, and having the same
horizontal span, npon which the same
moments M act at the same horizontal
distances @ from 0./ Alse, if bending
moments M act as before, the amount of
the horizontal deflection, say g, will
the same as that of a vertical 1_".[!'1]"1' 0
the same oross section, and hay
same upon which

ments _‘I act at the same heights,

IN GRAPHICAL STATICS.
~']H‘£"fiit'_‘ deflections, which xlu reside
can casily enunciate for himsel
Beforé entering upon the II-U':E(-.*

diseussions and constructions we

view, a4 word or two on

guestion as to the manner in

problem of the arch presents itself, will

perhaps render apparent the relations

between this and certain previous inves-

tigations. The problem ln«[nmvx by

Rankine, Yvon-Villarceaux, and other

analytic investigators of the arch, has

been this:—Given the vertical loadin g,
F what must be the form of an arch, and
what must be the resistances of the
~}»'I'"41ri].~ and abutments, when the

ts produce no bending moments

whatever? B y the solution of }l.iwlnc.\‘-
tion they obtain the equation and prop-
erties of the particular H[I.lh]b‘llhll ]u-l\
gon whiech would sustain the given
weights. Our graphical process ecom-
pletely solves this w;;v.\!it*!) l-) at onece

Let the moment M act at A, produc-
ing according to equation (5) the deflec-

tion
0C=e. M. A0

whose vertical and horizontal compo-
nents are

vy = COF and ; )_ Sead '

: t'l'!I\l!'Il\’Y:'l"’ Lnis mlmn‘n'mm polygon.
For the small deflections oegurring in a | It may be rem: ::Lel in this connection,
that the y process is of too com-
]lli\'.!"'ll 1 nature 10 be \'“l": ] in fll-.\'.
exceptia few the more s m! e oases,
00 while x‘l:«- oraphies nl process ! ]
(" Ji— ODF=e. M. OF cases witl ual éase
10 But the kind of \'-l it

Mo 18 a yery incomplete wlu"
problem presented in actual |

Also, A0 AL 0C: OF fory any movi ]nnl'nwu.fw

tribution of lead for whi

eirder or arch, A 0C=90

A0 : OF:: 00 : CK

yd

o R L 0%
() = Y Uik A= M Al the equilibrium_peolygon, a:

bending moments. For simila

it I8 necessa stiffen

’lil‘ili::’. The areh must then lx propor

CSe T

nizht in thi oposition substi- | introduction of excessivi
M=-I for e.M, and prove a|ments at certain points,

» but more general proposition re-!tions set forth furnish
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.n~un~]unm1 which shall be more suitable,
it being necessary to make the form of
the arch conform more closely to that of

quilibrium polygon for the given

[l e que stion may be re ZAar 111 48 one
economy of material, and ease of
analogons to that-of the
truss-bridee. In this latter case, con-
striuators have long since abandoned any
f making bridges in which the
inclination of the 3.l«'~'
be sueh as-to require theoretically the
minimum amonnt of material. Indeed,
the amonnt of material it the case of a
thedretic aninimum, differs by-such an
inconsidérable quantity from that in
CASes In \LM:"’\ the tias and posts have a
very different inclination, that the attain-
ment of '.1 @ .nivm:mm 15.0f no practical
consequaence.

Smilar considerationg applied’ to the
avah, lead us to the conelusion that the
form adopted can in every case be
,mml..m.l of segments of one or more
aireles, and that for the purpose of con-
striction every requirement will theén he
metas fully as l,:. the more complicated
transcendental curves found “by the
writers previously mentioned. If Con-
siderations of an artistic nature render
it desirable ta adopt segments of para-
bolas; v”igm‘.\ or other ovals, it will be a
matfer of no more consequence than is
the 1\1rln ular style’of truss adopted by
rival bridge bailders,

We can also readily treat the problem
In an inverse Il'l"‘l: Y, Viz:- 1'.|n' the
system of va]lw_:. of which the '1~~um(u1
curve of the arch is the equilibrinum
polyegon. From :Li\ it will iu‘ known
how to lpad a viven arch =0 that there
~l»'” ];- no bending moments in it
may-be seen,-is ofton 4

of information :
en spaces in the masonry of the
' loading the
a small extent, we mayv fre-

I. 1y I"‘\' I‘l'l‘-)»ill.

ly rendeér a desirable” form entirely
nd practicable.

CHAPTER II.
THE ARCH RIB WITH FIXED ENDS.

ET us take, as the particular case to
reated, that of the St. Louis Bridee,
1 i8 a steel arch in [hv form of the

and posts <hould |

! »
arc of a circle ; having a chord or span

of 518 feet and a versed sine or rise of
one-tenth the span, 7. & 51.8 feet. The
arch rib is firmly inserted in the im-
mense skew-backs which form part of
the npper portion of the abntments. It
will be assumed that the abutments do
not yield to either the thrust or weight
of the arch and its load, which was also
assumed in the published computations
upon which the arch was actually con-
structed. Further, we shall for the
present assume the cross section of the
tib to have the same moment of iner-
tig, Z, at wll points, and shall here only
gonsider the stresses induced by an
assumed~ load. The strosses due to
changes in the length of the arch itself,
due to its ]H'.ill'_‘\' shortened ‘I»_\ the load-
ing, and to the variations of temperature,
ave readily weated by a method similar
to the ong which will be used in this
article, and will be treated in a subse-
quent k‘}l.'l!‘l"l',

Lot & a b in Fig. 2, be the neutral
axis of the arch of which the rise is one-
tenth the span. Let a2 y 2 be the area
representing the load on the left half of
the‘areh, and @ 2" 3’ 2’ that on the right,
so-that yp=a . P=zy on the left, and
yp=a'y’ on the right.

Divide the span into sixteen equal
parts bb . bb ', ete, and consider that the
load, “Im h' s really uniformly dis-
tributed, is applied to the arch at the
points a, a, o/, ete, in the vorticals
through 4, &, b/, ete.; so that the equal
weights 2 are applied at each of the
points on llm left of @ and the equal
weights § P .1 each point on the right
nf a, while § P is applied at « ‘

Take b as the pole of a force ].HI\'"OH
for these weights, and lay off the “1.‘5;]”_.;
which are applied- at the left 'of @ on the
vertical through 2, viz., b, w =3} P=the
weight coming to « from tie left
0, W :/" the weight 'm]-i:vvi at a, ;
2, U - P=the we ’l Y lied at a a l‘(vl'.
{ ~n '1 still as the ]uvl«. lay off b . '=
P L7 “the w ::lx coming to a :'mm the
H'I}H: 12, 16, =% P=the weich t applied
at @', ete, l||~ amounts to t}x- same
Jnln-_' as if all the weiglits were laid off
in { same vertical. Part are put at
the left and part at the right for con-
venience of construction. Now draw

r'.m until ': intersects the vertic \[ 1 at ¢ ;

““ draw ¢, ¢ bw, ; and ¢ /u,- ¥

)

IN GRAPHI

ete. In the same manner draw bw to
¢+ then ¢’ ¢ || b/, ete. Then the
broken line be. . . . ¢, is the f‘qnilil»riun‘
]nnlvmn due to the weights on the lef

I8 U..lt due to the
weights on the right. Had .he polygon
been constructed for the uniformly dis-
tribnted load (not considered as’concen-
trated), on the left we should have a
parabola passing through the
be v oGl and another l~:'.3:alm‘- on the
right through de'...¢,/ . From the

]ﬂ‘n-lu-liil'.- of this pai abola it is .I\ln.

01 ,'I. ,“n] /u «sle ("'

‘,.»’;1‘7\

gseen that ¢ must bisect w_w, , as . Must
also bisect 1. 1¢." ; which fact serves to

test. the accuracy of our construction.

This test } naot so ~ilhl.'1« in cASes of
more irregular loading.

The e |[umlw'x1xl |n~-f_ veon ¢, b o' is that
due to the applied we chts, but if these
weights act on a straight girder with
fixed ends;, this manner of support. re-
quires that the total bending be zero,
when the sum is taken of the bending
at the wvarious pumh along the entire
girders for, the }l”~l1nvll Uf the ends
does not change under the action of the
welghts, hence the positive must eancel
the negative bending. To express this
by our equations :

yh=a =(M)=0 .. Z(3)=0.

This is one of two conditions which
are to enable us to fix the ]w.~ilinll of the
true closing line A, 4. in this case. The
other condition results from the fact
that the algebraic sum of all the deflec-
tions of this M!'.\i-ﬂx! j_:il'zli-l' must b
zevo if the endsare fixed horizontally.

This is evident from the fact that
when one end of a girder is built in, if
a tangent be drawn te its neutral axis
at that end, the tapgent is unmoved
whatever-defleetions may be-given-to
the girder; and if the other end be also
fixed, i'\ ]mili\'n with reference to this

tancent is likewise unchanged by any
the

¥
|

defleetions which may be given
girder. To express this by onr equations:

i ‘::.;‘. = (May=0 .. > (J[_x,:'.'l

The method nf introducing these con-
ditions is due y Mohr. C Hh\]\l«! the
area mcluded \nt\\un the straight line

and the !nvl.\:'ﬂ!l C, b 4'_' a8 some
species of plus loading ; we wish to find
what minus loading will fulfill the above
two conditions. Evidently the whole
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necative loading must be equnal numerc-
ally to the \\h-;‘.v positive loading, if we
are to have = (M)=0. Next, as the
closine line is to be straight, the nega-
tive load ¢, e, //_ /:_' may he L‘Hh.\.'hlul
in two parts, viz., the two triangles,
e e h, and ¢’/ & k. Let the whole
&p pan be trisected at ¢ and £, then the
total negative loading may be considered
to be ,x”])ul in the verticals 7"||'nngh‘
¢t and 7', since the centers of gravity of
the triangles fall i these verticals.

gain, the positive loading we shall find
it ~'un'.«-nivm to distribute in this man-
ner : viz., the triangle ¢, & « ::I.!,Hml i

the v rtical throus 'Il / the [':11':;"":E<':x1'(':l
be ... in the vertical 4 which con-
tains its center of gravity, and the para-

bolic area ,v’,.-_ A N in 4.

Now these areas must be reduced to
equivalent triangles or rect angles, with
a4 common base, in order that we may
compare the loads they re prese nt. Let
the common base be half the span : then
lm__;/‘ is the p-wmw load due to the
tris m'r e ¢ bels and § e, ¢.=pp, and
% ¢ e =pp, arethe positive loads due
to the parabolic areas.

Now assume any point ¢ as a pole
for the load line g, p," and find the center
of gr: l\ll\ of the ]m<i[i\'( loading l)\'
drawing the equilibrinum polygon, whose
sides are pari? allel to the lines of this
force polygon : ¥iz., use gp and qp as
the l\l and 2nd sides, and make pg |l ¢p,
and ¢'¢, || ¢p,’c The first and last .‘l'llt
intersect at ¢, ; therefore the center of

gravity of the positive loads must lie in
tlw vertical through ¢..

Now the negative loading must have
its center of gravity in the same yvertical,
in order that the condition 2> {V'\ 0
may be satisfied, for it i8 the numerator
of ‘the general expression for finding
the center of gravity of the loading,
The question then assumes this form :
what neg itive loads must be ."ll}v“l‘ll m
the verticals through ¢ and ¢' that their
sum- may be p,p,’, and that they may
have their center of g 1\.‘\ in ”n' verti-
cal-through ¢..

The shortest way to obtain these two
segments of p ]/' is to join rand 7’
which are in the horizontals through
p. and p/', and draw an horizontal
throngh ¢, which is the in wuu".inl‘. of
rr mth the vertical through ¢, ; then

rr,and #'r, are the required ngments
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F necative los: e o 2 : . y %
of the negative load. For, let #7,=p p, | we intend to make between the poly- 5 e s oo s
-A“‘l & llﬂ r' as the pole of the loa . ooy vand d (as w R T, sponding t ¢ first po t the pole;

. ] ¢ OL e 103 ZOoNs ¢ and « 48 we HIA~ brief \ desior- 3 T . < I” : =
o’ 1] 9 el = $ e = the direetl > ¢losin e, how-
9.7 - : nate the 1"'.’\;’14}5 . be “](1 4/ Py :/ ), let ; l' . Ranood i - that the
' . s . ge - . sVver ~'-';'|~u. ] > LI B F ne
rinm polyvgon # ? us notice the sionifies of certain oner “igmied S S . L
I gnificance of certain oper- closing line of any equ ium polygon  the scale of the we
o can be ma iL coincide with :,::} line physi significa
1 : - IS the ieal. ¢ that 1 rdinates will ma: s stated according to
- e arthe roanire ‘ £ o TR T 2 S not vertie an i ordinates wiil U S Hug
o and rr, .nu‘ the re |4(.15ul igh multipli f the ordinates of the e - The GoeratoT 3 < 3¢ the moments Mz are i

€ l.n.u. les e, &, ¢ and CinCy he ]..,}\.r.” or ourve ¢ to obtain those of d \ fore Loix T A L ey
‘l)n. 3 L= M a . : ’ ” orce poiygon 4 O LGS a8 :

Y > W £ 1 ;”{‘[’ =, If @ was inverted, certain weights micht i Yoot this change ‘ j £ 3 - at tho  same h
The "‘u.'\uw line 2. can' t} Bl ba hiinw he 3 = = t0 ellect this change. ) VLot A ) -
i e g ean then beybe hung at the !N)th a, @, ete uch X ) with .. d.. ete.. they will ¢ause the sanie
draw nl. and the moments bending the | that the curve would )w in st 1])‘( '\1,”_ Now to make clear the rel: 1shi A ¢ Pt e Ml e (M) as will
stravght '_"11"11']‘ \\'i]l then be pro port 1ona 1Hir ' : hetween the -..fv gons ¢ and le b g o s A g, a2 L i
to kAl c e ! ‘ | librinm, even though there are flexibls yiveeh ige ] 5 ¢ the moments M when applied at the

y |l Loy CLCL “" points of inflexion joints ‘at these points. J quilibriam suppose, for the instant, that "~ | same pointe.  Hence if Mz are used

eing- where the cl \u.‘_ line  infersects | would still exist in the present upright gon ¢ has been drawn by some % ~]w<-io~- of loadiziwe Ganlobiati thn

the required conditions. ations which are of use the

v . 2 n
_\-,.“- thesé two ;1'_.;:1::\|, 3 P - Ii\'ll ]“_r‘”r‘ s, (““_ [ 1:’:(_\(‘

unnecessary to draw the

the polygon. If onstruction has [mositi a8 1 = T LA AR S ) at its o s > S

Hedol l‘_ ikt 11“‘,; ¢ ,x..~.x1m;,11_ | has | position I.llul(‘l these same applied as 3 . unknow r;. so that its ordinate deflection by an equilibrinm polygon.
Ry .m b kb ]- »/Uhie ‘ '\.A yove the W ights, though it W ould be unstable, rom dy Viz., €4, =Y., €, fl Y.y L0, Suvnose the lord 8t @ 18 @ . and. (hat
ORI ling Is-equal-to-that below; atest |If now, radiating from any l""']"]”"'“'I to the actnal moments . at d d. k.. et then that at & is
Easy 1o apply, which tend to bend the arch. .

. point, we ;
draw lines, one parallel to each of the
Let us now turn to 2 consideratic \'i‘[‘g‘!y.,[ .. an '.'I'

of the curye of the areh itself t

This approximation is sufficiently
of the ]"'1\ oon, which the Id re- accurate for our Purposes.

- .‘!.hli treat then any verLie: 11 line lllh"\‘kl. o ,.!\ shectine these moments % are three: Now G n a8 a load line

}",‘ll<l[ of radiating lines will be eut by it 2 b ] p B, omom =d k.,

: a5 - il in segments, which represent the relative Me)y=0, = (M) e/)=0. 'ote. The direction of these loads must

of the span, the curye uw { athér # woirhts 1 o N : )

for onr purposes; and wi 2

lll““i‘IV]_‘. s "3"“11.1?"'* :/"‘,

i
it ad sn equilibrinm polyzan,

rise of \1( arel is .\AH}I A Sm

el to make a their e q ulibri- : 1 . . 0 wed when they fall on the other

1 poiyy . '»‘]l '\\Hx"’llll vertical line e first condition exis ecause de he line £ 1 i
I ‘ ) distance from the pole. its bending from end end 1s zex

any number convenrent for nmrpose: if n e, the total lu'h‘ on the when the ends are fixed. The secon entir h (not

lnl..lm-,.w. et : 24! Sosrm '} =B e L SRR Abilad AR SR X

a nolvoon 7 * o : of any amonnt we wnd thivd are t ue, ,]”‘ wise the -U...'l Ges | pop td the

#.89 B At flection 18 zero both vertict I JOrl- 4

d l v oY te

serib

If this process be conti

line from the

will be the actusl rontally, singe the span

and

shal2na 8 an ol e : ¢ he arch measured well L Z’fl(: ‘!n'\fllv'!l «-.?' the t ingents at |
Y g WA he o une scale as the lond, I 4 like the ends. These results are in accoeril-
exirm 0 1 01 8 : - 21 4 . . . 5 : y A el Yoo - . R ED sy
16 wals - e pencil of 1 ting lines be deawn paral ance with Prop. V. _\lvw. by Prop. WL 0 o i}
o he palygon dand the these moments M, are the ghlierences OXfgpeh dr

moments of & 'stran

il‘::‘ A

e ¥ . The enrve

:L! .'4‘[! L '. hence .. e . 24 . ~'L?\!H
L] ! ] ! ! \ ~::\|[1iﬂ ] ! veon ¢ 11

S ‘ o 16 CHTYC ymmetrl- | third of that for a: for. every I ) and with a-new pole distance
cal, 1 : : i ;
easily, 3y ASON
about the vartical [I|]’4|11*_{[, ')
W orrnvit ' 1) .

h

CUSt

'.."ih i

nates &
We tl

horizont:

(ll!h.ii o

N

> . .
Before oting ti omparison whiel
. Ang ae \U..::ﬂ.“h‘hl whiel liti

ASt conditio
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informs us that each of the ordinates
h, e, h, c, must be increased in the ratio
of 4 g9 to df, in order that when they
are considered as loads, they may pro-
duce a total deflection equal to 2dJf.
To effect this, lay off /',_'/I and b=
% g9', and draw the horizontals through
¢ and j. At any Conveénient. distance
draw thevertical 2, 7, and draw 42 “and
&7 . ~These! last two lines enable s to
effect “the reguired proportions for any
ordintes on the left, and these ortwo
fines of the same slope on the right to
do the same thing on the right. 1. i
iy off the ordinate &i'=A ¢, then
the required new ordinate is'sy.. Then
lay off 2.1 "=%7". Tn the same man-
ner find Le from 46, and £ e from A ¢
In the same manner o other
nates & e, ete,, be/fonund : but thi
not the best way to detérmiyé the rest
of them, for we can now fiyd tlie pole
and pole distance of the polygon &.

As we have previously seen, the pole
distance 18 decreased in the same ratio
a8 the ordinates of the moment curve
are increased, therefore prolong 0i, to »
and draw a horizontal line through »
intersecting by, at v, and the mid ile vers
tical at o : then is v, ¥, the pole dis-
tance decreased in the required - ratio.
Hence we move up the weight-line o, 1,
to the position # w, vertieally through
». 5 and for convenience,  lav off . the
weights /0! av w4 ete. |

Furthermore, we know that the new
v}--xin:-!;.::' 18 ]:HI'i/.“HT.’l!. Tn find the
position of the pole o so that this shall
ocenr, draw bu parallel to A4, and from
v the horizontal »0. As is well known,
o divides the total weight into the two seg-
ments; whichiare thevertical resistances
of the abutments,smud if.the pole o is
on the same horizontal \\'1[5.1 U g
closing line will be horizontal.

Now having determined the position
of the points ¢, e, 2, starting from one

[ them, sav e, draw e 2 1] 0w,
ete.; then-if the work be accurate.
polygon will pass throngh the othe:
points ¢and ¢, " The bending moment
f the arch d or the arch a at ¢

the prodact of the pole
2, U=20 h_\' the ordinates ¢ -,
eLe., :~~I'wf..-!'~’. and between
points a similar product eives the
ment with sufficient accuracy., It
be useful for the sake of ‘:il‘w'.ll‘:\v‘

multiply the ordinates of the arch by
some number ereater than 3.

As a final test of the aceuracy of the
work, let us see whether 3 (M) is ac-
tually zero, as should be. At ., for ex-
:un}.i.-. y=dl., and V ]u‘o]n-"(iu‘lul
to d e. Then s 1is proportional to
Myy at that point if £ s s the are of
a cirele, of which e. 7. is the diameter.
‘\:HH.:IHH\' find r,",‘&.‘ ete. ‘»\.5.4 n ¢ I'l)l'
c-\::m:!viv:!:qil\ above d, Ilw eircle must
be deseribed on the sum of 2 @ and d_
as adidgmeter, and s proportional
t0.a mement of f
atid,, We
of themoments ]
along ' the arch, putting different
signs before the letter 8. It wonld have
) accurate to have used
only one-half | the ordinates 4 ¢, and
h "_’, bt as I]n" 1|~"lll‘ 1

een shehtly more

case and of opps site .\E‘

troduced no appreciable error.

Now at afy point slayoff 35 =d s,
and at right angles to it s 8.=0_s_, then
at right angles to the ]15“)(11‘“ 1Se 88,
make 38" =d. s, etc. Then the sum
of the positive squares is 88, ind simi-
larly the sim of the negative squares is
$9.. If these are equal, then = (Mey)
vanishes as it should, and the construe-

1

Lion I8 .-x-"rv-«-:lv made.

It would have been G 1]]\ correct to

cuppose the two vertical girders ':u-l at

e, and bent l..\ the moments acting, We
conld have determined the 1 gquired ratio
equally \-.rJl from this construction.

Further, in proving the

y
N 3
the construction l.' {

nares, we t'n?]i<l !':nv reck-

aking the algebraic
sium of the s

|
rdinates, v, from anv other
l:.»n/--m:x: line as well as from 7. °
Tao find the
liffer !u"‘li“h\ of th .'il".'h.

lnl',.'..:xv' O

resultant ‘streéss. in

o sS4V,
tl h ole distance

if we join o' and 1w,
resultant stress invthe
o2, will he thestress in
wsitred -in the same scile as
w w, ete. This resultant
directly along the nentral

earing stress is construct-

ne manner as for a girder,

by drawing one horizoutal throuch »
- L]

between the verticals 7 and 8. another
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throngh 2. between 7 and 6, ete. (not
drawn). Then the shearwill be the ver-
tical distance between voand these hori-
zontals through w»,, w,, ete. It is seen
that the shear will change sign on the
vertical through &, with our present
loading.

The actual position of the vertical
through the center of gravity of the
h"i may bhe found 1')' ] ]
first and last sides of the polygon ¢ A
‘.'\"'l'_"x’. § P = w_w, ought,
first to hie 11-"m1 at b, and another

& at o '. v The shearing
stress under a  distributed load will
ally chanre gien on the vertical so
fou uiAl t will not pass far however

from &,
E ol

The resultant stress is the resultant of
horizontal thrust and ¢ vertieal
'\»'i“'_’ SUIess, and 1t can be resolved

into a tancential thrust along the arch

and a normal shearing stress, This
resolntion will be effected in Fig. 3 of

{].l next l'?::l!ﬂ!‘l'.

As to the position of the moving load
which will produce the maximum bend-
ing moments, we may =ay that the posi-
tion chiosen, in which the moying load
covers one-half the span, gives ingeneral
nearly this case. It is possible, how-
ever, to inerease one or two of the
moments slightly by eovering a little
more than half the span with the moyv-
ill" l“‘l'l

The loading which produces maximum
moments will be treated more fully in
i‘l'lhm]ﬂrlﬁl chapters.

The maximum resultant stress and
maximum vertical shear oceur in gen-
eral when the moving load covers the
whola span. The eonstraction in thi
case is much simplified, as the }...!,'\
gon ¢ 15 then-the same on-the rieht of

s

as 1 now 18 on the ,['ff‘ and llll
center of gravity of the area is in the |
er vertical ; so that the closing line

A s )l-n'!/,nnrzll_ and can be drawn
with'the same ease as £ k" was drawn.
We ghall not, éven in this case, be under
the netessity of drawine thé curves g
and 4g', which would be both alike; for,
as may be readily seen, the sum of the
pogitive moments M on the left must
be very approximately equal to the
positive moments Mg ‘on the left, and
the same thing is true for the negative

L
o

|moments at the left. The same two

equ: Wlities hold also on the right. From
this we at onece obtain the rat 101'\ which
the ordinates of the polygon ¢ must
be altered to obtain those of the poly-
"(Hl c.

This last q.mu\nn wtion also shows us
that for a total uniform load, the four
points of inflection when the bending
moment 18 zero, lie two above and two
below the closing line. It is frequently
i sufficiently close approximation in the
ase when the moving load coyers only
part of the span to derive the X'A'!iu
needed by supposing that the sum of f all
the ardinates, I-'?!A i':_’iﬂ ‘hl'] le {1, above
the closing line in the Iun'.'wm ¢ must
be inereased, so that it she wqual the
corresponding sum in the polygon d.
If the sums taken below the elosing

iil:p\~ -_-'i\p 0 ].!}111\' lilli‘i-'.'{.l‘“l l'l‘ﬁ'»i!'u Y:(k('

i

Thus the single construction we have
given in Fig. 2. and one other much
~|mpl--r than this, which ean be ob-
tained by adding a few lines to
Fig. 2, oive 4 pretty complete deter-
mination of the maximum stresses on
the assumptions made at the commence-
ment of the article.

One of these assumptions, viz., that
of constant c¢ross section ( i. ¢. I=con-
stant ), deserves a single remark. In
the St. Louis Arch Z was inereased
one-half at each end for a distance of
one-twelfth of the span.. This very
considerable '-h:m;._:n- in the value of 1
slightly reduced the maximum moments
\('Olu]m»(n-d for a constant cross section.
| From other elaborate caleulations, par-
| tieularly those of Heppel,*¥on the Britar
1ni:1 Tubnlar Bridge, itappears that the
\:n'i:ui-m in the moments caused by the

Lm.rm in eross -séction, which will
‘ adapt the rib to the stresses it must sus-

ain, are relatively small, and in ordinary
| cases are less than five per cent. of the
total stress. The same considerations
are (mop applieable near the free ends of
a continnonstgirder, where J may theo-
retically vamish,
where ‘Tin' ||’.'il!~‘-l!':x] Iltrlf'l of the stress

In the case before us,
arises not from the bending moments,
but from the «nmw»ulm alonge the
arch, the effect of the variation of Jis
very inconsider: ible indeed.

* Phi splical Mapazis
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CHAPTER TIIL. evident that if we consider the parts of and ¢’ draw paralle la to o'p.” 1\'\‘;1(-{-:’;1\;- ap N\ Prop. IV, for the determination of
. the eirder : He right and left of the l\'. These last sides intersect at g, The ! the Hending mome ul

ARCH RIB WITH ¥ ENDS AND HINGE | napter as two separate girders whose vertical throuch ¢, then eontains the tl‘“l’ IV true for an arch of

ends are joined at the center, thes¢ ends center of gravity of the moment areas this | ml is »\ulu'x[ for, the loading

Lex ‘hv carve « of Fig. 3 represent|have each the same deflection, by reason when b 5 is assumed as the closing | causes bending moments l“"l'\) tional to

JOINT AT THE CROWN,

the propor ions of the arch we shal of this connection. line. ordinate _\," e he, ..while thearel
to illustrate » method to be :”'l'i d to This is

his expressed by means of our A few trials will enable us to find the |itself is fitted to neutralize, in virtne ”t
arches of this gharacter. = The areh. a is )

” équations by saying that =(3) when position of the closing line which eauses  its shape,moments ‘-\"Ii::k'. :'.w‘;'xrupuz"iun:xi_
segmentalin shape, and'hasa rise of oné=| the summation is extended from one end the center of oravity to fall on the center |to kd, kd, ete. The differences of
fifth of ‘the span. It is unnecessary to |l to the center is equal to 2(Mz) when the ve l':i‘:lIL We are able to conduet the ents represented by these ordi-
asspme the particalar dimensions in féet, | summation is extended from the other U als 80 asto lead at once to the required | nates are what actually p roduce 'n" iding

as the'above ratio is suflicient to ~iu-.r!< end to the center, for these are then pro- closing ;;n!' as follows. Since, .J-\.;‘]A m;} , | in the arch.
mine the shape of the arch.

The arch is supposed to he fixed in th

portional to the respective deflections of 0, +0 hoe.+-h'c!, itisseen that th Now the ordinates of the
the center, We may then write it thus » sum of the positive load 5 constant. | not drawn to the same Scale as those of the
abutments, in such a manner that the 5 Therefore m:l‘;w 6P = "and use p | tvpe &d, for each was assumed regardless
position of a line drawn tangent to the ()[,)ﬁ\‘ ”[ ) and p.'p. as the 1-:1-]:"' v los in the of the other. In order that we may find
curve a at either abntment is not changed
in direction b 'Y any deflection which the The "'l”"“i"“ has thig mesnine. viz ‘,“-v\w_'.;h)-\‘ be chanced to I'l:\' them off on the same
arch ma: 1y un«I. TR0, At the erow 1, how- thit the cénter o ]

L

ype /i are

same manner as we used p, p, /. | the ratio in which the ordinates /e must

! of gravity of the rich This will be equivalent to assuming a | scale as Aid it is necessary to use another
ever, is a joint, which is pi rfeetly free to | and left noment areas taken toget 18 new position of tl sing line. The|eq uation of condition imposed by the
turn, and which willythen, not allow the | in the centor vertical : for, ::xk;): each ] i second equili nature of the joint and snpports, viz:
propagation | of any hending momient | moment M as a wi 1eht, @ is its arm; .|ml lygm | » in the position of
from one side te the other: In-order| Me its moment about the cent ., ast two sides. These must now be drawn M=M= (M, — M,y
Yo 3 In order to-find in what direction to parallel to o'p, and_o’p’ respectively :
:1'..‘””““"-\’ iet us “l”h‘i!'].\- ” ’]' ates | d W 'I'“ ']-'--in'r line IIII'[I!:_"J b so ?ii:l“ ;Hi'l F]Il"‘-' .Ill'u'l\l-ﬂ at I Till' V
of the curve ! ! , : it ghall cansethe moment areas tovether thre ll}"ll;/ containg the center of "’!"l\i'_\'
ber, say 2, thou & stidiiarger It1-| to have their center of eravity in the for this assumed closing line, Another _ . Ly S
center vertical throueh 7 a8 draw a trial gives us ¢.. The left hand side of the equation 1s the
second eaqnilibrinm Iveon usine the Now if the direction. of the closing | hovizontal displacement (i.e., the total
mbment.-areds as a species of loadir line had ehanged gradually, then the in- flection) of the extremity a of the left
The areg on the left inoluded between tersection of the last sides of the second ! half of the arcly, due to the actual bend-
] de-ling moments (Mz — ) aecting upon it:

that we may effeet the construetion more
Y (My— L)y o My—

plier would cond
We thus obtain th

sumed closing line as &b, (or b4)) equilibrium polygon wonld hs _ M) acting |
gon be, may be considered scribed a cnrve ugh wd ¢, If land the right hand side is the horizontal
a ]'HNili\v. trianonlar area me of iiu»\. ‘ul.1|1i~‘: .. 1 ear the cen- |ll'\‘l] wement of @ the ¢ XLremLy of the

parabolic .» vertical, then the arc of a cirele ¢.g. | right half of the arch due to the moments

and similarly on the riehta Cwill inte i\.»m, it'at g andefinitely near|a Y nding it. 1}:(':»4 are egnal be-
he "5 " (or &e ') and a negt he t where the true locus of the | cause connected by the joint.
; f  the deflection

!“,i”:\.' f intersection m intersect the | The ('-'!I'i.l':lr. tion ¢ le .

At any convenient equal distancesfr center vertical. curves due to these moments will enable

center as at o and 1 lay I LLet us assume the he ler 5 to find the desired ratio.

i8 to some conyvenient scale mived with sufficient exactness by th The ordinates &d and ke are rather
18, : ly, to

direular are ¢.0.9,, and draw ¢¢, and ¢y, loncer than ean be used eonvenient
to ..],: Vi fandle asgithe last two sides of the second mlm.] represent the intensity of the moments

and o’p 7'q, then p, p,=¢ A, and ) 7 g0 we will use the halves of these qu:
e have done, - A,/ are the required jum.?n'-v loads, ' tities instead., Therefore lay

base equa ] / » brium potyeon. Now draw J qq, conce ntrated at « . d.. ele, and ¢,,0,, ete.:

is the [m\iliu:x of the closing {46, mm, =344 d,, mom =
line snch that the center of gravity of and also dn, = % A, n.n,
the moment areas is in the center verti- We use only one-quarter of
ordinate because the moment: area sup-
isevident thatthe closing line of the(posed to be concentrated at each end has
d considered as elf an eqnil only one half the width of the moment
polvgon is the horizontal line|areas concentrated at the remaining
h o, for that will cause the center lmmh of division.
f the moment areas on the| Usingdasa ]‘Hn' we find the deflection
A1 l right, between it and the poly; curve fb due to the moment M, or My
librinm poly gon. Draw 11 on the center vertical. and deflection curve gb due to the

and p'g’ || o'p/, and then mvm 7 he next step in the construction is to | moments M, on the left. On the right




we should find a deflection d7"=df not
drawn, and similarly a deflection Z¢’ not
equal to dg. : .

Now the equation we are using requires
that the ordinates /e shall be elongated
g0 that when used as weichts the deflec-
tions shall be identical: Z.e.. we must
have df'=3g¢9’, To¢ffect the elongation,
lay off aj=df and ai=%gg'; and at any
convenient distance on the horizontals #
and jj, dvaw the vertical 7 7 ; then the
lines o and aj, will effeet the required
elongation;  For example, lay off a7, =
hz,, from which we obtain aj, =#e, for
the left end ordinate, and similarly @) /=
/"."',.- i

The pole distance #, of the original
polygon ¢ mustbe shortened in the
same ratio in which the ordinates are
elongated. Hence the new pole distance
of the polygon e 18 tt;

Since A4 ' is the closing line of the
polygon ¢, and is. horizontal, the pole of
¢ is'¢, on the horizontal throngh 4 ; for,
Ao, 18 the part of the applied weight
sustained by the left support.

Now if the weight line be moved up
to ¢, so that the applied weights are 2w’
at the center, ete., and o is the pole, the
polyzon & may be deseribed starting from
d, and it will finally cut off the end ordi-
nates Lo and & 'e before obtained.
Then will the ordinates of the type de
be proportional to the moments actually
bending the arch, and the moments will
be equal to the products of e by 2., in
which de is measured- on the scale of
distance, and #, on the scale adopted for
the weights w.w,, etc.

The accuracy of the construction is
finally tested by taking 3(ds)’=0, an
equation deduoed from 2¥ (M, —M)y=0,
ag explained in the previous article npmi
the St. Louis Arch: Tt isiunneeessary to
explain the details of this construection
since as appears from Fig. 3 it is in all
respects like that in Fig. 2.

Now let us find the intensity of the
tangential compression along the arch
and of the shearing normal to the arch.
Since the pole distance 1t refers to the
difference of ordinates between the poly-
gons d and e, whose ordinates are double
the actual ordinates, if we wish now to
réturn to the actual arch a whose ordi-
nates are halves of the ordinates of o,
we must take a pole distance #2,=2¢¢_and
move the weight line so that it is the

NEW CONSTRUCTIONS

vertical through ¢,. Thentz, is the actual
horizontal thrnst of this arch due to the
weights; and oz, is the resnltant stress
in the segment a5, of the arch, which
may be resolved into two components
or, and v 7, respectively parallel and per-
pendicular to a.b,.

Then are or, and 2,7, respectively, the
thrust directly along, and the shear di-
rectly across the segment @b, of the
arch., Similarly or, and 22 y represent
the thrust along, and the shear across
the segment a.«, and so on for other
segments. . These quantities are all
measured in the same scale as that of the
applied weights,

The shear changes sign twice, as will
be seen from inspection of the directions
in which the quantities of the type vr
are drawn. The shear is zero wherever
the curves dand e are parallel to each
other. Thus the shear is nearly zero at
b, at a, and at some point between ./
and a.’. )

The maxima and minima shearing
stresses are to be found where the ineli-
nation between the tangents to the curyes
d and ¢ are greatest,

The statements made in the previous
article, respecting the lm)’ii.i\)ll of the
moving Joad which causes maximum
bending moments, are applicable to this
kind.of arch also.

The maximum normal shearing stress
will oceur for the parts of the arch near
the center, when the moving load ismear
1ts present position, covering one half of
the arch. But the maximum normal
shearing stress near the ends, may ocour
when the arch is entirely covered by the
moving load, or when it may occur when
L‘hv moving load is near it\‘.prusvnt posi-
tion, it being dependent upon the rise of
the arch, and the ratio between the mov-
ing and permanent load,

The maximum tangential compressions
occur when the moving load covers the
entire arch. The stresses obtained by

the foregoing constructions, @o upon the
supposition that the arch has a constant
(:.ruu\-s(-crin‘-n. so that its moment of iner-
tia does not vary, and no account is
taken of the stresses caused by anv
changes of the length of the arch rib,
due to vanations of temperature or other

causes, I'hese latter stresses we shall
now investigate for both of the kinds of
arches which have been treated.

IN GRAPHICAL STATICS.

CHAPTER 1V,

TEMPERATURE STRAINS.

It is convenient to classify all strains
and stresses arising from a variation i
the length of the arch, under the head
of temperature, as such stresses could
v\"illvnl.!_\' have been bronght about by
suitable variations of temperature.

The stresses of this kind which are of
sufficient magnitude to be worthy of con-
sideration, besides temperature stresses
are of two kinds, viz. the elastic short-
ening of the arch under the compression
to which it is subjected, aud the yielding
of the abutments, under the horizontal
thrust :lM'»“n,‘-I to them h_\' the arch.
This latter may be elastic or otherwise.
It was, I believe, neglected in the com-
putation of the St. Louis Arch, and no
doubt with sufficient reason, as the other
stresses of this kind were estimated with
a esnfficient margin to cover this also.
Anything which makes the true span of
the areh differ from its actual span
causes strains of thischaracter. By true
span 18 meant the span which the arch
would have if laid flat on its side on a
plane sarface in such a positipn that
there are no bending moments at any
point of it, while the actual span is the
distance-between the piers when the
arch is in position. If the arch be built
in position, but joined at the wrong tem-
perature the true and actual spans do
not agree and excessive temperature
strains are caused,

Taking the coefficient of expansion of
steel as ordinarily given, a change of

=80°F. from the mean temperature
would cause the St. Louis Arch to be
fitted to aspanof about 3% inches; greater
or less than at-the mean.

The problem we wish to solve then is
very approximately this: What hori-
zontal thrust must be applied to increase
or decrease the span of this arch by 3%
inches, and what other stresses are in-

luced by this thenst. In Fig: 4 the half
span i8 !:elvrwumml on the same seale as
i 'I‘_! 2, “The x'll“\‘ forces :!]‘ﬂ]vliwl Lo
the half arch are anp unknown horizontal
thrast /7 at 5, and an equal opposite
! t H at a. The arch he same
) it would be if Fig. 4 repre-
sented half of a gothie arch of a span =

5. of which ¢ was one abntment, and &,
was the new crown at which a weight of

2 H was applied. The gothic arch would
be continuous at the erown, but the
abutment @ would be mounted on rollers,
so that although the direction of a tan-
gent at a could not be changed, neverthe-
less the abutment could afford no resist-
ance to keep the ends from moving
apart, i.e. there is no thrust in the direc-
tion of af, any more than there is along
an ordinary straight girder.

In order to facilitate the accurate con-
struction, let us multiply the ordinates
of @ by 4 and use the polygon d instead.
Now the real equilibrium polygon of the
applied forces 2, is the straight line Xk,
By real equilibrinm polygon is meant,
that one which has for its pole distance,
the actual thrast of the arch. As we
are now considering this arch, /7 is the
applied foree, and the thrust spoken of
is at right angles to ZL We have just
gshown this thrust to be zero. We have
then to construct an equilibrium polygon
for the applied force /7 with a pole dis-
tance of zero. The polygon is infinitely
deep in the direetion of /I, and hence is
a line parallel to 2. This fixes its direc-
tion.

[ts position isfixed from the considera-
tion that ‘the total bending is zero, (be-
cause the direction of the tangents at
the extremities @ and 4, are unchanged),
which is expressed by the equation

(M) =0,

This gives us the same closing line
through % which we found in Fig. 2, and
the ordinates of the type kd, are propor-
tional to the moments caused by the
horizontal thrust 77,

Now lay off dm,=4kb,, mm.=kd,
ete., asin Fig, 2,

The problem of finally determining 4,
will be solved in two steps:

1°. We shall find the actual values of
the moments to which the ordinates &d
are proportional;

2°, We shall find # by dividing either
of these moments by its arm.

By considering the equation

D, El=X{ J/_{,’)

given in Chapter I, in which JJy, is
the horizontal displacement, it is seen
that if the actual moments are used for
weiczhts, and ZZ for the pole distance, we
shall obtain, as the second n:'ln'\liln'inm
polygon, a deflection curve whose ordi-
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@y'= 3wy cover the one-third of the
span at the right. Assume any pole dis- |
tance, as of one-third of the span, and
lay off b ap, —ay—=one-half of the load
supposed 1o irc concentrated at the cen-
ter: ww :.’.13/ the load cor .u nirated
above b, ete. Similarly at the 1 .~ ft make
b/ 'w,'=zy=one-half the load_above b;
w ‘v v—_»f-"'.'/':\llt‘ ]“.L] 4!.]"'\' /, 5 ;4!‘_'
- ayt==3ay = the load .thv b’
o '=xy=theload above b ete.

From this foree polygon draw the
equilibrium polygon ¢ just as'in Figs. 2
and 3.

Now the closing lineof the equilibrium
polygon for a straight girdér with ends
free to turn, must evidently pass so that
the end moments vanish. Hence ¢,
is the closing line of the polygon ¢, and
5.0, is the closing line of the polygon d,
'lm\\n according to the same law. The
remaining e sondition by which todeterm-
ine the hcudxn" moments is:

2(M—Myy=0 .. E(My)==(My)

which is the equation ¢xpressing the con-
dition that the span i8 invariable, the
summation being extended from end to
end of the arch,

This. summation is effected first as in
Figs. 2 and 3, by laying off as loads
quantities proportional to the applicd
moments concentrated at the points of
division of the arch, and thus finding the
second equilibrium pel§ygon, or deflection
polygon of two upright girders, bent by
these mumrm«.

Let us take one-fourth of each of the
ordinates & for these ln:ui-, 6 bm=1 of
l.r" { .' mm 1 b.d.,ete.: also 4’:.'-" nn. ., eLc,,
e (l\l.l‘ to similar fractions of the ordinates
of the curve «. I,'S.H;j_: tas the ]4“1;‘ for
this load, we obtain the total defiection
b7, on the left, and the same on the right
(not drawn) due to the bending moments
M,

‘mx ilarly ¢ g." is the total deflection
right and left due to the moments M,

‘Now_the equation_of econdition re-
quires that § ¢.9/=05/, That this may
ocour, the ordinates of the ]'*‘l’\_l_“ﬂ.l )
must be elongated in the ratio of these
«1«2’;0"‘.‘:'\)!*. To effect this, make ai=
g0 and aj=0bf,, and on the horizon-
mi ::,r-n;j_vl; i and J at a convenient dis-
tance draw the vertical ¢ 7; then the
lines ai, and «j, will effect the required
elongation, as ‘previously e xplained. To

jobtain the center ordinate Je, for ex-
ample, make wi'=0k ... aj’=be. To
find the new pole o, draw bv parallel to
¢c.” and 2o horizontal, as before ex-
plained.

If @i, cuts the load line at 7 and the
horizontal through #, cuts aj, at £, then
the vertical through 7, is the new position
of the load line and /' is the new hori-
zontal thrust.

Now using o as the pole of the load
line w,u.' ete., through ¢, draw the equi-
librinm_polygon V'min*' from e. It
must pass through /‘; and &,', which tests
the aceuracy of the (.'nh,\lllh,dﬂll.

The eonstruction m:x_\' now be com-
pleted just as in Fig. 3, by doubling the
p-)lu distance, and hnrhn(r the tangential
thrust along the arch 'm-l the normal
shear tlllc([l} across the arch in the
segments into which it is divided. The
maximum thrust and tange ntial stress is
obtained when the line load covers the
entire span.

To compute the effect of changes of
temperature and ullm causes of like
natare in producing thrust, shear, bend-
iIng moment ete., let us ]-ut the equation
of deflections in Hn following form:

ml,. J/::(7KZ> . (D)

e n \ 7471 v/

This equation may perhaps put in
more intelligible form the processes used
in Figs, 4 and 5, :unl is the equation
which ~'|m.]|] be used as the basis forthe
discussion of te mperature strains in the
arch. In equation (D) » is the number
by \\huh the rise of tho arch must be
divided to reduce it to bd, i.e., it is the
seale of the vertical ordinates of the
t\'po bdy in Fig. 6, so that if &4 was on
the same scale as «h(- arch itself, » would
hr‘ unity. Again, »"is the scale of force,

8., the number of tons to the inch: and
m 18 a number introduced forconvenience
s0 that any assumed pole distance p may
be used for the }nm distance of the see-
-;1-,![”.!'«1mhhnum polygon, In Fig. 8, p

We find m from the equation,

Ly ALk ET
P===—a—7 o= M=—
rmnn /:,u',» -

from which 9 may be computed, for £ is
a certain known number of foot tons when

the cross-section of the rib is given, p is
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a number of inches assnmed in the draw-

ing, # and 2’ are also sumed. Now
Dy is the number of iu(hu by whicl
the span x\ inereased or decreased by the
change of temperature, and 7.0, s at
once laid off on the drawing.

The quantities in equation (D) are so
related to each other, that the left-hand
member is product of the pole dis-
tance and ordinate of the second equi-
librium polygon, while the right-hand
member is the bending moment pro-
duced by the l«).l]"'\" M—=nn', which
loading 15 proportional to M. The curve
J was constructed with this loading, and
only needs to have its loads and ordi-
nates elongated in the ratio of 47, to
Y mDy, to determine the values of
M-=nn' at the varions points of division
of the arch, One-half of each quantity
is used, hecause we need to use but one-
half the arch in this computation. Two
lines drawn, as in Figs. 4 and 5, effect
the required elongation.

The foregoing discussion is on the im-
plied assumption that the horizontal
thrust eaused by variation of tempera-
ture i8 applied in the closing line bb, of
the arch, which is so evident from pre-
vious discussions as to require no proof
}'.(.'.I'(‘.

The quantity determined by the fore-
going process 18 M--nn'=q say, a cer-
tain number of inches. Then U_/ n
and H=M+y=n'g= )i in which -fmhc
length of the ordinate in inches on the
drawing at the point at which Mis applied.

The determination of the shearine and
tangential stress induced by # is found
by using 2 as the diameter of a circle,
i which are inseribed twiangles, whose
sides are respectively parallel and per-
péndicular to the ségments of the arch,
precisely as was done in Figs. 4 and 5

The whole «11~- ussion of the arch w nlu
end joints may be applied to an unsym-
metrical arch with end joints, Inthat case,
it would be necessary to draw a carve s
at the right as well ag 7 at the left, and
the two would be unlike, as g and g” are.
This, however, would afford no difficulty
either in determining the stresses due to
the loads, or to the variations of ter
]"‘l':nlll'l'.

When the live load extends over two-
thirds of the span, as in the Fig., the
maximum bending moment is 1;-&\1‘1_\' n
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the middle of that live load, and is very
approximately the largest which can be
induced by a live load of this intensity,
while the greatest moment of opposite
sign is found near the middle of the un-
loaded third of the span.

If the curve of the arch were a para-
bola instead of the segment of a circle,
these statements would be exaet and
not approximate, as may be proved
analytically. This matter will be fur-
ther treated hereafser.

CHAPTER VL

ARCH RIB WITH THREE JOINTS.

Let the i()in[i be at the center and ends
of the arch, as seen in Fig. 7.
loading

y
A

Let the
and shape of the arch be the
same as that nsed in Fig. 6. Now since
the bending moment must vanish at each
of the joints, the true equilibrium curve
must pass through each of the joints;
i €., every or linate of the lu.)l\ oon ¢
must be elongated in the ratio of @b to
bh. Mo effect this, make di=>5A, and at
a convenient distance on the horizontals
through & and Z draw the vertical
Then the ratio lines ¢, and b, will
enable us to elongate as required, or to
find the new pole distance #i, dimin-
ished in the same ratio, by drawing the
horizontal 2 through 4. Thenew |.r;l eo0is
fonnd in the same manner as in Fi ig. 6.

Now with the new pole o and the new
load line through 4 we can draw the
polygon e starting at . It must then
pass through &, and 4," which tests the
accuracy of the construction.

The maximum thrast, and tangential
stress is at ed when the live load
covers the entire \;:".n.

Variations in Jength due to changes
of temperature induce no bending mio-
ments in this areh; but there may be
slight alteration in the :in‘!:<:, ete,, pro-
dueced li:\' the rEi]_"]tL I"I\il"’ £ flllll] o of
the crown due to the elongation or
shortening of the arch. ' This is s0 small
a displacement that it is of no import-
ance to compute the stresses due to it.
We have for the same reason, in the
previous and subsequent constructions,
omitted to compute the stresses arising
from the displacement which the arch
undergoes at various points by reason of
its beinz ben It wonld be quite pos-
sible to _f'n'v a complete investigation of

resses by analogous methods.

these st




NEW CONSTRUCTIONS

The construction above given is appli-
eable to any arch with three j joints. The
\Uuh need not be symmetrical, and the
three joints can be situated at any points
of t}zc arch as well as at the points
chosen above.
CHAPTER VII.

THE ARCH RIB WITH ONF END JOINT.

Let the arch be represented by Fig. 8,
in which the load, ete., is the same as in
Fig. 6.

The closing line must pass through the
joint, for | at. this |joint  the| bending
moment yvanishes,

A second condition which must be
fulfilled is, that the total deflection be-
low the tangent at the fixed end of a
straight girder baying -one end iwinl

vanishes, for the position of the jointis
fixad. Thisise \prow»] by the equation

.ll.l ) t(l,

in which the ~'uunnnlinn 15 extended
from end to end.

This condition will enable us to draw
the closing ‘line of the polygon ¢, and
also that of 4. The lvx'nly‘:rm may be
thus stated:;—In what direction shall a
closing line such as e/’ drawn from

moment of ‘the negative
ingular.area e e A" about ¢ shall be
equal’ to thé moment of the  positive
parabolie avea ¢ be,
To solye/ this problem; first find, the
center/of gravity of the parabolic area
by takingit /in parts. | The parabolic
area ¢. b ¢l is ."&.<--"nwl of a sinele
parabola whose aréa 1s #5.0." X ee,=4%A

. b.b, \\}wn h,=the height of .mullll\ a-

triangle having the span for its base

b= s and draw 3.0, ..
J=h. Layoff ¢ p,—h, as proportion-
al to the weight of the Illl abolic area.
Again, ¢,/p is x«qmuw 1l to the weight
of the tnangle . The parabolic
aren ¢/c/= g e e/ Xb b/ =} h,XbD, as
before, .- efe’, whi may be
found as-4. was hefore.
Let /i )/ "'u'l on taking any pole,
as o, of this weight line, we draw ¢¢
: parabolic area has its
center of gravity :'1 the vertieal through
¢ enlar area in that through

7!.‘,‘

, sinee the lef

» ¢enter |1{
parabolic area.
midway between the

verticals containing & and &, is sliglhitly
to the right of its true position, as it
shonld be at one-third of the distance
from the vertical through & to that
I}‘li"l”l! 5., This does not affect the
nature of the process however.

Then ¢,¢. |l e,p, and ¢,'q, |l &, p, give g,
in the vertical through the center of gray-
ity of the total positive area. The nega-
tive area, since 1t is triangular, hasits cen-
ter of gravity in the vertieal through ¢,

Now if the total positive l:(lnlln'r mo-
ment be considered to be concentrated
at its:center of gravity and to act on a
straight \girder it will assume the shape
rgaof this second equilibrium polygon,
'ulil if a n(’“‘.l[l\-‘ moment must be ap-
plied such that the deflection vanish, the
remainder of the girder must be
prolongation of ». Now draw ¢, p,
rr,, and .we have p, p,=¢, A" the height
of the triangle of negative area, Hence
e i’ is the closing line, fulfilling the re-
quired eonditions. '

Again, to draw the elosing line 5.k
according to the same law, we know
that the center of gravity of the poly-
gonal area o is in the center vertical.
Tofind the height p ', of an equivalent
triangle having a base cc[ll;[l to the span,
we may obtain an approximate result, as
in Fig. 2, by taking one twelfth of the
sam of the ordinates of the type 4d, but
it 18 much better to obtain an exact
result by applying Simpson®s rule which
is simp lified I-\ '}a'- vanishing of the end
ordinates. The rule is found to reduce
in this ecase to following:—The
required height is one eighteenth of the
sum of the ordinates with even subscripts
plus one ninth of the sum of the rest.

Now thispositive momeént coneentrated
in the center vertical and a necative
moment such as to-cause nototal defleo-
tion in a straight girder, will give as a
\:‘(_‘-'h'l ’Hl] L’ll tm l‘“.\"““ b 4
and if e P |

.*/':'_ then PP '=b %" is the
heiecht of the tria: icular ne v_"it‘xi\'l‘ area
and the closing lineis &4%

Now the remaining conditionis that
he ~p in is m\ ark xhw. which i§ expressed
y the equation

Mr’;,
construct the deflection =
moments M; in & manner
'E“]-“l".\'l:'i in I.’ 2. We
jnantities dn,,

as before the ratio lines «i aud

equal to one-fourth of the corresponding
ordinates of the ¢urve d, and dn,
nn, ete., one-fourth of the ordinates
of the enrve ¢. We use one-fourth or
any other fraction or muitiple of both
which may be convenient. By using &
for a pu‘m we obtain the deflection curves

f and /* for the moments MH]M'U«H.J] to

M, and the curves 7 and g’ for those
proportional to A7, .
Now, Prop. IV. requires that the or-
dinates of the ]»nl gon ¢ should be in-
ereased so that gy’ shall become equal to
Make di=gg" and dj=j77" and draw
)‘~ then
2 vertical through ¢ is the new position
the load line.

i'uu the new lencth of 44 which is
ke, and with the new pole o, draw the
Im'vmm ¢ starting at ¢. It must pass
through 4,. The new pole o is found
tlm-: draw bv || A2, the n v divides the
weight line into two parts, which are
the vertical resistances of the abutments.
From #, draw » 6 || &4/, then the closing
line of the polygon « lx.1~ the direction 44",

A single joint at any point of anm un-
vinmetrical arch can be treated in.a
similar manner,

A thrust produced by 1<mlu-r-mux
strains will be applied '\‘unw the closing
line A4, and the bending moments in-
daced \\'xll be proportional to the ordin-
ates of the polygon @ from this closing
line. The variation of gpan must be
computed not for the horizontal span,

but for the Pr n\w!mxu of it on the clos-
fl_'

B

l.u' construction of this
Tect will be
\""AL".‘
fact will ‘vw m~ul in @ line perpendic-
ular to Z&’. The -variation of span for
:lvu gonstraction, is.the projection of the
tots [ ital variation on a line per
pe ndienl: t A , and the
ments izwi:;:- d by thi

ing line /
"'”l"ll“[ of the total ef
previou .wnﬂu\ul

bending mo-
v this force applied at
b, and perpendicular to th ¢losing line,
will be propertional to the horizontal
distances-of the points of division from
' As ithese constructions are readily
: h and tangential
tresses determined i'l'n»m them, it is
ght necessary to give them in d

CHAPTER VIII.
ARCH RIBE WITH TWO JOINTS.
Let us take the two joints, one at the
center and one at one end as represented

IN GRAPHIC
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in Fig, 9. Let the loading, etc., be as
in Fig, 6.

The closing line evidently passes
through the two joints, as at them the
bending moment vanishes.

The remaining condition to be fulfilled
is that the deflection of the right I..m of
the arch in the direction of this line,
shall be the same as that of the left
half,

Let us then suppose that the straight
girder &, p’ perpendicular to the closing
line, is fixed at &, and bent first by
the moments My giving us the deflection
curve b." " when 4/ is taken as the pole,
and the loads of the type mm are one-
quarter of the uvrleﬂumtlm 4 nxﬂlhlh
of the polygon d; and secondly, by the
moments M, giving us the defle -Iinn
curve 4.y’ when drawn with the same
pole, and the loads of the type nn also
one-quarter of the corresponding ordi-
nates of the l"'l'l'”” ¢. It should be
noticed that the pomt~ at which these
moments are ~umm~unl » he concentra-
ted in the girder 4. p/, are on the paral-
lels to &' ALZ'.‘“gl] the ]»O.JA ('V:, d,
eta,

Similarly let 77, and £, f, be the deflec-
tion eurves of the straight girder &, p
(nsing ¢, as the pole distance), under the
applied moments.

We have used now a pole distance
differing from that nsed in the right half
of the arch. These pole distances mnst
have the same ratio that the quantity ZJ
has for the two parts of arch. If Elisthe
same.in both parts of the arel the same
pole distance must be used to obtan the
deflection curves in both sides of the mid-
dle. y Inthe same manner thecuryes gg,
wmd 7.9, are found.
ments I, cansing / the total ‘deflection
) 1 __14 zu_' el MLl 111 S0 }if.' "-t':\'

will cause a total de 1\ «II-«! ¢
'”u g h]«r €8s aer., 7 \ i -‘..L‘l‘;k'
'1~ to fin 1 the new positi 7, of the load
eet this
0 the mnew pole, through
divides tin;- load into
parts which are \I ]
ol' the piers, dr: W 2,
e polygon ¢ as in Fig. '.‘z-:in:f.rnm
/, It must pass through &. We can
find also whether %e¢/ has the required
ratio to Ae,'-by the aid of the ratio lines,
which will further test the accuracy of
the work.

Now must the mo-




NEW CONSTRUCTIONS

The construction above given is appli-
eable to any arch with three j joints. The
\Uuh need not be symmetrical, and the
three joints can be situated at any points
of t}zc arch as well as at the points
chosen above.
CHAPTER VII.

THE ARCH RIB WITH ONF END JOINT.

Let the arch be represented by Fig. 8,
in which the load, ete., is the same as in
Fig. 6.

The closing line must pass through the
joint, for | at. this |joint  the| bending
moment yvanishes,

A second condition which must be
fulfilled is, that the total deflection be-
low the tangent at the fixed end of a
straight girder baying -one end iwinl

vanishes, for the position of the jointis
fixad. Thisise \prow»] by the equation

.ll.l ) t(l,

in which the ~'uunnnlinn 15 extended
from end to end.

This condition will enable us to draw
the closing ‘line of the polygon ¢, and
also that of 4. The lvx'nly‘:rm may be
thus stated:;—In what direction shall a
closing line such as e/’ drawn from

moment of ‘the negative
ingular.area e e A" about ¢ shall be
equal’ to thé moment of the  positive
parabolie avea ¢ be,
To solye/ this problem; first find, the
center/of gravity of the parabolic area
by takingit /in parts. | The parabolic
area ¢. b ¢l is ."&.<--"nwl of a sinele
parabola whose aréa 1s #5.0." X ee,=4%A

. b.b, \\}wn h,=the height of .mullll\ a-

triangle having the span for its base

b= s and draw 3.0, ..
J=h. Layoff ¢ p,—h, as proportion-
al to the weight of the Illl abolic area.
Again, ¢,/p is x«qmuw 1l to the weight
of the tnangle . The parabolic
aren ¢/c/= g e e/ Xb b/ =} h,XbD, as
before, .- efe’, whi may be
found as-4. was hefore.
Let /i )/ "'u'l on taking any pole,
as o, of this weight line, we draw ¢¢
: parabolic area has its
center of gravity :'1 the vertieal through
¢ enlar area in that through
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, sinee the lef

» ¢enter |1{
parabolic area.
midway between the

verticals containing & and &, is sliglhitly
to the right of its true position, as it
shonld be at one-third of the distance
from the vertical through & to that
I}‘li"l”l! 5., This does not affect the
nature of the process however.

Then ¢,¢. |l e,p, and ¢,'q, |l &, p, give g,
in the vertical through the center of gray-
ity of the total positive area. The nega-
tive area, since 1t is triangular, hasits cen-
ter of gravity in the vertieal through ¢,

Now if the total positive l:(lnlln'r mo-
ment be considered to be concentrated
at its:center of gravity and to act on a
straight \girder it will assume the shape
rgaof this second equilibrium polygon,
'ulil if a n(’“‘.l[l\-‘ moment must be ap-
plied such that the deflection vanish, the
remainder of the girder must be
prolongation of ». Now draw ¢, p,
rr,, and .we have p, p,=¢, A" the height
of the triangle of negative area, Hence
e i’ is the closing line, fulfilling the re-
quired eonditions. '

Again, to draw the elosing line 5.k
according to the same law, we know
that the center of gravity of the poly-
gonal area o is in the center vertical.
Tofind the height p ', of an equivalent
triangle having a base cc[ll;[l to the span,
we may obtain an approximate result, as
in Fig. 2, by taking one twelfth of the
sam of the ordinates of the type 4d, but
it 18 much better to obtain an exact
result by applying Simpson®s rule which
is simp lified I-\ '}a'- vanishing of the end
ordinates. The rule is found to reduce
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required height is one eighteenth of the
sum of the ordinates with even subscripts
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Now the remaining conditionis that
he ~p in is m\ ark xhw. which i§ expressed
y the equation
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construct the deflection =
moments M; in & manner
'E“]-“l".\'l:'i in I.’ 2. We
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equal to one-fourth of the corresponding
ordinates of the ¢urve d, and dn,
nn, ete., one-fourth of the ordinates
of the enrve ¢. We use one-fourth or
any other fraction or muitiple of both
which may be convenient. By using &
for a pu‘m we obtain the deflection curves

f and /* for the moments MH]M'U«H.J] to

M, and the curves 7 and g’ for those
proportional to A7, .
Now, Prop. IV. requires that the or-
dinates of the ]»nl gon ¢ should be in-
ereased so that gy’ shall become equal to
Make di=gg" and dj=j77" and draw
)‘~ then
2 vertical through ¢ is the new position
the load line.

i'uu the new lencth of 44 which is
ke, and with the new pole o, draw the
Im'vmm ¢ starting at ¢. It must pass
through 4,. The new pole o is found
tlm-: draw bv || A2, the n v divides the
weight line into two parts, which are
the vertical resistances of the abutments.
From #, draw » 6 || &4/, then the closing
line of the polygon « lx.1~ the direction 44",

A single joint at any point of anm un-
vinmetrical arch can be treated in.a
similar manner,

A thrust produced by 1<mlu-r-mux
strains will be applied '\‘unw the closing
line A4, and the bending moments in-
daced \\'xll be proportional to the ordin-
ates of the polygon @ from this closing
line. The variation of gpan must be
computed not for the horizontal span,
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Tect will be
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' As ithese constructions are readily
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ght necessary to give them in d

CHAPTER VIII.
ARCH RIBE WITH TWO JOINTS.
Let us take the two joints, one at the
center and one at one end as represented
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in Fig, 9. Let the loading, etc., be as
in Fig, 6.

The closing line evidently passes
through the two joints, as at them the
bending moment vanishes.

The remaining condition to be fulfilled
is that the deflection of the right I..m of
the arch in the direction of this line,
shall be the same as that of the left
half,

Let us then suppose that the straight
girder &, p’ perpendicular to the closing
line, is fixed at &, and bent first by
the moments My giving us the deflection
curve b." " when 4/ is taken as the pole,
and the loads of the type mm are one-
quarter of the uvrleﬂumtlm 4 nxﬂlhlh
of the polygon d; and secondly, by the
moments M, giving us the defle -Iinn
curve 4.y’ when drawn with the same
pole, and the loads of the type nn also
one-quarter of the corresponding ordi-
nates of the l"'l'l'”” ¢. It should be
noticed that the pomt~ at which these
moments are ~umm~unl » he concentra-
ted in the girder 4. p/, are on the paral-
lels to &' ALZ'.‘“gl] the ]»O.JA ('V:, d,
eta,

Similarly let 77, and £, f, be the deflec-
tion eurves of the straight girder &, p
(nsing ¢, as the pole distance), under the
applied moments.

We have used now a pole distance
differing from that nsed in the right half
of the arch. These pole distances mnst
have the same ratio that the quantity ZJ
has for the two parts of arch. If Elisthe
same.in both parts of the arel the same
pole distance must be used to obtan the
deflection curves in both sides of the mid-
dle. y Inthe same manner thecuryes gg,
wmd 7.9, are found.
ments I, cansing / the total ‘deflection
) 1 __14 zu_' el MLl 111 S0 }if.' "-t':\'

will cause a total de 1\ «II-«! ¢
'”u g h]«r €8s aer., 7 \ i -‘..L‘l‘;k'
'1~ to fin 1 the new positi 7, of the load
eet this
0 the mnew pole, through
divides tin;- load into
parts which are \I ]
ol' the piers, dr: W 2,
e polygon ¢ as in Fig. '.‘z-:in:f.rnm
/, It must pass through &. We can
find also whether %e¢/ has the required
ratio to Ae,'-by the aid of the ratio lines,
which will further test the accuracy of
the work.

Now must the mo-




Any unsymmetrical arch with joints
situated differently from the case consid-
ered can be treated by a like method.

The temperature strains shonld be
treated like those in Fig. R, which are
caused by a thrast along the elosing line.
Those at right angles to-this line vanish
as the joints allow motion im thiz direc-
tion.” The bh(umnuaml tangential stress-
es can be found as in Fig. 35.

Arches with more than three hinge
joints are—in —unstable equilibrinm,
and can, only be used i an inverted
position as suspension bridges.  These
will be treated subsequently. If the
joints, however, possess some stiffness
so that they are nolonger hinge joints,
but are block-work  joints, or analo-
gous to: such joints, we may still eon-
struct arches whieh are stable within
certain limits although the number of
joints is indefinitely increased.” Such
are stone or brick arches. These will
also be treated subsequently.

The constructions in Figs. & 7, 8, 9,
can be tested by a progess like that em-
;luud in Figs. 2 and 3. In Fig. 2, for
Hl\([‘lnit' we obtained the .\l<r<"l alc sum
of the squares.of the quantities of the
type &8, and showed thatSuch sum van-
ishes, We ean obtain the same result in
all cases.

CHAPTER IX.
THE CINCINNATI AND COVINGTON SUSPEN-
SION SRIDGE. — (Fig. 10.)

Tae main span of this bridge has a
length of 1057 feet from center to cen-
ter of the towers, and the end spans are
each 281 feet from the abutment to the
center of the tower. The deflection of
the cable is 80 feet at'a mean tempera-
ture, or about 1—11.87th of the span.
There is a single «
the inl":(ij_;«'. Each of these cables is made
up of 5200 No. 9 wires, each wire having
a cross-section of 1-60th of a square
inch and an estimated

.dvle at each side of

strength of 1620

Ibs. Each of these eables hasa diameter

of 121 inches, and an estimated strength
of l.’]_' tons, Each cable rests at \I)w
tower upon a saddle of easy curvature,
the saddle being supported by 32 rollers
w h-nh run -t]mn a cast iron |u-l plate

(11 feet, which forms lmr of the top
at the tower. Since the bed-plate is
horizontal this method of support ensures
the exact perpendicularity of the force
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which the eables exert upon the towers,
without its being nécessary to make tlw
inelination of fhc :able on both sides of
the saddle the same. There is, there-
fore, no tendency by the cables to over-
turn the towers, and they need only be
proportioned to bear the vertical stresses
coming npon them.

As this bridge differs greatly in some
respects from other suspension bridges,
it seems necessary to deseribe its
peculiarities somew hat minute aly.

The roadway and sidewalks make a
platform 36 feet wide, extending from
abutment to abutment, 1619 feet, Itis
built of three thic Llwwm of plank solid-
ly bolted together, in all 8 inches thick.
This is stre n-'-]u ned by a double line of
rolled I ~'1rJu~, 1630 feet long, running
tha entire length of the center of the
platform, These 1 ginl:-rs are arranged
one line above the other, and across be-
tween them, at distances of & feet, run
Iateral I girders which are suspe :nded
from the cable. The upper line of
girders is 9 inches dee ps (and 30 Ibs. per
toot); the lower line 1s 12 inches deep
(and 40 Ibs. y'\l foot). The lateral
girders are 7 inches deep (wud 20 1bs. per
foot), and are firmly embraced between
the double line of longitudingl zml--rs.
The girders of this center ];lllll' AYe
each 30 ft. long, and are spliced toge Yllar
by plates in the hollows of the I, but
the holes throngh which the bolts pass
are slots whose length is two or three
times the diameter of the bolts. This
makes a "~ll|v joint” such as is often
used in fastening the ends of the rails on
a railroad. The ~I|1» joints permit the
W umlcn] anking of the roadway to ex-
pand and contract from variations of
moisture and tem iperature without inter-
ference from the iron girders which are
bolted to u

There is also a line of wronght-iron
truss-work about 10 feet dec ep extending
from abutment to abutment on-each side
of the roadway, consisting of panels of
5 feet each, to each lower joint.of which
15 fastened a lateral girder and a suspen-
der from the « This trussine is a
lattice, with vertical posts, and
tending across two panels, and its chords
are both made with sli p joints every 3(
feet |

h is apparentthat this whole arrange-
ment of flooring with the girders and
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trusses attached to it possesses a very
small amount ~-!' stiffness, in- fact the
stiffness is principally that of the floor-
ing itself. It will permit a very large
deflection, say 25 feet, up or down from
its normal position without injury. Its
office is something quite different from
that of the ordinary stiffening truss of
suspension bridge. It certainly serves
to distribute concentrated loads over
short distances, but not to the extent re-
quired, if that were the sole means of
preserving the cable in a fixed position
under the action of moving loads. Its
true function is to destroy all vibrations
and undulations, and prevent their pro-
pagation from point to point by the
enormons frictional resistance of these
slip joints. When a wave does work
against elastic forces, the reaction of
those forces returns the wave with
nearly its original intensity, but when it
does work against friction it is itself
de \U'“\"-d

The means relied on in this bridge to
resist the effect of nnbalanced loads is a
system of stays extending from the top
of the tower in straight lines to those
parts of the l'r):hl\\':l.\'v which would be
most deflected by such loads. There are
76 such stays; 19 from the top of each
tower. The longest stays extend so far
as to leave only 850 feet., Z.e., a little
over one-third of the span, in the center
over which they do not extend. Each
stay being a cable 2% inches in diameter
has an estimated strength of 90 tons.
They are attached every 15 feet to the
roadway at the lower joints of the truss-
ing, and are kept straight by being fast-
ened to the \lh[»('n-l‘ rs whera they cross
them. This systemis shown in Fi iz, 10in
which ' all 'the stays for one cable are
drawn, together with every third sus-
pender. The suspenders oceur every 5
feet throughout the bridge but none are
shown in the figure except those attach-
edat the same points as the stays.

These stays must sustain the larger
part of anvunbalanced load, at the same
time producing a thrust in the roadway
against either the abutment or tower.

It is really an indeterminate que
tion as to how the load divided
T-o:wun the stays and trussing; and
this the more, because of the manner in
mnch the other extremities of the stay
are attached. Of the nineteen stays

carried to the top of one tower, the eight
next the tower are fastened to the bed
plate under the saddle, and so tend to
pull the tower into the river; the remain-
ing eleven are carried over the top of
the tower, and rest on a small independ-
ent saddle, beside the main saddle, and
are eight of them fastened to the middle
portion of the side spans as shown in Fig.
10, while the other three are anchored to
the abutment.

In view of the indeterminate nature
of the problem, it has seemed best to
suppose that the stays should be propor-
tioned to bear the whole of any excess
of loading of any portion of the bridge,
over the uniformly distributed load
(which latter is of course borne by the
cable 1tself); and further that the truss
really does bear some fraction of the
unbalanced load, and that the bending
moments have therefore the same relative
amounts as_if they sustained the entire
unbalanced load. This fraction, hows-
ever, i8 quite unknown owing to the im-
possibility of finding any approximate
value of the moment of inertia 7 for the
combined wood and iron work of the
roadway.

This method of treatment has for our
présent purpose this advantage, that the
construction made use of is the same as
that which must be used when there are
no stays at all, and the entire bending
moments induced by thc live 10'1(]i are
borne by the stiffness of the truss alone,

Now 1n order to determine the tension
in any stay, as for instance that in the
longest stay leading to the right hand
tower, lay off » v, v-lu.nl to the greatest
unbalanced we 1«_:!1!. which -under. any
cirenmstances is concentrated at its lower
extremity. < This weight is sustained by
the longitudinal resistance of the floor-
ing, and the tension of the stay. The
stresses indnced in the stay and flooring
by the weight, are found by drawing
from o and ». the lines ».0 and v.0 1-;n"-
allel respectively.to the stay and the
flooring. Then #.0 is the tension of the
stay, and that of the other stays may be
found in a similar manner,

It iz impossible to determine with the
same certainty how the stress ov, paral-
lel to the t]-n‘n'iw' is sustained. It may
be sustained entirely by the ¢ nmpw“mn
it produces in the part of the flooring
hetween the weight and the tower or th
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abutment; or it may be sustained by the
tension produced in the tlooring at the
left of the weight; or the stress ov, may
be divided in any manner between these
two parts of the flooring, so that ».».’
may represent the tension at the left,
and ov,’ the compression-at the right of
the weight. Tt appears most probable
that the induced stress is borne in the
ease before ns by the compression of the
flooring at the right, for the flooring is
ill'suited to-bear tension both from the

ip joints of the iron work amd the want
of wther secure’ longitudinal fastenings:
but on the contrary it is well designed
to resist compression.  The flooring
mist then be able at the tower to resist
the sumof the compressions produced by
all the nubalanced weights whiclh can
be at once concentrated at the extremi-
ties of the ninetgen stays,

There is-one considerable element of
stiffness which has not béen taken account
of 'in this treatment of the stays, which
serves very m:m‘ri:a]‘..\'tnnliminid] the max-
mmnm stresses to which they might other-
wise be subjected. This is the intrinsic
stiffness of the cable itself which isformed
of seyen equal. subsidiary cables formed
into a single cable, by placing six of
them around the seventh central eable,
and encloging the whole by a substantial
wrapping ‘of wire, so that the  entire
cable having a diameter of 121 inches.
affordsa resistance to Hending of from
one sixth to one half that 6f a hollow
eylinder of the same diameter and equal
cross seoction of metal. Whiceh of these
fractions to adopt depends somewhat
on the tightness and stiffness of the
wrapping.

It s thisintrinsie stiffness of the cable
whicliis largely depended upon in the ¢én-
tral part of the bridge, between the two

resist the distortion
‘:.!:k""l '\‘.’:'3'_1" ts.
ioreseen Iklk-' '}Eslul'ﬁwz;\
}n:(li of :I,».- i']'irl:_'r_' than elsewhere, 1:'“»113_‘31
they would haye been by far the greater

1 those parts of the bridge where the

)
ivs are, had the stays not been used.

are actually much greater in the central

lie center of a cable is compar
stable while ]

t is undergoing quite con-
siderable osc

lations, as may be readily
seen by a simple experiment with a rope
or chain.

Let us now determine the relative

i
il

amount of the stresses in the stiffening
truss, on the supposition that the actual
stresses are some unknown fraction of
the stresses which would be induced, if
there were no stays, and the truss was
the only means of stiffening the cable,
We, therefore, have to determine only
the total stresses; supposing there are no
stays, and then divide each stress ob-
tained by 7z (at present unknown) to ob-
tain the results required. Let us draw
the equilibrium polygon & which is due
to auniform load of depth 2y, and which
has a deflection 4d six times the central
defleotion'of the cable. The loading of
the cable is so nearly uniform, that each
of the ordinates of the type 0d, may be
considered with sufficient aceuracy to he
six times the corresponding ordinate of
the eable, Any multiple other than six
might have been used with the same
facility. In order to cause the polygon
to have the required deflection with any
assumed pole distance it is necessary to
assume the scale of weights in a particu-
Iar manner, which may be determined
oasily in several ways. Letr us find it
thus:

Let W=one of the concentrated weights.

Let dD=central deflection of cable.

Let S=span of the bridge

Let M=central bending moment due to
the applied weights.

Then, if the pole distance=38, M=% S
X 6D=28D), for the moment 1s the pro-
duct of the pole distance by the ordinate
of the equilibrium polygon. Again, com-
puting the central moment from the ap-
plied forces,
M="4Wxi5—5 Wi S=3WS,

in which the first term of the right hand
member is moment of the resistance of
the piers, and the second term is the mo-

it of the concentrated \\'-_~iqlll~:1}'!}J1itd
at their center of gravity.,

§ Wi§=28D | W=4iD,

Hence, if one-third of the span is to
represent the pole distante or true hori-
zontal tension of an equilibrinm curve
having six times the deflection of the
cable, each concentrated weight when
the span is divided into twelve equal
parts, is represented by a length equal to
i of the deflection of the cable. The
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true horizontal tension of the cable will
be six times that of the equilibrinm
polygon, or it will be represented, in the
‘;‘_'f‘.‘l"‘ll.\l‘(]’ by a line twice the length of
the span. Now taking & as the pole, at
distances bb,=bb,'=18, lay off b w, =
baw' =3 W=4iD, so that they together
!'zl‘i'i‘&_‘\‘e'-h( the weight concentrated at &y
and let wwe,= W, represent the weight
concentrated at &, ete. Then ean the
equilibrium polygon 4 be constructed by
making dd. || bw,, d.d, || bw, ete. If bd
—a.) the |-'i:1\';1({i1 must pass through 5,
and &', which tests the accuracy of the
Now to investigate the effect of an

alanced load covering one-half the
let us take one half the load on the
half of the span and place it upon
ft, so that oz and b represent th
relative intensity of the loading upon
the left and right half of the span re-
spectively, the total load being the same
as hefore. If it is desirable to consider
that the total load has been increased
by the unbalanced load we have simply
£0 change the scale so that the same
length of load line as before, (viz, &,"w
4.7 0.") shall represent the total loading.
This will give a new value to tha hon-
zontal tension also.

Now let a new equilibrinm polygon ¢ be
drawn, which is due to the new distribu-
tion of the coneentrated weights. It is
necessary to have the closing line of this
]mi_'.'f_mx..t.,' horizontal; and thismay be ac-
complighed either, by drawing the polygon
in_any position and laying off the ordi-
nates of the type sz equal to those in the
polygon so drawn, or better as is done
in this Figare by laying off in each

ight ling that part of the total load
is borpe by each pier, which is
computed, as follows. The

@ of the center ol j_"l‘!l\i!.\ of the

Tin g divides the Span in the ratio of

Hence # and 4% of the total

we the resistances of the piers, or

ice the totalload =11 W, we have &%
EWoand b =% . Now makew,

he weight concentrated at &, ete.,

bt = that at 4. Then draw

the 1‘-':.\'._'_{14:1

The polygon ¢ has the same central
deflection as the polygon d; for compute

as before,

o M=% Wx4S—1 WxiS=1 W8
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in which the first term of the second
member is the moment of the resistance
of the right pier, and the second term is
the moment of the concentrated weights
applied at their center of gravity.

By similar computations we may prove
the following equalities;

7

.-.—,].. — —:7""!"_': — ,’

-

 =die.=—d. ¢! =—d'¢/

d.o

The quantities of the type de are propor-
tional to the bending moments which the
, ming truss must sostain if it pre-
serves the cable in its original shape,
when acted on by an unbalanced load
of depth bz, on the supposition that the
truss has hinge joints at its ends, and is
by them fastened to the piers. For in
that case the cable is in the condition of
an arch with hinge joints at ite ends.
The condition which then holds is this:

2\ _”‘;3/.) = 2 ,1[;.",/)
or,

S(My—M)Yy=0.. Z(cd)y=0.
This last is fulfilled as is seen by the
above equations, for to every product
such as +b,d Xde, corresponds another
—b'd'xd e’ of the same magnitnde
but opposite sign.

The polveon ¢ could have been ob-
tained by a second equilibrium polvgon
in & manner precisely like that used be-
fore, but as it appears useful to show
the connection between the methods of
treating the arch rib which is itself stiff,
and the flexible arch or eable, which is
stiffened by a separate truss, we have
departed from our previonsly cmployed
methiod for determining the polygon e,
as 118 ey 3y 10 do when bothie and ¢ are
parabolic.
~ Now let us compute the bending mo-
ment

‘ D = _1-/ —_ ,]/
: WS

Compute also the bending moment

the vertical through &,
M.= EWxsS—=2W
M

<YrS=TS
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Similar computations may be made for| By flexible cable or arch is meant one
the remaining points, and this note- which has hinge joints at the points
worthy result will be found true, that where it supports the st fening truss. I
the bending moments induced in the need not actually have hinge joints at
stiffening truss by the assumed loading, these points : the condition is sufficiently
are the same as would have beeninduced ' fulfilled if it is considerably more flexi-
by a positive loading on the left of a ble than the truss which it ;u[»p«'n'l.\
depth yz, and a2 negative loadingon the  The truth of Prop. VIhas been recog-
right of an equal depth »5.  For com- nized by previous writers upon this sub-
pute the moments due to such loading ‘ject in the particular case of the parabolic
at the points &, and 5 suspension cable, and it has beeu errone-
The resistance of the pier due to such ously applied to the determination of the
loading =% W bending moments in the arch rib in gen-
o g e, BIGA MUY eral. Tt 1s.inaceurate for this purpose in
a8 : A two particulars, m:mn.u'_-iz‘ as in Llff_‘ first
a place the arch to which it is applied is
M=% WxtS—3WxaS=4 WS, ete. |not parabolie, thongh the negative load-
I | \ . ing due'to it i§ assumed to be uniform,
We arrive then at) this conception of land in the second place the horizontal
.th(f stresses to which tlie stiffening truss | thrust is not the same for the different
i8 subjected, vizr—the trass is. loaded | kinds of aréh rib, while this assumes the
with the applied sveights scting down- same thrast. for all; viz: that arising
ward, and is drawn upward by a uni- from a flexible arch or one with three or
formly distribnted mnegative loading, more joints.
whose total amonnt is equal to the posi-| ' A similar proposition has been intro-
tive loading, so fhat the load actually | duced |into & recent publication on llli%
applied at any point may be consgidered subject®; but in that work the truss stiff-
to lnf- .il;n :{l:_:f.‘l)r:li(,' sum-of the two loads|ens a simple parabolie ¢able, and the
of different stemswhich are thereapplied, truss is not supposed to he fastened to
This coneeption might have been derived the piers,so that it may rise from either
at once from.a consideration of the fact pier whenever its resistance * becomes
that t}x}*_(‘:l‘bi': ¢an >117l:(i_:1 onlya uniform | negative. As this should not bé permit-
load, if it 18 to retain its shape; but it teddn a practical construction the case
appears useful'in several regards to show ' will not be discussed. In aceordance
the mimerical agreement of this: state- with Prop. VI let us determine anew
ment wul_, Prop. IV of which infact it the bending moments due to an unbal-
18 a partioular case. If‘is unnecessary anced load on the left of an intensity
to make a general proof of this agree- denoted by 2z, )
ment, but instead we will now state alduces the same effect as a positive load-
proposition respecting stiffening trusses, ing of an intensity ye=fm—=4bz on the
the truth of which is sufficiently evident left e loadi ¥ :
from considerations previously adduced.

As before seen this pro-

» and a negative loading of an inten-
Sty yb=yn=4hz. Nowusing g as apole
. > = > w ! ole ig ik F i thi {
Prop. VI. The stresses induced in the .-l.th bpgle o ko f7s=sona\hitl bt

the span lay off the concentrated weicht
P, p,=that applied at 4, etc., on the
same seale as the weights were laid off
would be induced in it by the application n the previons construetion, and in such
to it of a combined positive and negative ® POsition that g is opposite the middle
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Joading. Bisteitusd) il 4hé n:t L_][t, lﬂs.l] load, '.\lmh.\\ul cause the
closing line to be horizontal. Then
! -l'r:m the equilibrium polyzon @ due to
g these weights, The
15 equal numerically to the positive load- | type a7

stiffening truss of a flexible cable or arch,

by any loading, is the tame as that which

following
mannery viz: the positive loading is the
actual loading, and the negative load ordinates of the
are by Prop. VI proportional to
ing, but is so distributed as to cause no the bending moments induced in the

) stiffening truss by the unbalanced load

bending moments in the cable o i o % :
: When the truss is simply fastened to the

r .’N'l,‘]l,
i.e., the cable or arch is the equilibrium

polygon for this negative loading. by - o it A. J. Du Bois, p, 529, published
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piers at the ends, and, as we have seen, the !»_'_»silion of H."‘; then th]v ";'\lll‘xili-'.t'_“::
each of the quantities a7 is identical with e will be _pzw»p-’n.!'_l.lyunz'&l !“*”t ¢ bending
the corresponding quantity ed. . moments of the stiffening truss. £l o
If the stiffening truss is fixed horizon- H;vw}fr:l!‘lh'_fj’t ress ll{tllt'lllls>!>.l‘) »l.im,rl
tally at its ends a closing line /h’ mnust from the loading which canses al.h;' )”';
be drawn in such a position that _\.IJ() ing moment, in the same manner 1\1 ttl:;l‘.
=0, and as it is evident that it must di- in any simple ‘n,'nsf. Ihe .}1'.~H)mxl;1‘." .:,.ll
vide the equilibrium polygon symmetri- sion in :m:. cable, is the :\Hn:( :\}\: 2“”(
cally it passes throngh ;° its central the total load on the span is the same,
sint and is not clmn:zul‘ by any .'ll.t('l.lnnh' in
IIU.”\Js.s\:'ued in a previous article, the the distribution of !]zt;)lu:ull:\Tl. Wl'lllvl‘,'ll
maximum bending moments at certain | fact 1s «;wlvu.t from .x-rw}»_.‘ = ;ﬁ
points of the span are caused when the maximum 1ﬁu:<1~n‘| of Iln-. r.nln{a: l‘?,."ll‘]}].
unbalanced load covers somewhat more when the live ::):ul (.\U“l\f;\ 0]\‘1'1- x:
than half of the span. In the case of a entire span, and is o 1::-_«» -t;:n{n:;\‘ 1"()1‘1;1{_
parabolic cable or arch the maximum force polygon which __un\"\ for 1} € .l.“ .
maximorum bending moment is caused }n!‘m_lfl polygon the curve ~.-1. '(-4:.' -Ly‘l-l}l.
when this load extends over :\\'n-.tilin.ls itself, as would be done by ll‘lm'!li_.:'lbkf
of the span, as is proved by llmxkn:‘v in | weights 1, 1/ «.-t\.-:. .'m-]l l ]-:l-lv- distance (¢
his Applied Mechanics by an analytie 81X ‘mm-‘\ bb, f'“ !‘('(,- t e S «llll..' sl
process, Let the load extend ern.-w‘(-r I'he temperature '-Ill.n;).~..«}v l s !..mf‘:
all except the right hand third of the truss of a suspension ridgy .l.xj«r_-l.‘]:r
span with an intensity represented by ~='\'vl"'.7llfnl those of the nu’.“ .\l.i f¢ m]?
ba=q4y. Then if ffg=4rq/, the anarch;becanse the total ‘r.un.;_r;\ll}n.m‘i-vv“
trnss may by Prop. VI be ('t:ll.\i-lvl'wl_!w {l'i". ¢able in the .\'11.1(; s!.»':nn] as \\<‘A : m‘ r\‘{,‘
sust@in a positive load of the intensity - main span, is tr.'m.fnh.n« ;ll.)'l 1€ i.n.;‘\.
¢, on the left of 4/, and a negative span :m-i’ ‘!-1“:-.1.11@-5 a :l_‘l' (l(“‘-’;l ,ﬂ\.,l.\,'_
load of the intensity 7.'¢, on the right center. llll\‘ is one Alri_'.‘lv'll .“:l’\,.l.ll.l,.":‘;-
of b’. Using ¢ as the pole and the 1\11'[{1‘41 a method of 1vli.ll‘lH;‘_I.:]r].l:‘(‘{‘. K‘]‘:,‘&
same pole distance as before, lay off the il!r!ﬂl(':l)»]e: "u 'Slls]lt'll-.)'(.ifl. l}n‘x'« ,l':lﬂ\',.”u s
weight ¢4, concentrated at /'.._ etCs S0 | supposing that the ni.»‘ 1.:“1].\‘@..,‘, o
that ¢’ is opposite the middle of '._h't: t!w h--;uhxu mnnu“nt.‘n lu: ]‘ ' 'Ai'lr ’]g,’:r
\\'r-i'_{i;t line.,  We thus obtain the equili- ! tion of (h}‘ <-:1_l»lv, It is evie ‘l'nu t I].l: W l-( 'x
brium polygon ¢, in which the ordinates the truss is simply 1:1.~t.--1u.u 'mhl -“..1!“'-\::
of the type ¢f are proportional to the |the h-r‘x'ln.;l: moments 80 l.“'f“; B
bending moments of  the truss under the propertionalto the ordinates (; t“u] ll\ pe
assumed loading, when its ends are sim- | b, for by the v!un;:nwnA-:i t‘:("t.;l"'_?"lf
ply fastened to the piers. transfers part of its {l.lxllulnn_\ distrib
Now bd was the ordinate of an equili-| nted weight to the truss, B
brium polygon having the same ?‘.uri'/un- That load ﬂ‘.\?m'h’ H[l'o-'(-"ﬂl”lt. .‘;Hli]f ‘3;'1
tal tension, and under a load of the same  tains, is 1‘1!\:1«-11311_\‘ y !.n‘n Hh\ & 1o
intensity covering the entire span. It cable still remains para olih, .1_'.(.( L8
will be found that bd="&f ¢, which may "that t rangferred to the truss i8 uniformly
be stated thusi—the greatest bending distributed. - . o
moment induced in the stiffening truss,  When the truss is l;?.‘ml ]1'.‘1'1’/1']1}(1.{'\1
by an unbalanced load of uniform in- at the piers, ‘.!“-‘ "\"""m&: line 4'1\‘;,"ilt‘i‘,:~
tensity is four twenty-sevenths of that| d must be changed s0 th;d.-"., )= y
rodunced in a simple truss under a load |and the bending moments induced by
},'l(Hlil-.'._‘«l ML A SHOpie tru S une ' L i 1 pala sl o e/
of the same intensity covering the entire  variations of, temperature, will be pr :
span, This result was obtained by Ran- portional to 3?'1-' us"ll.n:;.tn-_\ ]HI‘_’E'“"(‘I! the
Kine :lh.‘l}\'f;u'::”\'. l' t‘ll" LI'uUss 18 fixed curve d :U}ni 7111: new o:.--rln‘_’:it:".l‘.l. .
horizontally at its ends, we must draw a It remains only to discuss the ~}J!'1 1t\
closing line /&', which fulfills the condi- of the OWers f.l)l'ln'l'f:f_j" i‘n"'lLHlt,:!i}‘.-‘.
tions Defore wsed for the straight girder The horizontal force :-g:,-.lrmg (~‘. ",‘f‘f"‘;lf]
fixed at the ends, as discussed previously the piers comes from a few stays only,

Lae

in connection with the St. Lonis Arch. as was previously stated, and is of Nl}l.l.].l
By the construction of a second eqnili- smail amount that it need not be consid-
- given, we find ered.

brium polygon, as
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The weight of the abutment in

the case bhefore us is almost exactly
the same as the ultimate strength
of the ecable. \\n.puw that st=sv are
the lines re presel l'ln" these qus intities in

their pmmun relative :ly to the abutment.

Since their resultant s» intersects the

unw beyond thie faee of the abutment,
the abutment would tip over hefore the
cablé conld be torn asunder.  And since
the angle ver is greater than the angle
of friction between the abuiment and
the ground it stands on, the sbutment if
standing on the surface of the ground,
\c‘ullld \llcln ]m’u!x 'v]h‘ & l]JIL IA'-XH )‘.‘
torn asunder,

The smallest valne which the factor of
safety for the eable assumes under a
maximum loading is ¢computed to be six.
Take st'=1%st as the greatest’ tension
ever induced in the cable, thén s’ the
resultant of sv and st’ cuts the hase so
far within the face that it is apparent
that the abutment has sufficient ‘stz x]vlllt\
q'mm averturning; and the angle vs’
15 50 much smaller than the least value
of the angle of friction between the
abutment and the earth under it, that
the abntment-would not be near the
point of sliding even if it stood on the
surface. of the ground.” It should be
noticed  tha all the ~h~lunnlm~ in the
Side span assist in reducing the hn-mn of
the'eable as we ap proach the abutment,
and conduce b )y fo much to its st ability.
Also the thrnst of the roadws ay may as-
sist the stability of the . abutment, both
with respect to overturning and sliding.

CHAPTER X.
HE CONTINTOUS GIRDER WITH VARIABLE
GROSS-SEMTON,
In the foreo -iix_f chapters the discussion
«vf n-lw\u: various kinds has
1<lv“11-11.111111 hat of
;3 but asno er u- ld
..]‘ to the pres
which treats the ! :
rross-sectiomand mament of inerfia. our
liscussion has been J"‘Mm] £O the« 3

rehes with a constant momert

Cartain remarks were made. iu-'s'-‘“-
in the first chapter tending to show
the close approximation of the u~|I
in case of & constant moment of inertia
to those obtained when the moment of
inertia is variable. We, in this chapter,

:

propose a new solution of the continuouns
girder in the most general case of varia-
ble moment of inertia, the girder resting
on }vin having any different he whh
consistent mth the limits of elastici ity of
the girder. 'This solution will \erlf\' the
remarksmade, and enable us easily to see
the mannerin which the variation of the
moment of inertia affects the distribution
of the bending moments, and by means

{of it the arch rib with variable moment

of inertia can be treated directly.
Besides the importance of the con-
tinnous girder in case it constitutes the
entire hridge by itself, we may remark
that the continnous girder is ;nuxha]l\'

| snited ‘to-sérve as the stiffe ning truss of

any arched bridge of several spans in
which the arches are flexible. Indeed, it
i5 the conviction of the writer that the
stiff arch rib adopted in the construetion
of the St. Lonis Bridee was a costly mis-
take, and that, if a metal arch was desir-
able, a flexible arch rib with stiffening
truss was far cheaper and in eyery way
preferable,

Let us-write the equation of deflections
in the form

md) . -

E] S ( Mi a

3 ’ - 2O )
//1)1’/: hu' n

in which n is the number by which any
horizontal dimension of the girder must
be divided to obtain the mxres;n»mhn"
dimension in the drawing, ' is the
divisor by which force must be divided
to obtain the length by which it is to
be r¢ represented in the drawin o 18 an
arbitrary divisor which enables us to
use such a pole distanece for the second
equilibrium polygon -as-may he most
convenient, / is the moment of inertia
of the girder at any partieular cross gec-
ion ¢ e lard with which
at other cross sections

i ratio
of 7 (the standard moment of 1nertia),
to_Z (that at any other oross-seetion).
For the purpose of demonstrati g the
g-'n-'-’x.. prope exties of girders, the equation
need n ln imbered with the coeflici-
ents mn? ‘n: for plll]»ﬁ\uw explaining
the gr aphical construction the y are very
useful, and can be at once introduced i in-
to the equation when needed.

In the equation

) . EL=32 (Mi)

8 Sstanc

are «
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the quantity 2 is the deflection of any
point O of the girder below the tangent
at the point @ where the summation be- (M) are represented by Aee’ and hh'c’
rins, and M is the actnal bending mo- ”\_Ivm“.‘v. iy Té 0B it ok s e
ient at any point between O and @ | e be in gg, while the centers of
These moments 3/ at any point consist the two necatiye areas are in & and £'»".
in general of three 4lunmlh 8, Tepresente adl Lot the height of & triangle on some A
in the construction by the positive ordi- sumed base, and equivalent, in area to
nate of the equilibrium polygon due to ce.c', be rr,, then by a process like that
the weights, and by the two negative ordi- lin Fig. 2 it is ~\"ltll[ that rr. and ».r.
nates of the triangles into which we hs e 1?10 heights' of the right and loft
divided the negative moment area. negative triangles, having the sssumed
we distinguish these components of J hase, on the sup position that the girder
by letting M, represent that due to the is fixed horizontally over the piers.
weights, while 47, and ¥, represent the |\ introducing the constants '
components due to the left and right into the last ‘7.,!”3;;(.” and into the equna-
negative areas re spec ctive l\ the equ: ation tion before {h:l[, the relation of the (uan-
of deflections becomes tities is such that if the moments be ap-
D . EL =323 iz) — S (M i) — 32 Miz) I-Eiv-i‘ as .\\ui;hu at l_iwir centers of
ik sl - ’ gravity with the pole distance pi=ET—
Now let us take O at a pier at one end ,:/A.u"u',':h--'--l\li'lilul'il'.lz! ]»vll:.:‘ru[; g0 obtain-
of a span and extend the summation |ed will be t H};_"--l‘:f at the piers to the ex-
over the entire span. :t‘;‘_(\‘~1‘:a!--n] deflection curve obtained when
the distriboted moments are nsed as
) welt "!"\: and the deflection at the pier
Figl ~ _ h from the tangent at 4’ will be the sams

senting =7, (M), while =7,(3) and 25

1

as that of this exaggerated deflecti
enrve, and vice versa.
Let pin=rg, p . and
then ¢ and ¢’ constitute the pole,
p'm’ the neecative loads, and
the positive load. Then is btge'd’ th
equilib polygon for these floads
The deflection of 4 below 42" fanishes
as it should in case the girder is fixed
'rulr'i.",un'_;nl'x..' over the l'il‘l'.
Now let the direction of the ¢ .
{at the piers be changed so that the
X.‘t.":_‘"h'..\. to the exaceerated deflectio n
[f the piers are & and 4" as in Fig, 11, | curve assume ”"'.'“1‘-"".5"”-_" bt and W't!,
let us \x:.!-lmrir_- that 'O coincides with & | Then the load f.xn.q: and llt»r‘«;e poly gon
and «with 47 slso suppose for the in 5f‘"“””“""‘“'f“:?""”"\”-l_"”"" thatt “"l’
stant that Zis-constant, so that =1 at |form-the pole; f”‘l @n=pmn f”"l ( v'f =
all points of the girder. Then we have |pm comprise ”': posiuye ‘1 while
| - the new necative loads
(M)—=, =3(3) which will eause the equilibrinm pol;
: ey ]

ip and n'p are

12 to them, to

i which /)‘ 1& the defleetion of ions of qu nti-
h we wish to

ar avit of
apy hui weigl
\{:,“““-,;, of thelarea ce. vhose ordinates are propor-
; ictual bending mo-
izhts, another area

propar
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A3, the effective bending moments, can
be obtained by simple nunnplunuun,
since ¢is known at every point of the
girder. Moreover, the vertical through
the center of gravity of this positive
effective moment area can be as readily
found as that through the actual positive
moment area, ~Call this vertieal “the
positive -center’ vertical.” Again; the
negative moment- areas proportiopal to
M7 and DL i can be found from the tri-
angular areas proportional to M and A,
by simple muitiplication, and if we pro-
eeed to find. the verticals through their
centers of 'gravity we shall obtain the
same verticals whatever be the magni-
tnde of the negative triangular areas,
gince  their vertical ordinates are all
chauged in the same ratio by assuming
the negative areas différently. /Let us
call | these vertieals the “left™ and
“right V verticals of the span. In case
i_l as in Fig. 11, the left and right
erticals divide the span at the one-third
pnml.-\. This matter will_be treated
more fully in connection with Fig. 1

Again, let us call the line ¢¢’ “the
third closing line.” It 'is seen that,
whatever may be the various positions
of the tangent bty the ordinate dn, be-
tween the third closing line and ¢ ¢, pro-
longed, iz invariable; for the triangle
£:g.1." is/invariable, bheing dependent on
the pogitive load and ;mm distance alone,
By similarity of triangles iy then follows
that the ordinate, such-as o', on any as-
sumed vertical continues mvariable; and
when there i8 no negative load at 7,
then bt g, becomes straight, o’ coincides
with & and » with p,, Similar 'vll.ri..‘-\
hold at the right of ¢, The quantity
dp. 18 of the natureof a correction to be
snbtracted from/ the negative moment
when the eirder is fixed horizontally
the piers in order to find the negative
moment \\‘)Hj‘ll ‘l]i"’{”!'_"t'“‘r AsSsumes a new
position, for np, =dn—dp,. Thenegative
moments can consequer l. be found from
the third closing ln.m :nul the tapgents
at the piers; while the remaining lines
g, and ¢.'t.” will test the correctness of
the work. Before applying these pro-
perties of the deflection polygon and its
third closing line to a continuous girder,
it 1s necessary to prove a geometrical
theorem from Fig. 12.

Let the variable triangle =¥z be such
that the side @z always passes through

the fixed point gy, the side @y always
passes through the fixed point p, and the
vertices ayz are always in the verticals
throngh those points; then by the prop-
arties of homelogous triangles the side
z also has a fixed point /' in the straight
.um g Furthermore, if there is a point
2 in the vertical through 2, and in all
positions of 2 it is at the same constant
distance from 2, then on the line ¥z’ there
i8 a fixed point 5/ where the vertical
through /" intersects %2’y for, if 2’ main-
tains its distance zz' invariable, then
must any other point as ¢" remain con-
stantly. at the same vertical dists ance
from f, as appears from simils un\ of tri
angles. . But as S is fixed g is .1]~--
When, for instance, the triangle wyz as-
1eg'the position @ 7.z, then &' moves
toz .

Let us now apply the foregoing to the
diseussion of a continuous girder over
three piers p”'pp’ as shown in Fig. 13,
in which the lengths of the spans have
the ratio to each other of 2 to 3. Divide
the total length of the girder into such a
number of equal parts or panels, say 15,
that ane- division shall fall st the intor-
mediate pier, and let the number of lines
in any panel of the type aa represent its
relative moment of inertia. Assume the
moment of inertia where there are three
lines, as at @, a,, ete., as the standard or
I, then i=1 at a, i=% at a,, i=3 at a
ete; : i .

Let the polygons ¢ and ¢ be those due
to the weights in the left and right spans
respectively. Then the ordinates of
the type e are proportional to M in the
left span. The figure bee e e’ :
b, is the positive effective ‘moment area
in the left span, and its ordinates are
proportional to M i. Tts center of gravi-

ity has been found, by an equilibrium
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polygon not drawn, to lie in the positive | polygon be drawn due to the effective
center vertical ¢g,. A similar positive [moments as loads, two of -its sides must
effective moment arvea on the right hasintersect on vo, becanse it contains the
its center of gravity in the positive cen-|center of gravity of contiguous loads.
ter vertical ¢'¢,". [ Now let »», represent =(M3):—it isin
Now assume any negative area, as|fact one rl;‘__rhth of the sum of the ordi-
that included between the lines b and d, |nates e, +b.¢", ete., and hence is the
and draw the lines /4, and &5, dividing | height of a triangle having a base=445,
the negative area in each span into right and an area e 11 to the effective mo-
and left triangular areas. Let the quan-|ment area in the left span. Also #/'n is
tities of the vype Ad be proportional to |the height of a triangle having the same
M, hd to M,, h'D to M, ete., then the|base;and an area equal to theeffective
ordinates of 455 "5,"5."0.6,5," /i ave pro-| moment area in the right span,
portional to M 7, and the center of gravi- As previously u\'l'l.:in-_*-l, L8, 18 the
ty of this area has been found to lie inl:m'u.;:u':l of the right negative effective
the i"‘ rhit negative \'rl‘[i('ll P, "‘mil'u'-\mnm.-ut area in the le IL gpan, measured
l\‘ the left negative vertical cont: i H the same manner, while sp is that on
the/center of gravity of liu left neg: \tive | the left-when the girderis fixed horizon-
effeative moments, is 2. In the right \:-41’ at the piers. We obtain 4’7 and
spane,’» " and ¢.'r, are the left and right|s # in the right span, in a similar manner,
vertioals, As before stated, these verti-| Now assume the arbitrary divisor m=1,
cals would not be changed in ]u--iii 'Is‘ Hl'l take the ]H-L‘ distance > n ‘:[’,.1”—1‘
by ehang rmrr the position in any manner |7*a". Then as seen previously, if mn =sr,,
whatever of the line d by which the|ou is the constant intercept on the nega-
negative. moments were -assumed, for|tive eenter vertical, between the third
such change of position would change |cwsmg live. in the left span, and a side
all the ordinates in the same ratio. |of the type ¢t Also ouw' is a similar
Let us find also the vertical containing | constant intercept on this vertical due

the center of gravity of the effective | to the right span. Make 7, =N, and
moment area, corresponding to the actual | s, =sr, then b, is a simil ar invariable

moment area 445 . It is found I"\' a .”13(1'4'(]»1; as is {'b ', which is obtained
polygon not drawn to be vo Call ¥o |in a similar manner,

*the negative center vertical. t i Now the negative center \'»r:iv'll ov
unchanged by moving the line . 1 ''was obtained from the triangle 5 A5
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A3, the effective bending moments, can
be obtained by simple nunnplunuun,
since ¢is known at every point of the
girder. Moreover, the vertical through
the center of gravity of this positive
effective moment area can be as readily
found as that through the actual positive
moment area, ~Call this vertieal “the
positive -center’ vertical.” Again; the
negative moment- areas proportiopal to
M7 and DL i can be found from the tri-
angular areas proportional to M and A,
by simple muitiplication, and if we pro-
eeed to find. the verticals through their
centers of 'gravity we shall obtain the
same verticals whatever be the magni-
tnde of the negative triangular areas,
gince  their vertical ordinates are all
chauged in the same ratio by assuming
the negative areas différently. /Let us
call | these vertieals the “left™ and
“right V verticals of the span. In case
i_l as in Fig. 11, the left and right
erticals divide the span at the one-third
pnml.-\. This matter will_be treated
more fully in connection with Fig. 1

Again, let us call the line ¢¢’ “the
third closing line.” It 'is seen that,
whatever may be the various positions
of the tangent bty the ordinate dn, be-
tween the third closing line and ¢ ¢, pro-
longed, iz invariable; for the triangle
£:g.1." is/invariable, bheing dependent on
the pogitive load and ;mm distance alone,
By similarity of triangles iy then follows
that the ordinate, such-as o', on any as-
sumed vertical continues mvariable; and
when there i8 no negative load at 7,
then bt g, becomes straight, o’ coincides
with & and » with p,, Similar 'vll.ri..‘-\
hold at the right of ¢, The quantity
dp. 18 of the natureof a correction to be
snbtracted from/ the negative moment
when the eirder is fixed horizontally
the piers in order to find the negative
moment \\‘)Hj‘ll ‘l]i"’{”!'_"t'“‘r AsSsumes a new
position, for np, =dn—dp,. Thenegative
moments can consequer l. be found from
the third closing ln.m :nul the tapgents
at the piers; while the remaining lines
g, and ¢.'t.” will test the correctness of
the work. Before applying these pro-
perties of the deflection polygon and its
third closing line to a continuous girder,
it 1s necessary to prove a geometrical
theorem from Fig. 12.

Let the variable triangle =¥z be such
that the side @z always passes through

the fixed point gy, the side @y always
passes through the fixed point p, and the
vertices ayz are always in the verticals
throngh those points; then by the prop-
arties of homelogous triangles the side
z also has a fixed point /' in the straight
.um g Furthermore, if there is a point
2 in the vertical through 2, and in all
positions of 2 it is at the same constant
distance from 2, then on the line ¥z’ there
i8 a fixed point 5/ where the vertical
through /" intersects %2’y for, if 2’ main-
tains its distance zz' invariable, then
must any other point as ¢" remain con-
stantly. at the same vertical dists ance
from f, as appears from simils un\ of tri
angles. . But as S is fixed g is .1]~--
When, for instance, the triangle wyz as-
1eg'the position @ 7.z, then &' moves
toz .

Let us now apply the foregoing to the
diseussion of a continuous girder over
three piers p”'pp’ as shown in Fig. 13,
in which the lengths of the spans have
the ratio to each other of 2 to 3. Divide
the total length of the girder into such a
number of equal parts or panels, say 15,
that ane- division shall fall st the intor-
mediate pier, and let the number of lines
in any panel of the type aa represent its
relative moment of inertia. Assume the
moment of inertia where there are three
lines, as at @, a,, ete., as the standard or
I, then i=1 at a, i=% at a,, i=3 at a
ete; : i .

Let the polygons ¢ and ¢ be those due
to the weights in the left and right spans
respectively. Then the ordinates of
the type e are proportional to M in the
left span. The figure bee e e’ :
b, is the positive effective ‘moment area
in the left span, and its ordinates are
proportional to M i. Tts center of gravi-

ity has been found, by an equilibrium
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effective moment arvea on the right hasintersect on vo, becanse it contains the
its center of gravity in the positive cen-|center of gravity of contiguous loads.
ter vertical ¢'¢,". [ Now let »», represent =(M3):—it isin
Now assume any negative area, as|fact one rl;‘__rhth of the sum of the ordi-
that included between the lines b and d, |nates e, +b.¢", ete., and hence is the
and draw the lines /4, and &5, dividing | height of a triangle having a base=445,
the negative area in each span into right and an area e 11 to the effective mo-
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on the supposition that the actunal mo-
ment over the pier is the same whether
it be determined from the left or !‘;.:_:Ill
of the pier. It is evident that while the
girder is fixed horizontally at the inter-
mediate pier, the moment at that pier is
generally different on the two sides, at
points infinitesimally-nearto.it, but that
when the eonstraint is removedian equali-
zation takes place.

Sinee o# and ov’ | areé derived from
the positive effective moments, it appears
that when the tangent-at p-is insuch a
position that the two third closing lines
mtercept o distance w#' on ov and the
two lines of the type g¢ when prolonged
interseet on o, the moments over the
pier will bave become equalized.

We propose to determine the ]nl\itiﬂn
of the tangentat » which will ¢ause this
to be true, by finding the proper position
of the thivd elosing lines in the two spans,

Move the invariable illtt-l"“']'h‘ to a
more convenient position, by making
o.2=ou, and 02'=ou'. Now by making
the arbitrary divisor m=1, as we did,
the ordinates of the deflection poly
bectime ‘~il'l]'{'.' D, /'."", Ihu)‘ are of
@ as in the girder,
1 F ’

n
hence the difference of level of 751

3

oon
the

same size inthe drawi

p’ must be made of .the aetual size,
changing | m this can” be incrensed
diminished at wilk

Now /we/ propose tor determine two

fixed.points ¢ and g", through ‘which the
third closing line in the left span must
pass, and similariy.g’” and 7" on the
e,
If the _'_:":1'.1«1"15 free at " then as shown
in connection with Fig. 171, the third
closing line must pass through g, if gp "=
. Draw gz as a tentative position of
the third cloging ling, and complete the
triangle ¢y'z as in Fig. 12.

Then is .r“{/' the tentative ]»-Nii‘u-rx of
the tangent at p, and since the third elos-
ing line in the right span must
throngh %', and make an interce
the negative center vertical equal to we,
then z'y' 18 its corresponding tentative
position. _But wherever | gz y  be
drawn, every line makinge an in:v-rm']n"
—uw’ and intersecting ¢'r' in such a
manner that the tangent passes through
yass through the fixed point
‘!\"M‘l'”»ll.l iI] 51_ 15 '1‘1"'1\"

rd closing line in the ri

1

span passes through ¢/

there were more spans still at the righs
of these; we should use ¢ for the deter-
mination of another fixed point, as we
have used ¢ to determine it.

Now find g’ and g" precisely as ¢ and
4" have been found, and draw the third
closing lines ¢4, and ¢'2,. If ¢ passes
through p the construction is accurate,
Make wi’=wv’/, then is nm, the nega-
tive effective moment at the left, and
n,m,' that at the right of the pier.

Let &w be the effective moment area
corresponding to the triangle Zbb,, and
measurad in the same manner as the
positive, area was, by taking one eighth
of its ordinates, and let bw —=n m ; then
as the effective moment dw 18 to the
actual moment 64 corresponding to it, s
is the effective moment M, or nm, t
the actual moment &k corresponding to
it. The same moment b4 is also found

0O

from » m’, by an analogous construc-
tion at theright of 4, which tests the ac
curacy of the work.

Several other tests remain which we
will briefly mention.

Prolong pt, to ¢, and p't to ¢, then
g, and g's “must intersect on the neg
tive center vertical at o, so that o

: Also »v’ must be equal t

£v’ passes through J; and
*.  Also yo, intersects go. o
rtical /g at o, and y'o_ inter-
ixed vertieal / at

l'hat these must be so is evident from a

/'o_ on the

consideration of what occurs durin
SUPPOs¢ d revolution of the tangent i
to the !Nwi'?”!l Y.

Now having determined the mor

s over the \]fh-!', A0 and b are
true closing lines of the moment
gons. ¢ and &% Call these
lines &, then the ordinates
type e will represent the bending
ments at different points of the gh
The points of the contra flexure are
the points where the closing lines inter-
sect the polygons e and ¢/. The direc-
tions of the closing, lines will permit
once the determination of the resista
at the p';n.’!\ and the .\ln-urin}_: stresses 4t
any point.

The particalar difference betweer
tion in case of constant

variable moment of inertia. is seen

consirac

in the positions of the center vertic
positive and negative, and the richt and

left verticals.
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The small change in their position due
to the variation in the moment of inertia,
is the justification of the remarks previ-
ously made respecting the close approxi-
mation of the two cases.

It is seen that the process here devel-
oped can be applied with equal facility
to & girder with any number of spans.
Also if the moment of inertia varies con-
tinnously instead of suddenly, as assumed
in Fig. 13, the panels can be taken short
enough to approximate with any re-
quired degree of aceuracy to this case.

CHAPTER XI.

THE THEOREM OF THREE MOMENTS.
The preceding construetion has been
1 reality founded on the theorem of
iree. moments, but when the equation
expressing that theorem is written in
the usual manner, the relationship is
difficult to see. Indeed the equation as
;,'i\l n |))‘ \\'('.\'I‘illl“ll": for the j_:il‘\l"l' hav-

ing a variable moment.of inertia, is of 80
complieated a nature that it may be
thought hopeless to attempt to associate
mechanical ideas with the terms of the
equation, in any clearly defined relation-
ship. We propose to derive and express
the equation in a novel manner, which
will at once be easy to understand, and
uoy difficult of Interpretation in connecs
tion with the preceding construction.

Let us assume the general equation of
deflections in the form.

D=3 (Mu+ET), or D.ET =Z(Mix)

(7)
in_which 7 is the variable moment of
inertia, 7, some particular value of I as-
sumed as the standard of comparison,
i=d = I, and »is measured horizontally
from the point as origin, where the de-
flection /2 is taken to the point of appli-
cation of the actunal bending moment .
The quantity Mi is called the effective
bending moment, and.the deflection 2
is the length of the perpendicular from
the origin to the line tangent to the de-
flection curve at point to whieh the sum-
mation is extended.

Now consider two contiguons spans
of a continuous girder of several spans,
and let ach denote the piers, ¢ being the
intermediate pier. Let the span ae=I

and be=l'. Take the origin at o and

i
+

I
1
!

extend the summation to ¢, calling the
deflection at &, 2);. When the origin is
at & and the summation extends to ¢, let
the deflection be 2, Let also y,, and
¥ be the heights of a, b and ¢ respective-
ly above some datum level. Then, as
may be readily seen,

D = Ya — Ye — i, ’

Dy = yp — yo — 't
if 2. is the tangent of the acute angle at

o

on the side-towards a between the tan-
gent line of the deflection curve at ¢
and the horizontal, and .’ is the tangent
f the corresponding acute angle on the
side of ¢ towards &.

Now if we consider equation (7) to
refer to the span /, the moment <M may
be taken to be made up of three parts,
\-i,‘:,‘_][ 1‘;1!1.-(%1 ]»_\‘ 1}1(} wq'ighh on Ihn}
girder, M dependent on the moment
M, at ¢, and M, dependent on the mo-
ment M, at «. The moments in the
span Z° may beresolved in a similar man-
ner.  We may then write the equations
of deflections in the two spans when the
summation extends over each entire span
as follows:

El (Ya—ye—U)=22 M iz)—=7 (M i)
—2c(Ms . . . . . (8
B (s —y—Vty=Z3( M i'z’)

o —\_‘-"‘ .‘l|li".}"_) T :’l ,‘/:'{.',/"} (.‘_I)

O

in which 2 is measured from @, and 2’
from & towards ¢. Now if the girder is
originally straight, 7, = — ¢, hence
we can combine these two equations so
as to eliminate ¢ and %, and the result-
ing equation will express a relationship
between the heights of the piers, the
bending moments (positive and negative),
their points of ‘application and the mo-
ments of inertia; of which quantities the
negative bending moments are aloge un-
known. The equation we should thus
obtain would be the general equation
of which the ordinary expression of the
theorem of three.moments is a particular
case.Before we write this general
equation it is desirable to introduce cer-
tain modifications of form which do not
diminish its generality. Suppose that

z 33 (MP=3"(Miz)

then is . the distance from a to the cen-
ter of gravity of the negative effective
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moment area next to ¢. As was shown
in conneetion with Fig. 13, the position
of this center of gravity is independent
of the magnitude of M, or M and may
be found from the equation,

I
/ ix'dx
L3 -

¢

2 a
' / ieda

for M, is proportional to . Similarly
it may be shown that

/ﬂz'(l—;r)a'/.i'-.r

@, "
[iieri
¢

is the distance of the center of gravity
of the negative effective moment area
next to a,
Again, suppose that
i 20 (M)=Z; ()
then is #, an average value of i for the
negative effective moment area next to
¢, which is likewise independent of the
magnitude of M, asappears from reason-
ing like that just adduced respecting
Hence 4, may be found from the equation
1
/ il
,
TS | LA (28)
/:rrl.:.'
y c

Similarly it may be shown that

‘/Mi(l—;c)(l.t

ST e e (18)
‘/ (l—a)de

in which #, is the average value of i for
the negative effective moment area next
to a. Py _

The integrals in equations (10), (11),
(12), (18), and in others like them refer-
ring to the span Z/, which contain Z must
be integrated differently, in case 7 is dis-
continuouns, as it-usnally is in a truss,
from the case where # varies continuons-
ly. When < is discontinuous the integral
extending from ¢ to a must be separated
into the sum of several integrals, each of
which must extend over that portion of
the span / in which ¢ varies continuously.

Furthermore we hgve .

SHM)=3M1. . . (14)
since each member of this equation rep-

. (10)

(11)

.

resents the negative actual moment area
next to ¢ in the span =

Similarly, we have the equations

SH(M)=3M0 , SU(M))=4M.'T,

20y =31

If there is mo constraint at the pier
then must M, = M. .

Now making the substitutions in equa-
tions (8) and (9), which have been indi-
cated in the developments just com-
pleted, and then eliminating Z, and 7',

N ¥
’ _‘\_':'(J/L'):%-L.][(,;-:fi%-“ll.(;’?.l-’.-__r"'..')
| "+ Mz'i] . . . (15)

2

BT, “ Yaz¥e Yo—Ye | _"71 S3(3L) -

ol 2ol 4
2o '._\

{in which 7, is the distance from « of the

center of gravity of the positive effect-
live moment area due to the weights in
the span / and 7’ is a similar distance
from & in the span /, while 4, and 4.’ are
average values of ¢ for these areas de-
rived from the equations in each span,

R \(JIJ)-%- Z(J[.).

It may frequently be best to leave the
expressions containing the positive mo-
ments in their original form as expressed
in equations (8) and (9).

Equation (15) expresses the theorem of
three moments in its most general form.

Let us now derive from equation (15),
the ordinary equation expressing the
theorem of three moments, for a girder
having a constant cross section. In this
case =1, and we wish to find the value
of the term 2(M ) in each span. Let
M, be caused by several weights P ap-
plied at distances z from ¢, then the mo-
ment dne to a single weight P at its
point of application i8

M, = P:l—2)+1,

which may be taken as the height of the
triangnlar moment area whose base is
which is caused by 2  This triangle
whose area is M4 is the component of
=2(M)) due to £ and can be applied as a
concentrated bending moment at its cen-
ter of gravity at a distance « from a.

Now z=%(/+z), and taking all the
weights # at once

% (Mz)=130[P (P—2")2).

Also in equation (15) we hayve in this
case
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.

’ —l_;:zy:

1 G ) 2 T2
—72'[‘1(11_2 )z] [P (U —2"")2]
=MJl+o M, 1+0)+ MV . (16)

Equation (18) then expresses the the-
orem of three moments for a girder hav-
ing & constant moment of inertia 7, and
deflected by weights applied in the span
{ at distances z from «, and also by
;\'vights in the span 2’ at distances 2’ from
/5

Let us also take the particular case of
equation (15) when the moment of inertia
is invariable and the pin;r:“un a level; then
i=1, and if we let 4 "and 4’ be the
positive moment areas due to the weights
we have '

o g B L

6 : 11 z, -i-[T:\J'r’. : =
M2 M, (+V)+ M0 . . (17)

This form of the equation of three mo-
ments was first given by Greene.®

The advatitage o be derived in discus-
sing this theorem in terms of the bending
moments, instead of the applied weights
is'evident both in the analytical and the
graphical treatment. The extreme com-
plexity of the ordinary formulae arises
from their being obtained in terms of
the weights.

In order to complete the analytic solu-
tion of the continuous girder in the gen-
eral case of equation (15), it is only
necessary to use the well "known equa-
tions,

M=MM, +8.2,—Z(Pz,)

-

¢ )]
|
Se=7 [M—D 4+ Z3(P2)] .. (19)

y I ) ) )
,\.':17 [My—M.+2;(P)] . (20)

B=X+8 . L)

)

S=S.— E°(PY. . . (22)
In (18) M is the bending moment at
any point O in the span /, S, is the shear
at ¢ due to the weights in the span [,
and z, is the distance from O towards
of the applied forces 2 and S, in the seg-
ment Oe. .

~ * Graphical Method for the Anulyzis of Bridge Trusses,
,‘:h"" 2 sene. Published by D, Van Nostrand. New

Equation (19) is derived from (18) by
taking O at a, and (20) is obtained simi-
larly in the span . R, is the reaction
of the pier at ¢. S is the shear at O in
the span L These equations also com-
plete the solution of the cases treated in
(16) and (17).

CHAPTER XII.

THE FLEXIBLE ARCH RIB AND STIFFENING
TRUSS.

Whenever the moment of inertia of
an arch rib is so small, that it cannot
afford a sufficient resistance to hold 1o
equilibrium the bending moments due
to the weights, it may be termed a flexi-
ble rib.

It must have a sufficient eross section
to resist the compression directly along
the rib, but needs to be stiffened by a
truss, which will most conveniently be
made straight and horizontal. The rib,
may have a large number of hinge joints
which must be rigidly connected with
the truse, usually by vertical parts, It
i then perfectly flexible.

If, however, the rib be continuous
without joints, or have blockwork joints,
it may nevertheless be treated as if per-
fectly flexible, as this supposition will
be approximately eorrect and on the side
of safety, for the bending moments in--
duced in the truss will be very nearly as
great as if the rib were perfeetly flexible,
in case the same weight would cause a
much greater deflection in the rib than
in_the truss. It will be sufficient to
describe the construction for the flexible
rib without a figure, as the construction
can afford no difficulties after the con-
struotions already given have been mas-
tered,

Lay off & some assumed scale the
applied weights as a load line, and let
us call this vertical Joad line 1w,
Divide the span into some convenient
pumber . of . equal parts by verticals,
which will divide the curve a of the rib
into segments. ' From some point 4 as a
pole draw a pencil of rays parallel to the
segments of a, and across this pencil

|draw a vertical line wi’, at such a dis-

tance from & that the distance 2’ be-
tween the extreme rays of the pencil is
equal to ww’. Then the segments of
uw’ made by the rays of the hp("nvi] are
the loads which the arch rib would sus
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tain in virtue of its being an equilibrinm
polygon, and they would induce no bend-
ing moments if applied to the arch.
The actual loads in general are different-
ly distributed. By Prop. VI the bending
moments induced in the truss are those
due to the difference between the weight
actually resting on. the arch at. each
point; and the weight of the same total
amount distributed as shown by the
segments of the line ww',

Now lay off a load line »¢’ made up
of weights which are these differences
of the segments of wu’ and ww’, taking
care to observe the signs of these dif-
ferences. The algebraic sum of all the
weights #2’ vanishes when the weights
which rest on the piers are included, as
appears from inspection of the construe-
tion in the lower part of l"ii__:. 10. The
construction above described will differ
from that in Fig: 10/ i one particular.
The rib will not in general be parabolie,
and the loads which it will sustain in
virtae of its being an equilibrinm poly-
gon will not be uniformly distributed, !
Lience the differences which are found as
the loading of the stiffening truss do
not  generally .constitute a uniformly
distributed load.

The horizontal thrust of the arch is
the distance of uw’ from & measured on
the scale on which the loads arc laid off,
and ‘the ‘thrust along the arch at any
point is length of the corresponding ray
of the pencil between & and ww’.  These
thrusts depend only on the total weight
sustained, while the bending moments
of the stiffening truss depend on the
manner in which it is distributed, and
on_the shape of the arch.

Having determined thus the weights
applied to the stiffening truss, it is to be|
treated as a straight girder®y meéthods
previously explained according to the
way in which it is supported at the
piers.

The effect of variations of temperature |
iz to make the crown of the arch rise|
and fall by an amount which can be|
readily determined with sufficient exact- |
ness, (see Rankine’s Applied Mechanics|
Art. 169). This rise or fall of the arch
produces bending moments in the stiffen-
mg truss, which is fastened to the tops
of the piers, which are the same as would
be produced by & positive or negative
loading, causing the same deflection at

the center and distributed in the same
manner as the segments of wu': for it
is such a distribution of loads or pres-
sures which the rib’ can sustain or pro-
duce. A similar set of moments can be
indueed in the stiffening truss by length-
ening the posts between the rib and
truss.

When this deflection and the value of
I in the truss are known, these mo-
ments can be at once constructed by
methods like those already employed.
A judicious amount of cambering of this
kind is of great use in giving the strue-
ture what may be called “initial stiff-
ness.?  The St. Louis Arch is wanting in
initial stiffness to such an extent that
the weight of agingle person is sufficient
to eause a considerable tremor over an
entire span.  This would not have been
possible lrad the bridge consisted of an
arch stiffened by a truss which was an-
chored to the piers in such a state of
bending tension as to exert considerable
pressure npon the arch. This tension of
the truss wonld be relieved to some ex-
tent during the passage of a live load.

The arcli rib with stiffenifig truss, is a
form .of which many wooden bridges
were erected in Pennsylvania in the
earlier days of American railroad build-
ing,/but its theory does not seem to have
been well understood by all who erected
them, as the stiffening truss was itself
usually made gtrong enough to'bear the
applied weights, and the arch was added
for additional security and stiffness,
while instead of anchoring the truss to
the piers and 'eausing it to exert a pres-
sure on the arch, a far different distribu-

| tion of pressures was adopted.  Quite a

number of bridges of this pattern are
figured by Haupt* from the designs of
the builders, but most of them show by
the manner of bracing near the piers
that the engineers who designed them
did not know how to take advantage of
the peculiarities of this combination.
This further appears from the fact, that
the trussing is not usually continuous.
A good example, however, of this
combination construeted on correct prin-
ciples is very fully described by Haupt
on pages 169 ef seg. of his treatise. It
18 a wooden bridge over the Susquehanna
River, 54 miles from Harrisburg on the

ge Copstruction, Herman Haupt, AM.
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Pennsylvania Railroad, and was designed

by Haupt. It consists of twenty-three
spans of 160 feet each from center to
center of piers. The arches have each
a span of 149} feet and a rise of 20
ft. 10 in., and are stiffened by a Howe
Truss which is continunons over the
piers and fastened to them. It was
erected in 1849, Those parts which were
protected from the weather have re-
mained intact, while other parts have
been replaced, as often as they have de-
cayed, by pieces of the original dimen-
sions. This bridge, though not designed
for the heavy traffic of these days, still
stands after twenty-eight years of use, a
proof of the real value of this kind of
combination in bridge building.

CHAPTER XIIL
THE ARCH OF MASONRY.

Arches of stone and brick have joints
which .are stiff up to a certain limit
beyond which they are unstable. The
loading and shape of the arch must be so
adjusted to each other that this limit
shall not be.exceeded. This will appear
in the course of the ensuing discussion.

Let us take for discussion the brick
arch erected by Brunel near Maidenhead
England, to serve as a railway viaduct.

It is in the form of an elliptic ring, as
represented in Fig. 14, having a span of
128 ft. with a rise of 24} feet. The
thickness of the ring at the crown is 5%
ft., while at the pier the horizontal thick-
ness is 7 ft. 2 inches.

Divide the span into an even number
of equal parts of the type 45, and with a
radins of half the span deseribe the
semicirele gg. Let ba=24% ft. be the
rise of the intrados, and from any con-
venient point on the line 46 as 4, draw
lines to @ and g. These lines will enable
us to find the ordinates ba of the ellipse
of the intrados from the ordinates 4g of
| the circle, by deereasing the latter in the
| ratio of 4y to ba. For example, draw a
horizontal through g, cutting &g at i,
then a vertical through 4, cutting b,a at
1, then will a horizontal through 7, cut
off a0, the ordinate of the ellipse corre-
sponding to b,g, in the circle, as appears
from known properties of the ellipse.

Similarly let dg=64 ft. + 7 ft. 2 in,,
| and ‘with ¢ as radius describe a semieir-
cle. Tet bd=24} ft. + 53 ft. be the rise

ARCH OF MASONRY
MAIDENHEAD RATLWAY VIADUCT
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of the extrados, and from any convenient
point on b, as 4, draw lines to d and ¢.
These will enable us to find the ordinates
b of the ellipse of the extrados, from
those of the circle; by decreasing the
latter in the ratio of J¢ to 4d. By this
means, as many points as may be desired,
can be found upen the intrados and ex-
trados; and these carves may then be
drawa with a curved raler, - We ean use
the areh ring go obtained for our con-
struction, or multiply, thé ordinates by
any convenient number, in case the arch
is too flat for convenient work. Indeed
we ean use the semicircular ring itself if
desirable. 'We shall in this ¢onstruction
employ the arch ring ad which has just
been obtained.

We shall suppose that the material of
the surcharge between the extrados and
a horizontal line tangent at d causes by
its weight a vertical pressure upon the
arch. That this’ assumption is nearly
correct in case this part of themasonry is
madein the usnal manner, cannot well be
doubted. Rankine, however, in his Ap-
plied Mechanics assumes that the. press-
ures are of an amount and in a direction

due tothe conjugate stresses of an'homo- |

geneous, elastic material, or of 4 material
which like earth has an angle of slope due
to internal friction. While this is a cor-
rect assumption, in-case of the arch of &
tunnel sustaining edrth, it is incorrect
for the case in hand, for the masonry of
the surcharge needs only a vertical resist-
ance to support it, and will of itself pro-
duce no active thrust, having a horizon-
tal component,

This is further evident from Moseley’s
principle of least resistance, which is
stated and proved by Rankine in the
following terms:

“If the forces which Bhlance each
other in or upon a given body or strue-
ture, be distinguished into two systems,
called respectively, active and /'um.«'i/".'.
which stand to each other in the rela-
tion of eause and effect, then will the
spassive forces be the least which are
capable of balancing the active forces,
consistently with the physical condition
of the body or structure.

For the passive forces being caused by
the application of the active forces to
the body-or structure, will not increase
after the active forces have been balanced

by them; and will, therefore, not increase
beyond the least amount capable of bal-
ancing the active forces.”

A surcharge of masonry can be sus-
tained by vertical resistance alone, and
therefore will exert of itself a pressure
in no other direction upon the haunches
of thearch. Nevertheless this surcharge
will afford a resistance to horizontal
pressure if produced by the arch itself,
Sothat when we assume the pressures
due te the surcharge to be vertical alone,
we are assuming that the arch does not
avail itself of one element of stability
which -may possibly be employed, but
which the engineer will hesitate to rely
upon, by reason of the inferior character
of the masonry usually found in the sur-
charge. Thedifficulty is tisnally avoided,
asin that beautiful structure, the London
Bridge, by forming a reversed arch over
the piers which can exert any needed
horizontal pressure nupon the haunches.
This in effect increases by so much the
thickness of the arch ring at and near
the piers. y

The pressure of earth will be treated
in connection with the construetion for
the Retaining Wall. On combining the
pressures there obtained with the weight,
the load which a tunnel arch sustains,

| may be at once found, after which the

equilibrium polygon may be drawn and
a construction executed, similar in its
general features to that about to be em-
ployed in the case before us.

Let us assume that the arch is loaded
with a live load extending over the left
half of the span, and having an intensity
which when reduced to masonry of the
same specific gravity as that of which
the viaduct is built, would add = depth
d/ to the surcharge. Nowif the number
of parts into which the span is divided
be considerable, the weights which may
be supposed to be coneentrated at the
points of division vary very approximately
as the quantities of the type af. This
approximation will -be found to be suffi-
ciently. exact for ordinary cases; but
should it be desired to make the con-
struction exact, and also to take account
.of the effect of the obliquity of the joints
in the arch ring, the reader will find the
method for obtaining the centers of
gravity, and constructing the weights, in
Woodbury’s Treatise on the Stability of
the Arch pp. 405 et seq. in which is

given Poncelet’s graphical solution of
the arch.

With any convenient pole distance, as
one half the span, lay off the weights.
We have used &_as the pole and made
bao, = 4 the weight at the crown=
1 {f(r'+m(") :1:.'1/_',', 0,0, = &, [ 100, =
a.f., ete. Several of the weights near
the ends of the gpan are omitted in the
Figure; viz., w0, ete. From the force
polvgon so obtained, draw the equili-
brium polygon ¢ as previously explained.

The equilibrium polygon which ex-
presses the real relations between the
loading and the thrust along the arch, is
evidently one whose ordinates are pro-
portional to the ordinates of the polygon

It has been shown by Rankine, Wood-
bury and others, that for perfect stability,
—i.¢, in case no joint of the arch begius
to open, and every joint bears over its
entire surface,—that the point of appli-
cation of the resultant pressure must
everywhere fall within the middle third
of the archring. For if at any joint the
pressure reaches the limit zero, at the
intrados or extrados, and uniformly in-
creases to the edge farthest from that,
the resultant pressure is applied at one
third of the depth of the joint from the
farther edge.

The locus of this point of application
of the resultant pressure has been called
the “ curve of pressure,” and is evidently
the equifibrinm carve due to the weights
and to the actual thrust in the arch. If
then it be possible to use such a pole dis-
tance, and such a position of the pole,
that the equilibrium polygon can be in-
scribed within the inner third of the
thickness of the arch ring, the arch-is
stable. It may readily oecur that thisis

impossible, bat in order to ensure suffi-|

cient stability, no distribution of live
load should be possible, in which this
condition is not fulfilled.

We can assume any three points at
will; within this inper third, ang cause a

projection of the. polygon ¢ to pass|

throngh them, and then determine by in-
spection whether the entire projection
lies within the preseribed limits. In
order to so assume the points that a new
trial may most likely be unnecessary, we
take note of the well known fact, that
in arches of this character, the curve of
pressure is likely to fall without the pre-
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scribed limits near the crown. and near
the haunches. Let us assume ¢ at the
| middle of the erown, ¢,” at the middle of
a,'d/, and e_near the lower limit on ¢, d,.
This last is taken near the lower limit,
| beecause the eurvatureof the left half of
the polygon is more considerable than
the other, and so at some point between
it and the crown it may possibly rise to
the upper limit. The same consideration
would have induced us to raise ¢,” to the
upper limit, were it not likely that such
a procedure would cause the polygon to
rise above the upper limit on the right
of e/.
Draw the closing line &% through ge.’,
and the corresponding closing line %A
through e/, and decrease all the ordi-
nates of the type Ze¢ in the ratio of Ad to
ke, by help of the lines &z and &7 in a
manner like that previously explained,
For exfimple /i e,=n0, and lLo,=ke,.
By this means we obtain the polygon e
which is found to lie within the required
limits. The arch is then stable: but is
the polygon e the actual curve of
pressures? Might not a different as-
sumption respecting the three points
through which it is to pass lead to a dif-
ferent polygon, which would also lie
within the limits? Tt certainly might.
W hich of all the possible curves of pres-
sure fulfilling the required condition, is
to be chosen, is determined by Moseley's
| principle of least resistance, which ap-
| plied to the case in, hand, would oblige
| us to choose that curve of all those lying
within the required limits, which has the
least horizontal thrust, f.e, the smallest
pole distance. It appears necessary to
direct particular attention to this, as a
| recent publication on this subject asserts
that the troe pressure line is that which
approaches nearest to the middle of the
arch ring, 'so that the pressure on the
most compressed joint edge is a mini
{mum; & statement at variance with the
theorem of least resistance as proved by
| Rankine.
Now to find the particular curve which
has the least pole distance, it is evidently
necessary that the earve should have its
| ordinates as large as possible. This may
be accomplished very exactly, thus:
above ¢, where the polygon approaches
| the upper limit more closely than at any
| other point near the crown, assume a new
| position of e, at the upper limit; and be-
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of the extrados, and from any convenient
point on b, as 4, draw lines to d and ¢.
These will enable us to find the ordinates
b of the ellipse of the extrados, from
those of the circle; by decreasing the
latter in the ratio of J¢ to 4d. By this
means, as many points as may be desired,
can be found upen the intrados and ex-
trados; and these carves may then be
drawa with a curved raler, - We ean use
the areh ring go obtained for our con-
struction, or multiply, thé ordinates by
any convenient number, in case the arch
is too flat for convenient work. Indeed
we ean use the semicircular ring itself if
desirable. 'We shall in this ¢onstruction
employ the arch ring ad which has just
been obtained.

We shall suppose that the material of
the surcharge between the extrados and
a horizontal line tangent at d causes by
its weight a vertical pressure upon the
arch. That this’ assumption is nearly
correct in case this part of themasonry is
madein the usnal manner, cannot well be
doubted. Rankine, however, in his Ap-
plied Mechanics assumes that the. press-
ures are of an amount and in a direction

due tothe conjugate stresses of an'homo- |

geneous, elastic material, or of 4 material
which like earth has an angle of slope due
to internal friction. While this is a cor-
rect assumption, in-case of the arch of &
tunnel sustaining edrth, it is incorrect
for the case in hand, for the masonry of
the surcharge needs only a vertical resist-
ance to support it, and will of itself pro-
duce no active thrust, having a horizon-
tal component,

This is further evident from Moseley’s
principle of least resistance, which is
stated and proved by Rankine in the
following terms:

“If the forces which Bhlance each
other in or upon a given body or strue-
ture, be distinguished into two systems,
called respectively, active and /'um.«'i/".'.
which stand to each other in the rela-
tion of eause and effect, then will the
spassive forces be the least which are
capable of balancing the active forces,
consistently with the physical condition
of the body or structure.

For the passive forces being caused by
the application of the active forces to
the body-or structure, will not increase
after the active forces have been balanced

by them; and will, therefore, not increase
beyond the least amount capable of bal-
ancing the active forces.”

A surcharge of masonry can be sus-
tained by vertical resistance alone, and
therefore will exert of itself a pressure
in no other direction upon the haunches
of thearch. Nevertheless this surcharge
will afford a resistance to horizontal
pressure if produced by the arch itself,
Sothat when we assume the pressures
due te the surcharge to be vertical alone,
we are assuming that the arch does not
avail itself of one element of stability
which -may possibly be employed, but
which the engineer will hesitate to rely
upon, by reason of the inferior character
of the masonry usually found in the sur-
charge. Thedifficulty is tisnally avoided,
asin that beautiful structure, the London
Bridge, by forming a reversed arch over
the piers which can exert any needed
horizontal pressure nupon the haunches.
This in effect increases by so much the
thickness of the arch ring at and near
the piers. y

The pressure of earth will be treated
in connection with the construetion for
the Retaining Wall. On combining the
pressures there obtained with the weight,
the load which a tunnel arch sustains,

| may be at once found, after which the

equilibrium polygon may be drawn and
a construction executed, similar in its
general features to that about to be em-
ployed in the case before us.

Let us assume that the arch is loaded
with a live load extending over the left
half of the span, and having an intensity
which when reduced to masonry of the
same specific gravity as that of which
the viaduct is built, would add = depth
d/ to the surcharge. Nowif the number
of parts into which the span is divided
be considerable, the weights which may
be supposed to be coneentrated at the
points of division vary very approximately
as the quantities of the type af. This
approximation will -be found to be suffi-
ciently. exact for ordinary cases; but
should it be desired to make the con-
struction exact, and also to take account
.of the effect of the obliquity of the joints
in the arch ring, the reader will find the
method for obtaining the centers of
gravity, and constructing the weights, in
Woodbury’s Treatise on the Stability of
the Arch pp. 405 et seq. in which is

given Poncelet’s graphical solution of
the arch.

With any convenient pole distance, as
one half the span, lay off the weights.
We have used &_as the pole and made
bao, = 4 the weight at the crown=
1 {f(r'+m(") :1:.'1/_',', 0,0, = &, [ 100, =
a.f., ete. Several of the weights near
the ends of the gpan are omitted in the
Figure; viz., w0, ete. From the force
polvgon so obtained, draw the equili-
brium polygon ¢ as previously explained.

The equilibrium polygon which ex-
presses the real relations between the
loading and the thrust along the arch, is
evidently one whose ordinates are pro-
portional to the ordinates of the polygon

It has been shown by Rankine, Wood-
bury and others, that for perfect stability,
—i.¢, in case no joint of the arch begius
to open, and every joint bears over its
entire surface,—that the point of appli-
cation of the resultant pressure must
everywhere fall within the middle third
of the archring. For if at any joint the
pressure reaches the limit zero, at the
intrados or extrados, and uniformly in-
creases to the edge farthest from that,
the resultant pressure is applied at one
third of the depth of the joint from the
farther edge.

The locus of this point of application
of the resultant pressure has been called
the “ curve of pressure,” and is evidently
the equifibrinm carve due to the weights
and to the actual thrust in the arch. If
then it be possible to use such a pole dis-
tance, and such a position of the pole,
that the equilibrium polygon can be in-
scribed within the inner third of the
thickness of the arch ring, the arch-is
stable. It may readily oecur that thisis

impossible, bat in order to ensure suffi-|

cient stability, no distribution of live
load should be possible, in which this
condition is not fulfilled.

We can assume any three points at
will; within this inper third, ang cause a

projection of the. polygon ¢ to pass|

throngh them, and then determine by in-
spection whether the entire projection
lies within the preseribed limits. In
order to so assume the points that a new
trial may most likely be unnecessary, we
take note of the well known fact, that
in arches of this character, the curve of
pressure is likely to fall without the pre-
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scribed limits near the crown. and near
the haunches. Let us assume ¢ at the
| middle of the erown, ¢,” at the middle of
a,'d/, and e_near the lower limit on ¢, d,.
This last is taken near the lower limit,
| beecause the eurvatureof the left half of
the polygon is more considerable than
the other, and so at some point between
it and the crown it may possibly rise to
the upper limit. The same consideration
would have induced us to raise ¢,” to the
upper limit, were it not likely that such
a procedure would cause the polygon to
rise above the upper limit on the right
of e/.
Draw the closing line &% through ge.’,
and the corresponding closing line %A
through e/, and decrease all the ordi-
nates of the type Ze¢ in the ratio of Ad to
ke, by help of the lines &z and &7 in a
manner like that previously explained,
For exfimple /i e,=n0, and lLo,=ke,.
By this means we obtain the polygon e
which is found to lie within the required
limits. The arch is then stable: but is
the polygon e the actual curve of
pressures? Might not a different as-
sumption respecting the three points
through which it is to pass lead to a dif-
ferent polygon, which would also lie
within the limits? Tt certainly might.
W hich of all the possible curves of pres-
sure fulfilling the required condition, is
to be chosen, is determined by Moseley's
| principle of least resistance, which ap-
| plied to the case in, hand, would oblige
| us to choose that curve of all those lying
within the required limits, which has the
least horizontal thrust, f.e, the smallest
pole distance. It appears necessary to
direct particular attention to this, as a
| recent publication on this subject asserts
that the troe pressure line is that which
approaches nearest to the middle of the
arch ring, 'so that the pressure on the
most compressed joint edge is a mini
{mum; & statement at variance with the
theorem of least resistance as proved by
| Rankine.
Now to find the particular curve which
has the least pole distance, it is evidently
necessary that the earve should have its
| ordinates as large as possible. This may
be accomplished very exactly, thus:
above ¢, where the polygon approaches
| the upper limit more closely than at any
| other point near the crown, assume a new
| position of e, at the upper limit; and be-
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low ¢ where it approaches the lower

limit most nearly on the right, assume a
new position of ¢’ at the lower limit.
At the left ¢, may be retained. Now on
passing the polygon through these points
1t will fulfill the second condition, which
is imposed by the principle of least resist-
ance,

A more direct method for making the
polygon fulfill the required condition
will be given in Fig. 18.

It is seen in the case before us, the
changes are so winute that it is nseless
to find this new position of the polygon,
and its horizontal thrust, The thrust ob-
tained from the polygon e inits present
position is sufficiently exact. The hori-
zontal thrust in this case is found from
the lines bn and 4L  Since 202, is the
horizontal thrust, i.e. pole distance of the
polygon ¢, 2vv is the horizonfal thrust
of the polygon e

3y using this pole distance and a pole
properly placed, we might have drawn
the polygon ¢ with perhaps greater ac-
curacy than by the process employed,
but that being the process employed in
Figs. 2, 3, ete,, we have given this as an
example of another process,

The joints.in the arch ring should be
approximately perpendicular  to - the
direction of the pressuré, 7.e. normal to
the curve of pressures.

With regard to what factor of safety
is proper in structures of this kind, afl
engineers would agree that the material
at the most exposed edge should never
be subjected to a pressure greater than
one fifth of its nltimate strength. Owing
to themanner in which the pressure is as-
sumed to be distributed in those joints
where the point of application of the re-
sultant is at one third the depth of the
joint from the edge, its intensity at this
edge is double the average intensity of
the pressure over the entire joint. We
are then led to the following conclasion,
that the total horizontal thrust (or pres-
sure on any joint) when divided by the
area of the joint where this pressure is
sustained ought to give a quotient at
least ten times the ultimate strength of
the material. The brick viaduet which
we have treated is remarkable in using
perhaps the smallest factor of safety in
any known structure of this class, having

at the most exposed edge a factor of only
34 instead of 5.

It may be desirable in a case like that
under consideration, to discuss the
changes occuring during the movement
of the live load, and that this may be
effected more readily, it is convenient te
draw the equilibrinm polygons due to
the live and dead loads separately. The
latter can be drawn once for all, while
the former being due to a uniformly
distributed load can be obtained with
facility for different positions of the load.
The polyzon can be at once combined
into a single polygon by adding the ordi-
nates of the two together. Care must
be taken, however, to add together only
such as have the same pole distance. In
case the construction which has been
given should show that the arch is nn-
stable, having no projection of the equili-
brium polygon which can be inseribed
within the middle third of the arch ring,
it is possible either to change the shape
of the ‘arch slightly, or inmcrease its
thickness, or change the distribution of
the loading. The last alternative is
usnally the best one, for the shape has
heen chosén from reasons of utility and
taste, and the thickness from considera-
tion of the factor of s:‘lfc'!}‘. If the cen-
ter line of the arch ring (or any other
line inseribed within the middle third)
be considered to be an equilibrium poly-
gon, and from a pole, lines be drawn
parallel to the segments of this polygon,
a weight line can be found which will
represent the loading needed to make
the arch stable. If this load line be
compared with that previously obtained,
it will be readily seen where a slight
additional load must bhe placed, or élse a
hollow  place made in the surgharge,
such as will render the arch stables In
oeneral, 1t may be remarked, that an
additional load renders the curvature of
the line of pressures sharper under it,
while the removal of any load renders
the enrwe straighter under it

The foragoing construc ion is unre-
stricted, and applies to all unsymmetrical
forms of arches or of Iu:x-?i!-:_', or both.
As previously mentioned, a similar con-
struction applies to the case of an areh
sustaining the pressure of water or earth;

in that case, however, the load is not ap-
plied vertically and the weight line be-
comes a polygon.
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CHAPTER XIV.
RETAINING WALLS AND ABUTMENTS.

Let aa’b'h in Fig. 15 represent the
eross section of a wall of masonry which |
retains a bank of earth having a surface
aa,. Assume that the portion of the
wall and earth under consideration is
bounded by two planes parallel to the
plane of the paper, and at a unit’s dis-
tance from each other: then any plane
containing the edge of the wall at &, as
ba,, ba,, ete., cuts this solid in a longitu-
dinal section, which isa rectangle having
a width of one unit, and a length ba,, ba,,
ete.

The resultant of the total pressure
distributed over any one of these ree-
tangles of the type ba is applied at one-
third of that distance from b: i.c. the re-
sultant pressure exerted by the earth
against the rectangle at ba, 18 applied at
a distance of bk=4¢ ba, from b.

That the resultant is to be applied at
this point, is due to the fact that the dis-
tributed pressure increases uniformly as

we proceed from any point a of the sur-
face toward b: the center of pressure is
then at the point stated,as is well known.
Again, the direction of the pressures
against any vertical plane, as that at ba,,
is parallel to the surface aa,. This fact
is usually overlooked by those who treat
this snhj('(‘L and some arbitrary assump-
tion is made as to the direction of the
pressure. .
That the thrust of the earth against
a vertical plane is parallel to the ground
surface is proved analytically in Ran-
kine’s Applied Mechanics on page 127;
which proof may be set forth in an
elementary manner by considering the
small parallelopiped mn, whose upper
and lower surfaces are parallel to the
ground surface. Since the pressure on
any plane parallel to the surface of the
ground is due to the weight of the earth
above it, the pressure on such a plane is
vertical and uniformly distributed. If
mn were a rigid body, it would be held
in equilibrium by these vertical pressures,
which are, therefore, a system of forces

THRUST OF EARTH

RETAINING WALL
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in equilibrium; but as mn is not rigid it
must be confined by pressures distributed
over each end surface, which last are dis-
tributed in the samemanneron each end,
because each is at the same depth below
the surface. Now the vertical pressures
and end pressures hold mn in equilibrium¢
they therefore-form a system.in equili-
brium, - Batthe vertical pressures arein-
dependently in equilibriom, thereforeghe
end pressures alone form a system which
is independently inequilibrium, That this
mMAay ocenr, and no ['Un]»l(' bhe inll‘(H]llCL‘d,
these must directly oppose each other;
i, be parallel to the gronnd line aa,

Draw 4p || aa, it then represents the
position and direction of the resultant
pressure upon- the vertical da,. Draw
the horizontal 44 then is the angle ikp
called the obliquity of the pressure, it
being the angle between the direction of
the pressure and the pormal to the plane
upon which the pressure acts,

Let ebe= @ be the angle of friction, i.e,
the inclination which the surface of
ground would -assume if the wall were
removed. &

The obliquity of the pressure exerted
by the earth against any assumed plane,
such as ba, or ba, must not exceed the
angle of friction; for should a greater
obliquity ocenr the prism of earth, a,ba,
or a ba, would slide down the plane, ba,
or baon which such obliquity is found.

For dry earth @ is usually about 30°;
for moist earth and especially moist clay,
@ may be as small ‘as 15°,
tion of the ground surface aa, cannot be
greater than 9,

Now let the points 2, a,, a, ete., be
assumed at any convenient distances
along the surface: for convenience we
have taken them at equal distances, but
this is not essential,  'With & as a center
and any convenient radius, as be, describe
a semi-circumference cutting the lines
ba,, ba,, ete. at ¢, ¢, ete. Make e2, =e¢e;
also ¢ e, =0C0, €¢6=c.0, ete: llllr’ll be
has an obliquity. @ with ba,, as has also
be, with ba,, be, with da,, ete.; for abe,
.‘:ll./lq:ll‘/u‘n:‘,}ll .- (}T_ 3

I,}l_\"(»t’f bt,., bb,, bb., ete., proportional |

to the weights of the prisms of earth
((:/,u:, a /w,_, aba,, ete.: we have effected
this most easily by making aa =),
a,a,=bb,, aa,=0bb ete. Throngh?, b, l:;‘,
etc., draw parallels to ip; these will inter-
sect be, be, be, etc, at b, t, ¢, ete

The inclina- |

!Then is 4b.¢, the triangle of forces hold-

ing the prism @ba, in equilibrium, just
| as it is about to slide down the plane 4a ,
for b, represents the weight of the
prism, 4¢ is the known direction of the
thrust against ba, and &f, is the diree-
tion of the thrust against ba, when it is
just on the point of sliding: then is ¢35,
the greatest pressure which the prism
|ean exert against de,. Similarly 2,0, is
|the greatest pressure which the prism
a,ba, can exert. Now draw the curve
ttt, ete, and a vertical tangent inter-
secting the parallel to the surface through
b at't; then is ¢b the greatest pressure
which ‘the earth can exert against da,.
This greatest pressure is exerted approxi-
mately by the prism or wedge of earth
cut off by the plane ba,, for the pressure
which it exerts against the vertical plane
through & is almost exactly &¢ =0t
This 18 Coulomb’s “ wedge of maximum
thrust” correetly obtained: previous de-
terminations of it have been erroneous
when the gronnd surface was not level,
for in that case the directionof the press-
ure has not: been ordinarily assumed to
be parallel to the ground surface.

In case the ground surface is level the
wedge of maximum thrust will always
be cut off by a plane bisecting the angle
ebe,, as may be shown analytically, which
fact will simplify the construction of that
|ease, and enable us to dispense with
drawing the thrust curve #.

The pressure b is to be applied at £,
and may tend either to overturn the wall
| or to cause it to slide,

In order to discuss the stability of the
| wall under this pressure, let ns find the
weight of the wall and of the prism of
earth aba,.  Let us assume that the
specifie gravity of the masonry compos-
[ing the wall i8 twice that of earth.
| Make a’h=pp’, then the area abb’a’=
| abh=abh ; and if ah,=2ah, then ah,
represents the weight of the wall reduced
to the same scale as the prisms of earth
{before used. Sinece e, is the weicht of
aba,, ah, is the weight of the mass on
| the ‘right of the vertical da. - against
which the pressure is exerted.

Make bg=ah, and draw tg, which
then represents the direction and amount
of the resultant to be applied at o where
| the resultant pressure applied at / inter-

sects the vertical gw through the center
| of gravity g of the mass aa,b¥’a’. The
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center of gravity g is constructed in the
following manner. Lay off a’A=§p’, and
bl=aa’y and join AL Join also the mid-
dle points of ab and a’d’: the line so
drawn intersects Al at g, the center of
gravity of ae’d’s. Find also the center
of gravity g,, of aba,, which lies at the
intersection of a line parallel to aa,, and
cutting da, at a distance of § éa, from «
and of a line from & bisecting aa,.
Through ¢, and g, draw parallels, and
lay off g,f, and g, 7, on them proportional
to the weights applied at g, and g,
respectively. We have found it con-
venient to make g. f' =3ak,, and ¢, f,=4
aa,, Then f 7, divides g,¢, inversely as
the applied weights; and g, the point of
intersection, is the required center of
gravity.
" Let or be parallel to tg; since it
intersects 00" .80 far within the base,
the wall has sufficient stability against
overturning. The base of the wall is so
much greater than is necessary for the
support of the weight resting upon it,
that engineers have not found it neces-
sary that the resultant pressure should
intersect the base within the middle third
of the joint, The practice of English en-
gingers, as stated by Rankine, is to per-
mit this intersection to approach as near
b’ as 166’ while French engineers permit
it to approach as mear as 158’ only. In
all cases of buttresses, piers, chimneys,
or other structures whicL call into play
some fraction of the ultimate strength
of the material, or ultimate resistance of
the foundation as great as one tenth, or
one fifteenthy the point should not ap-
proach &' nearer than { 54'.

Again, let the angle of friction be-
tween the wall and the earth under it be
¢’:/then in order that the thrust at %
may not cause the wall to slide; the
angle wor must be less than &',

When, however, the angle ¢’ is less than
woritbecomes necessary to gain additional
stability by some means, as for exgmple
by continuing - the wall below the sur-
face of the ground lying in front of it.
Let a/a,' be the surface of the ground
which is to afford a passive resistance to
the thrust of the wall: then in a manner
precisely analogous to that just employed
for finding the greatest active pressure
which earth can exert against a vertical
plane, we now find the least passive
pressure which the earth in front of the

wall will sustain without sliding up some
plane such as ¥a or ¥a/, ete. The
difference in the two cases is that in the
former case frietion hindered the earth
from sliding down, while it now hinders
it from sliding up the plane on which it
rests,

Lay off ¢’e'=ee,; then taking any
points a/a.’, ete. on the ground surface,
make ¢ ¢.'=¢ "',A', ‘ 'u:':"_'f' , BLe,

Lay off 4’0, =a,'a/, ete., and drawing
parallels through 3., &/, ete., we obtain
the thrust curve ¢,'t/; ete.

The small prism of earth between ¥a,’
and the wall adds to the stability of the
wall, and ean be made to enter the con-
struction if desired, in the same manner
as did aba,.

The vertical tangent through s* shows
us that the earth in front of the wall can
withstand a thrust having a horizontal
component 4’s’ measared on a scale such
that #’6'=a/a,’ is the weight of the
prism of earth a, f»'u:'_

This geale is different from that used
on the left. To reduce them to the
same seale lay off from ¥/, the distances
b'd, and b’'d,’ proportional to the perpen-
diculars from b on aa, and ' on a/a,
respectively. In the case before us, as
the ground surfacesare parallel, we have
made bd, =ba, and &'d,/=b'a,'.

Then from any eonvenient point on
b'b, asw, draw vd, and vd,’: these lines
will reduce from one scale to the other.
We find then that x'd is the thrust on
the scale at the left corresponding to
@d=0's’ on the right: de, the earth
under the surface assumed at the right
can withstand something over one fourth
of the thrust 85 at the left.

It will be found that a certain small
portion of the earth near ¢,” has a thrust
curve on. the left of &, but asit is not
needed in our solution it is omitted.

If any pressure is required in pounds,
as for example sb, it is founds as follows:
—the length of a4, is to that of sb as the
weight of bb'aa’ in 1bs. is to the pressure
sb-in lbs.

Frequently the ground surface is not a
plane, and when this is the case it often
consists of two planes as ad, da; Fig. 16.
In that case, draw some convenient line
as ad,, and lay off ad, dd,, ete. at will,
which for convenience we have made
equal. Draw da, da, ete. parallel to
bd, and join ba,, ba, ete.: then are the

,A.
bl s e St e A
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triangles bda, bda,, bda,, bda,, ete. pro- } other form than that above treated, the
portional in area to the lines eq, ea,, ete.  vertical plane against which the pressure
Hence the weights of the prisms of earth |is determined should still pass through
baa,, baa,, ete., are proportional to ad,, |the lower back edge of the wall.

ad,, ete. | In case the wall is found to be likely
In case wb slopes backward the part of | to slide upon its foundations when these
the wall at the left of the vertical ba, |are level, a sloping foundation is fre-
rests upon the earth below it sufficiently | quently employed, such that it shall be
to. produce the same pressure Which.ne:xrly ]'>erpeml'icular to the resultant pres-
would be produced if daa, were a prism |sure upon the base of the wall. The con-
of earth. 'The weights of the wedges struction employed in Fig. 15 applies
which produce pressures, and which are | equally to this case.
to be laid off below &, are then propor-| The investigation of the stability of
tipnal to dd,=bb,, d,d,=bb,; etc.. The|any abutment, buttress, or pier, against
direction of the pressures of the prisms overturning and against sliding, is the
at the right of 6d are parallel to ad; but|same as that of the retaining wall in Fig,
upon taking a larger prism the direction |15. As soon as the amount, direction,
may be assumed to be parallel to @, |and point of application, of the pressure
a,a,, ete., which is very approximately |exerted against such a structure is deter-
correct. Now draw b.t, || a,a,, b2, || a,a,, | mined, it is to be treated precisely as
ete.; and complete the construction for | was the resultant pressure Zp in'Fig'. 15,
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plane ba, when cba,=45° i.e. ba, bisects
¢ba, as before stated.

]

ay a6

Figd7 ™\ 5 ;:_‘
\\‘—_— \u

5 t 74

This produces a horizontal resultant
pressure at & equal to the weight of the
wedge. Now the total pressure on «b is
the resultant of this pressure, and the
weight of the wedge aba,. The forces
to be compounded are then proportional
to the lines ¢ @, =0y, "and a¢,, By simi-
lavity of triangles it is seen that 70 the
resultant is perpendicular to ab.

It is seen that by making the inclina-|

tion of «b®mall, the direction of 7o can
be made so nearly vertical that the dam
will be refained in place by the pressure
of the water alone, even though the dam
be a wooden frame, whose weight may be
disregarded.

We can now construct the actunal

pressures to which the arch of a tunnel |

surcharged with water or earth is sub-
jected.” Suppose, for example, we wish
to find the pressure of such a surcharge
on the voussoir o d d.a, Fig. 14. Find
the resultant pressure against a vertical
plane extending from ¢, to the upper
surface of the sanrface and eall it p_.
Draw a horizontal through ¢, and
let its intersection with the vertical
just mentioned he called ¢.”. Find
the resultant pressure against the verti-
cal plane extending from &, to the snr-
face, and call it p,. Now let p'=
p.—p.and let it be applied at such apoint
of d.d " that p, shall be the resultant of ,*
and p,". Then will the resultant press-
ure against the voussoir be the resultant

of pp." and the weight of that part of the |

surcharge directly above it.

FOUNDATIONS IN EARTH,

'Ioad which it sustains. Now consider a
vertical plane of one unit in height, say,
as bb,; and determine the resultant press-
ure against it on the supposition that
the pressure is produced by a depth of
earth at the right of it, sufficient to pro-
duce the same vertical pressure on &b
which the wall and its load do actually
produce. In other words we suppose
the wall and load replaced by a bank of
earth having itsupper surface horizontal
and weighing the same as the wall and
load. Call the upper surface z, and find
the pressure against the vertical plane zb
due to the earth under the given level
surface; similarly, find the pressure
against 7b,. Thesurface being level, the
maximum pressure, as previously stated
will be due to a wedge cut off by a plane
bisecting the angle between &z and a
plane drawn from & at the inclinatian &,
of the limiting angle of friction. This
enables us to find the horvizontal pres-
sures against zb and zb, directly: their
difference is the resultant active pressure
against 00,
Next, it must be determined what pas-
| sive pressure the earth at the left of 4,
can support. The passive resistance of
the earth under the surface @ against
{the plane ab as well as that against the
| plane @b, can be found exactly as that
| was previously found under the surface
a/. 'The difference of these resistances is
the resistance which it is possible for 45,
to support. Indeed &b, could support
this pressure and afford this resistance
even if the active pressure against af
| were, at the limit of its resistance, which
|it is not.  The limiting resistance which
is thus obtained, is then so far within
| the limits of stability, that ordinarily, no
further factor of safety is needed, and
the stability of the foundation issecured,
|if the active pressure against 46, does not
| exceed the passive resistance. This con-
struction should be made on the basis of

pressure precisely as in Fig. 15, using
for resultant pressure the direction and |
amount of that due to the wedge of maxi- |
mum pressure thus obtained.

In finding the stability of the wall, it |
will be necessary to find the weight and |
center of gravity of the wall itself, minus
a prism of earth baa,, instead of plus this
prism as in Fig. 15; for it is now sus-
tained by the earth back of the wall.

“When the back of the wall has any

In.the case of a reservoir wall or dam,
the construction is simplified from the
fact that, since the surface of water is
level and the angle of friction vanishes,
the resultant pressure is perpendicular
to the surface upon which the water
presses. It is useful to examine this as
a case of our previous construction. In
Fig. 17, let abd’ be the cross-section of
the damj then the wedge of maximum
pressure against da, is cut off by the

A method similar to that employed in | the smallest angle of friction @ which
the determination of the pressure of | the earth assumes when wet; that being
earth againsta retaining wall, or a tunnel | smaller than for ‘dry earth, and hence
arch, enables us to investigate the sta-| giving a greater active pressure at the
bility of the foundations of a wall stand- | right, and a less resistance at the left.
ing in earth. CHAPTER XV.

Suppose in Fig. 15 that the wall abb’'a’ ’ -
is a foundation wall, and that the press- | FEREEICAEFDUITE (OSSN ET LS
ure which it exerts upon the plane 0’| The dome which will 1)e treated in the
is vertical, being due to its own weight | following construction is hemispherical
and the weight of the building or other !in shape; but the proposed construction
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applies equally to domes of any different
form generated by the revolution of the
arc of some curve about a vertical axis:
such forms are elliptie, parabolic or hy-
perbolic domes, as well as pointed or
gothic domes, etc. Let the quadrant aa
m Fig. 18, represent the part of the
meridian section of a thin metallic dome
between the crown and the springing
circle.. The metallic dome is supposed

as the hoop tension or compression along
any of the conical rings into which the
dome may be supposed to be divided
by a series of horizontal planes.

Let the height ab of the dome be
divided into any number of parts, which
we have in this case, for convenience,
made equal. Let these equal parts of the
type du be the distances between horizon-
tal planes such that the planes through

to.be so thin that its thickness need not | the points d, 7, ete., cut small circles from

be represented in the Figure : the thick- |

ness of & dome of masonry, however, is'a
matter of prime importance and will be
treated subsequently.

In a thin metallic dome the only thrust
along a meridian seetion is necessarily
in & direction tangent to that section at
ach point of it. 'This consideration will
enable us to determine this thrust as well

the hemisphere which pass through the
point a,, a,, etc., and similarly the planes
throngh w,, «, ete., cut small circles which
pass through 7, g, ete. Now suppose the
thickness of this dome to be uniform,
and if ab be taken to represent the weight
of a quadrantal lune of the dome included
between two meridian plan®s making
some small angle with each other; then
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from the well-known expression for the
area of the zone of asphere itappearsthat
ad, will represent the weight of that
part of the lune above a,d,. Similarly
au, is the weight of the lune ag,;
ad, the weight of aa,, ete.

This method of obtaining the weight
applies of course in case the dome is any
segment of a sphere less than a hemi-
gphere and of uniform thickness. If the
thickness inecreases from the erown, the
weights of the zones cut by equi-distant
horizontal planes increase directly as the
thickness. In case the dome is not
spherical the weights must be determin-
ed by some process suited to the form of
the dome and its variation in thickness.

Now the weight of the lune aa, is sus-
tained by#*a horizontal thrust which is
the resultant of the horizontal pressures
in the meridian planes by which it is
bounded, and by a thrust, as before re-
marked, in the direction of the tangent
at a. Draw a horizontal line through'd,,
and through « a parallel to the tangent
at a: these intersect at ¢, then is ad s,
the triangle of forces which hold in
equilibrium the lune aa,. Similarly,
au ¢, is the triangle of forces holding the
lune ag, in equilibrium, ete. Draw a
curve & throngh the points thus determ-
ined. This curve is & well-known cubic
which when referred to b as the axis of
2 and by, as that of ¥ has for its equa-
tion .

‘_'/’ _r=

&L

On being traced at the right of a it has|
in the other quadrant of the dome a part
like that here drawn forming a loop; it
passes through 5 at an inclination of 45°
and the two branches below & finally
become tangent to a horizontal line
drawn tangent to the circle aa of the
dome. The curve has this remarkable
property :—If any line be drawn from a,
cutting the curve here drawn and, also,
the part below 4g,, the product of these
two radii vegtores of the curve from the
pole « is constant, and the locus of the
intersection of the normals at these two
points is a parabola.

Draw a vertical tangent to this curve:
the point of contact is very near ¢, and g,,
the C‘ﬂrre(\‘}mnq]ing Imin( of the dome is
almost 52° from the crowna. A determi-
nation of this maximum point by meaus

of the equation gives the height of it
above b as § (4/5—1) r, corresponding to
about51°49". Now consider any zone, as,

| for example, that whose meridian section

is g,a,: the upper edge is subjected to a
thrust whose radial horizontal compo-
nent is proportional to w¢, while the
horizontal thrust against its lower edge
is proportional to d,s,, and the difference
s,z, between these radial forces produces
a hoop compression around the zone pro-
portional to sz,. It will be seen that
these differences which are of the type
sz or ty, change sign at ¢, Hence all
parts of the dome above 51° 49’ from the
crown, are subjected to a hoop compres-
sion which vanighes at that distance from
a, while all parts of the dome below
this are subjected to hoop tension. This
may be stated by saying that a thin
dome of masonry would be stable under
hoop compression as far as 51° 49" from
the crown, but unstable below that, being
liable to crack open along its meridian
sections. A thick dome of masonry,
however, does not havé the resultant
thrust at every point of its meridian
section in a direction which is tangential
to its surface,—this will be discussed
later,

It is necessary to determine the actual
hoop tension or compression in any ring
in order to determine the thickness of
the dome such that the metal may not
be subjected to t00 severe a stress,

The rule for obtaining hoop tension
(we shall use the word tension to in-
clude both tension and compression) is:
Multiply the intensity of the radial
pressure by the radius of the hoop, the
product is the tension at any meridian
section of the hoop. The correctness of
this rule appears at once from considera-
tion of flutd pressure in & tube, in which
it is seen that the tensions at the two ex-
tremities of a diameter preveut the total
pressure on that diameter from tearing
the tunbe asunder.

Now in the case before us ¢y, is the
radial foree distributed slong a certain
lnne. The number of degrees of which
the lune consists is at prvénm undeterm-
jned : let it be determined on the suppo-
sition that it shall be such a number of
degrees as to cause that the total radial
force against it shall be equal to the
hoop tension. Call the total radial force
P and the hoop tension 7] then the lune

it A e

.
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is to be such'that P=17." Also let 6 be
the number of degrees in the lune, then
90° -6 is the number of lunes in a quarter
of the dome, and 90 P-=-f is the radial
force aguinst a quarter of the dome,
which last must be divided by 37 to ob-
tain the hoop tension; because if p is the
mtensity of radial pressure,4a7p is the
total-pressure against @ quadrant and 2,
ag previously stated, is the hoop tension.
The ratio of these is 47, and by this we
must divide the total radial pressure in
every case to obtain hoop tension

1180 P . 180°

(284 =

for P=T

This is the number of degrees of which
the lune must consist in order that when
@b represents its waight, ¢y, shall rep-
resent the hoop tension in the meridian
section, g The expression we have
fonud isindependent of the radius of the
ring, and hence holds for any other ring
a8 g @..in which s, is the hoop tension,
ete. ‘Ta find what fraction this lune is
of the whele dome, divide & by 360°

t 180 1 4 |
=——=—=-—nearly
860 8607 27 25 J?

from which the scale of weight is easily
found; thus; let W be the total wéight
of the dome and 7 its radius, then

2ar: W1 :n, the weight per unit, or
the hoop tension per unit of the distances
ty or sx.

Distances @t or as, on the same secale,
represent the throst tangential to the
dome in the direction of the meridian
sections, and uniformly distributed over

an are of 57°.83— :.eg. if we divide at,
measured as a force by 6 X v, g, measured
as a distance we shall obtain the intensi-
ty of the mendian, compression at the
joint eut from the dome by the horizon-
tal plane through a,.

Analogous constructions hold for
domes not spherical and not of uniform
thickness. Approximate results may be
obtained by assaming a spherical dome,
or a series of spherical zones approxi-
mating:in shape to the form which it is
desired to treat.

CHAPTER XVL
SPHERICAL DOME OF MASONRY.

Let the dome treated be that in Fig,
18 in which the uniform thickness of the
masonry is one-sixteenth of the internal

| diameter or one-eighth of the radius of
the intrados. Divide ab the radius of
the center line into any convenient num-
ber of equal parts, say eight, at wu,, u,
lete.: & much larger number would be
hn‘efvr:xhiv in actual construction. At
| the points @, a,, ete., on the same levels
with «,, u,, etc. pass conical joints nor-
mal to the dome, so that & is the vertex
| of each of the cones.

If weconsider a lune between meridian
planes making a small angle with each

!n!hm-, the center of gravity of the parts
of the lune between the conical joints lie
at g,, ggmete. on the horizontal midway
hetween the previous horizontals. These
points are not exactly upon the central
line aaybut if the number of horizontals
is large, the difference is inappreciable.
We assume them upon aa. That they
fall upon the horizontals through ., r/;,
ete.,, midway between those through u
%,y £te., is a consequence of the equality
[in-area between spherical zones of the
same height.

In finding the volume of a sphere it
|may be considered that we take the sum
of a series of elementary cones whose
bases form the surface of the gphere, and
whose height is the radius. “L‘HCU, if
any equal portions of the surface of a
sphere be taken and sectorial solids be
| formed on them as bases and having
their vertices at the center, then the
sectorial solids have equal volumes.
The lunes of which we treat are equal
fractions of such eqnal solids,

Draw the verticals of the type &g
through the centers of gravity g,, g., ete.
The weights applied at these points are
equal and may be represented by aw,,
wu,=ww, ete. Use ¢ as the pole and
waw, as the weight linej and, beginning
at the point 7, draw. the equilibriam

| polygon ¢ due to the weights.

We have used for pole distance the
greatest horizontal thmst which it i8
possible for any segment of the dome to
exert upon the part below it, when the
hoop compression extends to 51° 49
from the crown.

Below the point where the compression
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vanishes we shall not assame that the
bond of the masonry is such that it can
resist the hoop tension which is develop-
ed. The upper part of the dome will be
then carried by the parts of the lunes
below this point by their united action
as a series of masonry arches standing
side by side.

Now it is seen that the curve of equi-
librium ¢, drawn with this assumed hori-
zontal thrust falls within the eurve of the
lune, which signifies that the dome will
not exert so great a thrust as that as-
sumed. By the principle of least resist-
ance, no greater horizontal thrust will
be called into action than is necessary to
cause the dome to stand, if stability is
possible, If a less thrust than that just
employed be all that is developed in the
dome, then the point wheregthe hoop
compression vanishes is not so™ar as 517
49" from the ¢rown, and a longer portion
of the lnne acts as an arch, than has been
supposeéd by previond writers on this
subjeet.® none of whom, so far as known,
have given a correct process for the solu-
tion of the problem, although the results
arrived at have been somewhat approxi-
mnh-ly correct.

To ensure stability, the equilibrium
curve must be inscribed within the inner
third of that part of the meridian section
of the lune which is to act as an arch; as
appears from the same reasons which
were stated in eonnection with arches of
masonry.

And, further, the hoop compression
will vanish at that level of the dome
where the equilibrium curve, in departing
from the crown, first becomes more
nearly vertical than the tangent of the
meridian seetion; for above that point
the greatest thrust that the dome can
exert, cannot be 8o great as at this point
where the thrust of the arch-lune is equal
to that of the dome.

Now to determine in what ratio the
ordinates of the curve ¢ must be elongat-
ed to give those of the carve ¢ which
fulfills the required conditions, we draw
the line fo, and cut it at p, p,, ete. by
the horizontals m_p, , m, p,,ete., the quan-
tities mb being the ordinates of exterior
of the inner third. Again draw verticals
throngh p,, p,, eté,, and cut them at ¢,

* See n paper read before the Rowval Inst. of British
Architects, “on the Msthematical Theory mes,”
Feb, 6th, 1571, By Edmund Beckett Denison, LL.D,
Q.C, FRAS,

*| uanstable.

.

7. 9. ¢te. by horizontals through e, ¢,
¢,, ete. Through these points draw the
curve g, whose ordinates are of the type
¢gh. Some one of these ordinates is to
| be elongated to its corresponding ph,
and in such a munner that no ¢/ shall
| then become longer than its correspond-
|ing ph. To effect this, draw og, tangent
| to the curve ¢¢; then will og, enable us
to effect the required elongation: e.g. let
llht- horizontal through ¢, eut og, at j,,
| and then the vertical through 7, cuts fo
at i, then is8 ¢, (which is on the same
| level with ¢,) the new position of e,
Similarly, we may find the remaining
points of the curve ¢; but it is better to
determine the new pole distance, and use
this method as a test only,

The curve gg made use of in this con-
struction for finding the ratio lines for
so elongating the ordinates of the curve
¢, that the new ordinates shall be those
of a curve e tangent to the exterior line
of the inner third, may be applied with
equal facility to the construction for the
arch of masonry. This furnishes us with
a direct method in place of the tentative
one employed in eonnection with Fig,
14.

To find the new pole distance, draw

/, || og, cutting 20 at 7, then will 2 the
intersection of the horizontal throngh 7,
he the new [ltt~iliﬂll of the \\'vij_:hT, HHVE v,
having its pole distance from @ diminish-
ed in the required ratio,

The equilibrium eurve e will be parallel
to the curve of the dome at the points
where the new weight line »v cuts the
curve . It should be noticed that the
pole distance which we have now determ-

{1ined s sgtill a little too large because

{the polygon ¢ is circumscribed. about
the true equilibrium curve; and as the
polygon has an angle in the limiting
curve mwn  the equilibrium curve is
not yet high enongh to be tangent to the
limiting carve. 1If the number of divi-

| sions had originally been largeér (which
the size of our Figure did not permit)
this matter would be rectified.

The polygon e is seen at ¢, to fall just
without the required limits, this would
be partly rectified by slightly decreasing
the pole distance as just suggested; the
point, however, wounld still remain just
withont the limit after the pole distance
is decreased, and by 20 much is the dome

A dome of which the thick-

PRSP L BE—




58 NEW CONSTRUCTIONS

ness is one fifteenth of the internal dia-
meter, is almost exactly stable.

It is a remarkable fact that a semi-
eylindrical arch of uniform thickness and
without surcharge must be almost exact-
ly three times as thick, viz., the thickness
must be about one fifth the span in order
that it may be possible to inseribe the
equilibrinm curve within the inner third.

The only large hemispherical dome, of
which I have the dimensions, which is
thick enough to be perfectly stable with-
out.extraneous aid such as hoops or ties,
is the Gol Goomuz at Beejapore, India.
It has an internal diameter of 137} feet,
and a thickness of 10 feet, it being
slightly thicker than necessary, but it
probably carries 4 load upon the erown
which requires the additional thickness.

The hemispherical dome of uniform
thlckness is a very faulty arrangement
of material. Tt is only mnecessary to
make the dome so light and thin for 51°
49’ from the crown that it cannot exert
so great a horizontal thrust as do the
thicker lunes below, to take complete ad-
vantage of the real strength of this form
of structure. A dome whose thickness
gradually decreases toward the crown
takes a_partial ‘advantage-of this, but
nothing short of a quite sudden change
near this point.appears to be completely
effective,

The necessary thickness to withstand
the hoop compression and the meridian
thrust can be found as previously shown
in the dome of metal.

Domes are usually crowned with a
lantern or pinnacle, whose weight must
be first laid off below the pole a after
having been reduced to the same unit
as that of the zones of the dome.

Likewise when there is an eye, at, the
crown or below, the weight of the mate-
rial necessary to fill the eye must be sub-
tracted, so that @ is then to be placed
below its present position. The construe-
tion is then tor be completed in the same
manner as in Fig, 18;

It is at once geen that the effect of an
additional weight, as of a lantern, at the
crown, since it moves the point @ upward
a certain distance, will be to cause the
curve & to have all its points except & to
the left of their present position, and
especially the pointsin the upper part of
the curve, thus making the point of no
hoop tension much nearer the crown than

in the metallic dome. It will be noticed
that the addition of very small weight at
the ecrown will cause the point 72, of no
hoop tension in the dome of masonry to
approach almost to the crown, so that
then the lunes will act entirely as stone
arches with the exception of a very small
segment at the crown.

On the contrary, the removal of a seg-
ment at the crown, or the decrease of the
thickness, or any device for making the
upper part of the dome lighter will re-
move the point of no hoop tension further
from the crown, both for the dome of
metal and of masonry. In any dome of
masonry the thickness above the point
of no hoop tension, as determined by the
curve s4, need be only such as to with-
stand the two compressions to which it
1s subjected, viz; hoop compression and
meridian@ompression: while below that
the lunes acting as arches must be thick
enough to cause a horizontal thrust equal
to the maximum radial. thrust of the
dome above the point of no hoop ten-
8101,

Several large domes are constructed of
more ‘than one shell, to give increased
security to the tall lanterns surmounting
them: St. Peter’s, at Rome, is double,
and the Pantheon, at Paris, is triple,
The -different shells should all spring
from the same thick zone below the
point of no hoop tension; and the lunes
of this thick zone should be able to
afford a horizontal thrust equal to the
sum of the radial thrusts of all the
shells standing upon it.

Attention to this will steure the sta-
bility in itself of any dome of masonry
spherical or otherwise; and, though I
here offer no proof of the assertion, 1 am
led to believe.that this is the solution of
the problem of constructing the dome of
& minimum weight of material, on the
supposition that the meridian joints can
afford no resistance to hoop tension.

Now, in fact, it is a common device to
ensure the stability of Jarge domes by
encircling them with iron hoops. or
chains, or by embedding ties in the ma-
sonry; and this case appears to be of
sufficient importance to demand our at-
tention.

If the hoop encircles the dome at 51°
49" or any other less distance from the
crown the dome will be a true dome at
all points above the hoop. Suppose the
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hoop to be at 51° 49', then the curve ¢
should, below that point, be made to
pass throngh the points 7, and 7., from
which it is séen that the dome may be
made thinner than at present, and the
horizontal thrust caused will be less.
The tension of the hoop would be that
due to a radial thrust which is the dif-
ference between that given by the carve
st for this point aud the horizontal thrust
(pole distance) of the polygon ¢ when it
passes through 7, and 7., That the curve
¢ passes throun;rh these last mentioned
points is a consequence of the prineiple
of least resistance.

;\g.’lin. suppose another ‘hl'llv[» encircles
the dome at f); the curve ¢ must pass
throngh 7, and 7, and in this part of the
lune will have a corresponding horizon-
tal thrust. The curve ¢ must_also pass
throngh 7, and 7, but in this fllrt of the
lune will have a horizontal thrast cor-
responding to it, differing from that in
the part’between 7, and: 7o indeed the
horizontal thrust in the segment of a
dome above any hoop depends exelusive-
ly npon that segment and and is unaf-
fected by the zone below the hoop. The
tension sustained by the hoop is, how-
ever, due to the radial foree, which is
the difference of the horizontal thrusts
of the zones above and below the
hl.)()lr.

It is seen that the introduction of a
second hoop will still further diminish
the thickness of lune necessary to sus-
tain the dome, unless indeed the thick-
ness i8 required to sustain the meridian
ecompression.

Had a single ]an been introduced at
J, with none above that point, the dome
above 7, should then be inyestigated, just
ag if the springing circle was sitnated at
that point.  The ¢tirve ¢ must then start
from 7, as it before did from 7., and be
made to become tangent to the limit-
ing curve at some point between /, and
the crown.

By the method here employed for
finding the tension of a hoop it is possi-
ble to discuss at once the stresses in-
duced in the important modern domes
constructed with rings and ribs of metal
and having the intermediate panels
closed with glass.

On introducing a large number of
rings at small distances from each other,
it will be seen that the discussion just
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given leads to the method previonsly
given for the dome of metal.

The dome of St. Paul’s, London, is one
which has excited much adverse eriticism
by reason of the novel means employed
to overcome the difficulties inherent in so
large a dome at so great a height above
the foundations of the building. The
exterior dome consistsof a framework of
oak sustained by conical dome of brick
which forms the core. There is also a
parabolic brick dome under the cone
which forms no esgential part of the sys-
tem. Since the conical dome in general
presents some peculiarities worthy of
notice we will give an investigation of
that form of structure as our concluding
construction.

CHAPTER XVIL
CONTOAL DOME OF METAL.

In Fig. 19, let 4d be the axis of the
frustum of  a metallic cone cut by a ver-
tical plane in the meridian section a.
The cone is snpposed to have a uniform
thickness too small to be regarded in
comparizgon with its other dimensions,
Suppose the frustum to be eut by a series
of equi-distant horizontal planes as at g,
., ete., into a series of frustra or rings:
then the weight of each ring is propor-
tional to its econvex surface. The conyex
surface of any ring =2nr X slant height;
when # is half the sum of the radii of the
two bases, fe, » 18 the mean radius.
Consequently, the weights of these
rings, or any given fraction of them in-
clnded between two meridian planes, is
proportional to their mean radii. Let us
draw these mean radii d.a,, d.a,, ete., be-
tween the horizontals through g .7, ete.,
and use some convenient fraction, say 1,
of these quantities of the type du as the
weights., The line #7 cuts off | of each
of these: then lay off du =d i as the
weight of the ring ay., ]:\:,’ off U, =
dji, wu=dj, etc., as the weights of
the rings g.9., 7.4,, ete.

Draw the line o/t || aa, it corresponds
to the curve st of Fig. 18; then the
quantities of the type fu represent the
horizontal radial thrust which the cone
exerts upon the part below it, while the
radial thrust borne by any ring is the
difference between two successive quanti-
ties of the type fu, i.e, the radial thrust
in the ring g.g, is represented by ty,,
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sions have made manifest the applicabil- are all projections of any one of them,
ity of a particular equilibrium polygon and the possibility of deriving from it in
among the infinite number which are
due to a given set of weights, and which

each of the structures treated, a complete
and sufficiently exact solution.
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Ari, general processes used in thejequilibrinm. Now any system of forces
graphical computation of statical prob-|in equilibrium may be represented in
lems consist, in their last analysis, in a | magnitude and direction by the sides of
systematized application of the proposi-|a closed polygon, a fact which follows
tion known as the “parallelogram of |atonce from the doetrine of the parallelo-
forces,” which states that if two forces|gram of forces. Sueh a polygon is called
be applied to a material point, and if |the polygon of the applied forces.
they be represented in magnitnde and| Again, the forees which act at any
direction by two determinate u‘tr:\ig_zh{lj«vim of a frame are in equilibrium, and
lines, then their resultant is represented |hence there is a elosed polygon of the
in magnitude and direction by the|forces acting at each joint. The forces
diagonal of a parallelogram, two of | which meet at a joint of a frame are the
whose sides are the just mentioned de-|longitudinal tensions or compressions of
+ terminate lines. This is the basis of all | the pieces meeting at that joint, together
grapho-statical  construetion, “but the|with any of the applied forces whose
methods by which it is systematized, and | point of application may be the joint in
the auxiliary ideas inm’r]n‘-r:m-\l in the | question. Draw a diagram of the frame
processes, have so enlarged its possi-|and the applied forces all of which we
bilities of usefulness, that Graphical|will suppose lie in a single plane. Call
Statics may perhaps claim to be a science | this the “frame diagram:” it represents
of itself;—the science of the geometrical | the position and direction of all the
treatment of foree. | forces acting in and upon the frame.

In order to introduce to the public a|The frame diagram necessarily has at
new set of auxiliary ideas, which shall|least three lines meeting at each joint.
constitute a new method, of a character | A piece which constitutes part of the
equally general with that now in use and ‘ frame does not necessarily have both
known as the “equilibrinm _polygon | its extremities attached at joints of the
method,” it_has seemed best to give, in|frame; one extremity may be firmly at-
the first place, a brief review of the prin- ‘ tached to any immovable objeot. The
cipal ideas alrealy employed by the cul- | frame diagram is, therefore, not neces-
tivators of this science, | sarily made up of closed figures.

Now draw the closed polygon of the
forces applied to the frame, and at each

When a framed structure, such as a|of the joints where forces are applied
roof or bridge truss, is subjected to the|draw the closed polygon of the forces
action of certain weights or forces, these | which meet at that joint, using so far as
applied forces form a system which is in' possible the lines already drawn as sides

RECIPROCAL FIGURES.
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of the new polygons, and at the same
time draw polygons for the forces acting
at each of the remaining joints.
process be effected with care as to the
order of procedure, as well as to the
order in which the forces follow each
other in the polygon of the applied
forces, then the resulting “diagram of
forces,” which is formed of the combi-
nation of the polygon of the applied
forces with the polygons for each joint,
will contain in it a single line and no
more parallel to each line of the frame
diagram. In that case the foree dia-
gram is said to be a reciprocal figure to
the frame diagram. If safficient care is
not exergised in the particulars men-
tioned some of the lines in the force
diagram will have to be repeated, and
the figure drawn will not be the recipro-
cal of the frame diagram, nevertheless

If this|

| Magazine, vol. 27, 1864; in which is
stated, what is also evident from con-
siderations already adduced above, that
mutually “reciprocal figures are me-
chanically reciprocal; that is, either may
be taken as representing a system of
points (Z.e. joints) and the other as rep-
resenting the magnitudes of the forces
acting between them.”

The subject has also been treated by
Professor B. Cremona in a memoir en-
titled “ Le figure reciproche nelle statica
[grafica.” Milan, 1872,

We shall now give examples of this
| method of computing the forces acting
| between the joints of a frame, together
| with certain extensions by which we are
[enabled to treat moving loads, ete.
[ The method is correctly called “Clerk
Maxwell’s Method.” The notation em-
ployed, which is particularly snitable for

it will give a correct construction of the | the treatment of reciprocal diagrams, is

quantities sought. |

due to R. H. Bow, C.E.; and is used by

.If the frame diagram and the force|him in his work entiled * Economics of
= . | . 9, O .
diagram are both elosed figures then|Construction.” London, 1873. In this

they are mautually
properties of reciprocal figures were
clearly set forth by Professor James
Clerk Maxwell, in the Philosophical

S
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represent a roof truss having an in-|
chnation of 30° to the horizon, of|
which the lower chord is a polygon in- |
scribed in an arc .of 60° of a circle. If|
the lower extremities of the truss abut|
against immovable walls a change of
temperature causes an horizontal force |
between these lower joints, the effect of
which upon the different }Ail_‘l'l'\' of the
truss is to be constructed. No other|
weights or forces are now considered
except those due to this herizontal force.

reciprocal:  The| work will be found a very large number

of frame and force diagrams drawn by
this method,
Let the right hand part of Fig. 1

Fig.l.
ROOF TRUSS
TEMPERATURE STRESSES

This force is considered thus apart from
all others because it is a force between
two joints, and must enable us toobtain
a pair of mutwally reciproeal figures;
such as weights and other applied forces
seldom give,

It is seen that the force between these
joints might be suppored to be caused
by a tie joining these points; and in
general it may be stated that the dis-
gram of forces due to any cambering or
stress induced in a frame by *keying”
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pieces, is mutually reciprocal to the
frame diagram.

Let an'\"piece of the frame be denoted
by the letters in the spaces on each side
of it; thus the pieces of the lower chord
are ga, q¢, g5, etc.; and those of the
upper chord are b, rd, ete., while ab, be,
ete., are pieces of the bracing, and gr is
the tie whose tension produces the stress
under consideration.

In the force diagram upon the left, let
gr represent, on some assumed scale of
tons to the inch, the tension in the piece
gr ; and complete the triangle agr with
its sides parallel to the pieces which con-
verge to the joint agr; then must this
triangle represent the forces which are
in equilibrium at that joint. Next, with
ar as one side, complete the triangle abr,
by making its sides parallel to the pieces
mebting at the joint of the same name:—
its sides will represent the forces in
equilibrium at that joint. In a similar
manner we proceed from joint to joint,
using the stresses already obtained in
determining those at the snceessive
joints.

It is not possible to determine in
general more than two unknown stresses
In passing to a new joint, unless aided
by some considerations of symmetry
which may exist at such a joint as ghijq.

Now from the left hand figure as a
frame diagram, in which stresses are

induced by causing tension in the tie g7, |

we can construet the right hand figure
as a force diagram, but it must be noticed
in that case that 7, »A, 7/, rd are sepa-

rate and distinet pieces meeting at the|

joint 7, although they all lie in the same
right line, and that the same is true
along the line 0 k& m.

One or two considerations of a general
nature should be recalled in this con-
nection.

A polygon encloses the space g ; in
the reciprocal figure the lines parallel to
its sides must all diverge from the point
¢: and if the upper chord had been a
polygon, instead of being of uniform
slope, the lines parallel to its sides would
diverge from the point ». As it is, ra,
rb, rd, rm etec., form the rays of such a
pencil, in which several rays are super-
posed one upon another.

The determination of the question
a8 to whether the stress in a given
piece is tension or compression is

effected by following the polygon for
any joint completely around and noting
whether the forces act toward or from
the joint: e.g. at the point fghrf, from
following the diagrams of preceding
joints in the manner stated, 1t will be
found that fg is under tension, and acts
from the joint; consequently, gh which
acts toward the joint I1s under compres-
sion, as are also the two remaining pieces.
Hence if the tension in the tie gr be re-
placed by an equal compression in a part,
tending to move the lower extremities
of the roof from each other, the sign of
every stress in the roof will be changed,
but the numerical amount will remain
unchanged, and no change will be made
in the force diagram.

ROOF TRUBS.,

As another example let us take a roof
truss represented in Fig. 2, acted upon
by the equal weights fe, ed, dd’, ete.
Suppose that the -effeet of the wind
against the right hand side of the truss
is such as to cause a deviation of the
force applied at the joint a’d'¢’s” of the
amount indicated in the figure. Such a
deviation may of course occur at several
joints of a roof, but the treatment of
the single joint at which the force of the
wind is, in this case, principally concen-
trated, will sufficiently indicate the me-
thod to be employed in more intricate
examples,

Suppose that this pressure of the wind
is sustained by the left abutment. The
manner in which it is really sustained
depends upon the method by which the
roof i8 fixed to the walls.

This horizontal pressure of the wind is
not directly opposed to the thrust of the
left abutment, consequently a couple is
brought into play by these forces, whose
effect is to transfer a part of the weight
from the right to the left abutment. To
compute the amount of this effect, draw
an horizontal line through this joint (or
in case the wind acts at several joints the
hiorizontal line has to be drawn through
the center of action of the wind pressure)
and prolong it until it intersects the
vertical at the right abutment at 3. Let
14 be equal to the pressure of the wind.
Join 13 and prolong 13 until it intersects
the vertical through 4 at 5, then is 45
the amount by which the weight upon
| the left abutment is increased, and that
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upon the left abutment decreased. ‘For,
let k, 14=12. then &, #5=23.. Now the
couple due to the wind =23 14 but
Ay 128. 14=12."23=k. 12. 13, .. 23.
14=12. 45. The :'S.L']'I hand side of this
last equation is the couple equivalént to
the wind couple, having the arm 12 and
a pair of equal and opposite forces repre-
sented by 45 Let 45 ‘be added to half
the weight of the symmetrical I ading
upon the roof to obtain the vertical re-
action of the left abntment. and sub-
tracted from the same quantity forthe
‘vertical reaction of the right abutment.

If any doubt occurs as to the manner
in which the wind pressure is distributed
between the abutments that distribution
shonld be adopted which will caunse the
greatest stresses. upon the pieces;, or, as
it may be stated in better terms, cach
piece should be proportioned to bear the
greatest stress which any distribution of
that pressure can cause,

Let us suppose that a horizontal com-
pression is exerted upon the truss duoe to
temperature or other cause; and repre-
gented by the width 26 of the rect gle
at the rightabutment, then the reaction
at that point is the resultant 92 of this
compression and the vertical reaction:
while at the left abutment the total hori-
zontal reaction 71
compression and

is the som of this
the resistance called
into action by the wind, giving 81 as the
resultant reaction at the left abutment.

Fig.2,
TEMPERATURE,
WIND AND WEIGHT STRES

Now, using a scale of foree twice that
just employed, for the sake of greater
convenience and accuracy, construct
defyr'e’d’ _the polygon of the applied
forees; and proceed to construct as in
Fig, 1 the polvgons of forces for each of
the joints,” The accuracy of the con-
struction will be tested by the closing
of the figure at the completion of the
process,

The foree diagram at the left is the
reciproecal figure of the diagram of the
frame and applied forces at the right,
but the figure at the right is net the re-
ciprocal of that at the left since it i not
a closed figure with at least three lines
meeting at each intersection;

BRIDGE TRUSS,

Ag a further example take the bridge
truss shown'in Fig, 8, which is repres
sented as of -“Sl-}'n!lfl!‘[i(JT::llt' depth in
order to fit the diagram to the size of the
page. The method employed is a simpli-
fication of that given by Mr. Charles H.
Tutton on page 385, vol, XVII of this
Magazine,

Let us suppose the dead load of the
hri-}:-’ itself to consist of a series of
equal weights w, applied at the upper
joints 2, @, ete., of the bridge. Let
each of these weights when laid off to
seale be !‘('Exl':wt‘r,!w] ]v}' the E«'llj_flll of

! theén the horizontal lines »o: and

sInde between them ordinates
which represent these weights.

A NEW GENERAL METHOD
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Let the live load consist of one or|
more locomotives which stand at the

01 ¢ Fain of
joints z, and «,, and a uaniform train of

tars which covers the remaining joints.
Let the load at each joint due to the cars
be represented by y”'y'=w’, and the ex-
cess above thisof the load at each of the
joints covered by th.".im-mn»tm:< \u_-
represented 't)_y Yy =w", ;. wtw' 4w
=c¢e,=zy =e¢,c, 15 the load at , izml at
&, and w+ w'=e¢,e .=y’ is the load at «,
and at each of the remaining joints.
Draw o, y'o and zo, then is zy,
=3§zy" that part of the load at &
which is sustained at the left abutment,
a8 appears from the principle of the
lever. Again z,y,"=1§2y" is that part

Fig.3.
BRIDGE TRUSS
MAXIMUM STRESSES

of the load at z, .~n~.(:ul_n.-¢| ,l.'-“ Yh\"'sj"ll”';
abutment, and zy,’=31§ 2y is & simila
part of load at #.  Tetthe sum of these
weights sustained by the left abntment
be obtained; it is ¢, upon the [l|\\‘|-1"
figure. [‘l.nn e.e }n.\’ off C,0,=w-+w
4w, o0 =w+w 40", coe.=w4w, ete,
W, 0,0,

eqnal to the loads applied at 2, x,, ete.
We are now prepared to construct a dia
oram of forces which shall give [vh.l'
\:U'('.\ikw in the various pieces under this

Before constructing

assumed loadi : i

such a diagram, we wish to show that
the assumed position of the load canses
oreater stresses in the chords of 'tln:
}n-riti-:«- than any other possible position.

The demonstration is quoted nearly ver-
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batim from Rankine’s Applied Mechanies, |

and though not strictly applicable to the
case in hand, since it refers to a uni-
formly wdistributed load, it is substan-
tially true for the loading supposed,
when the excess of weight in the loco-
motives is not greater than occurs in
practice.

“For.a given intensity of load per
unit 6f léngth, a uniform Yoad over the
whole span produces a greater moment
of flexure at each cross section than any
partial load.”

#Call the extremities of the span 1
and 2, and any intermediate cross section
3. Then for a uniform load, the moment
of flexure at 3 is an upward moment, be-
ing equal to the upward moment of the
supporting force at either 1 or 2 rela-
tively to 3, minus the downward moment
of the uniform' load betwoen that end
and 5. A partial load is produced by
removing the wniform load from part of
the span, situated either between 1 and
3, between 2 and 3, or at both sides of 3.
First, let the load be removyed from any
part of the span between1and 3. Then
the downward moment, relatively to 3,
of the load between 2 and 3 is unaltered
and the upward moment, relatively to 8,
of the supporting foree at 2 is diminished
in consequence of the diminution of the
force; therefore the moment of flexure
15 diminished. 'A similar demonstration
applies to the case in which the load is
removed from a part of the span be-
tween 2 and 3; and the combined effect
of those two operations takes place when
the load is remoyed from portions of the
span lying at both sides of 3: so that
the removal of the load from any portion
of thebeam diminishes the moment of
flexure at each point.”

The stress upon a chord multiplied by
the height of the truss is equal to the
moment of flexure; hence in a truss of
uniform height the stresses upon the
chords are proportional to the moments |
of flexure; and when one has its greatest |
value the other has also.

The sides of the triangle ¢eb, repre- |
gents the forces in equilibrium at the
joint ¢.eb, at the left abutment 1. The!|
polygon e¢,c.b a.c. represents the forces
in equilibrium at the joint of the same
name, i.e., at the joint . The forces at
the other joints are found in a similar
manner,

’

It is unnecessary to complete the
\figure above ¢ unless to check the
|process, The stresses obtained for the
| corresponding pieces in the right half of
'the truss wounld, upon completing the
diagram, be found to be slightly less
than those already determined because
there are no locomotives at the right.
The greatest stresses upon the pieces
tof the lower chord are eb, b, ete., and
on the upper chord are ae, a.c,, ete.

To determine the greatest stress upon
the pieces of the bracing (posts and ties)
it is necessary to find what distribution
of loading causes the greatest shearing
force at each joint, since the shearing
forces are held in equilibrium by the
bracing. We again quote nearly word
for word from Rankine’s Applied Me-
chanics,

“For a given intensity of load per
unit. of length, the greatest shearing
force at any given cross-section in a
span takes place when the longer of the
two parts into which that section di-
| vides the span is loaded, and the shorter
[unloaded.”

*Call the extremities of the span, as
before, 1-and 2, and the given cross-
| section 33 and let 13 be the longer part,
|and 23 the shorter part of the gpan, In
'the first place, let 13 be loaded and 23
lunloaded. Then the sh aring force at 3
|is equal to the supporting foree at 2, and
consists of a tendency of 23 to slide up-
wards relatively to 13. The load may be
altered either by putting weight between
2 and 3, or by removing weight between

and 3. If any weight be put between
2 and 3, a force equal to part of that
weight is added to the supporting force
at 2, and, therefore, to the shearing foree
at 3; but at the same time a force equal
to the whole of that weight is taken away
from that shearing force; therefore the
shearing force at 3 is diminished by this
alteration of the load. If weight be re-
moved from the load between 1 and 2,
the shearing foree at 3 is diminished
also, because of the diminution of the
supporting force at 2. Therefore any
alteration from that distribution of load
in which the longer segment 13 is loaded,
and the shorter segment 23 is unloaded,
diminishes the shearing force at 3.”

The shearing force at any point is the
resultant vertical force at that point,
and can be computed by subtracting
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from the weight which rests upon either
abutment the sum of all the weights be-
tween that point and the abutment, i.c.,
by taking the algebraic sum of all the
external forces acting upon the truss
from either extremity to the point in
question; the reaction of the abutment
is, of course, one of these external
forees.

The greatest stress upon the brace
ab, is that already found, while @, is
loaded with the live load.

If the live load be moved to the right
go that no live load rests upon 2, and
the locomotives rest upon z, and llfv
pieces ba, and ab, will sustain their
greatest stress.  To find the shear at a,
in that case, we notice that the change
i position of the live load has changed
the reaction ¢ e of the left abutment by
the following amounts : the reaction has
been diminished by the quantity », """
=4 (10’ +w"), since the load at a, has
been removed, and it has been increased
by v,y =134w", since , is loaded more |
h;z:n'ily than before, therefore the re-
action of the abutment has on the whole
been decreased by the total amount
(1510’ + 2w0").

Now the shear at z, is thisreaction di-
minished by the load v at &,. In order
to construct it, draw yy,” parallel to
y'0, then yy' =% w". .. Shear at ,
=eo,—10 — & (160"+200") = e, — 2y,
Lay off eec’=ay, then the shear at
z, = ec,” = the greatest stress in. the

brace b.a,; and d,'c,’= the greatest stress
inab,.

Again, to find the greatest shear at 2,
when the live load has moved one panel
further to the right, we have the equa-
tion: Shear at z,=ec,'—w—1} (10" +0")
+1§ 0w =ec,/—w—+¢ (140 + 2 w') = e,
—ay,. dLay off ¢'e==y,, then the
shear at .‘r":r‘v_', which is the greatest
stress in the pic::,(‘ b,a,, while b/e, is the
greatest stress in a,b,.

In similar manner lay off, R =
¢/c/=zy, ete, until the whole of the
original reaction e¢, of the abutment is
exhausted, then are ec,, ee,’, ec,’, e/, ete.,
the successive shearing stresses at the
end of the load, i.e. the greatest shearing
stresses, and consequently these stresses
are the greatest stresses on the sacces-
sive vertical members of the bracing,
while b, ¢,'0, ¢,/b/, ete., are the great-

est stresses on the successive inclined
members of the bracing.

Had the greater load, suech as the loco-
motives, extended over a larggr number
of panels, the line y,».y, would have cut
off a larger fraction of y'y". Suppose,
for instance, that the locomotives had
covered the joints 22, inclusive; then
the line ¥ %, would have passed Ihr(mg.h
"/_‘, and .\);'uh }ﬁl!'.’l“u] to its ]"I'U‘-\fhl posi-
tion. In that case the ordinates oy,
r.y. would have been successively sub-
tracted from the reaction of the abut-
ment due to a live load covering every
joint, in order Jto obtain (]l.(‘ Fll(filli-llg
forces, just as at present, until we arrive
at z,, after which it wounld be necessary
to subtract the ordinates @,y.°, 2,3,°, ete.
The counter braces are drawn with
broken lines. T'wo counters are necessary
on each side of the middle under the
kind of loading which we have supposed.
It is convenient, and avoids confusion in
lettering the diagram to let a b, for in-
stance, denote the principal or counter
indifferently, as both are not subject to
stress at the same time.

The devices here used can be applied
to a variety of cases in which the loading
is not distributed in so simple a manner
as in this case.

IN GENERAL.

This method permits the determina-
tion of the stresses in any frame when
we kpnow the relative position of‘ its
pieces and the applied fnrt'(i*»'. provided
the disposition of the ]»iw'_-:: is such as to
|admit of a determination of the stresses.
The determinagon of what the applied
forees are in case of a continuous girder
or arcliis a matter of some complexity,
.li('lll“l)'lillj_f upon the elasticity of the ma-
terials employed, and the method in its
present form affords little assistance in
finding them,
Some authors have applied the 111-_‘t~hod
to find the stressesinduced in the various
| pieces of a/frame by a single force first
|applied at one joint, and then at :'mnther,
and so on, and, finally, to find the
stresses induced by the action of several
simultaneous forces, by taking the alge-
braic sum of their separate effects. Th.l.i
is theoretically correct but laborious in
practice in m‘«iiu:lr_v cases, l'sut.\ll_\',.some
supposition respecting the applied forces
can be made from which the results of
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all the other sappositions which must be
made, can be derived with small lsbor.
The bridge truss treated was a remarka-
ble case igpoint.
WHEEL WITH TENSION-ROD SPOKES.
A very interesting example is found
in the wheel represented in-Rig, 4 in
s are tension rods, and

which the ~;H.'}\'~:

the rim is under compression. Let the
greatest weight which the wheel ever sus-
tains be applied at the hub of the wheel
on the left, and let this weight be rep-
resented by the force aa’ on the right,
which is also equal to the reaction of
the pommt of support upon which the
wheel stands; hence aa’ represents the
force acting between two joints of this

Fig.s4

frame, The same effeet would be catised
upon the other members of the frame by
“keying” the rod.. aa’ sufliciently  to
cause this force to aet between the hub
and thedowest joint,

It should be unoticed in ‘passing, that
the weights of the parts of the wheel it-
self are not here considered: their effect
will be considered in Fig. 3. Also, the
construction is based upon the supposi-
tion that there is a flexible joint at the
extremity of each spoke. ~This ismot an
ineorrect supposition when'the flexibility
of the rim is considerabla compared with
the extensibility of the spokes, a condi-

|t\n-vn the joints of the rim aet in those
directions. Such forces will eanse small
bending moments in the ares of the rim
| Joining the extremities of the spokes,
Each are of the rim is an arch subjected
to a force along its chord or span, and it
can be treated by the method applicable
to grches. This discussion is unimport-
ant in the present case and will be
omitted.

Upon completing the force polygon in
the manner previously ‘described, it is
found that the stress on every spoke i8
the same in ‘amount, and is represented

tion which is fulfilled in practice.

A similar statement holds in the case |
of the roof truss with continuons rafters.
or a bridge truss with a continnons upper
chord. The flexibility of the rafters or|
the upper chord is sufficiently great in
comparison with the extensibility of the

bracing, to render the strésses practically |

the same as if pin joints existed at the
extremities of the braces.

Furthermore, the extremities of the
spokes are supposed to be joined by

straight pieces, since the forces be-

by a side of the regular polyzon abed,
ete. upon the left, while the compression
of the pieces of the rim are represented
by the radii oa 0b, ete.

As' previously explained these dia-
grams are mutnally reciproeal, and it
happens in this case that theyare also
similar figures,

We then conclnde that in 41(‘\3'_{“::“{_!.
such a wheel each gpoke ought to be
proportioned to sustain the total load,
and that the maker should kev the
spokes until each spoke sustains a stress
at least equal to that load, Then in no
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position of the wheel can any spoke be-| The discussion of the stresses appears
: 1 2 H. " fore Arro.
come loose. The load here spoken of | however, to have been herctofore grro
includes, of course, the effect of 'lhulm'u!;,\l_\' ‘};l:nl('.‘ ‘ WL
most severe blow to which the wheel Let the weight pp', at the highes
may be subjected while in motion. joint of the wheel, be .~usr:mm_l by the
rim alone, since the spoke aa’ cannot
assist in sustaining pp’, a8 aa’ is suited
The effect of a load distributed uni-| to resist tension only. C onceive, for t‘hv
formlv around the circumference of such | moment, that two equal and opposite
a wheel as that just treated is repre-|horizontal forces are introduced at the
gented in Fig. 5. Should it be desirable | highest joint such as the two parts of
to (-ompntel the effect of both sets of | the rim exert against \-:uzl{ ()l]ha{l', ”mll
3 11 3 1) ’— NI — I'I / qaner ’ - b | " \’ l':‘(_. 1
forces upon the same wheel, it will be | §pp’=pg=p’q" being sustaine L "1 i
sufficient to take the sum of the separate |of the pieces ap, ap’ respeetively ;\L
effects upon each piece for the total|have apg and ap'q us l‘l e fumn_\;o:
] 1 it is hic Mre her re Tese the orces at
effeat upon that piece, though it is|which together l-l"[“'lk( n; fhe ] :“ |28
perfectly possible to construct both at|the highest joint. e force aa” on th
once. right 18 the up\\:n‘xi force at the axis,
We shall suppose a uniform distribu- | equal and 'b]>‘[1"~101 to th--' HT”‘:“]'[ }«-I
tion of the loading along the circumfer- | the total load _upon d'u' wheel, and t x.(;
ence in the case of the Water Wheel, | apparent peculiarity of dn-. l:l:x_‘,(..l.l\‘ 18
: 23 ke s 3 * . - 2 0 s thig e 5 ';"‘.")"‘(ll'l'('f\"'l"l]
because in wheels of this .knnl. such 18| due t« this; !I:' .l'“‘-[f“-’{ f thes .:.,.
practically the case so far as the sl»uk«s‘mr sustaiping force of the axis passes
are concerned. since the power-is trans- throuegh the IH_*_'H\'SY. joint u.t the wheel
mitted, not through them to the axis,|and yet it is not a force :w:z‘;;;_(lw!moxix
i | 101 g S { 2 Tepilaced

but, instead, to a cog wheel situated near | those joints and could not ';L replace
the center of gravity of the * water are.” | by keying the tie ¢ r-n:frmrm_'_r h;&]{w joints
: . yminishes the ther particulars the foree diagram 18

This arrangement so diminishes the|In other particulars the 1 gran

WATER WHEEL WITH TENSION-ROD SPOKES,

§

necessary weight of the wheel, and the

consequent friction of the ‘_’”'1!“'-‘“5"; as * A Manual of the Steam Engine, etc.,” by

to render its adoption very desirable. Ravkine, Page 184, Tth Ed
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all the other sappositions which must be
made, can be derived with small lsbor.
The bridge truss treated was a remarka-
ble case igpoint.
WHEEL WITH TENSION-ROD SPOKES.
A very interesting example is found
in the wheel represented in-Rig, 4 in
s are tension rods, and

which the ~;H.'}\'~:

the rim is under compression. Let the
greatest weight which the wheel ever sus-
tains be applied at the hub of the wheel
on the left, and let this weight be rep-
resented by the force aa’ on the right,
which is also equal to the reaction of
the pommt of support upon which the
wheel stands; hence aa’ represents the
force acting between two joints of this

Fig.s4

frame, The same effeet would be catised
upon the other members of the frame by
“keying” the rod.. aa’ sufliciently  to
cause this force to aet between the hub
and thedowest joint,

It should be unoticed in ‘passing, that
the weights of the parts of the wheel it-
self are not here considered: their effect
will be considered in Fig. 3. Also, the
construction is based upon the supposi-
tion that there is a flexible joint at the
extremity of each spoke. ~This ismot an
ineorrect supposition when'the flexibility
of the rim is considerabla compared with
the extensibility of the spokes, a condi-

|t\n-vn the joints of the rim aet in those
directions. Such forces will eanse small
bending moments in the ares of the rim
| Joining the extremities of the spokes,
Each are of the rim is an arch subjected
to a force along its chord or span, and it
can be treated by the method applicable
to grches. This discussion is unimport-
ant in the present case and will be
omitted.

Upon completing the force polygon in
the manner previously ‘described, it is
found that the stress on every spoke i8
the same in ‘amount, and is represented

tion which is fulfilled in practice.

A similar statement holds in the case |
of the roof truss with continuons rafters.
or a bridge truss with a continnons upper
chord. The flexibility of the rafters or|
the upper chord is sufficiently great in
comparison with the extensibility of the

bracing, to render the strésses practically |

the same as if pin joints existed at the
extremities of the braces.

Furthermore, the extremities of the
spokes are supposed to be joined by

straight pieces, since the forces be-

by a side of the regular polyzon abed,
ete. upon the left, while the compression
of the pieces of the rim are represented
by the radii oa 0b, ete.

As' previously explained these dia-
grams are mutnally reciproeal, and it
happens in this case that theyare also
similar figures,

We then conclnde that in 41(‘\3'_{“::“{_!.
such a wheel each gpoke ought to be
proportioned to sustain the total load,
and that the maker should kev the
spokes until each spoke sustains a stress
at least equal to that load, Then in no
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position of the wheel can any spoke be-| The discussion of the stresses appears
: 1 2 H. " fore Arro.
come loose. The load here spoken of | however, to have been herctofore grro
includes, of course, the effect of 'lhulm'u!;,\l_\' ‘};l:nl('.‘ ‘ WL
most severe blow to which the wheel Let the weight pp', at the highes
may be subjected while in motion. joint of the wheel, be .~usr:mm_l by the
rim alone, since the spoke aa’ cannot
assist in sustaining pp’, a8 aa’ is suited
The effect of a load distributed uni-| to resist tension only. C onceive, for t‘hv
formlv around the circumference of such | moment, that two equal and opposite
a wheel as that just treated is repre-|horizontal forces are introduced at the
gented in Fig. 5. Should it be desirable | highest joint such as the two parts of
to (-ompntel the effect of both sets of | the rim exert against \-:uzl{ ()l]ha{l', ”mll
3 11 3 1) ’— NI — I'I / qaner ’ - b | " \’ l':‘(_. 1
forces upon the same wheel, it will be | §pp’=pg=p’q" being sustaine L "1 i
sufficient to take the sum of the separate |of the pieces ap, ap’ respeetively ;\L
effects upon each piece for the total|have apg and ap'q us l‘l e fumn_\;o:
] 1 it is hic Mre her re Tese the orces at
effeat upon that piece, though it is|which together l-l"[“'lk( n; fhe ] :“ |28
perfectly possible to construct both at|the highest joint. e force aa” on th
once. right 18 the up\\:n‘xi force at the axis,
We shall suppose a uniform distribu- | equal and 'b]>‘[1"~101 to th--' HT”‘:“]'[ }«-I
tion of the loading along the circumfer- | the total load _upon d'u' wheel, and t x.(;
ence in the case of the Water Wheel, | apparent peculiarity of dn-. l:l:x_‘,(..l.l\‘ 18
: 23 ke s 3 * . - 2 0 s thig e 5 ';"‘.")"‘(ll'l'('f\"'l"l]
because in wheels of this .knnl. such 18| due t« this; !I:' .l'“‘-[f“-’{ f thes .:.,.
practically the case so far as the sl»uk«s‘mr sustaiping force of the axis passes
are concerned. since the power-is trans- throuegh the IH_*_'H\'SY. joint u.t the wheel
mitted, not through them to the axis,|and yet it is not a force :w:z‘;;;_(lw!moxix
i | 101 g S { 2 Tepilaced

but, instead, to a cog wheel situated near | those joints and could not ';L replace
the center of gravity of the * water are.” | by keying the tie ¢ r-n:frmrm_'_r h;&]{w joints
: . yminishes the ther particulars the foree diagram 18

This arrangement so diminishes the|In other particulars the 1 gran

WATER WHEEL WITH TENSION-ROD SPOKES,

§

necessary weight of the wheel, and the

consequent friction of the ‘_’”'1!“'-‘“5"; as * A Manual of the Steam Engine, etc.,” by

to render its adoption very desirable. Ravkine, Page 184, Tth Ed
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constructed as previously described and
is sufficiently explained by the lettering.
Should the spoke aa’ have an initial ten-
sion greater than pp’, then there is a
residnal tension due to the difference of
those quantities whose effect must be
found as in Fig. 4.

Should the wheel revolye withso great
a velocity that the centrifugal foree
must be considered, its effect will be to
increase the tension on each of the spokes
by the same amount,~—the amount due
to the deviating force of the mass sup-
posed to be concentrated at the extremity
of each spoke. The compression of the
rim may be decreased by the centrifugal
force, but as this is a temporary relief,
oceurring only during the motion, it does
not diminish the maximum compression
to which the rim will be subjected,

We conclude then, that every spoke

must'be proportioned to endure s ten- |

sion as great as' AA/ from the loading
alone; and that if other forces, due to
centrifugal force or to keying, are to act
they must be provided for in addition.
Fuarthermore, we see that the rim must
be proportioned to bear a compression
as great as /iy due to the loading alone,
and that the centrifugal force will not
increase this, bat any keying of the
gpokes beyond that sufficient to produce
an initial tension on'each gpoke as great
as pp’ must be provided for in addi-
10n,

The diagram could haye been eon-
structed with the sameé facility in case

tive examples that any such problem,
which is of a determinate nature, can be
readily solved by this method. But in
case the problem under discussion hag
reference to the relations of forces among
themselves, it is necessary to assume
that ti forces are applied to a frame or
other body, in order to obtain the re-
quired relationship.  Certain general
forms of assumed framing have proper-
ties  which are of material assistance in
treating such problems, and this is true
to such an extent that even though the
form of framing to which the forces are
applied is given, it is still advantageous
to assume, for the time being, one of the
forms having properties not found in
ordinary framing. The special framing
which has been heretofore assumed for
such purposesis the Equilibrinm Polygon,
whose various. properties will be treated
in order. 'We now propose another form
of framing, which we have ventured to
call the ¥rame Pencil, with equally
adyvantageous properties which will also
be treated in due order.

[t may be mentioned here, that the
particular case of parallel forces is that
most frequently met with in practice, In
caseof parallel forces the properties of
the equilibrium polygon and frame pen-
cil aré more numerons and important
than those belonging to the general case

lalone. We shall first treat the general

case, and afterwards derive the additional
properties belonging to paralle] forces;

s . THE EQUILIBRIUM POLYGON FOR Y
the applied weights had been supposed EQUILIBRIUM POLYGON FOR: AN

unequal.
t can be readily shown that the dif.
ferential equation of the curve eireum-

seribing the polygon abed. ote) of Fig. 5
s S g ) 5

die : —‘(d.r)
¥+ T-—+¢ tan. =0
o '{!/ ,/‘,/

which equation is not readily integrable.
When, however, the number of spokes is
indefinitely inereased, - it appears from
simple geometrical considerations that
this curve beécomes a eycloid having its
cusps at ¢ and ¢’.

ASSUMED FRAMING.

Thus far, we have treated the effect
of known external forces upon a given
form of framing, and it is evident from
the previous discussions and the illustra-

FORCES IN ONE PLANE,
Let ab, be, cd, de Fig. 6 be the dia-
gram of any forces lying in the plane of
the paper, and abede their force polygon,

{then, as previously shown, ae¢ the closing
| side‘of the polygon of the applied forces

represents the resultant of the given
forces in amount and direction. Assume
any point p as a pole, and draw the
force pencil p—abede, The object in view
in 80 doing, is to use this force peneil
and  polygon of the applied forees
together in order to determine a figure
of which it is the reciproeal.

From any convenient point as 2 draw
the side ap parallel to the ray ap until
it intersects the line of action of the foree
ab, and from that intersection draw the
side &p parallel to the ray op, etc., ete.;
then the polygon p will have its sides
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EQUILIBRIUM

POLYGON.

Fig.6

RECIPROCAL FIGURES,

1 Yoda
“ores Diagram, avcae,
!

Direction and Equitibrium Polygon, ap, bp,
. . ~
Closing Line, 23
| Kesuwitant Foree,

Peosition.

parallel respectively to the rays of the
aneil p. i
pt'li’ht'/pnl_\'gnn p and the given forces
ab, be, ete, then form a force and Kmnvt‘
diagram to which the ]H:lltl‘ll.['——rl/lv(/r' is
reciprocal, and of which it is the fnrmi
diagram, It is seen that no interna
bru‘i'ina_: ig needed in the polygon Ps and
hence 1t is called an mluiiil'riun\r (frame)
polygon: it is the form which a funicular
l;lrl.\"_((.i!l, satenary, or (‘(lnllllll'il!wl :}r'j-ll.
would assume if occupying this position
and acted upon by the given forces. —
As represented in Fig. 6 the .-n'i(‘s of
the polygon p are all in compression }m»-
that p répresents an ideal arch.  1f the
line 23 be drawn cutting the sides ap, €p
so that it be considered to be the span of
the arch having the points of support 2
and 3, then this arch exerts a thrust In
the direction 23 which may be bome
either by a tie 23 or by fixed abutments
2 and 3: the force in either case is the

y 4 71 8 e ERAERTRY
Equilibrium Polygon, ap', bp', ep's dp, ep', Fores Penel,

Forea Polygon.

ep, dp, ep, Foree Peneil Direction and

Il Py, (Hosing Lay Magnitude

!
|
ae, Resultant Foree. )

|same and is represented }:)' pgii2s. It

is usual to call 23 a closing line of the
polygon p. The point ¢ divides the
resultant. ae into two parts such (.lmt
gapq and epge are Il'l:n}g?usl \\’lm_f(- gides
represent forces in equilibrium, ie., the
forces at the points 2 and 33 hence; ga
and ¢g are the parts of the total resultant
which would be applied. at 2 and 3
respectively.

This method is frequently employed
to find the forces acting at the abutments
of a bridge or roof truss such as '.h::v" in
Fig, 2. ‘Bt it appears that it has often
been erroneously employed. It must be
first ascertained whether the reaction at
the abutments is really in the direction
ae for the forces considered. It may
|often happen far otherwise, If .”‘:‘
surfaces upon which the truss rests with-
out friction are ]wl']wulivnl;n‘ to ae, then
this assaumption is probably correct; as,
'for instance, when one end is mounted
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on rollers devoid of frietion, running
on a plate perpendicular to @e. But in
cases of wind pressure acainst a roof
truss the assumption is believed to be in
ordinary cases quite incorrect. Indeed
the friction of the rollers at end of
bridge has been thought to canse

y
a
: a
material deviation ftom the détermina-
tion founded on this assamption. It is
to be neticed that any point whatever on
24 lor pg prolonged) might be joined to
@ and e for the purpose of finding the re-
aetions of the abntments. Cail such a
point & (not drawn), then ar and & might
be taken as two forces which are exerted
at'two and 3 by the given system, It ap-
p(_‘"lrS !I'?('L‘\‘,\'fll'.\’ o (_'.2{“ .'l:[l'l”i"“ o {ll‘is
point, as the fallacious determination of
the reactions is involved in a recently
published article upon this subject.* We
shall return to the subjeet again while
treating parallel forees and shall extend
the method given ‘in conneetion with
Fig. 2 to certain definite assumptions,
snch a8 will determine the maximum
stresses which the forces ean produce,

Prolong the two sides ap and ép of the
polygon p until they meet. It is evident
that if a force ¢qual to the resultant @4 be
applied at this intersection of ap and ep
prolonged, then the triangles apq and epg
will represent the stresses produced at 9
and 3 by the resultant. But as these are
the stresses actually produced by the
forees, and as the resultant should cause
the same effécts at 2 and 8 as the forees,
it follows that the intérsection of ap and
ép must be a point of the resnltant «e
and if, through this intersection, a line
be drawn parallel to the resultant ae, it
will be a disgram of the resultant,
showing it in its. true position ~and
divection.

This is in reality a geometrie relation-
ship and can be proved from geometric
considerations alone, It is sufficient for
our purposes, however, to have estah-
lished its truth from the above mentioned
static considerations which may be re-
garded as mechanical proof of the
geometric proposition.

The pole p was taken at random : let
any other point »” be taken as a pole.
To avoid multiplying lines p' has been

* See naper No. 71 of the Civil Engineers’ Club of the
Northwest, A ms of the Equilibrium Polygon

determine t a0tions at the & ports of i(i.gg
‘rueses, By James R. Willett, A t. Chicago,

THOD IN GRAPHICAL STATICS.

taken upon pg. Now draw the force
pencil p'—abede and the corresponding
equilibrinm polygon for the same forces
abh, be, ete. 'This equilibrivm polygon
has all its pieces in tension except p'e.
[t is to be noticed that the forces are
employed in the same order as in the
previous construction, because that is the
order in the polygon of the applied
forees: but the order of the forces in
the pelygon of the applied forces is, at
the commencement, a matter of indiffer-
ence, for the constrnetion did not depend
upon any particular succession of the
torges.

As previously shown, the intersection
of ap’ with-gp"is a point of the result-
ant, and the line joining this intersection
with the corresponding intersection
above is parallel to qe.

Again, prolong the corresponding sides
of the two equilibrium polygons until
they intersect at 1234, these points fall
upon one line parallel to pp';  For, sup-
pose the forces which are applied to the
lower polygon ' to be reversed in direc-
tion, then the system applied to the poly-
gons p and p' must together be in equili-
brium; and the only bracing needed is a
piece 28-| pp’, since the upper forces pro-
duce a tension pg along it, and the lower
forces a ‘tension ¢p’, while the parts ag
aud ge of the resnltant which are applied
at 2 and 3 arein equilibrium. The same
result can be shown to hold for each of the
forces separately; e.g. the opposite forces
ab may be considered as if applied at
opposite joints of a quadrilateral whose
remaining joints are 1 and 2 : the foree
polygon corresponding to this quadrilat-
eral is apbp/, hence 12 || pp’. Hence
1234 i3 a straight line. The intersection
of pe and p’c does not fall within the
limits of the figure,

_Itis to be noticed that the proposi-
tion just proved respecting the col-
linearity of the intersections of the
corresponding sides of these equili-
brium polygons is one of a geometric
nature and is suseeptible of a purely
geometrie proof

THE FRAME PENCIL FOR ANY FORCES IN
ONE PLANE.

Let ab, be, ¢d, de in Fig. 7 represent a
System of forces, of which adede is the
toree polygon. Choose any single point
upon the line of action of each of these

A NEW GENERAL METHOD IN GRAPHIOAL STATIOS.

FRAME PENCILS,

FIg-I

RECIPROCAL FIGURES.
% y Fores Puolygon.
Foree Diagram, ab e d (2 roree gon. § ‘
Frame Peneil, abedve, /',‘:‘/m'1.vrr,m-u.n [:lz‘f/!l'"n | Direction and
Wrame Peneil, a” V' e’ d@' &', Equilibrating Polygon.
e 1086,

|
Direction and ‘
i L ol e e ’
1 Frame Polygon, b, c¢', dd', e, Foree Lines | Magmibude.
{
§

hwition, Besultant Koree, ' Resultant Foree,

Resultant BRay, Resultant Side.
] ' as-|of forces; for that is a point at which if
X 101 8¢ 8 to anv as-|of forces; Ior 3 ) :
orces, and join these points : pes; 4 L ol
4 ‘l v ru']\' »' by the ravs of the frame| the resultant b .l!ylli.llll it will cau ll ’
: ) i ;3 ceng alont . 1eces @ € ar e
Dencil a’be “Also join the success-|same stresses along the pieces a'e’ and ee

pencil @’b'e’d’e’. s : 1 e + it as.do the foroes them-
lines %', ec’, dd’ | which support it as do t

ive points chosen by the & o
which form sides of \\imt we .~!_.:]Ll!l (l.lxill .\ll\f- ‘[ip' point o Bijthe foree polygon be

s {ps A lygon. NOW considaer e t e A, ol
8 sritng JOIYE borne by the frame |moved along ¢/d’, the locus of the inter

giyen forces to be section of the corresponding ]msil'imm of

A 1ve as a system of 8] QUP 0
peneil and frame polygon a ts o foree at | the resultant ray a'¢ and the last side ee
bracing, which system (*].f(‘lfh. a I« ‘: .',( will be the resultant @e. It would have

» vertex o' in some direction not ye 1 1 § { 5 i
M varek g nors a force along|been unnecessary to commence tl}v equi-
; may be | librating polygon at @ had the uilroc.wn;

¢ ' béen k : avine obtaine

soarded as forming a part of the frame|of aa béen known. »”.IH'm'h 't’tq the
- Tm i “Tiu ctref:eq upon the rays of | the direction of aa as s \"“i"] a i‘

olveon, 33 SSEE ¥ vy - - O S » FAWn

t,}) }fT 1:110 sencil will be represented by | equilibrating polygon eoule )Lf 4’11'1““

e frame penc k J A e =
d:, Gidos 0{- ab’c’d'e which we shall call | by commencing at any point o ;

€ S1aes - “ <

. : , : while{aa'.

the equilibrating (force) poly ‘_jl“n:(n‘l‘ hllll:’ : In cases like that in the Fig., where

y stresses in the frame polygon & ST Rt SR

tl.“ :,Ll}“i({-"( ;"r’t(’ lines &b’ «}-', ete. If a|there is no reasonior choosing tllu. I;‘-‘””-”

y e y g 10rce o ) P : S RAL Lo ame
gnc_ln o /e’ be drawn from 2’ par-| which determine the sides of the rml:

¢ av (18 3 H . X v . 5

rtl?]s‘llt‘lll‘ r}‘;'\ resultant side a¢ of the | polygon otherwise, 1t 1s lmpll(_r to n;z!. }L

1 L # B ’ b L a afralo r

8 ‘-Hm ‘Ii 1(), yolyeron it will intersect ee the frame polygon a sur.n}__:htl n]xe, ? 1ch

2 yrating polys . sase be o
s Elt f gh( “resultant of the system ' may in that case be called the frame
al a pomnt © 2 resulid J .

known, and also exerts 1
’ o1 ', whicl
some assumed plece €, !
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line. Then the force lines are parallel
to each other and to aa’ also. This is a
practical simplification of the general
case of much convenience.

It should be noticed here that the
equilibrinm polygon, as well as the
straight line, is one case of the frame
polygon. The interesting geometrie re-
lationshipsto be found by constructing
the frame and equilibrinm polygons as
coineident must be here omitted,

Suppose that it is desired to find the
point ¢ which divides the resultant into
two ‘parts, which would be applied in
the direction of the resaltant at two
such points as 8 and 9: draw a6 || '8
and ¢'6 || »'9 and then throngh 6 draw
¢q' |1 89. This may be regarded as the
game geometric proposition, which was
proved when it wasshown that the locus
of the intersection of the two outside
lines of the equilibrium_ polygons (recip-
rocal to a given force pencil) is the re-
sultant, and is parallel to the closing side
of the polygon of the applied forces.
The proposition now is, that the locus of
the intersection of the two outside lines
of the equilibrating polygon (reciprocal
to a given frame pencil) is the resolving
line; and is. parallel to the abutment
line: for these two statements are geo-
metrically equivalent. i

Assume a different vertex 2'. and
draw’theframepencil and its correspond-
ing equilibrating polygon a’d'e"d’e.  If
@, 5and e 5 be drawn parallel to »* 8
and »* 9 I'(-sln'\'ti\'t']\' their intersection
i8 upon ¢¢’ as before proven,

Again, the corresponding sides of these
two equilibrating polygons intersect at
123 4 upon a line parallel to v’»”, for
this is the same geometric proposition
respecting two vertices and their equili-
brating polygons which was previously
proved respecting two poles and their
equilibrium polygons,

It would be interesting to trace the
geometric relations involved in different
but related frame polygons, as for exam-
ple, those whose corresponding sides in<
tersect upon the same straight line, but
as our present object is to set forth the
essentials of the method, a consideration
of these matters is omitted. Enongl
has been proven, however, to show that |
we have in the frame pencil an inde-
pendent method equally general and |

o

fruitful with that of the equilibrium
polygon.

EQUILIBRIUM POLYGON FOR PARALLEL
FORCES.

Ler the system of parallel forces in
one plane be four in number as repre-
sented in Fig 8 viz: wu, war, eto,
acting in the verticals 2 3 4 5 of the
force diagram on the left. Let the
points of support be in the verticals 1
and 6.

The foree polygon at the right re-
duces, in case of vertical forces, to a ver-
tical line wiw. Assume any arbitrary
point p as pole of this force polygon, (or
weight line, as it is often designated)
and, parallel to the rays of the force
pencil at p, draw the sides of the equili-
brium polygon ¢e, in the manner pre-
viously described. Draw the closing
line k% of thizs polygon e, and parallel
to it draw the closing ray pg; then, as
previously shown, pg divides the result-
ant .0, at ¢ into two parts which are
the reactions of the supports. The
position of the resultant is in the vertical
mm which passes through the inter-
section of ‘the first and last sides of the
polygon ee, - as was_ also previously
shown.

Designate the horizontal distanee from
p to the weight line by the letter H. It
happens in Fig. 8 that pw =H, but in
any case the pole distance H is the hori-
zontal compenent of the force py acting
along the closing line,

Now by similarity of triangles

/‘.."'~(:/’,/'.) the vipw, qw
H'/";".-;’/”“ ,/1_/4__:'- M

M,
the moment of flexure, or bending mo-
ment at the vertioal 2, which would be
caused in a simple straight beam or gir-
der under the action of the four given
forces and resting upon supporfs in the
verticals 1 and 6.
Again, from similarity of triangles,

Ml (=k 1) : & f, 2 : H : quw,
/1_//, (=e. ). e f, o H w0,

1% 1/ k/y";_f;—r_‘_'}.): ]/“ e,

. :(/”‘:‘//;/.;:_”‘1{,".“/{;‘/‘::“]1
the moment of flexure of the simple gir-
der at the vertical 3 i
Similarly it can be shown in general
that ] -
/[,.' e ,,l’
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Fig. 8

P

i.e. that the moment of flexure at any
vertical whatever (be it one of the
verticals 2 3 4, ete.,, or not) is eqnal
to the produet of the assumed pole
distance A multiplied by the vertical
ordinate A¢ included between the equili-
brium polygon ¢e and the closing line
k% at that vertical,

From this it 18 evident that the
equilibrium polygon is a moment curve,
i.¢: its vertical ordinate at any point
of the span is proportional to the
bending moment at that point of
a girder sustaining the given weights
and supported by simply resting \\"n.h‘.»nt
constraint upon piers at its extremities.

From this demonstration it appears
that He, f,=w 1,41, is the moment of
the force w, w0, with respect to the verti-
cal 3; and eimilarly Hom m, =w,w_ .em,
is the moment of the same force with
respect to the vertical through the cen-
ter of gravity. Also, Hyy, =ww hh,
is the moment of the same force with
respect to the yertieal 6.

Similarly m m, is proportional to the
moment of all forces at the right, and
m.m_ to all the forces left of the center
uf:urh:n ity, butm m, +mm =0, as should
be the case at the center of gravity,
about which the moment vanishes,
From these considerations it appears
that the segments mm of the resultant

POLYGON

are proportional to the bending moments
of ;\‘;"'H‘Afivr gupporting the given weights
and resting without econstraint upon a
single support at their center of grayity.

Iet us move the poleto a new position
o' having the same pole distance I as p,
and in such a position that the new clos-
ing line will be horizontal, 7.e. p’y musi
be horizontal.

One object in doing this is to furnish
a sufficient test of the correctness of the
drawing in a manner which will be im-
mediately explained; and another is to
transfer the moment curve to a new
position ce such that its ordinates may
be measured from an assumed horizontal
position Ak of the aoirder to which the
forces are :I!Illﬁul. so that the gil‘(":l‘
itself forms the glosing line,

The polygon ¢c must haye its ordinates
ke eqnal to the corresponding ordinates
ke, for

M=Hke=Hhe

Alsothe segments of the line mm are
cqual to the corresponding segments of
the line 7#n for similar reasons.

Again, as has been previously shown,
the corresponding sides (and diagonals
as well) of the polygons ez and ¢e inter-
sect upon the line yy || pp'.

These equalities and intersections fur-
nish a complete test of the correctness of
the entire construction.
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FRAME PENCIL.
Fig. 9

.\\-

W\

5\.\
N

g 3 PENCIL FOR PARALLEL FORCES. | Vhas different values at the different
1) joints of the frame polygon: in every
case V is the vertical distance of the
joint under consideration above or below
the vertex. It will be found in the se-
quel that this possible variation of ¥
may in certain constructions be of con-
siderable use.
By similarity of triangles we have

Let the same four parallel forces in
one plane which were treated in Fig. 8/
be also treated in Fig. 9, and let them
be applied at 2, 3, 4,5 to a honzqntal
girder resting upon supports at 1 and 6.

Use 16 as the frame line and choose
any vertex v at pleasure from which to|
draw the frame pencil dd. Draw the
force lines wd parallel to the horizontal
frame line 16, and then draw the eqmli- o Virr,=w,g12= M,
})]iazillghp(;lgygsogf (czltlle“f:?:nl«:bp;i]dcﬁ 37)313 | the bending moment, of the girder at the
s BT f a re- | point 2.

a5 s 130eu 1;10511((: l;i‘;;ehggritﬂl fd?l ]bee : Draw a line through w, parallel to v3;
sultant,fr.a} “ (;s represented in' Fig. 9, | this line by chance coincides so negx,ﬂx
bl B 110m flie cloqlino- side ww of the| With ws that we will (:orxs{dex' that it is
parz.zl_l‘c s e o olv(r:)n this ray intersects  the line required, thongh it was dvawn
e%m? t){;:gtmo:i)ulz o where® the Tesultant of | for another purpose. Again, by simi-
:heﬂfour gli)von forces cuts 16: larity of triangles

Furthermore, the lines 2, and dbrf 18 106 1 : 78, : 0,q
parallel to the abutment rays v1 and 6
of the frame pencil interseet on 77 the‘.
resolving line, which determines 'the‘
point of division ¢ of the reactions of | ; - ‘
the two supports, as was before shown. | the bendmg.momont at 3.

Let the vertical distance between the| Similarly it may be shown that
vertex and the frame line be denoted by | V. rpam M,

I'In Fig. 9 it happens that v6=7V.|ie. that the moment of flexure at any

If the frame polygon is not straight, or |point of application of a force to the

being straight is inclined to the horizon, | girder is the product of the assumed
=)

12 :v6 : 17, t0.q

23 : v6.: s dg(=nrs,) 10w,
w Vins,—rg8)= Virr,
1 | 1”3 - oo N 1[
=0,9.13—ww,23 =M,

vertical distance ¥ multiplied by the
corresponding segment 77 of the resoly-
ing line. ’

The moment of flexure at any point
of the girder may be found by drawing
a line tangent to the equilibrating poly-
gon (or curve) parallel to a ray of the
frame pencil at that point, the intercept
7,7 of this tangent is such that Virpr is
the moment required.

Also by similarity of triangles

02 : 96 : :u,d, 1 ww,
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= iy
sum totals being the moment of
force, a parallel to the psendo side en-
ables us to obtain at once the moment of
any force about the point, e.g. draw d.i’

1 s « i
[I'ww ... Vidi is the moment of o,

about 6.

Now move the vertex to a new posi-

: 7S ; : 4
tion " in the same vertical with o this
will cause the closing side of the equili-
b'mtmg. polygon (parallel to 2’0) to coin-
cide with the weight line. The new
equilibrating polygon 45 has its sides

a single

< Vi d,=ww,.02

0'2(:03+32).: v6 2 :uld :ww,
32 196 11 dl:wuw,
wt Vlul—dl)= Vaugd,
=10,,.02 +w,1,.03,

i.e. the horizontal abscissas ud between
the equilibrating polygon dd and its
closing side ww multiplied by the verti-
cal distance V are the algebraic sum of |
the moments of the forces about their
center of gravity. The moment of any
single force about the center of gravity
being the difference between two success-
ive algebraic sums may be found thus:
draw d,i || 2w, then is V.d i the moment
of w,w, about the center of gravity, as

parallel to the rays of the frame peneil
whose vertex is at o/, If ¥ is un-
changed the abscissas and segments of
| the resolving line are unch ged, and v’
is horizontal. Also 2z W3’ contains
the intersections of corresponding sides
and diagonals of the equilibrating poly-
gon. These statements are geometri-
cally equivalent to those made and
proved in connection with the equili-
brium polygon and force penecil,

.In Figs. 8and 9 we have taken — Vv,

hence the following equations will be
found to hold,

ke=rr, ke=nrpr, ke=rr, ete,
mm,=ud,, mm,=wud, mn,=u,d,, ete:

may be also proved by similarity of tri-
angles. ‘
Again by proportions derived from |
similar triangles, precisely like those
already employed, it appears that |
Voo, d,=w w,.26 |
is the moment of the force 1w, about |
the point 6. And similarly it may be |
shown thas
Viw,d,=w w,.26 + 1 ,w_.36

is the moment of w,u, and w,w, about 6.

Furthermore, as this point 6 was not
specially related to the points of applica-
tion 1 2 3 4, we have thus proved the |
following property of the equilibmting‘
polygon: if a psendo resultant ray of |
the frame pencil be drawn to any point |
of the frame line, then the horizontal
abseissas between the equilibrating poly-
gon and a side of it parallel to that ray,
(which may be called a pseudo closing
side), are proportional to the sum total
of the moments about that point of those
forces which are found between that
abscissa and the end of the weight line |
from which this pseudo side was drawn. |
The difference between two successive |

%Y,=wd, yy,=wd, .Y, =wd, ete.
mm,=dyi, etey Yk, =d7, ete.

By the use of etc. we refer to the more
general case of many forces. From
these equations the nature of the rela-
tionship existing between the force and
frame pencils and their equilibrium and
equilibrating _polygons - becomes clear.
Let us state it in words,

The height of the vertex (a vertical
distance), and the pole distance (a hori-
zontal force) stand as the type of the
reciprocity or correspondence to be
found between the various parts of the
figures.

The ordinates of the equilibrium poly-
gon (vertical distanees) correspond to the
segments of the resolving line (horizontal
forces), each of these being proportional
to-the bending moments of 3 simple
girder sustaining the given weights, and
resting without constraint upon supports
at 1ts two extremities,

The segments of the resultant line
(vertical distances) correspond to the
abscissas of the equilibrating polygon
(horizontal forces) each of these being
proportional to the bending moments of
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a simple girder sustaining the given
weights and resting without constraint
upon a support at their center of gravity.
The segments of any psendo resultant
line, parallel to the resultant, which are
eat off by the sides of the equilibrium
polygon, are proportional-to the bending
moments of -4 girder suppeorting the
given weights and rigidly built in and
supported at the point where the line in-
tersects«the girder; to these segments
correspond the abscissas between the |
equilibrating polygon and a psendo side
of it parallel to the psendo resultant ray.
The two differeut kinds of support
which we l:ﬂv supposed, viz. support
without cons®aint and sapport with con-
straint, can be {treated in a somewhat
more general mauner; asappears when
we consider that at any point of support
there may be, besides the reaction of the
support, a bending moment; such as
would be induced, for instance, when
the span in question forms part of a con-
tinnons girder, or when it is fixed at the
support in & particular direction. In
such a case the closing line of the equili-
brinm polygou is said to be moved to a
new position. It.seems better to-call it
m’its new position a pseudo closing line.
The ordinates between thepseudo closing
line and the equilibrinm polygon are |

proportional to the bending moments of |
]

SUMMATION

the girder, so supported. It is possible
to induce such a moment at one point of
support as to entirely remove the weight
from the other, and cause it to exert no
reaction whatever; and any intermediate
case may ocenr in which the total weight
in the span is divided between the sup-
ports in any manner whatever. When
the weight is entirely supported at A,
then 7.¢, is the pseudo closing line of the
polygon ee. Inthat case «x becomes the
psendo resolving line, and in general the
ordinates ‘between the pseudo closing
line and the equilibrium polygon corre-
spond to the segments of the pseudo
regolving line; and are proportional to
the bending moments of the girder.
This general case is not represented in
Figs, 8 and 9; but the particular case
ghown, in which the total weight is
bome by the left pier, gives the equa-
tions

e, f.=we, e f =we, e f=wa, ete.

In order to represent the general case
in which the weights, supported by the
piers, are not‘the same as in the case of
the simple girder, by reason of gome kind
of constraint; we propdse to treat the case
of thestraizht girder, fixed horizontally
at its extremities; but it IS mecessary
first to discuss the following auxiliary
construction, | '

POLYGON,

Fig, 10

THE SUMMATION POLYGON.
In Fig. 10 let aadb be any closed

figure of which we wish to determine the
ared, The example which we have
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chosen is that of an indicator card taken
from page 12 of Porter’s Treatise on
Richard’s Steam Indicator, it being a
eard taken from the cylinder of an old-
fashioned paddle-wheel Cunarder, the
Africa. The scale is such that a b, is
26,9 pounds per square inch and 06
parallel to the atmospheric line is the
fength of the stroke.

Divide the fignre by parallel lines a5,
ab,, ete. into a series of bands which
are approximately trapezoidal. A suffi-
eient number of divisions will cause this
approximation to be as close as may be
desired. The upper and lower bands
may in the present case be taken as ap-
proximating sufficiently to parabolie
areas. Let 06 be perpendicular to a.b,,
ete., then will 01, 12, ete., be the heights
of the partial areas. Lay off

ki, =% ab, hh=%ad +apb),
e, =%(ad, +a.b,)), ete.

then will these distances be the bases of
the partial areas. Assume any point ¢
at 4 distance / from 06 as the eommon
point of the rays of a peneil passing
through 0, 1, 2, ete.; and draw the
parallels zs: then from any point @, of
the first of these make 2.8, || ¢0, and
88, || el, 5,5, |l €2, ete.

3 ’ ’ 3
The polygon 83 is called the summa- |

tion polygon, and has the following
properties.
By similarity of triangles

ba0l :: hhswp, SoO0LAA =YY,

is the area of the upper band. Similarly

2.hh,=lLv,v, i8 the area of the next |

band, and finally
062(hh)=lvp,=Ip
is the total area of the figure.
In the present instance we have taken
i=06, the length of stroke, conse-

. quently p is the average pressure during

the stroke of the piston, and is 21.25
pounds, which multiplied by the volume
of the cylinder gives the work per stroke.

This method of summation, which ob-
tains directly the height p of a rectangle
of given base [ equivalent in area to any
given ficure, is due to Culmann, and is
applicable to all problems in planimetry;
it is especially convenient in treating the
problems met with in equalizing the
areas of profiles of excavation and em-
bankment, and is frequently of use in

2

dividing land. It is much more ex-
peditions in application than the
method of triangles founded on Enclid,
and is also, in general, superior to
the method of equidistant ordinates,
whether the partial areas are then
computed as trapezoids or by Simp-
son’s Rule: for it reduces the number
of ordinates and permits them to be
placed at such points as to make the
bands approximate much more closely
to true trapezoids than does the method
of equidistant ordinates.

GIRDER WITH FIXED ENDS.

It is to be understood that by a girder
with fixed ends, we mean Me from which
if the loading were entirely removed,
without removing the constraint at its
ends, there would be no bending moment
at any point of it, and, when the loading
is apphed to it the supports constrain
the extremities to maintain their original
direetion unchanged; but furnish no
horizontal resistance. Under those eir-
cumstances the girder may not be
straight, and may not have its supports
on the same level, but it will be more
convenient to think of the girder as
straight and level, as the moments, ete.,
are the same in both cases.

Suppose in Fig. 11 that any weights
| w0, ete. are applied at 4, 4, A, A, to
a girder which is supported and fixed
horizontally at 4, and 4, With p as the
pole of a force penecil draw the equili-
{ln'ium polygon ¢e as in Fig. 8. The re-
sultant passes through 7.

t is shown in my New Constructions
|in Graphical Statics, Chapter II, that the
| position of the pseudo closing line 2%,
|in case the girder has its ends fixed as
aboye stated, is determined from the
conditions that it shall ent the curve ee
in such & way that the moment area
above &% shall be equal to that below
%', and also in such a way that the
genter of gravity of the new moment
area shall be in'the same vertical as the
original moment area.

To find the center of ‘_“I‘:\\'il}' of the
moment area ¢k; determine the areas of
the various 11‘:([n*/.1|ill> of whieh it is com-
posed by help of the summation poly-
gon s$s. In constructing ss,we make
h=ke, h2=*kge, +kg¢, etc., and using
» as the common point of the pencil we
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shall have A v./kz = twice the area of
the moment area. We have used the
sum of the two parallel sides of each
trapezoid instead of half that quantity
for greater accuracy.

Now lay off from =z, zz2=hg.,
za=hgz, ete., as a weight line and
assume the pole p'.

Of ‘the triangle A/, one-third
rests at A and two-thirds at M3
make zz'=3}zz, it is the part of the
area applied at 4. Of the area hjaelh.,
one half, approximately, rests at A, and
one half at’ 4, / Bisect 2z, at 2, then
2’z rests _at L, Biseot each of the
other quantities ete. except-z.z, in
which make zz'=34 zz. With the
weights £z so obtained, construct the
second equilibrium polygon wy, which
shows that the center of gravity of the
moment area i8 in the vertical through
.| There is a balancing of errors in this
approximation which renders the posi-
tion ‘of n qnite’ exact; if, however,
greater precision is desired, determine
the centers of gravity of the trapezoids
forming the moment area, and use new
verticals throngh them as weight lines,
with the weight§ 2z instead of the
weights 2’7,

Draw verticals whieh divide the gpan
into three equal parts,—they cut ny, and
ny, at ¢ . and ¢, and draw pt' || 2,
Then is tfatt, an equilibrium polygon
due to the force 2,2, applied at », and to
the forces z,¢', and ¢z applied at ¢, and

t, respectively. As explained when

treating this matter in the New Con-
structions in Graphical Statics, z.¢’ and
t'z, are proportional to the bending mo-
ments at the extremities of the fixed gird-
er. In this case, since we have taken
hv=4%hh,, we find that Ak "=4z ¢, and
kk/=4} ¢z, are the end moments, and
they fix the position of the pseudo clos-
ing line. Draw pg’ || XA then are .9
and ¢'w, the reactions of the piers. The
pseudo vésultant is at m/,

To~ obtain the same result by
help of a frame pencil, let Fig. 12
represent the same weights applied
in the same manner as in Fig. 11.
Choose the vertex », and draw the
equilibrating polygon dd, ete. as in Fig.
8. Make hl=rpr, h2=rgr +rr, ete,
since these quantities are proportional
to the bending moments as previously
shown. With v as the common point.of
the rays of a pencil, find Az, by the help
of the summation polygon ss just as in
Fig. 11,

Lay off the second weight line 2 F
ete., just as in Fig. 11, and with v as
vertex construct the second equilibrating
polygon @z Then as readily appears
vn |z, determines 7 the center of
grayity of the moment area. Make TR

22, and w2 |[vt; if £ and t. divide
the span into three equal parts, then the
horizontal through
ing to " in Fig. 11,

To find the position of the pseudo

', fixest’ correspond-

resolving line and its segments pro-
portional to the new bending mo-
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ments, lay off r, j/=1(t'z,—2,t") the differ-|ing line.
s, laj : :

ence of the bending moments at the|t

Thence follows the proof that
he bending moments are proportional

7 o inte is line in a manner
ends, and make ;|| 7w, and prolong| to intercepts upon this line in a

.y until they meet at 7,” whichis on the I
psse‘udo resolving line. Then lay off

recisely like that employed in Fig. 9. '
Again, draw vz, || wr' and v, || w2,

pr=3zt and 7/r'=3tz] upon this|then are 7, and %, the points of inflexion
:*e;l_(16 resolying line #'¢, then 7’7", ¥, | of the girder when the bending moment
= - S = i - o - - ) . = . . o E .
gtc are the bending moments when the | vanishes, being in reality points of sup
gir:ier is fixed at the ends. For by simi-| port on which the girder cuninl ”ml'.l.‘
I £ tria rest wi L constrai ¢ iave the
larity of triangles rest without constraint and

hhy: Viin/r!: qg,
/‘g}‘r ' QZ: I"' T;,T!I?

is the moment, and ¢¢’ is the weight
which is transferred from one support to
the other by the constraint, hence 7’7’ is
the correct position of the psendo resolv-

Apparently in this example Fig. 12
presents a construction _sleL'\‘v"h:Lt' more
compact than that of Fig, 11,1t 1s. cer-
tainly equally good.

It remains to remark before prm;owl-
ing to further considerations of a slight-
ly different character, that we owe to
the genius of Culmann® the establishment
of ::-].IC generality of the method of the
equilibrinm - polygon.

He. adopted the funienlar polygon,
gome of whose properties had long been
known, and upon it founded the g:cner;_ll
processes and methods of systematic
work which are now employed by all.

Furthermore it should be stated that
parallelograms of forces were com-
pounded and applied in such a way as to

* Graphische Statik, Zurich, 1862,

pseudo resultant in that case as the true
resultant.

In Figs. 11 and 12 we have taken

H=7V, consequently the new moments

can bg directly compared, the ordinates

‘e being equal to the corresponding
segments 7.

(give rise to a frame penecil np‘d equili-
brating polygon by_ the nlnstr.xmm
Poncelet® who by their use détermined
the centers of gravity of portions of the
stone arch. Whether he 1‘(:u<u_znxzu(l
|other propérties besides the S\.Inlllc ;lu;
termination of the resnltant of parallel
forces, 1 am not informed, as my
knowledge of Poncelet’s mvm.mé:xl is de-
rived from so much of his \\'«‘)rk as
Woodbury} has incorporated in his
Ql‘.‘\phil):ll'L'Ol]SlNlC“OH for the stone
arch.

So far as known, the method has been
advanced by no one of t'n«,j numerous
recent writers upon Graphical Statics

fer du Genie, N

@ ial de ) off 0. 12, . -
S eCERS 6. y of the Arch, D. P, Wood-

t Treati
| bury, New York, 1858,
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which wonld certainly have been the
case had Poncelet established its claim
to be regarded as a general method.
I think the method of the frame pen-
cil may now fairly claim an equal gen-
erality and importance with that of the
equilibrium polygon.

ANY FORCES LYING IN. ONE- PLANE; AND
APPLIED AT GIVEN POINTS.

We have previously referred to this
problem, having treated a particular case
of it in Fig. 2; and subsequently cer-
tain statements were made respecting the
indeterminateness of the proeess for find-
ing the reactions of supports in case the
applied forces were not. vertical.

The case most frequently encountered
in practice is wind-pressure ecombined
with weight,; and we can take this case
as being sufficiently general in its nature;
80 that we are supposed to know the
precise points of application of each of
the forces, and its direction.  Now it
may be that the reaction of the supports
cannot be exactly determined; but in all
¢ases an extreme suppositioncan be made
which | will ' determine stresses in the
framework which are on the safe side.

For example, if it is known that one
of the reactions must.be vertical, or nor-
mal to the bed plate of aset of ,'\u]'pm‘(-
ing rollers, this will fix the direetion of
one reaction and the other may then be
found by a process, like that employed
in Fig. 2,of which the steps are as fol-
Jows :

Resolve each of the forces at its point
of application into components parallel
aud perpendicular to the known direction
of the reaction, which we will ecall verti-
eal for convenience, since the process is
the same whatever the direction may be,
By means of an equilibrium polygon or
frame pencil find the line of action of
the resultant of the horizontal compo-
nents, whose sum is known. Then this
horizontal resultant, can be treated pre-
cisely as was the single horizontal force
in Fig. 2, which will determine the alter-
ation of the vertical components of the
reactions due to the couple caused by the
horizontal components. :

Algo, find by an equilibrium polygon,
or frame pencil, the vertical reactions due
to the vertical components. Correct the
point of division ¢ of the weight line as

found from the vertical components by

the amount of alteration already found
to be due to the horizontal components,
Call. this pomt ¢, then the polygon of
the applied forces must be closed by two
lines representing the reactions, which
| must meet on a horizontal through ¢';
but one of them has a known direction,
hence the otheris completely determined.

This determination causes the entire
| horizontal component to be included in
a single one of the reactions, and it is
usnally one of the suppositions to be
made when it is not known that the reac-
tion of ‘a support is normal to the plane
of the bed joint.

Another supposition in these circums-
stances is that the horizontal component
| is entirely included in the other reaction;
and a third supposition is that the hori-
zontal component is so divided between
the reactions that they have the same
direction. These suppositions will usu-
ally enable us tofind the greatest possible
stress on any given piece of the frame by
taking that stress for each piece which is
the greatest of the three.

In every supposition care must be
taken to find the alteration of the verti-
cal components due to the heorizontal
cgomponents. "This is the point which has
been usually overlooked heretofore.
KERNEL, MOMENTS OF RESISTANGCE AND
INERTIA: EQUILIBRIUM POLYGON METHOD,

The accepted theory respecting  the
flexure of elastic girders assumes that
the stress induced in any oross section
by a bending moment increases uniform-
|ly from the neutral axis to the eéxtreme
fiber,

The cross section considered, is sup-
| posed to be at right angles to the plane
of ‘action or solicitation of the bending
moment; and the line of intersection of
this plane with that of the cross section
is called the axis of solicitation of the
Cross section.

The radius of gyration of the cross
section about any neutral axis is in the
direction of the axis of solicitation.

It is well known that these two axes
intersect at the center of gravity of the
cross section, and have directions which
are conjugate to each other in the ellipse
which is the locus of the extremities of
the radii of gyration,

We shall assume the known relation
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in which M is the magnitude of the
bending moment, or moment of resistance
of the eross section, & is the stress on
the extreme fiber, Z is the moment of in-
ertia about any neutral axis @, and ¥ is
the distance of the extreme fiber in the
direction of the axis of solicitation, i, e.
the distance between the neutral axis x|
and that tangent to the cross section
which is parallel to @ and most remote
from it, the distance being measured |
along the axis of solicitation.

Let M=.Sm in which m is called
the “specific moment of resistance™ of
the cross section; it is, in fact, the
bending moment which will induce a
stress of unity on the extreme fiber.

Now I=FKA

in which % is the radius of gyration and
A is the area of the cross section.

Let /'."~Z—"/::', ;/I:I‘;I,

is the specific moment of resistance
about @, and when the direction of =
varies, 7 varies in magnitude; 7 is called
the “radius of resistance” of the eross
section. The locus of the extremity of
r, taken as & radius vector along the|
axis qf solicitation, is called the *ker-
11{.‘1.”

The kernel is usually defined to be the
loous of the center of action of a stress|
uniformly increasing from the tangent
to the cross section at the extreme fiber.
It was first pointed out by Jung,® and
gubsequently by Sayno, that the radius
vector of the kernel is the radius of
resistance of the cross section measured |
on the axis of solicitation. This will|
also appear from our construction by a
method somewhat different from let[
heretofore employed. |

Jung has also proposed to determine
values of %, by first finding »; and has
given methods for finding ». We shall
obtain » by a new method which renders
the proposal of Jung in the highest
degree useful,

The method heretofore employed by
Culmann and other investigators has
been to find values of % first, and then
having drawn the ellipse of inertia to

rafische del momenti
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construct the kernel as the locus of the
antipole of the tangent at the extreme
fiber. The method now proposed is the
reverse of this, as it constructs several
radii of the kernel first, then the corre-
sponding radii of gyration, and from
them the ellipse, and finally completes
the kernel. In the old process there are
inconvenient restrictions in the choice of
yole distances which are entirely avoided
in the new process.

Let the cross section treated be that

of the T rail represented in Fig. 13,
which is 4323 inches and ¥ inch thick.
We have selected a rail of uniform
thickness in order to avoid in this small
figure the numerous lines needed in the
summation polygon for determining the
area; but any cross section can be treat-
ed with ease by using a summation poly-
gon for finding the area.
" To find the center of gravity, let the
weights w,w, and w,w,, which are propor-
tional to the arcas between the vertieals
at &b, and 4,0, ‘be applied at their centers
of gravity @, and @, respectively; then
the equilibrinm polygon ¢,¢,, having the
pole p, shows that ois the required cen-
ter of gravity.

Let the area /{,/', be divided into two
parts at o, then w0, and wae, are
weights proportional to the areas 4,0 and
ob, respectively; and ¢,c.e, is the equili-
brium polygon for these weights applied
at their centers of gravity a, and a,.

The intercepts mm have been previ-
ously shown to be proportional to the
products of the applied weights by their
distances from the center of gruvity o.

We have heretofore spoken of these
products as the moments of the weights
about their common center of grayity. o.
But the weights in this case are areas
and the product of an area by a distance
is a volume. Let us for convenience call
volumes so generated “stress solids.”
The elementary stress solids obtained by
multiplying each elementary area by its
distance from the neutral axis will cor-
rectly represent the stresses on the dif-
ferent parts of the eross section, and they
will be contamed between the cross sec-
tion and a plane intersecting the cross
section along the neutral axis and mak-
iug an angle of 45° with the cross sec-
tion. :

If 55, is the ground line, b5, and d,d,
are the traces of the planes between




which the stress solid lies on a plane at
right angles to the neutral axis:

The distances of the centers of gravity
of the stress solids from o are also the
distances of the points of application of
the resultant stresses, and the magnitude
of the resultant stresses are are '}»ro]»or-
tional to the stress solids.  The stress
solids may be considered to be some kind
of homogeneous loading whose weight
produces the stress upon the crosssection,
The moment of inertin 7 is the mo-
ment of this stress with respect to o.

Now the intercept mm, represents

the weight of the stress solid whose|

t of applica-

profile is o0b.d,. Its ‘poin
2ob Similarly the

Iinl] i.\ 9. if o00.=

woi;_ri'n. m,m, has its point of application
at g, if og.=%0b,. And the weight m .m.
is applied in the vertical through ¢ : for
the profile of this stress solid is the ‘rrn]vo-
:'.OM /';v;':'l’;l‘lz, and g. is its center of grav-
ity found geometrically, In case the

d,

area is divided into narrow bands paral-
lel to the neuntral axis the points of appli-
cation coincide sensibly with the centers
of gravity of the bands.

Now take any pole p, and construct a
second equilibrium polygon ¢¢ due to the
stress solids applied in the  verticals
through ¢.9.7..

The last two sides ¢n, and e are
necessarily parallel and have their i.ntor-
section at infinity, for the total stress is
a couple.

The intercept # 7, is not drawn through
the common center of gravity of the
stress solids, 7., it is not an .ill(('!‘Cvpt
on the line of the resultant stress, bus
since ]f:n'n]h_-ls are everywhere equidis-
tant this intercept is proportional to the
moment of the stresses about their center
of gravity ; in other words n.n, when
m'uhip!ic-l successively by the ‘m'~.-) pole
distances would be 7. “We shall not need

to effect the multiplication.
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Prolong ¢m, to ¢, on the tangent to
the extreme fiber and draw cgn, || p e,
then m,m, represents the product of the
total weight-area w,w, by 0b,=y the dis-
tance of the extreme fiber, or m m, is
proponional to the volume of a stress
golid whose base is the entire cross sec-
tion and whose altitude is b ¢ =0b..

Suppose this stress to be of the same
sign as that at the right of o, let us com-
bine it with the stress already treated.
Its point of application is necessarily at
o, and its amount is mm, if measured
on the same scale as the other stresses.
Draw n.¢, || p;m,, then is &, on the verti-
cal through ¢, the point of application of
the combined stresses. But the com-
bined stresses amount to a stress whose
profile is included between d,d, and a
horizontal line through d,, i.e. to a stress
uniformly increasing from &, to 4,; hence
k, is a point of the kernel as usually de-
fined.

If ¢m, be prolonged to ¢, and we draw
egn, || p o, then mm, (not shown) is the
weight of a stress solid of a uniform
depth b,d, over the entire cross section;
and if we draw n.¢, || p,m,, then will £,
on the vertical through ¢, be also in like
manner a point of the kernel, 7.c. the
point of application of a stress uniformly
mnereasing from &, to b,.

But now let us examine our consftuc-
tion further in order to gain a more
exact understanding of what the dis-
tances 7, =0k, and r,=ok, signify.

We have shown that m m, represents
the product of the area of the cross sec-
tion by the distance 0b, of the extreme
fiber, i.e. the quantity Ay ; but 2 n, rep-
resents the moment of this weight when
applied at A, i.e the product Ay,
Alsp as previously shown. 27, repre-
sented J on the same geale, hence

I=A Y. but I= _-1/.‘__2 Son /'__:Z'.’—:—_z/;
and », is the radius of resistance pre-
viously mentioned.

In order to determine the radius of
gyration k,, which isa mean proportional
between », and y,, describe a circle on
bk, as a diameter intersecting mm at A
then oh=%k, the semi-axis of the ellipse
of inertia conjugate to mm as a neutral
axis, The accuracy of the construction
is tested by using 6.k, as a diameter and
finding the mean proportional between
ok, and ob, Tt should give the same

result as that just obtained. In our Fig.
both circles intersect at A.

It is known from the symmetry of
figure of the cross section that £, is one
of the principal axes,

In similar manner we constract the
radius of resistance, ete., when &4, is
taken as the neutral axis.

Knowing before hand that this line
passes through the centre of gravity,
we have taken the weights of the area
above it in two parts, viz.: that extend-
ing from &5, and that from 3,0, and
we have taken w,"w0,” and w,’w,” respec-
tively, as the weights of these. Choose
any pole p,” and draw the equilibriam
polygon c¢c’: use its intercepts m'm’,
which represent the weights of stress
solids, as weights and with any pole .
construet the second equilibrinm polygon
¢'¢’ on the verticals through the pointsof
application of the stresses. Also find
m,'m,’ the product of the total area by
the distance of the extreme fiber and
make n/¢, || p/m,'; then is k' which is
on the same vertical as ¢,” a point of the
kernel, and ok,'=r," the radius of resist-
ance. Use k5, as a diameter, then 15
oh’=k' the radius of gyration, for
}‘.1'::)‘1 l?/x"

With these two principal axes thus
determined, it is possible at once to con-
struct the ellipse of inertia. In any case
it will be possible to determine the direc-
tion of the axis of solicitation correspond-
ing toany assumed neutral axis by actunal
construetion, it-being simply necessary to
find the line throngh o upon which lie
the points of application of the positive
and negative stresses considered separate-
ly. These axes being conjugate direc-
tions in the ellipse of inertia, when we
have found the radii of resistance in
those two directions we can at once ob-
tain the corresponding radii of gyration
which are conjugate semi-diameters, and
so draw the ellipse.

After the ellipse is drawn the kernel
can be readily completed by making
in every direction a third proportional to
the distance of the extreme fiber and
the radius of gyration.

We are assisted in drawing the kernel
by noticing that to each straight side of
the cross section there -corresponds a
single point in the kernel, and te each
non re-entrant angular point aside of the
kernel, these standing in the mutual re-




shown in

angles,
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3 . Iy . » 5
lation of polar and anti-pole with respect
to the ellipse of inertia, as shown by the

equation F=ry.

In Fig. 13 the point %, corresponds to
the left hand vertical side, the point &
to the right :
/

¢ ght hand vertical side, and the
sides k&, k%, to the angular '}u-ims at
the upper and lower-extremities of the
left side respectively; while the points
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k'k at the very obtuse angular points
of the kernel correspond to the upper
and lower horizontal sides of the flange,
The two remaining angular points of the
kernel correspond to tangent lines when
they just tonch the corners of the flange
and web, while the intermediate sides
correspond to the angles at the extremi-
ties of these lines.

KERNEL, MOMENTS OF RESISTANCE

INERTIA: FRAME PENCIL METHOD.,
Let the cross section treated be that
Fig. 14, which is nearly that
u_f a 56 1b; steelvrail, the difference cons
sisting only in a slight rounding at the | the
t1a

Let the cross section be divided by | tot

B3R 3,

AND rays through 43, ete,, and make 01, 02

ete,, proportional to the mean un’]in,:llv.;
of the areas standing on the bases b &
bb,, ete. respectively. b,
s || :'/):‘ ete, ; ne

Draw s.u, || cb,
Il , then will the segments of
'+ line uu represent the respective par-

areas, and ww, will represent the
al area,

lines perpendicular tothe axis of symme-
try bb at b,, b, ete., then the partial areas
and the total area may be found bv a
summation polygon. '

lake ¢ as the common point of the

Divide the vertical line ww into seg-
ments equal to those of the line nn thccn
is ww l.}n' weight line for ﬁnnlin\lr the
center of gravity, ete., of the cross sec-

tion. Let e, a, a, etc., be the centers
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of gravity of the partial areas, and let
» be the vertex of a frame pencil whose
rays pass through thgﬁ@ centers of
gravity. Draw the equilibrating poly-
gon dd with its sides parallel to the rays
of this frame pencil, then the ray vo
parallel to the closing side yy of the
equilibrating polygon determines the
center of gravity o of the cross section,
:mcordingnto principles previously ex-
plained. ) ™
It will be convenient to divide the
cross section into two parts by the verti-
cal line oi, which we shall take as the
neutral axis. The partial areas b,0 and
ob, have a,' and a,” as their centers of
gravity, Make s, || co, then w0, which
corresponds to 1, divides the weight
line into two parts, representing the
areas each side of the neutral axis, and
the polygon dd can be completed by
drawing d.d, || va,” and dd, ||va”. 1t
has been previously shown that the
abscissas yd represent the sum of the
products of the weights (i.e. areas) by
their distances from o; and any single
product is the difference of two snecess-
ive abscissas. Project the lengths yd
upon the horizontal 2z by lines parallel
to yy, then the segments of 2z represent
the products just mentioned. But these
products are the stress solids or resultant
gtresses before mentioned. Hence zz is
to be used as a weight line and is trans-
ferred to a vertieal position at the left
of the Fig. The points of application of
the resultant stresses may without sensi-
ble error be taken at the centers of
gravity a.a,, etc., of the partial areas ex-
cept in case of the segments of the web
on each side of 0. For these, let og,
o ' o ) ' i
=40b,, and og,"=%0b,, then g,  and g,
are the required points of application.
Now with the weight line 2z, which
consists partly of negative loads, and
with the same vertex v construct the
second equilibrating polygon ff, then
2, f, represents the moment of inertia of
the cross section, it being proportional
the ‘moment of the resultant stresses
about o. It is seen that the sides fLf,
and £, f, are so short that any small de-
viation in their directions would not
greatly affect the result, and that there
would therefore have been little error if
the resultant stresses in the web had
been applied at a,” and a,”. !
Again, draw dd, || vb,, then the hon-

zontal line dw, (=d d’) represents Ay,
the product of the total weight w,w,
(7. e the total area of the cross see-
tion), by the distance of the extreme
fiber 0b, =y, Use this as a stress solid
or resultant stress applied at o and hay-
ing a weight 22, =d ', and draw oj || 21",
7 being at the same vertical distance from
bb as v is; then is &, which on 1he same
vertical at 7, a y--in( of the kernel. For
k, is such a point that the product of ok,
(=r,) by the weight zz(=Ay ) sz f,=1
on the same scale as I was previously
measured.

Similarly draw w.d, | »b. and make
z,5,=d d,; algo draw ik, || [ 2,: then is
k, another point of the kernel as appears
from reasons like those just given in
case of k.

Use bk, as a diameter, then ok is a
semi-axis of the ellipse of inertia. The
same point % should be found by using
kb, as a diameter. Another semi-axis
of the ellipse of inertia with reference
to biras aneutral axis; and conjugate to
ok can be determined, nsing the same
partial areas, by finding the centers of
gravity and points of application of the
stresses of the partial areas on one side
of bb, the process being similar to that
employed mn Fig. 13, except in the em-
ployment of the frame pencil instead of
the equilibrinm polygon.

It is to be noticed that the closing side
£z, of the second equilibrating polygon
JF is parallel to a resultant ray which
intersects &b at infinity, the point of ap-
plication of the resultant of the applied
stresses, 4. e the stresses form a couple.

When the ellipse of inertia has been
found by determining the magnitude and
direction of two conjugate axes, the ker-
nel can be readily completed as has been
shown in connection with Fig. 13,

UNIFORMLY VARYING STRESS IN GENERAL,

The methods employed in Figs, 13
and 14 are applicable also to any uni-
formly varying stress, for a stress which
uniformly increases from any neutral
axis  through the center of gravity of
the cross section can be changed into a
stress which uniformly increases from
same parallel axis @’ at a distance y,
from 2 by simply combining with the
former a stress uniformly distributed
over the oross-section and of such intens-




ity as to make the resultant intensity
zero along 2.

In the construction given in Figs. 13
and 14 it is only necessary to use the
proposed line " at a distance Y, from o,
instead of the tangent to the extreme
fiber at a distance y, or y, from o, when
we wish to determine the weight or
volume of the resultant stress solid, its
moment about o, and its center of gravi-
ty or application.

Since the locus of the center of appli-
cation of the resultant stress is the anti-
pole of 2" with ' respect to the ellipse of
tnertia, it is evident that when the pro-
posed axis ' lies partly within the cross
section the center of application of the
resultant stress is without the kernel,
and that when 2 is entirely without the
cross section its center of application is
within the kernel.

It is frequently more convenient to
determine the center of application from
the kernel itself than from the ellipse
of inertia. This can be readily found
from the equation which we are now to
state

Avy =Ary =1

in which eréu:ninn Ay, and Ay _are the

volumes of ‘the stress solids which if
uniformly distributed and compounded
with the stress whose neutral axis is @,
will eause the resultant stresses to vanish
at distances y, and y, respectively;
while r, and »,_are the distances from o
of the respective centers of application
of these stresses,

The truth of the equation is evident
from the fact that the moment about o
of any stress solid uniformly distributed
is zero, hence the composition of such a
Stress with that previously acting will
leave its moment unchanged.

From the equation just stated we
have

Y

from which », can be found by an ele-
mentary construction, sinee 7, v, and »
are known quantities.. When it is de-
sired to express these: results in ferms of
the intensities of the actual stre £808,
let p,=ny, be the mean stress;

and let p'=n (y,4+y) be the greatest,
and let p/'=n (¥.—Y,) be the least
intensity at the extreme fiber:
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| then ny,=p,'—ny,=p,'—p,
or ny,=ny,—p, =p,—p,’
p;ip'—p, i i,
or Do PP, 231,50,

in which », and r, are the two radii of
the kernel.

DISTRIBUTION OF SHEARING STRESS,

It is well known that the equation
dM=Tdz, expresses the relation of the
total shearing stress 7" sustained at any
cross section of a girder ta the variation
dM of the bending moment M at a
parallel  cross-section situated at the
small distance 7z from the first men-
tioned cross section.

We have already treated the normal
components of the stress caused by the
bending moment M: we shall now treat
the tangential component or shear which
aceompanies any yariation of the bend-
Ing moment.

We shall assume as already proved
the following equation* which expresses
the intensity ¢ of the shearing stress at
any point of the cross section:

lga=TV

in which z is the width of the girder
measured parallel to the neutral axis at
any distance ¥ from the neuntral axig, and
¢ is the intensity of the shearing stress
at the same distance, 7 is the moment of
inertia of the cross section about the
neutral axis, 7' is the total shear at this
cross section, and ¥ is the volume of
that part of one of the stress solids used
in finding the moment of inertia which
is sitnated at a greater distance than y
from the neutral axis, d.e. in Fig. 18 if
we were finding ‘the value of g at g,
with respect to om, as the nentral axis,
then ¥ would signify the stress solid
whose profile is o d. ./:;7',. It, however,
makes no difference whether we define ¥
as the stress solid situated at the left or
at the right of b,; for, since the total
stress. solid, positive and  negative, 'is
zero, that on either side of any assnmed
plane is the same, :

The first step in our process is to find
the intensity of the shear at the neutral
axis, which we denote by 7.; and if we
also call #, the width here and V, the
volume of either of the two equal stress

's Applied Mechanics. Eighth Edition,
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golids between this axis and the extreme |
fiber, we have

Iga=T7V,but I= V.d

when d is the distance between the cen-
ters of application of the equal stress
solids, i.e., d i3 the arm of the couple of
the resultant stresses. Also 7=4dyg
when 1 is the total area of the cross
gection and ¢ is the mean intensity of
the shearing stress, Hence at the neu-
tral axis we have the equation

gad=Ag=T

Now the length of the arm d is fog_nd
in Fig. 13 by prolonging the middle side
(i.e. the side through n,) of the second
equilibrium polygon until it intersects
the first side and the last. These inter-
sections will give the position of the
centers of gravity of the stress solids on
either side of 0. _

In Fig. 14 the same points are found
by drawing rays from v parallel respect-
ively to z f, and f,7, until they inter-
sect aa. ‘

In Fig. 15 the points j, and f, are
found by either -of these methods and
f.f.=d is the required distance. .

Now in Fig. 15 let the segments wu Now draw from any point i rays to u,
of the summation polygon be obtained |z and » ,A:m«i also @ parallel to 4, at a
just as in Fig, 14, and parallel to »u|distance ¢ and intersecting iu at some

draw a line through s representing the point 7, such that ¢, ,=¢ to such a secale

width of the erosssection «, on the same
scale as before used in constructing the
summation polygon. Also make sw || |
¢f, and su|| ¢f,, ¢ being lhc.con}rn?n‘
point in the rays of the pencil of the|
summation polygon for finding the area. |

as may beeonvenient. The mean intens-
ity ¢ is supposed to be a known quanti-
l}:, and £¢, || ww. Then from the proposed
equation we have the proportion

wd A r]—:ql

Then ww. represents the product z,d

on same scale that = w, represents ..lor

uw, cwu LU, U




Hence #, represents the intensity of the
shearing stress at the neutral axis on
the same scale that 72 represents the
mean intensity. '

This first step of onr process has de-
termined the intensity of the stress at
the neutral axis relativelv to the mean
stress; the second step will - determine
the inteusity of \the stress)at anyother
point relatively to the stresd at the nen-
tral “axis. ‘When this last point” is all
that is desired the first step may be
omitted. :

The equation lng=T7¥F may be written
gg=c 'V, in which = 7% ¥ is a constant.
At the neutral axis 'this equation is

=

LG =C
v {f

sor V. vg 3w 36

In Fig. 15 lay off the segments of the
line zs jugt as\in Fig, 14; then 2.2, rep-
resents the weight or velume V : also
make 0, 22, 23, ete., proportional to
width of the girder at o, &
lay off z.2. = /' =tt;;

Draw p0||#.z2, then by similar tri-
angles

Uy €te., and

s2r, .0
Wiz, « a0, e
. P& represents the constant ¢

Now the several Segments 2 2 - 5.2
ete., represent respectively the values of
V, Vi ¥, orthestress solids between
one extreme fiber and b, 5. 5. ete.: it
15 of mo congequende which ext l"t-m(‘ fiber
is taken as the stress solid 'is the same
in either case,

Now using p as a pole draw rays to
2345 eto., and make z.r. || 22, 2.7, || 93,
c¢te., then by similar triangles

£8, 187, ¢ 122 ¢ Or wg,=cV,

and s3, 30 2028 1o or ag, =0T

eéte., ete, and £, 30, ete., represent
the intensity of the shearing stresses at
b, b, ete. These can be constructed
equally well by drawing rays from :z

parallel to the rays at p, from which we |

obtain
:27'_':::',‘,;, sr.l=zy, ete,

Now lay off by,=zr, by.=zr., ete.,
then the ordinates 4y of the polygon yy
represent the intensity of the shearing
stress on the same scale that ¢ =z » rr}\-l
resents the intensity ¢, at the neutral
axis, and on the same scale that it,=oy’

represents the mean intensity ¢. The

['ble erogs section. The valne
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lines joining ¥, ¥, etc, should be
slightly eurved, but when they are
stﬁxig}it the representation is quite
exact.

RELATIVE STRESSES.

It is proposed here to develop a new
construction which will exhibit the rela-
tive maggitude of the normal compo-

|nents of the stresses produced by a

given system of loading in the various
cross-sections of a girder having a varia-

f such a
construefion i3 evident, as it shows
graphically the weakest section, and in-
vestigates the fitness of the assumed dis-
position of the material for sustaining
the given system of loading.

The| constructions heretofore given
for the kernel and moments of resistance
at any given cross section admit of the
immediate comparison of the normal
components of the stresses produced in
that single cross section when different
neutral axes are assumed, but by this
proposed. construction, a comparison is
effected ‘between these stresses at any
differént cross sections of the same gird-
er or truss.

In the'equation previously used
M=8T-= Y= S l/.'f:-y: SAr
in-which M is the moment of fexure
which produces the stress & in the ex-
treme fiber of a cross section whose area
is 4 and whose radius of resistanece is #,
we see, since the specific moment of re-
sistance m=Ar is the ]Jl‘(nlll'\‘l of two
factors, that the same produet can result

from other and very different factors.

For example, let m=A ' in which 4
is'the arga of some ¢ross seetion which
iz assumed as the standard of compatison,
and »'=Ar+4 =ar, when a=A+ 4,
Then is 4 »' the specific moment of re-
sistance of a oross section of an assumed
area .4_which has a different disposition
of material from that whose specific
moment of resistance is Ar, but the
cross sections A and A, areequivalent

|to each other in this sense, that they

have the same specific resistance, and
consequently the same bending moment
will produce equal stresses in the
extreme fiber in each.

The two cross sections do nof have

| the same moment of inertia, and so the

deflections of the girder would be

changed by substituting one cross sec-
tion for the other. We shall then speak
of them as equivalent only in the former
sense, and on the basis of this definition, |
state the result at which we have|
arrived thus: Equivalent cross sections
ander the action of the same bending
moment, have the same stresses at the
extreme fiber (though they are not
equally stiff); hence in _ comparing
stresses equivalent cross sections may be
substituted for each other (but they may
not be so substituted in comparing de-
flections).

It is proposed to utilize this result by
snbstituting for any girder or truss hav-
ing a variable c¢ross section '41 or a varia-
ble specific moment of resistance w.hmw
magnitnde is expressed by the \':11"1:11)10
quantity Ar, a different one having a
¢ross section everywhere of constant
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area A but of such disposition of mate-
rial that its specific moment of resistance
is A r'=Ar at corresponding cross see-
tions,

The proposed substitution is especially
easy in case of a truss, for in it the value
of = varies almost exactly as its depth,
as may be seen when we compute the
valne of m=AK+y=A4r
in this case.

Since the material which resists
bending is situated in the chords alone
and is all approximately at the same
distance from the neutral axis we have
k=y=r=3%h very nearly when /4 is the
distance between the chords, ... m=4 Ak
nearly. Even when the two ¢hords are
of unequal cross section and the nentral
axisnot midway between them the same
result holds when the ratio of the two
cross sections 18 constant.

./,Ab ‘\ ’_‘,li‘l/
.,\x

) arios a8 9 radi
In Fig. 16 let 2 be the axis of a gird-| 4,7'=Ar=ay, xy varies as r’, the radius

er snstaining at the points z,, =, ete.

?

of resistance of a girder having at every

the weights ce, ee, ete. Lay off the|point a cross section A, so disposed as
ordinates zy at each of the points at|to be equivalent to that of the given

which weights are applied, so that @y =
Ar on some assumed scale; then since

girder xz. |
Assume some form of framing con-
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necting the points @y as shown in the
Fig., and unmm-'o the weights applied
at the points yy of the lower chord, the
points ut support being at y, and y,.
Then by a method like that employed in
Fig. 3, we obtain the total stresses ea,,
ea,, ea, ete., in the segments of the
upper chord which are opposite to v, ¥,
., ete. - Now these total stresses .are
resisted: by a cross section of constant
area A, consequéntly they have the
same Tiatio to one another as the intensi-
ties per square unit; or farther; they
represent, as’ we) have: just ;showny the
relative intensities of the stresses on the
extreme fiber of the given girder.

It is well Known from mechanical
considerations, that the stress in the
several segments of the upper chord is

|l(—*!nun]( nt upon the loading and upon
the position of y,, ¥., ete, and is not
dependent upon the position of the
_]Olnt\ in the upper chord. Of this fact
we offer the following geometrical proof
derived from the known relations be-
tween the frame and force polygons.
We know, if any joint of the upper
chord, such as eah for example, he re-
mu\ul to a new [nmmun such as », that
so long as the weights ¢,¢, ¢.¢, ete., are
uuclnm-n-nl that the vertex b_of the tri-
angle ea b, in the force ;m]\w-m must be
found on 1]1& force line ¢ f llwy,. We
shall show that while the side e, is un-
changed, the locus of 4, is the force line
¢, 15 hence L'Hl\\‘f'r\('l.\', so long as ¢ 7 i8
the locus of &, e, is unchanged, since
there can be but one such triangle.

\
¥ /
N /
LAY

In Fig. 17 let the two triangles abe, ink,
have the sides meeting at & and #n
mutually parallel. et the bases ae and
/ik be invariable but let the vertex § be
removed Lo any l"””‘ d such that bd || Ak,
then will the vertex » be removed tn:
point /e such that mn || ae,

For, prolong ad and eb, and draw
Of || ed _and de||.ab, then is abfedea a
hexagon inscribed in the conic section
congisting of the two lines af and eq,
hence by Paseal’s Theorem, the oppo-
gite diagonalg ez and ¢f intersect on the
same line as the remaining pairs of oppo-
site diagonals, ab || de and ed || 7. But
this' line 1s at infinity, hence ¢f|| ae.
Also ¢'f7 || ¢f, from elementary considera-
tions; and ¢'f" || mn from smmilarity of

tframe pencil whose vertex

fignres, hence mn || @e. There are two
cases, according as mn isabove or below
bk, but we haye proved them bhoth.

Now in Fig. 16 let all the joints in the
upper chord be removed to », then the
segments ea,, a,a,, ete., are unchanged,
hence ea,, ea, ete. are unchanged, and
the assymed framing reduces to the
is v, The
corvesponding force polygon is the
equilibrating polygon dd.

Hence the frame pencil ean be used as
the assumed framing just as well as any
other form of framing, and it is unneces-
sary to use any cons struction except that
of the frame pencil and equilibrating
polygon for finding the relative stresses
ea,, ea, ete.

’
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STI’.I{.\'.\'E\'I_\' A HORIZONTAL CHORD.

lf I‘i*' 16 bt‘ e‘_'.'(n‘l( 'I as re lil(‘ct ntuw .lH(I 'l]llll!li] {lt]ng pn]ygon_
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This construction sheds mnew light
| upon the ~1gmhc:mce of the frame }wncll
The frame

an actual bridge truss, whose chords are pencil is the limiting case of a truss

not of uniform ecross section; it is seen |

that the total stresses on the horizontal |

chord are given by the segments ea,, ex
ete., which are found from the ululh

the kind of bracing in the truss, which it |
is unnecessary to consider; and this|
method can be used to take the place of
that given in' eonnection with Fig. 3 for
finding the maximum stresses on the
chords.

The equilibrating polygon 7'/ was con-
struocted to determine - the reactions of
the piers by finding the point e¢. The
outer sides of the polygon /7 intersect
at ¢ which determines e as explained in
Fig. 7 in a manner different from that
given in Fig. 3.

|
3

tension member
hlm”u I'O]\mm alone without u..rm] “,1

when the joints along one chord are re-
moved to a single point, so that each.ray
may be rvumlo:l as rompnnudvd of a
and a compression mem-
ber, having the same direction, e.g., the
lt_nslun member of which y© 18 com-
pounded has the stress da, and the
compression member the stress d a,, but
if the two be combined, the resaltant
tension is d .

In case yy is the equilibrium cnrve
due to the applied weights, and » falls
upon the closmg line, the force lines ed
meet at the [mh and the lines ed , ed,,
coineide with aa, so that the |xol\gm| r/(/
is at the pole and infinitely small, and
1he stress in every segment of the upper
chord is equal to ‘the pole distance de.




NOTE A.

ADDENDUM TO PAGE 12, CHAPTER L

The truth of Proposition IV is, perhaps, not
sufficiently established in’ the demonstration
herdtofore given. As it is a fundamental pro
position in the @raphical treatment of arches,
and as it is desirable that no doubt exist as to
its validity, we now offer g second proof of it,
which, it is thought, avoids the difficulties of
the former demopstration.

Prop. IV. If in any areh that eqguilibrium
polygon (due to the weights) be construgted
which has the same horizontal thrust a8 the
arch actually exerts; and if its closing line be
fArawn from considerations of the conditions
imposed by the sapports, ete.; and if, further
maore, theenrve of *h('A:H'f'h itself be T(f_L’:ll‘d!'(l
as anothiey equilibrium pelygon due to some
system. of Jloading not given, and its closing
line be also found from the same considera
tiong respecting Sopports, ete.;then when
these two polygons are so placed that their
closing lines coincide, and their areas partially
cover each other, the ordinates intércepted be
tween these two polygons are proportional to
the real bending moments acting in the arch

The bending moments at eévery point of an
arch are due to the applied forces and to the
shape of the arch itself,

The applied forees are these: the vertical
forces, which comprise the loading and the
vertical reactions of the piers; the horizontal
thrust nd the bending moments at the piers,
caused by the constraint at these points of sup

port, The loading may cause all the other ap-
plied forces or-it may not: in any case the
bending moments are unaffected by the de-
pendence or want of dependence of the thrust,
ete., upon theloading.

Now, 80 far as the loading and the moments
due to the constraint at the piersare concerned,
they cuapse the same bending moments at any
point of thearch as they would when applied
to & straight girder of the same span, for
neither are the forces nor their arms different
in the two cuses.

But < the horizontal thrust, which is the
sume al every point of the arch, causes a
bending moment proportional to its arm,
which i8 the distance of its line of ap-
plication from the curve of the arch. This
line of application is known to be the closing
lime; hence the ordinates which represent the
bending moments due to the horizontal thrust,
are included between the curve of the arch and
a closing line drawn in such & manner as to
fulfill the conditions imposed by the joints or
kind of support at the piers, hence the curved
neutral axis of the arch is the equilibrium or
moment polygon due to the horizontal thrust.

But the same conditions fix both the closing
line of the equilibrium polygon which repre-
sents the bending moments due to the loading
and to the constraint at the piers, and the ¢los
ing line of the equilibrium polygon due to. the
horizontal thrust. Hence the resultant bend-
ing moment is found by taking the difference
of the ordinates at each point, or by laying
them off from one and the same closing line
exactly as described in the statement of our
proposition,

NOTE B.

ADDENDUM TO PAGE 10, CHAPTER

Attention should be directed to the two
senses in which M is used in our fundamental
formulae, y

In eguation (3) the primary signification of
M is this : it is the pumerical amount of the
bending moment at the point O; and if this
magnitude be laid off as an ordinate, ym is the
fraction or multiple of it found by equation (3).

Now M assumes, in the equations (3), (4), (5)
and (89, (4), (5", a slightly different and sec-
ondary signification; viz., the intensity of the
bending moment at 0, The intensity of the
bending moment is the amount distributed
along a unitin length of a girder, and may be
exactly obtained as follows :

-1 Pe
M= Mda, .. 2500)=) Mda.

®

In this secondary sense M is geometrically
represented by an avea one unit wide, and hay-
ing for its height the average value which
ordinate M, as first found, has along the unit
considered.

Thus the ¥ used in the equations of curva-
ture, bending and deflection 1s one dimension
higher than that used in the equation express.
ing the moment of the applied forges; but the
double sense need causa no confusion, and is
well suited to express in the shorfest manner
the quantities dealt with in our investigation.

Furthermore, in case of an inclined girder
such as is treated in Prop. V, if the bending
moment M, which causes the deflection there
treated, be represented, it must Appear as an
area between two nopmals to the girder which
are at the distance of one unit apart.

In order to apply Prop. V to inclined and
curved girders, such as constitute the arch,

zontal girder of the same cross section, and of
the same horizontal gpan, and deflected by the
same weights applied in the same verticals ;
| the vertical component of the deflection of
.'.ln- inclined girder, at any point @, is equal to
| the corresponding vertical deflection of the
horizontal girder, multiplied by the secant of
| the inclination,

For the bending moment of both the inclined
girder and the horizontal girder i same in
| the same vertieal, but the distance along the
inglined girder exceeds that along the hori-
zontal girder in the ratio of the secant of the
inclination to unily; hence the respective mo
ment areas have this same ratio; therefore the
deflections at right angles to the respective
girders of their corresponding points are in
the ratio of the gquare of the secant to unity:
and the vertical components of the deflections
are therefore in the ratio of the secant of the
inclination to unity

In applying this proposition to the graphical
construction for the arch, it will be necess:
to increase the ordinate of the moment
gon at each point by multiplying by the sec
of the inclination of the arch at that |
This iseasily effected whien the ordinates ave
vertical by drawing normals at esch point of
the arch ; then the distance ale the normal
whose vertical component 15 the bending mo-
| ment is the value of M to be used in determin
‘ ing the deflection,

In the arches 'h we have treated the
rise is so small a fraction of the span that the
| seeant of the inclination at any point does not
| greatly exceed unity; or, to state it otherwise,
the leéngth of the arch differs §
tively small ¢ uaniy m Lhe

with entire exactness, one more proposition i8 | 18 a close approximation under

needed.

Prop. If weights be sustained by an in-
clined girder, and the amount of the deflection
of this girder, which is caused by the weights,

stances 10 use the moments |

termining the deflections; and we have so used
| them in our constructions. A more sccurate
result can be obtained by multiplving each
ordinate by the s it of the inclination of

be compared with the deflection of an hori-| the arch at that point to the horizon
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StrEess includes all action and reaction
of bodies and parts of bodies by attrac-
tion of gravitation, cohesion, electric
repulsion, contact, ete, viewed espe-
cially as distributed among the particles
composing the body or bodies. Since
action and reaction are necessarily equal,
stress is included under the head of
Statics, and it may be defined to be the
equilibrium of distg@buted forces.

Internal stress may be defined as the
action and reaction of molecular forces.
Its treatment by analytic methods is
necessarily encumbered by a mass of
formule which is perplexing to any ex-
cept an expert mathematician. It is
necessarily so encumbered, because the
treatment consists in a comparison of
the stresses acting upon planes in vari-
ous directions, and such a comparison
involves transformation  of guadratic
fanctions of two or three variables; so
that the final expressions contain such
a tedious array of direction cosines that
even the mathematician dislikes to em-
ploy them.

Now, since the whole difficulty really
lies in'the unsnitability of Cartesian co-
ordinates for expressing relations which
are dependent upon the parallelogram of
forces, and does not lie in the relations
, which are quite simple, and,
which no doubt, ecan be made to appear
80 in quaternion or other suitable nota-
tion: it has been thought by the writer
that a presentation of the subjeet from a
graphical stand point would put the

themselves

entire investigation within the reach of
any one who might wish to understands
it, and would also be of assistance to
those who might wish to read the analyt-
ic investigation.

The treatment consists of two princi-
pal parts: in the first part the inherent
properties of stress are set forth and
proved by a general line of reasoring
which entirely avoids analysis, and
whieh, it is hoped, will make them well
understood; the second part deals with
the problems which arise in treating
stress, These problems are  solved
graphically, and if analytic expressions
are given for these solutions, such ex-
pressions will result from elementary
considerations :sp}w:n'ing in the graphi-
cal solutions. I'he constructions by
which the solutions are obtained are
many of them taken from the waorks of
the late Professor Rankine, who em-
ployed them principally as illustrations,
and as auxiliary to his analytic investi-
gations, -

It is thus proposed to render the
treatment of stress exclusively graphical,
and by so doing to add a branch to the
science of Graphical Statics, which has
not heretofore been recognized as sus-
ceptible of graphical treatment. It
seems unnecessary to add a word as to
the importance, not to say necessity, to
the engineer of a knowledge of  the
theory of combined internal stress, since
all correct designing presupposes such
knowledge.
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STRESS ON A Pranxe—“If a hody be
conceived to be divided into two parts
by an ideal plane traversing it in any
direction, the between
those two parts at the plane of division

18 an internal stress.”— Rankine.

force exerted

A StaTk oF INTERNAL STrRESS 18 such
a state that an internal stress is or-may
be exerted upon every plane l,:xssin:_';
through a point at which such a state
exists.

It is assumed as a physical axiom that
the stress apon an ideal plane of divi
sion which traverses any given point of
a body, cannot change suddenly, either
a8 to direction or magnitude, while that
plane is gradually. turned in any way
about the given point: It js also as-
sumed as axiomatie that the stress at
any point upon-& moving plane of divi-
sion which undergoes no sudden changes
of motion, ¢aunot change suddenly |
either as to direction or amount. A
sudden variation ean only take place at |
a surface where there is a change of |
material, [

GENERAL PROPERTIES OF PLANE STRESS.

" We shall call that stress a plane stress
which is parallel to_a plane; e.g., lot the
plane of the paper be this plane and let
the stress acting. upon every ideal plane
which is at right angles to the plane of
the paper be parallel to the plane of the
paper, then 18 such a
stress.

The obliguity of a stress is the angle
included between the direction of the
stress-and a line perpendicular to the
ideal plane it acts unpon. This last
plane we shall for brevity eall the plune
of uaetion of the stress, and any line
perpendicalar toit, its normad,  In plane
stress, the planes of action are shown by
their traces on the plane of the ]':Llu'l".
and then their normals, as well as their
directions, the magnitudes of the stresses,
and their obliquities are correctly rep-
resented by lines in the plane of the
p:llw!’.

The definition of stress which has
been given is equivalent to the state-
ment that stress i.‘*‘f.l”l'l diﬁ’l'i‘-lllc‘ni over
an area in such wise as to be in equili-
briom.

slress a [li:(lh‘

In order to measure stress it is neces-
sary to express its amount per unit of

INTERNAL STRES

area: this is called the intensity of the
stress.

Stress, like force, can be resolved inta
components. An obligue stress can be
resolved into a component perpendiculay
to its plane of action called the normal
component, and a component along the
plane called the tangential ('-'/u.‘/")lit.-//( or
shear.

When the obliquity is zero, the entire
stress is normal stress, and may be either
A compression or a tension, /'.t‘..,' a thrust
or apull. When the obliquity is 4907,
the stress consists entirely of a tangen-
tial stress or shear. If a nompnessinh he
counsidered as a positive normal stress, it
is possible to consider a normal tension
a5 a stress whose obliquity is 41807
and the obliquities of two shears having
opposite signs, also differ by 180°, -

Fig. 1

Consvgare Srresses,—If in Fig. 1
any state of stress whatever exists at o,
and 22 be the n.liru.iun of the stress on a
plane of action whose trace is yy, then is
yy the direction of the stress at o on the
plane whose trace is o, Stresses 50
related are said to be conjugate siresses,

For consider the effect of the stress
upon a small prism of the body of which
a,ama, 18 o right section. If the stress
is uniform that acting upon a,a, 18 equal
and opposed to that acting upon a.a,
and-_therefore the stress upon these
faces of the prism are a pair of forces in
equilibrivi. - Again, the stresses npon
the four faces form a system of forces
which are in u«lniiihrhhn, because the
prism is unmoved by the forces acting
upon it. But when a system of forces
in. equilibrivin is removed, from-a sys-
tem in equilibriumy the remaining forces
are in equilibrinm. Therefore “the Te-
moval of the pair of stresses in equili-
brinm acting upon «a, and aa, from
the system of stresses acting upon the

four faces, which are also in equilibrium,
leaves the stresses upon «,a, and 0,0, in

equilibrinm.  But if the stress is uni-

form, the stresses ona.a, and a,a, must

IN GRAPHIC

be parallel to yy, as otherwise a couple
must result from these equal but not
directly opposed stresses, which is in-
eonsistent with equilibrium.

This proves the fact of conjngate
stresses when the state of stress is ung;
form: in case it varies, the prism can be
taken so small that the stress is sensibly
uniform in the space occupied by it, and
the proposition is true for varying stress
in case the prism be indefinitely dimin-
ished, as may always be done.

Fig. 2
g

—If in Fig. 2

o

the stress at 0 on the plane zx is in the

TANGENTIAL STRES

direction 22z, #.6. the stress at o on xz
consists of a shear.only; then there
necessarily exists some other plane
through o, as yy, on which the stress
consists of a shear only, and the shear
upon each of the planes xx and yy is of

the same intensity, Wl of opposite sign.
For let a plane which initially coin-

cides with a@ revolve continuously
through 180° about o, until it again co-
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is a shear alone, separates those planes
through o on which the obliquity of the
stress is greater than 90° from those on
which it is less than 90°, i.e., those hav-
ing a plus normal component from those
having a minus normal component.
Since in revolving through +180° the
plane must coincide, hefore it rvu.('lu«‘ its
final position, with a plane w.h'.--_h h;x.s
made a slight minus rotation, it 18 evi-
dent that the sign of the normal com-
ponent changes at least once during a
revolution of 180°. But a quantity can
change sign only at zero or infinity, un.',l
since an infinite normal component 18
inadmissible, the mnormal component
must vamsh at least once during the
proposed revolution. Hence the oblig-
nity is changed by 360" or some maultj-
ple of 360" while the plane revolves 1807,
In fact the normal component vanishes
but once, and the obliguity changes by
once 360° only, during the revolution.
It is not in every state of stress that
there is a plane on which there is no
stress except shear, but, as just shown,
when there is one such plane = there is
necessarily another vy, and all planes
throngh o and cutting the angles in
which are &, and &, have normal com-
ponents of opposite sign from planes
through o and cutting the angles in
which are 4, and b,

To show that the intensity of
the shear on @2 is the same as

incides with xw, the obliquity of the|that on yy, consider a prism one unit

stress upon this revolving plane has
changed gradually during the revolution

long and having the indefinitely small

right section 4,660, Let the area of

through an angle of 3607, as we shall |jig upper or lower face be a,=b0,, that

show.

of its right or left face be ¢, =54, then

Sinee the obliquity is the same in its as, and agp, are the total stresses on
final as in its initial position, the total | these respective faces if « and s, are the
change of obliquity during the revolu- | intensities of the respective shears per

tion is 0° or-some multiple of 360°. It square unit.
cannot be 0°, for suppose the shear to be
due to a (wm}rl(e of forces p:lru”('l to @,

having a positive moment; then if the
])I:me be slightly rc\'nl\'w.l !
initial position in a plus direction; the
stress upon it has a small norm'sl com-
ponent which would be of opposite sign,

from its

Let the angle zoy=1, then

as. .a, sin. @

is the moment of the stresses on the
apper and lower faces of the prism, and

as, . & sin. 2

if the pair of forees which cause it were

=
reversed or changed in sign; or, what l~'
u i

. |

equivalent to that, the sign of the smal
normal component would be reversed if
the plane be slightly revolved from its
initial position in a minus direction.
Hence the plane «x, on which the stress

is the moment of the stresses on the
right and left faces; but since the prism
is unmoved these moments are equal.

8 =8

These stresses are at once seen to be

| of ()[nlms‘l(‘q: Sigll.
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direction is that of the stress on mn op

el

Fig. 4

- |

TancesmiAL Componests.—In Fig. 8 |
: . |
if @z and yy arve any two planes at right |

angles to each other, then the intensity | It should be noticed that the stress at

at o of the tangential component of the | 0n two planes as 2 and yy cannot be
stress upon the plane 2z is necessarily |assumed at random, f"l: such ."““"’Pti.o"
* |would in general be inconsistent with
: X []u- ]'r‘ulwrtil-.\ \k'hich we h:n‘v s}mwn
these components. are of Opposite sign, every state of stress to possess, For in-
For the normal comppnents acting |3tance we are not at liberty to assume
upon the opposite faces of a right prism [the obliquities and intensities of the
are necessarily in equilibrium, and by a |Stresses on @z -and yy such that when
demonstration. precisely  liké that just [We compute these quantities for any
employed in connection with Fig. 2 it is |plane 2" and another plane y'y’ at
seen that for equilibrium it is necessary |Might angles to »'#" in the manner just
and sufficient that the intensity of the tan. | indicated, it shall then appear that the
gential component on-22 be numerieally | tangential components are of unequal
(’llll:ll to that on Wi but of nlx[u»il.(' H;"'“’”.\"'r“i l‘l"'»‘fun‘f sigmn. ()l’, Zlgﬂi",
sign. [ we are not at liberty to 8o assume these
SraTe oF SrRESS.—In a'state of plape | SYO85¢S a8 Lo violate the principle of con-
11N : = . . fJugate stresses.
stress, the state-at-any point, as o, is But in eas ", . :
completely defined, so that the intensity | but .“I t.z\.p th .‘flxc.\ws :L?‘MIHI(!(I are
} < fconjugate, or consist of a pair of shears
of equal intensity and different sign on
traversing ¢ ‘can be determined, when |any pair of planes, or in case any stresses
the intensity and obliquity of the stress|4re assumed on a’pair of planes at right
on any two given planes traversing that :“i:}':" "\.”Pl:-”“'t their tangential L
oint ars b nents are .n-l 1'!‘|Xl,l‘] llll.Q‘llhll_? but chffﬂgnt
sign, we know that we have made a con-
For suppose in Fig. 4 that the inteusi- | sistent assumption and the state of stress
ty and obliquity of the stress oun the|is possible and completely defined.
given planes @2 and Iy are k'm’-\\n_ to The state of stress i’ not (-ulnplutel‘v'
tind ""f}‘ on__any _I'l‘“'l_‘ @ draw | defined /when the stress upon a single
mn || z'2"  then the indefinitely /small plane is known, because there may he
prism one unit 1n l"“_'-’”' whose right | any amount of simple tension or com-
section is mano, 18 held in equilibrinm by pression along that plane added to the
state of stress withont changing either
the intensity or obliquity of the stress on
that plane: :

the same as that upon the plane yy, but

and obliquity of the stress on any plane

the forces acting upon its three faces.
The forces acting up he faces -

] § 4 lnl] the taces om :\‘ut]
on_are known in_direction from the
obliguities of the stresses, and, if pe and
Py are the respective intensities of the

PriNGIPAL STRESSES.—In any state of
known stresses, then the

s forces are|stress there is one pair of conjugate
oM Py ““fl on.py respectively, The re-|stresses at right angles to each other, 7.4
sultant of these forces and the reaction | , > S . y H
~ ; her t | i

> X = 4 Woaghs there are y anes at ~ :
which holds it in equilibrium, together Yiae wo planes at right angles on
constitute the stress acting on the face which the stresses are normal ""l.Y'

man: this resultant divided by man is the | Stresses so related are said to be prinei-
intensity of “the stress on 2w and its pal stresses,
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It has been l»re\'iousl\' shown that if angles to this, that is another pl.’}ne on

lane be taken in any direction, and which the obliquity of the stress is also
a R ” . P~

irecti f the stress acting on it be | 07, :

the direction o cting i - o ‘o B T
found, then these are the directions of a We have now completely Ls\.l-“tl.lrln_tl
Hair n,f conjugate stresses of which either | the proposition respecting .ﬂw existence
:'il.\' be taken as the plane of action and|of principal stresses which may be
s : S 8 2 £ W o w
the other as the direction of the stress| restated thus:
geting upon it. . ) ) Any possible state of stress can be

Consider first the case in which the completely defined by a pair of normal
state of stress is defined by a pair of

=

e AL stresses on, two planes at right angles to
conjugate stresses of the same sign; .2,

al components of this pair of ’ )
;}(;:ij::::llz::ltrws(}s are both vmnpll'ussi-.,-ns As to the diru.(‘[ln.u .n'f .t,i'\'.lm'p .]:':‘ll?l.l::}
or both tensions. . planes and stresses, it is easily seen lt ‘
It is seen that they are of opposite .-nmsuln.-r:mnp.~ of symnu-l‘ry Il;al‘ m~1c‘1}3(?
obliguities, and if a plane which 11|~|!1:11I_\' the state of stress f:l:m be < e.hn«: . )))f
coincides with one of these conjugate equal and t)I\anlLv.hl‘('mlrx 011.1 .1‘.]|l.\.1h‘(‘.t
p‘ﬂﬂ(‘i“f action be continuously revolyed | planes, that the prineipal planc hf :1.»\(]
antil it finally coincides with the ulhf% the :m:}rw‘ hm,wm;n the .]-mllrxs (,)} 'L:[lll’.l'
the ol>li(1|lit\"x‘x111st pass through all in- \!u':ll‘, for ?hvre is no l(‘:h()l; .\s 1y :‘I‘
termediate values, one of which is 07, an should nu:lnw more ‘tn. ﬂl.l;' ‘[ erl Ft(y t}:(x
when the obliquity is 0 the tangential | other. We have before TN.)“HIP m‘; ”lf
component of the stress vanishes. But|planes of equal sh(f:ll”‘n";' ‘l:.zlln\“q;‘q‘
as has been pr.-'\-iuu.-'ly shown there is | separation between those w m;c l.,rTh‘.it.e
another plane at right angles to this| have nm'nm! (:')mp(ft‘m}n:a (]). -.}.»p‘...\‘ql
which hias the same tangential compo-|sign: hence it appears t 1.:11; the -].“'m‘:!q;(.
nent; hence the stress is normal on this | stresses are of nlbp').?lt(’ ;1;711 .llll .‘mv'\; '.‘q,ir'
$lane also. of stress which c:m‘ e de ‘lllN.l ‘;'\ g “.‘
Consider next the case in whivlll the uil' equal and opposite shears on two
Al oniuoate stresses which define| planes,
{)ll::st(:lfte(‘:’::'l]:f;s;s ar f opposite <igu,‘ ‘[l \_vill be lu?l'c:l!'t.erl sl»l;_.nw‘nl hf.)‘“"itrﬁ
i.e., the normal c.mnplrgint on one plane | direction and m:lgllxmu e of t }:i,-}”‘:?(‘(-!)‘n.
i8 a compression and that on the other stresses are r(_n}:ﬂ.m to any p: y
& tension, jugate stresses. mEar e
In this case there is a plane in some| For convenience of l;nl.\th‘n?)m ( 1(“)“
intermediate position on which the stress| ing pl:uu'- sm-lss let us « enote ‘rnn{{u.\:i."“
is tangential only, for the normal com | by thesign and tension by the sig
yonent cannot change sign except at| —. e
lie::).“th ;1:\5 been pr;\'iouﬂ_\' shm\:n that I_M us :1150‘(.':\111 |‘h{\t .r«t..:fl.l_ ”,f,,,:i',e,:f
in ease there is one plane on which the which i8 _cl(~hjl§ ),\‘. equs [,!'I ‘(;‘L\‘
stross is a shear only, there is another| stresses ol the same sign rll_f"a vu 61-.;”
plauve also on which the stress is a shear| A. material fluid can a(.:m_&' ‘) tfllh..fnrz
only, and that this second shear is of only a 4 fluid stress, l)l}t‘.lt 13(0111&(‘*1113.011
& nd:l‘l intensity with the first bat of  to melude both cn_ml')rem.nn‘nn‘n ,Lum.,
'J?v)»nsi\e sign. Let us consider then that u_mlur_un-_’ 'h‘.ml-“»]m;‘]l fauc:xs],_t: ‘ll(“[:ropu r-
the state of stress, in the case we are ties of which we ‘\!,m, x(;m:; 1:: ‘;'.h,ich o
now treating, is defined by these oppo- l‘mt us call a sLAluc 0 i ‘ri\;tr b
site shears instead of the conjugate defined by unequa [);‘lllllt.l]l\.l ,.' :.,u qu
stresses at first considered. . the same sign @n '~‘1' "]’/‘Wﬂ(;Qi(']&:('n.“- h
Now let a plane which initially coin- may be 'mkvn t.o I.ITL,.lh e s .”m..i“.o‘-
cides with one of the planes of equal |the '|>:\r.tu.'|.11a.r.a».x‘:rt, 4‘1“ \] 1 ‘,] iﬁ-mw %
shear revolve continuously until it finally quality is !nh'mtmun.}‘. : n M-}ii:]. o
coincides with the other. " The obliquity | stress fhore 18 nu_ li ..uu (i”(\“.l:mrm.ﬂ
gradually changes from +90° to —90 | SLTESS 1S 4 ﬁl]_('ﬂl‘ x»r{ s ‘:‘m« 1;“ .1.”;0
during the n-:«-lminn. hence at some | component of tln.-’ hlt%: “.n-?h.'u ‘!f‘uw
'Illl(-.rl:l\m]ime ]nnint the (v,l:l'hlnit_\- 8 0°: w].a:n.:‘\ (.{. }\;:l.‘ifl.:t;,.“nh sign as the
and since the tangential <'nm(mn~nl"h:|~ !»xulx;.lp.ml :-l',;,;,:l'[et " e
the same intensity on a plane at right nrihermore

each other.
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of stress which is defined by a pair
of shearing stresses of equal intensity
and different sign on two planes at
right angles to each other a right
shearing stress.  We shall have oceasion
immediately to discuss the properties of
this kind.of stress, but we may advan-
tageously notice one of -its _properties in
this connection. It has been seen pre
viously from considerations of symmetry
that the principal stresses snd planes
which may be used to define thiy state
of stress, bisect the angles between the
planes of equal shear. Henece in right
shearing ' stress - the prineipal | stresses
make angles of 45° with the planes of
equal shear.  We can advance one step
further by considering the symmetrical
lu»iliilll of the pl'lll(ﬂ of wlll'll shear with
respect. to  the l’“““l"l stresses and
show that the prineipal stresses in a state
of right shearing stress arve equal but of
opposite sign.

We wish to call particular attention
to fluid stress and to right shearing stress,
as with them our ~uhwqmm discussions
are to be chiefly concerned : they are the
special | cases in  which the principal
stresses are of equal intensities, in one
case.of the same sign, in the other case
of different sign.

Let us eall a state of stress which
is defined by a pair of equal shearing
stresses of “opposite  sign on ' planes
nov at right angles an oblique shear-
ing stress. | The principal stresses, which
in this case are of unequal intensity
and bisect the angles between the
ll'uuw of equal xlu.u are of opposite
sign. A right shnmnu stress may be
taken as the !».lrll(ll]lr case of ulhqm

shearing in which the obliquity is in- |

finitesim: il

We may denote a state of stress as +
or — .uumhnu to the sign of its larger
principal stress.

Fig.5 "

Lo Stress.—In Fig. 5 let 22 and

=

INTERNAL STRESS

bhe yy two planes at right angles, on
which the stress at o iz normal, of equal
intensity and of the same gign; then the
stress on any plane, as &z, traversing o
is normal, of the same inh‘ns‘it.\' and
same sign as that on 22 or yy.

For consider a prism a nnit long and
of inlinilmim'il cross section having the
face mn || 2"2’, then the forces r‘.u..l J¥e
acting on the l aces am and on are .~nch
that

Jz t Jfy 2 2 om: on.

Now nm=+/om*+ on®, and the resnlt-
ant force which the prism exerts against
Ten iS

J=Na ™

But fz—=om is the intensity of the
stress on 2 and / ~mn 18 the inte n\ll)
of the stress on ¢’z’, and these are equal,
Also by similarity of triangles the result-
ant /'is perpendicular to mn.

fat [t:om.:mn.

Flg. 6

Ricar SueariNG Stress.—In Fig, 6,
let we and yy be two planes at right
angles to each other, on which the stress
is normal, of equal intensity, but of
opposite sign; then the stress on any
plane, as o'%/, traversing o is of the same
intensity as that on 2 and 7y, but its
obliquity is such that 2 and %y respect-
ively, bisect the angles between the
direction 7 of the resultant stress, and
the normal 3%/ to'its plane of action.

]'nr if the intensity of the stress on

"be (UHX]'HU :d in the same manner as
in | 1g. 5, the intensity is found to be the
same as (lml on @z or yy; for the stresses
to be combined are at right angles and
are both of the same mwnmulu The
only difference between this case and
that in Fig. 5 is this, that one of the
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component stresses, that one normal
vy say, has its sign the opposite of xh at
in Fig. 5. In Fig. 5 Lh“ stress on 'z’
was in the direction y'y’, making a cer-
tain angle yoy' with yy. In Fig. 6 the
resultant stress on z’z must then make
an equal negative angle with yy, so that
yor=yoy'. Hence the statement which
has been made respecting right shearing
stress is seen to be thus established.

COMBINATION AND SEPARATION.—Any
states of stress which coexist at the same
point and have their principal stresses in
the same directions 22 and yy combine
to form a single state of stress whose
principal stresses are the sums of the re-
spective principal stresses lying in tHe
same directions a and yy : and con-
versely any state of stress can be separ-
ated into several coexistent stresses by
separating each of its two prinecipal
stresses into the sameé number of
parts in any manner, and then grouping
these parts as pairs of prineipal stresses
in any manner whatever.

The truth of this statement is nee-
essarily involved in #u fact that stresses
are forces distributed over areas, and that
as 4 state of stress is only the grouping
together of two necessarily related
stresses, they must then necessarily fol-
low the laws of the composition and
resolution of forces.

For the sake of brevity, we shall use
the following nomenclature of which the
meaning will appear without further ex-
planation,

The terms applied to  The terms applied to
forces and stresses arc: stites of stress are:
(’“I/l}l““/li./, Clombine,
("!/n/w.'-‘/’inu, Combination,
(.'utll/mu: nt,
In'le'ul’l‘,"

Resolution,
Resvltant.

( ’ll]lllln went stale,
Separate,
.\"/nu’uh'un,

Reswltant state.

Other states of stress ean be combined
besides those whose principal stresses
coincide in l“l‘(‘(‘tiﬂll, but the law of
combination is less simple than that of
the composition of forces; such combi-
nations will be treated subsequently.
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CoMPONENT STRESSES.—ADY lmssible

state of stress defined by principal
stresses whose intensities are p, and
py on the planes xz and yy respect-
ively is equivalent to a combination
of the fluid stress whose inlensity is
+3(p= + Py
and yy respectively, and the right shear-

) on each of the planes zz

ing stress whose intensity is + 4 ( pz — 2y )
on 2z and —3(pz — py ) on yy.

For as has been shown, the resultant
stress due to combining the fluid stress
with the right shearing stress is found
by compounding their principal stresses,
Now the stress on zz 18

%(_[n: +p ) ﬁ(/ x — Py ):1:5
and that on yy is

W pz + 0y ) =3 pe—py )=py

and hence these systems of principal
stresses are mutually equivalent

In ease p, = 0, the stress is complete-
ly defined by the single principal stress
P, which is a simple normal compression
or tension on zz. Such a stress has been
called a simple stress.

A fluid stress and a right shearing
stress which have equal intensities com-
bine to form a simple stress.
| It is seen that the definition of a
gtate of stress by its principal stresses,
is a definition of it as a combination of
two simple stresses which are perpendicu-
lar to each other.

There are many other ways in which
any state of stress can be sepumtcd into
component stresses, though the separa-
tion into a fluid stress and a right shear-
ing stress has thus far proved more use-
ful than any other, hence most of our
greaphical treatment will depend upon it.
It may be noticed as an instance of a
different separation, that it was shown
that the tangential components of the
stresses on any pair of planes xx and yy
at right .un'lu\ to each other are of equal
intensity  but. opposite sign. These
tangential components, then, together
form a right shearing stress “how prin-
cipal pluu\ and stresses z’z’ and y'y'
bisect the angles between 2z and YV,
while the normal components together
define a state of stress wlmw ])l"lll(llldl
stresses are, in general, of unequal in-
 tensity.
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Hence any state of stress can be sepa-
rated into componeént stresses one of
which is a right shearing stress on any
two planes at right angles and a stress
having these planes for its principal
planes.

The fact of the existence of conjugate
stresses points to still unother kind of
separation into component, stresses.

INTERNAL STRESS

PROBLEMS IN PLANE STRESS,

ProsrLeM |.—When a state of stress is
defined by principal stresses which are
of unequal intensity and like sign, 7.2, in
a state of oblique stress, to find the in-
tensity and obliquity of the stress at o
on any assumed plane in the direction
LU,

l"ll;. s

In Fig: 7 let the principal stresses at o] that a state of stress defined by its two

be @ on yy and & onwr 7 and on some

principal stresses « and 4 can be separ-

convenient seale of intensities let oa=a | ated into a fluid stress having a normal

and ob=5, Let up show the direction
of the plane through ¢ on whieh we are
to find the stress, and make on perpendic-
ular wv. Make o¢'=o0a and ob’=o0b.
Bisect, a'd’ at n, then on=4§(a+25) and
na' =4(a—>). Make zol=zon and com-
plete the paralellogram wnomr; then is
the diagonal or=r the resnltant stress
on the given plane in direction and in-
tensity,

The paint # can also be obtained more
simply by drawing &'r || @ and «'7 || yy.

We now proceed to show the correct-
ness of the constructions given and to

discuss several interesting geometrical |

properties of the figure which give to it
a somewhat complicated appearance,
which complexity is, however, quite un-
necessary in_actual construction, as will
be seen hereafter.

intensity #(¢+4) on every plane, and a
right shearing stress whose principal
stresses are +&(a—»b) and —4(a—b) re-
spectively.

Since the fluid stress causes a normal
stress on any given plane, its intensity is
rightly represented by uu:._l,(:/{»:/;),
which is the amount of force distributed
over one unit of the given plane. Since,
further, it was shown that a right shear-
ing stress causes on any plane a stress
with an obliquity such that the principsl
stress bisects the angle between its direc-

tion and the normal to the plane, and
causes a stress of the same intensity on
every plane, we see that om=4§(a—0)
represents, in direction and amount, the
force distributed over one unit of the
given plane which is due to the right

It has been shown!shearing stress.
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To find the resultant stress we have |

only to eompound the forces on and om,
which give the resultant or=r.

The _obliquity nor is always toward
the greater principal stress, which is here
assumed to be «.

It is seen that in finding » by this
method it is convenient to describe one
gircle about o with a radius of=3(a+0)
and another with a radius og==3(a—b),
after which any parallelogram #n can
be readily completed. Let nr and mr
intersect @ and yy in Ak and I respect-
ively; then we have the equations of
angles,

noh=nho=4kno, nok=nko==hno,
moi= /N.;“T-‘ﬁij.///w, :/«47,",—_:/«./'1'4.: 5,',,-, ag
hence hn=kn=on=4(a+ b)
cohk=a+ b,
and rh=1r/=ua, rh=ri=0>.

It is well known that a fixed point 7
on a line of constant length as ik=a+ b,
or iyy=a—>b describes an ellipse, and
such an arrangement is called a trammel.
If # and y are the coordinates of the
point 7, it 18 evident from the figure that
@=a cosan, y=>bsinwxn, in which
signifies the angle Retween xz and the
normal o7,

vy . g 11, =\
S '[—’,:1 is the equation of the stress
ellipse which is the locus of »; and ax is
then the eccentricangle of 7. - Also, since
noh=nho, nb'r=nrb"; hence b’r || xxz and
&'r || yy determine 7.

In this method of finding » it is con-
venient to describe circles about o with
radii @ and b, and from &’ and &’ where

the normal of the given plane intersects |

them find 7.

We shall continue to use the notation
employed in this problem, so far as ap-
plicable, so that future constructions
may be readily compared with this. Tt
will be convenient to speak of the angle
®on as ¥n, nor as nr, ete.

Pronrem 2.—When a state of stress is

defined by prineipal stresses of unequal
intensity and unlike sign

85

i.¢. in a state
of oblique shearing stress, to find the in-
tensity and obliquity of the stress at o
on any assumed plane having the direc-
tion uy,

In Fig. 8 the construction is effected
according to both the methods detailed
in Problem 1, and it will be atence ap-
prehended from the identity of notation.

Since @ and & are of unlike signs a+4-5
—on is numerically less than a—b=a'd’.

The results of these two problems are
expressed algebraically thus:
r=Xa+b)'+3(a—0b)"+ (e’ —b")cos 2en

r*=3}a*+ b+ (a*—b")cos 2 2n]
or, ¥=a" cos’zn+ b’ sin’aen.

F16. 8.

If » be resolved into its normal and
tangential components ot=n and rt=t

then, n=3[a+b+(a—>b)cos 2an],
\
| and,
t="4(a—>b)sin 2en=(a—>b)sin an cos xx.

or, n=a cos’an+ b sin'wn,

It is evident from the value of the
| normal component z, that the sum of the
normal componentson any two planes at
| right angles to each other is the same
fand its amount is @b thig is also a
general property of stregs in addition to
those previously enumerated.

a—b

4
Also tan nr=—=- =
" a cotxn+b tan on

The obliquity zr can also be found
| from the proportion
sin/nr : ¥{@—0) : i sin 220 : 1.

Tni the ease of fluid stress the equations
reduce to the more simple forms:

:/:/,:)’:/i’ {=0

For right shearing stress they are:
a= —b= 4-7, N= - a cos ™m,

t=-tasinrm, rn==2 zn.
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Hence any state of stress can be sepa-
rated into componeént stresses one of
which is a right shearing stress on any
two planes at right angles and a stress
having these planes for its principal
planes.

The fact of the existence of conjugate
stresses points to still unother kind of
separation into component, stresses.

INTERNAL STRESS

PROBLEMS IN PLANE STRESS,

ProsrLeM |.—When a state of stress is
defined by principal stresses which are
of unequal intensity and like sign, 7.2, in
a state of oblique stress, to find the in-
tensity and obliquity of the stress at o
on any assumed plane in the direction
LU,

l"ll;. s

In Fig: 7 let the principal stresses at o] that a state of stress defined by its two

be @ on yy and & onwr 7 and on some

principal stresses « and 4 can be separ-

convenient seale of intensities let oa=a | ated into a fluid stress having a normal

and ob=5, Let up show the direction
of the plane through ¢ on whieh we are
to find the stress, and make on perpendic-
ular wv. Make o¢'=o0a and ob’=o0b.
Bisect, a'd’ at n, then on=4§(a+25) and
na' =4(a—>). Make zol=zon and com-
plete the paralellogram wnomr; then is
the diagonal or=r the resnltant stress
on the given plane in direction and in-
tensity,

The paint # can also be obtained more
simply by drawing &'r || @ and «'7 || yy.

We now proceed to show the correct-
ness of the constructions given and to

discuss several interesting geometrical |

properties of the figure which give to it
a somewhat complicated appearance,
which complexity is, however, quite un-
necessary in_actual construction, as will
be seen hereafter.

intensity #(¢+4) on every plane, and a
right shearing stress whose principal
stresses are +&(a—»b) and —4(a—b) re-
spectively.

Since the fluid stress causes a normal
stress on any given plane, its intensity is
rightly represented by uu:._l,(:/{»:/;),
which is the amount of force distributed
over one unit of the given plane. Since,
further, it was shown that a right shear-
ing stress causes on any plane a stress
with an obliquity such that the principsl
stress bisects the angle between its direc-

tion and the normal to the plane, and
causes a stress of the same intensity on
every plane, we see that om=4§(a—0)
represents, in direction and amount, the
force distributed over one unit of the
given plane which is due to the right

It has been shown!shearing stress.
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To find the resultant stress we have |

only to eompound the forces on and om,
which give the resultant or=r.

The _obliquity nor is always toward
the greater principal stress, which is here
assumed to be «.

It is seen that in finding » by this
method it is convenient to describe one
gircle about o with a radius of=3(a+0)
and another with a radius og==3(a—b),
after which any parallelogram #n can
be readily completed. Let nr and mr
intersect @ and yy in Ak and I respect-
ively; then we have the equations of
angles,

noh=nho=4kno, nok=nko==hno,
moi= /N.;“T-‘ﬁij.///w, :/«47,",—_:/«./'1'4.: 5,',,-, ag
hence hn=kn=on=4(a+ b)
cohk=a+ b,
and rh=1r/=ua, rh=ri=0>.

It is well known that a fixed point 7
on a line of constant length as ik=a+ b,
or iyy=a—>b describes an ellipse, and
such an arrangement is called a trammel.
If # and y are the coordinates of the
point 7, it 18 evident from the figure that
@=a cosan, y=>bsinwxn, in which
signifies the angle Retween xz and the
normal o7,

vy . g 11, =\
S '[—’,:1 is the equation of the stress
ellipse which is the locus of »; and ax is
then the eccentricangle of 7. - Also, since
noh=nho, nb'r=nrb"; hence b’r || xxz and
&'r || yy determine 7.

In this method of finding » it is con-
venient to describe circles about o with
radii @ and b, and from &’ and &’ where

the normal of the given plane intersects |

them find 7.

We shall continue to use the notation
employed in this problem, so far as ap-
plicable, so that future constructions
may be readily compared with this. Tt
will be convenient to speak of the angle
®on as ¥n, nor as nr, ete.

Pronrem 2.—When a state of stress is

defined by prineipal stresses of unequal
intensity and unlike sign
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i.¢. in a state
of oblique shearing stress, to find the in-
tensity and obliquity of the stress at o
on any assumed plane having the direc-
tion uy,

In Fig. 8 the construction is effected
according to both the methods detailed
in Problem 1, and it will be atence ap-
prehended from the identity of notation.

Since @ and & are of unlike signs a+4-5
—on is numerically less than a—b=a'd’.

The results of these two problems are
expressed algebraically thus:
r=Xa+b)'+3(a—0b)"+ (e’ —b")cos 2en

r*=3}a*+ b+ (a*—b")cos 2 2n]
or, ¥=a" cos’zn+ b’ sin’aen.

F16. 8.

If » be resolved into its normal and
tangential components ot=n and rt=t

then, n=3[a+b+(a—>b)cos 2an],
\
| and,
t="4(a—>b)sin 2en=(a—>b)sin an cos xx.

or, n=a cos’an+ b sin'wn,

It is evident from the value of the
| normal component z, that the sum of the
normal componentson any two planes at
| right angles to each other is the same
fand its amount is @b thig is also a
general property of stregs in addition to
those previously enumerated.
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Also tan nr=—=- =
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t=-tasinrm, rn==2 zn.
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And for simple stress they become:
b=0, r=a cos rn, n=a cos’rn,
t="a sin rn cos rn, TA=2n.

ProBLEM 3.—In any state of stress

defined by its principal stresses, @ and 5,

to find the obliquity and plane of action

of the stress having a given intensity r

intermediate between the intensities of

the principal stresses,
To find the obliquity »r and the diree-
tion uw let Fig. 7 or 8 be constructed as

follows: assume the direction u# and its |

normal on, and proceed to determine the
position of the principal axes with re-
gpect to it. Lay off oa’=a, 0b'=b, in
the same direction if the intensities are
of like sign, in opposite directions if un-
like. Biseet a'd’ at n, and on @b as a
diameter draw the ecirele «'rd’. Also,
about 0o as a center and with a radius
or=r draw a circle intersecting that pre-

viously drawn at r; then is »nr the re-|

quired obliquity; and xx| &'r, yy |l a'n
are the directions of the principal stresses
with respect to the normal on.

Prosrem 4.—In a state of stress de-
fined by two .given obliquities and in-
tensities; Lo find the principal stresses,
and the relative position of their planes
of action to each other and to the
principal stresses.

Fra.

In Fig. 9 let nr, nr, be the given
obliguities measured from the same nor-

mal on, and or,=r,, or,=r, the given in-
tensities. As represented in the figure
these intensities are of the same sign, but
&honld they have different signs, it will
|be necessary ‘to measure one of them
(from o in the opposite direction, for a
change of sign is equivalent to increas-
|ing the obliquity by 180°, as was pre-
\wusl.\ shown.

Join 7, and bisect it by a perpendicu-

| > .
lar which intersects the common nor-

mal at n. About n describe a cirele

trr,a'd’; then oa'=a, ob'=d, a'r,, b'r,

are the directions of the principal stresses
with respect to r, and b'r,, a'r, with re-

| spect to 7, i.e., ob'r,=an, "and ‘ob’ y,=an,

s nan=ob'r,—ob'r, =r b’y =r,a'r,

‘1 case the given u])lhllutus are of op-
posite sign, as they must be in conjngate

| stresses, for example, it is of no conse-

quence, in 80 far as obtaining principal

| stresses @« and & is concerned, whether

these given obliguities are constructed on
the same side of on, or on opposite sides
of it; for a point on the opposite side of
on, asr,’, and symmetrically situated with
respeet.to r,, must lie on the same circle
about n. But in case opposite obliquities
are on the same side of on we have
n i, =ob'r,

It is unnecessary to enter into the
proof of the preceding construction as
its correctness is sufficiently evident from
preceding problems.

"P' '.J;'i'.. - :;'};'i'__’.

The algebraic lul.umnshlpc may be
written as follows

|$(a—b)'=%(a+8)"+r’—r (a+b)cos nr,

t(a=d)'=}(a+d)+r, —r(a+b)cosnpr,
(@+0)(r,cos nry —rcos nry=r'—r}
Also  (a—Dd)cos 2zn, + a+ b=2rcos nr,
(@—b)eos 2wn, +a+b=2r cos nr,
which last equations express twice the
respective normal components, and from
them the values of xn, and an, can be
computed.
Prosrey 5. —If the state of stress be
defined by giving the intensity and
obliguity of the stress on one plane, and

its inclination to the principal stresses,
and also the intensity of the stress ona
second plane and its inclination to the
principal stresses, to find the obliguity of
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the stress on the second plane, and theF
magnitude of the principal stresses.

Let the construction in Fig. 9 be|
effected thus: from the common normal
on lay off or, to represent the obliquity|
and intensity of the stress on the first
plane; draw od so that nod=aun — L0,
the difference of the given mc]nmnmm
of the normals of the two planes;
through #, drawr », perpendicular to od;
about o as a center (luwul)e a circle with
radius 7, the given Iintensity on 1hc‘
seumd plane, and let it intersect rr, at
r, orr,', then is nr, the required obhqnlt_\‘.
This i 15 e\ldcnt because

.Tli‘:u/)')'] :%rl')zl',‘, xn, :711/')',;::1rrl'//r:,

o nod=on¢ :i(f_m}'l%—nnl',)

=180"— (an,—%n,)

If 2n, and an, are of different sign
care must be taken to take their alge-
braic sum.

The construction is completed as in
Problem 4.

ProrreEyM 6,—In a state of stress de-
fined by two given obliquities and eitheér
both of the normal components or both
of the tangential components of the in-
tensities, to find the principal stresses
and the relative position of the two
planes of action,

If in Fig. 9 the obliquities nr,, nr,, and
the normal components of =n, of,=n,
are given, draw perperdiculars at ¢, and |
{, intersecting or, and or, at r, and 7, re-|
spectively.

If the tangential components ¢7,=¢,|
and ¢, =¢, are given instead of the nor- |
mal cmn]mllcnh draw at these distances |
parallels to oz w huh intersect or, or, at
7,1y respectively. Complete the con-
struetion in the same manner as before.

Propreyx 7.—In a state of stress de-
fined by its principal stresses @ and &, to
find the positions and obliquities of the
stresses/on two planes at right angles to
each other whose stresses have a given
tangential component Z.

Fig. 9, slightly changed, will admit of
the reqmwd construction as fnllmu lay
off on the same normal on, oa'=a, ob’ =0
bisect a’d’ at =, erect a perpe mhcul‘u
ne=?¢ to @'d’ at n; draw through ¢ a
parallel =, to on interseecting or, and

or,at r, and 7, respectively. Then the
stresses or,=r,, or,=r, have equal tan-

| gential components, and as previously
[ shown these belong to planes at right

angles to each other provided these tan-
gential components are of opposite sign.
So that when we find the position of the
planes of action, one obliguity, as nr,,
must he taken on the other side of on,
|as nr,’. The rest of the construction is
the same as that already given.

ProsLEM 8.—In a state of stress de-
fined by its principal stresses, to find the
intensities, obliguities and planes of
action of the stresses which have maxi-
mum tangential components,

In Fig. 9 make oa'=a, ob'=0> and
describe a circle on @'’ as a diameter;
then the maximum tangential component
is evidently found by drawing a tangent
at 7 paralle] to on, in which case i=a—0b,
and 78, ra’ the directions of the
principal stresses make angles of 45°
with on, which may be otherwise stated
by saying that the planes of maximum
tangential stress bisect the angles be-
tween the prineipal stresses; or con-
versely the prineipal stresses bisect the
angles between the pair of planes at
right angles to each other on which the
tangential stress is a maximum.

It is unnecessary to extend further the
list of problems involving the relations
just employed as they will be readily
solved by the reader.

In particular, a given tangential and

| normal componént may rrpldvc a given

intensity and Ul}]h]lll!,y on any plane.

We shall now give a few problems
which exhibit \pcu‘l”\ the distinction
between states of stress defined by
principal stresses of like sign and by
principal stresses of unlike sign, (7.e, the
distinction between oblique stress and
oblique shearing stress).

Prosrey 9.—In a state of stress de-
fined by like principal stresses, to find
the inclination of the planes on which

+the obliquity of the stress is a maximum,

to find this maximum obliquity
intensity.

In Fig. 10 let oa'=a, ob'=b, the
principal stresses; on «’4’ as a diameter
describe a circle; to it draw the tangent
or,; then =zr, is the required maximum

and the
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obliquity and or, the required intensity.
It is evident from inspection that in the
given state of stress there can be no
greater obliquity than #nr,. The direc-
tions of the principal axes are &'r,, a7,
as has been before shown.

a—b
— — ——co08 2an, r.'=ab.

llfb 59

sin nr,

| r,=a cot en=> tan @n, .. a=b tan’zn

The normal and tangential compo-

There are two planes of maximum |nents are:

obliquity, and or represents.the second;
they are situated symmetrically about
the principal axes.
Bisect nr, by the line od, then
» r)u'rc:]/n Soonr,=2yn, but
onr, 4 nor,=90° or, 2yn+nr,=90°
nr 4 yn=45", but

ur]r“:r_[m/'-}— oa"d ;. odr --45.,

hence the line bisecting the angle of
maximum oblignity bisects  also the
angle between the principal axes. This
is the best test for the correctness of the
final position of the planes of maximum |
obliquity with reference to the pxmupdl\
axes,
FiG. 10.

_r(a—d)

a+b

ProsrEM 11.—When the state of
stress is defined by like principal stresses,

| to find the planes of action and intensi-
| ties of @ pair of conjugate stresses having
| a given common obliquity less than the
| mggimum,

Fig. 10 let nr,=nr, be the given
obliguity; describe a circle on @'b’ as a
diameter; then or,=r, or,=v, are the
required intensities, T he lines fz'rl, b'r,
show the directions of the principal axes
with respect to or,, and a'r’, ¥'%’, with
respect Lo «';r,':nr,. The ubliquilics of
conjugate stresses are of opposite sign,
and for that reason »,is employed for
finding the position of the priucipal
stresses. - The algebraic expression of
these results can be obtained at once

| from those in Problem 4.

ProereM 12,—When the state of stress
i8 defined by the intensities and common
obliquity of a pair of like conjugate

| stres<es, to find the principal stresses and
| maximum obliquity.

This is the case of Problem 4, so far as
|finding the principal stressesis concerned

| and the maximum obliquity is then found

Va4
<

Prosrem 10,—In a state of stress de-
fined by its maximum obliquity and the
intensity at that obliquity, to find the
principal stresses, |

In Fig. 10 measure the obliquity nr, |
from the normal oz and at the extremity |
of or,=r, erect a perpendicular inter-
secting the normal at . Then complete
the figure as before. The principal
axes make angles of 45° at o with od
which biseets the nl»li«lllil\' nr..

The algebraic statement of Problems
9 and 10 is:

| by Problem 9. The construction is given
{in Fig. 10,

Propuex 13, —Let the maximum ob-
liquity of a state of oblique stress be
given, to find the ratio of the intensities
of the pair of conjugate stresses having
a given obliquity less than the maxi-
mum,

In Fig. 10 let ny, be the given maxi-
mum obliquity, and zr, the given ob-
liguity of the conjugate stresses. At
any convenient painton org, as r, erect

|the perpendicular rn, and about n (its

point of intersection with on) as a center
describe a circle with a radius »r, which
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cats nr, at r, and 7,3 then or-<or,=r,
=, 18 Lhe 10(111110.1 ratio,

1[ must be noticed that the secale on |
which or, and or, are measured is un-
known, for the magnitude of the prinei-
pal stresses is unknown although their
ratio is ob'o0a’. In order to express
these results in formuls, let » represent
gither of the conjugate stresses, then as
previously seen

(a—0)'=
or={(a+b)eos nrx
[(2+ &) cos™nr—4ab]*

Call the two values of 7, and 7,;
and as previously shown ro=rmr,; also

cos. ar,=7r,+3(a+0b) .

r, cosnr — (cos®nr—cos*nr. )%

¥ (a+0)"+r*—r(a+b) cos nr

r. cosnr 4+ (cos’nr—cos'ar,)*
When 7r=0 the ratio becomes

b a7l —Ssin. 12,

a 1+4sin nr,

ProprLem 14.—In a state of stress
defined by unlike principal stresses, to
find the inclination of the planes on
which the stress is a shear only, and to
find its intensity.

In Fig. 11 let ob’=b, the|
given ]vrmupal stresses of unlike sign;
ou a'l/ as a diameter deseribe a circle;
at o erect the perpendicular or, cutting
the circle at r,; then 1s ur‘:)n the re-
quired intensity, and &'r,, @'r, are the di-
rections of the prmc)p')l xu’owcq

It is evident from inspection that tlun
i8 no other position of 7, except gt
which will cause the stress to reduce to
a shear alone. Hence as previously
stated the principal stresses bisect the
angles hetween the planes of shear.

’
Ou"=d,

Pronrey 15.—1In a state: of stress de-
fined by the position of its planes o
shear and the common intensity of the
stress on these planes, to find the prinei-
pal stresses.

In Fig. 11 let or,=r

o

, the common in-
- o? ¥
tensity of the shear, and orb'=uaxn,
or.@'=yn the given in('linninnﬂ of a
plane of shear; then oa’=a and ob'=b,
the }y”m ll' al stresses,

The algebraic statement of Problems

| 14 and 15, when n, denotes the normal
to a plane of shear, is:

Fia, 11

a+b

3 L
— —C08 22n,, l'.“:.—(l’::la

a—0b

r.=4-a cotzn,= 4 b tan en a=-htan’zn,

| ProsreyM 16.,—When the state of
stress is defined by unlike principal

1 stresses, to find the planes of action and
| intensities of a pair of conjugate stresses
hzumg: any given obliquity.,

In Fig. 11 let nr, be the common ob-
| liguity, oa'=a, ob’ =5, the given princi-
yal stresses. On a0/, as a diameter,
describe a circle ullvllng or, at r, and 73
then or =r,, or,=r, are the required in-
tensities. \l«n since the obliguities of
| (“)HJH"&\U' stlcssm are of unlike sign, the
lines 7 a’, 7 /% show the directions of the
| prmu;ml mqus with respect to on,
and r.e’, r,b" with respect to on,.

Prosrex 17.—When the state of stress

is defined by the intensities and common

obliquities of unlike conjugate stresses,
| to find the principal stresses and planes
of shear.

In finding the principal stresses this
problem is constructed as a case of
Problem 4, and then the planes of shear
are found by Problem 14, The con-
struction is given in Fig. 11.

Prosrex 18.—Let the position of the
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planes of shear be given in a state of
obligue shearing stress, to find the ratio
of the intensities of a pair of conjugate
stresses having any given obliguity.

In Fig. 11 at any convenient point r,
make ord'=mn, ora'=yn, the given
angles which fix the position of the

E ry s -
planes-of shear.  On &'6’ as a diameter
describe a cirele; make zr, equal to the
common _obliquity of the  conjugate
stresses; thenis or <-or,=r -7, the ratio
required.

The ratio may be expressed as in

roblem 13, and after reducing by the
Probl 13, and_ after reducing by the
relations
r>=:—-ll}1’ )':—:—%\{(!% ll‘):—tllll'.'!'-r”'
we have,

r, cos nr + (cos’nr 4 tan’2an )%

r, ~ ©os nr— (cosnr--tan‘2an )
When nr=0 the ratio becomes
@ 1+ co8 22n,
b 1—cos 22n.
COMBINATION AND SEPARATION OF STATES
OF STRESSK.

Prosreym 19.—When two given states

of right shearing stress act at the same |

point, and theéir principal stresses have a
given inclination to.each other, to com-
bine these states of stress and find the
resultant state,

In Figy, 12 let oz, 0#, denote the di-
rections of the two given principal +
stresses, and let a4 ,=on, @, =on, repre-

Fig. 12

\\‘

INTERNAL STRESS

sent the position and magnitude of these
| principal stresses. Since the given
stresses are rvight shearing stresses
a,=—b, a=—>~h and the respective
planes of shear bisect the angles between
the principal stresses. Now it has been
previously shown that the intensity of
the stress cansed by the principal stresses
a,=—>b, is the same on every plane
|traversing o the same is true of the
| principal stresses @,=—4, : hence, when
combined, they together produce a stress
lof the same intensity on every plane
traversiug o. This resultant state of
stress evidently does not cause & normal
stress on every plane, hence the result-
apgk state must be a right shearing stress,

t ‘us find its intensity as follows:
THE principal stresses @, =—»&, cause a
stress on, on the plane ¥y, and the prinei-
pal stresses a,=—¥&, canse a stress om, on
the same plane in sneh a direction that
aom, = ox,, as has been before shown.
Complete. the parallelogram n omr, ;
then oy, represents the intensity and di-
rection of the stress on y%,. DBut the
principal stresses bisect the angles be-
tween the normal and the resultant in-
["Hrit)’, !}n'l'l'furu, ox, which bisects
#,0r,,18 the direction of a prineipal stress
of theresultant state, and or=or,=a is
the intensity of the resultant stress on
any plane throngh o.

The same result is obtained by finding
the stress the plane .y, in which case
we have on,=a, acting normal to_the
plane, and om,=«_Jdn such a direction
that z om =wm,02,. The sides and angles
of NLON T, and i on i, are c\'i\lmall_\'
equal, hence the resultants are the same,
or,=or,=a, and ox bisects @005
| The algebraic solution of the problem
is expressed by the equation,

.I"—‘/r' £ ? - ‘-“’I‘". cos2rax :

from which @ may be found, and, finally:
the position of or is found from the pro:
portion,

8in 2o T a, TSI 2k, b, LIS 2% 2y i ay

Progrex 20.—When any two states

of stress, defined by their principal
stresses, act at the same point, and their
principal stresses have a given inclina-
tion to each other, to combine these
states and find the resultant state.

Let a, b, and a,, b, be the given prin-
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cipal stresses, of which @, and a, have and the principal stresses bisect the
the same sign and are inclined at a angles between the given planes.
known angle .2, but in so taking ,| Separate the remaining state of stress
and @. they may not both be numerically |into the fluid stress + 4 (an k5 by ) 3m-l
greatér than ’:,,-mnl b, respectively. the right flw:‘.l‘{llg stress _‘-\ (22 — Oa);
- Separate the pair of principal stresses and \-nn.ﬂnm\- this last right shc:}rmg
a b, into the fluid stress +13 a,+b,), and | stress with thix.t llll_l‘ to the t:'mg_vﬂcntml
the right shearing stress =+3(«,—b,) as| components. The final 1‘(‘5111(‘1..~x.1uun\i,
has been previously done; and in a simi- | just as in P{‘ﬂlxlvnl 20, by combining the
lar manner the prineipal stresses «, b, fluid stress 3(an + by ) with the resulting
into +4(a,+56,) and +4(a,—b,). Then | right shearing stress. :
the combined fluid stresses produce a| This ]'I‘l:‘)h.‘nl can also be solved in a
fluid stress of +3(w,+5,+«,+54,) on| manner similar to that employed in
every plane through o; and the com-|Problem 6. ;
bined right shearing stresses cause a| The result is expressed by the equa-
stress whose intensity and position can | tions,
be found by Problem 19. g

The total stress is obtained by n-
1 1 r ~ b 1 8 ‘)>‘i 51 bl ra.

Of course, any greater number of denoted by @z, is in this case 45~ .. €08
states of stress than two, can be com- | 2x2,=0
bined by this problem by combining the | . , an + ba + [(2a—bn)* + ba’]%)
resultant of two states with a third state =
and so on.

The algebraic expression of the com- | sin, 2w, : 2a, 1 : 8in. 22, @ dy — b
bination of any two states of stress is as “x 1
follows : but 2aw, =90 —20%, ,

a+b=an + b

) "y

(a—b)'=(an — bn)" +4a;’

b b=4(an 4 ba—[(aw— ba)"+4a:']%)

1 b
?

(a+-D)=(a. +b +a.+D.), J.otan 2o =2a;p ~n (an — On ).
\ 1 3 . T

\2 ‘roBLEM 22.—In a state of stress
((l—'lll::((l]——/‘ )? ?'("‘* /“)2 ‘r]uli i i 8 e« .
+9(a.—b) (a,—b.) cos 2w, defined by two simple stresses which act

at the same point and have a given

L a=3%(a, 4 /;l—%-:l. 4 /;__72- l(n‘—/»:)"

+ («l_;;/»;';’-f-z(u' b )(a,=h)cos 2z.2, l'-'),

inclination to eaeh other, to combine
., | them and find the resnltant state.
b=%(a, + b, +a,+ b,— L(_u:—l;‘)' +(@,—0,)

g \ It has been previously mentioned that
+2(a, ;/A\ H‘H.—/J')\'HS '_'.(‘:.r" \ 2),

any simple stress as @, can be separated
in which @ and % are the resultant prin-!into the fluid stress +ia, and 1'!w right
cipal stresses. Also, sin 2z e, —b, shearing ‘stress =Eda,, as it i simply a
case in which & =0. Hence the simple
stresses «,, a, can be combined as a spe-
Propriat 21.—In # state of stress|cial case of Problem 204 in which 4, and
b. vanish, The results are expressed
:ligvlﬂ':ziv:l“_\‘ ag follows:

22 Bin 20w, @, — b, i:8in 2wz, a—b.

defined by the stresses upon two planes

at right aneles to each other, to find the
e ) l"é‘/I:(/_‘;ll‘
(./—’,.)’:4!!’ ;u:‘.j. 2a,a, cos 2&

principal stresses.

Let the given stresses be resolved into
tangential and normal components; it
has been shown that the tangential com- - ; . .
ponents upon these planes ara of equal | = Since 4 simple compression or tension
intensitv and unlike sign. Let the in-| produces a simple stress in material, this
tensity "of the lilnj_’('nli-:ll component be problem is one of f)'\~fix1(3|}t. oceurrence,
a, and that of the normal compoenents | for it treats !hc superposition uf_t\\'.lw,
a, and b, respectively. The tangential and ]n-nu: nt' any number of simple
components together constitute a state | stresses lying in l]n_- same ]xlm}('.
of right shearing stress of which the| This problem is of such importance
given planes are the planes of shear, that we think” it useful to call attention

el/n:.‘.n\u,l l—cos 2z.2,)

uf»:(!_ll] sin’./".r‘...
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to another solution of it, sugoested by
the algebraic expressions just found. ~
In Fig. 13 let

; 7 nr
ova=a,ob=a - or'=aaa—=oi

Now, if oir=x2,, then or=0" sin 2.2,

. ¥ ’ ' / T o
Lot =o0a ‘/:’; =0 :1’/,’/, Sinaxax

&0 0a’ =a and o =b;

. Fig 13

This golntien is treated more fully in
Problem 23: :

Pronres 23.—When & state of stress
is defined by its principal stresses, it is
required to separate it into two simple
stresses haying a giyen inclination to
each other.

It was shown in Problem 22 that

a+b=a,+a, and ab=aa, sinz2

Let us apply these equations in Fig.
13 to effect the required construction.
Make oa'=a, ob"=05j5 then r/'/:':.'/, +
At o erect a perpendicular to a’d’ cut-
ting the eircle of which 4’4" is the dia-
meter at r; then or'=ah, the product of
the principal stresses. Also make a’oi
=ux, the given inclination of the sim-
ple stresses, and let »i || a'd’ intersect o2

at i; then or=oi sin 22, .. 0i' = a,q,,
Make oj=ai and draw ;7 || a’5’, then

P . : —
o'r'=oi; and o'a’ o'l =0"",

Soa=a, :lllt] 'l"};':fl

9

the required simple stresses. This con-
struction applies equally whether the
given principal stresses are’ of like or
unlike sign, and also equally whiether
the two simple stresses are r'cquire\i to
have like or unlike signs.

» T - : y

ProeLEM 24, —Wheri a state of stress
is defined by its principal stresses, to
find the inclination of two eiven simple

stresses into which it can be separated. |

THE THEORY OF INTERNAL STRESS

In Fig. 13 let oa’=a, ob'=d be the
intensities of the principal stresses, and
o'a’=a, o'l/=a, be the intensities of the
given simple stresses, It has been
already shown that a+b=a,+a,. Draw
the two I'L’T!.'L‘l](,ﬁt‘lll:}I'!-' or and o'f’:
through » draw ri || a'd’; make oi=g)
=o's'; then is oir=ioa’ the required
inclination, for it is such that

ab=a.a, sin’z.z.

Prosreym 25.—To separate a state of
[right shearing stress of given intensity
|« L X
|into two component states of right shear-
ing stress whose intensities are given, and
to find the, mutual inclination of the
pglpcipal stresses of the component
| st¥es,
| . . !

In Fig. 12, abont the center o, deseribe
circles with radii on, =a, on,=a, the
|14 ¢ 1, 2 )
| Ziven component intensities; and also
|about oat” a distance or,=a, the given
| intensity. Also describe circles with radii
\l‘l///\_—._fw:. 7 =0n, Cll[lillg‘ the first
mentioned eireles at 7, and 7. then is
sn,0m =wze, the required mutnal inclina-
tion.of the principal stresses of the com-
ponent states, This is evident from
considerations previously adduced in con-
nection with this figure. The relative
position of the principal stresses and
principal component stresses is also read-
ily found from the figure.

Pronrem 26.—In a state of right
shearing stress of given intensity to seps
arate it into two component states of
right shearing stress, when the intensity
of one of these components is given and
also the mutual inelination of the prinei-
pal stresses of the component states,

In Fig. 12, about the center ¢ describe
a circle 7 with radius or=a, the inten-
sity of the given right shearing stress,
and at »,, at a distance on =a, from o
which is the intensity of the given com-
ponent, make &7 r. =2 2, twice the
given mutual inclination ; then is nr,

- o 3
.tl.‘v distance from #, to the circle #»/the
mtensity of the required component
stress. The figure can be completed as
was done previously,

It is evident, when the component @
exceed a, that there is a certain maxi-
mum value of the double inclination,
which can be obtained by drawing n ¥,
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tangent to the circle 77, and the given in-
clination is subject to this restriction.

Other problems concerning the com-
hination and separation of states of
siress can be readily solved by methods
like those already employed, for such |
problems can be made to depend on the |
eombination and separation of the fiuid |
stresses and -right shearing stresses into
which every state of stress can be sep-
arated.

PROPERTIES OF SOLID STRESS.

We shall call that state of stress at a
point @ solid stress which causes a stress
on every plane traversing the point. In
the foregoing discussion of plane stress
no mention was made of a stress ongghe
plane of the paper, to which the plane
stress was assumed to be parallel. It is,
¢vidently, possible to combine a simple
stress perpendicular to the plane of the
paper with any of the states of stress
heretofore treated without changing the
stress on any plane perpendicular to the
paper.

Hence in treating plane stress we have
already treated those cases of solid stress
which are produced by a plane stress
gombined with any stress perpendicular

to its plane, acting on planes also per-|

pendicular to the plane of the paper.

We now wish to treat solid stress in a
somewhat more general manner, but as
most practical cases are included in plane
stress, and the difficulties in the treat-
ment of solid stress are much greater
than those of plane stress, we shall make
a much less extensive investigation of its
properties.

Coxsucare StrRESSES,—Let xx, yy, 22
be any three lines through o; now, if
any state of stress whatever exists ato,
and zz be the direction of the stress on
the plane yoz, and yy that on zoz, then
18 zz the direction of the stress on 2oy’
i.e., each of these three stresses lies in
the intersection of the planes of action of
the other two.

teasoning like that employed in con-
nection with Fig. 1, shows that no other
direction than that stated could cause
internal equilibrinum; but a state of stress
is & state of equilibrium, hence follows
the truth of the above statement.’

Taxcenrian ComroNents.—Let =,
vy, zz be rectangular axes through o ;
then, whatever may be the state of stress
at o, the tangential components along
and yy are equal, as also are those along
yy and zz, as well as those along zz and

The truth of this statement flows at
once from the proof given in connection
with Fig. 3.

It should be noticed that the total
shear on any plane zoy, for example, is
the resnltant of the two tangential com-
ponents which are along 2z and yy re-
Sl)c\fli\'&]}‘.

SraTe oF STrREss.—Any state of solid
stress at ¢ is completely defined, so that
the intensity and direction of the stress
on any plane traversing o can be coms=
pletely determined, when the stresses on
any three planes traversing 0 are given
in magnitude and direction.

This truth appears by reasoning simi-
lar to that employed with Fig. 4, for the
three given planes with the fourth en-
close a tetrahedron, and the total dis-
tributed force acting against the fourth
plane is in equilibrium with the resultant
of the forces acting on the first three.

PrixcreAn SrrEssEs.—In any state of
solid stress there is one set of three con-
jugate stresses at right angles to each
other, i.c. there are three planes at right
angles on which the stresses are normal
only.

Sinee the direction of the stress on any
| plane traversing a given point o can
lonly change gradually, as the plane
throngh o changes in direction, it 18
ovident from the directions of the
stresses on conjugate planes that there
must be at least one plane through o on
which the stress is normal to the plane.
Take that plane as ti!v plane of the
paper; then, as proved in plane stresses,
there are two more principal stresses
lying in the plane of the paper, for the
stress normal to the plane of the paper
has no component on any plane also
lwrpcmliuulﬂr to the paper.

Frum Stress.—Let the stresses on
three rectangular planes throngh o be




normal stresses of equal intensity and
like sign; then the stress on any plane
through o is also normal of the same in-
tensity andrsame sign.

T'his is seen to be true when we com-
bine with the stresses already acting in
Fig. 5, anothersstress of the-same inten-
sity normal to the plane of the paper.

RicaTr Ssrariye Sreess.—Let  the

&
through o be ‘normal stresses of equal

intensity, but one of them, say the onel

along o, of sign unlike that of the other
two; then the stress on any plane through
o, whose normal is 2'2’, is of the same
intensity and lies in the plane zoz’ in
such a direction 7 that 2z and the plane
¥% bisect the angles in the plane 2o’ be-
tween rr and its plane of action, and
rox! respectively:

The stress parallel to. yz is a plane
fluid stress, and eauses therefore a normal
stress on the plane zox’, Hence the re-
sultant stress is in the direction stated,
as was proved in Fig, 6.

COMPONENT STATES OF STRESS. Any
state of solid stress, defined by its prin-

cipal stresses ah¢ along the rectanglar

axes of @y respectively, is equivalent to
the combination of three fluid stresses,

as follows:

_l;'v/( t /-’) :il“ll'_; 2 and Yy— (2 4 /;) ;ﬂung z:
$(c+a) along z and ®,—4(c+«) along y;
3(5 +¢) along y and 2,—4(b+¢) along y;
For these together give rise to the fol-
lowing dombination:
Ha+b)+4(c+a)—4(b+c)=a, along 2 ;
t(a+0)—4(
5(/; +50)+ 4

e+a) +3(b4e)=0, 11!1-!1(_: v,

{
(¢4a)+4(b+e)=¢, along -

In case 6=0 and ¢==0 this is a simple
stress along 2.

ComPONENT STRESSES,—Any state of
solid stress defined by its principal
stresses can also be separated into a fluid
stress and three right shearing stresses
as follows:

Ha+b+e)along z, y, 2;
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Ha—b—e) along @, and
—3(@ -b—c¢) along » and z ;

+(b—v—a) along ¥, and
—3(b—e—a) along zand x ;

(¢ —a—10) along z, and
—%(e—u—2>) along x and y ;
It will be seen that the total stressbs
along x y z are @ b ¢ respectively. This
system of component stressesis remarka-

| ble because it is strictly analagous in its
stresses on  three - rectangular | planes|

geometric relationships to the trammel
method used in plain stress,. 'We shall
simply state this relationship without
proof, as we shall not use its properties
1n our construction.

If the distances pa.=a, pb=0b, pe,=e
h*uid off along a straight line from the
pomt ., -and then this straight be moved
so that the points «, b ¢, move respec-
tively in the planes yz zx, xy ; then p
will deseribe an ellipsoid, as is well
known, whose principal semiaxes are
along xyz and are abe respectively.
Now the distances pa . pb, pe,, may be
laid off /in the same direction from p or
in different directions; so that, in all,
four different combinations ean be made,
either of which will describe the same
ellipsoid, But the position of these
four generating lines through any as-
sumed point x ¥ z, of the ellipsoid is such
that their equations are

a b

(x— X, 1= -+ - \y—¥ )=
i »( : :

Now if the fluid stress }(a+0+c)=0r
be laid off along the normal to any plane,
i.e. parallel to that generating line which
in the above equation has all its signs
positive, and the other three right shear-
ing. stresses r 7, ra, ne be-laid, off
successively parallel to the other generat-
ing lines, a8 was done in plane stresses,
theline o, will be the resultant stress on
the [l!:ll\l'.

PROBLEMS IN SOLID STRESS,

Prosrey 27.—~In any -state of stress
defined by the stresses on three rectangu-
lar planes, to find the stress on any given
plane.

Let the intensities of the normal com-
ponents along &y z be a, bye, respect-
ively, and the intensities of the pairs of
tangential components which lie in the
planes which interseet in @ y z and are
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perpendicular to those axes be a; b; ¢; re-
spectively, €.g., @; is the intensity of the|given plane cut the axes at xyz,; then

In Fig. 14 let a plane parallel to the

tangential component on xoy ulnng ¥ OT| the total forces on the area XYz, ﬂl\mg

its equal on xoz along =

XY 2,0, =Y ,0%, . Up + X,0¥,. by + 2,0%.C

Y20, =Y,08, . ¢t + X0, . At + 2,0%,.0n

Y20 =Y 08, . ,1[ X 0Y, . Cn + 2,0%,.0¢

in which « ¢ are the intensities of the
components of the stress on the plane
v,y .z, along xyz respectively. - Now
Y02, - X Y Z,=CO08 XN
z.0x x,Y,2, =CO8 YN

X0y, XYz =C082n,
S G, =11, CO8 XN - ’l, . GOS8 zn ¢, COS Yn
b, =4 008 X0+ @y . 008 21+ by COS Yy

¢, =0y COB X7+ 0y . COB 21+ 1y COS Y12
L} L >

and »’=a,*+5*+¢’ therefore the result-
ant stress » is the diagonal of the right
parallelopiped - whose edges are #.b.¢.
In order to construct @b, it is only
necessary to lay off @, b, e, @b co along
the normal, and take the sums of such
projections along xyz as are indicated in
the above values of a0 ¢..

Thus, in Fig. 14, let
traces of a plane, and it is
construct the stress upon a plane parallel
to it through o.

xyz are respectively:

The ground line between the planes of
2oy and zoz is oz 'The planes zoz and
yoz on being revolved about ox and oy
respectively, ag in ordinary descriptive
geometry, leave oz in two revolved posi-
tions at right angles to each other,

The three projections of the mormal
at o to the given plane are, as is ‘wu!l
known, perpendicular to the traces of the
given plane, and they are so represented.
Let oa; be the projection of the nnrr'nu]
on zoy, and oay that on xoz. To find
the true length of the normal, revolve it
about one projection, say about ea;, and
if a;a,= as a, then is oa, the révolved
position of the normal.

Upon the normal ley oa, = a,, 0by =
by, 00y =fn, the given normal compo-
nents of the stresses upon the rectangn-
lar planes, and also let oa;=a;, oby = by,
o¢, = ¢4 the given tangential compo-
nents upon the same planes. .

Let abe, a'b'c' be the respective
[‘rrnjoclidn;‘ of the points dp by cn, @y by
of the normal upon the plane 2oy by
lines parallel to oz, similarly ay, etc., are
projections by parallels to oy, and @/,
ete., by parallels to ox.

We have taken the stresses ¢, and e of




different sign from the others, and so
}'1:1\"0 }‘.LI“("I them negative and the others
positive,

It is readily seen that the first of the
above equations is constructed as fol-
lows:

fI:Z(I(l.:l)tll—ll—/l, b —e/c’
Similarly; the other two equations be-
come: ;

1,'.:"/'x:—‘“!‘,,“i"~" al’ ‘L‘f.ll)_

r":(jﬂ’,l:((/):'-—r‘_.l'{ 4+ od,

We have thus found the coirdinates
of the extremity » of the stress or upon
the given plane: hence' its projections
upon the planes of refererence are re-
spectively org ory or:,

Pronuem 28.—In any state’ of stress
defined by its three principal stresses,

to find the stress on any given plane.

This problem is the spdeial case of
Problem 27, in which the tangential com-
ponents are each zero. Taking the nor-
mal compouents given in Fig. 14 as
principal stresses we find oa, =a, cos xn,
ob,=b, cos yn, 0C, =% CO8 :1'4, as the co-
ordinates which determine the stress gr’
upon the given plane, and the projections
of ar” are or,’, or,’, er,’, respectively.

From these wxesults it is easy to show
t.l{:it the sum of the normal components
of the stresses on any three planes is
constant ‘and équal to the sum of the
principal stresses. - This is a general
property of solid stréss in m]'.iiann to
those previously stated.

Prosrem 20, — Any state of stress be-
ing defined by given simple stresses, to
find the stresses on three planes at. right
angles to each other. 7

In Fig. 14 let a simple stress act along
the normal to the plane x,%,z, and cause
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a stress on that plane whose intensity is
tn = 00y, then is @, cos azn=oa, the in-
tensity of the stress in the same direction
acting on the plane yoz. The normal
component of this latter intensity is

Uy CORNn=04a,. co8 gn=oa,,

and it is obtained by making oa/=oa,,
a/a’ |2y, and a,"a,)loy. The tan-
gential component on Yoz is od’ in mag-
nitude and direction, and it is obtained
thus: make @.,'d=a."a’, then in the
right angled triangle da.q.’, da, is the
magnitude of the tangential component;
now make od'=da, This tangential
component. can be resolved along the
axes of ¢ and 2. The stress on the
pl#nes zor and 2oy can be found in simi-
lar manner; since the tangential compon-
ents which-act on two planes at right
angles to-each other and in a direction
perpendicular to their intersection are,
as has been shown, equal; the complete
construction will itself afford a test of its
Z\(f('llr:l("\'.

Other simple stresses may be treated in
the sameé manner, and the resultant stress
on eitherof the three planes, due to these
simple stresses, is found by combining
together the components which act on
that plane due to each of the simple
stresses,

It is useless to make the complete
combination. It is sufficient to take the
algebraic sum of the normal components
acting on the plane, and then the alges
braic sum of the tangential components
along two directions in the plane which
are at right angles, as along y and ¢in
Yoz

The treatment of conjugate stresses in
general appears to be too complicated to
be practically useful, and we shall not
at present construct the problems arising
n 18 treatment,
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Hlustrated Pocket Form. Morocco, gilt, 8250,

A TreaTise o THE METHOD OF GOVERNMENT SURVEYING, a8
prescribed by the U. 8. Congress and Commissioner of the General
Land Office. With complete Mathematical, Astronomical, and Prac-
tical Instructions for the use of the U. 8. Surveyors in the Field, and
Students who contemplate engaging in the business of Public Land
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Surveying. By S. V. Cievexcer, U. 8. Deputy Surveyor.

Hewson on Embankments.
8vo. Cloth. $2.00.

PrixCrPLES AND PracTior oF Euniskixe  LANDS from River

Floods, as applied to the Levees of the Mississippi. By WiLriix
Hewsox, Civil Engineer.

D. VAN NOSTRAND.

Minifie’s Mechanical Drawing.
Ninth Edition. Royal 8vo. Cloth. $4.00.

A TexT-Book oF GEOMETRICAL DRAWING, for the use of Mechanxcs
and Schools. With illustrations for Drawing Pkans., Seetions, am.l
Elevations of Baildings and Machinery ; an Introdfxctlon to I‘sometn-
cal Drawing, and an Essay on Linear Perspective and Shaflows.
With over 200 diagrams on steel. By Wu.u.\fx Mxxx‘ns, Architect.
With an Appendix on the Theory and Application of Colors.

Minifie’s Geometrical Drawing.
New Edition. Enlarged. 12mo. Cloth. §2.00.

GEOMETRICAL DrAwiNg. Abridged from the octavo edition, for the
use of Schools. Illustrated with 48 steel plates.

Free Hand Drawing.
Profusely Illustrated. 18mo. Boards. 50 cents.

A GuipE To ORNAMENTAL, Figure, and Landscape Drawing. By an
Art Student.

The Mechanic's Friend..
12mo. Cloth. 300 INustrations. $1.50,

Tur Mecmaxic'’s Friexp. A Collection of Receipts and ng&ical
Suggestions, relating to Aquaria—Bronzing—Cements—Drawing—
Dyes——Electricity—Gilding——G!ass-working—(?lues—llorobgy— Lac-
quers—Locomotives—Magnetism—Metal-working— Modul-lmg— Pho-
tography—Pyrotechny—Railways — Solders — Steam-Eng.me — Tele-
graphy—Taxidermy—Varnishes—Waterproofing—and Mnscc]}aneous
Tools, Instruments, Machines, and Processes connected with the
Chemical and Mechanical Arts. By Witriax E, Axox, M.R.S.L.

Harrison’s Mechanic's Tool-Book.
44 Tllustrations. 12mo. Cloth. $1.30.
Mxcuaxics’ Toor Book, with Practical Rules and Suggestions, for the
use of Machinists, Iron Workers, and others. By W. B. Harrisox.

Randall’s Quartz Operator’s Hand-Book.
12mo. Cloth. _§2 00,

Quarrz Operator’s Haxp-Book. By P. M. Raypirn. New
edition, Revised and Enlarged. Fully illustrated.
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Joynson on Machine Gearing.
8vo. Cloth. “$2.00.

Tae Meczaxic's Axp StupexT’s GUIDE in the designing and Con®
struction of General Machine Gearing, as Eccentrics, Screws, Toothed
‘Wheels, ete.; and the Drawing of Reetilineal and Curved Surfaces.
Edited by Fraxcis H. Jovxsox. With 18 folded plates.

Silversmith’'s Hand-Boolk.
Fonrth Edition, llustruted. 12mo. - Cloth. $3.00.
A Pracricar Haxp-Boox ror Miners, Metallurgists, and Assayers.
By Jurius Sinverssurm. Illustrated.

Barnes’ Submarine Warfare.
8yo, Cioth. §6.00,
SupMARISE WARFARE, DEvENsIVE AND OFrFExsive. Descriptions
of the various forms of Torpedoes, Submarine Batteries and Torpedo
Joats actually used in War, Methods of Iguition by Machinery,
Centact Fuzes, and Eleetricity, and & full ‘account of experiments
made to determine the Explosive Force of Gunpowder under Water.
Also a discussion of the Offensive Torpedo system, its effect upon
Iron-clad Ship systems, and influence upon future Naval Wars. By

Licut.-Com.. Joux 8. Banrxxs, U.S.N.With twenty lithographic
plates and many wood-cuts.

Foster's Submarine Blasting.
4to. Cloth. $3.50.
SunmARINE Brasting,in Boston Harbor, Massachusetts—Removal of
Tower and Corwin Rocks. By Jomx G. Foster, U. S. Eng.and
Byt Major-General U. 8. Army. With seven plates.

Mowbray’s Tri-Nitro-Glycerine.
8vo. Cloth., Tiustrated. $3,00.
Tr=N1TRO-GLYCERINE, a8 applied in the Hoosac Tunnel, and to Sub-
marine Blasting, Torpedoes, Quarrying, eto.

Williamson on the Barometer.
4to. Cloth. $15.00.

Ox tae Use oF THE BAROMETER ON SURVEYS AND RECONNAIS-
saxces. Part I.—Meteorology in its Connection with Hypsometry.
Part II.—Barometric Hypsometry. By R. S, Wriniamsos, Byt
Lt.-Col. U. 8. A., Major Corps of Engineers: With illustrative tables
and engravings.

D. VAN NOSTRAND.

Williamson's Meteorological Tables.
4to. Flexible Cloth. $2.50.

PracticaL TABLES IN METEOROLOGY AND HYPSOMETRY, in connection
with the use of the Barometer. By Col. R. 8. WirrLiaxsox, U.S.A.

Butler's Projectiles and Rifled Cannon.
dto. 36 Plates. Cloth. $7.50.

Prosectites Axp RirLEp Caxyon. A Critical Discus.sion of the
Principal Systems of Rifling and Projectiles, with Practical Sugges-
tions for their Improvement. By Capt. Joux S. BurLER, Ordnance
Corps, U. S. A.

/
Benet’'s Chronoscope.
Second Edition. Illustrated. 4to, Cloth, $3.00.

Erectro-BarrisTic MAcHINES, and the Schultz Chronoscope. By
Lt-Col. S. V. Bexgr, Chief of Ordnance U. 8. A.

Michaelis® Chronograph
4to, IMustrated. Cloth, $3.00.
Tae Le BovLexae Onroxoagrari. With three lithographed folding
plates of illustrations. By Brt. Captain O. E. MicaAELs, Ordnance
Corps, U. 8. A.

Nugent on Optics.
12mo, Cloth. $1.50.
TrEATISE ON OpTICs ; or, Light and Sight, theoretically and practically

treated; with the application to Fine Art and Industrial Pursuits.
By E. Nuagest. With 103 illustrations.

Peirce’s Analytic Mechanics.
4to.  Cloth.  $10.00.
S\'srn.\(-or-' Axaryric Mecmaxics. By Bexsaymy Peirce, Pro-
fessor of Astronomy and Mathematics in Harvard University.

Craig’s Decimal System.
Square 32mo. Limp. b0c
Weianrs Axp Measures, An Account of the Decimal System, with

Tables of Conversion for Commercial and Scientific Uses. By B. F.
Craig, M.D.
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Alexander’s Dictionary of Weights and
Measures.
New Edition. 8vo. Cloth, $3.50.
Usiversar DicTioxary oF WEIGHTS AxD MeAsures, Ancient and
Modern, reduced to the standards of the United States of America.
By J. H. ALEXANDER.

Elliot’s European Light-Houses.
51 Engravingsand 21 Wood-cuts, 8vo. Cloth. §5.00.
Evroreax Ligur-Hovuse Systems. Being a Report of a “Tour of
Inspection made in 1873. By Major Grorae H. Eruior, U. S.
Engineers.

Sweet’'s Report on Coal.
With Maps. Svo. Cloth. §3.00.

Srxciar Rerort oy Coarn. By S, H. Sweer.

Colburn's Gas Works of L.ondon.
12mo. Boards. 00 cents.

Gas Worxks o¥ Loxpox. By Zrrau CorLsury,

Walker’s Screw Propulsion.
8vo. Cloth. 75 cents,

Notes oy Screw Prorursiox, its Rise and History. By Capt. W. I,
Warker, U. S, Navy.

Pook on Shipbuilding.
8vo. Cloth, Illustrated. $£5.00.
Mernop or PreEpPARING THE LiNes AND Draveuaring VESSELS
ProrELLED BY SAIL oR StEAM, including a Chapter on Laying-off
on the Mould-loft Floor. By Sawver M. Poox, Naval Constructor.

Saeltzer’s Acoustics.
12mo. Cloth. $2.00, -
TREATISE ON ACOUSTICS in connection with Ventilation. By Arex-
ANDER SAELTZER.

Eassie on Wood and its Uses,
250 IMustrations. 8vo. Cloth. $1.50.
A Haxp-soox Por THE Use or CosxTrRACTORS, Builders, Architects,
Engineers, Timber Merchants, etc., with ‘information for drawing up
Designs and Estimates.

D. VAN NOSTRAND.

Wanklyn’s Milk Analysis.
12mo, Cloth. §1,00,
Mg Axavysis. A Practical Treatise on the Examination of Milk,

and its Derivatives, Cream, Butter, and Cheese. By J. Arrrep
WaxkLyxy, MLR.C.S.

Rice & Johnson's Differential Functions.
Paper, 12mo, 30 cents,
Ox A New Mernop oF OBTAINING THE DIFFERENTIALS oF Fuxc-
TIONS, with especial reference to the Newtonian Conception of Rates
or Velocities. By dJ. Mixor Rick, Prof. of Mathematics, U. S. Navy,

and W. Woorsey JonxsoN, Prof. of Mathematics, St. John's
College, Annapolis.

Coffin's Navigation.

Fifth Edition, 12mo. Cloth, $3.50.
NaAvigATION AND NAUTICAL ASTRONOMY. Prepared for the use of
the U. S. Naval Academy. By J. I C. Corrix, Professor of

Astronomy, Navigation and Surveying ; with 52 wood-cut illustra-
tions,

Clark’s Theoretical Navigation,
8vo. Cloth. $§3.00,
THEORETICAL NAVIGATION AND NAUTICAL AsTRONOMY. By LEwis

CLARE, Lieut.-Commander, U. 8. Navy, Illustrated with 41 wood-
cuts, including the Vernier.

Tonexr’s Dictionary of Elevations.
8vo. Paper, $3.00 Cloth, $3,75.

DictioNARY OF ELEvATIONS AND Crimaric RRGISTER OF THE
Usitep StaTES. Containing, inaddition to Elevations, the Latitude,
Mean Annual Temperature, and the total Annaal Rain Fall of many
Localities; with a brief introduction on the Orographic and Physical
Peculiarities of North America. By J. M. Toxzg, M.D.
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VAN NOSTRAND'S SCIENCE SERIES.

It is the intention of the Publisher of this Series to issue them at
intervals of about a month. They will be put upin a uniform, neat,
and attractive form, 18mo, fancy boards, The subjects will be of an
eminently seientific character, and embrace as wide a range of topics as
possible, all of the highest character.

Price, 50 Cents Each.

1. CrmMxEYs ¥or FURNACES, FIRE-PLACES, AND STEAM BoiLers. DBy
R. Anmstroxe, C.E.

IL Steam Bomer Exrrosioxs. By Zeran CoLBuURN.

I1L. Practicar Desigxiza or Retamiye WaLLs. By Artavr Jacon,
A.B. With Tlustrations,

IV. PrororTioxs oF Pixs Usep i1y Buwces, By Cmarirs E.
Bexper, C.E. With Illustrations.

V. Vestiratiox or Bunpixes. By W, F.Burcer. With Hlustrations,

VI. Ox the DESIGNING AND CONSTRUCTION OF STORAGE RESERVOIRS.
By Artunur Jacos. With Illustrations.

VII. SurcnaARGED AND INFFERENT Fonms oF Rerarxixe WaArvs.
By James 8. Tare, C.E.

VIII. A TreaTise ox tne Comrounp Excixe. By Jony TurspuLL.
With Illustrations.

IX. Frer. By C, Wirriam Siemexss, to whichis appended the value of
ArTtrFicral Furrs As Companrep witn Coar. By Jonx Worm-
AL, C.E.

X. Cowrouvxp Excrxes. Translated from the French of A. MaLrLET.
Mlustrated.

XI. Tarony oF Arcurs. By Prof. W. Arrax, of the Washington and
Lee College. TIlustrated.

XI1 A Practicar Tugory o¥ Voussorr Arncugs. By Wirtiax Carx,
C.E. Tlustrated.

D. VAN NOSTRAND.

XIIT. A Practicar TREATISE oN THE Gases Mer Witk iy Coar
Mixes. By the late J. J. ArkixsoN, Government Inspector of
Mines for the County of Durham, England.

XIV. Fricriox oF Air 1Ny Miyes, By J. J. ATrixsoy, author of “ A
Practical Treatise on the Gases met with in Coal Mines.”

XV. Skew Arcues. By Prof. E. W. Hypg, C.E. Illustrated with
numerous engravings and three folded plates.

XVI. A Graruic MeTHOD FOR SOLVING CERTAIN ALGEBRAIC EQUA-
TIoNS. By Prof. GeorGe L. Vose. With Illustrations.

XVIL. Warer axp Warter Sveeny, By Prof. W. H. CorrieLp,
M.A., of the University College, London.

XVIIL SeweraGe AND Sewace UrmizatioN. By Prof. W. H.
CorrieLp, M.A., of the University College, London.

XIX. StrexeTn oF Beams Uxper Traxsverse Loaps. By Prof.
. Arrax, author of ““Theory of Arches.” With Illustrations

XX. Brioge axp Tuxxer Cextres. By Jonx B. MeMastTERS,
C.E. With Nlustrations,

XXIL Sarery Varves, By Ricmarp H. Buer, C.E. With Illustra-
tions,

XXII. Hignr Masoxry Dams. By Jomnx B. McMasters, C.E.
With Illustrations.

XXIIL. Tue Faticue oF Merars under Repeated Strains, with
various Tables of Results of Experiments. From the German of
Prof. Lupwie Seaxcexsera. With a Preface by 8. II. Sareve,
AM. With Illustrations.

XXIV. A PracticAr Treatise oX toE Teers or WurrLs, with
the theory of the use of Robinson’s Odontograph. By S. W. Ropix-
soX, Prof. of Mechanical Engineering, Illinois Industrial University.

XXV. Tarory ANXp Carcurarioxs oF CoxtiNuous Bripges. By
MAXSI:IELD Merrivax, C.E; - With Illustrations.

XXVI PracticAL TREATISE OF THE PROPERTIES OF CONTINUOUS
Brimpees, By CoArves BENDER, C.E
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XXVIL Ox Boruer INcrRusTaTION AND CoRmosion. By J. F. Rowan.

XXVIIL Os Traxsyissiox oF Power sy Wire Rors. By Albert W.
Stahl,

XXIX. Ixyecronrs : T TuEory Axp Use. Translated from the
Freach of M. Leon Pouchet,

XXX. TeErRreSTRIAL MAGNETISM AND THE MAGNETISM OF IRON Smirs.
By Professor Fairman Rogers.

XXXI Tre Saxrrary Coxprriox oF Dwernisag Houses 1x Towx AND
Coustiy, By George E. Waring, Jr.

IN PRESS:

Heating and Ventilation in its Practical Ap-
plication for the Use of Engineers and
Arxrechitects.

Embracing o Series of Tables and Formule for dimensions for Heating
Flow and Return Pipes, for Stewn and Hot Wates Boilers, Flues, etc?
ete. By F. Schumann, C. E, 1vol, 12mo, Ilustrated. '

‘ A Guide to the Determination of Rocks.
chg an Introduction to Lithology. By Edward Jannettaz, Doctuer des
Sciences, Translated from the French by Geo. W. Plympton, Profes-

sor of Physical Science, Brooklyn Polytechnic Institute, 12mo.

Shield’s Treatise on Engineering
Construction.
12mo,  Cloth,

Embracing Discussions of the Principlesinvolved and Descripiions of the

Material employed in Tunnelling, Bridging, Canal and Road Build-
ing, ete., ete. a

MILITARY BOOKS

PUBLISRED DY

D. VAN NOSTRAND,

23 Murray Street and 27 Warren Street,
NEW YOREK.
Any Book in this Catalogue sent free by mail on receipt of price.

Benton’s Ordnance and Gunnery.
Fourth Edition, Revisod and Enlarged. 8vo, Cloth. $£3.00.
OupNANCE AXD GUSNERY. A Course of Instruction in "Ordnance
and Gunnery. Compiled for the uso of the Cadets of the U. S. Military
Academy, by Col. J. G. Bextox, Major Ordnance Dep.; late Instructor
of Ordnance aud Guunery, Military Academy, West Point. TIllus-
trated.

Holley's Ordnance and Armor.
8vo. Half Roan, $10.00. Ialf Ressia, $12.00,
A TrEATISE ON ORDNANCE ANDp Ammonr. With an Appendix, refer-
ring to Gun-Cotton, Hooped Guns, ete,, cte. Dy Alexander L. Holley,
B. P. With 493 illustrations. 048 pages.

Scott’s - Military Dictionary.
8vo. Half Roan, $6.00. Hall Russia, $5.00. Full Moroceo, £10.00.
Airitary Dicrioary. Comprising Technical Definitions; Informa-
tion on Raising and Keeping Troops; Law, Government, Regu-
Jationyand Administration relating to Land Forces. By Col. II. L.
Scott, U-S.A. 1vol. Fully illustrated.

Roemer's Cavalry.
Sva. Cloth, 86,00, Half Calf, $7.50.

Cavarry: Its History, MANAGEMENT, AND UsES IX War. DBy J.
Roemer, LL.D., late an officer of Cavalry in the Service of the Nether-
lands. = Elegantly illustrated with one hundred and twenty-seven fine
wood engravings. ~Beautifully printed on tinted paper.
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Michaelis’ Chronograph.
4to. Mustrated. Cloth, $3.00,
Tne Lx Dovrexce Caroxograrn.  With three lithographed folding
plates of illustrations. By Brevet €apt. O. E. Michaelis, First Licu-
fonant Ordnance Corps, Ul S. Army.

Benet's Chronoscope.
Second Edition. Tnstrated. 4to. " Cloth. $3.00.

Evecrro-Barustic Macmixgs., and the Schultz Chronoscope. Dy
Genl. 8. V. Dendt, Chief of Ordnance, U. S. Army.

Dufour’s Principles of Strategy and Grand
Tactics. ¥ 5
12mo, Cloth.  $3.00,

Tne PriNcirres o StrATecY Axp Gnraxp Tacrics. Translated
from the Trenchiof General G. IL. Dafour. By William P. Craighill,
UL S. Engr., and Tate Assistant Professor ‘of Engineering, Military
Academy, West Point. From the last French edition. Nlustrated.

Jomini's Life of the Emperor Napoleon.
4 vols. 8vo,, and Atlas, Cloth. Half Call,

Mrurary A¥p Porrricar Lire or e Eseeror Naporeos. Dy
Baron Jomini, General-in-Chief and. Aid-de-Camp to the Emperor of
Russia.  Translated from the French, with Notes, by II. W. Halleck,
LL:D., Major-General U. S. Army. With 60 Maps and Plans,

Jomini's Campaign of Waterloo.
Third Edition. 12meo, Cloth. $1.25,
Tue Porrricar axp Minrrary History or tur Caxpaicy or VWa-
TERLoo. Translated from tha Irench of General Baron de Jomini, by
(fenl. 8. V. Benét, Chief of Ordnance. ‘

Jomini's Grand Military Operatiohs.
2 vols, 8vo,, and Aflas, Cloth, $15.00. Half Calf or Moroceo, 821,  Half Russia,
$22.30,
TrEATise oN GraxD Micrtany OperaTions. Illustrated by a Critical
and Military History of the Wars of Frederick the Great. With a
Summary of the Most Tmportant Prineiples of the Art of War. Dy
Baron de Jomini. Tilustrated by Maps and Plans.  Translatad from

the Freneh by Col. 5. 1. Holabird, A. D. C., U. S. Army.
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Rodenbough’s Everglade to Canon.
Royal 8vo. IDlustrated with Chromo-Lithographs. Extra Cloth. £7.50.
EvERGLADE To CAxox, with the Second Dragoons (Second U. S. Cay-
alry), an authentic account of service in Florida, Mexico, Virginia and
the Indian Country, including Personal Recollections of Distinguished
Officers. By Theo. F. Rodenbough, Colonel and Brevet Drigadier-
General, U, S. Army. :

History of Brevets.
Crown 8vo. Extma Cloth,  $3.50,
Tax Hisrory asp LEGAL EFFEcTs or Brevers in the Armies of
Great Britain and the United States, from the origin in 1602 until the
present time. DBy Gen. James B. Fry, U. S. Army.

Barre Duparcq’s Military Art and History.

8vo. Cloth. £35.00,

Eremexts of Mimrtary Ant axp Ilistory. By Ldward de 1s Darré
Dupareq, Chef do Bataillon of Engineers in the Army of France, and
Proféssor of the Military Art in tho Imperial Schocl cf 8t Cyr.
Translated by Colonel Geo. W. Cullum, U. S. E.

Discipline and Drill of the Militia.
Crown Svo. Flexible cloth. $2.00.

Tue DIsCIPLINE AXD Drinr or Toe Mmria. By Major Frank S,
Arnold, Assistant Quartermaster-General, Rhode Island.

Wallen's Service Manual.
12mo.  Cloth. $1.50.

Service MaNvAL for the Instruction of newly appointed Commissioned
Officers, and the Rank and File of the Army, as compiled from Army
Regulations, The Articles of War, and the Customs of Services By
Henry'D. Wallen, Bvt. Brigadier-General U. S. Army.

ks WV S W
Boynton’s History of West Point.
Second Edition, 8yo, Fancy Cloth. $§3.50.

History ofF West Porxt, and its Military Importance during the
American Revolution ; and the Origin and Progress of the United
States Military Academy. By Bvt. Maj. Edward C. Boynton, A. M.,
Adjutant of the Military Academy. ~ With 36 Maps and Engraving
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Wood’'s West Point Serap-Book.
8vo, Extra Cloth. $£5,00
Tue West Porxt Scrap-Book: Being a Collection of Legends, Stories,
Songs, &e. By Lieut O. E. Wood; U. 8. A. With 69 wood-cut
Illustrations. Beautifully printed on tinted paper.

West Point Life,
Oblong 8vo, Cloth, $2.50,

Wesr Poixt LirFe. < A Poem read before the Dialectic Society of the °

United States Military Academy. ITllustrated with twenty-two full-
page Pen and Ink Sketehes. By A Cadet. To which is added the
song, “ Benny Havens, Oh!”

Gillmore's Fort Sumter.
8yo. Cloth: - £10,00, Half Russia, $12.00,

, Gieuyore's Forr Sumrer. Official Report of Operations against the
Defences of Charleston Harbor, 1863. Comprising the descent upon
Morris Island, the Demolition of Fort Snmter, and the siege and
reduction of Forts Wagner and Gregg. By Maj-Gen. Q. A. Gill-
more, U. S. Engineers. With 76 lithographic plates, views, maps, ete.

Gillmore’s Supplementary Report on Fort
Sumtenr.
8vo. Cloth. £5.00,

SurPPLEMENTARY Rerorr to the Engineer and Artillery Operations
against the Defences of Charleston Harbor ju 1863. By Maj.-Gen. Q.
A, Gillmore, U, 8. Engineers. With Seven Lithographed Maps and
Views.

Gillmore's Fort Pulaski.
8vo, Cloth, $2.50
SiEGE AND Repuctiox ox Forr Puraski, Georcia. By Maj.-Gen.
Q. A. Gillmore, U. 8 Engineers. Illustrated by Maps and Views.

Barnard and Barry's Repcrt.
Svo. Cloth, $4.00.

Rerort or tne ENGINEER AND ARTiniery OPERATIONS OF THE
Arymy oF tie Poromac, from its Organization to the Close of the
Peninsular Campaign. By Maj-Gén. J. G. Barnard, U. 8. Engineers,
and Maj.-Gen. W. F, Barry, Chief of Artillery. Illustrated by 18
Maps, Plans, &e .
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Guide to West Point.
18mo. Flexible Cloth, $1,00,
Gume To WestT Porxt aAxp tae U. S. Minrrary Acapemy. With
Maps and Engravings.

Barnard’s C. S. A., and the Battle of Bull
Run.
8vo. Cloth, $£2.00,
Tre “C. 8. A.,” Axp Tue Batrtee or Burr Rux. By Maj-Gen. J. C.
Barnard, U. S. Engineers. 'With five Maps. 3

Barnard’'s Peninsular Campaign.
8vo, Cloth. $1.00. 12mo. Paper 30c.
Tue Pexissvrar CAMPAIGN AND ITS ANTECEDENTS, as developed by
the Report of Maj.-Gen. Geo. B. McClellan, and other published
Documents. By Maj.-Gen. J. G. Bamard, U. 5. Engineers.

Barnard’'s Notes on Sea-Coast Defence.
Svo. Cloth. $2.00.

Notes ox Sea-Coast DereNce: Consisting of Sea-Coast Fortifica-
tion ; the Fifteen-Inch Gunj; and Casemate Embrasufe. By Major-
Gen, J. G. Barnard, U. S. Engineers. With an engraved Plate of
the 15-inch Gun.

Henry's Military Record of Civilian
Appointments, U. S. A.
2Vols. 8vo. Cloth. $10.00
Miuitary Recorp or Civitia¥ ArprorstyeNTs 18 THE UNITED
States ArMy, By Guy V. Henry, Brevet-Colonel U. S. A,

Harrison’'s Pickett's Men.
12mo.  Cloth. $2.00.
Pickerr’s Mex. A Fragment of War History. By Col. Walter Har-
rison. With portrait of Gen. Pickett.

Todleben’s Defence of Sebastopol.
12mo. Cloth. £2.00.

TopLEsEN’S (GENERAL) HisTORY OF THE DEFENCE OF SEBASTOPOL.
By William Howard Russell, LL.D., of the London Times,




30 MILITARY BOOKS PUBLISHED BY

Hotehkiss and@ Allan’s Battle of Chancellors-
wville.
8vo. Clothy. £5.00.

Toe Batrie-riervs oF Vimernia.. Chancellorsville, embracing the
Operations'of the Army of Northern Virginia. From the First Battle
of Fredericksburg to the Death of Lt-Gen.'T. J. Jackson. By Jed.
Hotchkiss and William Allan. Illustrated with five Maps and Por-
trait of Stonewall Jackson.

Andrews' Campaign of Mobile.
8vo. Cloth, 83.50,

Tue Camriray or MonrLk, including the Co-operation of General
Wilson’s Cavaley in Alabama. By Bréevet Maj.-Gen. C. C. Andrews.
With five Maps and Views.

Stevens' Three Years in the Sixth Corps.
New and Revised Edition, 8vo. Cloth, $3.00

Tanvee Years ¥ 1o Sixta Corrs. A concise narrative of eventsin
the Army of the Potomac from 1861 to the Close of the Rebellion.
April, 1865. By Geo. T. Stevens, Surgeon of the 77th Regt. New
York Voluntgers. Iustrated with' 17 engravings and six steel portraits.

Lecomte’s War in the United States.
12mo. Cloth, $1.00.

Tuw War Ix rae Usiren Stares. A Report to the Swiss Military
Department. - By Ferdinand Lecomte, Lieut-Col. Swiss Confedera-
tion., Translated from the French by a Staff Officer.

Roberts’ Hand-Boolk of Artillery.
16mo. Morocco Clasp, 82 -

Haxn-Book or Artiiery. For the serviee of the United States

Army and Militia. Tenth edition, revised and greatly enlarged. By
Joseph Roberts, Lt.-Col. 4th Artillery and Brevet, Maj.-General U. 8.
Army.

Instructions for Field Artillery.
12mo. Cloth. £3.00. :
IssTRUCTIONS FOR Frerp Artrinery, Prepared by a Board of Artil-
lery Officers. To which is added the** Evolutions of Batteriss.*
translated from the Freneh, by Brig.-Gen. R. Anderson, U. 8. A, 192
plates.

D. FTAN NOSTRAND.

Heavy Artillery Tactics.
12mo. Cloth. $2.50.

Heavy ArTiLLeERY Tacrics—1863. Instructions for Heavy Artillery;
prepared by a Board of Officers, for the use of the Army oi' the l'ni:f:-'l
States. With service of a gun mounted on an iron carmage and 39
plates.

Andersons’ Evolutions of Field Artillery.
24mo. Cloth. $1.00.

EvoruTtions oF FieLp BATTERIES OF ARTILLERY. Translated 'f{'qwm
{he French, and arranged for the Army and Militia of the United
States. By Gen. Robert Anderson, U. S.'A. Published by order of
the War I.;cp:xrtmcut. 33 plates,

Duane’s Manual for Engineering Troops.
12mo. Half Morocco. $2.50,

MaNUAL ¥or EXGINEER Troors : Consisting of —Part 1. Ponton Drill;
I1. Practical Operations of a Siege; ITL. School of the Sap; 1V. Mili-
tary Mining; V. Constraction of Batteries. By General J. C. Duane,
Co;']\s of Engineers, U. 8. Army. With 16 plates and numerous wood-
cut illustrations. -

Cullum’s Military Bridges.
8vo.  Cloth.  $3.00.

SysTEMS OF MmitAry Bripces, in nse by the United States Army;
those adopted by the Great European Powers; and such as are em-
ployed in British India. With Direetions for the Preservation,
Destruction, and Re-establishment of Bridges. By Col. Georgs W.
Cullum, U. S. E. With 7 folding plates.

Mendell’'s Military Surveying.
12mo. - Cloth. - $2.00:

A TreaTise ox MiLitary Svrveving.  Theoretieal and  Practical,
including a description of Surveyng Instruments. By G. . Mendell,
Major of Engineers. With 70 wood-cut illustrations.

Abbot's Siegze Artillery Against Richmond.

Bvo. Cloth. $£3.50.

StEGE ArTInLERY 1N THE Campaicy Acamsst Ricusoxp. By Henry

L. Abbot, Mzjor of U. S. Engineers.. Illustrated.
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Haupt's Military Bridges.
8vo. Cloth. §6.50.

Mmarany Bripges; For the Passage of Infantry, Artillery and Bag-
gage Trains; with suggestions of many new expedients and coustru:::'
h‘ons‘ for crossing streams and chasms. « Including also designs for
Trestle and Truss-Bridges for Military Railroads, adapted specially to
’Hmf wants of the Service of the United States. By Herman Haupt
l%ng.-(;cn. Ui 8. A, nuthor of * General Theory of Bridge ('oustt’uc:
tions,” &e. Illustrated by.G9 lithegraphic engravings.

Lendy’s Maxims and Instructions on the
Art of' War.
18mo. Cloth. 73c.

.\I.nfx:us Axp INstRUcTIONS ON TuHE ART OF WAR. A Practical
M.xhtary Guide for the use of Soldiers of All Arms and of all Coun-
tries,” Translated from the French by Captain Lendy, Director of the
Practical Military College, late of the French Staff, o;tc., ete,

Benet’s Military Law and Courts-Martial.
Sixth Edition, Revised s Enlarged. 8vo. Law Sheep. $430. -4
Blt..\'F.T's Mu.n‘{mv Law.~ A Treatise on Military Law and thé I;rac-
tice of Courts-Martial. By Gen. 8. V., Benét, Chief of Ordnance U. 8. A.
ll;:t{.- Assistant Professor of Ethics, Law, &c,, Military Academy, Wcsg
oint, ' 3

Lippitt’s Special Operations of War.
HNiustrated. 18mo. Cloth. S$LOO.

Lippitt's Field Service in War.
12mo. Cloth. $1.00.

Lippitt's Tactical Use of the Three Arms
12mo. Cloth, $1.00,

Lippitt on Intrenchments.
41 Engravings, 12mo. Cloth. $1.25.

Kelton’s New Bayonet Exercise.
Fifth Edition, Revised. 12mo. Cloth. $2.00.
NEw BA\'H.\‘}IT.}-':.‘Y}IR(‘ISE. A New Manual of the Bayonet, for the
A'rn?y and Militia of the United States. By General J. C. Kelton
U. 8. A. " With 49 beautifully engraved plates. ’

D. VAN NOSTRAND.

Craighill’s Army Officers’ Companion.
18mo. Full Roan. $2.00.

Tre Arxy Orricers’ Pocker CompaxioN. Principally designed for
Staff Officers in the Field. Partly translated from the French of
M. de Rouyre, Lieut.-Col. of the French Staff Corps, with additions
from Standard American, French, and English authorities. By Wm.
P. Craighill, Major U. 8. Corps of Engineers, late Assistant Professor
of Engineering at the U. S. Milifary Academy, West Point.

Casey’s U. S. Infantry Tactics.
3 vols. 24mo. Cloth. §2.50.

U. S. IsFaxtry Tactics. By Brig-Gen. Silas Casey, U. 8. A, 3vols,,
94mo. Vol. I.—Schaol of the Soldier; School of the Company; In-
struction for Skirmishers. Vol. IT.—School of the Battalion. Vol
III.—Evolutions of a Brigade; Evolutions of a Corps d'Armée,
Lithographed plates.

United States Tactics for Colored Troops.
< 24mo.  Cloth.  $1.50.

U. S. Tacrics vor Cororep Troors. U. S. Jufantry Tacties for the
use of the Colored Troops of the United States Infantry, Prepared
under the direction of the War Department.

Morrig’ Field Tactics for Infantry.
Ilustrated. 18mo. Cloth. 75c.
Fierp Tacrics For IxraxtRY. By Brig-Gen. Wm. H. Morris, U. S.
Vols., late Second U. 8. Infantry.

Monroe’s Light Infantry and Company Drill.

82mo,” Cloth. 75¢.

LignT INFANTRY COMPANY AND SIRMiIsit DRILL. Bayonet Fencing ;
with a Supplement on the Handling and Service of Light Infantry.
By J. Monroe, Col. Twenty-Second Regiment, N. G., N. Y, S. M. for-
merly Captain U. S. Infantry.

Berriman’'s Sword Play.
Fourth Edition. 12mo. Cloth. $1.00,

Sworp-Pray. The Militiaman’s Manual and Sword-Play without a
Master. Rapier and Broad-Sword Exercises, copiously explained and
illustrated ; Small-Arm Light Infantry Drill of the United States
Army ; Infantry Manual of Percussion Muasket ; Company Drill of the
United States Cavalry. By Major M. W. Berriman.
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Morris" Infantry Tactics.
2 vols. 24mo. $200. 2wols. in 1. Cloth. $1,50.
INrFANTRY TAcTics. By Brig.-Gen. William H. Morris, U. 8. Vols.,
and late U. 8. Second Infantry. ‘

Le Gal’s School of the Guides.
16mo. Cloth, Goc,
Tuor Scuoor oF Tar Gumprs. Designed for the use of the Militia of
the United States. By Col. Eugene Le Gal.

Duryea’'s Standing Orders of the Seventh
Regiment.
New Edition. 16mo. Cloth. 50c.
StAxpixG ORDERS OF THE SEVENTH ReGiMeNT NATIONAL GUARDS.
By A. Duryea, Colonel.

Heth's System of Target Practice.
18mo, Cloth. 75¢.

SysTEM oF TArGET Pracrice ; For the use of Troops when armed
with the Musket, Rifle-Musket, Rifle, or Carbine. Prepared priuci-
L\j\lly f\mm the French, by Captain Henry Heth, Tenth Infantry,

« By A,

Wilcox's Rifles and Rifle Practice.
New Edition.  Ilustrated. 8vo. Cloth, $2.00.

RiFres axp Ruere Pracrice. An Elementary Treatise on the Theory
of Rifle Firing ; with descriptions of the Infantry Rifles of L‘uml-;’
and the United States, their Balls and Cartridges. By Captain C. M.
Wilcox, U. 8. A. :

Viele's Hand-Book for Active Service.
12mo. Cloth. $1.00. ‘
Haxp-Boox ¥or Active Servics, containing Practical Tnstructions in
Campaign Duties.  For the use of Volunteers. By Brig.-Gen. Egbert
L. Viele, U. 8. A. - .

Nolan's System for Training Cavalry Horses.
94 Plates. Cloth.  §2,00. A

Norax's System ¥or Trarxixe Cavarey Horses. By Ketiner Gar-
rard, Bvt. Brig-Gen. U, S. A. ¥

D. VAN NOSTRAND.

Arnold’s Cavalry Service.
Iustrated 18mo. Cloth. 75c.

Nores oy Horses ror CavarLry SEervick, embodying the Quality,
Purchase, Care, and Diseases most frequently encountered, with lessons
for bitting the Horse, and bending the neck. By Bvi Major A. K.
Arnold, Capt. Fifth Cavalry, Assistant Instructor of Cavalry Tactics,
U. S. Mil. Academy.

Cooke's Cavalry Practice.
100 THustrations. 12mo. Cloth. $1.00.
Cavarry Tacrics; Regulations for the Instruction, Formation and
Movements of the Cavalry of the Army and Volunteers of the United
States. By Philip St. George Cooke, Brig.-Gen. U. S. A.

This is the edition now in usge in the U. S. Army.

Patten's Cavalry Drill.
03 Engravings. 12mo. Paper. 50c.
Cavarry Drirr.. Containing Instructions on Foot ; Instructions on
Horszback ; Basis of Instruction ; School of the Squadron, and Sabre
Exercise,

Patten’s Infantry Tactics.
02 Engravings. 12mo. Paper. 50c.

InFaNTRY Tacrics, School of the Soldier; Manmal of Arms for the
Rifle Musket; Instructions for Recruits, School of the Company;
Skirmishers, or'Light Infantry and Rifle Company Movements; the
Bayonet Exercise; the Small-Sword Exercise; Manual of the Sword
or Sabre.

Patten’'s Infantry Tactics.
Revised Edition. 100 Engraviugs. 12mo. Paper. 73c.
IxraxtrY Tacrics. Contains Nomenclature of the Musket; School
g of the Company ; Skirmishers, or Light Infantry and Rifle Company
Movements; School of the Battalion ; Bayonet Exercise ; Small Sword
Exercise ; Manual of the Sword or Sabre.

Patten’s Army Manual.
8vo. Cloth. $2.00.
ArMy Maxvar. Containing Instructions for Officers in the Preparation
of Rolls, Returns, and Accounts required of Regimental and Company
Commanders, and pertaining to the Subsistence and Quartermaster’s

)

Department, &e., &e.
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Patten’s Artillery Drilll
| 12mo.. Paper. 50c.

ArTiLLERY DRiri. Containing instruction in the School of the Piece,
and Battery Manceuvres, compiled agreeably to the Latest Regulations
of the War Department. From Standard Military - Authority. By
George Patten, Inte U, S. Army.

Andrews’ Hints to Company Officers.
1Smo. Clotlx.  Gc.
Hixts 10 CoMpaxy Orricers ox tuemk Mivirary Duries. By
General C. C. Andrews, Third Regt., Minnesota Vols.
Thomas' Rifled Ordnance.
Fifth Edition, Revised. Ilustrated. 8vo.' Cloth. $2.00.
RirFLED ORDNANCE; A Practical Treatise on the Application of the
Principle of the Rifle to Guns and Mortars of every calibre. To which
is added a new lhi}or_v of the initial action and force of Fired Gun-

powder. By Lymall Thomas, F. R. 5. L.

Brinkerhoff's Volunteer Quartermaster.

12mo. Clath., $2.50.
Tue VorusTeer QuarTerMasTeR. By Captain R. Brinkerhoff, Post
Quartermaster at Washington.

Hunter's Manual for Quartermasters and
Commissaries.
12mo. Cloth: $1.25, Flexible Moroeeo, §1.50.

MaNUAL For QuarTermasters axp Coxyussamies.  Containing
Instrictions in the Preparation of Vouchers, Abstracts, Returns, ete.
By Captain R. F. Hunter, late of the U, S. Army. 12mo. Cloth.
$1.25.

Greener’'s Gunnery. .
Svo. Cloth. $4.00. Fall Calf. $6.00.
GuxsERY I¥ 1838. A Treatise on Rifles, Cannon, and Sporting Arms.
By Wm. Greener, R. C. E.

Head's System of Fortifications.
Hiustmated. 4to, Paper. $1.00.
A New SysteEx oF Fortirications. By George E. Head, A. M.,
Capt. Twenty-Ninth Infantry, and Byt Major U. S. A.
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