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P R E F A C E . 

AT a meeting of the American Association for the Advancement of Science, 
held in August, 1876, at Buffalo, the writer read two papers, entitled respect-
ively, "Certain New Constructions in Graphical Statics," and " A New Funda-
mental Method in Graphical Statics." These papers, with considerable addi-
tions and amplifications, are presented on the following pages ; and to them 
is added a third on The Theory of Internal Stress. 

The paper, entitled New Constructions in Graphical Statics, is largely 
occupied with the various forms of the elastic arch. The possibility of obtain-
ing a complete graphical solution of the elastic arch in all cases depends upon 
a theorem not hitherto recognized as to the relative position of the equilibrium 
curve due to the loading and the curve of the arch itself. The demonstration 
of this theorem, which may be properly named the Theorem Respecting the 
Coincidence of Closing Lines, as given on page 12, is somewhat obscure. How-
ever, a second demonstration is given on page 98, and this latter, stated at 
somewhat greater length, may also be found in the American Journal of Pure 
and Applied Mathematics, Vol. I, No. 3. Prof. Win. Cain, A.M., C.E., has 
also published a third demonstration in Van Nostrand's Magazine, Vol. XVII I . 
The solution of the elastic arch is further simplified so that it depends upon that 
of the straight girder of the same cross section. Moreover, it is shown that 
the processes employed not only serve to obtain the moment, thrust and shear 
due the loading, but also to obtain those due to changes of temperature, or to 
any cause which alters the span of the arch. I t is not known that a graphical 
solution of temperature stresses has been heretofore attempted. 

A new general theorem is also enunciated which affords the basis for a 
direct solution of the flexible arch rib, or suspension cable, and its stiffening 
truss. 

These discussions have led to a new graphical solution of the continuous 
girder in the most general case of variable moment of inertia. This is accom-
panied by an analytic investigation of the Theorem of Three Moments, in 
which the general equation of three moments appears for the first time in 
simple form. This investigation, slightly extended and amplified, may be also 
found in the American Journal of Pure and Applied Mathematics, Vol. I, No. 1. 

Intermediate between the elastic and flexible arch is the arch with block-
work joints, such as are found in stone or brick arches. A graphical solution 
of this problem was given by Poncelet, which may be found in Woodbury 's 
treatise on the Stability of the Arch, page 404. Woodbury states that this 
solution is correct in case of an unsyuimetrieal arch, but in this he is mis-
taken. The solution proposed in the following pages is simpler, susceptible 
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of greater accuracy, and is not restricted to the case when either the arch or 
loading is symmetrical about the crown. 

The graphical construction for determining the stability of retaining walls 
is the first one proposed, so far as known, which employs the true thrust in 
its real direction, as shown by Rankine in his investigation of the stress of 
homogeneous solids. It is in fact an adaptation of that most useful conception, 
Coulomb's Wedge of Maximum Thrust, to Rankine's investigation. 

It has also been found possible to obtain a complete solution of the dome 
of metal and of masonry by employing constructions analogous to those em-
ployed for the arch ; and in particular, it is believed that the dome of masonry 
is here investigated correctly for the first time, and the proper distinctions 
pointed out between it and the dome of metal. 

In the paper entitled, A JYew General Method in Graphical Statics, a 
fundamental process or method is established of the same generality as the 
well-known method of the Equilibrium Polygon The new method is designated 
as that of the Frame Pencil, and both the methods are discussed side by side 
in order that their reciprocal relationship may be made, the more apparent. The . 
reader who is not familiar with the properties of the equilibrium polygon will 
find it advantageous to first read this paper, or, at least, defer the others until 
he has read it as far as page 83. 

As an example affording a comparison of the two methods, the moments of 
inertia and resistance have been discussed in a novel manner, and this is ac-
companied by a new graphical discussion of the distribution of shearing stress. 

In the paper entitled, The Theory of Internal Stress in Graphical Statics, 
there is considerable new matter, especially in those problems which relate to 
the combination of states of stress, a subject which has not been, heretofore, 
sufficiently treated. 

It is hoped that these graphical investigations which afford a pictorial repre-
sentation, so to speak, of the quantities involved and their relations may not 
present the same difficulties to the reader as do the intricate formulae arising 
from the analytic solutions of the same problems. Indeed, analysis almost 
always requires some kind of uniformity in the loading and in the structure 
sustaining the load, while a graphical construction treats all cases with the 
same ease; and especially are cases of discontinuity, either in the load or 
structure, difficult by analysis but easy by graphics. 
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NEW C O N S T R U C T I O N S 

I N 

G R A P H I C A L S T A T I C S . 

C H A P T E R I. 
IT is the object of this work to fully dis-

cuss the stability of all forms of the arch, 
flexible or rigid, by means of the equili-
brium polygon—the now well recognized 
instrument for graphical investigation. 
One or two other constructions of inter-
est may also be added in the sequel. 
The discussion will pre suppose an ele-
mentary knowledge of the properties of 
the equilibrium polygon, and its accom-
panying force polygon, for parallel 
forces. 

As ordinarily used in the discussion of 
the simple or continuous girder, the 
equilibrium polygon has an entirely arti-
ficial relation to the problem in hand, 
and the particular horizontal stress as-
sumed is a matter of no consequence ; 
but not so with respect to the arch. As 
will be seen, there is a special equili-
brium polygon appertaining to a given 
arch and load, and in this particular 
polygon the horizontal stress is the ac-
tual horizontal thrust of the arch. When 
this thrust has been found in any given 
case, it permits an immediate determ-
ination of all other questions respecting 
the stresses. This thrust has to be de-
termined differently in arches of differ-
ent kinds, the method being dependent 
upon the number, kind, and position of 
the joints in the arch. 

The methods we shall use depend upon 
our ability to separate the stresses in-
duced by the loading into two parts ; one 

part being sustained in virtue of the re-
action of the arch in the same manner as 
an inverted suspension cable (i.e., as an 
equilibrated linear arch), and the remain-
der in virtue of its reaction as a girder. 
These two ways in which the loading is 
sustained are to be considered somewhat 
apart from each other. To this end it 
appears necessary to restate and discuss, 
in certain aspects, the well-known equa-
tions applicable to elastic girders acted 
on by vertical pressures due to the load 
and the resistances of the supports. 

Let P represent any one of the various 
pressures, Pt, Po, PD, applied to the 
girder. 

Consider an ideal cross section of the 
girder at any point 0. 

Let SB=the horizontal distance from 0 
to the force P. 

Let 72=:the radius of curvature of the 
girder at 0. 

A t the cross section 0 , the equations 
just mentioned become :— 

Shearing stress, S=2 (P) 
Moment of flexure, 3f=2 (Ps) 

Curvature, P'=L=2L 

Total bending, P=2{P')=2 

Deflection, D = 2 (Fx) = 2 



in which E is the modulus of elastici ty 
of the material, and I is the moment of 
inertia of the girder; and as is well 
known, the summation is to be extended 
from the point 0 to a free end of the 
girder, or, if not to a free end, the sum-
mation expresses the effect only of the 
quantities included in the summation. 

Let a number of points be taken at 
equal distances along the girder, and let 
the values of P, S, M, li, D be com-
puted for these points by taking O at 
these points successively, and also erect 
ordinates at these points whose lengths 
are proportional to the quantities com-
puted. First , suppose I is the same at 
each of the points chosen, then the 
values of these ordinates may be ex-
pressed as follows, if a, b, c, etc., are any 
real constants whatever : 

yp = a. P . (1) 

y»=b.2(P) . • (2) 

ym — c.2(Px)=c.M.. (3) 

yb=d.2(3I) . . (•*) 

y d - e . 2{3fx) . (5) 

If I is not the same at the different 
cross sections, let P=M~1; then the 
last three equations must be replaced 
by the following: 

ym'—f. -F • 

yd '= h. 2(P'x) . 

(3') 

( O 
(5') 

The ordinates ym and ym' are not 
equal, but can be obtained one f rom the 
other when we know the ratio of the 
moments of inertia at the different cross 
sections. 

Equation (1) expresses the loading, 
and yp may be considered to be the 
depth of some uniform material as 
earth, shot or masonry constituting the 
load. Lines joining the extremities of 
these ordinates will form a polygon, or 
approximately a curve which is the up-
per surface of such a load. "When the 
load is uniform the surface is a hori-
zontal line. 

For the purposes of our investiga-
tion, a distributed load whose upper 

surface is the polygon or curve, above 
described, is considered to have the 
same effect as a series of concentrated 
loads proportional to the ordinates 
yp acting at the assumed points of 
division. If the points of division be 
assumed sufficiently near to each other, 
the assumption is sufficiently accurate. 

If a polygon be drawn in a similar 
manner by joining the extremities of the 
ordinates ym computed from equation 
(3), it is known that this polygon is an 
equilibrium polygon for the applied 
weights P, and it can also be construct-
ed directly without computation by the 
help of a force polygon having some as-
sumed horizontal stress. 

Now, it is seen by inspection that 
1 equations (3) and (5), or (3') and (5'), 
have the same relationship to each other 
tha t equations (1) and (3) have. The re-
lationship may be stated thus :—If the 
ordinates ym (or ym') be regarded as 
the depth of some species of loading, so 
tha t the polygonal part of the equili-
brium polygon is the surface of such 
load, then a second equilibrium polygon 
constructed for this loading will have for 
its ordinates proportional to yd. But 
these last are proportional to the actual 
deflections of the girder. 

Ilence a second equilibrium polygon, 
so constructed, might be called the de-
flection polygon, as it shows on an ex-
aggerated scale the shape of the neutral 
axis of the deflected girder. 

The first equilibrium polygon having 
the ordinates ym may be called the mo-
ment polygon. 

I t may be useful to consider the physi-
cal significance of equations (3), (4), (5), 
or (3'), (40, (5'). 

According to the accepted theory of 
perfectly elastic material, the sharpness 
of the curvature of a uniform girder is 
directly proportional to the moment of 
the applied forces, and for different 
girders or different portions of the same 
girder, it is inversely proportional to the 
resistance which the girder can afford. 
Now this resistance varies directly as I 
varies, hence curvature varies as 31s-1, 
which is equation (3) or (3'). 

Now curvature, or bending at a point, 
is expressed by the acute angle between 
two tangents to the curve at the distance 
of a unit from each other; and the total 

bending, i.e. the angle between the tan-
gent at O, and that at some distant point 
A is the sum of all such angles between 
0 and the point A. Hence the total 
bending is proportional to 2(3f-r-I), 
the summation being extended from 0 
to the point A, which is equation (4) or 
(4'). 

Again, if bending occurs at a point 
distant from 0, as A, and the tangent at 
A be considered as fixed, then 0 is de-
flected from this tangent, and the 
amount of such deflection depends both 
upon the amount of the bending at A, 
and upon its distance from 0. Hence 
the deflection from the tangent at A is 
proportional to 2 (3fx~I) which is 
equation (5) or (o'). 

It will be useful to state explicitly 
several propositions, some of which are 
implied in the foregoing equations. The 
importance and applicability of some of 
them has not, perhaps, been sufficiently 
recognized in this connection. 

Prop. I. Any girder (straight or other-
wise) to which vertical forces alone are 
applied (i.e., there is no horizontal 
thrust) sustains a t any cross-section the 
stress due to the load, solely by develop-
ing one internal resistance equal and op-
posed to the shearing, and another equal 
and opposed to the moment of the applied 
forces. 

Prop. II. But any flexible cable or 
arch with hinge joints can offer no re-
sistance at these joints to the moment 
of the applied forces, and their moment 
is sustained by the horizontal thrust de-
veloped at the supports and by the ten-
sion or compression directly along the 
cable or arch. 

It is well known that the equilibrium 
polygon receives its name from its being 
the shape which such a flexible cable, or 
equilibrated arch, assumes under the 
action of the forces. In this case we 
may say for brevity, that the forces are 
sustained by the cable or arch in virtue 
of its being an equilibrium polygon. 

Prop. III. If anarch not entirely flexi-
ble is supported by abutments against 
which it can exert a thrust having a 
horizontal component, then the moment 

due to the forces applied to the arch will 
be sustained at those points which are 
not flexible, partly in virtue of its being 
approximately an equilibrium polygon, 
and partly in virtue of its resistance as a 
girder. 

It is evident from the nature of the 
equilibrium polygon that it is possible 
with any given system of loading to make 
an arch of such form (viz., that of an equi-
librium polygon) as to require no bracing 
whatever, since in that case there will 
be no tendency to bend at any point. 
Also it is evident that any deviation of 
part of the arch from this equilibrium 
polygon would need to be braced. As, 
for example, in case two distant points 
be joined by a straight girder, it must 
be braced to take the place of part of 
the arch. Furthermore, the greater the 
deviation the greater the bending mo-
ment to be sustained in this manner. 
Hence appears the general truth stated 
in the proposition. 

I t will be noticed that the moment 
called into action, at any point of a straight 
girder, depends not only on the applied 
forces which furnish the polygonal part 
of the equilibrium polygon, but also on 
the resistance which the girder is capa-
ble of sustaining at joints or supports, or 
the like. For example, if the girder 
rests freely on its end-supports, the mo-
ment of resistance vanishes at the ends, 
and the "closing line" of the polygon 
joins the extremities of the polygonal 
part. If however the ends are" fixed 
horizontally and there are two free 
(hinge) joints at other points of the gir-
der, the polygonal part will be as before, 
but the closing line would be drawn so 
that the moments at those two points 
vanish. Similarly in every case (though 
the conditions may be more complicated 
than in the examples used for illustration) 
the position of the closing line is fixed 
by the joints or manner of support of 
the girders, for these furnish the condi-
tions which the moments (t. e., the ordi-
nates of the equilibrium polvgon) must 
fulfill. F or example, in a straight uni-
form girder without joints and fixed 
horizontally at the ends, the conditions 
are evidently these; the total bending 
vanishes when taken from end to en if 
and the deflection of one end below the 
tangent at the other end also vanishes. 



Prop. IV. If in any arch that equilibrium 
polygon (due to the weights) be construct-
ed which has the same horizontal th rus t 
as the arch actually exerts; and if i ts 
closing line be drawn from consideration 
of the conditions imposed by the supports , 
etc.; and if furthermore the curve of the 
arch itself be regarded as another equilib-
rium polygon due to some system of load-
ing not given, and its closing line be also 
found from the same considerations re-
specting supports, etc., then, when these 
two polygons are placed so t h a t these 
closing lines coincide and their areas 
partially cover each other, the ordinatos 
intercepted between these two polygons 
are proportional to the real bending mo-
ments acting in the arch. 

Suppose that an equilibrium polygon 
due to the weights be drawn having the 
same horizontal thrust as the arch. W e 
are in fact unable to do this at the out-
set as the horizontal thrust is unknown. 
W e only suppose it drawn fo r the pur-
pose of discussing its properties. Let 
also the closing line be drawn, which 
may be done, as will be seen hereaf ter . 
Call the area between the closing line 
and the polygon, A. Draw the closing 
line of the curve of the arch itself (re-
garded as an equilibrium polygon) ac-
cording to the same law, and call the 
area between this closing line and i ts 
curve A ' . Fur ther let A ' be the area of 
a polygon whose ordinates represent the 
actual moments bending the arch, and 
drawn 011 the same scale as A and A'. 
Since the supports etc., must influence 
the position of the closing line of this 
polygon in the same manner as tha t of 
A , we have by Prop. I l l not only 

A=A' + A' 

which applies to the entire areas, bu t 
also 

y=y'+y' 

as the relation between the ordinates of 
these polygons at any of the points of 
division before mentioned, f rom which 
the t ruth of the proposition appears. 

This demonstration in its general form 
mav seem obscure since the conditions 
imposed by the supports, etc., are quite 

various, and so cannot be considered in 
a general demonstration. The obscurity, 
however, will disappear a f t e r the t reat-
ment of some particular cases, where we 
shall take pains to render the t ru th of 
the proposition evident. W e may, how-
ever, make a statement which will pos-
sibly pu t the mat ter in a clearer l ight by 
saying that A ' is a figure easily found, 
and we, therefore, employ it to assist in 
the determination of A' which is un-
known, and of A which is partially un-
known. And we arrive a t the peculiar 
property of^-l",that itsclosing line isfound 
in the same manner as that of A, by no-
ticing that the positions of the closing 
lines of A and A' are both determined 
in the same manner by the supports, etc. ; 
for the same law would hold when the 
rise of the arch is nothing as when it 
has any other value. But A" is the dif-
ference of A and A ' . Hence wha t is 
t rue of A and A' separately is t rue of 
their difference A", the law spoken of 
being a mere mat te r of summation. 

From this proposition it is also seen tha t 
the curve of the arch itseli may be re-
garded as the curved closing line of the 
polygon whose ordinates are the actual 
bending moments, and the polygon it-
self is the polygonal part of the equili-
brium polygon due to the weights. 

It is believed tha t Prop. I V contains 
an important addition to our previous 
knowledge as to the bending moments in 
an arch, and tha t it supplies the basis 
for the heretofore missing method of 
obtaining graphically the t rue equili-
brium polygon for the various kinds of 
arches. 

Prop. V. If bending moments M act 
on a uniform inclined girder at horizon-
tal distances x f rom 0 , the amount of the 
vertical deflection yd will be the same 
as tha t of a horizontal girder of the 
same cross section, and having the same 
horizontal span, upon which the same 
moments M act a t the same horizontal 
distances x f rom 0. Also, if bending 
moments M act as before, the amount of 
the horizontal deflection, say xdi will be 
the same as that of a vertical g i rder of 
the same cross section, and bavin«* the 

' O 
same height, upon which t h e same mo-
ments M act a t the same heights. 

Let the moment M act at A , produc-
ing according to equation (5) the deflec-
tion 

OC=e. M. AO 

whose vertical and horizontal compo-
nents are 

Vd = CE and xd = OE 

For the small deflections occurring in a 
girder or arch, AOC=90° 

AO : OF:: OC: CE 

CE= G
(). OF—e.M. OF 

yd = e. Mx 

Also, AO : AF:: OC : OE 

0E=-^r.AF=e.3f.AF 
AO 

xd = e.My 

The same may be proved of any other 
moments a t other points; hence a simi-
lar result is t rue of their sum; which 
proves the proposition. 

I t may be thought tha t the demonstra-
tion is deficient in rigor by reason of the 
assumption tha t AOC=OOa. 

Such, however, is not the fac t as ap-
pears f rom the analytic investigation of 
this question by W m . Bell in his at-
tempted graphical discussion of the arch 
in Vol. V I I I of this Magazine, in which 
the only approximation employed is that 
admit ted by all authors in assuming that 
the curvature is exactly proportional to 
the bending moment. 

W e might in this proposition substi-
tu te f . M+I for e.m, and prove a 
similar but more general proposition re-

specting deflections, which the reader 
can easily enunciate for himself. 

Before entering upon the particular 
discussions and constructions Ave have in 
view, a word or two 011 the general 
question as to the manner in which the 
problem of the arch presents itself, will 
perhaps render apparent the relations 
between this and certain previous inves-
tigations. The problem proposed by 
Rankine, Yvon-Villarceaux, and other 
analytic investigators of the arch, has 
been this:—Given the vertical loading, 
what must be the form of an arch, and 
what must be the resistances of the 
spandrils and abutments , when the 
weights produce 110 bending moments 
whatever? By the solution of this ques-
tion they obtain the equation and prop-
erties of the particular equilibrirtm poly-
gon which would sustain the given 
weights. Our graphical process com-
pletely solves th is question by at once 
constructing this equilibrium polygon. 
I t may be remarked in this connection, 
tha t the analytic process is of too com-
plicated a nature to be effected in any, 
except a few, of the more simple cases, 
while the graphical process t rea t s all 
cases with equal ease. 

But the kind of solution just noticed, 
is a very incomplete solution of the 
problem presented in actual p rac t ice ; 
for, any moving load disturbs the dis-
tribution of load fo r which the arch is 
the equilibrium polygon, and introduces 
bending moments. For similar reasons 
it is necessary to stiffen a suspension 
bridge. The arch must then be propor 
tioned to resist these moments. Since 
this is the case, it is of 110 part icular 
consequence t h a t the form adopted for 
the arch in any given case, should be 
such as to entirely avoid bending mo-
ments when not under the action of the 
moving load. 

So f a r as is known to us, it is the 
universal practice of engineers to as-
sume the form and dimensions, as 
well as the loading of any arch pro-
jected, and next to determine whether 
the assumed dimensions are consistent 
with the needful strength and stability. 
If the assumption is unsuited to the 

I case in hand, the fact will appear by the 
introduction of excessive bending mo-
ments a t certain points. The considera-
tions set forth furnish a guide to a new 



assumption which shall be more suitable, : 
i t being necessary to make the form of < 
the arch conform more closely to tha t of i 
the equilibrium polygon for the given : 
loading. 

The question may be regarded as one 
of economy of material, and ease of 
construction, analogous to that of the 
truss bridge. In this latter case, con- < 
structors have long since abandoned any 
idea of making bridges in which the 
inclination of the ties and posts should 
be such as to require theoretically the 
minimum amount of material. Indeed, 
the amount of material in the case of a 
theoretic minimum, differs by such an 
inconsiderable quantity from tha t in 
cases in which the ties and posts have a 
very different inclination, that the attain-
ment of the minimum is of no practical 
consequence. 

Similar considerations applied to the 
arch, lead us to the conclusion that t he 
form adopted can in every case be 
composed of segments of one or more 
circles, anil that for the purpose of con-
struction every requirement will then be 
met as fully as by the more complicated 
transcendental curves found by the 
writers previously mentioned. If con-
siderations of an artistic nature render 
it desirable to adopt segments of para-
bolas, ellipses or other ovals, it will be a 
matter of no more consequence than is 
the particular style of truss adopted by 
rival bridge builders. 

W e can also readily t reat the problem 
in an inverse manner, viz :—find the 
system of loading, of which the assumed 
curve of the arch is the equilibrium 
polygon. From this it will be known 
how to load a given arch so that there 
shall be no bending moments in it. 
This, as may be seen, is often a very 
useful item of information ; for, by leav-
ing open spaces in the masonry "of the 
spandrils, or by properly loading the 
crown to a small extent, we may fre-
quently render a desirable form entirely 
stable and practicable. 

C H A P T E R II. 

T H E ARCH R I B W I T H F I X E D E N D S . 

LET US take, as the particular case to 
be treated, that of the St. Louis Bridge, 
which is a steel arch in the form of the 

arc of a circle ; having a chord or span 
of 51S feet and a versed sine or rise of 
one-tenth the span, i. e. 51.8 feet. The 
arch rib is firmly inserted in the im-
mense skew-backs which form part of 
the upper portion of the abutments. I t 
will be assumed that the abutments do 
not yield to either the thrust or weight 
of the arch and its load, which was also 
assumed in the published computations 
upon which the arch was actually con-
structed. Fur ther , we shall for the 
present assume the cross section of the 
rib to have the same moment of iner-
tia, I , a t all points, and shall here only 
consider the stresses induced by an 
assumed load. The stresses due to 
changes in the length of the arch itself, 
due to its being shortened by the load-
ing, and to the variations of temperature, 
are readily treated by a method similar 
to the one which will be used in this 
article, and will be treated in a subse-
quent chapter . 

Let bp a in F ig . 2, be the neutral 
axis of the arch of which the rise is one-
tenth the span. Let ax y z be the area 
representing the load on the left half of 
the arch, and a x' y' z that on the right, 
so that Vp=a. P=xy on the left, and 
yp = x'y' on the right. 

Divide the span into sixteen equal 
parts bb , bb,', eto, and consider that the 
load, which is really uniformly dis-
tributed, is applied to the arch at the 
points a, a„ a, ' , etc., in the verticals 
through b, bt, b,', etc.; so that the equal 
weights P are applied at each of the 
points on the left of a and the equal 
weights i P at each point on the r ight 
of a, while § P is applied at a. 

Take b as the pole of a force polygon 
for these weights, and lay off the weights 
which are applied at the left of a oii~the 
vertical through b„ viz., 5e = £ P = t h e 
weight coming to a from the l e f t ; 
w, %6^=P=the weight applied at a , ; 
•w the weight applied at a2, etc. 
Using b still as the pole, lay off bt' w / = 
± P = the weight coming to a f r o m ' t h e 
right; to/ w / = i r = t h e weight applied 
at a, ' , etc. This amounts to the same 
tiling as if all the weights were laid off 
in the same vertical. P a r t are put at 
the left and par t at the r ight for con-
venience of construction. Now draw 
bio, until it intersects the vertical 1 at c ; 
then draw c, c3 || bw,; and c, c, || bw\, 

etc. In the same manner draw bw,' to 
c / ; then c / c / || bic./, etc. Then the 
broken line bct. . . c8 is the equilibrium 
polygon due to the weights on the left 
of a, and be,'.. . c8' is tha t due to the 
weights on the right. Had the polygon 
been constructed for the uniformly dis-
tributed load (not considered as concen-
trated), on the left we should have a 
parabola passing through the points 
be . . . c„, and another parabola on the 
right through be'. . . <•/. From the 
properties of this parabola it is easily 
seen that e8 must bisect as <;/ must 
also bisect w t ' w j ; which fact serves to 
test the accuracy of our construction. 
This test is not so simple in cases of 
more irregular loading. 

The equilibrium polygon c, b cis that, 
due to the applied weights, but if these 
weights act on a straight girder with 
fixed ends, this manner of support re-
quires that the total bending be zero, 
when the sum is taken of the bending 
at the various points along the entire 
g i rde r ; for, the position of the ends 
does not change under the action of the 
weights, hence the positive must cancel 
the negative bending. To express this 
by our equations : 

yb=e.2(M) =0 2 ( J / ) = 0 . 

This is one of two conditions which 
are to enable us to fix the position of the 
true closing line ht ht' in this case. The 
other condition results from the fact 
that the algebraic sum of all the deflec-
tions of this straight girder must be 
zero if the ends are fixed horizontally. 

This is evident from the fact that 
when one end of a girder is built in, if 
a tangent be drawn to its neutral axis 
at that end, the tangent is unmoved 
whatever deflections may be given to 
the girder; and if the other end be also 
fixed, its position with reference to this 
tangent is likewise unchanged by any 
deflections which may be given to the 
girder. To express this by our equations: 

yd=f. 2 (Mx)=0 2 {Mx) = 0 
The method of introducing these con-

ditions is due to Alohr. Consider the 
area included between the straight line 

and the polygon cebcs' as some 
species of plus loading ; we wish to find 
what minus loading will fulfill the above 
two conditions. Evidently the whole 

negative loading must be equal numeric-
al lv to the whole positive loading, if we 
arc" to have Next, as the 
closing line is to be straight, the nega-
tive load cs c8' he V may be considered 
in two parts, viz., the two triangles, 
c 8 c 8 'A 8 and cB'hahs'. Let the whole 
span be trisected at t and t', then the 
total negative loading may be considered 
to be applied in the verticals through 
t and t', since the centers of gravity of 
the triangles fall in these verticals. 
Again, the positive loading we shall find 
it convenient to distribute in this man-
ner : viz., the triangle c, b c / applied in 
the vertical through b, the parabolic area 
b c , . . . e8 in the vertical 4 which con-
tains its center of gravity, and the para-
bolic area 6 c / . . . c„' in 4'. 

Now these areas must be reduced to 
equivalent triangles or rectangles, with 
a common base, in order that we may 
compare the loads they represent. Let 
the common base be half the span : then 
bb0=/>p' is the positive load due to the 
triangle c, b c 8 ' ; and § c4 ct=pp, and 
£ c / c0' —p'p,' are the positive loads due 
to the parabolic areas. 

Now assume any point q as a pole 
for the load line p,p,' and find the center 
of gravity of the positive loading by 
drawing the equilibrium polygon, whose 
sides are parallel to the lines of this 
force polygon : viz., use qp, and qp as 
the 1st and 2nd sides, and make/*?' || qp', 
and q'q, || qp,'. The first and last sides 
intersect at q,; therefore the center of 
gravity of the positive loads must lie in 
the vertical through q,. 

Now the negative loading must have 
its center of gravity in the same vertical, 
in order that the condition 2 (Mx) = 0 
may be satisfied, for it is the numerator 
of "the general expression for finding 
the center of gravity of the loading. 
The question then assumes this form : 
what negative loads must be applied in 
the verticals through t and t' that their 

' sum may be />, p', and that they may 
have their center of gravity in the verti-
cal through q,. 

The shortest wav to obtain these two 
segments of p,p; is to join r 3nd r' 
which are in the horizontals through 
px and p ' , and draw an horizontal 
through qa, which is the intersection of 
r r with the vertical through q,; then 
rr, and r'r' are the required segments 



of the negative load. For, let r r„=pl'pl we intend to make between the poly-
and take >•' as the pole of t he load rr.: gons c and d (as we may briefly desig-
then, since r, q01| r„r' and q, r || rr' we nate the polygons cs be/and d dd '), let 
have the equilibrium polygon r,q0r' ful- us notice the significance of certain oper-
filling the required conditions. ations which are of use in the const ruc-

Now these two negative loads rtrt= tion before us. One of these is the 
r, r and rrt, are the required heights of multiplication of the ordinates of the 
the triangles c /¿8 c ' and c„ c6' /*/; there- polygon or curve a t o obtain those of d. 
tore lay off c8 h = r r and c / / / / = ; T l . If « was inverted, certain weights might 

I he closing line hth% can then be be hung at the points «„ a s , etc.. such 
drawn, and the moments bending the tha t the curve would be in stable equi-
s t ra ight girder will then be proportional librium, even though there are flexible 
to A, c„ /¿, c„ etc., t he points of inflexion joints at these points. Equilibrium 
being where the closing line intersects would still exist in the present upr ight 
the polygon If the construction has position under these same applied 
been correctly made, the area above the weights, though it would be unstable 
closing line is equal to tha t below, a test If now, radiating from any point , we 
easy to apply. draw lines, one parallel to each of the 

o f X " I Z V T 1 0 ! • c T k l T t i 0 " s , i d e s a " « < > e t c - ' o f t h e polygon, of the curve of the arch itself, and t r ea t then any vertical line intersect ing th is 
it as an equilibrium polygon. Since the pencil of radiating lines will be c u f b v it 
rise of t he arch is such a small fraction in segments, which represent the relat ive 
of the span, the curve itself is ra ther flat weights needed to make a their equilibri-
f o r our purposes, and we shall therefore um polvgon. By drawing the vertical line 
multiply its ordinates ab, a, 6„ etc., by at a proper distance froin t L p S e i s 
any number convenient for our purpose: total length, i .e. , the total load on ' t he 

L n S l ' v ^ ' / T / ^ 3 - ! ^ e t b
7 T b y g ? a r c h C a" b e , n i l d e o f amount we 

a P o b g o n ^ ^ , / / such tha t <¡6=3 ab, please. The horizontal line f rom the 
a, o .i a, 0t, etc If a curve be de- pole to this vertical will be the actual 
scribe., through . . . d , it will be horizontal thrust of the arch measured 
the arc of an ellipse, of which d is the on the same scale as the load If •> like 

f h e
f l T i r T - , , , I ) e n c i l ° f r a d i a t i " ? l i l , e s 'Irawn paral-

If we *ish to find the closing lme kjc,' lei to the sides of the polygon d and the 
of t Ms c.u ve sud . tha t it shall make load be the same as i h a t we had sup-
~ and _ (Mt/x) = 0, the same posed upon the polvgon a, it is at once 
pron ss . e have just used is here appli- seen that the pole dLstanc^ foi / i s one 
cable but since the curve is symmetri- third of that for a ; for , every line in d 
cal the object can be effected more has three times the rise of I h e c o r r e 
easily. B y reason of the symmetry ; spending one in a, and hence with the 
about the vertical through 6, the center ¿ n o rife, only one-third the ho roma l 
of gravity of the positive area above the span. The increase of ordinate« 'Then 

S ™ ' Z 8 l \ < ^ ^ V G f T l n ' e a n S a d e 0 P e a 8 e " f l i 0 l e ' l i ^ a n e i l e 
t h o u g h b. l i e center of g rav i ty of the same ratio, and vice versa. As is well 
negat ive area hes there also ; hence the known, the product of the pole d stance 
negative area is symmetrical abou t the by the ordinate of the equiUbriun n o h " 
center vertical; the closing line must then g£n is the bending mo.nem. T h i s ' p r o 
be horizontal. I t only remains then to find duc t is not changed by changing P

t h e 
the height of a rectangle having the same pole distance cnangmg t h e 
area as the elliptical segment, and hav- Again, suppose the vertical load line-
ing the span for its base. This is done of a force polvgon to « S in ? i en 
very approximately by taking (in this position, and the pole t o be moved^ er 
case where the span is divided into 10 tically to a new p o s i t i o n . K o ver t i c i l 
n ' a S W 1 t b G S U m ° f t h e ° r d i - o r 1'orizontal dimension of the W 

o h l ° r r i e t h r 0 n g h * " t h G r e q U i r e d f ? u i I ' l b r i U m - P - 0 l y g ° n - ^ p o n d i n g ' to 
" ' . the new position of the pole be differ-Before effecting the comparison which ent from that in the polygon corre-

spending to the first position of the pole; 
the direction of the closing line, how-
ever, is changed. Thus we see that the 
closing line of any equilibrium polygon 
can be made to coincide with any line 
not vertical, and tha t i ts ordinates will 
be unchanged by the operation. It is 
unnecessary to draw the force polygon 
to effect this change. 

N o w to make clear the relationship 
between the polygons c and d, let us 
suppose, for the instant , tha t the poly-
gon e has been drawn by some means 
as yet unknown, so t h a t its ordinates 
from d, viz., e,dt=y„ etc., are 
proportional to the actual moments Ms 
which tend to bend the arch. 

The conditions which then hold re-
specting these moments Me, are three:— 

2(Me) = 0, 2(Mex)=0, 2(J%)=0. 

The first condition exists because the 
total bending from end to end is zero 
when the ends are fixed. The second 
and third are true, because the total de-
flection is zero both vertically and hori-
zontally, since the span is nil variable as 
well as the position of the tangents at 
the ends. These results are in accord-
ance with Prop. V. N o w by Prop . I l l 
these moments Me are the differences of 
the moments of a s t ra ight girder and of 
the arch itself ; hence the polygon e is 
simply the polygon c in a new position 
and with a new pole distance. As 
moments are unchanged by such trans-
formations, let us denote these moments 
by Mc. W e have before seen tha t 

2 (Mc) = 0, and 2 (Mcx) = 0 

Subtract 

2 (Mc—Me)=0, and 2(MC-Me)x=0 

2(M<i)=0 and 2 (Mix)=0 

F r o m this it is seen tha t the polygon 
d m u s t have its closing line fulfill the 
same conditions as the polygon c. This 
is in accordance with Prop. I \ . 

Again, 2 (Mey) = ? (Mc - Md) y= 0 

2(Mcy) = 2(Mdy). 

This last condition we shall use for 

determining the pole distance of the 
polygon e, which is one-third of the 
actual th rus t of the arch measured on 
the scale of the weights etc. The 
physical significance of this condition 
may be s ta ted according to Prop. V, 
thus : if the moments Md are applied to 
a uniform vertical girder bd a t the points 
b, b", b b t ' , etc., at the same height 
with bf, d., etc., they will cause the same 
total deflection xd = e. 2 (May) as will 
the moments Mc when applied at the 
same points. I lence if Ml are used as 
a species of loading, we can obtain the 
deflection by an equilibrium polygon. 
Suppose the load a t d, is d, k., and tha t 
at d„ is dt kt, etc., then t h a t at br is 
4 b_ kH. This approximation is sufficiently 
accurate for our purposes. 

Now lay off on le 18' as a load line 
dnii=A />9 k mf m, = d, k„ tn,mf=de k0 
etc. The direction of these loads must 
be changed when they fall on the other 
side of the line k; e.g., m , mt=kt dt. 
If this process be continued through the 
entire arch m / (not drawn) will fall as 
fa r to the r igh t of d as m6 does to the 
left , and the last load will just reach 
to d again. This is a tes t of the cor-
rectness with which the position of the 
line k% kt' has been found. Now using 
any point as b for a pole, d raw bmf t o f , t 
then draw / , / „ || 6»?,, f j \ || bmt, etc. 
The curve bf is then the exaggerated 
shape of a vertical girder bd, fixed at b, 
under the action of that par t of moments 
Md which are in the lef t half of the 
arch. The moments Md on the r ight 
may act on another equal girder , having 

I the same initial position bd, and it will 
then be equally deflected to the right of 
bd. This is not drawn. 

Again, suppose thq^e vertical girders 
fixed at b are bent- instead by t h e 
moments Mc. W e do not know just 
how much these moments are, though we 
do' know tha t they are proportional to 
the ordinates of the polygon c. There-
fore make dn, = hf ce, ns », = h. c., 
»7 = ht ca, etc. When all these loads 
are laid off, the last one nJ d — ^ ht' c / 
must just re turn to d. This tests the 
accuracy of the work in determining the 
position of /i8 Zr/. 

Now using b as a pole as before, con-
s t ruct the deflection curves by and by'. 
Since these two deflections, viz., 2 d f 
and yg' ought to be the same, this f a c t 



informs us that each of the ordinates 
/¿, c„ /t„ c2, must be increased in the rat io 
o t \ y f j ' to dfi in order that when they 
are considered as loads, they may pro-
duce a total deflection equal to" 2 d f . 
To effect this, lay off bj=df and bi= 
i f f f f ' , and draw the horizontals through 
i and j. At any convenient distance 
draw the vertical i0j0, and draw bia and 
bj0. These last two lines enable us to 
effect the required proportions for any 
ordinates on the left, and these or two 
lines of the same slope on the r ight to 
do the same thing on the right. E. y. 
lay off the ordinate bis'=he' c / , then 
the required new ordinate is bjt'. Then 
layoff k,' et'=bjt'. In the same man-
ner find ke from A b, and kgea from h( ct. 
In the same manner can the other ordi-
nates k, e t, etc., be found ; but this is 
not the best way to determine the rest 
of them, for we can now find the pole 
and pole distance of the polygon e. 

As we have previously seen, the pole 
distance is decreased in the same ratio 
as the ordinates of the moment curve 
are increased, therefore prolong bi0 to vt, 
and draw a horizontal line through w, 
intersecting bjo at v, and the middle ver-
tical at u0 ; then is wa v9 the pole dis-
tance decreased in the required ratio. 
Hence we move up the weight-line to. w, 
to the position u , u t vertically through 
>.y, and for convenience, lay off the 
weights w,'"to,' at « , ' w / , etc. ' 

Furthermore, we know that the new 
closing-line is horizontal. To find the 
position of the pole o so that this shall 
occur, draw bv parallel to hht, and from 
v the horizontal vo. As is well known, 
v divides the total weight into the two seg-
ments, which are the vertical resistances 
of the abutments,»and if the pole o is 
on the same horizontal with v, the 
closing line will be horizontal. 

Now having determined the positions 
of the points et, e, es', starting from one 
of them, say et, draw ea e, || out, e, et || ou„ 
etc . ; then if the work be accurate, the 
polygon will pass throngh the other two 
points e and e / . The bending moments 
of the arch d or the arch a at at, etc., 
is the product of the pole distance 
i\v,= v'o by the ordinates <7, et, dne„ 
etc. , respectively, and between these 
points a similar product gives the mo-
ment with sufficient accuracy. It would 
be useful for the sake of accuracv to 

multiply the ordinates of the arch by 
some number grea te r than 3. 

As a final test of the accuracy of the 
work, let us see whether 2 ( M e y ) is ac-
tually zero, as should be. At d., for ex-
ample, y=d.l., and Me is proportional 
to d. e,. Then d. s. is proportional .to 
Mey at that point if e, s. is the arc of 
a circle, of which e. I. is the diameter. 
Similarly find d.'s.', etc. When et for 
example falls above dt, the circle must 
be described on t h e sum of ltdt and dtet 
as a diameter, and dts* is proportional 
to a moment of different sign from that 
at </.. We have distinguished the sign 
of the moments at the different points 
along the arch, by put t ing different 
signs before the letter s. It would have 
been slightly more accurate to have used 
only one-half t he ordinates e and 
V O but a s t h e y nearly equal in this 
case and of opposite sign, we have in-
troduced no appreciable error. 

Now at any point s lay off ss.=d1s., 
and at right angles to it s, 8a=b) sa, then 
at right angles to the hypothenuse sse 
make stst'=dj « / , etc. Then the sum 
of the positive squares is sst', and simi-
larly the sum of the negative squares is 
ssr If these are equal, then 2 (Mey) 
vanishes as it should, and the construc-
tion is correctly made. 

It would have been equally correct to 
suppose the two vertical girders fixed at 
d, and bent by the moments acting. W e 
could have determined the required ratio 
equally well f rom this construction. 
Further , in proving the correctness of 
the construction by taking the algebraic 
sum of the squares, we could have reck-
oned the ordinates, y, from any other 
horizontal line as well as from I IJ. 

t 8 
To find the resultant stress in 

the different portions of the arch, 
we must prolong v'o to o', say, 
(not drawn) so tha t the pole distance 
v'o'=3 v'o\ then if we join o' and w6, 
o ' " . will be the resultant stress in the 
segment b,a.-, o'u, will be the stress in 
a . «„.etc., measured in the same scale as 
the weights w, etc. This resultant 
stress is not directly along the neutral 
axis of the arch. 

The vertical shearing stress is construct-
ed in the same manner as for a girder, 
by drawing one horizontal through w 
between the verticals 7 and 8, another 

through w7 between 7 and 6, etc. (not 
drawn). Then the shear will be the ver-
tical distance between vo and these hori-
zontals through to8, w,, etc. It is seen 
that the shear will change sign on the 
vertical through ¿>, with our present 
loading. 

The" actual position of the vertical 
through the center of gravity of the 
load may be found by prolonging the 

moments at the left . The same two 
equalities hold also on the right. From 
this we at once obtain the ratio by which 
the ordinates of the polygon c must 
be altered to obtain those of the poly-
gon e. 

This last approximation also shows us 
that for a total uniform load, the four 
points of inflection when the bending 
moment is zero, lie two above and two 

first and last sides of the polygon c. A 1 below the closing line. I t is frequently 
weight = $ P = wf w, ought", however, a sufficiently close approximation in the 
first" to be" applied at ft., and another case when the moving load covers only 
= $ p= I0t' wt' at The shearing 
stress under a distributed load will 
actually change sign on the vertical so 
found. It will not pass far however 
from bt. 

The resultant stress is the resultant of 
the horizontal thrust and the vertical 
shearing stress, and it can be resolved 
into a tangential thrust along the arch 
and a normal shearing stress. This 
resolution will be effected in Fig. 3 of 
the next chapter. 

As to the position of the moving load 
which will produce the maximum bend-
ing moments, we may say that the posi-
tion chosen, in which the moving load 
covers one-half the span, gives in general 
nearly this case. It is possible, how-
ever, to increase one or two of the 
moments slightly by covering a little 
more than half the span with the mov-
ing load. 

The loading which produces maximum 
moments will be treated more fully in 
subsequent chapters. 

The maximum resultant stress and 
maximum vertical shear occur in gen-
eral when the moving load covers the 
whole span. The construction in this 
case is much simplified, as the poly-

?on c is then the same on the right of 

as it now is on the left , and the 
center of gravi ty of the area is in the 
center vert ical ; so that the closing line 
h r h t ' is horizontal, and can be drawn 
with the same ease as kt k/ was drawn. 
W e shall not, even in this case, be under 
the necessity of drawing the curves by 
and by', which would be both alike; for, 
as may be readily seen, the sum of the 
positive moments Mc on the left must 
be very approximately equal to the 
positive moments Md on the left, and 
the same thing is true for the negative 

part of the span to derive the ratio 
needed by supposing that the sum of all 
the ordinates, both right and left, above 
the closing line in the polygon c must 
be increased, so that it shall equal the 
corresponding sum in the polygon d. 
If the sums taken below the closing 
lines give a slightly different result, take 
the mean value. 

Thus the single construction we have 
given in Fig. 2, and one other much 
simpler than this, which can be ob-
tained by adding a few lines to 
Fig. 2, give a pretty complete deter-
mination of the maximum stresses on 
the assumptions made at the commence-
ment of the article. 

One of these assumptions, viz., that 
of constant cross section (¿. e. 1= con-
s tan t ) , deserves a single remark. I n . 
the St. Louis Arch / was increased 
one-half at each end for a distance of 
one-twelfth of the span. This very 
considerable change in the value of I 
slightly reduced the maximum moments 
computed for a constant cross section. 
From other elaborate calculations, par-
ticularly those of Heppel,* on the Britan-
nia Tubular Bridge, it appears that the 
variation in the moments caused by the 
changes in cross section, which will 
adapt the rib to the stresses it must sus-
tain, are relatively small, and in ordinary 
cases are less than five per cent, of the 
total stress. The same considerations 
are not applicable near the free ends of 
a continuous girder, where I may theo-
retically vanish. In the case before us, 
where the principal part of the stress 
arises not from the bending moments, 
but from the compression along the 
arch, the effect of the variation of / i s 
verv inconsiderable indeed. 

* Philosophical ilaiiaziiit, Vol. 40, 1S70. 



C H A P T E R III . 
A R C H R I B W I T H F I X E D E N D S A N D H I N G E 

J O I N T AT T H E C R O W N . 

LET the curve a of Fig. 3 represent 
the proportions of the arch we shall use 
to illustrate the method to be applied to 
arches of this character. The arch a is 
segmental in shape, and has a rise of one-
fifth of the span. It is unnecessary to 
assume the particular dimensions in £eet, 
as the above ratio is sufficient to deter-
mine the shape of the arch. 

The arch is supposed to be fixed in the 
abutments, in such a manner that the 
position of a line drawn tangent to the 
curve a a t either abutment is not changed 
in direction by any deflection which the 
arch may undergo. At the crown, how-
ever, is a joint, which is perfectly free to 
turn, and which will, then, not allow the 
propagation of any bending moment 
from one side to the other. In order 
that we may effect the construction more 
accurately, let us multiply the ordinate« 
of the curve a by some convenient num-
ber, say 2, though a still larger multi-
plier would conduce to greater accuracy. 
We thus obtain the polygon d. 

Having divided the span b into twelve 
equal parts bx b„ etc, (a larger number of 
parts would be better for the discussion of 
an actual case), we lay off below the hori-

evident that if we consider the parts of 
the girder at the right and left of the 
center as two separate girders whose 
ends are joined at the center, these ends 
have each the same deflection, by reason 
of this connection. 

This is expressed by means of our 
equations by saying that 2(3fx) when 
the summation is extended from one end 
to the center is equal to 2(3fx) when the 
summation is extended from the other 
end to the center, for these are then pro-
portional to the respective deflections of 
the center. "We may then write it thus : 

2 \ (Mx) = 2b
b,( Mx) 

The equation has this meaning, viz : 
that the center of gravity of the right 
and left moment areas taken together is 
in the center vertical : for, taking each 
moment 31 as a weight, x is its arm, and 
Mx its moment about the center. 

In order to find in what direction to 
draw the closing line through b so that 
it shall cause the moment areas together 
to have their center of gravity in the 
center vertical through 6, let us" draw a 
second equilibrium polygon using the 
moment areas as a species of loading. 

The area on the left included between 
any assumed closing line as bbt (or bht) 
and the polygon bct may be considered 

•/on_t:tl line b on the end verticals, lengths to consist of "a positive" triangular area 
which express on some assumed scale the I bctbt (or betht) and a negative parabolic 
weights which may be supposed to be area ¿ W o ; and similarly on the right a 
concentrated at the points of division of positive area bc'b' (or be 7, ') and a ne«'a-
the arch. If a ¿is the depth of the load- tive area be 'c V/ . 
ing on the left and al'-\al that on the At any convenient equal distances from 
n g h t , then btwt + bt tt\ = the weight con- " • l . . - . 
centra ted at a; u\w,= the weight at a , ; 
">,' w / = the weight at </,', etc'. Using 
b as a pole, draw the equilibrium polygon 
c, whose extremities ct and c / bisect 
to, w4 and v..' to/ respectively. 

Now to find the closing "line of this 
equilibrium polygon so that its ordinates 
shall be proportional to the bending mo-
ments of a straight girder of the same 
span, and of a uniform moment of inertia 
/ , which is built in horizontally at the 
ends and has a hinge joint at its center; 
we notice in the first place that the bend-
ing moment at the hinge is zero, and 
hence the ordinate of the equilibrium 

the center as at p and p', lay off these 
loads to some convenient scale. It is, 
perhaps, most convenient to reduce the 
moment areas to equivalent triangles 
having each a base equal to half the 
span: then take the altitudes of the tri-
angles as the loads. This we have done, 
so that pp=ic0e3, and j > > / = f o / c / . 
-Now assume, for the instant, that closing 
line is bjte', which of course is incorrect, 
and make pj>,=b ct and j t>/¿>/=¿/c/ , 
then these are the loads due to the posi-
tive triangular areas at the left and right 
respectively, while ppt and p'pt' are the 
negative parabolic loads. 

Take o as the pole of these loads, then 
polygon at this point vanishes. The jrp' may be taken for the first side of the 
closing line then passes through b the sccoiul equilibrium polvgon. Draw V * 
point in question. Furthermore it is! | | o'Pl and p'q'\\o'p\', and then from £ 

and q' draw parallels to o'pj respective- apply Prop. IV, for the determination of 
the bending moments. 

Tha t Prop. IV is true for an arch of 
this kind is evident; for, the loading 
causes bending moments proportional to 
the ordinates A2c„ hsc3, etc., while the arch 
itself is fitted to neutralize, in virtue of 

position of the closing line which causes its shape,moments which are proportional 
the center of gravity to fall ou the center to k3dv kzd3, etc. The differences of 
vertical. W e are able to conduct these the moments represented by these ordi-
trials so as to lead at once to the required nates are what actually produce bending 
closing line as follows. Since, evidently, in the arch. 

ly. These last sides intersect at qn. The 
vertical through q„ then contains the 
center of gravity of the moment areas 
when b( 6 / is assumed as the closing 
line. 

A few trials will enable us to find the 

bt<\+¿/c/=A„ce+A/c/, it is seen that the 
sum of the positive loads is constant. 

Now the ordinates of the type he are 
not drawn to the same scale as those of the 

Therefore m a k e p j > t = p h > ' and use />,/>, type kd, for each was assumed regardless 
and ;>//>,' as the positive loads, in the of the other. In order that we may find 
same manner as we used p,p2 and p\p\ the ratio in which the ordinates he must 

be changed to lay them off on the same 
scale as kd it is necessary to use another 
equation of condition imposed by the 
nature of the joint and supports, viz: 

previously. 
This will be equivalent to assuming a 

new position of the closing line. The 
only change in the second equilibrium 
polygon will be in the position of the 
last* two sides. These must now be drawn 
parallel to o'p3 and o'p3 respectively: 
and they intersect at q3. The vertical 
through q3 contains the center of gravity 
for this assumed closing line. Another 
trial gives us qt. 

Now if the direction of the closing 
line had changed gradually, then the in-

I*(Ma-Mc)y = X,{Ma-Mc)y _ Va 

or (Md- Mc)y = ^{Md-Me)y 

The left hand side of the equation is the 
horizontal displacement (i.e., the total 
deflection) of the extremity a of the lef t 

_ vd 

tersection of the last sides" of the second half of the arch, due to the actual bend-
equilibrium polygon would have de- ing moments (il/d —3/c) acting upon it: 
scribed a curve through q , q3 and qA. If and the r ight hand side is the horizontal 
one of these points, as q„ is near the cen- displacement of a the extremity of the 
ter vertical, then the arc of a circle q j , right half of the arch due to the moments 
<7„ will intersect it at q t indefinitely near actually bending it. These are equal be-
to the point where the true locus of the cause connected by the joint, 
points of intersection would intersect the The construction of the deflection 
center vertical. curves due to these moments will enable 

Let us assume that qh is then deter- us to find the desired ratio, 
mined with sufficient exactness by the The ordinates kd and he are rather 
circular arc q,q3q„ and draw qq% and q'qt longer than can be used conveniently, to 
as the last two sides of the second equili- represent the intensity of the moments 
brium polygon. Now draw o'pt || qqt concentrated at </„<?„ etc, and c„c3, etc.: 

J' O » " «• O D S J A » * * 
line such that the center of gravity of and also dn, = £ /i6ce, n6n6 = £ h,ct, etc. 
the moment areas 
cal. 

is in the center verti- W e use only one-quarter of each end 
ordinate because the moment area sup-

It is evident that the closing line of the posed to be concentrated at each end has 
polygon d considered as itself an equilib- only one half the width of the moment 
riunì" polygon is the horizontal line areas concentrated at the remaining 
through d, for that will cause the center points of division, 
of gravity of the moment areas on the Using b as a pole we find the deflection 
left and right, between it and the polygon curve / ¿ d u e to the moment 3f„ or J/„-
d, to fall on the center vertical. and the deflection curve gb due to the 

The next step in the construction is to moments Me on the left. On the right 



we should find a deflection d f = d f not 
drawn, and similarly a deflection dg' not 
equal to dg. 

Now the equation we are using requires 
that the ordinates he shall be elongated 
so that when used as weights the deflec-
tions shall be identical: i.e., we must 
have df=bgg'. To effect the elongation, 
lay off aj=df and ai=^gg'; and a t any 
convenient distance on the horizontals ii0 
andj/y,, draw the vertical i„j t ' , then the 
lines d f t and aj\ will effect the required 
elongation. For example, lay off ait= 
hect, from which we obtain ajt=zkte, for 
the left end ordinate, and similarly a j \ ' = 

The pole distance ttt, of the original 
polygon c must be shortened in the 
same ratio in which the ordinates are 
elongated. Hence the new pole dis tance 
of the polygon e is ttr 

Since ktkt' is the closing line of the 
polygon e, and is horizontal, the pole of 
e is o, on the horizontal through he; for, 
h p t is the part of the applied weight 
sustained by the left support. 

Now if the weight line be moved up 
to t„ so that the applied weights are utu/ 
at the center, etc., and o is the pole, the 
polygon e may be described s ta r t ing from 
d, and it will finally cut off the end ordi-
nates ktet and kt'et' before obtained. 
Then will the ordinates of the t y p e d e 
be proportional to the moments actually 
bending the arch, and the moments will 
be equal to the products of de by in 
which de is measured on the scale of 
distance, and ttt on the scale adopted for 
the weights etc. 

The accuracy of the construction is 
finally tested by taking 2(ds)'=0, an 
equation deduced from l'"(Md—Mc)y=0, 
as explained in the previous article upon 
the St. Louis Arch. It is unnecessary to 
explain the details of this construction 
since as appears from Fig. 3 it is in all 
respects like that in Fig. 2. 

Now let us find the intensity of the 
tangential compression along the arch 
and of the shearing normal to the arch. 
Since the pole distance It, refers t o the 
difference of ordinates between the poly-
gons d and e, whose ordinates are double 
the actual ordinates, if we wish now to 
return to the actual arch a whose ordi-
nates are halves of the ordinates of d, 
we must take a pole distance « , = 2 « , and 
move the weight line so tha t i t is the 

vertical through ts. Then tt3 is the actual 
horizontal thrust of this arch due to the 
weights; and ove is the resultant stress 
iu the segment as50 of the arch, which 
may be resolved into two components 
orc and vcre respectively parallel and per-
pendicular to 

Then are ore and v6re respectively, t he 
thrust directly along, and the shear di-
rectly across the segment a-ibt of the 
arch. Similarly or6 and viri represent 
the thrust along, and the shear across 
the segment a t a t , and so on for other 
segments. These quantities are all 
measured in the same scale as that of the 
applied weights. 

The shear changes sign twice, as will 
be seen from inspection of the directions 
in which the quantities of the type vr 
are drawn. The shear is zero wherever 
the curves d and e are parallel to each 
other. Thus the shear is nearly zero at 
bt, at aa and at some point between a/ 
and a, ' . 

The maxima and minima shearing 
stresses are to be found where the incli-
nation between the tangents to the curves 
d and e are greatest. 

The statements made in the previous 
article, respecting the position of the 
moving load which causes maximum 
bending moments, are applicable to this 
kind of arch also. 

The maximum normal shearing stress 
will occur for the parts of the arch near 
the center, when the moving load is near 
its present position, covering one half of 
the arch. But the maximum normal 
shearing stress near the ends, may occur 
when the arch is entirely covered by the 
moving load, or when it may occur when 
the moving load is near its present posi-
tion, it being dependent upon the rise of 
the arch, and the ratio between the mov-
ing and permanent load. 

The maximum tangential compressions 
occur when the moving load covers the 
entire arch. The stresses obtained by 
the foregoing constructions, go upon the 
supposition that the arch has a constant 
cross-section, so that its moment of iner-
tia does not vary, and no account is 
taken of the stresses caused by any 
changes of the length of the arch rib, 
due to variations of temperature or other 
causes. These latter stresses we shall 
now investigate for both of the kinds of 
arches which have been treated. 

C H A P T E R IV. 
T E S T P E E A T U R E S T R A I N S . 

I t is convenient to classify all strains 
and stresses arising from a variation in 
the length of the arch, under the head 
of temperature, as such stresses could 
evidently have been brought about by 
suitable variations of temperature. 

The stresses of this kind which are of 
sufficient magnitude to be worthy of con-
sideration, besides temperature stresses 
are of two kinds, viz. the elastic short-
ening of the arch under the compression 
to which it is subjected, and the yielding 
of the abutments, under the horizontal 
thrust applied to them by the arch. 
This latter may be elastic or otherwise. 
I t was, I believe, neglected in the com-
putation of the St. Louis Arch, and no 
doubt with sufficient reason, as the other 
stresses of this kind were estimated with 
a sufficient margin to cover this also. 
Anything which makes the true span of 
the" arch differ from its actual span 
causes strains of this character. By t rue 
span is meant the span which the arch 
would have if laid flat on its side on a 
plane surface in such a positipn that 
there are no bending moments at any 
point of it, while the actual span is the 
distance between the piers when the 
arch is in position. If the arch be built 
in position, but joined at the wrong tem-
perature the true and actual spans do 
not agree and excessive temperature 
strains are caused. 

Taking the coefficient of expansion of 
steel as ordinarily given, a change of 
± 8 0 ° F . from the mean temperature 
would cause the St. Louis Arch to be 
fitted to a span of about 3 | inches, greater 
or less than at the mean. 

The problem we wish to solve then is 
very approximately this : Wha t hori-
zontal thrust must be applied to increase 
or decrease the span of this arch by 3£ 
inches, and what other stresses are in-
duced by this thrust. In Fig. 4 the half 
span is represented on the same scale as 
in Fig. 2. The only forces applied to 
the half arch are an unknown horizontal 
thrust II at b9 and an equal opposite 
thrust 7 / a t a. The arch is in the same 
condition as it would be if Fig. 4 repre-
sented half of a gothic arch of a span = 
2ab, of which a was one abutment, and be 
was the new crown at which a weight of 

2II was applied. The gothic arch would 
be continuous at the crown, but the 
abutment a would be mounted on rollers, 
so that although the direction of a tan-
gent at a could not be changed, neverthe-
less the abutment could afford no resist-
ance to keep the ends from moving 
apart, i.e. there is no thrust in the direc-
tion of ab, any more than there is along 
an ordinary straight girder. 

In order to facilitate the accurate con-
struction, let us multiply the ordinates 
of a by 3 and use the polygon d instead. 
Now the real equilibrium polygon of the 
applied forces II, is the straight line k\. 
By real equilibrium polygon is meant, 
that one which has for its pole distance, 
the actual thrust of the arch. As we 
are now considering this arch, II is the 
applied force, and the thrust spoken of 
is at right angles to II. W e have just 
shown this thrust to be zero. We have 
then to construct an equilibrium polygon 
for the applied force II with a pole dis-
tance of zero. The polygon is infinitely 
deep in the direction of II, and hence is 
a line parallel to II. This fixes its direc-
tion. 

I ts position is fixed from the considera-
tion that t he total bending is zero, (be-
cause the direction of the tangents at 
the extremities a and b„ are unchanged), 
which is expressed by the equation 

2{Md) = 0. 
This gives us the same closing line 

through k which we found in Fig. 2, and 
the ordinates of the type kd, are propor-
tional to the moments caused by the 
horizontal thrust II. 

Now lay off dmt=^ktbs, mtm,=k.d,y 
etc., as in Fig. 2. 

The problem of finally determining H , 
will be solved in two steps: 

1°. We shall find the actual values of 
the moments to which the ordinates kd 
are proportional; 

2°. We shall find U b y dividing either 
of these moments by its arm. 

By considering the equation 
DvEI=I{My) 

given in Chapter I, in which D y is 
the horizontal displacement, it is seen 
tha t if the actual moments are used for 
weights, and EI for the pole distance, we 
shall obtain, as the second equilibrium 
polygon, a deflection curve whose ordi-



nates are the actual deflections due to 
the moments. By actual moments, actual 
deflections, etc, is meant, that all of the 
quanti t ies in the equation are laid off to 
the scale of distance, say one n"' of the 
actual size. 

Now let the equation be written 
1 nDy.nEI=l(My). 

From which it is seen that if the ordi-
nates be multiplied by n, so that on the 
paper they are of the same size as in the 
arch, we must use one nlh of the former 
pole distance, all else remaining un-
changed. 

Now for the St. Louis Arch, EI= 
39680000 foot tons. Let us take 100 
tons to the inch, as the scale of force : 
and since bd=3 inches, the scale of dis-
tance n is found from the proportion 

3 i n . : : 51.8 f t . : : 1 : n = 210 nearly, 
and EI-^ 100 n'=9 in. nearly, 

which is the pole distance necessary to use 
with the actual deflection i of i n . = 
l$in., in order that the moments may be 
measured to scale. As it is inconvenient 
to use so large a distance as 9 in. on our 
paper, let us take § of 9 in. = 3£ in. 
nearly = < h for the pole distance, and 
f of i t in. = 4 | in. —dy, for the deflec-
tion. 

Now with z as a pole and the weights 
dms, mfm., etc, draw the deflection curve 
bf\ having the deflection =df. The mo-
ments .)/,( must be increased in such a 
rat io that the deflection will be increased 
from df to dy. Therefore draw the 
straight lines bf and by, which will ena-
ble us to effect the increase in the required 
ratio. For example, the moment dmt=bi 
is increased to bj, and dmt=bj is increased 
to b f . Now measuring bj in inches and 
multiplying by 210 and by 100, we have 
found t h a t 21000 bj—1809 foot t o n s = t h e 
moment a t d or a. 

And again, 21000 ^ = 3747 foot tons 
= t h e moment at bk. 

By measurement 210 dk=11 f t . and 
210 ¿ ¿ = 3 4 . 8 f t . 

H = 1809 17 = 106 tons, + 
or J2=3747-T-34.8== 108 tons —. 

These results should be identical, and 
the difference between them of less than 
2 per cent, is due to the error occasioned 

by using the polygon d instead of the 
curve of the ellipse, and to small errors 
in measurement. W i t h a larger figure 
and the subdiv ision of the span into a 
greater number of parts this error could 
be reduced. The value of II found for 
the St. Louis Arch by computation was 
104 tons, but that was not on the suppo-
sition of a uniform moment of inertia I , 
and should be less than the value we 
have obtained. 

Now this horizontal thrust II due to 
temperature and to any other thrusts 
of like nature as compression, etc, is of 
the nature of a correction to the thrus t 
due to the applied weights. Thus in 
Fig. 2 we found 3ov' to be the th rus t due 
to the applied weights, and on applying 
the correction we must use the two 
thrusts 3 o t ! ' - f / / a n d Zov'—IIas pole dis-
tances to obtain equilibrium polygons 
whose ordinates reckoned from the arch 
a will, when multiplied by its pole dis-
tance, give the t rue bending moments. 
The tangential and normal stresses can 
then be determined by resolution, pre-
cisely as in Fig. 3. 

If it, however, appears desirable to 
compute separately the strains due to 
I I , this may be more readily done than 
in combination with the stresses already 
obtained. W e have already seen suffi-
ciently how the bending moments due 
to 11 are found. In fact the moments 
are such as would be produced by apply-
ing II at the point where the horizontal 
through k cuts the polygon d, for this is 
the point of no moment, and may be 
considered for the instant as a free end 
of each segment, to each of which 7 / i s 
applied causing the moments due to its 
arm and intensity. 

To find the tangential stress and shear, 
lay off in Fig. 4 av=IIand on it as a di-
ameter describe a semicircle, and draw 
art || fl//s, ar. || ato. etc.; then will art be 
the component of 7 /a long o7a8, and vr t be 
the component of II directlv across the 
same segment. In a similar" manner the 
quantities of which ar on the tvpe are 
the tangential stresses and the quantities 
w are the shearing stresses caused by 

The scale used for this last construc-
tion is about fifty tons to the inch. 

Now IIis positive or negative accord-
ing as the temperature is increased 
above or diminished below the mean, 

and these tangential and normal com-
ponents, of course, change sign with II. 

It should also be noticed in this connec-
tion tha t thrus ts and bending moments, 
which are numerically equal but of op-
posite sign, are induced by equal con-
tractions and expansions. 

The stresses due to variation of tem-
perature in the arch of Fig. 3, having a 
center joint, are constructed in Fig. 5. 

I t is evident f rom reasoning similar to 
that employed for the case just discussed, 
that the closing line dk\ of the polygon 
d is the equilibrium polygon of the thrust 
/ / i n d u c e d by variation of temperature. 
Suppose we have changed the equation 
of deflections to the form, 

niDu mil1 \ n ' nr 

in which, if tnl)y=dy and Ml-i-mn*=dz, 
then the moments M and the ordinates 
y will be laid off on the scale of 1 to n. 
This is equivalent to doing what was 
done in the previous case, where m was 
equal to f . The remainder of the pro-
cess is tha t previously employed. 

I t should be noticed that "we have in 
Figs. 4 and 5, incidentally discussed two 
new forms of arches, viz: in Fig. 4 that 
of an arch having its ends fixed in direc-
tion, bu t not in position; i.e., its ends 
may slide but not turn, and in Fig. 5, 
that of an arch sliding freely and turn-
ing freely a t the ends. The first of these 
arches has the same bending moments as 
a s t raight girder, fixed in direction a t the 
ends, and the second of them has the same 
bending moments as a simple girder sup-
ported at its euds. 

Errata.—The measurements of Fig. 4 
given on page 24 do not agree with the 
scale on which the drawing is engraved. 
The following equations and' quanti t ies 
agree with the dimensions of Fig. 4, and 
are to be substituted instead of those 
given on page 24. 

Let the scale of force be 100 tons to 
the inch, and since ¿</=4A inches, 4£ in. 
: 51.8 f t . : : 1 : n= 140 nearly, and EI-~ 

100»®=20 in. nearly, which is the pole 
distance to use with the actual deflection 
of the half span = lg in. 

Now take one four th of this pole dis-
tance = 5 in. = dz, and four t imes the 
deflection = 6 i in. = dy, as being more 
convenient to use; the moments, which 

are the products of the deflections by 
the pole distance, will be unchanged by 
this process. 

Now increase the ordinates in such a 
ratio tha t the deflection will be increased 
from df to dy. F o r example, the mo-
ment dm=bi is increased to bj, and dmt 
=bit is increased to bje. Now by meas-
ur ing bj in inches and mult iplying by 
140 and by 100 we have found 14000 bj= 
1809 foot t o n s = t h e moment at a or d. 
And again, 14000 ¿>/9=3747 foot tons = 
the moment at b%. 

By measurement, 140 dk=17 f t . 
and 140 M—34.8 f t . 

/ / = 1 8 0 9 - M 7 = 106 tons + , 
or i / = 3 7 4 7 - i - 3 4 . 8 = 108 tons —. 

Near the bot tom of the second column 
of page 24, instead of ar8 , ar., vrf, ar, vr, 
read avt. av„ vvav, vv. 

The scale used in the last construction 
in Fig. 4, is about 33£ tons to the inch. 

U X S Y M M E T R I C A L A R C H E S . 

The constructions which have been 
given have been simplified somewhat 
by the symmetry of the r ight and le f t 
hand halves of the arch, bu t the meth-
ods w h i c h ' h a v e been used are equally 
applicable if such symmetry does not 
exist, as it does not, if, for example, the 
abu tments are of different heights. 

In particular, for the unsymmetrical 
arch, its closing line is not in general 
horizontal, and must be found precisely 
as that for the equilibrium polygon due 
to the applied weights. 

I f , in Fig. 3, the hinge joint is not 
s i tuated a t the center, the arch is un-
symmetrical , and the determination of 
the closing line due' to the applied 
weights, is not quite so simple as in Fig. 
3. I t will be necessary to draw the trial 
lines through the joint by which the 
curve of errors q is found. 

C H A P T E R V. 
ARCH R I B W I T H E N D J O I N T S . 

Let the curve a of the arch to be 
t reated have a span of six times the rise, 
as represented in Fig. 6, and having 
divided the span into twelve equal parts, 
make the ordinates of the type bd twice 
the ordinates ah. 

Let a uniform load having a depth xy 
cover the two-thirds of the span at the 
lef t , and a uniform load having a dept^ 



xi/'= \xy cover the one-third of the 
span at the right. Assume any pole dis-
tance, as of one-third of the span, and 
lay off b^to l~xy= one-half of the load 
supposed to be concentrated at the cen-
ter; «>,«>,=2 xy=the load concentrated 
above ¿„ etc. Similarly at the left make 
¿4'i<j1'==sey=oue-half the load above b ; 
wl'w..'=2xy=the load above b'; w/to' 
=xy + xy' = lxy = the load above bt'; 
wi'wi'=xy=the load above b3', etc. 

From this force polygon draw the 
equilibrium polygon c, just as in Figs. 2 
and 3. 

Now the closing lineof the equilibrium 
polygon for a straight girder with ends 
free to turn, must evidently pass so that 
the end moments vanish. Ilence c,c/ 
is the closing line of the polygon c, and 
btbt' is the closing line of the polygon d, 
drawn according to the same law. The 
remaining condition by which to determ-
ine the bending moments is: 

2(Md-Mc)y=0 2(Mlly) = Z(Mcy) 

which is the equation expressing the con-
dition that the span is invariable, the 
summation being extended from end to 
end of the arch. 

This summation is effected first as in 
Figs. 2 and 3, by laying off as loads 
quantities proportional to the applied 
moments concentrated at the points of 
division of the arch, and thus finding the 
second equilibrium polygon, or deflection 
polygon of two upright girders, bent by 
these moments. 

Let us take one-fourth of each of the 
ordinates bd for these loads, i.e. bm=\ of 
\bd; mm,=¿¿,<7,,etc.: also bn, nnlt etc., 
equal to similar fractions of the ordinates 
of the curve c. Using d as the pole for 
this load, we obtain the total deflection 
bft on the left, and the same on the right 
(not drawn) due to the bending moments 
Mi. 

Similarly g j j l is the total deflection 
right and left due to the moments Me, 

Now the equation of condition re-
quires that '=bft. That this may 
occur, the ordinates of the polygon c 
must be elongated in the ratio of these 
deflections. To effect this, make ai= 
i (j¿/I and aj=bft, and on the horizon-
tals through i and j at a convenient dis-
tance draw the vertical i j \ ; then the 
lines at , and aj\ will effect the required 
elongation, as previously explained. To 

obtain the center ordinate be, for ex-
ample, make ai'=bh .•. aj'=be. To 
find the new pole o, draw bv parallel to 
c,e/ and vo horizontal, as before ex-
plained. 

If a«0 cuts the load line at ti and the 
horizontal through t, cuts aj0 at t„, then 
the vertical through I., is the new position 
of the load line and ttt is the new hori-
zontal thrust. 

Now using o as the pole of the load 
line etc., through draw the equi-
librium polygon starting from e. It 
must pass through b? and bt', which tests 
the accuracy of the construction. 

The construction may now be com-
pleted just as in Fig. 3,"by doubling the 
pole distance, and finding the tangential 
thrust along the arch and the normal 
shear directly across the arch in the 
segments into which it is divided. The 
maximum thrust and tangential stress is 
obtained when the line load covers the 
entire span. 

To compute the effect of changes of 
temperature and other causes of like 
nature in producing thrust, shear, bend-
ing moment etc., let us put the equation 
of deflections in the following form: 

mnW \ nn' n / v ' 

This equation may perhaps put in 
more intelligible form the processes used 
in Figs. 4 and 5, and is the equation 
which should be used as the basis for the 
discussion of temperature strains in the 
arch. In equation (D) n is the number 
by which the rise of the arch must be 
divided to reduce it to bd, i.e., it is the 
scale of the vertical ordinates of the 
type bd, in Fig. 6, so that if bd was on 
the same scale as the arch itself, n would 
be 

unity. Again, n' is the scale of force, 
i.e., the number of tons to the inch; and 
m is a number introduced for convenience 
so that any assumed pole dis tance^ may 
be used for the pole distance of the sec-
ond equilibrium polygon. In Fig. 
=bd. W e find m from the equation, 

P 
El 

mnii rn= EI 
pn'n 

from which m may be computed, for EI is 
a certain known number of foot tons when 
the cross-section of the rib is given, 2> is 

a number of inches assumed in the draw-
ing, n and n ' are also assumed. Now 
Dy is the number of inches by which 
the span is increased or decreased by the 
change of temperature, and m D y is at 
once laid off on the drawing. 

The quantities in equation (D) are so 
related to each other, that the left-hand 
member is the product of the pole dis-
tance and ordinate of the second equi-
librium polygon, while the right-hand 
member is the bending moment pro-
duced by the loading M-r-nn', which 
loading is proportional to M. The curve 
/ was constructed with this loading, and 
only needs to have its loads and ordi-
nates elongated in the ratio of bft to 
4 mDy to determine the values of 
M-r-nn' at the various points of division 
of the arch. One-half of each quantity 
is used, because we need to use but one-
half the arch in this computation. Two 
lines drawn, as in Figs. 4 and 5, effect 
the required elongation. 

The foregoing discussion is on the im-
plied assumption that the horizontal 
thrust caused by variation of tempera-
ture is applied in the closing line bbt of 
the arch, which is so evident from pre-
vious discussions as to require no proof 
here. 

The quantity determined by the fore-
going process is M-r-nn'=q say, a cer-
tain number of inches. Then M=nn'q, 

V V and H=M-i-y=ìi'q-r-—, in which - i s t h e 
n n 

length of the ordinate in inches on the 
drawing at the point at which JLTis applied. 

The determination of the shearing and 
tangential stress induced by II is found 
by using II as the diameter of a circle, 
in which are inscribed triangles, whose 
sides are respectively parallel and per-
pendicular to the segments of the arch, 
precisely as was done in Figs. 4 and 5. 

The whole discussion of the arch with 
end joints may be applied to an unsym-
metrical arch with end joints. In that case, 
it would be necessary to draw a curve,/" 
at the right as well as f at the left , and 
the two would be unlike, as g and g are. 
This, however, would afford no difficulty 
either in determining the stresses due to 
the loads, or to the variations of tem-
perature. 

When the live load extends over two-
thirds of the span, as in the Fig., the 
maximum bending moment is nearly in 

the middle of that live load, and is very 
approximately the largest which can be 
induced by a live load of this intensity, 
while the greatest moment of opposite 
sign is found near the middle of the un-
loaded third of the span. 

If the curve of the arch were a para-
bola instead of the segment of a circle, 
these statements would be exact and 
not approximate, as may be proved 
analytically. This matter will be fur-
ther treated hereafter. 

C H A P T E R YI. 
ARCH R I B "WITH T H R E E J O I N T S . 

Let the joints be at the center and ends 
of the arch, as seen in Fig. V. Let the 
loading and shape of the arch be the 
same as that used in Fig. G. Now since 
the bending moment must vanish at each 
of the joints, the true equilibrium curve 
must pass through each of the joints; 
i. e., every ordinate of the polygon c 
must be elongated in the ratio of db to 
bh. To effect this, make di=bh, and at 
a convenient distance on the horizontals 
through b and i draw the vertical i0 bt. 
Then the ratio line9 di0 and dbi will 
enable us to elongate as required, or to 
find the new pole distance ti, dimin-
ished in the same ratio, by drawing the 
horizontal ti through i0. The new pole o is 
found in the same manner as in Fig. 6. 

Now with the new pole o and the new 
load line through t, we can draw the 
polygon e starting at d. I t must then 
pass through bt and be' which tests the 
accuracy of the construction. 

The maximum thrust, and tangential 
stress is attained when the live load 
covers the entire span. 

Variations in length due to changes 
of temperature induce no bending mo-
ments in this arch, but there may be 
slight alteration in the thrust, etc., pro-
duced by the slight rising or falling of 
the crown due to the elongation or 
shortening of the arch. This is so small 
a displacement that it is of no import-
ance to compute the stresses due to it. 
We have for the same reason, in the 
previous and subsequent constructions, 
omitted to compute the stresses arising 
from the displacement which the arch 
undergoes at various points by reason of 
its being bent. I t would be quite pos-
sible to give a complete investigation of 
these stresses by analogous methods. 



The construction above given is appli-
cable to any arch with three joints. The 
arch need not be symmetrical, and the 
three joints can be situated at any points 
of the arch as well as at the points 
chosen above. 

CHAPTER V n . 
T H E ARCH RIB W I T H ONE E N D JOINT. 

Let the arch be represented b y Fig. 8, 
in which the load, etc., is the same as in 
Fig. 6. 

The closing line must pass through the 
joint, for at this joint the bending 
moment vanishes. 

A second condition which must be 
fulfilled is, that the total deflection be-
low the tangent at the fixed end of a 
straight girder having one end joint 
vanishes, for the position of the joint is 
fixed. This is expressed by the equation 

2(Mx)=0, 
in which the summation is extended 
from end to end. 

This condition will enable us to draw 
the closing line of the polygon c, and 
also that of d. The problem may be 
thus stated:—In what direction shall a 
closing line such as cji be drawn from 
ce so that the moment of the negative 
triangular area cec,'A' about ce shall be 
equal to the moment of the positive 
parabolic area ctbc,' 

To solve this problem, first find the 
center of gravity of the parabolic area 
by taking it in parts. The parabolic 
area c, b <•/ is a segment of a single 
parabola whose area is § bfa' Xc0c7=4 hi 
X.babt', when / i ,= the height of an equiva-
lent triangle having the span for its base 

Lay off ltbt=Co'\i draw lebs' .'. 
btlt=ht. Lay off cjpx=hx as proportion-
al to the weight of the parabolic area. 
Again, ct'p is proportional to the weight 
of the triangle e0c„'<?/. The parabolic 
area c,'<;,'= § as 
before, .*. A3 = i c 0 ' c / , which may be 
found as hl was before. 

Let K~pp„ then on taking any pole, 
as ca, of this weight line, we draw qqx |j 
c,c/ , since the left parabolic area has its 
center of gravity in the vertical through 
qt, and the triangular area in that through 
q, we draw qq, || c2/>, to the vertical 
through q', which contains the center of 
gravity of the right parabolic area. 
The position of q midway between the 

verticals containing b and ba is slightly 
to the right of its true position, as it 
should be at one-third of the distance 
from the vertical through b to that 
through Z>„. This does not affect the 
nature of the process however. 

Then q,q;1| c,px and q,'q, || ciPi give qt 
in the vertical through the center of grav-
ity of the total positive area. The nega-
tive area, since it is triangular, has its cen-
ter of gravity in the vertical through c5'. 

Now if the total positive bending mo-
ment be considered to be concentrated 
at its center of gravity and to act on a 
straight girder it will assume the shape 
rqj\ of this second equilibrium polygon, 
and if a negative moment must be ap-
plied such that the deflection vanish, the 
remainder of the girder must be a 
prolongation of rrx. Now draw c^p31| 
r r „ and we have p ^ p t = c a h ' the height 
of the triangle of negative area. Hence 
c,h' is the closing line, fulfilling the re-
quired conditions. 

Again, to draw the closing line bjc' 
according to the same law, we know 
that the center of gravity of the poly-
gonal area d is in the center vertical. 
To find the height pj>', of an equivalent 
triangle having a base equal to the span, 
we may obtain an approximate result, as 
in Fig. 2, by taking one twelfth of the 
sum of the ordinates of the type bd, bu t 
it is much better to obtain an exact 
result by applying Simpson's rule which 
is simplified by the vanishing of the end 
ordinates. The rule is found to reduce 
in this case to the following:—The 
required height is one eighteenth of the 
sum of the ordinates with even subscripts 
plus one ninth of the sum of the rest. 

Now this positive moment concentrated 
in the center vertical and a negative 
moment such as to cause no total deflec-
tion in a straight girder, will give as a 
second equilibrium polygon raiV V ' ; 
and if c,p3' || rrx', then ppa'=b,'k' is the 
height of the triangular negative area, 
and the closing line is bjc'. 

Now the remaining condition is that 
the span is invariable, which is expressed 
by the equation 

2 (Md-Me)y=0, or 2(Mdy)=2(Mcy). 

Let us construct the deflection curve 
due to the moments 3Id in a manner 
similar to that employed in Fig. 2. W e 
lay off quantities dmt, mtmv etc., 

equal to one-fourth of the corresponding in Fig. 9. 
ordinates of the curve and dntì 

ordinates 
d, 

n sn t , etc., one-fourth of the 
of the curve c. We use one-fourth or 
any other fraction or multiple of both 
which may be convenient. By using b 
for a pole we obtain the deflection curves 
/ a n d y for the moments proportional to 
JI , and the curves g and g' for those 
proportional to M c . 

Now, Prop. IV. requires tha t the or-
dinates of the polygon c should be in-

Let the loading, etc., be as 
in Fig. 6. 

The closing line evidently passes 
through the two joints, as at them the 
bending moment vanishes. 

The remaining condition to be fulfilled 
is that the deflection of the right half of 
the arch in the direction of this line, 
shall be the same as that of the left 
half. 

Let us then suppose that the straight 
girder b/ p' perpendicular to the closing 

creased so that gg' shall become equal to line, is fixed at ba' and bent- first by 
f f . Make d!=gg' and d j = f f and draw the moments Md giving us the deflection 
as before the ratio lines di0 and dj0, then curve bj f when />/ is taken as the pole, 
the vertical through tt is the new position and the loads of the type mm are one-
of the load line. quarter of the corresponding ordinates 

Find the new length of bh which is of the polvgon d: and secondly, by the . . . . 
moments Mc giving us the deflection 
curve bt'g' when drawn with the same 
pole, and the loads of the type nn also 
one-quarter of the corresponding ordi-
nates of the polygon c. I t should be 
noticed that the points at which these 
moments are supposed to be concentra-
ted in the girder ¿»/p', are on the paral-
lels to kk' through the points ds, de, 
etc. 

Similarly let f f 3 and f t f be the deflec-
tion curves of the straight girder d,p 
(using <7, as the pole distance), under the 
applied moments. 

Wc have used now a pole distance 

ke, and with the new pole o, draw the 
polygon e starting at e. It must pass 
through bt. The new pole o is found 
thus: draw bv\\hh', then v divides the 
weight line into two parts, which are 
the vertical resistances of the abutments. 
From v draw vxo || kk', then the closing 
line of the polygon e has the direction kk'. 

A single joint at any point of an un-
symmetrical arch can be treated in a 
similar manner. 

A thrust produced by temperature 
strains will be applied along the closing 
line kk', and the bending moments in-
duced will be proportional to the ordin-
ates of the polygon d from this closing differing from that used in the right half 
line. The variation of span must be of the arch. These pole distances must 
computed not for the horizontal span, have the same ratio that the quantity EI 
but for the projections of it on the clos- has for the two parts of arch. I f / i / i s t h e 
ing line kk'. The construction of this same in both parts of the arch the same 
component of the total effect will be pole distance must be used to obtain the 
like that previously employed. Another deflection curves in both sides of the mid-
effect will be caused in a line perpendic- die. In the same manner the curves ggt 
ular to kk'. The variation of span for and gigt are found. Now must the mo-
this construction, is the projection of the ments M e causing the total deflection 
total horizontal variation on a line per- p'g'—ggt=$<ii be elongated so that they 
pendicular to kk', and the bending mo- shall cause a total deflection pf —fft— 
ments induced by this force applied at \aj. The ratio lines aitt'ajt' will enable 
bt. and perpendicular to the closing line, us to find the new position t„ of the load 
will be proportional to the horizontal line to effect this. 

To find o the new pole, through 
i>5, which divides the load line into 
parts which are the vertical resistances 
of the piers, draw i\o || bjc. Then draw 
the polygon e as in Fig. 7, starting from 
d. It must pass through b.. We can 
find also whether ket' has the required 
ratio to hca • by the aid of the ratio lines, 
which will fur ther test the accuracy of 

I W 

the work. 

distances of the points of division from 
b,. As these constructions are readily 
made, and the shearing and tangential 
stresses determined from them, it is not 
thought necessary to give them in detail. 

CHAPTER VIII . 
ARCH RIB WITH TWO JOINTS. 

Let us take the two joints, one at the 
center and one at one end as represented 



The construction above given is appli-
cable to any arch with three joints. The 
arch need not be symmetrical, and the 
three joints can be situated at any points 
of the arch as well as at the points 
chosen above. 

C H A P T E R V n . 

T H E ARCH R I B W I T H O N E E N D J O I N T . 

Let the arch be represented b y Fig. 8, 
in which the load, etc., is the same as in 
Fig. 6. 

The closing line must pass through the 
joint, for at this joint the bending 
moment vanishes. 

A second condition which must be 
fulfilled is, that the total deflection be-
low the tangent at the fixed end of a 
straight girder having one end joint 
vanishes, for the position of the joint is 
fixed. This is expressed by the equation 

2(Mx)=0, 
in which the summation is extended 
from end to end. 

This condition will enable us to draw 
the closing line of the polygon c, and 
also that of d. The problem may be 
thus stated:—In what direction shall a 
closing line such as cji be drawn from 
ce so that the moment of the negative 
triangular area ctc/h' about ce shall be 
equal to the moment of the positive 
parabolic area ctbc/ 

To solve this problem, first find the 
center of gravity of the parabolic area 
by taking it in parts. The parabolic 
area c, b e/ is a segment of a single 
parabola whose area is § btb/ Xc0c7=4 hi 
X.btbt', when 7i,=the height of an equiva-
lent triangle having the span for its base 

Lay off ltbt=c0'\i draw lebs' .'. 
btlt=ht. Lay off c/px=hx as proportion-
al to the weight of the parabolic area. 
Again, c/p is proportional to the weight 
of the triangle csc/c/. The parabolic 
area c/c/= § as 
before, .*. A3 = i c 0 ' c / , which may be 
found as hl was before. 

Let K~pp„ then on taking any pole, 
as ca, of this weight line, we draw qqx |j 
c7c/, since the left parabolic area has its 
center of gravity in the vertical through 
qt, and the triangular area in that through 
q, we draw qq/ || c2/>, to the vertical 
through q/, which contains the center of 
gravity of the right parabolic area. 
The position of q midway between the 

verticals containing b and b„ is slightly 
to the right of its true position, as it 
should be at one-third of the distance 
from the vertical through b to that 
through Z>„. This does not affect the 
nature of the process however. 

Then q,q;1| e,pt and q/q, || ciPi give qt 
in the vertical through the center of grav-
ity of the total positive area. The nega-
tive area, since it is triangular, has its cen-
ter of gravity in the vertical through c/.' 

Now if the total positive bending mo-
ment be considered to be concentrated 
at its center of gravity and to act on a 
straight girder it will assume the shape 
rqj\ of this second equilibrium polygon, 
and if a negative moment must be ap-
plied such that the deflection vanish, the 
remainder of the girder must be a 
prolongation of rrx. Now draw c^p31| 
r r „ and we have ptpt=c/h' the height 
of the triangle of negative area. Hence 
c,h' is the closing line, fulfilling the re-
quired conditions. 

Again, to draw the closing line bje' 
according to the same law, we know 
that the center of gravity of the poly-
gonal area d is in the center vertical. 
To find the height pj>', of an equivalent 
triangle having a base equal to the span, 
we may obtain an approximate result, as 
in Fig. 2, by taking one twelfth of the 
sum of the ordinates of the type bd, bu t 
it is much better to obtain an exact 
result by applying Simpson's rule which 
is simplified by the vanishing of the end 
ordinates. The rule is found to reduce 
in this case to the following:—The 
required height is one eighteenth of the 
sum of the ordinates with even subscripts 
plus one ninth of the sum of the rest. 

Now this positive moment concentrated 
in the center vertical and a negative 
moment such as to cause no total deflec-
tion in a straight girder, will give as a 
second equilibrium polygon rq/r '>•„'; 
and if c,p/ || rrx', then pp/=b/k' is the 
height of the triangular negative area, 
and the closing line is bjc'. 

Now the remaining condition is that 
the span is invariable, which is expressed 
by the equation 

2 (Md-Me)y=0, or 2(Mdy)=2(Mcy). 

Let us construct the deflection curve 
due to the moments 3Id in a manner 
similar to that employed in Fig. 2. W e 
lay off quantities dmt, mtmv etc., 

equal to one-fourth of the corresponding in Fig. 9. 
ordinates of the curve and dn^ 

ordinates 
d, 

n sn t , etc., one-fourth of the 
of the curve c. We use one-fourth or 
any other fraction or multiple of both 
which may be convenient. By using b 
for a pole we obtain the deflection curves 
f and f for the moments proportional to 
JI , and the curves g and g' for those 
proportional to M c . 

Now, Prop. IV. requires tha t the or-
dinates of the polygon c should be in-

Let the loading, etc., be as 
in Fig. 6. 

The closing line evidently passes 
through the two joints, as at them the 
bending moment vanishes. 

The remaining condition to be fulfilled 
is that the deflection of the right half of 
the arch in the direction of this line, 
shall be the same as that of the left 
half. 

Let us then suppose that the straight 
girder b/ p' perpendicular to the closing 

creased so that gg' shall become equal to line, is fixed at b/ and bent- first by 
f f . Make d!=gg' and d j = f f and draw the moments Md giving us the deflection 
as before the ratio lines di0 and dj0, then curve b/ f when />/ is taken as the pole, 
the vertical through tt is the new position and the loads of the type mm are one-
of the load line. quarter of the corresponding ordinates 

Find the new length of bh which is of the polygon d: and secondly, by the . . . . 
moments Mc giving us the deflection 
curve bt'g' when drawn with the same 
pole, and the loads of the type nn also 
one-quarter of the corresponding ordi-
nates of the polygon c. I t should be 
noticed that the points at which these 
moments are supposed to be concentra-
ted in the girder b/ p', are on the paral-
lels to kk' through the points da de, 
etc. 

Similarly let f f \ and f f . be the deflec-
tion curves of the straight girder d,p 
(using dt as the pole distance), under the 
applied moments. 

Wc have used now a pole distance 

ke, and with the new pole o, draw the 
polygon e starting at e. It must pass 
through bt. The new pole o is found 
thus: draw bv\\hh', then v divides the 
weight line into two parts, which are 
the vertical resistances of the abutments. 
From v draw vxo || kk', then the closing 
line of the polygon e has the direction kk'. 

A single joint at any point of an un-
symmetrical arch can be treated in a 
similar manner. 

A thrust produced by temperature 
strains will be applied along the closing 
line kk', and the bending moments in-
duced will be proportional to the ordin-
ates of the polygon d from this closing differing from that used in the right half 
line. The variation of span must be of the arch. These pole distances must 
computed not for the horizontal span, have the same ratio that the quantity EI 
but for the projections of it on the clos- has for the two parts of arch. I f / i / i s t h e 
ing line kk'. The construction of this same in both parts of the arch the same 
component of the total effect will be pole distance must be used to obtain the 
like that previously employed. Another deflection curves in both sides of the mid-
effect will be caused in a line perpendic- die. In the same manner the curves ggt 
ular to kk'. The variation of span for and gigt are found. Now must the mo-
this construction, is the projection of the ments M e causing the total deflection 
total horizontal variation on a line per- p'g'—ggt=$<ii be elongated so that they 
pendicular to kk', and the bending mo- shall cause a total deflection pf —Jfr = 
ments induced by this force applied at \aj. The ratio lines a t 0 , ' a j / will enable 
bt. and perpendicular to the closing line, us to find the new position t„ of the load 
will be proportional to the horizontal line to effect this. 

To find o the new pole, through 
which divides the load line into 

parts which are the vertical resistances 
of the piers, draw i\o || bjc. Then draw 
the polygon e as in Fig. 7, starting from 
d. It must pass through b.. We can 
find also whether ke/ has the required 
ratio to he/ • by the aid of the ratio lines, 
which will fur ther test the accuracy of I W 
the work. 

distances of the points of division from 
b,. As these constructions are readily 
made, and the shearing and tangential 
stresses determined from them, it is not 
thought necessary to give them in detail. 

CHAPTER VIII . 
ARCH RIB WITH TWO JOINTS. 

Let us take the two joints, one at the 
center and one at one end as represented 



Any unsymmetrical arch with joints 
situated differently from the case consid-
ered can be treated by a like method. 

The temperature strains should be 
treated like those in Fig. 8, which are 
caused by a thrust along the closing line. 
Those at right angles to this line vanish 
as the joints allow motion in this direc-
tion. The shearing and tangential stress-
es can be found as in Fig. 3. 

Arches with more than three hinge 
joints are in unstable equilibrium, 
and can only be used in an inverted 
position as suspension bridges. These 
will be treated subsequently. If the 
joints, however, possess some stiffness 
so that they are no longer hinge joints, 
but are block-work joints, or analo-
gous to such joints, we may still con-
struct arches which are stable within 
certain limits although the number of 
joints is indefinitely increased. Such 
are stone or brick arches. These will 
also be treated subsequently. 

The constructions in Figs. 7, 8, 9, 
can be tested by a process like that em-
ployed in Figs. 2 and 3. In Fig. 2, for 
instance, we obtained the algebraic sum 
of the squares of the quantities of the 
type ss, and showed that such sum van-
ishes. W e can obtain the same result in 
all cases. 

C H A P T E R IX. 
T H E C I N C I N N A T I A N D COVINGTON S U S P E N -

S I O N B R I D G E . ( F i g . 1 0 . ) 

T I I E main span of this bridge has a 
length of 1057 feet from center to cen-
ter of the towers, and the end spans are 
each 281 feet from the abutment to the 
center of the tower. The deflection of 
the cable is 89 feet at a mean tempera-
ture, or about 1 —11.87th of the span. 
There is a single cable at each side of 
the bridge. Each of these cables is made 
up of 5200 No.-9 wires, each wire having 
a cross-section of l -60th of a square 
inch and an estimated strength of 1620 
lbs. Each of these cables has a diameter 
of 12J inches, and an estimated strength 
of 4212 tons. Each cable rests at the 
tower upon a saddle of easy curvature, 
the saddle being supported by 32 rollers 
which run upon a cast iron bed-plate 
8X11 feet, which forms part of the top 
of the tower. Since the bed-plate is 
horizontal this method of support ensures 
the exact perpendicularity of the force 

which the cables exert upon the towers, 
without its being necessary to make the 
inclination of the cable on both sides of 
the saddle the same. There is, there-
fore, no tendency by the cables to over-
turn the towers, and they need only be 
proportioned to bear the vertical stresses 
coming upon them. 

As this bridge differs greatly in some 
respects from other suspension bridges, 
it seems necessary to describe its 
peculiarities somewliat minutely. 

The roadway and sidewalks make a 
platform 36 feet wide, extending from 
abutment to abutment, 1619 feet. It is 
built of three thicknesses of plank solid-
ly bolted together, in all 8 inches thick. 
This is strengthened by a double line of 
rolled I girders, 1630 feet long, running 
the entire length of the center of the 
platform. These I girders are arranged 
one line above the other, and across "be-
tween them, at distances of 5 feet, run 
lateral I girders which are suspended 
from the cable. The upper line of 
girders is 9 inches deep, (and 30 lbs. per 
foot); the lower line is 12 inches deep 
(and 40 lbs. per foot). The lateral 
girders are 7 inches deep (and 20 lbs. per 
foot), and are firmly embraced between 
the double line of longitudinal girders. 
The girders of this center line are 
each 30 f t . long, and are spliced together 
by plates in the hollows of the I, but 
the holes through which the bolts pass 
are slots whose length is two or three 
times the diameter "of the bolts. This 
makes a " slip j o in t " such as is often 
used in fastening the ends of the rails on 
a railroad. The slip joints permit the 
wooden planking of the roadway to ex-
pand and contract from variations of 
moisture and temperature without inter-
ference from the iron girders which are 
bolted to it. 

There is also a line of wrought-iron 
truss-work about 10 feet deep extending 
from abutment to abutment on each side 
of the roadway, consisting of panels of 
5 feet each, to each lower'joint of which 
is fastened a lateral girder and a suspen-
der from the cable. This trussing is a 
lattice, with vertical posts, and ties ex-
tending across two panels, and its chords 
are both made with slip joints every 30 
feet. 

It is apparent that this whole arrange-
ment of flooring with the girders and 

trusses attached to it possesses a very 
small amount of stiffness, in fact the 
stiffness is principally that of the floor-
ing itself. It will permit a very large 
deflection, say 25 feet, up or down from 
its normal position without injury. I ts 
office is something quite different from 
that of the ordinary stiffening truss of a 
suspension bridge. I t certainly serves 
to distribute concentrated loads over 
short distances, but not to the extent re-
quired, if tha t were the sole means of 
preserving the cable in a fixed position 
under the action of moving loads. Its 
true function is to destroy all vibrations 
and undulations, and prevent their pro-
pagation from point to point by the 
enormous frictional resistance of these 
slip joints. When a wave does work 
against elastic forces, the reaction of 
those forces returns the wave with 
nearly its original intensity, but when it 
does work against friction it is itself 
destroyed. 

The means relied on in this bridge to 
resist the effect of unbalanced loads is a 
system of Stays extending from the top 
of the tower in straight lines to those 
parts of the roadway which would be 
most deflected by such loads. There are 
76 such stays, 19 from the top of each 
tower. The longest stays extend so far 
as to leave only 350 feet., i.e., a little 
over one-third of the span, in the center 
over which they do not extend. Each 
stay being a cable 2^ inches in diameter 
has an estimated strength of 90 tons. 
They are attached every 15 feet to the 
roadway at the lower joints of the truss-
ing, and are kept straight by being fast-
ened to the suspenders where they cross 
them. This system is shown in Fig. 10 in 
which all the stays for one cable are 
drawn, together with every third sus-

.pender. The suspenders occur every 5 
feet throughout the bridge but none are 
shown in the figure except those attach-
ed at the same points as the stays. 

These stays must sustain the larger 
part of any unbalanced load, at . the same 
time producing a thrust in the roadway 
against either the abutment or tower. 

It is really an indeterminate ques-
tion as to "how the load is divided 
between the stays and trussing; and 
this the more, because of the manner in 
which the other extremities of the stays 
are attached. Of the nineteen stays 

carried to the top of one tower, the eight 
next the tower are fastened to the bed 
plate under the saddle, and so tend to 
pull the tower into the river; the remain-
ing eleven are carried over the top of 
the tower, and rest on a small independ-
ent saddle, beside the main saddle, and 
are eight of them fastened to the middle 
portion of the side spans as shown in Fig. 
10, while the other three are anchored to 
the abutment. 

In view of the indeterminate nature 
of the problem, it has seemed best to 
suppose that the stays should be propor-
tioned to bear the whole of any excess 
of loading of any portion of the bridge, 
over the uniformly distributed load 
(which latter is of course borne by the 
cable itself); and further that the truss 
really does bear some fraction of the 
unbalanced load, and that the bending 
moments have therefore the same relative 
ainouuts as if they sustained the entire 
unbalanced load. This fraction, how-
ever, is quite unknown owing to the im-
possibility of finding any approximate 
value of the moment of inertia I for the 
combined wood and iron work of the 
roadway. 

This method of treatment has for our 
present purpose this advantage, that the 
construction made use of is the same as 
that which must be used when there are 
no stays at all, and the entire bending 
moments induced by the live loads are 
borne by the stiffness of the truss alone. 

Now in order to determine the tension 
in any stay, as for instance that in the 
longest stay leading to the right hand 
tower, lay off equal to the greatest 
unbalanced weight, which under any 
circumstances is concentrated at its lower 
extremity. This weight is sustained by 
the longitudinal resistance of the floor-
ing, and the tension of the stay. The 
stresses induced in the stay and flooring 
by the weight, are found by drawing 
from v, and v3 the lines v,o and i\o par-
allel respectively to the stay and the 
flooring. Then v,o is the tension of the 
stay, and that of the other stays may be 
found in a similar manner. 

I t is impossible to determine with the 
same certainty how the stress ov. paral-
lel to the flooring is sustained. It may 
be sustained entirely by the compression 
it produces in the part of the flooring 
between the weight and the tower or the 



abutment; or it maybe sustained by the 
tension produced in the flooring at the 
left of the weight; or the stress ow2 may 
be divided in any manner between these 
two parts of the flooring, so that v,vx' 
may represent the tension at the left, 
and ov3' the compression at the right of 
the weight. It appears most probable 
that the induced stress is borne in the 
case before us by the compression of the 
flooring at the right, for the flooring is 
ill suited to bear tension both f rom the 
slip joints of the iron work and the want 
of other secure longitudinal fastenings; 
but on the contrary it is well designed 
to resist compression. The flooring 
must then be able at the tower to resist 
the sum of the compressions produced by 
all the unbalanced weights which can 
be at once concentrated at the extremi-
ties of the nineteen stays. 

There is one considerable element of 
stiffness which has not been taken account 
of in this treatment of the stays, which 
serves very materially to diminish the max-
imum stresses to which they might other-
wise be subjected. This is the intrinsic 
stiffness of the cable itself which is formed 
of seven equal subsidiary cables formed 
into a single cable, by placing six of 
them around the seventh central cable, 
and enclosing the whole by a substantial 
wrapping of wire, so that the entire 
cable having a diameter of 12£ inches, 
affords a resistance to bending of f rom 
one sixth to one half that of a hollow 
cylinder of the same diameter and equal 
cross section of metal. Which of these 
fractions to adopt depends somewhat 
on the tightness and stiffness of the 
wrapping. 

It is this intrinsic stiffness of the cable 
which is largely depended upon in the cen-
tral part of the bridge, between the two 
longest stays, to resist the distortion 
caused by unbalanced weights. 

As might be foreseen the distortions 
are actually much greater in the central 
part of the bridge than elsewhere, though 
they would have been by far the greater 
in those parts of the bridge where the 
stays are, had the stays not been used. 

The center of a cable is comparatively 
stable while it is undergoing quite con-
siderable oscillations, as may be readily 
seen by a simple experiment with a rope 
or chain. 

Let us now determine the relative 

amount of the stresses in the stiffening 
truss, on the supposition that the actual 
stresses are some unknown fraction of 
the stresses which would be induced, if 
there were no stays, and the truss was 
the only means of stiffening the cable. 
We, therefore, have to determine only 
the total stresses, supposing there are no 
stays, and then divide each stress ob-
tained by n (at present unknown) to ob-
tain the results required. Let us draw 
the equilibrium polygon d which is due 
to a uniform load of depth xy, and which 
has a deflection bd six times the central 
deflection of the cable. The loading of 
the cable is so nearly uniform, that each 
of the ordinates of the type bd, may be 
considered with sufficient accuracy to be 
six times the corresponding ordinate of 
the cable. Any multiple other than six 
might have been used with the same 
facility. In order to cause the polygon 
to have the required deflection with any 
assumed pole distance it is necessary to 
assume the scale of weights in a particu-
lar manner, which may be determined 
easily in several ways. Let- us find it 
thus : 

Let TP=one of the concentrated weights. 
Let 2}=cent ra l deflection of cable. 
Let S= span of the bridge 
Let J / = central bending moment due to 

the applied weights. 

Then, if the pole d is tance=1$, 3f=$S 
XGJJ=2SU, for the moment is the pro-
duct of the pole distance by the ordinate 
of the equilibrium polygon. Again, com-
puting the central moment from the ap-
plied forces, 

T F x i S - 5 T F x i S=i WS, 
in which the first term of the r ight hand 
member is moment of the resistance of 
the piers, and the second term is the mo-
ment of the concentrated weights applied 
at their center of gravity. 

iWS=28D W=iD, 

Hence, if one-third of the span is to 
represent the pole distance or true hori-
zontal tension of an equilibrium curve 
having six times the deflection of the 
cable, each concentrated weight when 
the span is divided into twelve equal 
parts, is represented by a length equal to 
| of the deflection of the cable. The 

t rue horizontal tension of the cable will 
be six times that of the equilibrium 
polygon, or it will be represented, in the 
scale used, by a line twice the length of 
the span. Now taking b as the pole, at 
distances bb=bb('=iS, lay off b('w = 
bicx=hW=iD, so that they together 
represent the weight concentrated at b; 
and let «?,«>,= 11", represent the weight 
concentrated at b„ etc. Then can the 
equilibrium polygon d be constructed by 
making ddt || Jw„ dxdt || bxo„ etc. If bd 
= (j]J the polygon must pass through bt 
and bt', which tests the accuracy of the 
work. 

Now to investigate the effect of an 
unbalanced load covering one-half the 
span, let us take one half the load on the 
right half of the span and place it upon 
its left, so that xz and xb represent the 
relative intensity of the loading upon 
the left and right half of the span re-
spectively, the total load being the same 
as before. If it is desirable to consider 
that the total load has been increased 
by the unbalanced load we have simply 
to change the scale so that the same 
length of load line as before, (viz, bl'w% 
+b,(cA shall represent the total loading. 
This will give a new value to the hori-
zontal tension also. 

Now let a new equilibrium polygon c be 
drawn, which is due to the new distribu-
tion of the concentrated weights. It is 
necessary to have the closing line of this 
polygon c horizontal, and this may be ac-
complished either, by drawing the polygon 
in any position and laying off the ordi-
nates of the type be equal to those in the 
polygon so drawn, or better as is done 
in this Figure by laying off in each 
weight line tha t part of the total load 
which is borne by each pier, which is 
readily computed, as follows. The 
distance of the center of gravity of the 
loading divides the span in the ratio of 
17 to 27. Hence H and U of the total 
load are the resistances of the piers, or 
since the total l o a d = 11 W, we have b/ut 
= W a n d ¿ 4w,'=V TP. Now m a k e « , 
« , = t h e weight concentrated at b%, etc., 
and bt'ut + btut= that at bx. Then draw 
the polygon c. 

The polygon c has the same central 
deflection as the polygon d; for compute 
as before, 

TTxiS-i T P x £ S = ? n 'S 

in which the first term of the second 
member is the moment of the resistance 
of the right pier, and the second term is 
the moment of the concentrated weights 
applied at their center of gravity. 

By similar computations we may prove 
the following equalities; 

d6ct=dxcx dX-----dX ; 

d A = d : c , = - d X = - « ; 

The quantities of the type dc are propor-
tional to the bending moments which the 
stiffening truss must sustain if it pre-
serves the cable in i ts original shape, 
when acted on by an unbalanced load 
of depth bx, on the supposition that the 
truss has hinge joints at its ends, and is 
by them fastened to the piers. For in 
that case the cable is in the condition of 
an arch with hinge joints at its ends. 
The condition which then holds is this: 

:(Mdy)=2(Mcy) 
or. 

2(Md-Me)y=0.\ 2(cd)y=0. 

This last is fulfilled as is seen by the 
above equations, for to every product 
such as + bdx X d,cx corresponds another 
- r - b x ' d / x d x c x ' of the same magnitude 
but opposite sign. 

The polygon c could have been ob-
tained by a second equilibrium polygon 
in a manner precisely like that used be-
fore, but as it appears useful to show 
the connection between the methods of 
treating the arch rib which is itself stiff, 
and the flexible arch or cable, which is 
stiffened by a separate truss, we have 
departed from our previously employed 
method for determining the polygon c, 
as it is easy to do when both c and d are 
parabolic. 

Now let us compute the bending mo-
ment 

= d t c t X ^ S = 3 f c - 3 i < ; 

JTc=-t Wx hS=-h WS 
3fd=x*lxxhs=tt i rs 

Mc-3fd=-h WS. 

Compute also the bending moment at 
the vertical through bA, 

Mc=si-wxis-i i rx-hs= ws 
3fd=VWxis- i r x i*S=i WS 

3Tc-Md=kWS 



Similar computations may be made for 
the remaining points, and this note-
worthy result will be found true, that 
the bending moments induced in the 
stiffening truss by the assumed loading, 
are the same as would have been induced 
by a positive loading on the left of a 
depth yz, and a negative loading on the 
right of an equal depth yb. For com-
pute the moments due to such loading -
at the points bt and bt. 

The resistance of the pier due to such 
loading = < W 

••• Mt= 5 ( f x bS=h WS 
and 
M= * WX i S - i Tfx i WS, etc. 

W e arrive then at this conception of 
the stresses to which the stiffening truss 
is subjected, viz:—the truss is loaded 
with the applied weights acting down-
ward, and is drawn upward by a uni-
formly distributed negative "loading, 
whose total amount is equal to the posi-
tive loading, so that the load actually 
applied at any point may be considered 
to be the algebraic sum of the two loads 
of different signs which are there applied. 
This conception might have been derived 
at once from a consideration of the fact 
that the cable can sustain only a uniform 
load, if it is to retain its shape; but it 
appears useful in several regards to show 
the numerical agreement of this state-
ment with Prop. IV of which in fact it 
is a particular case. It is unnecessary 
to make a general proof of this agree-
ment, but instead we will now state a 
proposition respecting stiffening trusses, 
the truth of which is sufficiently evident 
from considerations previously adduced. 

Prop. VI. The stresses induced in the 
stiffening truss of a flexible cable or arch, 
by any loading, is the same as that which 
would be induced in it by the application 
to it of a combined positive and negative 
loading distributed in the following 
manner, viz : the positive loading is the 
actual loading, and the negative loading 
is equal numerically to the positive load-
ing, but is so distributed as to cause no 
bending moments in the cable or arch, 
i.e., the cable or arch is the equilibrium 
polygon for this negative loading. 

By flexible cable or arch is meant one 
which has hinge joints at the points 
where it supports the stiffening truss. I t 
need not actually have hinge joints at 
these points : the condition is sufficiently 
fulfilled if it is considerably more flexi-
ble than the truss which it supports. 

The truth of Prop. VI has been recog-
nized by previous writers upon this sub-
ject in the particular case of the parabolic 
suspension cable, and it has been errone-
ously applied to the determination of the 
bending moments in the arch rib in gen-
eral. It is inaccurate for this purpose in 
two particulars, inasmuch as in the first 
place the arch to which it is applied is 
not parabolic, though the negative load-
ing due to it is assumed to be uniform, 
and in the second place the horizontal 
thrust is not the same for the different 
kinds of arch rib, while this assumes the 
same thrust for all, viz: that arising 
from a flexible arch or one with three or 
more joints. 

A similar proposition has been intro-
duced into a recent publication on this 
subject* but in that work the truss stiff-
ens a simple parabolic cable, and the 
truss is not supposed to be fastened to 
the piers, so that it may rise from either 
pier whenever its resistance becomes 
negative. As this should not be permit-
ted in a practical construction the case 
will not be discussed. In accordance 
with Prop. VI let us determine anew 
the bending moments due to an unbal-
anced load 011 the left of an intensity 
denoted by bz. As before seen this pro-
duces the same effect as a positive load-
ing of an intensity yz=fin=$bz on the 
left, and a negative loading of an inten-
sity yb=fn=hbz. Now using g as a pole 
with a pole distance of gf=one third of 
the span lay off the concentrated weight 
¿>,p a=that applied at />„ etc., on the 
same scale as the weights were laid off 
in the previous construction, and in such 
a position that g is opposite the middle 
of the total load, which will cause the 
closing line to be horizontal. Then 
draw the equilibrium polygon a due to 
these weights. The ordinates of the 
ype af are by Prop. VI proportional to 

the bending moments induced in the 
stiffening truss by the unbalanced load 
when the truss is simply fastened to the 

piers at the ends, and, as we have seen, 
each of the quantities af is identical with 
the corresponding quantity cd. 

If the stiffening truss is fixed horizon-
tally at its ends a closing line hh' must 
be drawn in such a position that 2(31) 
= 0, and as it is evident that it must di-
vide the equilibrium polygon symmetri-
cally it passes through / its central 
point. 

As s tated. in a previous article, the 
maximum bending moments at certain 
points of the span are caused when the 
unbalanced load covers somewhat more 
than half of the span. In the case of a 
parabolic cable or arch the maximum 
maximorum bending moment is caused 
when this load extends over two-thirds 
of the span, as is proved by Rankine in 
his Applied Mechanics by an analytic 
process. Let the load extend then over 
all except the right hand third of the 
span with an intensity represented by 
bz=qtq/. Then if / / i , = K > / > the 
truss may by Prop. VI be considered to 
sustain a positive load of the intensity 
f9'q on the left of ¿»„', and a negative 
'load of the intensity f q t ' on the right 
of bt'. Using g' as the pole and the 
same pole distance as before, lay off the 
weight qtq% concentrated at bt, etc., so 
that g' is opposite the middle of the 
weight line. W e thus obtain the equili-
brium polygon e, in which the ordinates 
of the type ef are proportional to the 
bending "moments of the truss under the 
assumed loading, when its ends are sim-
ply fastened to the piers. 

"Now bd was the ordinate of an equili-
brium polygon having the same horizon-
tal tension, and under a load of the same 
intensity covering the entire span. It 
will be found that M = ¥ / S e a , which may 
be stated thus:—the greatest bending 
moment induced in the stiffening truss, 
by an unbalanced load of uniform in-
tensity is four twenty-sevenths of that 
produced in a simple truss under a load 
of the same intensity covering the entire 
span. This result was obtained by Ran-
kine analytically. If the truss is fixed 
horizontally at its ends, we must draw a 
closing line kk', which fulfills the'condi-
tions before used for the straight girder 
fixed at the ends, as discussed previously 
in connection with the St. Louis Arch. 
By the construction of a second equili-
brium polygon, as there given, we find 

the position of kk'\ then the ordinates 
ke will be proportional to the bending 
moments of the stiffening truss. 
The shearing stress in the truss is obtained 

from the loading which causes the bend-
ing moment, in the same manner as that 
in any simple truss. The horizontal ten-
sion in the cable, is the same whenever 
the total load on the span is the same, 
and is not changed by any alteration in 
the distribution of the loading, which 
fact is evident from Prop. VI. The 
maximum tension of the cable is found 
when the live load extends over the 
entire span, and is to be obtained from a 
force polygon which gives for its equili-
brium polygon the curve of the cable 
itself, as would be done by using the 
weights w,wt, etc., and a pole distance of 
six times b b = twice the span. 

The temperature strains of a stiffening 
truss of a suspension bridge are more 
severe than those of the truss stiffening 
an arch, because the total elongation of 
the cable in the side spans as well in the 
main span, is transmitted to the main 
span and produces a deflection at its 
center. This is one reason why stays 
furnish a method of bracing, particularly 
applicable to suspension bridges. But 
supposing that the truss bears part of 
the bending moment due to the elonga-
tion of the cable, it is evident that when 
the truss is simply fastened to the piers, 
the bending moments so induced are 
proportional to the ordinates of the type 
bd, for by the elongation of the cable, it 
transfers part of its uniformly distrib-
uted weight to the truss. 

That load which the cable still sus-
tains, is uniformly distributed, if the 
cable still remains parabolic, therefore 
that transferred to the truss is uniformly 
distributed. 

When the truss is fixed horizontally 
at the piers, the closing line of the curve 
d must be changed so that 2 \ . l / ) = 0, 
and the bending moments induced by 
variations of temperature, will be pro-
portional to the ordinates between the 
curve d and this new closing line. 

It remains only to discuss the stability 
of the towers and anchorage abutments. 
The horizontal force tending to overturn 
the piers comes from a few stays only, 
as was previously stated, and is of such 
small amount that it need not be consid-
ered. 



The weight of the abutment in 
the case before us is almost exactly 
the same as the ultimate strength 
of the cable. Suppose that st=sv are 
the lines representing these quantities in 
their position relatively to the abutment. 
Since their resultant sv intersects the 
base beyond the face of the abutment, 
the abutment would tip over before the 
cable could be torn asunder. And since 
the angle vsr is greater than the angle 
of friction between the abutment and 
the ground it stands on, the abutment if 
standing on the surface of the ground, 
would slide before the cable could be 
torn asunder. 

The smallest value which the factor of 
• safety for the cable assumes under a 

maximum loading is computed to be six. 
Take st'= i st as the greatest tension 
ever induced in the cable, then sr' the 
resultant of sv and st' cuts the base so 
far within the face that it is apparent 
that the abutment has sufficient stability 
against overturning, and the angle vsr' 
is so much smaller than the least value 
of the angle of friction between the 
abutment and the earth under it, tha t 
the abutment would not be near the 
point of sliding even if it stood 011 the 
surface of the ground. I t should be 
noticed tha all the suspenders in the 
side span assist in reducing the tension of 
the cable as we approach the abutment, 
and conduce by so much to its stability. 
Also the thrust of the roadway may as-
sist the stability of the abutment, 'both 
with respect to overturning and sliding. 

C H A P T E R X. 
T H E C O N T I N U O U S G I R D E R W I T H V A R I A B L E 

CROSS-SECTION. 

In the foregoing chapters the discussion 
of arches of various kinds has been shown 
to be dependent upon that of the straight 
girder; but as no graphical discussion has, 
up to the present time, been published 
which treats the girder having a variable 
cross-section and moment of inertia, our 
discussion has been limited to the case of 
arches with a constant moment of iner-
tia. 

Certain remarks were made, however, 
in the first chapter tending to show 
the close approximation of the results 
in case of a constant moment of inertia 
to those obtained when the moment of 
inertia is variable. We, in this chapter, 

propose a new solution of the continuous 
girder in the most general case of varia-
ble moment of inertia, the girder resting 
on piers having any different heights 
consistent with the limits of elasticity of 
the girder. This solution will verify the 
remarks made, and enable us easily to see 
the manner in which the variation of the 
moment of inertia affects the distribution 
of the bending moments, and by means 
of it the arch rib with variable moment 
of inertia can be treated directly. 

Besides the importance of the con-
tinuous girder in case it constitutes the 
entire bridge b y itself, we may remark 
that the continuous girder is peculiarly 
suited to serve as the stiffening truss of 
any arched bridge of several spans in 
which the arches are flexible. Indeed, it 
is the conviction of the writer that the 
stiff arch rib adopted in the construction 
of the St. Louis Bridge was a costly mis-
take, and that , if a metal arch was desir-
able, a flexible arch rib with stiffening 
truss was far cheaper and in every way 
preferable. 

Let us write the equation of deflections 
in the form 

mD. = !I™.*) 
mrvn' \nw nf 

in which n is the number by which any 
horizontal dimension of the girder must 
be divided to obtain the corresponding 
dimension in the drawing, » ' is the 
divisor by which force must be divided 
to obtain the length by which it is to 
be represented in the drawing, m is an 
arbitrary divisor which enables us to 
use such a pole distance for the second 
equilibrium polygon as may be most 
convenient, I0 is the moment of inertia 
of the girder at any particular cross sec-
tion assumed as a standard with which 
the values of I at other cross sections 
are compared, and ¿ = i > / is the ratio 
ot 1 (the standard moment of inertia), 
to I (that at any other cross-section). 
For the purpose of demonstrating the 
general properties of girders, theequation 

I need not be encumbered with the coeffici-
ents mnn', but for purposes of explaining 
the graphical construction they are very 
useful, and can be a t once introduced in-
to the equation when needed. 

In the equation 

D. EI0=%(Mz) 

the quantity D is the deflection of any 
point 0 of the girder below the tangent 
at the point a where the summation be-
gins, and 31 is the actual bending mo-
ment at any point between 0 and a. 
These moments 31 at any point consist 
in general of three quantities, represented 
in the construction by the positive ordi-
nate of the equilibrium polygon due to 
the weights, and by the two negative ordi-
nates of the, triangles into which we have 
divided the negative moment area. If 
we distinguish these components of Jl[ 
by letting 3I0 represent that due to the 
weights, while J / , and J / , represent the 
components due to the left and right 
negative areas respectively, the equation 
of deflections becomes 

D. EI^l*(MJx)-lZ(3Ijx)-?a(3rjx) 

Now let us take 0 at a pier at one end 
of a span and extend the summation 
over the entire span. 

senting S*. (J/0), while 2°b,{M) and 2°b 

(J/„) are represented by hcc' and hh'c' 
respectively. Let the center of gravity 
of cc0c' be in qq0, while the centers of 
the two negative areas are in tr and t'r'. 
Let the height of a triangle on some as-
sumed base, and equivalent in area to 
cctc', be then by a process like that 
in Fig. 2 it is evident that rrx and ¡\r„ 
are the heights of the right and left 
negative triangles, having the assumed 
base, on the supposition that the girder 
is fixed horizontally over the piers. 

Now introducing the constants mnn' 
into the last equation and into the equa-
tion before that, the relation of the quan-
tities is such that if the moments be ap-
plied as weights at their centers of 
gravity with the pole d is tance j ) t=EI-r-
mn*n', the equilibrium polygon so obtain-
ed will be tangent at the piers to the ex-
aggerated deflection curve obtained when, 
the distributed moments are used as 
weights; and the deflection at the pier 
b from the tangent at b' will be the same 
as that of this exaggerated deflection 
curve, and vice versa. 

Let pm=ryv p'm'=irl and />t=p't, 
then t and t' constitute the pole, pm and 
p'm' the negative loads, and pm+//m' 
the positive load. Then is btqt'b' the 
equilibrium polygon for these loads. 
The deflection of b below b't' vanishes 
as it should in case the girder is fixed 
horizontally over the pier. 

Now let the direction of the tangents 
at the piers be changed so that the 
tangents to the exaggerated deflection 
curve assume the directions blt and b't/. 
Then the load line and force polygon 
assume a new position, such that (l and t' 
form the pole, and dn=pm and d'n'= 
p'm' comprise the positive load while 
><;>, and n'p/ are the new negative loads 
which will cause the equilibrium polygon 
b t t f j / b ' , which is due to them, to have 
its sides btt and b't/ in the directions as-
sumed. 

There are several relations of quanti-
ties in this figure to which we wish to 
direct attention. It is evident, in 
case I is not constant, that from the 
area oc0e' whose ordinates are propor-
tional to J/9 , the actual bending mo-
ments due to the weights, another area 
whose ordinates are proportional to 

If the piers are b and b' as in Fig. 11, 
let us suppose that 0 coincides with b 
and a with b'; also suppose for the in-
stant that I is constant, so that i = 1 at 
all points of the girder. Then we have 

D„. EI=~Xi i J P O - l . Ì M 

in which Db is the deflection of b below 
the tangent at b', x0 is the distance of 
the center of gravity of the moment 
area due to the applied weights from b, 
while and ar3 are the distances of the 
centers of gravity of the negative areas 
from b. In Fig. 11 let cc9c' be the posi-
tive area due to the weights and repre-



3 f j , the effective bending moments, can 
be obtained by simple multiplication, 
since i is known at every point of the 
girder. Moreover, the vertical through 
the center of gravity of this positive 
effective moment area can be as readily 
found as that through the actual positive 
moment area. Call this vertical " t h e 
positive center vertical." Again, the 
negative moment areas proportional to 
Mxi and Mj, can be found from the tri-
angular areas proportional to Mx and J / 2 
by simple multiplication, and if we pro-
ceed to find the verticals through their 
centers of gravity we shall obtain the 
same verticals whatever be the magni-
tude of the .negative triangular areas, 
since their vertical ordinates are all 
changed in the same ratio by assuming 
the negative areas differently. Let us 
call these verticals the " l e f t " and 
" right " verticals of the span. In case 
¿=1, as in Fig. 11, the left and right 
verticals divide the span at the one-third 
points. This matter will be treated 
more fully in connection with Fig. 13. 

Again, let us call the line " the 
third closing line." It is seen that, 
whatever may be the various positions 
of the tangent btt, the ordinate dn, be-
tween the third closing line and pro-
longed, is invariable; for the triangle 
l / f j i / is invariable, being dependent on 
the positive load and pole distance alone. 
By similarity of triangles it then follows 
that the ordinate, such as lo', on any as-
sumed vertical continues invariable; and 
when there is no negative load at („ 
then b(1ql becomes straight, o' coincides 
with b and n with px. Similar relations 
hold at the right of qx. The quantity 
dp, is of the nature of a correction to be 
subtracted from the negative moment 
when the girder is fixed horizontally at 
the piers in order to find the negative i 
moment when the tangent assumes a new 
position, for npx=dn—dpx. The negative 
moments can consequently be found from 
the third closing line and the tangents 
at the piers; while the remaining lines 
qxtx and q'tx will test the correctness of j 
the work. Before applying these pro-
perties of the deflection polygon and its 
third closing line to a continuous girder, 
it is necessary to prove a geometrical 
theorem from Fig. 12. 

Let the variable triangle xyz be such 
that the side xz always passes through 

the fixed point g, the side xy always 
passes through the fixed point p, and the 
vertices xyz are always in the verticals 
through those points; then by the prop-
erties of homologous triangles the side 
yz also has a fixed p o i n t / i n the straight 
line gp. Furthermore, if there is a point 
z' in the vertical through z, and in all 
positions of z it is at the same constant 
distance from z, then on the line yz' there 
is a fixed point g' where the vertical 
through f intersects yz'; for, if z' main-
tains its distance zz' invariable, then 
must any other point as g' remain con-
stantly at the same vertical distance 
f r o m / , as appears from similarity of tri-
angles. But as / is fixed g' is also. 
When, for instance, the triangle xyz as-
sumes the position xxyzx, then z' moves 
to z / . 

Let us now apply the foregoing to the 
discussion of a continuous girder over 
three piers p"pp' as shown in Fig. 13, 
in which the lengths of the spans have 
the ratio to each other of 2 to 3. Divide 
the total length of the girder into such a 
number of equal parts or panels, say 15, 
that one division shall fall at the inter-
mediate pier, and let the number of lines 
in any panel of the type aa represent its 
relative moment of inertia. Assume the 
moment of inertia where there are three 
lines, as at a, a„ etc., as the standard or 
I0, then ¿ = 1 at a, i=f at a „ i—f- at a / , 
etc. 

Let the polygons c and c' be those due 
to the weights in the left and right spans 
respectively. Then the ordinates of 
the type be are proportional to Ma in the 
left span. The figure f>clcJ'ci'ci'c1cActci' 
b, is the positive effective moment area 
in the left span, and its ordinates are 
proportional to Mi. Its center of gravi-
ty has been found, by an equilibrium 

polygon not drawn, to lie in the positive 
center vertical qqa. A similar positive 
effective moment area on the right has 
its center of gravity in the positive cen-
ter vertical q'q„'. 

Now assume any negative area, as 
that included between the lines b and d, 
and draw the lines /ibf and hbj, dividing 
the negative area in each span into right 
and left triangular areas. Let the quan-
tities of the type hb be proportional to 
M„ ltd to Mv"h'b' to J / / , etc., then the 
ordinates of bbfi'b'b'bjbfifbji are pro-
portional to M}i, and the center of gravi-
ty of this area has been found to lie in 
the right negative vertical txrx. Similar-
ly, the left negative vertical containing 
the center of gravity of the left negative 
effective moments, is t j \ . In the right 
span txrx and i / r / are the left and right 
verticals. As before stated, these verti-
cals would not be changed in position 
by changing the position in any manner 
whatever of the line d by which the 
negative moments were assumed, for 
such change of position would change 
all the ordinates in the same ratio. 

Let us find also the vertical containing 
the center of gravity of the effective 
moment area, corresponding to the actual 
moment area bthbt'. I t is found by a 
polygon not drawn to be vo. Call vo 
" t h e negative center vertical." I t is 
unchanged by moving the line d. If a 

polygon be drawn due to the effective 
moments as loads, two of its sides must 
intersect on vo, because it contains the 
center of gravity of contiguous loads. 
Now let rrx represent 2(M 0 i ) :—it is in 
fact one eighth of the sum of the ordi-
nates blcx + blcl", etc., and hence is the 

of a triangle having a base=f/>i„, 
an area equal to the effective mo-

ment area in the left span. Also r'rx is 
the height of a triangle having the same 
base, and an area equal to the effective 
moment area in the right span. 

As previously explained, ,srx is the 
amount of the right negative effective 
moment area in the left span, measured 
in the same manner, while sr is that on 
the left when the girder is fixed horizon-
tally at the piers. W e obtain s'rx and 
s'r' in the right span, in a similar manner. 
Now assume the arbitrary divisor m— 1, 
and take the pole distance rxnx=jEIt-~ 
n 'n ' . Then as seen previously, if mnx—srx, 
ou is the constant intercept on the nega-
tive center vertical, between the third 
closing line in the left span, and a side 
of the type ql. Also ou' is a similar 
constant intercept on this vertical due 
to the right span. Make r , a n d 
na«n,=sr, then is a similar invariable 
intercept; as is l'bt', which is obtained 
in a similar manner. 

Now the negative center vertical ov 
was obtained from the triangle bthbt', i.e. 



Mai, the effective bending moments, can 
be obtained by simple multiplication, 
since i is known at every point of the 
girder. Moreover, the vertical through 
the center of gravity of this positive 
effective moment area can be as readily 
found as that through the actual positive 
moment area. Call this vertical " t h e 
positive center vertical." Again, the 
negative moment areas proportional to 
Mxi and Mj, can be found from the tri-
angular areas proportional to Mx and J / 2 
by simple multiplication, and if we pro-
ceed to find the verticals through their 
centers of gravity we shall obtain the 
same verticals whatever be the magni-
tude of the .negative triangular areas, 
since their vertical ordinates are all 
changed in the same ratio by assuming 
the negative areas differently. Let us 
call these verticals the " l e f t " and 
" right " verticals of the span. In case 
¿=1, as in Fig. 11, the left and right 
verticals divide the span at the one-third 
points. This matter will be treated 
more fully in connection with Fig. 13. 

Again, let us call the line " the 
third closing line." It is seen that, 
whatever may be the various positions 
of the tangent btt, the ordinate dn, be-
tween the third closing line and tlql pro-
longed, is invariable; for the triangle 
t,g,t%' is invariable, being dependent on 
the positive load and pole distance alone. 
By similarity of triangles it then follows 
that the ordinate, such as lo', on any as-
sumed vertical continues invariable; and 
when there is no negative load at tx, 
then b(1ql becomes straight, o' coincides 
with b and n with px. Similar relations 
hold at the right of qx. The quantity 
dp, is of the nature of a correction to be 
subtracted from the negative moment 
when the girder is fixed horizontally at 
the piers in order to find the negative i 
moment when the tangent assumes a new 
position, for npx=dn—dpx. The negative 
moments can consequently be found from 
the third closing line and the tangents 
at the piers; while the remaining lines 
qxtx and qx'tx will test the correctness of j 
the work. Before applying these pro-
perties of the deflection polygon and its 
third closing line to a continuous girder, 
it is necessary to prove a geometrical 
theorem from Fig. 12. 

Let the variable triangle xyz be such 
that the side xz always passes through 

the fixed point g, the side xy always 
passes through the fixed point p, and the 
vertices xyz are always in the verticals 
through those points; then by the prop-
erties of homologous triangles the side 
yz also has a fixed p o i n t / i n the straight 
line gp. Furthermore, if there is a point 
z' in the vertical through z, and in all 
positions of z it is at the same constant 
distance from z, then on the line yz' there 
is a fixed point g' where the vertical 
through f intersects yz'; for, if z' main-
tains its distance zz' invariable, then 
must any other point as g' remain con-
stantly at the same vertical distance 
f r o m / , as appears from similarity of tri-
angles. But as / is fixed g' is also. 
When, for instance, the triangle xyz as-
sumes the position xxyzx, then s' moves 
to s / . 

Let us now apply the foregoing to the 
discussion of a continuous girder over 
three piers p"pp' as shown in Fig. 13, 
in which the lengths of the spans have 
the ratio to each other of 2 to 3. Divide 
the total length of the girder into such a 
number of equal parts or panels, say 15, 
that one division shall fall at the inter-
mediate pier, and let the number of lines 
in any panel of the type aa represent its 
relative moment of inertia. Assume the 
moment of inertia where there are three 
lines, as at a, a„ etc., as the standard or 
I0, then ¿ = 1 at a, i=f at a „ ?'=f- at a / , 
etc. 

Let the polygons c and c' be those due 
to the weights in the left and right spans 
respectively. Then the ordinates of 
the type be are proportional to Ma in the 
left span. The figure b c f i ' c / c ' c ^ c ^ c ' 
b, is the positive effective moment area 
in the left span, and its ordinates are 
proportional to Mi. Its center of gravi-
ty has been found, by an equilibrium 

polygon not drawn, to lie in the positive 
center vertical qqa. A similar positive 
effective moment area on the right has 
its center of gravity in the positive cen-
ter vertical q'q„'. 

Now assume any negative area, as 
that included between the lines b and d, 
and draw the lines /ibf and hbj, dividing 
the negative area in each span into right 
and left triangular areas. Let the quan-
tities of the type hb be proportional to 
M„ ltd to Mt,"h'b' to Mx, etc., then the 
ordinates of tbfi'b'b/bjbfi'bjt are pro-
portional to M}i, and the center of gravi-
ty of this area has been found to lie in 
the right negative vertical txrx. Similar-
ly, the left negative vertical containing 
the center of gravity of the left negative 
effective moments, is t j \ . In the right 
span tx'rx' and i / r / are the left and right 
verticals. As before stated, these verti-
cals would not be changed in position 
by changing the position in any manner 
whatever of the line d by which the 
negative moments were assumed, for 
such change of position would change 
all the ordinates in the same ratio. 

Let us find also the vertical containing 
the center of gravity of the effective 
moment area, corresponding to the actual 
moment area bjibj. I t is found by a 
polygon not drawn to be vo. Call vo 
" t h e negative center vertical." I t is 
unchanged by moving the line d. If a 

polygon be drawn due to the effective 
moments as loads, two of its sides must 
intersect on vo, because it contains the 
center of gravity of contiguous loads. 
Now let rrx represent 2(M 0 i ) :—it is in 
fact one eighth of the sum of the ordi-
nates bxc, + bxc", etc., and hence is the 

of a triangle having a base=f/>i„, 
an area equal to the effective mo-

ment area in the left span. Also r'rx is 
the height of a triangle having the same 
base, and an area equal to the effective 
moment area in the right span. 

As previously explained, ,srx is the 
amount of the right negative effective 
moment area in the left span, measured 
in the same manner, while sr is that on 
the left when the girder is fixed horizon-
tally at the piers. W e obtain s'rx and 
s'r' in the right span, in a similar manner. 
Now assume the arbitrary divisor m = 1, 
and take the pole distance rxnx=jEIt-~ 
n 'n ' . Then as seen previously, if mnx—srx, 
ou is the constant intercept on the nega-
tive center vertical, between the third 
closing line in the left span, and a side 
of the type ql. Also ou' is a similar 
constant intercept on this vertical due 
to the right span. Make rjtt~rx7i, and 
njn3=sr, then is a similar invariable 
intercept; as is l'b t ', which is obtained 
in a similar manner. 

Now the negative center vertical ov 
was obtained from the triangle bjibj, i.e. 



on the supposition tha t the ac tua l mo-
ment over the pier is the same w h e t h e r 
it be determined f rom the lef t or r i gh t 
of the pier. I t is evident tha t wh i l e t he 
girder is fixed horizontally at t he i n t e r -
mediate pier, the moment at t h a t p i e r is 
generally different on the two sides, a t 
points infinitesimally near to it, b u t t h a t 
when the constraint is removed an equal i -
zation takes place. 

Since ou and ou' are derived f r o m 
the positive effective moments, it a p p e a r s 
that when the tangent at p is in such a 
position that the two third closing lines 
intercept a distance uu' on ov a n d the 
two lines of the type qt when p ro longed 
intersect on ov, the moments over t he 
pier will have become equalized. 

W e propose to determine the pos i t ion 
of the tangent a t p which will cause th is 
to be true, by finding the proper posi t ion 
of the third closing lines in the t w o spans . 

Move the invariable intercepts t o a 
more convenient position, by m a k i n g 
oxz=ou, and o,z'=ou'. Now by m a k i n g 
the arbitrary divisor m=1, as we did , 
the ordinates of the deflection p o l y g o n 
became simply D, i.e., they are of t he 
same size in the drawing as in t he g i rde r , 
hence the difference of level of p", p and 
p' must be made of the actual size. B y 
changing m this can be increased or 
diminished at will. 

Now we propose to determine t w o 
fixed points g and g", through which t h e 
third closing line in the lef t span m u s t 
pass, and similarly g'" and g' on t he 
right. % 

If the girder is f ree at p" then as shown 
in connection with Fig. 11, t he t h i r d 
closing line must pass through g, if gp'~ 
lba. 1 »raw gz as a tenta t ive pos i t ion of 
the third closing line, and comple te t he 
triangle xy'z as in F ig . 12. 

Then is xy' the tenta t ive posit ion of 
the tangent a t jo , and since the th i rd clos-
ing line in the r ight span mus t pa s s 
through y', and make an intercept on 
the negative center vertical equal to 
then zy' is its corresponding t e n t a t i v e 
position. But wherever gz m a y be 
drawn, every line mak ing an i n t e r c e p t 
— uu' and intersecting t, r,' in such a 
manner t ha t the tangent passes t h r o u g h 
p must pass through the fixed po in t g', 
found as described in Fig . 12. T h e r e -
fore the th i rd closing line in t he r i g h t 
span passes through g'. Similarly, if 

there were more spans still a t the r ight 
of these, we should use g' for the deter-
mination of another fixed point, as we 
have used g to determine it. 

N o w find g'" and g" precisely as g and 
g' have been found, and draw the th i rd 
closing lines t a n d If t,t,' passes 
through p the construction is accurate. 
Make uu"=vv", then is n,m, the nega-
tive effective moment at the lef t , and 
n,'m/ t ha t at the r ight of the pier. 

Let bw be the effective moment area 
corresponding to the tr iangle hbbe, and 
measured in the same manner as the 
positive area was, by taking one e ighth 
of its ordinates, and let bw,=n,mx\ then 
as the effective moment bw is to the 
actual moment bh corresponding to it, so 
is the effective moment bw, or n m, to 
the actual moment bk corresponding t o 
it. The same moment bk is also found 
f rom n / m / , by an analogous construc-
tion at the r ight of b, which tests the ac-
curacy of the work. 

Several other tests remain which we 
will briefly mention. 

P ro long p"t, to q, and p'tj to q', then 
qt, and qt' must intersect on the nega-
tive center vertical a t oa so t ha t o.,v = 
ou". Also vv' must be equal to »>/'. 
Again ttv' passes through f , and /,'<.• 
th rough f . Also yo, intersects qo on 
t he fixed vertical fg" a t e, and y'o, inter-
sects q'o3 on the fixed vertical f g ' at e'. 
Tha t these must be so is evident f rom a 
consideration of what occurs du r ing a 
supposed revolution of the tangent 
to the position xy'. 

Now having determined the moment 
bk over the pier, kbr and kbtJ' are the 
t rue closing lines of the moment poly-
gons c and c'. Call these closing 
lines k, then t he ordinates of the 
type kc will represent the bending mo-
ments a t different points of the girder. 
The points of the contra flexure are at 
the points where the closing lines inter-
sect the polygons c and c'. The direc-
t ions of the closing lines will permit at 
once the determination of the resistances 
at the piers and the shearing stresses at 
any point. 

The part icular difference between the 
construction in case of constant and of 
variable moment of inertia, is seen to be 
in the positions of t he center verticals 
positive and negative, and the r ight and 
lef t verticals. 

The small change in their position due 
to the variation in the moment of inertia, 
is the justification of the remarks previ-
ously made respecting the close approxi-
mation of the two cases. 

I t is seen tha t t he process here devel-
oped can be applied with equal facil i ty 
to a girder with any number of spans. 
Also if the moment of inertia varies con-
tinuously instead of suddenly, as assumed 
in Fig. 13, the panels can be taken short 
enough to approximate with any re-
quired degree of accuracy to this case. 

C H A P T E R XI . 
T H E T H E O R E M O F T H R E E M O M E N T S . 

The preceding construction has been 
in reality founded on the theorem of 
three moments, bu t when the equation 
expressing tha t theorem is writ ten in 
the usual manner, the relationship is 
difficult to see. Indeed the equation as 
given by Weyrauch* for the girder hav-
ing a variable moment of inertia, is of so 
complicated a nature tha t it may be 
thought hopeless to a t tempt to associate 
mechanical ideas with the terms of the 
equation, in any clearly defined relation-
ship. W e propose to derive and express 
the equation in a novel manner, which 
will at once be easy to understand, and 
not difficult of interpretat ion in connec-
tion with the preceding construction. 

Let us assume the general equation of 
deflections in the form. 
D=2(Mx+J?I), or D.EI=2(Mix) 

<7> 
in which I is the variable moment of 
inertia, I 0 some particular value of I as-
sumed as the s tandard of comparison, 
i=Ia-r-I, and x is measured horizontally 
from the point as origin, where the de-
flection 1) is taken to the point of appli-
cation of t he actual bending moment M. 
The quant i ty Mi is called the effective 
bending moment, and the deflection D 
is the length of the perpendicular f rom 
the origin t o the line tangent to the de-
flection curve a t point to which the sum-
mation is extended. 

Xow consider two contiguous spans 
of a continuous girder of several spans, 
and let acb denote the piers, c being t he 
intermediate pier. Let the span ac=l 
and bc=l'. Take the origin at a and 

extend the summation to c, calling the 
deflection at a , I ) a . W h e n the origin is 
at b and the summation extends to c, let 
the deflection be Db. Let also ya,yb and 
yc be the heights of a, b and c respective-
ly above some datura level. Then, as 
may be readily seen, 

Do. = ya — Vc — Kc , 
A - Vb — Vc — I'tc, 

if ¿c is the tangent of the acute angle at 
c on the side-towards a between the tan-
gen t line of the deflection curve at c 
and the horizontal, and tc' is the tangent 
of the corresponding acute angle on the 
side of c towards b. 

Now if we consider equation (7) to 
refer to the span I, the moment M may 
be taken to be made up of three parts , 
viz:—Ma caused by the weights on the 
girder, Mt dependent on the moment 
Me at c, and J / a dependent on the mo-
ment Ma a t a. The moments in the 
span V may be resolved in a similar man-
ner. W e may then write the equations 
of deflections in the two spans when the 
summation extends over each entire span 
as follows: 

EIXVa-yc-K»= 2a
e (M0ix)-X (MJx) 

- ^ ( K ™ ) (8) 

KI0(yb-ye-l'tc') = 2b
B(Ma'i'x') 

-2b
e(M,'i'x')-2b

c{Mx'i'z') (9) 
in which x is measured f rom a, and x' 
f rom b towards c. N o w if the girder is 
originally s t ra ight , te = — te', hence 
we can combine these two equations so 
as to eliminate te and tc', and the result-
ing equation will express a relationship 
between the heights of the piers, the 
bending moments (positive and negative), 
their points ^ f application and the mo-
ments of inertia-; of which quantities the 
negative bending moments are alone un-
known. The equation we should thus 
obtain would be the general equation 
of which the ordinary expression of the 
theorem of three moments is a particular 
case. Before we write this general 
equation it is desirable to introduce cer-
tain modifications of form which do not 
diminish its generali ty. Suppose tha t 

x ^ i M ^ ^ i M ^ ) 

H c ^ ' ^ r s ^ s y r s s t h e n j s l h e d i s
f

t a n , c e f r o m <* t o ** 
Leipzig 1S73. , ter of gravi ty of the negative effective 



moment area next to c. As was shown 
in connection with Fig. 13, the position 
of this center of gravity is independent 
of the magnitude of J f , or Mc and may 
be found from the equation, 

r . ix*dx 

X,— 
J" ixdx 

(10) 

for M, is proportional to x. Similarly 
it may be shown that 

J i(l—x)xdx 
C 

f i(l—x)dx 
(11) 

is the distance of the center of gravity 
of the negative effective moment area 
next to a. 

Again, suppose that 

then is i, an average value of i for the 
negative effective moment area next to 
c, which is likewise independent of the 
magnitude of 3IX, as appears from reasojv-
ing like that just adduced respecting a,. 
Hence i, may be found from the equation 

x 'i ' 
V 

r ixdx 
2.= 

f x d x 

Similarly it may be shown that 

(12) 

/{i',-x)dx 
(13) 

in which ¿, is the average value of i for 
the negative effective moment area next 
to a. 9 

The integrals in equations (10), (11), 
(12). (13), and in others like them refer-
ring to the span I', which contain i must 
be integrated differently, in case i is dis-
continuous, as it usually is in a truss, 
from the case where i varies continuous-
ly. When i is discontinuous the integral 
extending from c to a must be separated 
into the sum of several integrals, each of 
which must extend over that portion of 
the span I in which i varies continuously. 

Furthermore we h%ve 
S i ( J • • (M) 

since each member of this equation rep-

resents the negative actual moment area 
next to c in the span I. 

Similarly, we have the equations 

If there is no constraint at the pier 
then must M e = M e ' . 

Now making the substitutions in equa-
tions (8) and (9), which have been indi-
cated in the developments just com-
pleted, and then eliminating tc and tc', 

j e t . 1 

2b
c (M0')=\[Ma\i, + Me foi, +xX) 

•+MbiX] • • • (15) 
in which x„ is the distance from a of the 
center of gravity of the positive effect-
ive moment area due to the weights in 
the span I, and "5/ is a similar distance 
from b in the span I', while it and »„' are 
average values of i for these areas de-
rived from the equations in each span, 

I t may frequently be best to leave the 
expressions containing the positive mo-
ments in their original form as expressed 
in equations (8) and (9). 

Equation (15) expresses the theorem of 
three moments in its most general form. 

Let us now derive from equation (15), 
the ordinary equation expressing the 
theorem of three moments, for a girder 
having a constant cross section. In this 
case ¿=1 , and we wish to find the value 
of the term 2(3f0x) in each span. Let 
J/0 be caused by several weights P ap-
plied at distances z from a, then the mo-
ment due to a single weight P at its 
point of application is 

Mz = Pz(l-z)+l, 
which may be taken as the height of the 
triangular moment area whose base is I 
which is caused by P. This triangle 
whose area is is the component of 
2 (M 0 ) due to P and can be applied as a 
concentrated bending moment at its cen-
ter of gravity at a distance x from a. 

Now and taking all the 
weights P at once 

2°(M0x)=lTc[P(r-z*)z]. 
Also in equation (15) we have in this 

. case 

*,=y, x,'=¥'> '*;=¥ 

i V 

- ^ [ p p - ^ z ] - i ^ i - r - e ' V ] 

=Mal+2Mc{l+V) + MhV . (16) (16) and (17). 

Equation (19) is derived from (18) by 
taking 0 at a, and (20) is obtained simi-
larly in the span I'. E c is the reaction 
of the pier at c. S is the shear at 0 in 
the span I. These equations also com-
plete the solution of the cases treated in 

Equation (16) then expresses the the-
orem of three moments for a girder hav-
ing a constant moment of inertia 7, and 
deflected by weights applied in the span 
I at distances z from a, and also by 
weights in the span V at distances z' from 
b. 

Let us also take the particular case of 
equation (15) when the moment of inertia 
is invariable arid the piers on a level; then 
i = l , and if we let A„ and A0

f be the 
positive moment areas due to the weights 
we have 

Mal+2MC (l+l') + Mbl' . . (17) 
This form of the equation of three mo-

ments was first given by Greene.* 
The advantage to be derived in discus-

sing this theorem in terms of the bending 
moments, instead of the applied weights 
is evident both in the analytical and the 
graphical treatment. The extreme com-
plexity of the ordinary formulae arises 
from their being obtained in terms of 
the weights. 

In order to complete the analytic solu-
tion of the continuous girder in the gen-
eral case of equation (15j, it is only 
necessary to use the well known equa-
tions, 

M=M0 + Scz-Z(Pz,) . 

Sc=j [Ma-Mc+I?(Pz)] . 

Se'=f[Mb-Afe+l-b
e(Pz')] 

(18) 

(19) 

(20) 

(21) 
(22) 

He=Se + Se' . . . 
S=Se-S°e(P). . . . 

In (18) M is the bending moment at 
any point O in the span I, Sc is the shear 
at e due to the weights in the span I, 
and z0 is the distance from O towards c 
of the applied forces P and 3e in the seg-
ment Oc. 

• Graphical Method for the Analysis of Bridge Trasses. 
Uias. E. Greene. Published by D. Van Nostrand. New 
iork , 1S7S. 

C H A P T E R XH. 
T H E F L E X I B L E ARCH R I B A N D S T I F F E N I N G 

T R U S S . 

Whenever the moment of inertia of 
an arch rib is so small, that it cannot 
afford a sufficient resistance to hold in 
equilibrium the bending moments due 
to the weights, it may be termed a flexi-
ble rib. 

I t must have a sufficient cross section 
to resist the compression directly along 
the rib, but needs to be stiffened by a 
truss, which will most conveniently "be 
made straight and horizontal. The rib. 
may have a large number of hinge joints 
which must be rigidly connected with 
the truss, usually by vertical parts. It 
is then perfectly'flexible. 

If, however, the rib be continuous 
without joints, or have blockwork joints, 
it may nevertheless be treated as if per-
fectly flexible, as this supposition will 
be approximately correct and on the side 
of safety, for the bending moments i n -
duced in the truss will be very nearlv as 
great as if the rib were perfectly flexible, 
in case the same weight would cause a 
much greater deflection in the rib than 
in the truss. I t will be sufficient to 
describe the construction for the flexible 
rib without a figure, as the construction 
can afford no difficulties after the con-
structions already given have been mas-
tered. 

Lay off ob some assumed scale the 
applied weights as a load line, and let 
us call this vertical load line ww'. 
Divide the span into some convenient 
number of equal parts by verticals, 
which will divide the curve a of the rib 
into segments. From some point A as a 
pole draw a pencil of rays parallel to the 
segments of a, and across this pencil 
draw a vertical line mi', at such a dis-
tance from b that the distance uu' be-
tween the extreme rays of the pencil is 
equal to wtc'. Then' the segments of 
uu' made by the rays of the pencil are 
the loads which the arch rib would sus-



tain in virtue of its being an equilibrium 
polygon, and they would induce no bend-
ing moments if applied to the arch. 
The actual loads in general are different-
ly distributed. By Prop. V I the bending 
moments induced in the truss are those 
due to the difference between the weight 
actually resting on the arch at each 
point, and the weight of the same total 
amount distributed as shown by the 
segments of the line uu'. 

Now lay off a load line vv' made up 
of weights which are these differences 
of the segments of uu' and tow', taking 
care to observe the signs of these dif-
ferences. The algebraic sum of all the 
weights vv' vanishes when the weights 
which rest on the piers are included, as 
appears from inspection of the construc-
tion in the lower part of Fig. 10. The 
construction above described will differ 
from that in Fig. 10 in one particular. 
The rib will not in geueral be parabolic, 
and the loads which it will sustain in 
virtue of its being an equilibrium poly-
gon will not be uniformly distributed, 
hence the differences which are found as 
the loading of the stiffening truss do 
not generally constitute a uni formly 
distributed load. 

The horizontal thrust of the arch is 
the distance of uu' f rom b measured on 
the scale on which the loads are laid off, 
and the thrust along the arch at any 
point is length of the corresponding ray 
of the pencil between b and uu'. These 
thrusts depend only on the total weight 
sustained, while the bending moments 
of the stiffening truss depend on the 
manner in which it is distributed, and 
on the shape of the arch. 

Having determined thus the weights 
applied to the stiffening truss, it is to be 
treated as a straight girderpby methods 
previously explained according to the 
way in which it is supported a t the 
piers. 

The effect of variations of temperature 
is to make the crown of the arch rise 
and fall by an amount which can be 
readily determined with sufficient exact-
ness, (see Iiankine's Applied Mechanics 
Art . 169). This rise or fall of the arch 
produces bending moments in the stiffen-
ing truss, which is fastened to the tops 
of the piers, which are* the same as would 
be produced by a positive or negative 
loading, causing the same deflection at 

the center and distributed in the same 
manner as the segments of uu': for it 
is such a distribution of loads or pres-
sures which the rib' can sustain or pro-
duce. A similar set of moments can be 
induced in the stiffening truss by length-
ening the posts between the rib and 
truss. 

When this deflection and the value of 
EI in the truss are known, these mo-
ments can be at once constructed by 
methods like those already employed. 
A judicious amount of cambering of this 
kind is of great use in giving the struc-
ture what may be called "initial stiff-
ness." The St. Louis Arch is wanting in 
initial stiffness to such an extent that 
the weight of a^ingle person is sufficient 
to cause a considerable tremor over an 
entire span. This would not have been 
possible had the bridge consisted of an 
arch stiffened by a truss which was an-
chored to the piers in such a state of 
bending tension as to exert considerable 
pressure upon the arch. This tension of 
the truss would be relieved to some ex-
tent during the passage of a live load. 

The arch rib with stiffening truss, is a 
form of which many wooden bridges 
were erected in Pennsylvania in the 
earlier days of American railroad build-
ing, but its theory does not seem to have 
been well understood by all who erected 
them, as the stiffening truss was itself 
usually made strong enough to bear the 
applied weights, and the arch was added 
for additional security and stiffness, 
while instead of anchoring the truss to 
the piers and causing it to exert a pres-
sure on the arch, a far different distribu-
tion of pressures was adopted. Quite a 
number of bridges of this pattern are 
figured by Haupt* from the designs of 
the builders, but most of them show by 
the manner of bracing near the piers 
that the engineers who designed them 
did not know how to take advantage of 
the peculiarities of this combination. 
This further appears from the fact, that 
the trussing is not usually continuous. 

A good example, however, of this 
combination constructed on correct prin-
ciples is very fully described by Haupt 
on pages 169 et seq. of his treatise. It 
is a wooden bridge over the Susquehanna 
River, miles from Ilarrisburg on the 

• Theory of Bridge Construction. Herman Haupt, A.M. 
I New York. 1S53. 

Let us take for discussion the brick 
arch erected by Brunei near Maidenhead 
England, to serve as a railway viaduct. 

It is in the form of an elliptic ring, as 
represented in Fig. 14, having a span of 
128 f t . with a rise of 24j feet. The 
thickness of the ring at the crown is 
ft. , while at the pier the horizontal thick-
ness is 7 f t . 2 inches. 

Divide the span into an even number 
of equal parts of the type bb, and with a 
radius of half the span describe the 
semicircle gg. Let ba= 24 j f t . be the 
rise of the intrados, and from any con-
venient point on the line bb as draw 
lines to a and g. These lines will enable 
us to find the ordinates ba of the ellipse 
of the intrados from the ordinates bg of 
the circle, by decreasing the latter in the 
ratio of bg to ba. For example, draw a 
horizontal through <r/s cutting b^g at i„ 
then a vertical through ¿a, cutting bta at 
7j, then will a horizontal through cut 
off asA, the ordinate of the ellipse corre-
sponding to b^g, in the circle, as appears 
from known properties of the ellipse. 

Similarly let bq=64 f t . + 7 f t . 2 in., 
and with bq as radius describe a semicir-
cle. Let bd= 24£ f t . + oi f t . be the rise 

Pennsylvania Railroad, and was designed 
by Haupt. It consists of twenty-three 
spans of 160 feet each from center to 
center of piers. The arches have each 
a span of 149^ feet and a rise of 20 
ft. 10 in., and are stiffened by a Howe 
Truss which is continuous over the 
piers and fastened to them. It was 
erected in 1849. Those parts which were 
protected from the weather have re-
mained intact, while other parts have 
been replaced, as often as they have de-
cayed, by pieces of the original dimen-
sions. This bridge, though not designed 
for the heavy traffic of these days, still 
stands after twenty-eight years of use, a 
proof of thè real value of this kind of 
combination in bridge building. 

CHAPTER XIII . 

THE ARCH OF MASONRY. 

Arches of stone and brick have joints 
which are stiff up to a certain limit 
beyond which they are unstable. The 
loading and shape of the arch must be so 
adjusted to each other that this limit 
shall not be exceeded. This will appear 
in the course of the ensuing discussion. 

ARCH OF MASONRY 
MAIDENHEAD RAILWAY VIADUCT 
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of the extrados, and from any convenient 
point on bb, as ¿5' draw lines to d and q. 
These will enable us to find the ordinates 
bd of the ellipse of the extrados, from 
those of the circle, by decreasing the 
latter in the ratio of bq to bd. By this 
means, as many points as maybe desired, 
can be found upon the intrados and ex-
trados; and these curves may then be 
drawn with a curved ruler. We can use 
the arch ring so obtained for our con-
struction, or multiply the ordinates by 
any convenient number, in case the arch 
is too fiat for convenient work. Indeed 
we can use the semicircular ring itself if 
desirable. W e shall in this construction 
employ the arch ring ad which has just 
been obtained. 

W e shall suppose that the material of 
the surcharge between the extrados and 
a horizontal line tangent at d causes by 
its weight a vertical pressure upon the 
arch. That this assumption is nearly 
correct in case this part of the masonry is 
made in the usual manner, cannot well be 
doubted. Rankine, however, in his Ap-
plied Mechanics assumes that the press-
ures are of an amount and in a direction 
due to the conjugate stresses of an homo-
geneous, elastic material, or of a material 
which like earth has an angle of slope due 
to internal friction. While this is a cor-
rect assumption, in case of the arch of h 
tunnel sustaining earth, it is incorrect 
for the case in hand, for the masonry of 
the surcharge needs only a vertical resist-
ance to support it, and will of itself pro-
duce no active thrust, having a horizon-
tal component. 

This is further evident from Moseley's 
principle of least resistance, which is 
stated and proved by Rankine in the 
following terms: 

" If the forces which llslance each 
other in or upon a given body or struc-
ture, be distinguished into two systems, 
called respectively, active and passive, 
which stand to each other in the rela-
tion of cause and effect, then will the 

»passive forces be the least which aTe 
capable of balancing the active forces, 
consistently with the physical condition 
of the body or structure. 

For the passive forces being caused by 
the application of the active forces to 
the body or structure, will not increase 
after the active forces have been balanced 

by them; and will, therefore, not increase 
beyond the least amount capable of bal-
ancing the active forces." 

A surcharge of masonry can be sus-
tained by vertical resistance alone, and 
therefore will exert of itself a pressure 
in no other direction upon the haunches 
of the arch. Nevertheless this surcharge 
will afford a resistance to horizontal 
pressure if produced by the arch itself. 
So that when we assume the pressures 
due to the surcharge to be vertical alone, 
we are assuming that the arch does not 
avail itself of one element of stability 
which may possibly be employed, but 
which the engineer will hesitate to rely 
upon, by reason of the inferior character 
of the masonry usually found in the sur-
charge. The difficulty is Usually avoided, 
as in that beautiful structure, the London 
Bridge, by forming a reversed arch over 
the piers which can exert any needed 
horizontal pressure upon the haunches. 
This in effect increases by so much the 
thickness of the arch ring at and near 
the piers. 

The pressure of earth will be treated 
in connection with the construction for 
the Retaining Wall. On combining the 
pressures there obtained with the weight, 
the load which a tunnel arch sustains, 
may be at once found, after which the 
equilibrium polygon may be drawn and 

i a construction executed, similar in its 
general features to that about to be em-
ployed in the case before us. 

Let us assume that the arch is loaded 
with a live load extending over the left 
half of the span, and having an intensity 
which when reduced to masonry of the 
same specific gravity as that of which 
the viaduct is built,"would add a depth 
df to the surcharge. Now if the number 
of parts into which the span is divided 
be considerable, the weights which may 
be supposed to be concentrated at the 
points of division vary very approximately 
as the quantities of the type a f . This 
approximation will be found to be suffi-
ciently exact for ordinary cases; but 
should it be desired to make the con-
struction exact, and also to take account 
of the effect of the obliquity of the joints 
in the arch ring, the reader will find the 
method for obtaining the centers of 
gravity, and constructing the weights, in 
Woodbury's Treatise on ' ~ " the Stability of 

I the Arch pp. 405 et seq. in which is 

given Poncelet's graphical solution of 
the arch. 

With any convenient pole distauce, as 
one half the span, lay off the weights. 
W e have used ¿». as the pole and made 
btw, = $ the weight at the crown = 
i {af+ad) = bt'w', io,w, = «,/„ wtw3 = 
a,f„ etc. Several of the weights near 
the ends of the span are omitted in the 
Figure; viz., etc. From the force 
polygon so obtained, draw the equili-
brium polygon c as previously explained. 

The equilibrium polygon which ex-
presses the real relations between the 
loading and the thrust along the arch, is 
evidently one whose ordinates are pro-
portional to the ordinates of the polygon 
c. 

It has been shown by Rankine, Wood-
bury and others, that for perfect stability, 
—i.e, in case no joint of the arch begins 
to open, and every joint bears over its 
entire surface,—that the point of appli-
cation of the resultant pressure must 
everywhere fall within the middle third 
of the arch ring. For if at any joint the 
pressure reaches the limit zero, at the 
intrados or extrados, and uniformly ill-
creases to the edge farthest from that, 
the resultant pressure is applied at one 
third of the depth of the joint from the 
farther edge. 

The locus of this point of application 
of the resultant pressure has been called 
the " curve of pressure," and is evidently 
the equifibrium curve due to the weights 
and to the actual thrust in the arch. If 
then it be possible to use such a pole dis-
tance, and such a position of the pole, 
that the equilibrium polygon can be in-
scribed within the inner third of the 
thickness of the arch ring, the arch is 
stable. It may readily occur that this is 
impossible, but in order to ensure suffi-
cient stability, no distribution of live 
load should be possible, in which this 
condition is not fulfilled. 

We can assume any three points at 
will, within this inner third, aiyj cause a 
projection of the polygon c to pass 
through them, and then determine by in-
spection whether the entire projection 
lies within the prescribed limits. In 
order to so assume the points that a new 
trial may most likely be unnecessary, we 
take note of the well known fact, that 
in arches of this character, the curve of 
pressure is likely to fall without the pre-

scribed limits near the crown, and near 
the haunches. Let us assume e at the 
middle of the crown, ej at the middle of 
« /</ / , and e6 near the lower limit on 
This last is taken near the lower limit, 
because the curvature of the left half of 
the polygon is more considerable than 
the other, and so at some point between 
it and the crown it may possibly rise to 
the upper limit. The same consideration 
would have induced us to raise es' to the 
upper limit, were it not likely that such 
a procedure would cause. the polygon to 
rise above the upper limit on the right 
of 

Draw the closing line kk through etet', 
and the corresponding closing line hh 
through c6c/, and decrease all the ordi-
nates of the type he in the ratio of hb to 
ke, by help of the lines bn and bl, in a 
manner like that previously explained. 
For exdmple htc,=n3o„ and ¿,<>,=¿,6,. 
By this means we obtain the polygon e 
which is found to lie within the required 
limits. The arch is then stable: but is 
the polygon e the actual curve of 
pressures? Might not a different as-
sumption respecting the three points 
through which it is to pass lead to a dif-
ferent polygon, which would also lie 
within the limits ? I t certainly might. 
Which of all the possible curves of pres-
sure fulfilling the required condition, is 
to be chosen, is determined by Moseley's 
principle of least resistance, which ap-
plied to the case in hand, would oblige 
us to choose that curve of all those lying 
within the required limits, which has the 
least horizontal thrust, i.e. the smallest 
pole distance. I t appears necessary to 
direct particular attention to this, as a 
recent publication on this subject asserts 
that the true pressure line is that which 
approaches nearest to the middle of the 
arch ring, "so that the pressure on the 
most compressed joint edge is a mini-
mum; a statement at variance with the 
theorem of least resistance as proved by 
Rankine. 

Now to find the particular curve which 
has the least pole distance, it is evidently 
necessary that the curve should have its 
ordinates as large as possible. This may 
be accomplished very exactly, thus: 
above e, where the polygon approaches 
the upper limit more closely than at any 
other point near the crown, assume a new 
position of e, at the upper limit; and be-



f 

of the extrados, and from any convenient 
point on bb, as ¿5' draw lines to d and q. 
These will enable us to find the ordinates 
bd of the ellipse of the extrados, from 
those of the circle, by decreasing the 
latter in the ratio of bq to bd. By this 
means, as many points as maybe desired, 
can be found upon the intrados and ex-
trados; and these curves may then be 
drawn with a curved ruler. We can use 
the arch ring so obtained for our con-
struction, or multiply the ordinates by 
any convenient number, in case the arch 
is too fiat for convenient work. Indeed 
we can use the semicircular ring itself if 
desirable. W e shall in this construction 
employ the arch ring ad which has just 
been obtained. 

W e shall suppose that the material of 
the surcharge between the extrados and 
a horizontal line tangent at d causes by 
its weight a vertical pressure upon the 
arch. That this assumption is nearly 
correct in case this part of the masonry is 
made in the usual manner, cannot well be 
doubted. Rankine, however, in his Ap-
plied Mechanics assumes that the press-
ures are of an amount and in a direction 
due to the conjugate stresses of an homo-
geneous, elastic material, or of a material 
which like earth has an angle of slope due 
to internal friction. While this is a cor-
rect assumption, in case of the arch of h 
tunnel sustaining earth, it is incorrect 
for the case in hand, for the masonry of 
the surcharge needs only a vertical resist-
ance to support it, and will of itself pro-
duce no active thrust, having a horizon-
tal component. 

This is further evident from Moseley's 
principle of least resistance, which is 
stated and proved by Rankine in the 
following terms: 

" If the forces which llslance each 
other in or upon a given body or struc-
ture, be distinguished into two systems, 
called respectively, active and passive, 
which stand to each other in the rela-
tion of cause and effect, then will the 

»passive forces be the least which aTe 
capable of balancing the active forces, 
consistently with the physical condition 
of the body or structure. 

For the passive forces being caused by 
the application of the active forces to 
the body or structure, will not increase 
after the active forces have been balanced 

by them; and will, therefore, not increase 
beyond the least amount capable of bal-
ancing the active forces." 

A surcharge of masonry can be sus-
tained by vertical resistance alone, and 
therefore will exert of itself a pressure 
in no other direction upon the haunches 
of the arch. Nevertheless this surcharge 
will afford a resistance to horizontal 
pressure if produced by the arch itself. 
So that when we assume the pressures 
due to the surcharge to be vertical alone, 
we are assuming that the arch does not 
avail itself of one element of stability 
which may possibly be employed, but 
which the engineer will hesitate to rely 
upon, by reason of the inferior character 
of the masonry usually found in the sur-
charge. The difficulty is Usually avoided, 
as in that beautiful structure, the London 
Bridge, by forming a reversed arch over 
the piers which can exert any needed 
horizontal pressure upon the haunches. 
This in effect increases by so much the 
thickness of the arch ring at and near 
the piers. 

The pressure of earth will be treated 
in connection with the construction for 
the Retaining Wall. On combining the 
pressures there obtained with the weight, 
the load which a tunnel arch sustains, 
may be at once found, after which the 
equilibrium polygon may be drawn and 

i a construction executed, similar in its 
general features to that about to be em-
ployed in the case before us. 

Let us assume that the arch is loaded 
with a live load extending over the left 
half of the span, and having an intensity 
which when reduced to masonry of the 
same specific gravity as that of which 
the viaduct is built,"would add a depth 
df to the surcharge. Now if the number 
of parts into which the span is divided 
be considerable, the weights which may 
be supposed to be concentrated at the 
points of division vary very approximately 
as the quantities of the type a f . This 
approximation will be found to be suffi-
ciently exact for ordinary cases; but 
should it be desired to make the con-
struction exact, and also to take account 
of the effect of the obliquity of the joints 
in the arch ring, the reader will find the 
method for obtaining the centers of 
gravity, and constructing the weights, in 
Woodbury's Treatise on ' ~ " the Stability of 

I the Arch pp. 405 et seq. in which is 

given Poncelet's graphical solution of 
the arch. 

With any convenient pole distauce, as 
one half the span, lay off the weights. 
W e have used ¿». as the pole and made 
btw, = $ the weight at the crown = 
i {af+ad) = bt'w', io,w, = «,/„ wtw3 = 
a,f„ etc. Several of the weights near 
the ends of the span are omitted in the 
Figure; viz., etc. From the force 
polygon so obtained, draw the equili-
brium polygon c as previously explained. 

The equilibrium polygon which ex-
presses the real relations between the 
loading and the thrust along the arch, is 
evidently one whose ordinates are pro-
portional to the ordinates of the polygon 
c. 

It has been shown by Rankine, Wood-
bury and others, that for perfect stability, 
—i.e, in case no joint of the arch begins 
to open, and every joint bears over its 
entire surface,—that the point of appli-
cation of the resultant pressure must 
everywhere fall within the middle third 
of the arch ring. For if at any joint the 
pressure reaches the limit zero, at the 
intrados or extrados, and uniformly ill-
creases to the edge farthest from that, 
the resultant pressure is applied at one 
third of the depth of the joint from the 
farther edge. 

The locus of this point of application 
of the resultant pressure has been called 
the " curve of pressure," and is evidently 
the equifibrium curve due to the weights 
and to the actual thrust in the arch. If 
then it be possible to use such a pole dis-
tance, and such a position of the pole, 
that the equilibrium polygon can be in-
scribed within the inner third of the 
thickness of the arch ring, the arch is 
stable. It may readily occur that this is 
impossible, but in order to ensure suffi-
cient stability, no distribution of live 
load should be possible, in which this 
condition is not fulfilled. 

We can assume any three points at 
will, within this inner third, aiyj cause a 
projection of the polygon c to pass 
through them, and then determine by in-
spection whether the entire projection 
lies within the prescribed limits. In 
order to so assume the points that a new 
trial may most likely be unnecessary, we 
take note of the well known fact, that 
in arches of this character, the curve of 
pressure is likely to fall without the pre-

scribed limits near the crown, and near 
the haunches. Let us assume e at the 
middle of the crown, ej at the middle of 
« /</ / , and e6 near the lower limit on 
This last is taken near the lower limit, 
because the curvature of the left half of 
the polygon is more considerable than 
the other, and so at some point between 
it and the crown it may possibly rise to 
the upper limit. The same consideration 
would have induced us to raise es' to the 
upper limit, were it not likely that such 
a procedure would cause. the polygon to 
rise above the upper limit on the right 
of 

Draw the closing line kk through etet', 
and the corresponding closing line hh 
through c6c/, and decrease all the ordi-
nates of the type he in the ratio of hb to 
ke, by help of the lines bn and bl, in a 
manner like that previously explained. 
For exdmple htc,=n3o„ and ¿,<>,=¿,6,. 
By this means we obtain the polygon e 
which is found to lie within the required 
limits. The arch is then stable: but is 
the polygon e the actual curve of 
pressures? Might not a different as-
sumption respecting the three points 
through which it is to pass lead to a dif-
ferent polygon, which would also lie 
within the limits ? I t certainly might. 
Which of all the possible curves of pres-
sure fulfilling the required condition, is 
to be chosen, is determined by Moseley's 
principle of least resistance, which ap-
plied to the case in hand, would oblige 
us to choose that curve of all those lying 
within the required limits, which has the 
least horizontal thrust, i.e. the smallest 
pole distance. I t appears necessary to 
direct particular attention to this, as a 
recent publication on this subject asserts 
that the true pressure line is that which 
approaches nearest to the middle of the 
arch ring, "so that the pressure on the 
most compressed joint edge is a mini-
mum; a statement at variance with the 
theorem of least resistance as proved by 
Rankine. 

Now to find the particular curve which 
has the least pole distance, it is evidently 
necessary that the curve should have its 
ordinates as large as possible. This may 
be accomplished very exactly, thus: 
above e, where the polygon approaches 
the upper limit more closely than at any 
other point near the crown, assume a new 
position of e, at the upper limit; and be-



low et' where it approaches the lower at the most exposed edge a factor of only 
limit most nearly on the right, assume a 3$ instead of 5. 
new position of e.' at the lower limit. It may be desirable in a case like that 
At the left e5 may be retained. Xow on under consideration, to discuss the 
passing the polygon through these points changes occuring during the movement 
it will fulfill the second condition, which of the live load, and that this may be 
is imposed by the principle of least resist- effected more readily, it is convenient to 
a n c e > draw the equilibrium polygons due to 

A more direct' method for making the the live and dead loads separately. The 
polygon fulfill the required condition latter can be drawn once for all, while 
will be given in Fig. 18. the former being due to a uniformly 

Tt i« ccpn in tl,o «00« „ distributed load can be obtained with 
changes are^ so minute tha t it is useless ^ U y / o r different positions of the load 
to find this new position of the polygon, K ? Q

P°-yg. T K* X r * c ™ b l n ? . d 

and its horizontal thrust. The t h r u s t W J t ^ T o r d>; 
tained from the polygon 6 in its present f ! , ^ T aa\ T T ? 
position is sufficiently exact. The hori- > ° ? t ? g 6 t h e r 7 

zontal thrust in this case is found from fv ™ § T * P o l f . d ' s t f c e -
the lines bn and hi. Since is the 7 1 ' h™ h e e n 

horizontal thrust, i.e. pole distance of the SSSL • s h ° W " T 
polygon c, 2vv is the borizonfal thrust ¿ f ^ ' ^ ™ 8 ™ ^ ] t , o n ? f l ! i e 

of the polygon e. b m , m P o l y& o n w h , c h c a n b e inscribed 
f . . within the middle third of the arch ring, 

By using this pole distance and a pok it is possible either to change the shape 
properly placed, we might have drawn of the arch slightly, or increase its 
the polygon e with perhaps greater ac- thickness, or change the distribution of 
curacy than by the process employed, the loading. The last alternative is 
but that being the process employed in usually the best one, for the shape has 
Figs. 2, 3, etc., we have given this as an been chosen from reasons of utility and 
example of another process. taste, and the thickness from considera-

b l e joints in the arch rin^ should be l i o n o f t h o f a c t o r o f safety. If the cen-
approximately perpendicular to the f.er l l. , ,e o f t , l e a r c h n , 1 S ( o r a n y o t h e r 

direction of the pressure, i.e. normal to m e i n s . c n b e d within the middle third) 
the curve of pressures. b e c o n s | de red to be an equilibrium poly-

,XT. , i . , , „ g°n> a n < 1 f" r o m a pole, lines be drawn 
r e S a r d t 0 w h a t factor of safety parallel to the segments of this polygon 

is proper m structures of this kind, all a weight line can be found which will 
engineers would agree tha t the material represent the loading needed to make 
at the most exposed edge should never the arch stable. If this load line be 
be subjected to a pressure greater than compared with that previously obtained, 
onehfth of its ultimate strength. Ow.ng it will be readily seen where a slight 
to the manner in which the pressure is as- additional load must be placed, or else a 
sumed to be distributed in those joints hollow place made in the surcharge, 
where the point of application of the re- such as will render the arch stable. In 
snltant is at one third the depth of the general, it may be remarked, that an 
joint from the edge, its intensity at this additional load renders the curvature of 
edge .s double the average intensity of the line of pressures sharper under it, 
the pressure over the entire joint. We while the removal of anv load renders are then led to the fol lowing "conclusion, 
that the total horizontal thrust (or pres-

the curve straighter under it. 
The foregoing construction is nnre-

sure on any joint) when divided by the stricted. and applies to all unsvmmetrical 
area of the joint where this pressure is forms of arches or of loading or both, 
sustained ought to give a quotient at As previously mentioned, a similar con-
least ten t i m e s j h e u l t imate strength of struction applies to the case of an arch 
the material. The brick viaduct which 
we have treated is remarkable in using 
perhaps the smallest fac to r of safety in 
any known structure of th is class, having 

sustaining the pressure of water or earth; 
in that case, however, the load is not ap-
plied vertically and the weight line be-
comes a polygon. 

C H A P T E R XIV. 
R E T A I N I N G WALLS A N D A B U T M E N T S . 

Let aa'b'b in Fig. 15 represent the 
cross section of a wall of masonry which 
retains a bank of earth having a surface 
aa.. Assume that the portion of the 
wall and earth under consideration is 
bounded by two planes parallel to the 
plane of the paper, and at a unit's dis-
tance from each other: then any plane 
containing the edge of the wall at b, as 
ba0, balt etc., cuts this solid in a longitu-
dinal section, which is a rectangle having 
a width of one unit, and a length ¿a„, bal} 
etc. 

The resultant of the total pressure 
distributed over any one of these rec-
tangles of the type ba is applied at one-
third of that distance from b: i.e. the re-
sultant pressure exerted by the earth 
against the rectangle at bat is applied at 
a distance of bk=h ba0 from b. 

That the resultant is to be applied at 
this point, is due to the fact that the dis-
tributed pressure increases uniformly as 

we proceed from any point a of the sur-
face toward b: the center of pressure is 
then at the point stated, as is well known. 

Again, the direction of the pressures 
against any vertical plane, as that at ba0, 
is parallel to the surface aat. This fact 
is usually overlooked by those who treat 
this subject, and some arbitrary assump-
tion is made as to the direction of the 
pressure. 

That the thrust of the earth against 
a vertical plane is parallel to the ground 
surface is proved analytically in Ran-
kine's Applied Mechanics on page 127; 
which proof may be set forth in an 
elementary manner by considering the 
small parallelopiped mn, whose upper 
and lower surfaces are parallel to the 
ground surface. Since the pressure on 
any plane parallel to the surface of the 
ground is due to the weight of the earth 
above it, the pressure on such a plane is 
vertical and uniformly distributed. If 
nrn were a rigid body, it would be held 
in equilibrium by these vertical pressures, 
which are, therefore, a system of forces 

Fig.15 

THRUST OF E A R T H 
RETAINING WALL 



in equilibrium; but as mn is not rigid it 
must be confined by pressures distributed 
over each end surface, which last are dis-
tributed in the same manner on each end, 
because each is at the same depth below 
the surface. Now the vertical pressures 
and end pressures hold mn in equilibrium? 
they therefore form a system in equili-
brium. But the vertical pressures are in-
dependently in equilibrium, therefore J,he 
end pressures alone form a system which 
is independently in equilibrium. That this 
may occur, and no couple be introduced, 
these must directly oppose each other; 
i.e. be parallel to the ground line aah. 

Draw kp || aat, it then represents the 
position and direction of the resultant 
pressure upon the vertical ba0. Draw 
the horizontal ki, then is the angle ikp 
called the obliquity of the pressure, it 
being the angle between the direction of 
the pressure and the normal to the plane 
upon which the pressure acts. 

Let ebc= <P be the angle of friction, i.e. 
the inclination which the surface of 
ground would assume if the wall were 
removed. c 

The obliquity of the pressure exerted 
by the earth against any assumed plane, 
such as bat or bat, must not exceed the 
angle of friction; for should a greater 
obliquity occur the prism of earth, ajaaz 
or a0bat, would slide down the plane, bat 
or bat, on which such obliquity is found. 

For dry earth <t> is usually about 30°; 
for moist earth and especially moist clay, 
i> may be as small as 15°. The inclina-
tion of the ground surface aat cannot be 
greater than i>. 

Now let the points at, aa, a„ etc., be 
assumed at any convenient distances 
along the surface: for convenience we 
have taken them at equal distances, but 
this is not essential. With b as a center 
and any convenient radius, as be, describe 
a semi-circumference cutting the lines 
ba„ ba„ etc. at e„ c„ etc. Make ee=ec; 
also ete,=ctc„ e0< =c,c„ etc.: then bea 
has an obliquity <P with ba0, as has also 
be, with ba„ be3 with ba., etc.; for a06e„ 
=a,be,=aJ>e9=90° + $. 

Lay off bb,, bb„ bb„ etc., proportional 
to the weights of the prisms of earth 
atba„ a„bav a0ba„ etc.: we have effected 
this most easily by making aa,=bb„ 
a,at=bbt, a,a3='bb„ etc. Through b, b, b\, 
etc., draw parallels to kp; these will inter-
sect be„ be,, be,, etc., at b, t„ t%, etc. 

Then is bb,t, the triangle of forces hold-
ing the prism a0ba, in equilibrium, just 
as it is about to slide down the plane ba„ 
for bb, represents the weight of the 
prism, b,t, is the known direction of the 
thrust against ba0, and bt, is the direc-
tion of the thrust against ba, when it is 
just on the point of sliding: then is t,b, 
the greatest pressure which the prism 
can exert against ba0. Similarly ttb9 is 
the greatest pressure which the prism 
af>a3 can exert. Now draw the curve 
t,tj3, etc., and a vertical tangent inter-
secting the parallel to the surface through 
b at t; then is tb the greatest pressure 
which the earth can exert against ba0. 
This greatest pressure is exerted approxi-
mately by the prism or wedge of earth 
cut off by the plaue bat, for the pressure 
which it exerts against the vertical plane 
through b is almost exactly btt=bt. 
This is Coulomb's " wedge of maximum 
th rus t " correctly obtained: previous de-
terminations of it have been erroneous 
when the ground surface was not level, 
for in that case the direction of the press-
ure has not been ordinarily assumed to 
be parallel to the ground surface. 

In case the ground surface is level the 
wedge of maximum thrust will always 
be cut off by a plane bisecting the angle 
cbc0, as maybe shown analytically, which 
fact will simplify the construction of that 
case, and enable us to dispense with 
drawing the thrust curve tt. 

The pressure tb is to be applied at k, 
and may tend either to overturn the wall 
or to cause it to slide. 

In order to discuss the stability of the 
wall under this pressure, let us find the 
weight of the wall and of the prism of 
earth aba0. Let us assume that the 
specific gravity of the masonry compos-
ing the wall is twice that of earth. 
Make a'h=bb', then the area abb'a'= 
abh=abh,; and if a\=2ah, then aht 
represents the weight of the wall reduced 
to the same scale as the prisms of earth 
before used. Since aa0 is the weight of 
('be,, a j i„ is the weight of the mass on 
the right of the vertical ba0 against 
which the pressure is exerted. 

Make bq=ath„, and draw tq, which 
then represents the direction and amount 
of the resultant to be applied at o where 
the resultant pressure applied at k inter-
sects the vertical gw through the center 
of gravity g of the mass aa.bb'a'. The 

center of gravity g is constructed in the 
following manner. Lav off a'h=bb', and 
bl=aa'; and join hi. Join also the mid-
dle points of db and a'b': the line so 
drawn intersects hi at g, the center of 
gravity of aa'b'b. Find also the center 
of gravity g2, of aba0, which lies at the 
intersection of a line parallel to aa0, and 
cutting ba„ at a distance of J bat f rom a0 
and of a line from b bisecting aa 0 . 
Through gt and g, draw parallels, and 
lay off g j , and g j \ on them proportional 
to the weights applied at gx and g, 
respectively. We have found it con-
venient to make g^f , = \aha, and g,f 
aau. T h e n / , / , divides g,g„ inversely as 
the applied weights; and g, the point of 
intersection, is the required center of 
gravity. 

Let or be parallel to tq; since it 
intersects bb' so far within the base, 
the wall has sufficient stability against 
overturning. The base of the wall is so 
much greater than is necessary for the 
support of the weight resting upon it, 
that engineers have not found it neces-
sary that the resultant pressure should 
intersect the base within the middle third 
of the joint. The practice of English en-
gineers, as stated by Rankine, is to per-
mit this intersection to approach as near 
b' as \bb', while French engineers permit 
it to approach as near as \bb' only. In 
all cases of buttresses, piers, chimneys, 
or other structures which call into play 
some fraction of the ultimate strength 
of the material, or ultimate resistance of 
the foundation as great as one tenth, or 
one fifteenth, the point should not ap-
proach b' nearer than ^ bb'. 

Again, let the angle of friction be-
tween the wall and the earth under it be 
<$': then in order tha t the thrust at k 
may not cause the wall to slide, the 
angle wor must be less than <P'. 

When, however, the angle <P' is less than 
wor itbecomes necessary to gain additional 
stability by some means, as for example 
by continuing the wall below the sur-
face of the ground lying in f ront of it. 
Let a / « / be the surface of the ground 
which is to afford a passive resistance to 
the thrust of the wall: then in a manner 
precisely analogous to that just employed 
for finding the greatest active pressure 
which earth can exert against a vertical 
plane, we now find the least passive 
pressure which the earth in front of the 

wall will sustain without sliding up some 
plane such as b'a/ or b'a', etc. The 
difference in the two cases is that in the 
former case friction hindered the earth 
f rom sliding down, while it now hinders 
it from sliding up the plane on which it 
rests. 

Lay off e'ea'=ee0\ then taking any 
points etc. on the ground surface, 
make eu'e.!=c0'c3, e0'ei'z=cll'ct', etc. 

Lay off b'bt'=a0'a \ etc., and drawing 
parallels through b,, b3', etc., we obtain 
the thrust curve t 3 t 3 , etc. 

The small prism of earth between b'a„' 
and the wall adds to the stability of the 
wall, and can be made to enter the con-
struction if desired, in the same manner 
as did abat. 

The vertical tangent through s' shows 
us that the earth in front of the wall can 
withstand a thrust having a horizontal 
component b's' measured on a scale such 
that ' =«„ ' « , ' is the weight of the 
prism of earth «„'¿»'a/. 

This scale is different from tha t used 
on the left. To reduce them to the 
same scale lay oft from b', the distances 
b'd0 and b'd„' proportional to the perpen-
diculars from b on aat and b' on a / a 4 ' 
respectively. In the case before us, as 
the ground surfaces are parallel, we have 
made b'd0=ba0 and b'd,'=b'at'. 

Then from any convenient point on 
b'bA\ as v, draw vd, and vdj: these lines 
will reduce from one scale to the other. 
W e find then that x'd is the thrust on 
the scale at the left corresponding to 
xd=b'8' on the r ight: i.e., the earth 
under the surface assumed at the right 
can withstand something over one fourth 
of the thrust sb a t the left. 

I t will be found that a certaiu small 
portion of the earth near a0' has a thrust 
curve on the left of b', but as it is not 
needed in our solution it is omitted. 

If any pressure is required in pounds, 
as for example sb, it is founds as follows: 
—the length of a/t, is to that of sb as the 
weight of bb'aa' in lbs. is to the pressure 
sb in lbs. 

Frequently the ground surface is not a 
plane, and when this is the case it often 
consists of two planes as ad, da, Fig. 16. 
In that case, draw some convenient line 
as ad„ and lay off ad„ d,dt, etc. at will, 
which for convenience we have made 
equal. Draw d,a,, etc. parallel to 
bd, and join ba„ bat, etc.: then are the 



triangles bda, bda„ bda„ bdas, etc. pro-
portional in area to the lines ea, eax, etc. 
Hence the weights of the prisms of earth 
baax, baav etc., are proportional to adx, 
ad„, etc. 

In case ab slopes backward the part of 
the wall at the left of the vertical baa 
rests upon the earth below it sufficiently 
to produce the same pressure which 
would be produced if baa0 were a prism 
of earth. The weights of the wedges 
which produce pressures, and which are 
to be laid off below b, are then propor-
tional to dad=bb„ d0d3=bb„ etc. The 
direction of the pressures of the prisms 
at the right of bd are parallel to ad; but 
upon taking a larger prism the direction 
may be assumed to be parallel to a0a3, 
a0ao etc., which is very approximately 
correct. Now draw blt1 || aaax, bttt || a0aA, 
etc.; and complete the construction for 
pressure precisely as in Fig. 15, using 
for resultant pressure the direction and 
amount of that due to the wedge of maxi-
mum pressure thus obtained. 

In finding the stability of the Avail, it 
will be necessary to find the weight and 
center of gravity of the wall itself, minus 
a prism of earth baa0, instead of plus this 
prism as in Fig. 15; for it is now sus-
tained by the earth back of the wall. 

' When the back of the wall has any 

other form than that above treated, the 
vertical plane against which the pressure 
is determined should still pass through 
the lower back edge of the wall. 

In case the wall is found to be likely 
to slide upon its foundations when these 
are level, a sloping foundation is fre-
quently employed, such that it shall be 
nearly perpendicular to the resultant pres-
sure upon the base of the wall. The con-
struction employed in Fig. 15 applies 
equally to this case. 

The investigation of the stability of 
any abutment, buttress, or pier, against 
overturning and against sliding, is the 
same as that of the retaining wall in Fig. 
15. As soon as the amount, direction, 
and point of application, of the pressure 
exerted against such a structure is deter-
mined, it is to be treated precisely as 
was the resultant pressure kp in'Fig. 15. 

In -the case of a reservoir wall or dam, 
the construction is simplified from the 
fact that, since the surface of water is 
level and the angle of friction vanishes, 
the resultant pressure is perpendicular 
to the surface upon which the water 
presses. I t is useful to examine this as 
a case of our previous construction. In 
Fig. 17, let abb' be the cross-section of 
the dam; then the wedge of maximum 
pressure against ba0 is cut off by the 

plane bax when cba= 45°, i.e. bax bisects 
cba0 as before stated. 

This produces a horizontal resultant 
pressure at k equal to the weight of the 
wedge. Now the total pressure on ab is 
the resultant of this pressure, and the 
weight of the wedge aba0. The forces 
to be compounded are then proportional 
to the lines a1a0=bv0 and aa0. By simi-
larity of triangles it is seen that ro the 
resultant is perpendicular to ab. 

I t is seen that by making the inclina-
tion of ab %mall, the direction of ro can 
be made so nearly vertical that the clam 
will be retained in place by the pressure 
of the water alone, even though the dam 
be a wooden frame, whose weight may be 
disregarded. 

W e can now construct the actual 
pressures to which the arch of a tunnel 
surcharged with water or earth is sub-
jected. Suppose, for example, we wish 
to find the pressure of such a surcharge 
on the voussoir a4<Z4c?5a6 Fig. 14. Find 
the resultant pressure against a vertical 
plane extending from d6 to the upper 
surface of the surface and call it, pa. 
Draw a horizontal through dt and 
let its intersection with the vertical 
just mentioned he called d". Find 
the resultant pressure against the verti-
cal plane extending from d" to the sur-
face, and call it p6'. Now let pb" = 
p6—p6'and let it be applied at such a point 
of d,d " that pb shall be the resultant o f / - / 
and p". Then will the resultant press-
ure against the voussoir be the resultant 
of p" and the weight of that part of the 
surcharge directly above it. 

F O U N D A T I O N S I N E A R T H . 

A method similar to that employed in 
the determination of the pressure of 
earth against a retaining wall, or a tunnel 
arch, enables us to investigate the sta-
bility of the foundations of a wall stand-
ing in earth. 

Suppose in Fig. 15 that the wall abb'a' 
is a foundation wall, and that the press-
ure which it exerts upon the plane bb' 
is vertical, being due to its own weight 
and the weight of the building or other 

load which it sustains. Now consider a 
vertical plane of one unit in height, say, 
as bbs; and determine the resultant press-
ure against it on the supposition that 
the pressure is produced by a depth of 
earth at the right of it, sufficient to pro-
duce the same vertical pressure on bb' 
which the wall and its load do actually 
produce. In other words we suppose 
the wall and load replaced by a bank of 
earth having its upper surface horizontal 
and weighing the same as the wall and 
load. Call the upper surface z, and find 
the pressure against the vertical plane zb 
due to the earth under the given level 
surface; similarly, find the pressure 
against zbx. The surface being level, the 
maximum pressure, as previously stated 
will be due to a wedge cut off by a plane 
bisecting the angle between bz and a 
plane drawn from b at the inclinatian 
of the limiting angle of friction. This 
enables us to find the horizontal pres-
sures against zb and zbx directly: their 
difference is the resultant active pressure 
against bbx. 

Next, it must be determined what pas-
sive pressure the earth at the left of bbx 
can support. The passive resistance of 
the earth under the surface a against • 
the plane ab as well as that against the 
plane abx can be found exactly as that 
was previously found under the surface 
a'. The difference of these resistances is 
the resistance which it is possible for bbx 
to support. Indeed bbx could support 
this pressure and afford this resistance 
even if the active pressure against ab 
were, at the limit of its resistance, which 
it is not. The limiting resistance which 
is thus obtained, is then so far within 
the limits of stability, that ordinarily, no 
fur ther factor of safety is needed, and 
the stability of the foundation is secured, 
if the active pressure against bbx does not 
exceed the passive resistance. This con-
struction should be made on the basis of 
the smallest angle of friction £> which 
the earth assumes when wet; that being 
smaller than for dry earth, and hence 
giving a greater active pressure at the 
right, and a less resistance at the left. 

CHAPTER XV. 
S P H E R I C A L DOME O F M E T A L . 

The dome which will be treated in the 
following construction is hemispherical 
in shape; but the proposed construction 



applies equally to domes of any different 
form generated by the revolution of the 
arc of some curve about a vertical axis : 
such forms are elliptic, parabolic or hy-
perbolic domes, as well as pointed or 
gothic domes, etc. Let the quadrant aa 
in Fig. 18, represent the part of the 
meridian section of a thin metallic dome 
between the crown and the springing 
circle. The metallic dome is supposed 
to be so thin that i ts thickness need not 
be represented in the Figure : the thick-
ness of a dome of masonry, however, is a 
matter of prime importance and will be 
treated subsequently. 

In a thin metallic dome the only thrust 
along a meridian section is necessarily 
in a direction tangent to that section at 
each point of it. This consideration will 
enable us to determine this thrust as well 

as the hoop tension or compression along 
any of the conical rings into which the 
dome may be supposed to be divided 
by a series of horizontal planes. 

Let the height ab of the dome be 
divided into any number of parts, which 
we have in this case, for convenience, 
made equal. Let these equal parts of the 

j type du be the distances between horizon-
tal planes such that the planes through 
the points d„ d„ etc., cut small circles from 
the hemisphere which pass through the 
point a„ av etc., and similarly the planes 
through u„ etc., cut small circles which 
pass through gt, g„ etc. Now suppose the 
thickness of this dome to be uniform, 
and if ab be taken to represent the weight 
of a quadrantal lune of the dome included 
between two meridian plants making 
some small angle with each other; then 

from the well-known expression for the 
area of the zone of a sphere it appears that 
ad, will represent the weight of tha t 
part of the lune above a,d,. Similarly 
aux is the weight of the lune ag,; 
ad, the weight of a a „ etc. 

This method of obtaining the weight 
applies of course in case the dome is any 
segment of a sphere less than a hemi-
sphere and of uniform thickness. If the 
thickness increases from the crown, the 
weights of the zones cut by equi-distant 
horizontal planes increase directly as the 
thickness. In case the dome is not 
spherical the weights must be determin-
ed by some process suited to the form of 
the dome and its variation in thickness. 

Now the weight of the lune aa, is sus-
tained by*a horizontal thrust which is 
the resultant of the horizontal pressures 
in the meridian planes by which it is 
bounded, and by a thrust, as before re-
marked, in the direction of the tangent 
at a. Draw a horizontal line through d„ 
and through a a parallel to the tangent 
at a: these intersect at s,t then is ad,s 
the triangle of forces which hold in 
equilibrium the lune aa,. Similarly, 
au,tx is the triangle of forces holding the 
lune ag, in equilibrium, etc. Draw a 
curve st through the points thus determ-
ined. This curve is a well-known cubic 
which when referred to ba as the axis of 
x and bgt as that of y has for its equa-
tion 

y = r - x 
x1 r + x 

horizontal line 
circle aa of the 
this remarkable 

On being traced at the right of a it has 
in the other quadrant of the dome a part 
like that here drawn forming a loop; it 
passes through b at an inclination of 45" 
and the two branches below b finally 
become tangent to a 
drawn tangent to the 
dome. The curve has 
property :—If any line be drawn from a, 
cutting the curve here drawn and, also, 
the part below bgs, the product of these 
two radii vectores of the curve from the 
pole a is constant, and the locus of the 
intersection of the normals at these two 
points is a parabola. 

Draw a vertical tangent to this curve : 
the point of contact is very near ts, and g„ 
the corresponding point of the dome is 
almost 52° from the crown a. A determi-
nation of this maximum point by meaus 

of the equation gives the height of it 
above b as J ( ^ / s — 1) r, corresponding to 
about51°49'. Now consider any zone, as, 
for example, tha t whose meridian section 
is g,at: the upper edge is subjected to a 
thrust whose radial horizontal compo-
nent is proportional to u,t„ while the 
horizontal thrust against its lower edge 
is proportional to d3s3, and the difference 

between these radial forces produces 
a hoop compression around the zone pro-
portional to 8txt. It will be seen that 
these differences which are of the type 
sx or ty, change sign at t. Hence all 
parts of the dome above 51° 49' from the 
crown, are subjected to a hoop compres-
sion which vanishes at that distance from 
a, while all parts of the dome below 
this are subjected to hoop tension. This 
may be stated by saying that a thin 
dome of masonry would be stable under 
hoop compression as far as 51° 49' from 
the crown, but unstable below that, being 
liable to crack open along its meridian 
sections. A thick dome of masonry, 
however, does not have the resultant 
thrust at every point of its meridian 
section in a direction which is tangential 
to its surface,—this will be discussed 
later. 

It is necessary to determine the actual 
hoop tension or compression in any ring 
in order to determine the thickness of 
the dome such that the metal may not 
be subjected to too severe a stress. 

The rule for obtaining hoop tension 
(we shall use the word tension to in-
clude both tension and compression) is : 
Multiply the intensity of the radial 
pressure by the radius of the hoop, the 
product is the tension at any meridian 
section of the hoop. The correctness of 
this rule appears at once from considera-
tion of fluid pressure in a tube, in which 
it is seen that the tensions at the two ex-
tremities of a diameter prevent the total 
pressure on that diameter from tearing 
the tube asunder. 

Now in the case before us t,y, is the 
radial force distributed along a certain 
lune. The number of degrees of which 
the lune consists is at present undeterm-
ined : let it be determined on the suppo-
sition that it shall be such a number of 
degrees as to cause that the total radial 
force against it shall be equal to the 
hoop tension. Call the total radial force 
P and the hoop tension T, then the lune 



is to be such'that P= T. Also let 6 be 
the number of degrees in the lune, then 
90°-4-0 is the number of lunes in a quarter 
of the dome, and 90 P-r-6 is the radial 
force against a quarter of the dome, 
which last must be divided by \ r t to ob-
tain the hoop tension; because if p is the 
intensity of radial pressure, hrrp is the 
total pressure against a quadrant and ip, 
as previously stated, is the hoop tension. 
The ratio of these is -§7r, and by this we 
must divide the total radial pressure in 
every case to obtain hoop tension 

180 c I S O P 
• 6ir 

for P=T 

This is the number of degrees of which 
the lune must consist in order that when 
ab represents its weight, t,yx shall rep-
resent the hoop tension in the meridian 
section «,</,. The expression we have 
found is independent of the radius of the 
ring, and hence holds for any other ring 
as in which s3a:, is the hoop tension, 
etc. To find what fraction this lune is 
of the whole dome, divide 0 by 360° 

6_ _ 180 _ 1 _ 4 
' '360—360^r—2/T—25 n C a r y ' 

from which the scale of weight is easily 
found, thus; let W be the total weight 
of the dome and r its radius, then 

2nr : IP; ; i : n, the weight per unit, or 
the hoop tension per unit of the distances 
ty or sx. 

Distances at or as, on the same scale, 
represent the thrust tangential to the 
dome in the direction of the meridian 
sections, and uniformly distributed over 
an arc of 57°.3— : e.g. if we divide at 
measured as a force by 0 X m„<72 measured 
as a distance we shall obtain the intensi-
ty of the meridian compression at the 
joint cut from the dome by the horizon-
tal plane through a,. 

Analogous constructions hold for 
domes not spherical and not of uniform 
thickness. Approximate results may b'e 
obtained by assuming a spherical dome, 
or a series of spherical zones approxi-
mating in shape to the form which it is 
desired to treat. 

C H A P T E R X V I . . 

S P H E R I C A L D O M E O F MASOXRY. 

Let the dome treated be that in Fig. 
18 in which the uniform thickness of the 
masonry is one-sixteenth of the internal 
diameter or one-eighth of the radius of 
the intrados. Divide ab the radius of 
the center line into any convenient num-
ber of equal parts, say eight, at ux, 
etc.: a much larger number would be 
preferable in actual construction. At 
the points a,, a3, etc., on the same levels 
with u„ etc. pass conical joints nor-
mal to the dome, so that b is the vertex 
of each of the cones. 

If we consider a lune between meridian 
planes making a small angle with each 
other, the center of gravity of the parts 
of the lune between the conical joints lie 
at gt, </„^tc. on the horizontal midway 
between the previous horizontals. These 
points are not exactly upon the central 
line aa, but if the number of horizontals 
is large, the difference is inappreciable. 
We assume them upon aa. That they 
fall upon the horizontals through <?„ dt, 
etc., midway between those through w„ 
w„ etc., is a consequence of the equality 
in area between spherical zones of the 
same height. 

In finding the volume of a sphere it 
may be considered that we take the sum 
of a series of elementary cones whose 
bases form the surface of the sphere, and 
whose height is the radius. Hence, if 
any equal portions of the surface of a 
sphere be taken and sectorial solids be 
formed on them as bases and having 
their vertices at the center, then the 
sectorial solids have equal volumes. 
The lunes of which we treat are equal 
fractions of such equal solids. 

Draw the verticals of the type bg 
through the centers of gravity g„ g„ etc. 
The weights applied at these points are 
equal and may be represented by au„ 
u , u , = w

t
w » etc. Use a as the pole and 

w,wt as the weight line; and, beginning 
the point fB, draw the equilibrium at 

polygon c due to the weights. 
W e have used for pole distance the 

greatest horizontal thrust which it is 
possible for any segment of the dome to 
exert upon the part below it, when the 
hoop compression extends to 51° 49' 
from the crown. 

Below the point where the compression 

vanishes we shall not assume that the 
bond of the masonry is such that k, can 
resist the hoop tension which is develop-
ed. The upper part of the dome will be 
then carried by the parts of the lunes 
below this point by their united action 
as a series of masonry arches standing 
side by side. 

Now it is seen that the curve of equi-
librium c, drawn with this assumed hori-
zontal thrust falls within the curve of the 
lune, which signifies that the dome will 
not exert so great a thrust as that as-
sumed. By the principle of least resist-
ance, no greater horizontal thrust will 
be called into action than is necessary to 
cause the dome to stand, if stability is 
possible. If a less thrust than that just 
employed be all that is developed in the 
dome, then the point where the hoop 
compression vanishes is not s (na r as 51 
49' from the crown, and a longer portion 
of the lune acts as an arch, than has been 
supposed by previous writers on this 
subject.* none of whom, so far as known, 
have given a correct process for the solu-
tion of the problem, although the results 
arrived at have been somewhat approxi-
mately correct. 

To ensure stability, the equilibrium 
curve must be inscribed within the inner 
third of that part of the meridian section 
of the lune which is to act as an arch; as 
appears from the same reasons which 
were stated in connection with arches of 
masonry. 

And, further, the hoop compression 
will vanish at that level of the dome 
where the equilibrium curve, in departing 
from the crown, first becomes more 
nearly vertical than the tangent of the 
meridian section; for above that point 
the greatest thrust that the dome can 
exert, cannot be so great as at this point 
where the thrust of the arch-lune is equal 
to that of the dome. 

Now to determine in what ratio the 
ordinates of the curve c must be elongat-
ed to give those of the curve e which 
fulfills the required conditions, we draw 
the line fo, and cut it at pl} />,, etc. by 
the horizontals m~p„etc., the quan-
tities mb being the ordinates of exterior 
of the inner third. Again draw verticals 
through p„ pt, etc., and cut them at qx, 

* See a paper read before the Royal Inst- of British 
Architect», "on the Mathematical Theory of Domes,-' 
Feb. 6th, 1ST1. By Edmund Beckett Denison, L.L.D., 
Q.C., F.R.A.S. 

qt, qt, etc. by horizontals through c„ c3, 
c„ etc. Through these points draw the 
curve qq, whose ordinates are of the type 
q/i. Some one of these ordinates is to 
be elongated to its corresponding ph, 
and in such a manner that no qh shall 
then become longer than its correspond-
ing ph. To effect this, draw oqt tangent 
to the curve qq; then will oq3 enable us 
to effect the required elongation: e.g. let 
the horizontal through ct cut oqt at jt, 
and then the vertical through /, cuts f o 
at it, then is et (which is on the same 
level with t4) the new position of c t. 
Similarly, we may find the remaining 
points of the curve e; but it is better to 
determine the new pole distance, and use 
this method as a test only. 

The curve qq made use of in this con-
struction for finding the ratio lines for 
so elongating the ordinates of the curve 
c, that the new ordinates shall be those 
of a curve e tangent to the exterior line 
of the inner third, may be applied with 
equal facility to the construction for the 
arch of masonry. This furnishes us with 
a direct method in place of the tentative 

| one employed in connection with Fig. 
14. 

To find the new pole distance, draw 
f j || oy, cutting imo at j, then will i the 
intersection of the horizontal through j , 
be the new position of the weight line flu, 
having its pole distance from a diminish-
ed in the required ratio. 

The equilibrium curve e will be parallel 
to the curve of the dome at the points 
where the new weight line vv cuts the 
curve st. It should be noticed that the 
pole distance which we have now determ-
ined is still a little too large because 
the polygon e is circumscribed about 
the t rue equilibrium curve; and as the 
polygon has an angle in the limiting 
curve mm the equilibrium curve is 
not yet high enough to be tangent to the 
limiting curve. If the number of divi-
sions had originally been larger (which 
the size of our Figure did not permit) 
this matter would be rectified. 

The polygon e is seen at et to fall just 
without the required limits, this would 
be partly rectified by slightly decreasing 
the pole distance as just suggested; the 
point, however, would still remain just 
without the limit after the pole distance 
is decreased, and by so much is the dome 
unstable. A dome of which the thick-



ness is one fifteenth of the internal dia-
meter, is almost exactly stable. 

It is a remarkable fact that a semi-
cylindrical arch of uniform thickness and 
without surcharge must be almost exact-
ly three times as thick, viz., the thickness 
must be about one fifth the span in order 
that it may be possible to inscribe the 
equilibrium curve within the inner third. 

The only large hemispherical dome, of 
which I have the dimensions, which is 
thick enough to be perfectly stable with-
out extraneous aid such as hoops or ties, 
is the Gol Goomuz at Beejapore, India. 
I t has an internal diameter of 137^ feet, 
and a thickness of 10 feet, it being 
slightly thicker than necessary, but it. 
probably carries a load upon the crown 
which requires the additional thickness. 

The hemispherical dome of uniform 
thickness is a very faulty arrangement 
of material. I t is only necessary to 
make the dome so light and thin for 51° 
49' f rom the crown that it cannot exert 
so great a horizontal thrust as do the 
thicker lanes below, to take complete ad-
vantage of the real strength of this form 
of structure. A dome whose thickness 
gradually decreases toward the crown 
takes a partial advantage of this, but 
nothing short of a quite sudden change 
near this point appears to be completely 
effective. 

The necessary thickness to withstand 
the hoop compression and the meridian 
thrust can be found as previously shown 
in the dome of metal. 

Domes are usually orowned with a 
lantern or pinnacle, whose weight must 
be first laid off below the pole a after 
having been reduced to the same unit 
as that of the zones of the dome. 

Likewise when there is an eye, at. the 
crown or below, the weight of the mate-
rial necessary to till the eye must be sub-
tracted, so that a is then to be placed 
below its present position. The construc-
tion is then t<r be completed in the same 
manner as in Fig, 18. 

I t is at once seen that the effect of an 
additional weight, as of a lantern, at the 
crown, since it moves the point a upward 
a certain distance, will be to cause the 
curve st to have all its points except b to 
the left of their present position, and 
especially the points in the upper part of 
the curve, thus making the point of no 
hoop tension much nearer the crown than 

in the metallic dome. It will be noticed 
that the addition of very small weight at 
the crown will cause the point m5 of no 
hoop tension in the dome of masonry to 
approach almost to the crown, so that 
then the lunes will act entirely as stone 
arches with the exception of a very small 
segment at the crown. 

On the contrary, the removal of a seg-
ment at the crown, or the decrease of the 
thickness, or any device for making the 
upper part of the dome lighter will re-
move the point of no hoop tension fur ther 
from the crown, both for the dome of 
metal and of masonry. In any dome of 
masonry the thickness above the point 
of no hoop tension, as determined by the 
curve si, need be only such as to with-
stand the two compressions to which it 
is subjected, viz; hoop compression and 
meridian Compression: while below that 
the lunes acting as arches must be thick 
enough to cause a horizontal thrust equal 
to the maximum radial thrust of the 
dome above the point of no hoop ten-
sion. 

Several large domes are constructed of 
more than one shell, to give increased 
security to the tall lanterns surmounting 
them : St. Peter's, at Rome, is double, 
and the Pantheon, at Paris, is triple. 
The different shells should all spring 
from the same thick zone below the 
point of no hoop tension; and the lunes 
of this thick zone should be able to 
afford a horizontal thrust equal to the 
sum of the radial thrusts of all the 
shells standing upon it. 

Attention to this will sfecure the sta-
bility in itself of any dome of masonry 
spherical or otherwise; and, though I 
here offer no proof of the assertion, 1 am 
led to believe that this is the solution of 
the problem of constructing the dome of 
a minimum weight of material, on the 
supposition that the meridian joints can 
afford no resistance to hoop tension. 

Now, in fact, it is a common device to 
ensure the stability of -large domes by 
encircling them with iron hoops or 
chains, or by embedding ties in the ma-
sonry; and this case appears to be of 
sufficient importance to demand our at-
tention. 

If the hoop encircles the dome at 51° 
49' or any other less distance from the 
crown the dome will be a true dome at 
all points above the hoop. Suppose the 

hoop to be at 51° 49', then the curve e 
should, below that point, be made to 
pass through the points fs and / g , from 
which it is seen that the dome may be 
made thinner than at present, and the 
horizontal thrust caused will be less. 
The tension of the hoop would be that 
due to a radial thrust which is the dif-
ference between that given by the curve 
st for this point and the horizontal thrust 
(pole distance) of the polygon e when it 
passes through f t a n d / 6 . That the curve 
e passes through these last mentioned 
points is a consequence of the principle 
of least resistance. 

Again, suppose another hoop encircles 
the dome a t / , ; the curve e must pass 
th rough /„ a n d / , , and in this part of the 
lane will have a corresponding horizon-
tal thrust. The curve e must also pass 
t h r o u g h / , a n d / , but in this j i t r t of the 
lune will have a horizontal thrust cor-
responding to it, differing from that in 
the part between / „ and / , : indeed .the 
horizontal thrust in the segment of a 
dome above any hoop depends exclusive-
ly upon that segment and and is unaf-
fected by the zone below the hoop. The 
tension sustained by the hoop is, how-
ever, due to the radial force," which is 
the difference of the horizontal thrusts 
of the zones above and below the 
hoop. 

It is seen that the introduction of a 
second hoop will still fur ther diminish 
the thickness of lune necessary to sus-
tain the dome, unless indeed the thick-
ness is required to sustain the meridian 
compression. 

Had a single hoop been introduced at 
/ , with none above that point, the dome 
a b o v e / , should then be investigated, just 
as if the springing circle was situated at 
that point. The curve e must then start 
from / „ as it before did from /„, and be 
made to become tangent to the limit-
ing curve at some point b e t w e e n / , and 
the crown. 

By the method here employed for 
finding the tension of a hoop it is possi-
ble to discuss at once the stresses in-
duced in the important modern domes 
constructed with rings and ribs of metal 
and having the intermediate panels 
closed with glass. 

On introducing a large number of 
rings at small distances from each other, 
it will be seen that the discussion just 

given leads to the method previously 
given for the dome of metal. 

The dome of St. Paul's, London, is one 
which has excited much adverse criticism 
by reason of the novel means employed 
to overcome the difficulties inherent in so 
large a dome at so great a height above 
the foundations of the building. The 
exterior dome consists of a framework of 
oak sustained by conical dome of brick 
which forms the core. There is also a 
parabolic brick dome under the cone 
which forms no essential part of the sys-
tem. Since the conical dome in general 
presents some peculiarities worthy of 
notice we will give an investigation of 
that form of structure as our concluding 
construction. 

C H A P T E R XVII . 

CONICAL DOME OF METAL. 

In Fig. 19, let bd be the axis of the 
frustum of a metallic cone cut by a ver-
tical plane in the meridian section a. 
The cone is supposed to have a uniform 
thickness too small to be regarded in 
comparison with its other dimensions. 
Suppose the frustum to be cut by a series 
of equi-distant horizontal planes as at glt 
gv etc., into a series of frustra or rings : 
then the weight of each ring is propor-
tional to its convex surface. The convex 
surface of any r ing=27r rX slant height; 
when r is half the sum of the radii of the 
two bases, i.e., r is the mean radius. 
Consequently, the weights of these 
rings, <>r any given fraction of them in-
cludecf between two meridian planes, is 
proportional to their mean radii. Let us 
draw these mean radii d,a„ d.at, etc., be-
tween the horizontals through g„g3, etc., 
and use some convenient fraction, say 
of these quantities of the type do as the 
weights. The line ii cuts off ^ of each 
of these : then lay off du,=d,i, as the 
weight of the ring ag„ lay off « , « , = 
d j „ uiu,=d,i„ etc., as the weights of 
the rings g,g„ g,g3, etc. 

Draw the line dt || act, it corresponds 
to the curve st of Fig. 18; then the 
quantities of the type tu represent the 
horizontal radial thrust which the cone 
exerts upon the part below it, while the 
radial thrust borne by any ring is the 
difference between two successive quanti-
ties of the type tu, i.e., the radial thrust 
in the ring g,g9 is represented by tty3, 



sions have made manifest the applicabil- are all projections of any one of them, 
ity of a particular equilibrium polygon and the possibility of deriving from it in 
among the infinite number which are each of the structures treated, a complete 
due to a given set of weights, and which and sufficiently exact solution. 
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A N E W GENERAL METHOD 
IN 

G R A P H I C A L STATICS. 



A N E W G E N E R A L M E T H O D 

IN 

G R A P H I C A L S T A T I C S . 

ALL general processes used in the 
graphical computation of statical prob-
lems consist, in their last analysis, in a 
systematized application of the proposi-
tion known as the "parallelogram of 
forces," which states that if two forces 
be applied to a material point, and if 
they be represented in magnitude and 
direction by two determinate straight 
lines, then their resultant is represented 
in magnitude and direction by the 
diagonal of a parallelogram, two of 
whose sides are the just mentioned de-

• terminate lines. This is the basis of all 
grapho-statical construction, but the 
methods by which it is systematized, and 
the auxiliary ideas incorporated in the 

rocesses, have so enlarged its possi-
ilities of usefulness, that Graphical 

Statics may perhaps claim to be a science 
of itself;—the science of the geometrical 
treatment of force. 

In order to introduce to the public a 
new set of auxiliary ideas, which shall 
constitute a new method, of a character 
equally general with that now in use and 
known as the " equilibrium polygon 
method," it has seemed best to give, in 
the first place, a brief review of the prin-
cipal ideas already employed by the cul-
tivators of this science. 

R E C I P R O C A L F I G U R E S . 

When a framed structure, such as a 
roof or bridge truss, is subjected to the 
action of certain weights or forces, these 
applied forces form a system which is in 

equilibrium. Now any system of forces 
in equilibrium may be represented in 
magnitude and direction by the sides of 
a closed polygon, a fact which follows 
at once from the doctrine of the parallelo-
gram of forces. Such a polygon is called 
the polygon of the applied forces. 

Again, the forces which act at any 
joint of a frame are in equilibrium, and 
hence there is a closed polygon of the 
forces acting at each joint. The forces 
which meet at a joint of a frame are the 
longitudinal tensions or compressions of 
the pieces meeting at that joint, together 
with any of the applied forces whose 
point of application may be the joint in 
question. Draw a diagram of the frame 
and the applied forces all of which we 
will suppose lie in a single plane. Call 
this the "f rame diagram:" it represents 
the position and direction of all the 
forces acting in and upon the frame. 
The frame diagram necessarily has at 
least three lines meeting at each joint. 
A piece which constitutes part of the 
frame does not necessarily have both 
its extremities attached at joints of the 
frame; one extremity may be firmly at-
tached to any immovable object. The 
frame diagram is, therefore, not neces-
sarily made up of closed figures. 

Now draw the closed polygon of the 
forces applied to the frame, and at each 
of the joints where forces are applied 
draw the closed polygon of the forces 
which meet at that joint, using so far as 
possible the lines already drawn as sides 



of the new polygons, and at the same 
time draw polygons for the forces acting 
at each of the remaining joints. If this 
process be effected with care as to the 
order of procedure, as well as to the 
order in which the forces follow each 
other in the polygon of the applied 
forces, then the resulting " diagram of 
forces," which is formed of the combi-
nation of the polygon of the applied 
forces with the polygons for each joint, 
will contain in it a single line and no 
more parallel to each line of the frame 
diagram. In that case the force dia-
gram is said to be a reciprocal figure to 
the frame diagram. If sufficient care is 
not exercised in the particulars men-
tioned some of the lines in the force 
diagram will have to be repeated, and 
the figure drawn will not be the recipro-
cal of the frame diagram, nevertheless 
it will give a correct construction of the 
quantities sought. 

If the frame diagram and the force 
diagram are both closed figures then 
they are mutually reciprocal. The 
properties of reciprocal figures were 
clearly set forth by Professor James 
Clerk Maxwell, in the Philosophical I 

represent a roof truss having an in-
clination of 30° to the horizon, of 
which the lower chord is a polygon in-
scribed in an arc of 60° of a circle. If 
the lower extremities of the truss abut 
against immovable walls a change of 
temperature causes an horizontal force 
between these lower joints, the effect of 
which upon the different pieces of the 
truss is to be constructed. No other 
weights or forces are now considered 
except those due to this horizontal force. 

Magazine, vol. 27, 1864; in which is 
stated, what is also evident from con-
siderations already adduced above, that 
mutually "reciprocal figures are me-
chanically reciprocal; tha t is, either may 
be taken as representing a system of 
points (i.e. joints) and the other as rep-
resenting the magnitudes of the forces 
acting between them." 

The subject has also been treated by 
Professor B. Cremona in a memoir en-
titled " Le figure reciproche nelle statica 
grafica." Milan, 1872. 

W e shall now give examples of this 
method of computing the forces acting 
between the joints of a frame, together 
with certain extensions by which we are 
enabled to treat moving loads, etc. 
The method is correctly called "Clerk 
Maxwell's Method." The notation em-
ployed, which is particularly suitable for 
the treatment of reciprocal diagrams, is 
due to R. H. Bow, C.E.; and is used by 
him in his work entiled "Economics of 
Construction." London, 1873. In this 
work will be found a very large number 
of frame and force diagrams drawn by 

i this method. 
Let the right hand part of Fig. 1 

r « 

Fig.1. 
R O O F T R U S S 

TEMPERATURE STRESSES 

This force is considered thus apart from 
all others because it is a force between 
two joints, and must enable us to obtain 
a pair of mutually reciprocal figures, 
such as weights and other applied forces 
seldom give. 

It is seen that the force between these 
joints might be supposed to be caused 
by a tie joining these points; and in 
general it may be stated that the dia-
gram of forces due to any cambering or 
stress induced in a frame by " k e y i n g " 

pieces, is mutually reciprocal to the 
frame diagram. 

Let any piece of the f rame be denoted 
by the letters in the spaces on each side 
of it; thus the pieces of the lower chord 
are qa, qc, qe, etc.; and those of the 
upper chord are rb, rd, etc., while ab, be, 
etc., are pieces of the bracing, and qr is 
the tie whose tension produces the stress 
under consideration. 

In the force diagram upon the left , let 
qr represent, on some assumed scale of 
tons to the inch, the tension in the piece 
or/ and complete the triangle aqr with 
its sides parallel to the pieces which con-
verge to the joint aqr; then must this 
triangle represent the forces which are 
in equilibrium at that joint. Next, with 
ar as one side, complete the triangle abr, 
by making its sides parallel to the pieces 
meeting at the joint of the same name:— 
its sides will represent the forces in 
equilibrium at that joint. In a similar 
manner we proceed from joint to joint, 
using the stresses already obtained in 
determining those at the successive 
joints. 

It is not possible to determine in 
general more than two unknown stresses 
in passing to a new joint, unless aided 
by some considerations of symmetry 
which may exist at such a joint as ghijq. 

Now from the left hand figure as a 
frame diagram, in which stresses are 
induced by causing tension in the tie qr, 
we can construct the right hand figure 
as a force diagram, but it must be noticed 
in that case that rb, rh, r f , rd are sepa-
rate and distinct pieces meeting at the 
joint r, although they all lie in the same 
right line, and that the same is t;rue 
along the line o i k m. 

One or two considerations of a general 
nature should be recalled in this con-
nection. 

A polygon encloses the space q ; in 
the reciprocal figure the lines parallel to 
its sides must all diverge from the point 
q : and if the upper ohord had been a 
polygon, instead of being of uniform 
slope, the lines parallel to its sides would 
diverge from the point r. As it is, ra, 
rb, rd, rm etc., form the rays of such a 
pencil, in which several rays are super-
posed one upon another. 

The determination of the question 
as to whether the stress in a given 
piece is tension or compression is 

effected by following the polygon for 
any joint completely around and noting 
whether the forces act toward or f rom 
the jo in t : e.g. at the point fghrf \ from 
following the diagrams of preceding 
joints in the manner stated, it will be 
found that f g is under tension, and acts 
from the joint; consequently, gh which 
acts toward the joint is under compres-
sion, as are also the two remaining pieces. 
Hence if the tension in the tie qr be re-
placed by an equal compression in apar t , 
tending to move the lower extremities 
of the roof from each other, the sign of 
every stress in the roof will be changed, 
but the numerical amount will remain 
unchanged, and no change will be made 
in the force diagram. 

I iOOF T R U S S . 

As another example let us take a roof 
truss represented in Fig. 2, acted upon 
by the equal weights / e , ed, dd', etc. 
Suppose that the effect of the wind 
against the right hand side of the truss 
is such as to cause a deviation of the 
force applied at the joint a'b'e'f of the 
amount indicated in the figure. Such a 
deviation may of course occur at several 
joints of a roof, but the treatment of 
the single joint at which the force of the 
wind is, in this case, principally concen-
trated, will sufficiently indicate the me-
thod to be employed in more intricate 
examples. 

Suppose that this pressure of the wind 
is sustained by the left abutment. The 
manner in which it is really sustained 
depends upon the method by which the 
roof is fixed to the walls. 

This horizontal pressure of the wind is 
not directly opposed to the thrust of the 
left abutment, consequently a couple is 
brought into play by these forces, whose 
effect is to transfer a part of the weight 
from the right to the left abutment. To 
compute the amount of this effect, draw 
an horizontal line through this joint (or 
in case the wind acts at several joints the 
horizontal line has to be drawn through 
the center of action of the wind pressure) 
and prolong it until it intersects the 
vertical at the right abutment at 3. Let 
14 be equal to the pressure of the wind. 
Join 13 and prolong 13 until i t intersects 
the vertical through 4 at 5, then is 45 
the amount by which the weight upon 
the left abutment is increased, and that 



upon the left abutment decreased. ' Fo r , 
let k. 14=12 . then k. 45 = 23. Now the 
couple due_to the wind = 2 3 - U but 
— 2 ' L 1 4 = 1 2 , 2 3 = / i - 12- 45, 2 3 . 
1 4 = 1 2 . 45. The right hand side of this 
last equation is the couple equivalent to 
the wind couple, having the arm 12 and 
a pair of equal and opposite forces repre-
sented by 45. Let 45 be added to half 
the weight of the symmetrical loading 
upon the roof to obtain the vertical re-
action of the left abutment , and sub-
tracted from the same quant i ty for the 
'vertical reaction of the right abutment. 

If any doubt occurs as to the manner 
in which the wind pressure is distributed 
between the abutments that distribution 
should be adopted which will cause the 
greatest stresses upon the pieces, or, as 
it may be stated in better terms, each 
piece should be proportioned to bear the 
greatest stress which any distribution of 
that pressure can cause. 

Let us suppose that a horizontal com-
pression is exerted upon the truss due to 
temperature or other cause, and repre-
sented by the width 2G of t he rectangle 
at the right abutment, then the reaction 
at that point is the resultant 92 of this 
compression and the vertical reaction; 
while at the left abutment the total hori-
zontal reaction 71 is the sum of this 
compression and the resistance called 
into action by the wind, g iving 81 as the 
resultant reaction at the left abutment . 

Now, using a scale of force twice that 
just employed, for the sake of greater 
convenience and accuracy, construct 
defyfe'd' the polygon of" the applied 
forces; and proceed to construct as in 
Fig. 1 the polygons of forces for each of 
the joints. The accuracy of the con-
struction will be tested by the closing 
of the figure at the completion of the 
process. 

The force diagram at the left is the 
reciprocal figure of the diagram of the 
frame and applied forces at the right, 
but the figure at the right is not the re-
ciprocal of that at the left since it is not 
a closed figure with at least three lines 
meeting at each intersection. 

B R I D G E T R U S S . 

As a further example take the bridge 
truss shown in Fig. 3, which is repre-
sented as of disproportionate depth in 
order to fit the diagram to the size of the 
page. The method employed is a simpli-
fication of that given by Mr. Charles II. 
r m t o n on page 385, vol. X V I I of this 
Magazine. 

Let us suppose the dead load of the 
bridge itself to consist of a series of 
equal weights w, applied at the upper 
joints x„ x„ etc., of the bridge. Let 
each of these weights when laid off to 
scale be represented by the length of 
Zy,„ t h e n t , i e horizontal lines xx and 
y o include between them ordinates 
which represent these weights. 

T E M P E R A T U R E , 
WIND AND WEIGHT STRESSES 

Let the live load consist of one or 
more locomotives which stand at the 
joints x, and «„ and a uniform train of 
cars which covers the remaining joints. 
Let the load at each joint due to the cars 
be represented by y"'y'=w', and the ex-
cess above this of the load at each of the 
joints covered by the locomotives be 
represented by y'y"=w", w + w' + io" 
=c1c5=2y" ,=c,cJ is the load at xx and at 
a;,, and to+w'=ctct=zy' is the load at xt 
and at each of the remaining joints. 

Draw y'o, y'o and zo, then is ztyt" 
= \ $ z y ' tha t part of the load at a, 
which is sustained at the left abutment, 
as appears f rom the principle of the 
lever. Again zy' is that part 

of the load at x7 sustained by the same 
abutment, and zy' is a similar 
part of load at x%. Let the sum of these 
weights sustained by the left abutment 
be obtained; it is c,c upon the lower 
figure. Upon cte lay off c,c4=w-\-to' 
+ c ,c t =w + w' - \w ' , c,c4=w + w', etc., 
equal to the loads applied at a,, x„ etc. 
We are now prepared to construct a dia-
gram of forces which shall give the 
stresses in the various pieces under this 
assumed loading. Before constructing 
such a diagram, we wish to show that 
the assumed position of the load causes 
greater stresses in the chords of the 
bridge than any other possible position. 
The demonstration is quoted nearly ver-



batim from Rankine's Applied Mechanics, 
and though not strictly applicable to the 
case in hand, since it refers to a uni-
formly distributed load, it is substan-
tially true for the loading supposed, 
when the excess of weight in the loco-
motives is not greater than occurs in 
practice. 

" F o r a given intensity of load per 
unit of l tngth, a uniform load over the 
whole span produces a greater moment 
of flexure at each cross section than any 
partial load." 

"Cal l the extremities of the span 1 
and 2, and any intermediate cross section 
3. Then for a uniform load, the moment 
of flexure at 3 is an upward moment, be-
ing equal to the upward moment of the 
supporting force at either 1 or 2 rela-
tively to 3, minus the downward moment 
of the uniform load between that end 
and 3. A partial load is produced by 
removing the uniform load from part of 
the span, situated either between 1 and 
3, between 2 and 3, or at both sides of 3. 
First, let the load be removed from any 
part of the span between 1 and 3. Then 
the downward moment, relatively to 3, 
Of the load between 2 and 3 is unaltered, 
and the upward moment, relatively to 3, 
of the supporting force at 2 is diminished 
in consequence of the diminution of the 
force; therefore the moment of flexure 
is diminished. A similar demonstration 
applies to the case in which the load is 
removed from a part of the span be-
tween 2 and 3; and the combined effect 
of those two operations takes place when 
the load is removed from portions of the 
span lying at both sides of 3; so that 
the removal of the load from any portion 
of the beam diminishes the moment of 
flexure at each point." 

The stress upon a chord multiplied by 
the height of the truss is equal to the 
moment of flexure; hence in a truss of 
uniform height the stresses upon the 
chords are proportional to the moments 
of flexure, and when one has its greatest 
value the other has also. 

The sides of the triangle ciebl repre-
sents the forces in equilibrium at the 
joint ciebi at the left abutment 1. The 
polygon c ^ i . a . c , represents the forces 
in equilibrium at the joint of the same 
name, i.e., at the joint xr The forces at 
the other joints are found in a similar 
manner. 

I t is unnecessary to complete the 
figure above e unless to check the 
process. The stresses obtained for the 
corresponding pieces in the right half of 
the truss would, upon completing the 
diagram, be found to be slightly less 
than those already determined because 
there are no locomotives at the right. 
The greatest stresses upon the pieces 
of the lower chord are ebB, eb„ etc., and 
on the upper chord are a8c8, a,c„ etc. 

To determine the greatest stress upon 
the pieces of the bracing (posts and ties) 
it is necessary to find what distribution 
of loading causes the greatest shearing 
force at each joint, since the shearing 
forces are held in equilibrium by the 
bracing. We again quote nearly word 
for word from Rankine's Applied Me-
chanics. 

" F o r a given intensity of load per 
unit of length, the greatest shearing 
force at any given cross-section in a 
span takes place when the longer of the 
two parts into which that section di-
vides the span is loaded, and the shorter 
unloaded." 

" Call the extremities of the span, as 
before, 1 and 2, and the given cross-
section 3; and let 13 be the ' longer part, 
and 23 the shorter part of the span. In 
the first place, let 13 be loaded and 23 
unloaded. Then the shearing force at 3 
is equal to the supporting force at 2, and 
consists of a tendency of 23 to slide up-
wards relatively to 13. The load may be 
altered either by putt ing weight between 
2 and 3, or by removing weight between 
1 and 3. If any weight be put between 
2 and 3, a force equal to part of that 
weight is added to the supporting force 
at 2, and, therefore, to the shearing force 
at 3; but at the same time a force equal 
to the whole of that weight is taken away 
from that shearing force; therefore the 
shearing force at 3 is diminished by this 
alteration of the load. If weight be re-
moved from the load between 1 and 2, 
the shearing force at 3 is diminished 
also, because of the diminution of the 
supporting force at 2. Therefore any 
alteration from that distribution of load 
in which the longer segment 13 is loaded, 
and the shorter segment 23 is unloaded, 
diminishes the shearing force at 3." 

The shearing force at any point is the 
resultant vertical force at that point, 
and can be computed by subtracting 

from the weight which rests upon either 
abutment the sum of all the weights be-
tween that point and the abutment, i.e., 
by taking the algebraic sum of all the 
external forces acting upon the truss 
from either extremity to the point in 
question; the reaction of the abutment 
is, of course, one of these external 
forces. 

The greatest stress upon the brace 
a tb, is that already found, while sc, is 
loaded with the live load. 

If the live load be moved to the right 
so that no live load rests upon xt, and 
the locomotives rest upon x7 and ar,j the 
pieces bta7 and ajb7 will sustain their 
greatest stress. To find the shear at x7 
in that case, we notice that the change 
in position of the live load has changed 
the reaction cte of the lef t abutment by 
the following amounts : the reaction has 
been diminished by the quant i ty yt"'yt" 
= H (w' + w'O» since the load at a, has 
been removed, and it has been increased 
by yt'yt"=\i*o", since x, is loaded more 
heavily than before, therefore the re-
action of the abutment has on the whole 
been decreased by the total amount fa 
(\5w' + 2w"). 

Now the shear at x7 is this reaction di-
minished by the load w a t x7. In order 
to construct it, draw yyH" parallel to 
y'o, ihcn yy'=-faw'. .'. Shear at 
=ect—w — fa (15w' + 2jo") = ec, — xxyv 
Lay off c x c 7 =x t y x , then the shear at 
x7 = ec,' = the greatest stress in the 
brace ¿>,a,; and b7 c , ' = the greatest stress 
in «,6,. 

Again, to find the greatest shear at xt 
when the live load has moved one panel 
further to the right, we have the equa-
tion: Shear at xt=ec,'—v>—{io' + w") 
+ i | « , ' = e c , ' — i d — 1 J ? ( 1 4 w ' + 2 w') = ec,' 
-x7y7. Lay off c , V = - c , y „ then the 
6hear at x7=ec7, which is the greatest 
stress in the piece b7at, while ¿»,'c,' is the 
greatest stress in aj)7. 

In similar manner lay off, ct'cA'=x7yt, 
cA'ct'=xtyt, etc., until the whole of the 
original reaction ec, of the abutment is 
exhausted, then are ec„ ec,', ec,', ec/ , etc., 
the successive shearing stresses at the 
end of the load, i.e. the greatest shearing 
stresses, and consequently these stresses 
are the greatest stresses on the succes-
sive vertical members of the bracing, 
while c,6„ c,'£,', c / i , ' , etc., are the great-

est stresses on the successive inclined 
members of the bracing. 

Had the greater load, such as the loco-
motives, extended over a largjtf number 
of panels, the line y t y j / t would have cut 
off a larger fraction of y'y°. Suppose, 
for instance, tha t the locomotives had 
covered the joints xtxa inclusive, then 
the line ?/,?/„ would have passed through 
y " , and beeft parallel to its present posi-
tion. In that case the ordinates xty0 
xiVi would have been successively sub-
tracted from the reaction of the abut-
ment due to a live load covering every 
joint, in order # to obtain the shearing 
forces, just as at present, until we arrive 
at xt, a f t e r which it would be necessary 
to subtract the ordinates xty", xtyt', etc. 
The counter braces are drawn with 
broken lines. Two counters are necessary 
on each side of the middle under the 
kind of loading which we have supposed. 
It is convenient, and avoids confusion in 
lettering the diagram to let atbt, for in-
stance, denote the principal or counter 
indifferently, as both are not subject to 
stress at the same time. 

The devices here used can be applied 
to a variety of cases in which the loading 
is not distributed in so simple a manner 
as in this case. 

IX GENKRAI, . 

This method permits the determina-
tion of the stresses in any frame when 

i we know the relative position of its 
: pieces and the applied forces, provided 
the disposition of the pieces is such as to 

I admit of a determinatian of the stresses. 
The determination of what the applied 

forces are in case of a continuous girder 
or arch is a matter of some complexity, 
depending upon the elasticity of the ma-
terials employed, and the method in its 
present form affords little assistance in 
finding them. 

Some authors have applied the method 
to find the stresses induced in the various 
pieces of a frame by a single force first 
applied at one joint, and then at another, 
and so on, and, finally, to find the 
stresses induced by the action of several 
simultaneous forces, by taking the alge-

! braic sum of their separate effects. This 
is theoretically correct but laborious in 
practice in ordinary cases. Usually, some 
supposition respecting the applied forces 
can be made from which the results of 



all the other suppositions which must be 
made, can be derived with small labor. 
The bridge truss treated was a remarka-
ble case i ( |point . 

W H E E L WITH T E N S I O N - R O D SPOKES. 

A very interesting example is found 
in the wheel represented in Fig. 4, in 
which the spokes are tension rods, and 

the rim is under compression. Let the 
greatest weight which the wheel ever sus-
tains be applied at the hub of the wheel 
on the left, and let this weight be rep-
resented by the force aa' on the right, 
which is also equal to the reaction of 
the point of support upon which the 
wheel stands; hence aa' represents the 
force acting between two joints of this 

frame. The same effect would be caused 
upon the other members of the frame by 
" k e y i n g " the rod aa' sufficiently to 
cause this force to act between the hub 
and the lowest joint. 

I t should be noticed in passing, that 
the weights of the parts of the wheel it-
self are not here considered; their effect 
will be considered in Fig. 5. Also, the 
construction is based upon the supposi-
tion that there is a flexible joint at the 
extremity of each spoke. This is not an 
incorrect supposition when the flexibility 
of the rim is considerable compared with 
the extensibility of the spokes, a condi-
tion which is fulfilled in practice. 

A similar statement holds in the case 
of the roof truss with continuous rafters, 
or a bridge truss with a continuous upper 
chord. The flexibility of the raf ters or 
the upper chord is sufficiently great in 
comparison with the extensibility of the 
bracing, to render the stresses practically 
the same as if pin joints existed at the 
extremities of the braces. 

Furthermore, the extremities of the 
spokes are supposed to be joined by 
straight pieces, since the forces be-

tween the joints of the rim act in those 
directions. Such forces will cause small 
bending moments in the arcs of the rim 
joining the extremities of the spokes. 
Each arc of the rim is an arch subjected 
to a force along its chord or span, and it 
can be treated by the method applicable 
to %rches. This discussion is unimport-
a n t in the present case and will be 
omitted. 

Upon completing the force polygon in 
the manner previously described, it is 
found that the stress on every spoke is 
the same in amount, and is represented 
by a side of the regular polygon abed, 
etc. upon the lef t , while the compression 
of the pieces of the rim are represented 
by the radii oa ob, etc. 

As previously explained these dia-
grams are mutually reciprocal, and it 
happens in this case that they are also 
similar figures. 

W e then conclude that in designing 
such a wheel each spoke ought to be 
proportioned to sustain the total load, 
and that the maker should key the 
spokes until each spoke sustains a stress 
at least equal to tha t load, Then in no 

position of the wheel can any spoke be-
come loose. The load here spoken of 
includes, of course, the effect of the 
most severe blow to which the wheel 
may be subjected while in motion. 

WATER W H E E L WITH TENSION-ROD SPOKES. 

The effect of a load distributed uni-
formly around the circumference of such 
a wheel as that just treated is repre-
sented in Fig. 5. Should it be desirable 
to compute the effect of both sets of 
forces upon the same wheel, it will be 
sufficient to take the sura of the separate 
effects upon each piece for the total 
effect upon that piece, though it is 
perfectly possible to construct both at 
once. 

We shall suppose a uniform distribu-
tion of the loading along the circumfer-
ence in the case of the Water Wheel, 
because in wheels of this kind such is 
practically the case so far as the spokes 
are concerned, since the power is trans-
mitted, not through them to the axis, 
but, instead, to a cog wheel situated near 
the center of gravity of the " water arc." 
This arrangement so diminishes the 
necessary weight of the wheel, and the 
consequent friction of the gudgeons, as 
to render its adoption very desirable. 

The discussion of the stresses appears 
however, to have l/een heretofore .erro-
neously made.* 

Let the weight pp', at the highest 
joint of the wheel, be sustained by the 
rim alone, since the spoke aa' cannot 
assist in sustaining pp', as aa' is suited 
to resist tension only. Conceive, for the 
moment, tha t two equal and opposite 
horizontal forces are introduced at the 
highest joint such as the two parts of 
the rim exert against each other, then 
%pp' =pq=p'q' being sustained by each 
of the pieces ap, a'p' respectively we 
have apq and a'p'q' as the triangles 
which together represent the forces at 
the highest joint. The force aa' on the 
right is the upward force at the axis, 
equal and opposed to the resultant of 
the total load upon the wheel, and the 
apparent peculiarity of the diagram is 
due to this;—the direction of the reaction 
or sustaining force of the axis passes 
through the highest joint of the wheel 
and yet it is not a force acting between 
those joints and could not be replaced 
by keying the tie connecting those joints. 
In other particulars the force diagram is 

• " A Manual of the Steam Engine, etc.," by W. 1. M 
Rankine. Page 18*. Tth Ed. 



all the other suppositions which must be 
made, can be derived with small labor. 
The bridge truss treated was a remarka-
ble case i ( |point . 

W H E E L WITH T E N S I O N - R O D SPOKES. 

A very interesting example is found 
in the wheel represented in Fig. 4, in 
which the spokes are tension rods, and 

the rim is under compression. Let the 
greatest weight which the wheel ever sus-
tains be applied at the hub of the wheel 
on the left, and let this weight be rep-
resented by the force aa' on the right, 
which is also equal to the reaction of 
the pokit of support upon which the 
wheel stands; hence aa' represents the 
force acting between two joints of this 

frame. The same effect would be caused 
upon the other members of the frame by 
" k e y i n g " the rod aa' sufficiently to 
cause this force to act between the hub 
and the lowest joint. 

I t should be noticed in passing, that 
the weights of the parts of the wheel it-
self are not here considered; their effect 
will be considered in Fig. 5. Also, the 
construction is based upon the supposi-
tion that there is a flexible joint at the 
extremity of each spoke. This is not an 
incorrect supposition when the flexibility 
of the rim is considerable compared with 
the extensibility of the spokes, a condi-
tion which is fulfilled in practice. 

A similar statement holds in the case 
of the roof truss with continuous rafters, 
or a bridge truss with a continuous upper 
chord. The flexibility of the rafters or 
the upper chord is sufficiently great in 
comparison with the extensibility of the 
bracing, to render the stresses practically 
the same as if pin joints existed at the 
extremities of the braces. 

Furthermore, the extremities of the 
spokes are supposed to be joined by 
straight pieces, since the forces be-

tween the joints of the rim act in those 
directions. Such forces will cause small 
bending moments in the arcs of the rim 
joining the extremities of the spokes. 
Each arc of the rim is an arch subjected 
to a force along its chord or span, and it 
can be treated by the method applicable 
to %rches. This discussion is unimport-
a n t in the present case and will be 
omitted. 

Upon completing the force polygon in 
the manner previously described, it is 
found that the stress on every spoke is 
the same in amount, and is represented 
by a side of the regular polygon abed, 
etc. upon the lef t , while the compression 
of the pieces of the rim are represented 
by the radii oa ob, etc. 

As previously explained these dia-
grams are mutually reciprocal, and it 
happens in this case that they are also 
similar figures. 

W e then conclude that in designing 
such a wheel each spoke ought to be 
proportioned to sustain the total load, 
and that the maker should key the 
spokes until each spoke sustains a stress 
at least equal to tha t load, Then in no 

position of the wheel can any spoke be-
come loose. The load here spoken of 
includes, of course, the effect of the 
most severe blow to which the wheel 
may be subjected while in motion. 

WATER W H E E L WITH TENSION-ROD SPOKES. 

The effect of a load distributed uni-
formly around the circumference of such 
a wheel as that just treated is repre-
sented in Fig. 5. Should it be desirable 
to compute the effect of both sets of 
forces upon the same wheel, it will be 
sufficient to take the sura of the separate 
effects upon each piece for the total 
effect upon that piece, though it is 
perfectly possible to construct both at 
once. 

We shall suppose a uniform distribu-
tion of the loading along the circumfer-
ence in the case of the Water Wheel, 
because in wheels of this kind such is 
practically the case so far as the spokes 
are concerned, since the power is trans-
mitted, not through them to the axis, 
but, instead, to a cog wheel situated near 
the center of gravity of the " water arc." 
This arrangement so diminishes the 
necessary weight of the wheel, and the 
consequent friction of the gudgeons, as 
to render its adoption very desirable. 

The discussion of the stresses appears 
however, to have l/een heretofore .erro-
neously made.* 

Let the weight pp', at the highest 
joint of the wheel, be sustained by the 
rim alone, since the spoke aa' cannot 
assist in sustaining pp', as aa' is suited 
to resist tension only. Conceive, for the 
moment, tha t two equal and opposite 
horizontal forces are introduced at the 
highest joint such as the two parts of 
the rim exert against each other, then 
%pp' =pq=p'q' being sustained by each 
of the pieces ap, a'p' respectively we 
have apq and a'p'q' as the triangles 
which together represent the forces at 
the highest joint. The force aa' on the 
right is the upward force at the axis, 
equal and opposed to the resultant of 
the total load upon the wheel, and the 
apparent peculiarity of the diagram is 
due to this;—the direction of the reaction 
or sustaining force of the axis passes 
through the highest joint of the wheel 
and yet it is not a force acting between 
those joints and could not be replaced 
by keying the tie connecting those joints. 
In other particulars the force diagram is 

• " A Manual of the Steam Engine, etc.," by W. 1. M 
Rankine. Page 18*. 7th Ed. 



constructed as previously described and 
is sufficiently explained by the lettering. 
Should the spoke aa' have an initial ten-
sion greater than pp', then there is a 
residual tension due to the difference of 
those quantities whose effect must be 
found as in Fig. 4. 

Should the wheel revolve with so grea t 
a velocity tha t the centr ifugal force 
must be considered, its effect will be to 
increase the tension on each of the spokes 
by the same amount,—the amount due 
to the deviating force of the mass sup-
posed to be concentrated at the extremity 
of each spoke. The compression of t,he 
rim may be decreased by the ceutr i fugal 
force, bu t as this is a temporary relief, 
occurring only during the motion," it does 
not diminish the maximum compression 
to which the rim will be subjected. 

W e conclude then, tha t everv spoke 
must be proportioned to endure a ten-
sion as great as hh' f rom the loading 
alone; and tha t if other forces, due to 
centr ifugal force or to keying, are to act 
they must be provided for in addition. 
Furthermore, we see tha t the rim must 
be proportioned to bear a compression 
as great as hi, due to the loading alone, 
and tha t the centrifugal force will not 
increase this, bu t any keying of the 
spokes beyond tha t sufficient to produce 
an initial tension on cach spoke as great i 
as pp' must be provided for in addi-
tion. 

The diagram could have been con-
structed with the same facility in case 
the applied weights had been supposed 
unequal. 

It can be readily shown tha t the dif-
ferential equation of the curve circum-
scribing the polygon abed, etc. of F ig . 5 
is 0 

dx —i/dx 
y+x-- + c tan. I 

dx 
dy 

dx\ 
d y ) = Q \dy 

which equation is not readily integrable. 
When, however, the number of spokes is 
indefinitely increased, it appears from 
simple geometrical considerations t ha t 
this curve becomes a cycloid having i ts 
cusps at q and q'. 

A S S U M E D F R A M I N G . 

Thus far, we have treated the effect 
of known external forces upon a given 
form of framing, and it is evident f rom 
the previous discussions and the illustra-

tive examples t ha t any such problem 
which is of a determinate nature, can be 
readily solved by this method. But in 
case the problem under discussion has 
reference to the relations of forces among 
themselves, it is necessary to assume 
tha t tto; forces are applied to a frame or 
other body, in order to obtain the re-
quired relationship. Certain general 
forms of assumed f raming have proper-
ties which are of material assistance in 
t reat ing such problems, and this is true 
to such an extent tha t even though the 
form of framing to which the forces are 
applied is given, it is still advantageous 
to assume, for the t ime being, one of the 
forms having properties not found in 
ordinary framing. The special f raming 
which has been heretofore assumed for 
such purposes is the Equilibrium Polygon, 
whose various properties will be treated 
in order. W e now propose another form 
of framing, which we have ventured to 
call the F rame Pencil , with equally 
advantageous properties which will also 
be treated in due order. 

I t may be mentioned here, that the 
particular case of parallel forces is that 
most frequently met with in practice. In 
case of parallel forces the properties of 
the equilibrium polygon and f rame pen-
cil are more numerous and important 
than those belonging to the general case 
alone. We shall first t reat the general 
case, and af terwards derive the additional 
properties belonging to parallel forces. 

T H E EQUILIBRIUM POLYGON F O R A N T 
FORCES I N O N E P L A N E . 

Let ab, be, cd, de Fig. 6 be the dia-
gram of any forces lying in the plane of 
the paper, and abede their force polygon, 
then, as previously shown, ae the closing 
side of the polygon of the applied forces 
represents the resultant of the given 
forces in amount and direction. Assume 
any point p as a pole, and draw the 
force pencilp—abede. The object in view 
in so doing, is to use this force pencil 
and polygon of the applied forces 
together in order to determine a figure 
of which it is the reciprocal. 

From any convenient point as 2 draw 
the side ap parallel to the ray ap until 
it intersects the line of action of the force 
ab, and from tha t intersection draw the 
side bp parallel to the ray bp, etc., etc.; 
then the polygon p will have its sides 

E Q U I L I B R I U M P O L Y G O N . 

Direction and 

Position. 

R E C I P R O C A L . F I G U R E S . 

Force Diagram, abede. Force Polygon. 
Equilibrium Polygon, ap, bp, cp, dp, ep, Force Penal. 
Equilibrium Polygon, ap', bp', cp', dp', ep', Force Pencil. 
Closing Line, 23 II pq, Closing Ray. 
Resultant Force, ae, Resultant torce. 

Direction and 

Magnitude. 

parallel respectively to the rays of the 
pencil p. 

The polygon p and the given forces 
ab, be, etc, then form a force and f r a m e 
diagram to which the pencil p—abede is 
reciprocal, and of which it is the force 
diagram. I t is seen tha t no internal 
bracing is needed in the polygon p, and 
hence i t is called an equilibrium ( f rame) 
polygon: i t is the form which a fun icu la r 
polygon, catenary, or equil ibrated arch, 
would assume if occupying this posi t ion 
and acted upon by the given forces . 

As represented in Fig . 6 t he sides of 
the polygon p are all in compression so 
tha t p represents an ideal arch. If t he 
line 23 be drawn cut t ing the sides ap, ep 
so tha t it be considered to be t he span of 
the arch having the points of suppor t 2 
and 3, then this arch exerts a t h r u s t in 
the direction 23 which may b e borne 
either by a t ie 23 or by fixed a b u t m e n t s 
2 and 3 : the force in e i ther case is the 

same and is represented by pq || 23. I t 
is usual to call 23 a closing line of the 
polygon p. The point q divides the 
resultant ae into two par ts such tha t 
qapq and epqe are triangles whose sides 
represent forces in equilibrium, i.e., the 
forces at the points 2 and 3; hence, qa 
and eq are the par t s of the total resultant 
which would be applied a t 2 and 3 
respectively. 

This method is f requent ly employed 
to find the forces act ing at the abutments 
of a br idge or roof truss such as t ha t in 
Fig. 2. Bu t it appears t ha t it has of ten 
been erroneously employed. I t must be 
first ascertained whether the reaction a t 
the abutments is really in the direction 
ae f o r the forces considered. I t may 
often happen far otherwise. If the 
surfaces upon which the truss rests with-
out friction are perpendicular to ae, then 
this assumption is probably correct ; as, 
for instance, when one end is mounted 



on rollers devoid of friction, running 
on a plate perpendicular to ae. But in 
cases of wind pressure against 

taken upon pq. Now draw the force 
pencil p'—abode and the corresponding 

a roof I equilibrium polygon for the same forces 
tms> the assumption is believed to be in ab, be, etc. ' Tliis equilibrium polygon 
t h f f l y t ; . n e S f q : i ! G i n n 0 r r e C t I ° d e e d > has all its pieces in tension except p'c 
£ 1C ' ) ?v r o l l f S a t e n d o f a I t is to be noticed that the forces are 
S L / T t h

f
O U S h \ ' cause a employed in the same order as in the 

material deviation from the determina- previous construction, because that is the tion founded on this assumption. It is 
to be noticed that any point whatever on 
pq (or pq prolonged) might be joined to 
a and e for the purpose of finding the re-
actions of the abutments. Call such a 
point x (not drawn), then ax and ex might 
be taken as two forces which are exerted 
at two and 3 by the given system. It ap-

order in the polygon of the applied 
forces: but the order of the forces in 
the polygon of the applied forces is, at 
the commencement, a matter of indiffer-
ence, for the construction did not depend 
upon any particular succession of the 
forces. 

As previously shown, the intersection • Cj J -v « J ' 
r , c n t i 0 n • 0 t h i s o f a ^ w i t h a pomt Of the result-

f ^ l l ^ î j f } ^ L d ^ r T a t l 0 n ? f a » V n d t h e l i n * joining this intersection 
" * ' with tilii f>nrracn<M.fi;n» ¡„f^-r.™»!,... the reactions is involved in a recently 

published article upon this subject.* W e 
shall return to the subject again while 
treating parallel forces and shall extend 
the method given in connection with 

intersection with the corresponding 
above is parallel to ae. 

Again, prolong the corresponding sides 
of the two equilibrium polygons until 
they intersect at 1234, these points fall 

such L wi t l ! , assumptions, upon one line parallel to pp>. For, sup-
stresses w h i h T 6 raax'mUm P ° S e t h e f o r c e s w h i c h ^eTpp l i ed t'o the 

PrnTonl S , » ' Ca", p r° d ,U C e- l o w e r P ° ' ySonp ' to be reversed in direc-
l a o n v unti 1 thev rnp T ^ * < 4 t h e t i ° " ' t h e " t h e ^ » P P ^ to the poly-
y j ™ gons p and p' must together be in equifi-

K«»« i« »« • <> •• . 1 < u . — — 1 1 _ ? _ _ 3 j * 
P O . . 
that if a force equal to the resultant ae be 
applied at this intersection of ap and ep brium; and the only bracing needed is a 
nrnloncwd then tl,Q • l -T P i e c e 2 3 " PP'> s i n c e the upper forces pro-
5StS^^JSSS^SS^Sl ^ lower 
u d a { 2 ! f o r c e s a tension yp ' while the parts aq 
and 3 by the resultant. But as these are and qe of the resultant which are applied 
the stresses actually produced by the 
forces, and as the resultant should cause 
the same effects at 2 and 3 as the forces 

a t 2 and 3 are in equilibrium. The same 
result can be shown to hold for each of the 
forces separately; e.g. the opposite forces 

follows that the intersection of ap and ab may be considered as if aonlied at 

S f r r ï S i I ¡ ^ » ^ a diagram 
showing it in its true 
direction. 

resultant eral is apbp', hence 12\\p>p'. Hence 
position and 1234 is a straight line. The intersection 

of pc&nd p'c does not fall within the This is in reality a geometric relation- limits of the figure 
nrnvo«! from r ,a n m a t l . i n ;„ ship and can be proved from geometric 

considerations alone. It is sufficient for 
our purposes 
lished its truth from the above mentioned 

I t is to be noticed that the proposi-

however, ,o have e ^ l j J ™ » t 
corresponding sides of these equili-

nature and is susceptible of a purely 
geometric proof. 

static considerations which may be re- hr inm' n n i , , ^ . r 
garded as mechanical proof of the ™ ^ I 8 ? " " - " o n « . ,of a . g^me t r i c 
geometric proposition. 

The pole p was taken at random : let 
any other point p' be taken as a pole. T I I E F R A M E P E N C I L F O R A N Y F O R C E S I N 
To avoid multiplying lines p' has been O N E P L A N E . 

~~I „ .. ~ ~ I ^ t ab> beJ c d, de in Fig. 7 represent a 
Se« naper En^ne^re'Clnb of the System of forces, of whiSl abcde is the 

J force polygon. Choose any single point 
upon the line of action of each of these 

Northwest. ApplicaUons of the Equilibrinm Pol 
to determine the Reactions at the Supports of Jfi 
Treses . By James R. Wille«, Architect. Chingo. 

F R A M E P E N C I L S . 

Direction and 

Petition. 

R E C I P R O C A L F I G U R E S . 

Forte Diagram, abc de, Force Polygon. 
Frame Pencil, a' b' c'd' e, Equilibrating Polygon. 
Frame Pencil, a" b" c" d" e", Equilibrating Polygon. 
Frame Polygon, bb', cc', dd', ee', Force Lines. 
Resultant Force, a e, Resultant Force, 
Resultant Ray, a' e. Resultant Side. 

Direction and 

Magnitude, 

forces, and join these points to any as-1 
sumed vertex v' by the rays of the frame | 
pencil a'b'e'd'e'. 'Also join the success-
ive points chosen by the lines bb', cc', dd' 
which form sides of what we shall call 
the frame polygon. Now consider the 
given forces to be borne by the frame 
pencil and frame polygon as a system of 
bracing, which system exerts a force at 
the vertex v' in some direction not yet 
known, and also exerts a force along 
some assumed piece ee', which may be 
regarded as forming a par t of the frame 
polygon. The stresses upon the ravs of 
the frame pencil will be represented by 
the sides of ab'c'd'e' which we shall call 
the equilibrating (force) polygon; while 
the stresses in the f rame polygon are 
given by the force lines bb', cc', etc. ( It a 
resultant ray a'e' be drawn from v par-
allel to the resultant side ae of the 
equilibrating polygon it will intersect ee 
at a point of the resultant of the system 

of forces; for that is a point at which if 
the resultant be applied it will cause the 
same stresses along the pieces a'e' and ee! 
which support it as do the forces them-
selves. 

If the point e' in the force polygon be 
moved along e'd', the locus of the inter-
section of the corresponding positions of 
the resultant ray a'e' and the last side ee! 
will be the resultant ae. I t would have 
been unnecessary to commence the equi-
librating polygon at a had the direction 
of aa' been known. Having obtained 
the direction of aa' as shown at 8, the 
equilibrating polygon could be drawn 
by commencing at any point of aa, || 
aa'. 

In cases like that in the Fig., where 
there is no reason for choosing the points 
which determine the sides of the frame 
polygon otherwise, it is simpler to make 
the" frame polygon a straight line, which 
may in that case be called the frame 



line. Then the force lines are parallel 
to each other and to aa' also. This is a 
practical simplification of the general 
case of much convenience. 

It should be noticed here that the 
equilibrium polygon, as well as the 
straight line, is one case of the f rame 
polygon. The interesting geometric re-
lationships to be found by constructing 
the frame and equilibrium polygons as 
coincident must be here omitted. 

Suppose that it is desired to find the 
point q which divides the resultant into 
two parts, which would be applied in 
the direction of the resultant at two 
such points as 8 and 9: draw «6 || w'8 
and t'6 || t>'9 and then through 6 draw 
qq' || 89. This may be regarded as the 
same geometric proposition, which was 
proved when it was shown that the locus 
of the intersection of the two outside 
lines of the equilibrium polygons (recip-
rocal to a given force pencil) is the re-
sultant, and is parallel to the closing side 
of the polygon of the applied forces. 
The proposition now is, that the locus of 
the intersection of the two outside lines 
of the equilibrating polygon (reciprocal 
to a given frame pencil) is the resolving 
line, and is parallel to the abutment 
line: for these two statements are geo-
metrically equivalent. 

Assume a different vertex v', and 
draw' the frame pencil and its correspond-
ing equilibrating polygon a'b'c'4'e. If 
«, 5 and e 5 be drawn parallel to v' 8 
and v' 9 respectively their intersection 
is upon qq' as before proven. 

Again, the corresponding sides of these 
two equilibrating polygons intersect at 
1 2 3 4 upon a line parallel to v'v", for 
this is the same geometric proposition 
respecting two vertices and their equili-
brating polygons which was previously 
proved respecting two poles and their 
equilibrium polygons. 

It would be interesting to' t race the 
geometric relations involved in different 
but related frame polygons, as for exam-
ple, those whose corresponding sides in-
tersect upon the same straight line, but 
as our present object is to set forth the 
essentials of the method, a consideration 
of these matters is omitted. Enough 
has been proven, however, to show tluit 
we have in the frame pencil an inde-
pendent method equally general and 

fruitful with that of the equilibrium 
polygon. 

E Q U I L I B R I U M P O L Y G O N F O R P A R A L L E L 
F O R C E S . 

LET the system of parallel forces in 
one plane be four in number as repre-
sented in Fig 8, viz : to,«:,, w,w3, etc., 
acting in the verticals 2 3 4 5 of the 
force diagram on the left. Let the 
points of support be in the verticals 1 
and 6. 

The force polygon at the right re-
duces, in case of vertical forces, to a ver-
tical line ww. Assume any arbitrary 
point p as pole of this force polygon, (or 
weight line, as it is often designated) 
and, parallel to the rays of the force 
pencil at p, draw the sides of the equili-
brium polygon ee, in the manner pre-
viously described. Draw the closing 
line kk of this polygon ee, and parallel 
to it draw the closing ray pq\ then, as 
previously shown,^ .d iv ides the result-
ant wtwt at q into two parts which are 
the reactions of the supports. The 
position of the resultant is in the vertical 
mm which passes through the inter-
section of the first and last sides of the 
polygon ee, as was also previously 
shown. 

Designate the horizontal distance from 
p to the weight line by the letter H. It 
happens in Fig. 8 that pw= H, but in 
any case the pole distance II is the hori-
zontal component of the force pq acting 
along the closing line. 

Now by similarity of triangles 
kiet(=hA) • Ke, • '-PwX • 

the moment of flexure, or bending mo-
ment at the vertical 2, which would be 
caused in a simple straight beam or gir-
der under the action of the four given 
forces and resting upon supporfe in the 
verticals 1 and 6. 

Again, from similarity of triangles, 
h A (=*,/,) : k j t : : H: qwt 
h A ( = « , / , ) : e j \ : : I I : 

••• X ( K f - e J \ ) = I L k 3 e s 

the moment of flexure of the simple gir-
der at the vertical 3. 

Similarly it can be shown in general 
that 

H.ke=M, 

E Q U I L I B R I U M P O L Y G O N . 

i.e. that the moment of flexure at any 
vertical whatever (be it one of the 
verticals 2 3 4, etc., or not) is equal 
to the product of the assumed pole 
distance H multiplied by the vertical 
ordinate ke included between the equili-
brium polygon ee and the closing line 
kk at that vertical. 

From this it is evident that the 
equilibrium polygon is a moment curve, 
i.e. its vertical ordinate at any point 
of the span is proportional to the 
bending moment at that point of 
a girder sustaining the given weights 
and supported by simply resting without 
constraint upon piers at its extremities. 

From this demonstration it appears 
that II.eufs=tv.WJ.AJA, is the moment of 
the force with respect to the verti-
cal 3; and similarly II.mtm7=wtro7.e7mt 
is the moment of the same force with 
respect to the vertical through the cen-
ter of gravity. Also, H . y y ^ w ^ ^ h j i ^ 
is the moment of the same force with 
respect to the vertical 6. 

Similarly mjn^ is proportional to the 
moment of all forces at the right, and 
mzm i to all the forces left of the center 
of gravity, but Wi,»z3+ = 0 , as should 
be the case at the center of gravity, 
about which the moment vanishes. 
From these considerations it appears 
that the segments mm of the resultant 

are proportional to the bending moments 
of a girder supporting the given weights 
and resting without constraint upon a 
single support at their center of gravity. 

Let us move the pole to a new position 
p' having the same pole distance Hasp, 
and in such a position that the new clos-
ing line will be horizontal, i.e. p'q must 
be horizontal. 

One object in doing this is to furnish 
a sufficient test of the correctness of the 
drawing in a manner which will be im-
mediately explained; and another is to 
transfer the moment curve to a new 
position cc such that its ordinates may 
be measured from an assumed horizontal 
position hh of the girder to which the 
forces are applied, so that the girder 
itself forms the glosing line. 

The polygon cc must have its ordinates 
he equal to the corresponding ordinates 
ke, for 

M= H.ke=II. he 
Also the segments of the line mm are 

equal to the corresponding segments of 
the line tin for similar reasons. 

Again, as has been previously shown, 
the corresponding sides (and diagonals 
as well) of the polygons ee and cc inter-
sect upon the line yy || pp'. 

These equalities and intersections fur-
nish a complete test of the correctness of 

I the entire construction. 



F R A M E P E N C I L . 

Fig. 9 

F R A M E P E N C I L F O R P A R A L L E L F O R C E S . 

Let the same four parallel forces in 
one plane which were treated in Fig. 8 
be also treated in Fig. 9, and let them 
be applied at 2, 3, 4, 5 to a horizontal 
girder resting upon supports at 1 and 6. 

Use 16 as the frame line and choose 
any vertex v at pleasure from which to 
draw the frame pencil dd. Draw the 
force lines wd parallel to the horizontal 
frame line 16, and then draw the equili-
brating polygon dd with'its sides paral-
lel to the rays of the frame pencil dd. 

As has been previously shown, if a re-
sultant ray vo of the frame pencil dd be 
drawn from v, as represented in Fig . 9, 
parallel to the closing side uu of the 
equilibrating polygon, this ray intersects 
16 at the point o where the resultant of 
the four given forces cuts 16. 

Furthermore, the lines wir1 and d6r6 
parallel to the abutment rays vl and «6 
of the frame pencil intersect on rr the 
resolving line, which determines the 
point of division q of the reactions of 
the two supports, as was before shown. 

Let the vertical distance between the 
vertex and the frame line be denoted by 
V. 

In Fig. 9 it happens that v6= V. 
If the frame polygon is not straight, or 
being straight is inclined to the horizon, 

F h a s different values at the different 
joints of the frame polygon: in every 
case V is the vertical distance of the 
joint under consideration above or below 
the vertex. I t will be found in the se-
quel that this possible variation of V 
may in certain constructions be of con-
siderable use. 

By similarity of triangles we have 

1 2 : d 6 : : : w x q 

V.rlr2=wlq.l2=M„ 
the bending moment of the girder at the 
point 2. 

Draw a line through wx parallel to u3; 
this line by chance coincides so nearly 
with V)1s1 that we will consider that it is 
the line required, though i t was drawn 
for another purpose. Again, by simi-
larity of triangles 

13 : v6 : : r,s, : wxq 
23 : : : dig(=r2s1) : 

=WjQ. 1 3 — î 0 j î 0 a . 2 3 = M % 

the bending moment at 3. 
•Similarly it may be shown that 

V. rxrn=Mn, 
i.e. that the moment of flexure at any 
point of application of a force to the 
girder is the product of the assumed 

vertical distance V multiplied by the 
corresponding segment rr of the resolv-
ing line. 

The moment of flexure at any point 
of the girder may be found by drawing 
a line tangent to the equilibrating poly-
gon (or curve) parallel to a ray of the 
frame pencil at that point, the intercept 
rxr of this tangent is such that V.rxr is 
the moment required. 

Also by similarity of triangles 
o2 : v6 : : u^d, : wxw„ 

V.u„d7=wxw7.o2 
o2(=o3 + 32) : v6 : : u3l : %o1ws 

32 : u6 : : dsl : w7w% 

v V(uJ-dJ)=VM3ds 

=to1wi.o2 + w1w3.o3, 
i.e. the horizontal abscissas ud between 
the equilibrating polygon dd and its 
closing side uu multiplied by the verti-
cal distance V are the algebraic sum of 
the moments of the forces about their 
center of gravity. The moment of any 
single force about the center of gravity 
being the difference between two success-
ive algebraic sums may be found thus: 
draw d j || uu, then is V.dJ the moment 
of wxwt about the center of gravity, as 
may be also proved by similarity of tri-
angles. 
. Again by proportions derived from 

similar triangles, precisely like those 
already employed, it appears that 

V . w t d t = w x w t . 2 6 

is the moment of the force wxw7 about 
the point 6. And similarly it may be 
shown that 

V.w^w^Q + w^M 
is the moment of ioxw„ and tt>3w3 about 6. 

Furthermore, as this point 6 was not 
specially related to the points of applica-
tion 1 2 3 4, we have thus proved the 
following property of the equilibrating 
polygon: if a pseudo resultant ray of 
the frame pencil be drawn to any point 
of the frame line, then the horizontal 
abscissas between the equilibrating poly-
gon and a side of it parallel to that ray, 
(which may be called a pseudo closing 
side), are proportional to the sum total 
of the moments about that poiut of those 
forces which are found between that 

. abscissa and the end of the weight line 
. from which this pseudo side was drawn. 

The difference between two successive 

sum totals being the moment of a single 
force, a parallel to the pseudo side en-
ables us to obtain at once the moment of 
any force about the point, e.g. draw di' 
I w o . r . V . d y is the moment of w w 

about 6. 4 6 

Now move the vertex to a new posi-
tion v in the same vertical with o : th i s 
will cause the closing side of the equili-
brating polygon (parallel to v'o) to coin-
cide with the weight line. The new 
equilibrating polygon bb has its sides 
parallel to the rays of the frame pencil 
whose vertex is at v'. If y {s un_ 
changed the abscissas and segments of 
the resolving line are unchanged, and vv' 
is horizontal. Also p v v > c o n t a i n s 
the intersections of corresponding sides 
and diagonals of the equilibrating poly-
gon. lhese statements are geometri-
cally equivalent to those made and 
proved in connection with the equili-
brium polygon and force pencil. 

. In Figs. 8 and 9 we have taken H= V 
hence the following equations will be 
found to hold, 

k-A=r{rz, ktet=rxrt, etc. 
mxm3=u3d3, mxm-=u^, etc; 

y.y,=«v*„ y ,y .=M, y<yA etc. 
etc., yjc,=d,i', etc. 

By the use of etc. we refer to the more 
general case of many forces. From 
these equations the nature of the rela-
tionship existing between the force and 
frame pencils and their equilibrium and 
equilibrating polygons becomes clear. 
Let us state it in words. 

The height of the vertex (a vertical 
distance), and the pole distance (a hori-
zontal force) stand as the type of the 
reciprocity or correspondence to be 
found between the various parts of the 
figures. 

The ordinates of the equilibrium poly-
gon (vertical distances) correspond to the 
segments of the resolving line (horizontal 
forces), each of these being proportional 
to the bending moments of a simple 
girder sustaining the given weights, and 
resting without constraint upon supports 
at its two extremities. 

The segments of the resultant line 
(vertical distances) correspond to the 
abscissas of the equilibrating polygon 
(horizontal forces) each of these beino-
proportional to the bending moments of 



a simple girder sustaining the given 
weights and resting without constraint 
upon a support at their center of gravity. 

The segments of any pseudo resultant 
line, parallel to the resultant, which are 
cut off by the sides of the equilibrium 
polygon, are proportional to the bending 
moments of a girder supporting the 
given weights and rigidly built in and 
supported at the point where the line in-
tersects the girder; to these segments 
correspond the abscissas between the 
equilibrating polygon and a pseudo side 
of it parallel to the pseudo resultant ray. 

The two different kinds of support 
which we h ^ e supposed, viz. support 
without consWaint and support with con-
straint, can be treated in a somewhat 
more general manner, as appears when 
we consider that at any point of support 
there may be, besides the reaction of the 
support, a bending moment, such as 
would be induced, for instance, when 
the span in question forms part of a con-
tinuous girder, or when it is fixed at the 
support in a particular direction. In 
such a case the closing line of the equili-
brium polygon is said to be moved to a 
new position. I t seems better to call it 
in its new position a pseudo closing line. 
The ordinates between the pseudo closing 
line and the equilibrium polygon are 
proportional to the bending moments of 

the girder, so supported. It is possible 
to induce such a moment at one point of 
support as to entirely remove the weight 
from the other, and cause it to exert no 
reaction whatever; and any intermediate 
case may occur in which the total weight 
in the span is divided between the sup-
ports in any manner whatever. When 
the weight is entirely supported at A, 
then yte3 is the pseudo closing line of the 
polygon ee. In that case xx becomes the 
pseudo resolving line, and in general the 
ordinates between the pseudo closing 
line and the equilibrium polygon corre-
spond to the segments of the pseudo 
resolving line, and are proportional to 
the beuding moments of the girder. 
This general case is not represented in 
Figs. S aud 9; but the particular case 
shown, in which the total weight is 
borne by the left pier, gives the equa-
tions 

ej=wyx„ ej=wpt, etc. 

In order to represent the general case 
in which the weights, supported by the 
piers, are not the same as in the case of 
the simple girder, by reason of some kind 
of constraint, we propdseto treat the case 
of the straight girder, fixed horizontally 
at its extremities; but it is necessary 
first to discuss the following auxiliary 
construction. 

S U M M A T I O N P O L Y G O N . 

Fig. 10 

T H E SUMMATION P O L Y G O N . figure of which we wish to determine the 
In Fig. 10 let aabb be any closed area. The example which we have 

chosen is tha t of an indicator card taken 
from page 12 of Porter's Treatise on 
Richard's Steam Indicator, it being a 
card taken from the cylinder of an old-
fashioned paddle-wheel Cuuarder, the 
Africa. The scale is such that is 
26.9 pounds per square inch and 06 
parallel to the atmospheric line is the 
length of the stroke. 

Divide the figure by parallel lines 
a3b3, etc. into a series of bands which 
are approximately trapezoidal. A suffi-
cient number of divisions will cause this 
approximation to be as close as may be 
desired. The upper and lower bands 
may in the present case be taken as ap-
proximating sufficiently to parabolic 
areas. Let 06 be perpendicular to atbx, 
etc., then will 01,12, etc., be the heights 
of the partial areas. Lay off 

A.A,=§ «A> A A = i ( « A + « A ) » 
7 i A = K « A + a A ) > e t c -

then will these distances be the bases of 
the partial areas. Assume any point c 
at a distance I from 06 as the common 
point of the rays of a pencil passing 
through 0, 1, 2, etc.; and draw the 
parallels /is : then from any point v0 of 
the first of these make w0s, || cO, and 
s,s3 || cl, s,s3 || c2, etc. 

The polygon ss is called the summa-
tion polygon, and has the following 
properties. 

By similarity of triangles 
I : 01 : : A,A,: v0v„ 01 \hx=l.vtvx 

is the area of the upper band. Similarly 
I'2.hBht=l.vtvt is the area of the next 
band, and finally 

06 Z(h0h)=l.vtvt=lp 
is the total area of the figure. 

In the present instance we have taken 
¿=06, the length of stroke, conse-

. quently p is the average pressure during 
the stroke of the piston, and is 21.25 
pounds, which multiplied by the volume 
of the cylinder gives the work per stroke. 

This method of summation, which ob-
tains directly the height p of a rectangle 
of given base I equivalent in area to any 
given figure, is due to Culmann, and is 
applicable to all problems in planimetry; 
it is especially convenient in treating the 
problems met with in equalizing the 
areas of profiles of excavation and em-
bankment, and is frequently of use in 

dividing land. I t is much more ex-
peditious in application than the 
method of triangles founded on Euclid, 
and is also, in general, superior to 
the method of equidistant ordinates, 
whether the partial areas are then 
computed as trapezoids or by Simp-
son's Rule; for it reduces the number 
of ordinates and permits them to be 
>laced at such points as to make the 
iands approximate much more closely 

to true trapezoids than does the method 
of equidistant ordinates. 

GIRDER WITH F I X E D ENDS. 

I t is to be understood that by a girder 
with fixed ends, we mean from which 
if the loading were entirely removed, 
without removing the constraint at its 
ends, there would be no bending moment 
at any point of it, and, when the loading 
is applied to it the supports constrain 
the extremities to maintain their original 
direction unchanged, but furnish no 
horizontal resistance. Under those cir-
cumstances the girder may not be 
straight, and may not have its supports 
on the same level, but it will be more 
convenient to think of the girder as 
straight and level, as the moments, etc., 
are the same in both cases. 

Suppose in Fig. 11 that any weights 
iotro?, etc. are applied at As, A„ A„ A„ to 
a girder which is supported and fixed 
horizontally at A, and A,. With p as the 
pole of a force pencil draw the equili-
brium polygon ee as in Fig. 8. The re-
sultant passes through m. 

I t is shown in my New Constructions 
in Graphical Statics, Chapter II, that the 
position of the pseudo closing line k'k', 
in case the girder has its ends fixed as 
above stated, is determined from the 
conditions that it shall cut the curve ee 
in such a way that the moment area 
above k'k' shall be equal to that below 
k'k', and also in such a way that the 
center of gravity of the new moment 
area shall be in the same vertical as the 
original moment area. 

To find the center of gravity of the 
moment area ek; determine the areas of 
the various trapezoids of which it is com-
posed by help of the summation poly-

fon ss. In constructing ss we make 

tl=k,e„ ht2=ktet + kte„ etc., and using 
v as the common point of the pencil we 



shall have A.v.A.z, = twice the area of t rea t ing this ma t t e r in the New Con-
the moment area. W e have used the structions in Graphical Statics, z t ' and 
sum of the two parallel sides of each t'zb are proportional t o the bending mo-
trapezoid instead of half that quant i ty ments a t the extremit ies of the fixed gird-

er. In this case, since we have taken 
K V = \ K K > we find tha t h f a ' - fat', and 

line and kjct'=± t'z, are the end moments, and 
they fix the position of the pseudo clos-

one-third | i ng line. Draw pq' || k'k' then are w q' 
The 

for greater accuracy. 
Now lay off f rom zo, 

zO2J=A,2,» etc., as a weight 
assume the pole/>'. 

Of the t r iangle hji^e. 
rests at h and two-thirds at A,; and q'wh the react ions of the piers, 
make z02, =$z0z,> it w the par t of the pseudo resul tant is a t m ' . "o"\ 8"o"*l> t"" " f o i , i < u u i v o u i > u u i «o ..V i i . . 

area applied a t / t | . Of the area htetejit, > To obtain the same result by 
f rame pencil, let F ig . 12 

the same weights applied 

one half, approximately, rests at A,"and help of 
one half a t A.. Bisect z,z, at z,', then represent 
W rests at A,. B i s e c t ' e a c h ' o f the in ' the 
other quantities z?z„ etc. except z,z„ in Choose 

same manner as in Fig." 11. 
the vertex v, and d raw the • juuuv iv tvo c A v c p b i n v ^ n o o s e .v. 

which make ztz z z4. W i t h the equi l ibrat ing polygon dd, etc. as I n Fie 
weights z'z' so obtained, construct the 8. Make htl~rr. hlLrr + rr e tc 
second equilibrium polygon yy, which since these quanti t ies a re 'p ropor t iona l 
shows that the center of gravity of t he t o the bending moments as previously 
moment area is m the vertical through shown. W i t h t> as the common point of 

I here is a balancing of errors in this the rays of a pencil, find h z by the helo 
approximation which renders the posi- of ihn s „ m J , ; n „ i i J • „ Z . . , u ! p 

tion of n quite exact ; if, however, 
g rea ter precision is desired, determine 
the centers of gravi ty of the trapezoids 
forming the moment "area, and use new 
verticals through them as weight lines, 
with the weights zz instead of the 
weights z'z'. 

Draw verticals which divide the span 
into three equal par ts ,—they cut ny t and 

of the summation polygon ss "just as in 
t i g . 11. 

Lay off the second weight line 2 2 ' , 
etc., just as in F ig . 11, and with v as 
vertex construct the second equilibrating 
polygon xx. Then as readily appears 
vn || z0xt determines n the center of 
gravi ty of the momen t area. Make 2 x 
II««, and xtx0\\ vtti if t, and t, divide 

, , the span into three equal par ts then 1 hp 

T h e n t \ ¿ f t a n d r f r a W ^ " i , 0 r i Z O n , t a l t h r o » « h -0 fixes^coVrtpo 1-
l&en is t,ttntttt an equilibrium polygon ing to t' in F i g 1] F 

due to the force z z appliedI at «, and to To find the position of the pseudo 
the forces , and i z, applied a t t, and resolving line and its s e ^ m L t s pro 
t, respectively. As explained when portional to the new ' " 1 bending mo-

ments, lay off rj=\(t'z-zj,') the differ-
ence of the bending moments a t the 
ends, and make />,' II r.w, and p r o l o n g 
U r until they meet at rt' which is o n the 
pseudo resolving line. Then l a y off 
rr/=iz/ and r , V = ^ V upon this 
pseudo resolving line r'q', then r ' r / , r ' r / , 
etc., are the bending moments w h e n the 
girder is fixed at the ends. For b y simi-
larity of tr iangles 

kk • « 
.*. ¿ A . qq = V. r / r / , 

is the moment, and qq' is the w e i g h t 
which is transferred from one s u p p o r t to 
the other by the constraint, hence r'q' is 
the correct position of the pseudo reso lv-

ing line. Thence follows the proof t ha t 
the bend ing moments are proport ional 
to in tercepts upon this line in a manner 
precisely like t h a t employed in F ig . 9. 

Again , d raw vix || «7 / and vit || u?r', 
then are i , and the points of inflexion 
of the g i rder when the bending moment 
vanishes, be ing in reality points of sup-
por t on which the girder could simply 
r e s t wi thou t constraint and have the 
pseudo resul tant in tha t case as the t rue 
resul tant . 

In Figs . 11 and 12 we have taken 
H= V, consequently the new moments 
can be directly compared, the ordinates 
k'e be ing equal to the corresponding 
segments r'r. 4 

Apparently in this example F i g . 12 
presents a construction somewhat more 
compact than tha t of Fig. 11, i t is cer-
tainly equally good. 

I t remains to remark before p roceed-
ing to further considerations of a slight-
ly different character, tha t we o w e to 
the genius of Culmann* the es tabl ishment 
of the generality of the method of the 
equilibrium polygon. 

He adopted the funicular p o l y g o n , 
some of whose properties had l o n g been 
known, and upon it founded the genera l 
processes and methods of sys t ema t i c 
work which are now employed b y all. 

Fur thermore it should be s t a t e d tha t 
parallelograms of forces were com-
pounded and applied in such a w a y as to 

• Graphische Statik. Zurich, 186C. 

give rise to a f rame pencil and equili-
brat ing polygon by the illustrious 
Poncelet* who by their use determined 
the centers of gravity of portions of the 
stone arch. W h e t h e r he recognized 
other propert ies besides the simple de-
termination of the resultant of parallel 
forces, I am not informed, as my 
knowledge of Poncelet 's memorial is de-
rived f rom so much of his work as 
Woodburyf has incorporated in his 
graphical construction for the stone 
arch. 

So far as known, the method has been 
advanced by no one of the numerous 
recent wri ters npon Graphical Statics 

• Memorial de 1' officier du Genie. No. 12. 
t Treatise on the Stability of the Arch. D. P . Wood-

bury, New York, 1ST». 



which would certainly have been the 
case had Poucelet established its claim 
to be regarded as a general method. 
I think the method of the frame pen-
cil may now fairly claim an equal gen-
erality and importance with that of the 
equilibrium polygon. 

A N Y F O R C E S L Y I N G I N O N E P L A N E , A N D 
A P P L I E D AT G I V E N P O I N T S . 

We have pVeviously referred to this 
problem, having treated a particular case 
of it in Fig. 2 ; and subsequently cer-
tain statements were made respecting the 
indetermiuateness of the process for find-
ing the reactions of supports in case the 
applied forces were not vertical. 

The case most frequently encountered 
in practice is wind-pressure combined 
with weight, and we can take this case 
as being sufficiently general in its nature; 
so that we are supposed to know the 
precise points of application of each of 
the forces, and its direction. Now it 
may be that the reaction of the supports 
cannot be exactly determined, but in all 
cases an extreme supposition can be made 
which will determine stresses in the 
framework which are on the safe side. 

For example, if it is known that one 
of the reactions must be vertical, or nor-
mal to the bed plate of a set of support-
ing rollers, this will fix the direction of 
one reaction and the other may then be 
found by a process, like that employed 
in Fig. 2, of which the steps are as fol-
lows : 

Resolve each of the forces at its point 
of application into components parallel 
and perpendicular to the known direction 
of the reaction, which we will call verti-
cal for convenience, since the process is 
the same whatever the direction may be. 
By means of an equilibrium polygon or 
frame pencil find the line of action of 
the resultant of the horizontal compo-
nents, whose sum is known. Then this 
horizontal resultant, can be treated pre-
cisely as was the single horizontal force 
in Fig. 2, which will determine the alter-
ation of the vertical components of the 
reactions due to the couple caused by the 
horizontal components. 

Also, find by an equilibrium polygon, 
or frame pencil, the vertical reactions due 
to the vertical components. Correct the 
point of division q of the weight line as 
found from the vertical components by 

the amount of alteration already found 
to be due to the horizontal components. 
Call, this point q', then the polygon of 
the applied forces must be closed by two 
lines representing the reactions, which 
must meet on a horizontal through q'; 
but one of them has a known direction, 
hence the other is completely determined. 

This determination causes the entire 
horizontal component to be included in 
a single one of the reactions, and it is 
usually one of the suppositions to be 
made when it is not known that the reac-
tion of a support is normal to the plane 
of the bed joint. 

Another supposition in these circum-
stances is that the horizontal component 
is entirely included in the other reaction; 
and a third supposition is that the hori-
zontal component is so divided between 
the reactions that they have the same 
direction. These suppositions will usu-
ally enable us to find the greatest possible 
stress on any given piece of the frame by 
taking that stress for each piece which is 
the greatest of the three. 

In every supposition care must be 
taken to find the alteration of the verti-
cal components due to the horizontal 
components. This is the point which has 
been usually overlooked heretofore. 

K E R N E L , M O M E N T S O F R E S I S T A N C E A N I ) 

I N E R T I A : E Q U I L I B R I U M P O L Y G O N M E T H O D . 

The accepted theory respecting the 
flexure of elastic girders assumes that 
the stress induced in any cross section 
by a bending moment increases uniform-
ly from the neutral axis to the extreme 
fiber. 

The cross section considered, is sup-
posed to be at right angles to the plane 
of action or solicitation of the bending 
moment, and the line of intersection of 
this plane with that of the cross section 
is called the axis of solicitation of the 
cross section. 

The radius of gyration of the cross 
section about any neutral axis is in the 
direction of the axis of solicitation. 

I t is well known that these two axes 
intersect at the center of gravity of the 
cross section, and have directions which 
are conjugate to each other in the ellipse 
which is the locus of the extremities of 
the radii of gyration. 

W e shall assume the known relation 

M=SI+y 

in which M is the magnitude of the 
bending moment, or moment of resistance 
of the cross section, S is the stress on 
the extreme fiber, I is the moment of in-
ertia about any neutral axis a, and y is 
the distance of the extreme fiber in the 
direction of the axis of solicitation, i. e. 
the distance between the neutral axis x 
and that tangent to the cross section 
which is parallel to x and most remote 
from it, the distance being measured 
along the axis of solicitation. 

Let M— Sm in which m is called 
the " specific moment of resistance" of 
the cross section; it is, in fact, the 
bending moment which will induce a 
stress of unity on the extreme fiber. 

Now I=k'A 
in which k is the radius of gyration and 
A is the area of the cross section. 

Let k*-r-y=r, m=rA, 
is the specific moment of resistance 
about x, and when the direction of x 
varies, r varies in magnitude: r is called 
the " radius of resistance " of the cross 
section. The locus of the extremity of 

taken as a radius vector along the 
axis qf solicitation, is called the "ker-
nel." 

The kernel is usually defined to be the 
locus of the center of action of a stress 
uniformly increasing from the tangent 
to the cross section at the extreme fiber. 
I t was first pointed out by Jung,* and 
subsequently by Sayno, that the radius 
vector of the kernel is the radius of 
resistance of the cross section measured 
on the axis of solicitation. This will 
also appear from our construction by a 
method somewhat different f rom that 
heretofore employed. 

Jung has also proposed to determine 
values of k, by first finding ry and has 
given methods for finding r. W e shall 
obtain r by a new method which renders 
the proposal of Jung in the highest 
degree useful. 

The method heretofore employed by 
Culmann and other investigators has 
been to find values of k first, and then 
having drawn the ellipse of inertia to 

*" liappresentazioni grafischc del moment! resistenli 
di una sezione piana." G. Jung, Rendiconti deU' Institute 
Lombardo, Ser. 2, t, IX, 1S76, No. XV. " Compiemento 
alia nota precedeute." No. XVI. 

construct the kernel as the locus of the 
antipole of the tangent at the extreme 
fiber. The method now proposed is the 
reverse of this, as it constructs several 
radii of the kernel first, then the corre-
sponding radii of gyration, and from 
them the ellipse, and finally completes 
the kernel. In the old process there are 
inconvenient restrictions in the choice of 
pole distances which are entirely avoided 
in the new process. 

Let the cross section treated be that 
of the T r a i l represented in Fig. 13, 
which is inches and J inch thick. 
W e have selected a rail of uniform 
thickness in order to avoid in this small 
figure the numerous lines needed in the 
summation polygon for determining the 
area; but any cross section can be treat-
ed with ease by using a summation poly-
gon for finding the area. 

To find the center of gravity, let the 
weights and w,io„ which are propor-
tional to the areas between the verticals 
at bxb3 and bj>3 be applied at their centers 
of gravity a, and a, respectively; then 
the equilibrium polygon c,ca, having the 
pole/),, shows that o is the required cen-
ter of gravity. 

Let the area bj) t be divided into two 
parts at o, then w3w0 and w0ws are 
weights proportional to the areas b3o and 
ob, respectively; and c,cict is the equili-
brium polygon for these weights applied 
at their centers of gravity a, and a,. 

The intercepts mm have been previ-
ously shown to be proportional to the 
products of the applied weights by their 
distances from the center of gravity o. 

W e have heretofore spoken of these 
products as the moments of the weights 
about their common center of gravity o. 
But the weights in this case are areas 
and the product of an area by a distance 
is a volume. Let us for convenience call 
volumes so generated "stress solids." 
The elementary stress solids obtained by 
multiplying each elementary area by its 
distance from the neutral axis will cor-
rectly represent the stresses on the dif-
ferent parts of the cross section, and they 
wfll be contained between the cross sec-
tion and a plane intersecting the cross 
section along the neutral axis and mak-
iug an angle of 45° with the cross sec-
tion. 

If bxb3 is the ground line, bxb3 and dxd3 
are the traces of the planes between 



which the stress solid lies on a plane at 
right angles to the neutral axis. 

The distances of the centers of gravity 
of the stress solids from o are also the 
distances of the points of application of 
the resultant stresses, and the magnitude 
of the resultant stresses are are propor-
tional to the stress solids. The stress 
solids may be considered to be some kind 
of homogeneous loading whose weight 
produces the stress upon the cross section. 
The moment of inertia I is the mo-
ment of this stress with respect to o. 

Now the intercept m3m, represents 
the weight of the stress solid whose 
profile is ob3d3. I ts point of applica-
tion is g3, if ogt=\oby Similarly the 
weight m9m3 has its point of application 
at g, if og9=\ob9. And the weight mxm9 
is applied in the vertical through gx ; for 
the profile of this stress solid is the trape-
zoid b,b9d3d„ and g, is its center of grav-
ity found geometrically. In case" the 

area is divided into narrow bands paral-
lel to the neutral axis the points of appli-
cation coincide sensibly with the centers 
of gravity of the bands. 

Now take any pole p3 and construct a 
second equilibrium polygon ee due to the 
stress solids applied in the verticals 
t h o u g h g,g3g3. 

The last two sides e,nx and e3nK are 
necessarily parallel and have their inter-
section at infinity, for the total stress is 
a couple. 

The intercept ntnt is not drawn through 
the common center of gravity of the 
stress solids, i. e., it is not an intercept 
on the line of the resultant stress, bu t 
since parallels are everywhere equidis-
tant this intercept is proportional to the 
moment of the stresses about their center 
of gravity ; in other words ntn4 when 
multiplied successively by the two pole 
distances would be I. W e shall not need 
to effect the multiplication. 

Prolong c,m, to c0 on the tangent to 
the extreme fiber and draw c0?n01| p,v:3, 
then m,m3 represents the product of the 
total weight-area w,w% by ob=y the dis-
tance of the extreme fiber, or is 
proportional to the volume of a stress 
solid whose base is the entire cross sec-
tion and whose altitude is b,d,=.ob,. 

Suppose this stress to be of the same 
sign as that at the right of o, let us com-
bine it with the stress already treated. 
Its point of application is necessarily at 
o, and its amount is m,mt if measured 
on the same scale as the other stresses. 
Draw n,e01| then is k, on the verti-
cal through e0 the point of application of 
the combined stresses. But the com-
bined stresses amount to a stress whose 
profile is included between dxd3 and a 
horizontal line through dx, i.e. to a stress 
uniformly increasing from b, to b3; hence 
k, is a point of the kernel as usually de-
fined. 

If ctmt be prolonged to ct and we draw 
ctm51| p,u>,, then mtm6 (not shown) is the 
weight of a stress solid of a uniform 
depth b3d3 over the entire cross section; 
and if we draw ntet || p3mtt then will k9 
on the vertical through eb be also in like 
manner a point of the kernel, i.e. the 
point of application of a stress uniformly 
increasing from b3 to bx. 

But now let us examine our construc-
tion further in order to gain a more 
exact understanding of what the dis-
tances r,~-ok and r3=ok3 signify. 

We have shown that mxm0 represents 
the product of the area of the cross sec-
tion by the distance obx of the extreme 
fiber, i.e. the quantity Ay, -, but nxnt rep-
resents the moment of this weight when 
applied at k„ i.e. the product Ayxr 
Also as previously shown n,n4 repre-
sented I on the same scale, hence 

I=Ay,r„ but I=Ak? .-. r,=k;-i-y, 
and r, is the radius of resistance pre 
viously mentioned. 

In order to determine the radius of 
gyration Jc„ which is a mean proportional 
between r, and y,, describe a circle on 
b,k, as a diameter intersecting mm at h 
then o/i=k, the semi-axis of the ellipse 
of inertia conjugate to mm as a neutral 
axis. The accuracy of the construction 
is tested by using btk9 as a diameter and 
finding the mean proportional between 
ok, and ob3. I t should give the same 

result as that just obtained. In our Fig . 
both circles intersect at h. 

I t is known from the symmetry of 
figure of the cross section that k, is one 
of the principal axes. 

In similar manner we construct the 
radius of resistance, etc., when bxb3 is 
taken as the neutral axis-. 

Knowing before hand that this line 
passes through the centre of gravity, 
we have taken the weights of the area 
above it in two parts, viz.: that extend-
ing from b,b3, and that from b3b3, and 
we have taken w,'w9 and ic3'w3 respec-
tively, as the weights of these. Choose 
any pole p' and draw the equilibrium 
polygon c'c': use its intercepts m'm 
which represent the weights of stress 
solids, as weights and with any pole p9 
construct the second equilibrium polygon 
e'e' on the verticals through the points of 
application of the stresses. Also find 
m,'ma' the product of the total area by 
the distance of the extreme fiber and 
make » /« , ' || p / m / ; then is k,' which is 
on the same vertical as e / a point of the 
kernel, and ok'=rt' the radius of resist-
ance. Use k,b3 as a diameter, then is 
oh'=kx' the radius of gyration, for 
]c"=r,'y,'. 

' With these two principal axes thus 
determined, it is possible at once to con-
struct the ellipse of inertia. In any case 
it will be possible to determine the direc-
tion of the axis of solicitation correspond-
ing to any assumed neutral axis by actual 
construction, it being simply necessary to 
find the line through o upon which lie 
the points of application of the positive 
and negative stresses considered separate-
ly. These axes being conjugate direc-
tions in the ellipse of inertia, when we 
have found the radii of resistance in 
those two directions we can at once ob-
tain the corresponding radii of gyration 
which are conjugate semi-diameters, and 
so draw the ellipse. 

Af ter the ellipse is drawn the kernel 
can be readily completed by making r 
in every direction a third proportional to 
the distance of the extreme fiber and 
the radius of gyration. 

W e are assisted in drawing the kernel 
by noticing that to each straight side of 
the cross section there corresponds a 
single point in the kernel, and to each 
non re-entrant angular point a side of the 
kernel, these standing in the mutual re-

k 



lation of polar and anti-pole with respect 
to the ellipse of inertia, as shown by the 
equation k*=ry. 

In Fig. 13 the point Jc corresponds to 
the left hand vertical side, the point 7c. 
to the right hand vertical side, and t h e 
sides Jcjc/, to the angular points a t 
the upper and lower extremities of the 
left side respectively, while the points 

k ' k j at the very obtuse angular points 
of the kernel correspond to the upper 
and lower horizontal sides of the flange. 
The two remaining angular points of the 
kernel correspond to tangent lines when 
they just touch the corners of the flange 
and web, while the intermediate sides 
correspond to the angles at the extremi-
ties of these lines. 

K E R N E L , M O M E N T S O F R E S I S T A N C E A N D 
I N E R T I A : F R A M E P E N C I L M E T H O D . 

Let the cross section treated be ¿ha t 
shown in Fig. 14, which is nearly tha t 
of a 56 lb. steel rail, the difference con-
sisting only in a slight rounding at the 
angles. 

Let the cross section be divided by 
lines perpendicular to the axis of symme-
try bb at 6„ b„ etc., then the partial areas 
and the total area may be found by a 
summation polygon. 

Take c as the common point of the 

rays through etc., and make 01, 02, 
etc., proportional to the mean ordinates 
of the areas standing on the bases btb„ 
b7b„ etc. respectively. Draw stut || cb0 

V , II C K etc., then will the segments of 
the line uu represent the respective par-
tial areas, and w,«, will represent the 
total area. 

Divide the vertical line mo into seg-
ments equal to those of the line nn, then 
is wic the weight line for finding the 
center of gravity, etc., of the cross sec-
tion. Let a,, a s , etc., be the centers 

of gravity of the partial areas, and let zontal line dw, {=(1/1') represents Ay, , 
v be the vertex of a frame pencil whose the product of the total weight wtw. 
ravs pass through these centers of (i. e. the total area of the cross sec-
gravity. Draw the equilibrating poly- tion), by the distance of the extreme 
aon (id with its sides parallel to the rays fiber ob=y,. Use this as a stress solid . 
of this frame pencil, then the ray vo or resultant stress applied at o and hav-
parallel to the closing side yy of the ing a weight zz=dxd', and draw oj || z / „ 
equilibrating polygon" determines the j being at the same vertical distance from 
center of gravity o of the cross section, bb as v is; then is l\, which oil 1he same 
according^to principles previously ex- vertical at ; ' , a point of the kernel. For 
plained ° ! K i s 8 u c l 1 a P o i n t t , i a t t l i e P r o d u c t o f ° V 

It will be convenient to divide the ' (=* \ ) by the weight z z ^ A y j is z j = l 
cross section into two parts by the verti-. on the same scale as I was previously 
cal line oi, which we shall take as the measured. 
neutral axis. The partial areas bso and Similarly draw w,dt || vb, and make 
ob have a'and a," as their centers of z ,z=dxd t- , also draw ¿ M / i V t h e n 1S 

o-ravity k a k e s3u01| eo, then ?c0 which k, another point of the kernel as appears 
corresponds to w0,. divides the weight from reasons like those just given m 
line into two parts, representing the case of k . 
areas each side of the neutral axis, and Use bfr as a diameter then oh is a 
the polygon dd can be completed by semi-axis of the ellipse ot inertia. I h e 
drawing d d, || va ' and dtd< || va3". I t same point h should be found by using 
has been "previously shown tha t the k x \ as a diameter. Another semi-axis 
abscissas yd represent the sum of the of the ellipse of inertia with reference 
products of the weights (i.e. areas) by to bb as a neutral axis and conjugate to 
their distances from o; and any single oh can be determined, using the same 
product is the difference of two success- partial areas, by finding the centers of 
ive abscissas. Project the lengths yd gravity and points of application of the 
upon the horizontal zz by lines parallel stresses of the partial areas on one side 
to vu then the segments of zz represent of bb, thejprocess being similar to that 
the products just mentioned. But these employed in Fig 13, except in the em-
products are the stress solids or resultant ployment of the frame pencil instead of 
stresses before mentioned. Hence zz is the equilibrium polygon, 
to be used as a weight line and is trans- I t is to be noticed that the closing side 
ferred to a vertical position at the left / > , of the second equilibrating polygon 
of the Fi" . The points of application of f f is parallel to a resultant ray which 
the resultant stresses may without sensi- intersects bb at infinity, the point of ap-
ble error be taken at the centers of plication of the resultant of the app led 
gravity a a , etc., of the partial areas ex- stresses, i. e, the stresses form a couple. 
Sept in case of the segments of the web When the ellipse of inertia has been 
on each side of o. For these, let ogs' found by determining the magnitude and 
=Zob, and og."=%ob , then gt' and g3" direction of two conjugate axes the ker-
are the required points of application. nel can be readily completed as has been 

Now with the weight line zz, which shown in connection with lug. 13. 
consists partly of negative loads, and 
with the same vertex U construct the U N I F O R M L Y V A R Y I N G S T R E S S I N G E N E R A L . 
second equilibrating polygon f f , then _ 
z / , represents the moment of inertia of The methods employed in Figs. 13 
the cross section, it being proportional and 14 are applicable also to any urn-
the moment of the resultant stresses formly varying stress for a stress which 
about o. It is seen that the sides / 3 / 0 uniformly increases from any neutral 
and / / are so short that any small de- axis a: through the center of gravity of 
viation 'in their directions would not the cross section can be changed into a 
greatly affect the result, and tha t there stress which uniformly increases from 
would therefore have been little error if same parallel axis * at a distance y„ 
the resultant stresses in the web had from a; by simply combining with the 
been applied at a ' and a ," . former a stress uniformly distributed 

Again draw dd || vbx, then the hori-1 over the oross-section and of such mtens-



ity as to make the resultant intensity 
zero along x'. 

In the construction given in Figs. 13 
and 14 it is only necessary to use the 

• proposed line x' at a distance y0 from o, 
instead of the tangent to the extreme 
fiber at a distance y, or y, from o, when 
we wish to determine the weight or 
volume of the resultant stress solid, its 
moment about o, and its center of gravi-
ty or application. 

Since the locus of the center of appli-
cation of the resultant stress is the anti-
pole of x ' with respect to the ellipse of 
inertia, it is evident that when the pro-
posed axis x' lies partly within the cross 
section the center of application of the 
resultant stress is without the kernel, 
and that when x' is entirely without the 
cross section its center of application is 
within the kernel. 

It is frequently more convenient to 
determine the center of application from 
the kernel itself than from the ellipse 
of inertia. This can be readily found 
from the equation which we are now to 
state 

Ar,y=Arxyi=I, 

in which equation Ay, and Ay, are the 
volumes of the stress solids which if 
uniformly distributed and compounded 
with the stress whose neutral axis is x, 
will cause the resultant stresses to vanish 
at distances y0 and y , respectively; 
while re and r, are the distances from o 
of the respective centers of application 
of these stresses. 

The truth of the equation is evident 
from the fact that the moment about o 
of any stress solid uniformly distributed 
is zero, hence the composition of such a 
stress with that previously acting will 
leave its moment unchanged. 

From the equation just stated we 
have 

y . - y r . ' . r , : r0, 

from which r, can be found by an ele-
mentary construction, since y0, yx and r 
are known quantities. When 'it is de-
sired to express these results in terms of 
the intensities of the actual stresses, 

let p0=ny0 be the mean stress; 
and let p,'=n (y 0 +y,) be the greatest, 
and let pt'=n ( y , - y , ) be the least 
intensity at the extreme fiber: 

then ny=px'—ny=px'-pa 

or ny=ny-pt'=p-p; 
P. :Pi'—P* •••rx:r0 

0r Pt ' P*~Pt '•'• Vt '• r
a 

in which rx and r , are the two radii of 
the kernel. 

DISTRIBUTION OP SHEARING STRESS. 

I t is well known that the equation 
dJ\I= Tdz, expresses the relation of the 
total shearing stress T sustained at any 
cross section of a girder t a the variation 
dM of the bending moment 31 at a 
parallel cross-section situated at the 
small distance dz from the first men-
tioned cross section. 

We have already treated the normal 
components of the stress caused by the 
bending moment M\ we shall now treat 
the tangential component or shear which 
accompanies any variation of the bend-
ing moment. 

We shall assume as already proved 
the following equation* which expresses 
the intensity q of the shearing stress at 
any point of the cross section: 

lqx= TV 
in which x is the width of the girder 
measured parallel to the neutral axis at 
any distance y from the neutral axis, and 
q is the intensity of the shearing stress 
at the same distance, / i s the moment of 
inertia of the cross section about the 
neutral axis, T is the total shear a t this 
cross section, and V is the volume of 
that part of one of the stress solids used 
in finding the moment of inertia which 
is situated at a greater distance than y 
from the neutral axis, i.e. in Fig. 13 if 
we were finding the value of q a t b, 
with respect to om, as the neutral axis, 
then V would signify the stress solid 
whose profile is dxdt b,b,. It, however, 
makes no difference whether we define V 
as the stress solid situated at the left or 
at the right of f o r , since the total 
stress solid, positive and negative, is 
zero, that on either side of any assumed 
plane is the same. 

The first step in our process is to find 
the intensity of the shear at the neutral 
axis, which we denote by qo-} and if we 
also call .ro the width here and V the 
volume of either of the two equal stress 

Art,*309 ^ 3 ^ e ' 8 A p p U e d Mech*iu<*- Eighth Edition, 

solids between this axis and the extreme 
fiber, we have 

Iq,x=TV0, but I=V0d 

when d is the distance between the cen-
ters of application of the equal stress 
solids, i.e., d is the arm of the couple of 
the resultant stresses. Also T=Aq 
when A is the total area of the cross 
section and q is the mean intensity of 
the shearing stress. Hence at the neu-
tral axis we have the equation 

qax0d=Aq=T 

Now the length of the arm d is found 
in Fig. 13 by prolonging the middle side 
(i.e. the side through ns) of the second 
equilibrium polygon until it intersects 
the first side and the last. These inter-
sections will give the position of the 
centers of gravity of the stress solids on 
either side of o. 

In Fig. 14 the same points are found 
by drawing rays from v parallel respect-
ively to z, /0 and / , / „ until they inter-
sect aa. 

In Fig. 15 the points fx and / , arc 
found by either of these methods and 
f x f 3 — d is the required distance. 

Now in F ig . 15 let the segments uu 
of the summation polygon be obtained 
just as in Fig. 14, and parallel to uu 
draw a line through s representing the 
width of the cross section £c, on the same 
scale as before used in constructing the 
summation polygon. Also make su, H 

* cf3 and su || cfx, c being the common 
point in the rays of the pencil of the 
summation polygon for finding the area. 

Then uu, represents the product x,d 
on same scale that u,u, represents A. 

Now draw from any point i rays to ux, 
u and u,, and also a parallel to iu, at a 
distance q and intersecting hi at some 
p o i n t y such that tt0 = y to such a scale 
as may be convenient. The mean intens-
ity q is supposed to be a known quanti-
ty, and tta || uu. Then from the proposed 
equation we have the proportion 

x„d : A : : q : qa 

or uu, : u,u, : : Ut : U, 



Hence «, represents the intensity of the 
shearing stress at the neutral axis on 
the same scale that tta represents the 
mean intensity. 

This first step of our process has de-
termined the intensity of the stress at 
the neutral axis relat ively to the mean 
stress; the second step will determine 
the intensity of the stress at any other 
point relatively to the stress at the neu-
tral axis. When this last point is all 
that is desired the first step may be 
omitted. 

The equation Ixq= TV may be written 
xq=cV, in which c=T-r- F i s ' a constant. 
A t the neutral axis this equation is 

or V0 : q0 : :x0 : c 
In Fig. 15 lay off the segments of the 

line 22 just as in Fig. 14; then z,z0 rep-
resents the weight or volume K0; also 
make xO, x2, x3, etc., proportional to 
width of the girder at o, ¿>3, ¿a, etc., and 
layoff 2 , ^ = 2 / , ' = « , . 

Draw pO || r0z0, then by similar tri-
angles 

z,z0 : z,r0 : :x0 : xp 
or F0 : qc : : x0 : c 

px represents the constant c. 
Now the several segments 2,2,, 2,2,, 2,z4, 

etc., represent respectively the values of 
1
3> o r ^ e stress solids between 

one extreme fiber and b„ bA, etc.; it 
is of 110 consequence which extreme fiber 
is taken as the stress solid is the same 
in either case. 

Now using p as a pole draw rays to 
2 3 4 5 etc., and make 2,ra || p2, z3r, ||p:i, 
etc., then by similar t r iangles 

z,z, : z , r , : : x2 : c, or x,q,=cV, 
and 2.2, : z / , : : «3 : c, or x t q t = c r t 

etc., etc., and zti\, 2,rs, etc., represent 
the intensity of the shearing stresses at 
b„, bs, etc. These can be constructed 
equally well by drawing rays from z 
parallel to the rays at p, f rom which we 
obtain 

V . ' = * , r . i V . ' = V . » etc. 
Now lay off ¿ ,y a =z , r„ ¿ s y ,=2 , r J , etc., 
then the ordinates by of t he polygon yy 
represent the intensity of the shearing 
stress on the same scale t h a t tt1=.zlrt rep-
resents the intensity g0 a t the neutral 
axis, and on the same scale that t t ^ o y ' 
represents the mean intensi ty q. The 

lines joining y„, y3, etc., should be 
slightly curved, but when they are 
straight the representation is quite 
exact. 

RELATIVE STRESSES. 

I t is proposed here to develop a new 
construction which will exhibit the rela-
tive magnitude of the normal compo-
nents of the stresses produced by a 
given system of loading in the various 
cross-sections of a girder having a varia-
ble cross section. The value of such a 
construction is evident, as it shows 
graphically the weakest section, and in-
vestigates the fitness of the assumed dis-
position of the material for sustaining 
the given system of loading. 

The constructions heretofore given 
for the kernel and moments of resistance 
at any given cross section admit of the 
immediate comparison of the normal 
components of the stresses produced in 
that single cross section when different 
neutral axes are assumed, but by this 
proposed construction, a comparison is 
effected between these stresses at any 
different cross sections of the same gird-
er or truss. 

In the equation previously used 

M= Sl+y = SAV+y = SAr 
in which M is the moment of flexure 
which produces the stress S in the ex-
treme fiber of a cross section whose area 
is .A and whose radius of resistance is r, 
we see, since the specific moment of re-
sistance m=Ar is the product of two 
factors, that the same product can result 
from other and very different factors. 

For example, let m=A/ in which A0 
is the ar^a of some cross section which 
is assumed as the standard of comparison, 
and r'=Ar-hJo=ar, when a=A+A0. 
Then is A0r' the specific moment of re-
sistance of a cross section of an assumed 
area A0 which has a different disposition 
of material from that whose specific 
moment of resistance is Ar, but the 
cross sections A and A0 are equivalent 
to each other in this sense, that they 
have the same specific resistance, and 
consequently the same bending moment 
will produce equal stresses in the 
extreme fiber in each. 

The two cross sections do not have 
the same moment of inertia, and so the 
deflections of the girder would be 

changed by substituting one cross sec-
tion for the other. We shall then speak 
of them as equivalent only in the former 
sense, and on the basis of this definition, 
slate the result at which we have 
arrived thus: Equivalent cross sections 
under the action of the same bending 
moment, have the same stresses at the 
extreme fiber (though they are not 
equally stiff); hence in comparing 
stresses equivalent cross sections may be 
substituted for each other (but they may 
not be so substituted in comparing de-
flections). 

It is proposed to utilize this result by 
substituting for any girder or truss hav-
ing a variable cross section A or a varia-
ble specific moment of resistance whose 
magnitude is expressed by the variable 
quantity Ar, a different one having a 
cross section everywhere of constant 

area A0, but of such disposition of mate-
rial that its specific moment of resistance 
is A0r'=Ar at corresponding cross sec-
tions. 

The proposed substitution is especially 
easy in case of a truss, for in it the value 
of r varies almost exactly as its depth, 
as may be seen when we compute the 
value of m=Ak1-~y=Ar 
in this case. 

Since the material which resists 
bending is situated in the chords alone 
and is all approximately at lhe same 
distance from the neutral axis we have 
k=y=r=lth very nearly when h is the 
distance between the chords, m = hAh 
nearly. Even when the two chords are 
of unequal cross section and the neutral 
axis not midway between them the same 
result holds when the ratio of the two 
cross sections is constant. 

In Fig. 16 let xx be the axis of a gird-
er sustaining at the points x„ x„ etc., 
the weights c,c„ c,c3, etc. Lay off the 
ordinates xy at each of the points at 
which weights are applied, so that xy = 
Ar on some assumed scale; then since 

Ay—Ar—xy, xy varies as r', the radius 
of°resistance of a" girder having at every 
point a cross section A , so disposed as 
to be equivalent to that of the given 
girder xx. 

Assume some form of framing con-



necting the poiuts xy as shown in the dependent upon the loading and upon 
Fig., and suppose the weights applied the position of yt, etc., and is not 
at the points yy of the lower chord, the dependent upon the position of the 
points of support being at yQ and ya. joints in the upper chord. Of this fact 
Then by a method like that employed in we offer the following geometrical proof 
Fig. 3, we obtain the total stresses eaa, derived from the known relations be-
ea5, ea4, etc., in the segments of the tween the frame and force polygons, 
upper chord which are opposite to ?/„ y„ W e know, if any joint of the upper 
y„ etc. Now these total stresses are chord, such as eajt, for example, lie re-
resisted by a cross section of constant moved to a new position, such as v, that 
area A0, consequently they have the so long as the weights c,c2, <;2c„ etc., are 
same ratio to one another as the intensi- unchanged, that the vertex b, of the tri-
ties per square unit; or further, they angle eajb, iu the force polygon must be 
represent, as we have just shown, the found on the force line c,f, || yay,. We 
relative intensities of the stresses on the shall show that while the side eaa is un-
extreme fiber of the given girder. changed, the locus of bt is the force line 

It is well known from mechanical cuf,\ hence conversely, so long as c,f, is 
considerations, that the stress in the i the locus of ea, is unchanged, since 
several segments of the upper chord is there can be but one such triangle. 

In Fig. 11 let the two triangles abe, /ink, 
have the sides meeting at b and n 
mutually parallel. Let the bases ae and 
!ik be invariable but let the vertex b be 
removed to any point d such that bd f| hk, 
then will the vertex n be removed to a 
point m such that inn || ae. 

For, prolong ad and eb, and draw 
¿/|| ed and dc\\ab, then is abfcdea a 
hexagon inscribed in the conic section 
consisting of the two lines af and ec, 
hence by Pascal's Theorem, the oppo-
site diagonals ea and cf intersect on the 
same line as the remaining pairs of oppo-
site diagonals, ab || dc and ed || bf. But 
this line is at infinity, hence c/"|| ae. 
Also c'f || of, from elementary considera-
tions; and c'f || mn from similarity of 

figures, hence mn || ae. There are two 
cases, according as mn is above or below 
bk, but we have proved them both. 

Now in Fig. 10 let all the joints in the 
upper chord be removed to v, then the 
segments ea,, atas, etc., are unchanged, 
hence eas, eat, etc. are unchanged, and 
the assumed framing reduces to the 
frame pencil whose vertex is v. The 
corresponding force polygon is the 
equilibrating polygon dd. 

Hence the frame pencil can be used as 
the assumed framing just as well as any 
other form of framing, and it is unneces-
sary to use any construction except that 
of the frame pencil and equilibrating 
polygon for finding the relative stresses 
ea„ ea„ etc. 

STRESSES* IN A H O R I Z O N T A L C H O R C . 

If Fig. 16 be regarded as representing 
an actual bridge truss, whose chords are 
not of uniform cross section; it is seen 
that the total stresses on the horizontal 
chord are given by the segments ea„ ea„ 
etc., which are found from the equili-
brating polygon alone without regard to 
the kind of bracing in the truss, which it 
is unnecessary to consider; and this 
method can be used to take the place of 
that given in connection with Fig. 3 for 
finding the maximum stresses on the 
chords. 

The equilibrating p o l y g o n / / was con-
structed to determine the reactions of 
the piers by finding the point e. The 
outer sides of the polygon / / intersect 
at g which determines e as explained in 
Fig. 7 in a manner different from that 
given in Fig. 3. 

This construction sheds new light 
upon the significance of the frame pencil 
and equilibrating polygon. The frame 
pencil is the limiting case of a truss 
when the joints along one chord are re-
moved to a single point, so that each ray 
may be regarded as compounded of a 
tension member and a compression mem-
ber, having the same direction, e.g., the 
tension member of which y,v is com-
pounded has the stress d,a3, and the 
compression member the stress d3a„, but 
if the two be combined, the resultant 
tension is d,dt. 

In case yy is the equilibrium curve 
due to the applied weights, and v falls 
upon the closing line, the force lines cd 
meet at the pole and the lines ed„ ed3, 
coincide with aa, so that the polygon dd 
is at the pole and infinitely small, and 
the stress in every segment of the upper 
chord is equal to the pole distance de. 



N O T E A . 

A D D E N D U M TO P A G E 12, C H A P T E R I. 

The truth of Proposition IV is, perhaps, not 
sufficiently established in the demonstration 
heretofore given. As it is a fundamental pro-
position in the graphical treatment of arches, 
and as it is desirable that no doubt exist as to 
its validity, we now offer a second proof of it, 
which, it is thought, avoids the difficulties of 
the former demonstration. 

Prop. IV. If in any arch that equilibrium 
polygon (due to the weights) be constructed 
which has the same horizontal thrust as the 
arch actually exerts; and if its closing line be 
drawn from considerations of the conditions 
imposed by the supports, etc.; and if, further-
more, the curve of the"arch itself be regarded 
as another equilibrium polygon due to some 
system of loading not given, and its closing 
line be also found from the same considera-
tions respecting supports, etc. ; then when 
these two polygons are so placed that their 
closing lines coincide, and their areas partially 
cover each other, the ordinates intercepted be-
tween these two polygons are proportional to 
the real bending moments acting in the arch. 

The bending moments at every point of an 
arch arc due to the applied forces and to the 
shape of the arch itself. • 

The applied forces arc these: the vertical 
forces, which comprise the loading and the 
vertical reactions of the piers; the horizontal 
thrust; and the bending moments at the piers, 
caused by the constraint at these points of sup-

port. The loading may cause all the other ap-
plied forces or it may not: in any case the 
bending moments are unaffected by the de-
pendence or want of dependence of the thrust, 
etc., upon the loading. 

Now, so far as the loading and the moments 
due to the constraint at the piers are concerned, 
they cause the same bending moments at any 
point of the arch as they would when applied 
to a straight girder of the same span, for 
neither are the forces nor their arms different 
in the two cases. 

But the horizontal thrust, which is the 
same at every point of the arch, causes a 
bending moment proportional to its arm, 
which is ihe distance of its line of ap-
plication from the curve of the arch. This 
line of application is known to be the closing 
line; hence the ordinates which represent the 
bending moments due to the horizontal thrust, 
are included between the curve of the arch and 
a closing line drawn in such a manner as to 
fulfill the conditions imposed by the joints or 
kind of support at the piers, hence the curved 
neutral axis of the arch is the equilibrium or 
moment polygon due to the horizontal thrust. 

But the same "conditions fix both the closing 
line of the equilibrium polygon which repre-
sents the bending moments due to the loading 
and to the constraint at the piers, and the clos 
ing line of the equilibrium polygon due to the 
horizontal thrust. Hence the resultant bend-
ing moment is found by taking the difference 

i of the ordinates at each point, or by laying 
them off fropi one and the same closing line 
exactly as described in the statement of our 
proposition. 

N O T E B . 

A D D E N D U M TO P A G E 10, C H A P T E R I. 

Attention should be directed to the two 
senses in which M is used in our fundamental 
foimulae. 

In equation (3) the primary signification of 
M is this : it is the numerical amount of the 
hending moment at the point 0; and if this 
magnitude be laid off as an ordinate, ym is the 
fraction or multiple of it found by equation (3). 

Now M assumes, in the equations (3), (4), (5) 
and (3'), (4'), (5'), a slightly different and sec-
ondary signification; viz., the intensity of the 
bending moment at 0. The intensity of the 
bending moment is the amount distributed 
along a unit, in length of a girder, and may be 
exactly obtained as follows : 

M Mdx, x M ) = r Mdx. 

In this secondary sense M is geometrically 
represented by an area one unit wide, and hav-
ing for its height the average value which 
ordinate M. as first found, has. along the unit 
considered. 

Thus the If used in the equations of curva-
ture, bending and deflection is one dimension 
higher than that used in the equation express-
ing the moment of the applied forces; but the 
double sense need cause no confusion, and is 
well suited to express in the shortest manner 
the quantities dealt with in our investigation. 

Furthermore, in case of an inclined girder 
such as is treated in Prop. V, if the bending 
moment M, which causes the deflection there 
treated, be represented, it must Appear as an 
area between two normals to the girder which 
are at the distance of one unit apart. 

In order to apply Prop. V to inclined and 
curved girders, such as constitute the arch, 
with entire exactness, one more proposition is 
needed. 

Prop. If weights be sustained by an in-
clined girder, and the amount of the deflection 
of this girder, which is caused by the weights, 
be compared with the deflection of an hori-

zontal girder of the same cross section, and of 
the same horizontal span, and deflected by the 
same weighls applied in the same verticals; 
the vertical component of the deflection of 
the inclined girder, at any point 0, is equal to 
the corresponding vertical deflection of the 
horizontal girder, multiplied by the secant of 
the inclination. 

For the bending moment of both the inclined 
girder and the horizontal girder is the same in 
the same vertical, but the distance along the 
inclined girder exceeds that along the hori-
zontal girder in the ratio of the secant of the 
inclination to unity; hence the respective mo-
ment areas have this same ratio j therefore the 
deflections at right angles to the respective 
girders of their corresponding points arc in 
the ratio of the square of the secant to unity: 
and the vertical components of the deflections 
are therefore in the ratio of the secant of the 
inclination to unity. 

In applying this proposition to the graphical 
construction for the arch, it will be necessary 
to increase the ordinate of the moment poly-
gon at each point by multiplying by the secant 
of the inclination of the arch at that point. 
This is easily effected when the ordinates are 
vertical by drawing normals at each point of 
the arch ; then the distance along the normal 
whose vertical component is the bending mo-
ment is the value of M to be used in determin-
ing the deflection. 

In the arches which we have treated the 
rise is so small a fraction of the span that the 
secant of the inclination at any point does not 
greatly exceed unity; or, to state it otherwise, 
the length of the arch differs by a compara-
tively small quanlity from the actual span. It 
is a close approximation under such circum-
stances to use the moments themselves in de-
termining the deflections; and we have so used 
them in our constructions. A more accurate 
result can be obtained by multiplying each 
ordinate by the secant- of the inclination of 
the arch at that point to the horizon. 
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THE- THEORY OF INTERNAL STRESS 

IN 

G R A P H I C A L STATICS. 



T H E T H E O R Y O F I N T E R N A L S T R E S S 

IN 

G R A P H I C A L S T A T I C S . 

S T R E S S includes all action and reaction entire investigation within the reach of 
of bodies and parts of bodies by attrac- any one who might wish to understand« 
tion of gravitation, cohesion, electric it, and would also be of assistance to 
repulsion,0 contact, etc., viewed espe- those who might wish to read the analyt-
cially as. distributed among the particles ic investigation. 
composing the body or bodies. Since The treatment consists of two princi-
action and reaction are necessarily equal, pal parts: in the first part the inherent 
stress is included under the head of properties of stress are set forth and 
Statics, and it may be defined to be the proved by a general line of reasoning 
equilibrium of dis tAuted forces. which entirely avoids analysis, and 

Internal stress may be defined as the which, it is hoped, will make them well 
action and reaction of molecular forces, understood; the second part deals with 
Its treatment by analytic methods is the problems which arise in treating 
necessarily encumbered by a mass of stress. These problems are solved 
formula} which is perplexing to any ex- graphically, and if analytic expressions 
cept an expert mathematician. It is are given for these solutions, such ex-
necessarily so encumbered, because the pressions will result from elementary 
treatment consists in a comparison of considerations appearing in the graphi-
the stresses acting upon planes in vari- cal solutions. The constructions by 
ous directions, and such a comparison which the solutions are obtained are 
involves transformation of quadratic many of them taken from the works of 
functions of two or three variables, so the late Professor Rankine, who em-
that the final expressions contain such ployed them principally as illustrations, 
a tedious array of direction cosines that and as auxiliary to his analytic mvesti-
even the mathematician dislikes to em- gations. 
ploy them. ! i s t l n , s proposed to render the 

Now since the whole difficulty really treatment of stress exclusively graphical, 
lies in the unsuitability of Cartesian co- and by so doing to add a branch to the 
ordinates for expressing relations which science of Graphical Statics, which has 
are dependent upon the parallelogram of not heretofore been recognized as sus-
forces, and does not lie in the relations ceptible of graphical treatment. It 
themselves, which are quite simple, and, seems unnecessary to add a word as to 
which no doubt, can be made to appear! the importance, not to say necessity, to 
so in quaternion or other suitable nota- j the engineer of a knowledge of the 
tion; it has been thought by the writer theory of combined internal stress, since 
that a presentation of the subject from a all correct designing presupposes such 
graphical stand point would put the knowledge. 



S T R E S S ON A P L A N E . — " If a body be 
conceived to be divided into two parts 
by an ideal plane traversing it in any 
direction, the force exerted between 
those two parts at the plane of division 
is an internal stress"—Ran/cine. 

A S T A T E OF I N T E R N A L S T R E S S is such 
a Uate that an internal stress is or may 
be exerted upon every plane passing 
through a point at which such a state 
exists. 

I t is assumed as a physical axiom that 
the stress upon an ideal plane of divi-
sion which traverses any given point of 
a body, cannot change suddenly, either 
as to direction or magnitude, while that 
plane is gradually turned in any way 
about the given point. It is also as-
sumed as axiomatic that the stress at 
any point upon a moving plane of divi-
sion which undergoes no sudden changes 
of motion, cannot change suddenly 
either as to direction or amount. A 
sudden variation can only take place at 
a surface where there is a change of 
material. 

G E N E R A L P R O P E R T I E S O F P L A N E S T R E S S . 

* W e shall call that stress a plane stress 
which is parallel to a plane; e.g., let the 
plane of the paper be this plane and let 
the stress acting upon every ideal plane 
which is at right angles to the plane of 
the paper be parallel to the plane of the 
paper, then is such a stress a plane 
stress. 

The obliquity of a stress is the angle 
included between the direction of the 
stress and a line perpendicular to the 
ideal plane it acts upon. This last 
plane we shall for brevity call the plane 
of action of the stress, and any line 
perpendicular to it, its normal. In plane 
stress, the planes of action are shown by 
their traces on the plane of the paper, 
and then their normals, as well as their 
directions, the magnitudes of the stresses, 
and their obliquities are correctly rep-
resented by lines in the plane of the 
papetf 

The definition of stress which has 
been given is equivalent to the state-
ment that stress is force distributed over 
an area in such wise as to be in equili-
brium. 

In order to measure stress it is neces-
sary to express its amount per unit of 

area: this is called the intensity of the 
stress. 

Stress, like force, can be resolved into 
components. An oblique stress can be 
resolved into a component perpendicular 
to its plane of action called the normal 
component, and a component along the 
plane called the tangential component or 
shear. 

When the obliquity is zero, the entire 
stress is normal stress, and may be either 
a compression or a tension, i.e.,- a thrust 
or a pull. When the obliquity is +9(T, 
the stress consists entirely of a tangen-
tial stress or shear. If a compression be 
considered as a positive normal stress, it 
is possible to consider a normal tension 
as a stress whose obliquity is +180°, 
and the obliquities of two shears having 
opposite signs, also differ by 180°. 

Fig. 1 
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C O N J U G A T E S T R E S S E S . — I f i n F i g . 1 

any state of stress whatever exists at o, 
and xx be the d i r u ^ o u of the stress on a 
plane of action whose trace is yy, then is 
yy the direction of the stress at o on the 
plane whose trace is xx. Stresses so 
related are said to be conjugate stresses. 

For consider the effect of the stress 
upon a small prism of the body of which 
a,a%a?a4 is a right section. If the stress 
is uniform that acting upon a,aA is equal 
and opposed to that acting upon a3a%, 
and therefore the stress upon these 
faces of the prism are a pair of forces in 
equilibrium. Again, the stresses upon 
the four faces form a system of forces 
which are in equilibrium, because the 
prism is unmoved by the forces acting 
upon it. But when a system of forces 
in equilibrium is removed from a sys-
tem in equilibrium, the remaining forces 
are in equilibrium. Therefore the re-are 
moval of the pair of stresses in equili-
brium acting upon a,aA and a,as from 
the system of stresses acting upon the 
four faces, which are also in equilibrium, 
leaves the stresses upon a,a, and atat in 
equilibrium. But if the stress is uni-
form, the stresses on a,at and a3at must 

be parallel to yy, as otherwise a couple 
must result from these equal but not 
directly opposed stresses, which is in-
consistent with equilibrium. 

This proves the fact of conjugate 
stresses when the state of stress is uni-
form: in case it varies, the prism can be 
taken so small tha t the stress is sensibly 
uniform in the space occupied by it, and 
the proposition is true for varying stress 
in case the prism be indefinitely dimin-
ished, as may always be done. 

T A N G E N T I A L S T R E S S E S . — I f i n F i g . 2 

the stress at o on the plane xx is in the 
direction xx, i.e. the stress at o on xx 
consists of a shear-only; then there 
necessarily exists some other plane 
through o, as yy, on which the stress 
consists of a shear only, and the shear 
upon each of the planes xx and yy is of 
the same intensity, t£> of opposite sign. 

For let a plane which initially coin-
cides with xx revolve continuously 
through 180" about o, until it again co-
incides with xx, the obliquity of t he 
stress upon this revolving plane has 
changed gradually during the revolution 
through an angle of 360°, as we shall 
show. 

Since the obliquity is the same in i t s 
final as in its initial position, the total 
change of obliquity during the revolu-
tion is 0° or some multiple of 360". I t 
cannot be 0°, for suppose the shear to b e 
due to a couple of forces parallel to xx, 
having a positive moment; then if t he 
plane be slightly revolved from i t s 
initial position in a plus direction, t h e 
stress upon it has a small normal com-
ponent which would be of opposite sign, 
if the pair of forces which cause it were 
reversed or changed in sign; or, what is 
equivalent to that, the sign of the small 
normal component would be reversed if 
the plane be slightly revolved from i t s 
initial position in a minus direction. 
Hence the plane xx, on which the stress 

is a shear alone, separates those planes 
through o on which the obliquity of the 
stress is greater than 90° from those on 
which it is less than 90°, i.e., those hav-
ing a plus normal component from those 
having a minus normal component. 

Since in revolving through +180° the 
plane must coincide, before it reaches its 
final position, with a plane which has 
made a slight minus rotation, it is evi-
dent that the sign of the normal com-
ponent changes at least once during a 
revolution of 180°. But a quantity can 
change sign only at zero or infinity, and 
since an infinite normal component is 
inadmissible, the normal component 
must vanish at least once during the 
proposed revolution. Hence the obliq-
uity is changed by 360° or some multi-
ple of 360° while the plane revolves 180°. 
In fact the normal component vanishes 
but once, and the obliquity changes by 
once 360° only, during the revolution. 

It is not in every state of stress that 
there is a plane on which there is no 
stress except shear, but, as just shown, 
when there is one such plane aa> there is 
necessarily another yy, and all planes 
through o and cutting the angles in 
which are b, and bt have normal com-
ponents of opposite sign from planes 
through o and cutting the angles in 
which are b, and bt. 

To show that the intensity of 
the shear on xx is the same as 
that on yy, consider a prism one unit 
long and having the indefinitely small 
right section bf i f i j )^ Let the area of 
its upper or lower face be a, = b,b3, that 
of its right or left face be at=b7bt, then 
a,s, and are the total stresses on 
these respective faces if and s, are the 
intensities of the respective shears per 
square unit. Let the angle xoy=i, then 

is the moment of the stresses on the 
upper and lower faces of the prism, and 

atst . a, sin. i 

is the moment of the stresses on the 
right and left faces; but since the prism 
is unmoved these moments are equal. 

These stresses are at once seen to be 
of opposite sign. 
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T A N G E N T I A L C O M P O N E N T S . — I n F i g . 3 

if xx and yy are any two planes at right 
angles to each other, then t h e intensity 
at o of the tangential component of the 
stress upon the plane xx is necessarily 
the same as that upon the plane yy, but 
these components are of opposite sign. 

For the normal components acting 
upon the opposite faces of a r ight prism 
are necessarily in equilibrium, and by a 
demonstration precisely like that just 
employed in connection with Fig. 2 it is 
seen that for equilibrium it is necessary 
and sufficient that the intensity of the tan 
gentia.l component on xx be numerically 
equal to that on yy, but of opposite 
sign. 

STATE OF S T R E S S . — I n a s ta te of plane 
stress, the state at any point, as o, is 
completely defined, so that the intensity 
and obliquity of the stress on any plane 
traversing o can be determined, when 
the intensity and obliquity of the stress 
on any two given planes t ravers ing that 
point are known. 

For suppose in Fig. 4 that t he intensi-
ty and obliquity of the stress on the 
given planes xx and yy are known, to 
find that on any plane x'x' draw 
mn || « V then the indefinitely small 
prism one unit in length whose right 
section is mno, is held in equilibrium by 
the forces acting upon its three faces. 
The forces acting upon the faces om and 
on are known in direction from the 
obliquities of the stresses, and, if px and 
p„ are the respective intensities of the 
known stresses, then the forces are 
om.px and on.py respectively. The re-
sultant of these forces and the reaction 
which holds it in equilibrium, together 
constitute the stress acting on the face 
mn: this resultant divided by mn is the 
intensity o f ' the stress on mn and its 

direction is that of the stress on mn or 
x'x'. 

It should be noticed that the stress at 
o on two planes as xx and yy cannot be 
assumed at random, for such assumption 
would in general be inconsistent with 
the properties which we have shown 
every state of stress to possess. For in-
stance we are not at liberty to assume 
the obliquities and intensities of the 
stresses on xx -and yy such that when • 
we compute these quantities for any 
plane x'x' and another plane y'y' at 
right angles to x'x' in the manner just 
indicated, it shall then appear that the 
tangential components are of unequal 
intensity or of the same sign. Or, again, 
we are not at liberty to so assume these 
stresses as to violate the principle of con-
jugate stresses. ^ 

But in case tire stresses assumed are 
conjugate, or consist of a pair of shears 
of equal intensity and different sign on 
any pair of planes, or in case any stresses 
are assumed on a'pair of planes at right 
angles such that their tangential compo-
nents are of equal intensity but different 
sign, we know that we have made a con-
sistent assumption and the state of stress 
is possible and completely defined. 

The state of stress is not completely 
defined when the stress upon a single 
plane is known, because there may be 
any amount of simple tension or com-
pression along that plane added to the 
state of stress without changing either 
the intensity or obliquity of the stress on , 
that plane. 

P R I N C I P A L S T R E S S E S . — I n any state of 
stress there is one pair of conjugate 
stresses at right angles to each other, i.e. 
there are two planes at right angles on 
which the stresses are normal only. 
Stresses so related are said to be prinei-
paX stresses. 

It has been previously shown that if 
a plane be taken in any direction, and 
the direction of the stress acting on it be 
found, then these are the directions of a 
pair of conjugate stresses of which either 
mav' be taken as the plane of action and 
the other as the direction of the stress 
acting upon it. 

Consider first the case in which the 
state of stress is defined by a pair of 
conjugate stresses of the same sign; i.e., 
the normal components of this pair of 
conjugate stresses are b o t h compressions 
or both tensions. 

It is seen that they a re of opposite 
obliquities, and if a plane which initially 
coincides with one of these conjugate 
planes of action be continuously revolved 
until it finally coincides with the other, 
the obliquity must pass through all in-
termediate values, one of which is 0°, and 
when the obliquity is 0°- the tangential 
component of the stress vanishes. But 
as has been previously shown there is 
another plane at r ight angles to this 
which has the same tangent ia l compo-
nent; hence the stress is normal on this 
^)lane also. 

Consider next the case in which the 
pair of conjugate stresses which define 
the state of stress -ana»f opposite sign, 
i.e., the normal component on one plane 
is a compression and t h a t on the other 
a tension. 

In this case there is a plane in some 
intermediate position on which the stress 
is tangential only, for t h e normal com 
ponent cannot change sign except at 
zero. It has been previously shown that 
in case there is one p lane on which the 
stress is a shear only, there is another 
plane also on which the stress is a shear 
only, and that this second shear is of 
equal intensity with t h e first but of 
opposite sign." Let us consider then that 
the state of stress, in t he case we are 
now treating, is defined by these oppo-
site shears instead of the conjugate 
stresses at first considered. 

Now let a plane which initially coin-
cides with one of the planes of equal 
shear revolve continuously until it finally 
coincides with the other . The obliquity 
gradually changes f rom +90° to —90 , 
during the revolution, hence at some 
intermediate point t he obliquity is 0°; 
and since the tangential component has 
the same intensity on a plane at right 

angles to this, that is another plane on 
which the obliquity of the stress is also 
0° . 

We have now completely established 
the proposition respecting the existence 
of principal stresses which may be 
restated thus: 

Any possible state of stress can be 
completely defined by a pair of normal 
stresses oi^ two planes at right angles to 
each other. 

As to the direction of these principal 
planes and stresses, it is easily seen from 
considerations of symmetry that in case 
the state of stress can be defined by 
equal and opposite shears on a pair of 
planes, that the principal planes bisect 
the angles between the planes of equal 
shear, for there is no reason why they 
should incline more to one than to the 
other. We have before shown that the 
planes of equal shear are planes of. 
separation between those whose stresses 
have normal components of opposite 
sign: hence it appears that the principal 
stresses are of opposite sign in any state 
of stress which can be defined by a pair 
of equal and opposite shears on two 
planes. 

I t will be hereafter shown how the 
direction and magnitude of the principal 
stresses are related to any pair of con-
jugate stresses. 

For convenience of notation in discuss-
ing plane stress let us denote compression 
by the sign + , and tension by the sign 

Let us also call that state of stress 
which is defined by equal principal 
stresses of the same sign a fluid stress. 
A material fluid can actually sustain 
only a + fluid stress, but it is convenient 
to include both compression and tension 
under one head as fluid stress, the proper-
ties of which we shall soon discuss. 

Let us call a state of stress which is 
defined by unequal principal stresses of 
the same sign an oblique stress. This 
may be taken to include fluid stress as 
the particular case in which the ine-
quality is infinitesimal. In this state of 
stress there is no plane on which the 
stress is a shear only, and the normal 
comnonent of the stress on any plane 
whatever has the same sign as that of the 
principal stresses. 

Furthermore let us caH that state 



of stress which is defined by a pair 
of shearing stresses of equal intensity 
and different sign 011 two planes at 
right angles to each other a riff/it 
shearing stress. We shall have occasion 
immediately to discuss the properties of 
this kind.of stress, but we may advan-
tageously notice one of its properties in 
this connection. It has been seen pre 
viously from considerations of symmetry 
that the principal stresses and planes 
which may be used to define this state 
of stress, bisect the angles between the 
planes of equal shear. Ilence in right 
shearing stress the principal stresses 
make angles of 45° with the planes of 
equal shear. W e can advance one step : 

further by considering the symmetrical 
position of the planes of equal shear with 
respect to the principal stresses and 
show that the principal stresses in a state 
of right shearing stress are equal but of 
opposite sign. 

We wish to call particular attention 
to fluid stress and to right shearing stress, 
as with them our subsequent discussions 
are to be chiefly concerned : they are the 
special canes in which the principal 
stresses are of equal intensities, in one 
case of the same sign, in the other case 
of different sign. 

Ixit us call a state of stress which 
is defined by a pair of equal shearing 
stresses of opposite sign on planes 
not at right angles an oblique shear-
ing stress. The principal stresses, which 
in this case are of unequal intensity 
and bisect the angles between the 
planes of equal shear, are of opposite 
sign. A right shearing stress may be 
taken as the particular case of oblique 
shearing in which the obliquity is in-
finitesimal. 

We may denote a state of stress as + 
or — according to the sign of its larger 
principal stress. 
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be yy two planes at right angles, on 
which the stress at o is normal, of equal 
intensity and of the same sign; then the 
stress on any plane, as x'x, traversing o 
is normal, of the same intensity and 
same sign as that on xx or yy. 

For consider a prism a unit long and 
of infinitesimal cross section having the 
face mn || x'x', then the forces fx and/J, c 
acting on the faces om and on are such 
that 

f x '• f y '• '• om '• on. 

Now nm= A/om2 + on', and the result-
ant force which the prism exerts against 
nm is 

/ = V / « , + / / ' / * : / : = o m •• m n -

Hut fx -7-dm is the intensity of the 
stress on xx and f-^-mn is the intensity 
of the stress on %'x', and these are equal. 
Also by similarity of triangles the result-
ant / i s perpendicular to inn. 

F L ; m S T R E S S . — I n F i g . 5 l e t xx a n d 

R I G H T SHEARING S T R E S S . — I n F i g . 6, 

let xx and yy be two planes at right 
angles to each other, on which the stress 
is normal, of equal intensity, but of 
opposite sign; then the stress on any 
plane, as x'x', traversing o is of the same 
intensity as that on xx and yy, but its 
obliquity is such that xx and yy respect-
ively, bisect the angles between the 
direction rr of the resultant stress, and 
the normal y'y' to its plane of action. 

For, if the intensity of the stress on 
x'x be computed in the same manner as 
in Fig. 5, the intensity is found to be the 
same as that on xx or yy, for the stresses 
to be combined are at right angles and 
are both of the same magnitude. The 
only difference between this case and 
that in Fig. 5 is this, that one of the 

component stresses, tha t one normal to 
yy say, has its sign the opposite of that state 
in Fig. 5. In Fig. 5 the stress on x'x' 
was in the direction y'y', making a cer-
tain angle yoy' with yy. In Fig. 6 the Pv 011 

resultant stress on x'x! must then make 
an equal negative angle with yy, so that 
yor=yoy'. Hence the statement which 

COMPONENT S T R E S S E S . — A n y possible 
of stress defined by principal 

stresses whose intensities are px and 
the planes xx and yy respect-

ively is equivalent to a combination 
of the fluid stress whose intensity is 
+ hip* + Py ) o n e a c ' 1 the planes xx 

has been made respecting right shearing a n d r e s p e c t ive ly , and the right shear-
"•ress is seen to be thus established. . J a 11 \ 

ing stress whose intensity is + 4 ( p x — py ) 
COMBINATION AND S E P A R A T I O N . — A n y o n x x A N ( J - h ( p x — p y ) on yy. 

states of stress which coexist at the same For as has been shown, the resultant 
point and have their principal stresses in stress due to combining the fluid stress 
the same directions xx and yy combine with the right shearing stress is found 
to form a single state of stress whose 
principal stresses are the sums of the re-
spective principal stresses lying in tffe 
same directions xx and yy : and con-
versely any state of stress can be separ-
ated into several coexistent stresses by 
separating each of its two principal 
stresses into the same number of 
parts in any manner, and then grouping 
these parts as pairs of principal stresses 
in any manner whatever. 

The truth of this statement is nec-
essarily involved in | he fact that stresses 
are forces distributecrover areas, and that 
as a state of stress is only the grouping 
together of two necessarily related 
stresses, they must then necessarily fol-
low the laws of the composition and 
resolution of forces. 

For the sake of brevity, we shall use 
the following nomenclature of which the 
meaning will appear without fur ther ex-
planation. 

and 

The terms applied to 
forces and stresses are: 

Compound, 
Composition, 
Component, 
Resolve, 
Resolution, 
Resultant. 

The terms applied to 
states of stress are: 

Combine, 
Combination, 
Component state, 
Separate, 
Separation, 
Resultant stale. 

Other states of stress can be combined 
besides those whose principal stresses 
coincide in direction, but the law of 
combination is less simple than that of 
the composition of forces; such combi-
nations will be treated subsequently. 

by compounding their principal stresses. 
Now the stress on xx is 

HPx+P ) + t(r*-2>y)=Px 
and that on yy is 

HP* + Py) -HP* -Pv ) =Py 
hence these systems of principal 

stresses are mutually equivalent 
In case/fy = 0, the stress is complete-

ly defined by the single principal stress 
px, which is a simple normal compression 
or tension on xx. Such a stress has been 
called a simple stress. 

A fluid stress and a right shearing 
stress which have equal intensities com-
bine to form a simple stress. 

It is seen that the definition of a 
state of stress by its principal stresses, 
is a definition of it as a combination of 
two simple stresses which are perpendicu-
lar to each other. 

There are many other ways in which 
any state of stress can be separated into 
component stresses, though the separa-
tion into a fluid stress and a right shear-
ing stress has thus far proved more use-
ful than any other, hence most of our 
graphical treatment will depend upon it. 
I t may be noticed as an instance of a 
different separation, that it was shown 
that the tangential components of the 
stresses on any pair of planes xx and yy 
at right angles to each other are of equal 
intensity but opposite sign. These 
tangential components, then, together 
form a right shearing stress whose prin-
cipal planes and stresses x'x' and y'y' 
bisect the angles between xx and yy, 
while the normal components together 
define a state of stress whose principal 
stresses are, in general, of .unequal in-
tensity. 



Hence any state of stress can be sepa-
rated into component stresses one of 
which is a right shearing stress on any 
two planes at right angles and a stress 
having those planes for its principal 
planes. 

The fact of the existence of conjugate 
stresses points to still another kind of 
separation into component stresses. 

P R O B L E M S IN P L A N E S T R E S S . 

P R O B L E M 1 . — W h e n a state of stress is 
defined by principal stresses which are 
of unequal intensity and like sign, i.e., in 
a s ta te of oblique stress, to find the in-
tensity and obliquity of the stress at o 
on any assumed plane in the direction 
uv. 

In Fig. 7 let the principal stresses at o 
be a on yy and b on xx ; and on some 
convenient scale of intensities let oa=a 
and ob=b. Let uv show the direction 
of the plane through o on which we are 
to find the stress, and make on perpendic-
ular uv. Make oa'—oa and ob'=ob. 
Bisect c'b' at n, then on=%(a + b) and 
}ia'=$(a—b). Make xol—xon and com-
plete the paralellogram nomr; then is 
the diagonal or=r the resultant stress 
on the given plane in direction and in-
tensity. 

The point r can also be obtained more 
simply by drawing b'r || xx and a'r || yy. 

W e now proceed to show the correct-
ness of the constructions given and to 
discuss several interesting geometrical 
properties of the figure which give to it 
a somewhat complicated appearance, 
which complexity is, however, quite un-
necessary in actual construction, as will 
be seen hereafter. It has been shown 

t h a t a state of stress defined by its two 
principal stresses a and b can be separ-
a ted into a fluid stress having a normal 
intensity ^(a + b) on every plane, and a 
r igh t shearing stress whose principal 
stresses are +%(a—b) and ~ i ( a — b ) re-
spectively. 

Since the fluid stress causes a normal 
stress on any given plane, its intensity is 
r ight ly represented by on=$(a + b), 
which is the amount of force distributed 
over one unit of the given plane. Since, 
fur ther , it was shown that a right shear-
ing stress causes on any plane a stress 
with an obliquity such that the principal 
stress bisects the angle between its direc-
t ion and the normal to the plane, and 
causes a stress of the same intensity on 
every plane, we see that om=^{a—b) 
represents, in direction and amount, the 
force distributed over one unit of the 
given plane which is due to the right 
shearing stress. 

To find the resultant stress we have 
only to compound the forces on and om, 
which give the resultant or=r. 

The obliquity nor is always toward 
the greater principal stress, which is here 
assumed to be a. 

It is seen that in finding r b y this 
method it is convenient to describe one 
circle about o with a radius + 
and another with a radius og--$(a—b), 
after which any parallelogram inn can 
be readily completed. Let nr and mr 
intersect xx and yy in hk and ij respect-
ively; then we have the equations of 
angles, 

noli=)iho=\kno, nok=nko —hhno, 
moi=mio=\;jmo, moj=mjo = Aim qf 

hence hn=kn=on=$(a + b) 
hk=a + b, 

and rk=rj=a, rh—ri—b. 

It is well known that a fixed point r 
on a line of constant length as hk=a + b, 
or ij=a—b describes an ellipse, and 
such an arrangement is called a trammel. 
If x and y are the coordinates of the 
point r, it is evident from the figure that 
x=«cosicn, y=bm\xn, in which xn 
signifies the angle jjetween xx and the 
normal on. 

X' V* 
4 - ^ = 1 is the equation of the stress 

a b 
ellipse which is the locus of r ; and xn is 
then the eccentric angle of r. Also, since 
noh=nho, nb'r=nrb'; hence b'r || aseand 
a'r || yy determine r. 

In this method .of finding r it is con-
venient to describe circles about o with 
radii a and b, and from a' and b' where 
the normal of the given plane intersects 
them find r. 

We shall continue to use the notation 
employed in this problem, so f a r as ap-
plicable, so that future constructions 
may be readily compared with this. I t 
will be convenient to speak of the angle 
xon as xn, nor as nr, etc. 

P R O B L E M 2.—When a state of stress is 
defined by principal stresses of unequal 
intensity and unlike sign, i.e. in a state 
of oblique shearing stress, to find the in-
tensity and obliquity of the stress at o 
on any assumed plane having the direc-
tion uv. 

In Fig. 8 the construction is effected 
according to both the methods detailed 
in Problem 1, and it will be at once ap-
prehended from the identity of notation. 

Since a and b are of unlike signs a + b 
=on is numerically less than a—b=a'b'. 

The results of these two problems are 
expressed algebraically thus: 
r,=i(a + 6)'-|-i(a-i),-|-^(a5-i>,)co8 2xn 

= £ [ « ' + £' + - ¿ > ' ) cos 2 a»i] 
or, r'—a1 cos'arn + b7 sin2a:n. 
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If r be resolved into its normal and 

tangential components ot—n and rt=t 
then, ? t = ¿ [ a + & + («—6)cos 2xn], 

or, n=a cos'an + i sin'an, 
and, 
t=\(a—¿>)sin 2xn=(a—&)sin xn cos xn. 

I t is evident from the value of the 
normal component n, that the sum of the 
normal components on any two planes at 
right angles to each other is the same 
and its amount is a + b: this is also a 
general property of stress in addition to 
those previously enumerated. 

Also tan »r,-=j = « cot J + 6 tan 

The obliquity nr can also be found 
from the proportion 

sin nr : b) : : sin 2xn : r. 
In the case of'fluid stress the equations 

reduce to the more simple forms: 
a=b=r=n, t=0 

For right shearing stress they are: 
a=—b=+r, ?i=±a cos rn, 
t—±a sin rn, r n = 2 xn. 



Hence any state of stress can be sepa-
rated into component stresses one of 
which is a right shearing stress on any 
two planes at r ight angles and a stress 
having those planes for its principal 
planes. 

The fact of the existence of conjugate 
stresses points to still another kind of 
separation into component stresses. 

P R O B L E M S IN P L A N E S T R E S S . 

P R O B L E M 1 . — W h e n a state of stress is 
defined by principal stresses which are 
of unequal intensity and like sign, i.e., in 
a s t a t e of oblique stress, to find the in-
tens i ty and obliquity of the stress at o 
on any assumed plane in the direction 
uv. 

In Fig. 7 let the principal stresses at o 
be a on yy and b on xx ; and on some 
convenient scale of intensities let oa=a 
and ob=b. Let uv show the direction 
of the plane through o on which we are 
to find the stress, and make on perpendic-
ular tiv. Make oa'—oa and ob'=ob. 
Bisect u'b' at n, then o n = £ ( a + f t ) and 
}ia'=$(a—b). Make xol=xon and com-
plete the paralellogram notnr; then is 
the diagonal or=r the resultant stress 
on the given plane in direction and in-
tensity. 

The point r can also be obtained more 
simply by drawing b'r || xx and a'r || yy. 

W e now proceed to show the correct-
ness of the constructions given and to 
discuss several interesting geometrical 
properties of the figure which give to it 
a somewhat complicated appearance, 
which complexity is, however, quite un-
necessary in actual construction, as will 
be seen hereafter. I t has been shown 

t h a t a state of stress defined by its two 
pr incipal stresses a and b can be separ-
a t e d into a fluid stress having a normal 
in tens i ty ^{a + b) on every plane, and a 
r i g h t shearing stress whose principal 
stresses are +%(a—b) and ~i(a—b) re-
spectively. 

Since the fluid stress causes a normal 
s t ress on any given plane, its intensity is 
r i gh t ly represented by on=$(a + b), 
which is the amount of force distributed 
o v e r one unit of the given plane. Since, 
fu r the r , it was shown that a right shear-
i n g stress causes on any plane a stress 
wi th an obliquity such that the principal 
s t ress bisects the angle between its direc-
t ion and the normal to the plane, and 
causes a stress of the same intensity on 
eve ry plane, we see that om=£(a—b) 
represents, in direction and amount, the 
force distr ibuted over one unit of the 
g iven plane which is due to the right 
shea r ing stress. 

To find the resultant stress w e have 
only to compound the forces on a n d om, 
which give the resultant or=r. 

The obliquity nor is always toward 
the greater principal stress, which is here 
assumed to be a. 

It is seen that in finding r b y this 
method it is convenient to descr ibe one 
circle about o with a radius + 
and another with a radius og--$(a—b), 
after which any parallelogram inn can 
be readily completed. Let nr a n d mr 
intersect xx and yy in hk and i j respect-
ively; then we have the equa t ions of 
angles, 

noli=Viho=\kno, nok=nko=±hno, 
moi=mio=\jrno, moj=mjo = Aim qf 

hence /m=kn=on=^(a + b) 
hk=a + b, 

and rk=rj=a, rh=ri=b. 

It is well known that a fixed po in t r 
on a line of constant length as hk=a + b, 
or ij=a—b describes an el l ipse, and 
such an arrangement is called a t rammel . 
If x and y are the coordinates of the 
point r, it is evident from the figure tha t 
x=«cos icn , y=bsmxn, in which xn 
signifies the angle jjetween xx a n d the 
normal on. 

X' V* 
4 - ^ = 1 is the equation of t h e stress 

a b 
ellipse which is the locus of r ; a n d xn is 
then the eccentric angle of r. Also , since 
noh=nho, nb'r=nrb'-, hence b'r || aseand 
a'r || yy determine r. 

In this method .of finding r i t is con-
venient to describe circles a b o u t o with 
radii a and b, and from a' and b' where 
the normal of the given plane intersects 
them find r. 

W e shall continue to use t h e no ta t ion 
employed in this problem, so f a r as ap-
plicable, so tha t future const ruct ions 
may be readily compared with th is . I t 
will be convenient to speak of the angle 
xon as xn, nor as nr, etc. 

P R O B L E M 2 .—When a state of s t ress is 
defined by principal stresses of unequal 
intensity and unlike sign, i.e. in a s ta te 
of oblique shearing stress, to find the in-
tensity and obliquity of the s t ress a t o 
on any assumed plane having t h e direc-
tion uv. 

In F ig . 8 the construction is effected 
according to both the methods detailed 
in Problem 1, and it will be at once ap-
prehended from the identity of notation. 

Since a and b are of unlike signs a + b 
=on is numerically less than a—b=a'b'. 

The results of these two problems are 
expressed algebraically thus: 
r,=i(a + 6)'-|-i(a-i),-|-^(a5-i>,)co8 2xn 

or, r'—a1 oos'arn + b7 sin2a:n. 
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If r be resolved into its normal and 

tangent ial components ot=n and rt=t 
then, ? t = ¿ [ a + & + («—6)cos 2xn], 

or, n=a cos'an + i sin'an, 
and, 
t=\(a—¿>)sin 2xn=(a—&)sin xn cos xn. 

I t is evident from the value of the 
normal component n, that the sum of the 
normal components on any two planes at 
r ight angles to each other is the same 
and its amount is a + b: this is also a 
general property of stress in addition to 
those previously enumerated. 

Also tan »r,-=j = « cot J + 6 tan 

The obliquity nr can also be found 
from the proportion 

sin nr : 4 (a—¿0 : : s ' n 2 z , i : r-
In the case of'fluid stress the equations 

reduce to the more simple forms: 
a=b=r=n, t=0 

For r ight shearing stress they are: 
a=—b=+r, ?i=±a cos rn, 
t=±a sin m, m=2 xn. 



And for simple stress they become: 
b=0, r=a cos rn, n=a cos 'rn, 
t=a sin rn cos rn, rn=xn. 

P R O B L E M 3 . — I n any state of stress 
defined by its principal stresses, a and b, 
to find the obliquity and plane of action 
of the stress having a given intensity r 
intermediate between the intensities of 
the principal stresses. 

To find the obliquity nr and the direc-
tion uv let Fig. 7 or 8 be constructed as 
follows: assume the direction uv and its 
normal on, and proceed to determine the 
position of the principal axes with re-
spect to it. Lay off oa'=a, ob'=b, in 
the same direction if the intensities are 
of like sign, in opposite directions if un-
like. Bisect a'b' at n, and on a'b' as a 
diameter draw the circle a'rb'. Also, 
about o as a center and with a radius 
or=r draw a circle intersecting that pre-
viously drawn at r ; then is nr the re-
quired obliquity; and xx\\b'r, yy\\a'r 
are the directions of the principal stresses 
with respect to the normal on, 

P R O B L E M 4.—In a state of stress de-
fined by two given obliquities and in-
tensities, to find the principal stresses, 
and the relative position of their planes 
of action to each other and to the 
principal stresses. 

Fio. n. 

mal on, and or,=r„ or3=r3 the given in-
tensities. As represented in the figure 
these intensities are of the same sign, but 
should they have different signs, it will 
be necessary to measure one of them 
from o in the opposite direction, for a 
change of sign is equivalent to increas-
ing the obliquity by 180°, as was pre-
viously shown. 

Join r,r3 and bisect it by a perpendicu-
lar which intersects the common nor-
mal at n. About n describe a circle 
r,rta'b'\ then oa'=a, ob'=b, a'r,, b'r,, 
are the directions of the principal stresses 
with respect to r, and b'rt, a'rt with re-
spect to rt, i.e., ob'r,—xn, and ob'rt=xn, 

•. n,nt=ob'r,—ob'r,=rjbV^r.aV, 
m case the given obliquities are of op-

posite sign, as they must be in conjugate 
, stresses, for example, it is of no conse-
quence, in so far as obtaining principal 
stresses a and b is concerned, whether 
these given obliquities are constructed on 
the same side of on, or on opposite sides 
of it ; for a point on the opposite side of 
on, as r, ', and symmetrically situated with 
respect to ra, must lie on the same circle 
about n. But in case opposite obliquities 
are on the same side of on we have 
n,n7=ob'r, + o J ' r , = r b'rj. 

I t is unnecessary to enter into the 
proof of the preceding construction as 
its correctness is sufficiently evident from 
preceding problems. 

The algebraic relationships may be 
written as follows: 

\(a-b)%—l(a+by+r*—r,(a 4- 6)cos ntrt 

i ( o t - i ) , = J ( a + i ) + r,J - r7 (a + b) cos n,r, 
.-. (a + b) (r,cos r.cos n,r s) =r, '—r,* 
Also (a—i)co8 2xn, + a + b=2r,cosnlrt 

(a—b) cos 2xnt -f a + b=2 r,cos n,rt 

which last equations express twice the 
respective normal components, and from 
them the values of xn, and xn, can be 
computed. 

P R O B L E M 5 .—If the state of stress be 
defined by giving the intensity and 
obliquity of the stress on one plane, and 
its inclination to the principal stresses, 
and also the intensity of the stress on a 
second plane and its inclination to the 
principal stresses, to find the obliquity of 

the stress on the second plane, and the 
magnitude of the principal stresses. 

Let the construction in Fig. 9 be 
effected thus: from the common normal 
on lay off or, to represent the obliquity 
and intensity of the stress on the first 
plane; draw od so tha t nod=xnJ—xn) 
the difference of the given inclinations 
of the normals of the two planes; 
through r, d r a w e r , perpendicular to od; 
about o as a center describe a circle with 
radius the given intensity on the 
second plane, and let it intersect at 
r„ or r, ' , then is nrt the required obliquity. 
This is evident, because 

xn,=nb'r,=\a'nr,, xn7=nb'r.=ha'nr„ 
nod= one=\ (onr, + onrt) A 

= 180c — (xn^-W,) 
If xn, and xn are of different sign 

care must be taken to take their alge-
braic sum. 

The construction is completed as in 
Problem 4. 

P R O B L E M 6.—In a state of stress de-
fined by two given obliquities and eithfer 
both of the normal components or both 
of the tangential components of the in-
tensities, to find the principal stresses 
and the relative position of the two 
planes of action. 

If in Fig. 9 the obliquities nr„ nrt, and 
the normal components ot,=nx, oi,=«, 
are given, draw perpendiculars at t, and 
(, intersecting or, and ora at r, and r , re-
spectively. 

If the tangential components ¿,r I=<, 
and are given instead of the nor-
mal components, draw at these distances 
parallels to on which intersect or, oi\ at 
r,rt respectively. Complete the con-
struction in the same manner as before. 

P R O B L E M 7.—In a state of stress de-
fined by its principal stresses a and b, to 
find the positions and obliquities of the 
stresses on two planes at right angles to 
each other whose stresses have a given 
tangential component t. 

Fig. 9, slightly changed, will admit of 
the required construction as follows: lay 
off on the same normal on, oa'—a, ob'—b\ 
bisect a'b' a t n; erect a perpendicular 
ne=t to a'b' at n ; draw through e a 
parallel r , r , to on intersecting or, and 

ora at r, and ra respectively. Then the 
stresses or,=r„ or3=rt have equal tan-
gential components, and as previously 
shown these belong to planes at right 
angles to each other provided these tan-
gential components are of opposite sign. 
So that when we find the position of the 
planes of action, one obliquity, as nrt, 
must be taken on the other side of on, 
as nrt'. The rest of the construction is 
the same as that already given. 

P R O B L E M 8.—In a state of stress Re-
fined by its principal stresses, to find the 
intensities, obliquities and planes of 
action of the stresses which have maxi-
mum tangential components. 

In Fig. 9 make oa'=a, ob'=b and 
describe a circle on a'b' as a diameter; 
then the maximum tangential component 
is evidently found by drawing a tangent 
a t r parallel to on, in which case t=a—b, 
and rb', ra' the directions of the 
principal stresses make angles of 45° 
with on, which may be otherwise stated 
by saying that the planes of maximum 
tangential stress bisect the angles be-
tween the principal stresses; or con-
versely the principal stresses bisect the 
angles between the pair of planes at 
right angles to each other on which the 
tangential stress is a maximum. 

I t is unnecessary to extend further the 
list of problems involving the relations 
just employed as they will be readily 
solved by the reader. 

In particular, a given tangential and 
normal component may replace a given 
intensity and obliquity on any plane. 

We shall now give a few problems 
which exhibit specially the distinction 
between states of stress defined by 
principal stresses of like sign and by 
principal stresses of unlike sign, (i.e. the 
distinction between oblique stress and 
oblique shearing stress). 

P R O B L E M 9 . — I n a state of stress de-
fined by like principal stresses, to find 
the inclination of the planes on which 
the obliquity of the stress is a maximum, 
to find this maximum obliquity and the 
intensity. 

In Fig. 10 let oa'=a, ob'=b, the 
principal stresses; on a'b' as a diameter 
describe a circle; to it draw the tangent 
or, ; then nr„ is the required maximum 



obliquity and or0 the required intensity. 
I t is evident from inspection that in the 
given state of stress there can be no 
greater obliquity than nrB. The direc-
tions of the principal axes are b'rt, a'r0 
as has been before shown. 

There are two planes of maximum 
obliquity, and or0' represents the second; 
they are situated symmetrically about 
the principal axes. 

Bisect nrt by the line od, then 
• oa'rt=yn .'. onr%=2yn, but 

o?ir0 + nor0=90° or, 2yn + nrt=90° 
.•. \ n r t y n = 45°, but 

odrt=doa' + oa'd .-. odrt~-45*, 
hence the line bisecting the angle of 
maximum obliquity bisects also the 
angle between the principal axes. This 
is the best test for the correctness of the 
final position of the planes of maximum 
obliquity with reference to the principal 
axes. 

F I G . 1 0 . 

fined by its maximum obliquity and the 
intensity at that obliquity, to find the 
principal stresses. 

In Fig. 10 measure the obliquity tir0 
from the normal on and at the extremity 
of or 0=r 0 erect a perpendicular inter-
secting the normal at n. Then complete 
the figure as before. The principal 
axes make angles of 45° at o with od 
which bisects the obliquity nr0 . 

The algebraic statement of Problems 
9 and 10 is: 

a—o „ , . 
sin nr0= —= — cos 2xn, r0 =ab. 

CI 0 

rB=a cot xn=b tan xn, .'. a=b tan'xn 

The normal and tangential compo-
nents are: 

„ _ Sr.1 _r0(a-b) 
• n ~ a + b' a + b ' 

P R O B L E M 1 1 . — W h e n the state of 
stress is defined by like principal stresses, 
to find the planes of action and intensi-
ties of a pair of conjugate stresses having 
a given common obliquity less than the 
maximum. 

™ Fig. 10 let nr=m\ be the given 
obliquity; describe a circle on a'b' as a 
diameter; then or, = r „ o r , = r , are the 
required intensities. The lines a'r„ b'r, 
show the directions of the principal axes 
with respect to or,, and a'r\ br\ with 
respect to o r , ' =0 r , . The obliquities of 
conjugate stresses are of opposite sign, 
and for that reason r s ' is employed for 
finding the position of the principal 
stresses. The algebraic expression of 
th^se results can be obtained at once 
from those in Problem 4. 

P R O B L E M 1 2 . — W h e n the state of stress 
is defined by the intensities and common 
obliquity of a pair of like conjugate 
stresses, to find the principal stresses and 
maximum obliquity. 

This is the case of Problem 4, so far as 
finding the principal stresses is concerned, 
and the maximum obliquity is then found 
by Problem 9. The construction is given 
in Fig. 10. 

P R O B L E M 1 3 . —Let the maximum ob-
liquity of a state of oblique stress be 
given, to find the ratio of the intensities 
of the pair of conjugate stresses having 
a given obliquity less than the maxi-
mum. 

In Fig. 10 let nr0 be the given maxi-
mum obliquity, and w r , the given ob-
liquity of the conjugate stresses. At 
any convenient point on or0, as r0 erect 
the perpendicular r„n, and about n (its 
point ot intersection with on) as a center 
describe a circle with a radius nrt which 

cuts nr, at ri and r , ; then or-+or3=rl 
-i-)• is the required ratio. i 

It must be noticed that the scale on 
which or, and or, are measured is un-
known, for the magnitude of the princi 
pal stresses is unknown although their 
ratio is ob'-j-oa'. In order to express 
these results in formulse, let r represent 
either of the conjugate stresses, then as 
previously seen 

-l(a-by=i (a + b)' + r*-r(a + b) cos nr 

2 r = ( a + £)cos nr± 
[{a + by cos* tir-4ab]x 

Call the two values of r, r , and r a ; 
and as previously shown r 0

4 = r , r s ; also 

cos. nr 0=r,-7-4(a + 6 ) 
r, _ cos nr — (cos'nr—cos'nr0)* 
r ~ cos « r + (cos'wr—cosJ/ir0)^ 

When nr—0 the ratio becomes 

b 1—sin nr0 

a ~ 1 + sin nr„ 

P R O B L E M 14.—In a state of stress 
defined by unlike principal stresses, to 
find the inclination of the planes on 
which the stress is a shear only, and to 
find its intensity. 

In Fig. 11 let oa'=a, ob'=b, the 
given principal stresses of unlike sign; 
on a'b' as a diameter describe a circle; 
at o erect the perpendicular or0 cutting 
the circle at r0 ; then is oi\=rB the re-
quired intensity, and ¿>V0, a'i\ are the di-
rections of the principal stresses. 

I t is evident from inspection that there 
is no other position of r0 except r / 
which will cause the stress to reduce to 
a shear alone. Hence as previously 
stated the principal stresses bisect the 
angles between the planes of shear. 

P R O B L E M 1 5 . — I n a state- of stress de-
fined by the position of its planes of 
shear and the common intensity of the 
stress on these planes, to find the princi-
pal stresses. 

In Fig. 11 let or0—?-oJ the common in-
tensity of the shear, and oi\b'=xn, 
or0a'=yn the given inclinations of a 
plane of shear; then oa'=a and ob'=b, 
the principal stresses. 

The algebraic statement of Problems 

and 15, when ti0 denotes the normal 
a plane of shear, is: 

F I G . 1 1 . 

a 

« T W _ ] 7 j 1 
— 7 — —cos 2x11-, r.=—ab=t, 
a—b 

r0= 4-a co\,xnt=±b tan x»0 ,a=-5tan\eft . 

P R O B L E M 1 6 . — W h e n the state of 
stress is defined by unlike principal 
stresses, to find the planes of action and 
intensities of a pair of conjugate stresses 
having any given obliquity. 

In Fig. 11 let nr, be the common ob-
liquity, oa'=a, ob'=b, the given princi-
pal stresses. On a'b', as a diameter, 
describe a circle cutting or, at r, and r , ; 
then or, = r„ o r , = r , are the required in-
tensities. Also, since the obliquities of 
conjugate stresses are of unlike sign, the 
lines r'ar/b' show the directions of the 
principal stresses with respect to on„ 
and r,a ' , r f i with respect to on,. 

P R O B L E M 17.—When the state of stress 
is defined by the intensities and common 
obliquities of unlike conjugate stresses, 
to find the principal stresses and planes 
of shear. 

In finding the principal stresses this 
problem is constructed as a case of 
Problem 4, and then the planes of shear 
are found by Problem 14. The con-
struction is given in Fig. 11. 

P R O B L E M I S . — L e t the position of the 
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planes of shear be given in a state of 
oblique shearing stress, to find the rat io 
of the intensities of a pair of conjugate 
stresses having any given obliquity. 

In Fig . 11 at any convenient point r0 
make orJb'=xnt or0a'=yn, the given 
angles "which fix the position of the 
planes of shear. On a'b' as a d iameter 
describe a circle; make nrx equal to t he 
common obliquity of the conjugate 
stresses; then is o r 1 - ^o r 1 =r l - i - r J t he ratio 
required. 

The ratio may be expressed as in 
Problem 13, and a f te r reducing by the 
relations 

r*= — ab, + b) = — tan2arn, 

we have, 

rx cos vr + (cos'wr-f tan'2a;»e)^ 
r , — cos nr — ( cos , nr+tan '2sm i ) '* 

When nr=0 the rat io becomes 
a__l -f cos 2anB 

b 1 — cos 2xn0 

C O M B I N A T I O N A N I ) S E P A R A T I O N O F S T A T E S 

O F S T R E S S . 

P R O B L E M 19.—When two given states 
of r igh t shearing stress act a t the same 
point, and their principal stresses have a 
given inclination to each other, to com-
bine these states of stress and find the 
resultant state. 

In Fig. 12 let oxt, oxa denote the di-
rections of the tWo given principal + 
stresses, and let at=onlt at=ont repre-

sent the position and magni tude of these 
principal stresses. Since the given 
stresses are r igh t shearing stresses 
«, = — bx, « a = — b3 and the respective 
planes of shear bisect the angles between 
the principal stresses. Xow it has been 
previously shown tha t t h ^ intensity of 
the stress caused by the principal stresses 
a t = —b, is the same on every plane 
traversing o : the same is true of the 
principal stresses a3=—b3: hence, when 
combined, they together produce a stress 
of the same intensity on every plane 
traversing o. This resultant state of 
stress evidently does not cause a normal 
stress on every plane, hence the result-
a n t state must be a right shearing stress. 
flBet us find its intensity as fol lows: 

Tne principal stresses ax= — bx cause a 
stress onx on the plane yxyx, and the princi-
pal stresses o3= —b3 cause a stress om3 on 
the same plane in such a direction that 
x3om3=x xox3, as has been before shown. 
Complete the parallelogram nxomj\; 
then o>\ represents the intensity and di-
rection of the stress on yxyx. Bu t the 
principal stresses bisect the angles be-
tween the normal and the resultant in-
tensity, therefore, ox, which bisects 
x,or3, is the direction of a principal stress 
of the resultant state, and or=or3=a is 
the intensity of the resultant stress on 
any plane through o. 

The same result is obtained by finding 
the stress the plane y,yi} in which case 
we have o n , = a 5 act ing normal to the 
plane, and omx=ax i n such a direction 
that xxom=x^oxt. The sides and angles 
of niomirJ and nxomj\ are evidently 
equal, hence the resultants are the same, 
or =oi\=a, and ox bisects xtorx. 

The algebraic solution of the problem 
is expressed by the equation, 

a,=a*+a*+2axa3 cos 2 xxx3, 
from which a may be found, and, finally» 
the position of or is found f rom the pro" 
portion, 

sin 2xxt : a , 11 sin 2xx3 :aiy. sin 2xtx3 : a. 

P R O B L E M 20.—When any two states 
of stress, defined by their principal 
stresses, act at the same point, and their 
principal stresses have a given inclina-
tion to each other, to combine these 
states and find the resultant state. 

Let ax, bx, and a3, bt be the given, prin-

cipal stresses, of which a. and o9 have 
the same sign and are inclined a t a 
known angle xxx3, bu t in so taking ax 
and a , they may not bo th be numerically 
greater than bx and b„ respectively. 

Separate the pair of principal stresses 
axbx into the fiuid stress + £(«, +2»,), and 
the r ight shearing stress ±%(al—bx) as 
has been previously done; and in a simi-
lar manner the principal stresses «, b3 
into + £ ( « , + &,) and + J K - & , ) . Then 
the combined fluid stresses produce a 
fluid stress of + + o n 

every plane through o ; and the com-
bined r ight shearing stresses cause a 
stress whose intensity and position can 
be found by Problem 19. 

The tota l stress is obtained by q^n-
bining the total fluid stress with the re-
sultant r ight shearing stress. 

Of course, any greater number of 
states of stress than two, can be com-
bined by th is problem by combining the 
resultant of two states with a third s ta te 
and so on. 

The algebraic expression of the com-
bination of any two states of stress is as 
follows : 

(a + b)=(«, + &, + a , + 6,), 

(a-by=(ax-by+ul-bty 
+ 2 ( f , — /',) (« , - />,) cos 2xxx„ 

••• « = ! ( « . + bx + a , + K + _ 
+ (« , -* , ) "+*(« , -* . ) K - A ) « 0 8 

b=^ax + bx + a, + b - [(a,-*,)' + (a-b y 
+ 2 ( a - bx)(a3 - bt) cos 2xxx3\*), 

in which a and b are the resultant prin-
cipal stresses. Also, sin 2xxx: at—bt 

: : sin 2xx3: ax — bx : : sin 2xxx3: a—b. 

P R O B L E M 21.—In a s ta te of stress 
defined by the stresses upon two planes 
at right angles to each other, to find the 
principal stresses. 

Let the given stresses be resolved into 
tangential and normal components; it 
has been shown tha t the tangential com-
ponents upon these planes are of equal 
intensity and unlike sign. Let the in-
tensity of the. tangential component be 
at, and t h a t of the normal components 
a^ and bn respectively. The tangential 
components together constitute a state 
of r ight shearing stress of which the 
given planes are the planes of shear, 

and the principal stresses bisect the 
angles between the given planes. 

Separate the remaining state of stress 
into the fluid stress -H( t f„ + 6«) and 
the r ight shearing stress ±$(an — bn), 
and. combine this last r ight shearing 
stress with tha t due to the tangential 
components. The final result is found, 
just as in Problem 20, by combining the 
fluid stress i(an + bn) with the resulting 
right shearing stress. 

This problem can also be solved in a 
manner similar to tha t employed in 
Problem 6. 

The result is expressed by the equa-
tions, 

a + b=an + bn, 
[a-by={an-bny + 4at

 1 

for the angle which has been heretofore 
denoted by xxx3 is in this case 45° . \ cos 
2xxx3=0 
... a=£(a„ + bn + [(«n - bny + W ) * ) 

b=i(an + bn -[(«„ - &„)• + ia?]X) 
sin. 2xxx : 2at : : sin. 2xxt : an — bn 

: : 1 : a—bt 

b u t 2 a w 1 = 9 0 ° — 2XX3 , 
.*. tan 2xxx=2at -r» (a„ — b„) . 

P R O B L E M 22.—In a state of stress 
defined by two simple stresses which act 
a t the same point and have a given 
inclination to each other, to combine 
them and find the resultant state. 

I t has been previously mentioned tha t 
any simple stress as o, can be separated 
into the fluid stress + i a , and the r ight 
shearing stress ±£<«„ as it is simply a 
case in which b t = 0 . I lence the simple 
stresses </„ a , can be combined as a spe-
cial case of Problem 20, in which bx and 
b3 vanish. The results are expressed 
algebraically as follows: 

a + b=ax + a3, 
( a — & ) " = » , " + a t

, + 2 a , a i cos 2sc,x, 
ab=$atat( 1—cos 2ala;5) 

.'. db—axa3 sin'x,®,. 

Since a simple compression or tension 
produces a simple stress in material, this 
problem is one of f requent occurrence, 
for it t reats the superposition of two, 
and hence of any number of simple 
stresses lying in the same plane. 

This problem is of such importance 
tha t we think it useful to call a t tent ion 



to another solution of it, suggested by 
the algebraic expressions just found. 

In Fig. 13 let 

o'a'=a,, o'b'=at o'r'=\/a~a~=oi. 
Now, if oir=x,xt, then or—o'r' sin x,x„ 

or'=oa'.ob'=o'a'.o'b' sin*»,«, 
oa'=a and ob'=b. 

This solution is treated more fully in 
Problem 23. 

P R O B L E M 2 3 . — W h e n a state of stress 
is defined by its principal stresses, it is 
required to separate it into two simple 
stresses having a given inclination to 
each other. , 

It was shown in Problem 22 that 
a + 6=rt, + a„ and ab=a,ai sin x,xt. 
Let us apply these equations in Fig. 

13 to effect the required construction. 
Make oa'=a, ob'=b\ then a'b'=a, + at. 
At o erect a perpendicular to a'b' cut-
ting the circle of which a'b' is the dia-
meter at r ; then or%=aby the product of 
the principal stresses. Also make a'oi 
=x,x, the given inclination of the sim-
ple stresses, and let ri || a'b' intersect oi 
at i ; then or=oi sin xtxt .•. oi* = a,«,. 

Make oj=oi and draw jr' |[ a'b', then 
o'r'=oi, and o'a'.o'b'=7r", 

V o'a'=a, and o'b'=at, 

the required simple stresses. This con-
struction applies equally whether the 
given principal stresses are of like or 
unlike sign, and also equally whether 
the two simple stresses are required to 
have like or unlike signs. 

P R O B L E M 2 4 . —When a state of stress 
is defined by its principal stresses, to 
find the inclination of two given simple 
stresses into which it can be separated. 

In Fig. 13 let oa'=a, ob'=b be the 
intensities of the principal stresses, and 
o'a'=a„ o'b'=a3 be the intensities of the 
given simple stresses. I t has been 
already shown that a+b=al + av Draw 
the two perpendiculars or and o V ; 
through r draw ri || a'b'\ make oi=oj 
=o'r'; then is oir=ioa' the required 
inclination, for it is such that 

ab=a,at sin'z^ 
P R O B L E M 2 5 . — T o separate a state of 

right shearing stress of given intensity 
into two component states of right shear-
ing stress whose intensities are given, and 
to find the. mutual inclination of the 
puncipal stresses of the component 
stWes. 

In Fig. 12, about the center o, describe 
circles with radii on,—a„ o n , = a „ the 
given component intensities; and also 
about o at a distance or,=a, the given 
intensity. Also describe circles with radii 
rjn^on,, rtn3=on, cutting the first 
mentioned circles at m, and then is 
{i\om,=xxx% the required mutual inclina-
tion of the principal stresses of the com-
ponent states. This is evident from 
considerations previously adduced in con-
nection with this figure. The relative 
position of the principal stresses and 
principal component stresses is also read-
ily found from the figure. 

P R O B L E M 2 6 . — I n a state of right 
shearing stress of given intensity to sep-
arate it into two component states of 
right shearing stress, when the intensity 
of one of these components is given and 
also the mutual inclination of the princi-
pal stresses of the component states. 

In Fig. 12, about the center o describe 
a circle r r with radius or=a, the inten-
sity of the given right shearing stress, 
and at nx, at a distance on=a, from o 
which is the intensity of the given com-
ponent, make x,n,rt=2x,x„ twice the 
given mutual inclination ; then is n,r, 
the distance from n, to the circle rr the 
intensity of the required component 
stress. The figure can be completed as 
was done previously. 

It is evident, when the component a, 
exceed a, that there is a certain maxi-
mum value of the double inclination, 
which can be obtained by drawing n,r, 

tangent to the circle rr, and the given in-
clination is subject to this restriction. 

Other problems concerning the com-
bination and separation of states of 
stress can be readily solved by methods 
like those already employed, for such 
problems can be made to depend on the 
combination and separation of the fluid 
stresses and right shearing stresses into 
which every state of stress can be sep-
arated. 

P R O P E R T I E S O F S O L I D S T R E S S . 

We shall call that state of stress at a 
point a solid stress which causes a stress 
on every plane traversing the point. In 
the foregoing discussion of plane stress 
no mention was made of a stress onj^he 
plane of the paper, to which the plane 
stress was assumed to be parallel. I t is, 
evidently, possible to combine a simple 
stress perpendicular to the plane of the 
paper with any of the states of stress 
heretofore treated without changing the 
stress on any plane perpendicular to the 
paper. 

Hence in treating plane stress we have 
already treated those cases of solid stress 
which are produced by a plane stress 
combined with any stress perpendicular 
to its plane, acting on planes also per-
pendicular to the plane of the paper. 

We now wish to treat solid stress in a 
somewhat more general manner, but as 
most practical cases are included in plane 
stress, and the difficulties in the treat-
ment of solid stress are much greater 
than those of plane stress, we shall make 
a much less extensive investigation of its 
properties. 

C O N J U G A T E S T R E S S E S . — L e t x x , y y , zz 

be any three lines through o ; now, if 
any state of stress whatever exists at o, 
and xx be the direction of the stress on 
the plane yoz, and yy that on zox, then 
is zz the direction of the stress on xoy: 
i.e., each of these three stresses lies in 
the intersection of the planes of action of 
the other two. 

Reasoning like that employed in con-
nection with Fig. 1, shows that no other 
direction than that stated could cause 
internal equilibrium; but a state of stress 
is a state of equilibrium, hence follows 
the truth of the above statement/ 

T A N G E N T I A L C O M P O N E N T S . — L e t x x , 

yy, zz be rectangular axes through o; 
then, whatever may be the state of stress 
at o, the tangential components along xx 
and yy are equal, as also are those along 
yy and zz, as well as those along zz and 
xx. 

The truth of this statement flows at 
once from the proof given in connection 
with Fig. 3. 

I t should be noticed that the total 
shear on any plane xoy, for example, is 
the resultant of the two tangential com-
ponents which are along xx and yy re-
spectively. 

S T A T E O F S T R E S S . — A n y state of solid 
stress at o is completely defined, so that 
the intensity and direction of the stress 
on any plane traversing o can be com-
pletely determined, when the stresses on 
any three planes traversing o are given 
in magnitude and direction. 

This t ruth appears by reasoning simi-
lar to that employed with Fig. 4, for the 
three given planes with the fourth en-
close a tetrahedron, and the total dis-
tributed force acting against the fourth 
plane is in equilibrium with the resultant 
of the forces acting on the first three. 

P R I N C I P A L STRESSES .—In any state of 
solid stress there is one set of three con-
jugate stresses at right angles to each 
other, i.e. there are three planes at right 
angles on which the stresses are normal 
only. 

Since the direction of the stress on any 
plane traversing a given point o can 
only change gradually, as the plane 
through o changes in direction, it is 
evident from the directions of the 
stresses on conjugate planes that there 
must be at least one plane through o on 
which the stress is normal to the plane. 
Take that plane as the plane of the 
paper; then, as proved in plane stresses, 
there are two more principal stresses 
lying in the plane of the paper, for the 
stress normal to the plane of the paper 
has no component on any plane also 
perpendicular to the paper. 

F L U I D S T R E S S . — L e t the stresses on 
three rectangular planes through o be 



normal stresses of equal intensity and 
like sign; then the stress on any plane 
through o is also normal of the same in-
tensity and1 same sign. 

This is seen to be true when we com-
bine with the stresses already acting in 
Fig. 5, another'stress of the same inten-
sity normal to the plane of the paper. 

R I G H T S H E A R I N G S T R E S S . —Let the 
stresses on three rectangular planes 
through o be normal stresses of equal 
intensity, but one of them, say the one 
along xx, of sign unlike that of the other 
two; then the stress on any plane through 
o, whose normal is x'x', is of the same 
intensity and lies in the plane xox' in 
such a direction rr that xx and the plane 
yz bisect the angles in the plane xox' be-
tween rr aud its plane of action, and 
rox' respectively. 

The stress parallel to yz is a plane 
fluid stress, and causes therefore a normal 
stress on the plane xox'. Hence the re-
sultant stress is in the direction stated, 
as was proved in Fig. 0. 

C O M P O N E N T S T A T E S O F S T R E S S . — A n y 

state of solid stress, defined by its prin-
cipal stresses abc along the rectanglar 
axes of xyz respectively, is equivalent to 
the combination of three fluid stresses, 
as follows: 

i(a + b) along x and y, — |(<« -(-b) along z; 
i(c + a) along z and x,—\(c + a) along y ; 
¿(¿> + c) along y and z,—^(6 + c) along y ; 

For these together give rise to the fol-
lowing combination: 

i(a + b)+i(c + a)-i(b + c)=a, along x; 
i(a + b) — i ( c - f a ) - r i (6+ <•) = /,», along y ; 
¡ ( a + d) + i ( c + a ) + 4(&4-c)=c, along 

In case ¿ = 0 and c = 0 this is a simple 
stress along x. 

C O M P O N E N T S T R E S S E S . — A n y state of 
solid stress defined by its principal 
stresses can also be separated into a fluid 
stress and three right shearing stresses; 

as follows: 

\(a + b + c) along x, y, z; 

i(cr—b— c) alon^ x, and 
—¿(a -b—c) along y and 2 ,-

c—a) along y, and 
— $(b—c—<>) along z and x ; 

l(e — " — b) along 2, aud 
—\(c—a—b) along x and y; 

I t will be seen that the total stresses 
along x y z are a b c respectively. This 
system of component stresses is remarka-
ble because it is strictly analagous in its 
geometric relationships to the trammel 
method used in plain stress. W e shall 
simply state this relationship without 
proof, as we shall not use its properties 
in our construction. 

If the distances pat=a, pb=b, pct~c 
bqJaid off along a straight line from the 
pomt p, and then this straight be moved 
so that the points ax bt c, move respec-
tively in the planes yz, zx, xy; then p 
will describe an ellipsoid, as is well 
known, whose principal semiaxes are 
along xyz, and are abc respectively. 
Now the distances p«t,pb„pcl, may be 
laid off in the same direction from p or 
in different directions; so that, in all, 
four different combinations can be made, 
either of which" will describe the same 
ellipsoid. But the position of these 
four generating lines through any as-
sumed point xlylzl of the ellipsoid is such 
that their equations are 

Now if the fluid stress i (« + /> + c) = or1 
be laid off along the normal to any plane, 
i.e. parallel to that generating line which 
in the above equation has all its signs 
positive, and the other three right shear-
ing stresses rtrJt r3r„ r,r, be laid off 
successively parallel to the other generat-
ing lines, as was done in plane stresses, 
the line ort will be the resultant stress on 
the plane. 

P R O B L E M S IN SOLID S T R E S S . 

P R O B L E M 27.—In any state of stress 
defined by the stresses on three rectangu-
lar planes, to find the stress on any given 
plane. 

Let the intensities of the normal com-
ponents along x y z be anb„ c„ respect-
ively, and the intensities of the pairs of 
tangential components which lie in the 
planes which intersect in x y z and are 

perpendicular to those axes be at bt ct re-
spectively, e.g., at is the intensity of the 
tangential component on xoy along y, or 
its equal on xoz along 2. 

In Fig. H let a plane parallel to the 
given plane cut the axes at then 
the total forces on the area xtyxzx along 
xyz are respectively: 

.r ly1z1.a1=y1oz1. an + xloyi. bt + zxoxt.Ct 
x,J/,z,A=i/,ozx • ct + Xfiyx. at + zxoxx.bn 

-v.y.z.-c
1=y, t 'z. • f,i + x ,oy t • cn + 2,0*,.«« 

in which atbxcx are the intensities of the 
components of the stress on the plane 
xxyxzx along xyz respectively. Now 

y.025. 
w +x,ytz,= 

.'. ax=an cos xn + bt. cos zn + ct cos yn 
b=ct cos xn + ot. cos zti + bncos yn 
ex=b t cos xn + cn. cos zn + atcos yn 

and r'=ax + bx + cx, therefore the result-
ant stress r is the diagonal of the right 
parallelopiped whose edges are «,¿,0,. 
In order to construct «,¿,0, it is only 
necessary to lay off an bn cn, at bt <"t along 
the normal, and take the sums of such 
projections along xyz as are indicated in 
the above values of atbtct. 

Thus, in Fig. 14, let a.y.z, be the 
traces of a plane, and it is required to 
construct the stress upon a plane parallel 
to it through o. 

The ground line between the planes of 
xoy and xoz is ox. The planes xoz and 
yoz on being revolved about ox and oy 
respectively, as in ordinary descriptive 
geometry, leave oz in two revolved posi-
tions at right angles to each other. 

The three projections of the normal 
at o to the given plane are, as is well 
known, perpendicular to the traces of the 
given plane, and they are so represented. 
Let oaz be the projection of the normal 
on xoy, and oay that on xoz. To find 
the true length of the normal, revolve it 
about one projection, say about oat, and 
if o r an = »2 Cy then is oan the revolved 
position of the normal. 

Upon the normal let oan = <in, obn = 
bUj ocn = / n , the given normal compo-
nents of the stresses upon the rectangu-
lar planes, and also let oat=at; obt = bt, 
oct = Ct, the given tangential compo-
nents upon the same planes. 

Let «Ac3> b e the respective 
projections of the points anbncn, at bt ct 
of the normal upon the plane xoy by 
lines parallel to oz, similarly aVt etc., are 
projections by parallels to oy, and ax'y 
etc., by parallels to ox. 

We have taken the stresses cn and ct of 



different sign from the others, and so 
have called them negative and the others 
positive. 

It is readily seen that the first of the 
above equations is constructed as fol-
lows: 

al=oal=oat+bt bz'-c/c/ 
Similarly, the other two equations be-
come: 

b=ob,=—oct'+at at'+obt 

e,=0C,=abt
,—CgCt + o a , ' 

We have thus found the coordinates 
of the extremity r of the stress or upon 
the given plane; hence its projections 
upon the planes of refererence are re-
spectively orx, orVt orz. 

P R O B L E M 28.—In any state of stress 
defined by its three principal stresses, 
to find the stress on any given plane. 

This problem is the special case of 
Problem 27, in which the tangential com-
ponents are each zero. Taking the nor-
mal components given in Fig. 14 as 
principal stresses we find oat=an cos xn, 
ob,=bn cos yn, oc,=Cn cos zn, as the co-
ordinates which determine the stress or' 
upon the given plane, and the projections 
of or' are orx\ ory', or/, respectively. 

From these results it is easy to show 
that the sum of the normal components 
of the stresses on any three planes is 
constant and equal to the sum of the 
principal stresses. This is a general 
property of solid stress in addition to 
those previously stated. 

P R O B L E M 2 9 . — A n y state of stress be-
ing defined by given simple stresses, to 
find the stresses on three planes at right 
angles to each other. 

In Fig. 14 let a simple stress act along 
the normal to the plane xtytz„ and cause 

a stress on that plane whose intensity is 
an = oan, then is o„cos xn=oa. the in-

| tensity of the stress in the same direction 
acting on the plane yoz. The normal 
component of this latter intensity is 

a„ coa'm=oat. cos xn=oa„ 

and it is obtained by making oa3—oa3, 
II x,y„ and az"at || oy. The tan-

gential component on yoz is od' in mag-
nitude and direction, and it is obtained 
thus: make az'd=az'a3', then in the 
right angled triangle da3a3", da, is the 
magnitude of the tangential component; 
now make od'=da3. This tangential 
component can be resolved along the 
axes of y and z. The stress on the 
planes zox and xoy can be found in simi-
lar manner, since the tangential compon-
ents which act on two planes at right 
angles to each other and in a direction 
perpendicular to their intersection are, 
as has been shown, equal; the complete 
construction will itself afford a test of its 
accuracy. 

Other simple stresses may be treated in 
the same manner, and the resultant stress 
on either of the three planes, due to these 
simple stresses, is found by combining 
together the components which act on 
that plane due to each of the simple 
stresses. 

It is useless to make the complete 
combination. I t is sufficient to take the 
algebraic sum of the normal components 
acting on the plane, and then the alge-
braic sum of the tangential components 
along two directions in the plane which 
are at right angles, as along y and z in 
yoz. 

The treatment of conjugate stresses in 
general appears to be too complicated to 
be practically useful, and we shall not 
at present construct the problems arising 
in its treatment. 
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F O R M U L A : . Containing simple and labor-saving method of obtaining 
Prismoidal Contents directly from End Areas. Illustrated by 
Examples, and accompauied by Plain Rules for practical uses. By 
C O N W A Y R. H O W A R D , Civil Eugiueer, Richmond, Vu. 

IMorris' Easy Rules. 
78 Illustrations. 8vo. Cloth. $1.50. 

E A S Y R U L E S FOR T N E M E A S U R E M E N T O F E A R T H W O R K S , by means of 
the Prismoidal Formula. By E L W O O D M O R R I S , Civil Engineer. 

Clevenger's Surveying. 
Illustrated Pocket Form. Morocco, gilt. $2.50. 

A T R E A T I S E ON T H E M E T H O D O F G O V E R N M E N T S U R V E Y I N G , a s 

prescribed by the U. S. Congress and Commissioner of the General 
Land Office. With complete Mathematical, Astronomical, and Prac-
tical Instructions for the use of the U. S. Surveyors in the Field, and 
Students who contemplate engaging in the business of Public Land 
Surveying. By S. V. C L E V E N G E R , U. S. Deputy Surveyor. 

Hewson on Embankments. 
8vo. Cloth. $2.00. 

P R I N C I P L E S A N D P R A C T I C E O F E M B A N K I N G L A N D S from River 
Floods, as applied to the Levees of the Mississippi. By W I L L I A M 

I I E W S O N , Civil Engineer. 
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Minifie's Mechanical Drawing. 
Ninth Edition. Royal 8vo. Cloth. $4.00. 

A T E X T - B O O K O F G E O M E T R I C A L D R A W I N G , for the use of Mechanics 
and Schools. With illustrations for Drawing Plans, Sections, and 
Elevations of Buildings and Machinery ; an Introduction to Isometri-
cal Drawing, and an Essay on Linear Perspective and Shadows. 
With over 200 diagrams on steel. By W I L L I A M M I N I F I E , Architect. 
With an Appendix on the Theory and Application of Colors. 

Minifie's Geometrical Drawing. 
New Edition. Enlarged. 12mo. Cloth. $2.00. 

G E O M E T R I C A L D R A W I N G . Abridged from the octavo edition, for the 
use of Schools. Illustrated with 43 steel plates. 

Free Hand Drawing. 
Profusely Illustrated. 18mo. Boards. SOceuU. 

A G U I D E TO O R N A M E N T A L , Figure, and Landscape Drawing. By an 
Art Student. 

The Mechanic's Friend.. 
12mo. Cloth. 300 Illustrations. $1.50. 

T I I F . M E C H A N I C ' S F R I E N D . A Collection of Receipts and Practical 
Suggestions, relating to Aquaria—Bronzing—Cements—Drawing-
Dyes—Electricity—Gilding—Glass-working—Glues—Horology—Lac-
quers—Locomotives—Magnetism—Metal-working— Modelling— Pho-
tography—Pyrotechny—Railways — Solders — Steam-Engine — Tele-
graphy—Taxidermy—Varnishes—Waterproofing—and Miscellaneous 
Tools, Instruments, Machines, and Processes connected with the 
Chemical and Mechanical Arts. By W I L L I A M E. A X O N , M.R.S.L. 

Harrison's Mechanic's Tool-Book. 
44 Illustrations. 12mo. Cloth. $1.50. 

M E C H A N I C S ' T O O L B O O K , with Practical Rules and Suggestions, for the 
use of Machinists, Iron Workers, and others. By W. B. H A R R I S O N . 

Randall's Quartz Operator's Hand-Book. 
12mo. Cloth. $2 00. 

Q U A R T Z O P E R A T O R ' S I I A N D - B O O K . B y P . M . R A N D A L L . N e w 

edition, Revised and Enlarged. Fully illustrated. 



Joynson on Machine Gearing. 
8vo. Cloth. '$2.00. 

T H E M E C H A N I C ' S AND S T U D E N T ' S G U I D E in the designing and Con' 
structionof General Machine Gearing, as Eccentrics, Screws, Toothed 
Wheels, etc., and the Drawing of Rectilineal and Curved Surfaces. 
Edited by F E A N C I S H . J O Y N S O N . With 18 folded plates. 

Silversmith's Hand-Book. 
Fourth Edition. Illustrated. 12mo. Cloth. $3.00. 

A P R A C T I C A L H A N D - B O O K F O R M I N E R S , Metallurgists, and Assayera. 
By J U L I U S S I L V E R S M I T H . Illustrated. 

Barnes' Submarine Warfare. 
8vo. Cloth. $0.00. 

S U B M A R I N E W A R F A R E , D E F E N S I V E A N D O F F E N S I V E . Descriptions 
of the various forms of Torpedoes, Submarine Batteries and Torpedo 
Boats actually used in War. Methods of Ignition by Machinery, 
Coutact Fuzes, and Electricity, and a full account of experiments 
made to determine the Explosive Force of Gunpowder under Water. 
Also a discussion of the Offensive Torpedo system, its effect upon 
Iron-clad Ship systems, and influence upon future Naval Wars. By 
Lieut.-Com. J O H N S. B A R N E S , U.S.N. With twenty lithographic 
plates and many wood-cuts. 

Foster's Submarine Blasting. 
4to. Cloth. $3.50. 

S U B M A R I N E B L A S T I N G , in Boston Harbor, Massachusetts—Removal of 
Tower and Corwin Rocks. By J O H N G. F O S T E R , U. S. Eng. and 
Bvt Major-General U. S. Army. With seven plates. 

Mowbray's Tri-Nitro-Glycerine. 
8vo. Cloth. Illustrated. $3.00. 

T R I - N I T R O - G L Y C E R I N E , as applied in the Hoosac Tunnel, and to Sub-
marine Blasting, Torpedoes, Quarrying, etc. 

Williamson on the Barometer. 
4to. Cloth. $15.00. 

O N T H E U S E O F T H E B A R O M E T E R ON S U R V E Y S A N D R E C O N N A B -

SANCES. Part I.—Meteorology in its Connection with Ilypsometry. 
Part n.—Barometric Hypsometry. By R . S . W I L L I A M S O N , Bvt. 
Lt-Col. U. S. A., Major Corps of Engineers. With illustrative tables 
and engravings. 

Williamson's Meteorological Tables. 
4to. Flexible Cloth. $2.50. 

P R A C T I C A L T A B L E S I N M E T E O R O L O G Y A N D H Y P S O M E T R Y , in connection 
with the use of the Barometer. By Col. R . S. W I L L I A M S O N , U.S.A. 

Butler's Projectiles and Rifled Cannon. 
4to. 36 Plates. Cloth. $7.50. 

P R O J E C T I L E S A N D R I F L E D C A N N O N . A Critical Discussion of the 
Principal Systems of Rifling and Projectiles, with Practical Sugges-
tions for their Improvement. By Capt. JonN S. B U T L E R , Ordnance 
Corps, U. S. A. 

Benet's Clironoscope. 
Second Edition. Illustrated. 4to. Cloth. $3.00. 

E L E C T R O - B A L L I S T I C M A C H I N E S , and the Schultz Chronoscope. By 
Lt.-Col. S. V . B E N E T , Chief of Ordnance U . S. A . 

Michaelis' Chronograph 
4to. Illustrated. Cloth. $3.00. 

TnE L E B O U L E N G E C H R O N O G R A P H . With three lithographed folding 
plates of illustrations. By Bvt. Captain O. E. M I C H A E L I S , Ordnance 
Corps, U. S. A. 

Nugent on Optics. 
12mo. Cloth. $1.50. 

T R E A T I S E ON O P T I C S ; or, Light and Sight, theoretically and practically 
treated; with the application to Fine Art and Industrial Pursuits. 
By E. N U G E N T . With 103 illustrations. 

Peirce's Analytic Mechanics. 
4to. Cloth. $10.00. 

S Y S T E M OF A N A L Y T I C M E C H A N I C S . B y B E N J A M I N P E I R C E , P r o -

fessor of Astronomy and Mathematics in Harvard University. 

Craig's Decimal System. 
Square 32mo. Limp. 50c. 

W E I G H T S AND M E A S U R E S . An Account of the Decimal System, with 
Tables of Conversion for Commercial and Scientific Uses. By B. F. 
C R A I G , M . D . 



Alexander's Dictionary of Weights and 
Measures. 

New Edition. 8vo. Cloth. $3.50. 
U N I V E R S A L D I C T I O N A R Y O F W E I G H T S A N D M E A S U R E S , Ancient and 

Modern, reduced to the standards of the United States of America. 
B y J . H . A L E X A N D E R . 

Elliot's European Light-Houses. 
51 Engravings and 21 Wood-cuts. 8vo. Cloth. $5.00. 

E U R O P E A N L I G H T - H O U S E S Y S T E M S . Being a Report of a Tour of 
Inspection made in 1 8 7 3 . By Major G E O R G E I I . E L L I O T , U . S . 

Engineers. 

Sweet's Report on Coal. 
With Mai«. 8vo. Cloth. $3.00. 

S P E C I A L R E P O R T ON C O A L . B y S . I I . S W E E T . 

Colburn's Gas Works of London. 
12ino. Boards. CO cents. 

G A S W O R K S O F L O N D O N . B y Z E R A H C O L B U R N . 

Walker's Screw Propulsion. 
8vo. Cloth. 75 cents. 

N O T E S ON S C R E W P R O P U L S I O N , its Rise and History. By Capt. W . I I . 
W A L K E R , U . S . Navy. 

Pook on Shipbuilding. 
8vo. Cloth. Illustrated. $5.00. 

M E T H O D O F P R E P A R I N G T H E L I N E S A N D D R A U G H T I N G V E S S E L S 

P R O P E L L E D BY S A I L OR S T E A M , including a Chapter on Laying-off 
on the Mould-loft Floor. By S A M U E L M. P O O K , Naval Constructor. 

Saeltzer's Acoustics. 
12mo. Cloth. $2.00. ' 

T R E A T I S E ON A C O U S T I C S in connection with Ventilation. By A L E X -

ANDER S A E L T Z E R . 

Eassie on Wood and its TJses. 
250 Illustrations. 8vo. Cloth. $1.50. 

A HAND-BOOK FOR T H E USF. OF CONTRACTORS, Builders, Architects, 
Engineers, Timber Merchants, etc., with infonnation for drawing up 
Designs and Estimates. 

Wanklyn's Milk Analysis. 
12mo. Cloth. $1.00. 

M I L K A N A L Y S I S . A Practical Treatise on the Examination of Milk, 
and its Derivatives, Cream, Butter, and Cheese. By J . A L F R E D 

W A N K L Y N , M.R.C.S. 

f^ r , -

Rice & Johnson's Differential Functions. 

Paper, 12mo. 50 cents. 

O N A N E W M E T H O D O F O B T A I N I N G T H E D I F F E R E N T I A L S OF F U N C -

T I O N S , with especial reference to the Newtonian Conception of Rates 
or Velocities. By J. M I N O T R I C E , Prof, of Afathematics, U . S. Navy, 
and W . W O O L S E Y J O H N S O N , Prof, of Mathematics, St. John's 
College, Annapolis. 

Coffin's Navigation. 
Firth Edition. 12rao. Cloth. $3.50. 

N A V I G A T I O N AND N A U T I C A L A S T R O N O M Y . Prepared for the use of 
the U . S. Naval Academy. By J . II. C . C O F F I N , Professor of 
Astronomy, Navigation and Surveying ; with 52 wood-cut illustra-
tions. 

Clark's Theoretical Navigation, 
8vo. Cloth. $3.00. 

T H E O R E T I C A L N A V I G A T I O N AND N A U T I C A L A S T R O N O M Y . B y L E W I S 

C L A R K , Lieut.-Commander, U . S . Navy. Illustrated with 4 1 wood-
cuts, including the Vernier. 

Toner's Dictionary of Elevations. 

8vo. Paper, $3.00 Cloth, S3,75. 

D I C T I O N A R Y OF E L E V A T I O N S A N D C L I M A T I C R E G I S T E R OF T H E 

U N I T E D S T A T E S . Containing, in addition to Elevations, the Latitude, 
Mean Annual Temperature, and the total Annual Rain Fall of many 
Localities ; with a brief introduction on the Orographic and Physical 
Peculiarities of North America. By J. M. T O N E R , M.D. 



VAN NQSTRAND'S SCIENCE SERIES. 

It is the intention of the Publisher of this Series to issue them at 
intervals of about a month. They will be put up in a uniform, neat, 
and attractive form, 18mo, fancy boards. The subjects will be of an 
eminently scientific character, and embrace as wide a range of topics as 
possible, all of the highest character. 

Price, 50 Cents Each. 

L C H I M N E Y S FOR F U R N A C E S , F I R E - P L A C E S , AND S T E A M B O I L E R S . B y 

R . A R M S T R O N G , C . E . 

I L S T E A M B O I L E R E X P L O S I O N S . B y Z E R A H C O L B U R N . 

I L L P R A C T I C A L D E S I G N I N G OF R E T A I N I N G W A L L S . B y A R T H U R J A C O B , 

A.B. With Illustrations. 

I V . P R O P O R T I O N S O F P I N S U S E D IN BRIDGES. B y C H A R L E S E . 

B E N D E R , C.E. With Illustrations. 

V . V E N T I L A T I O N OF B U I L D I N G S . By W. F. B U T L E R . With Illustrations. 

V I . O N T H E D E S I G N I N G AND C O N S T R U C T I O N O F STORAGE R E S E R V O I R S . 

By A R T H U R J A C O B . With Illustrations. 

V I I . S U R C H A R G E D AND D I F F E R E N T F O R M S OF R E T A I N I N G W A L L S . 

B y J A M E S S . T A T E , C . E . 

VIII. A T R E A T I S E ON T H E COMPOUND E N G I N E . By JonN T U R N B U L L . 

With Illustrations. 

IX. F U E L . By C . W I L L I A M S I E M E N S , to which is appended the value of 
A R T I F I C I A L F U E L S AS C O M P A R E D W I T H C O A L . B y J O H N W O R M -

ALD, C . E 

X . COMPOUND E N G I N E S . Translated from the French of A . M A L L E T . 

Illustrated. 

XI. T H E O R Y OF A R C H E S . By Prof. W . A L L A N , of the Washington and 
Lee College. Illustrated. 

X I I A P R A C T I C A L T H E O R Y OF V O U S S O I R A R C H E S . B y W I L L I A M C A I N , 

C.E. Elustrated. 

XIII . A P R A C T I C A L T R E A T I S E ON T H E G A S E S M E T W I T H IN C O A L 

M I N E S . By the late J . J . A T K I N S O N , Government Inspector of 
Mines for the County of Durham, England. 

XIV. F R I C T I O N O F A I R IN M I N E S . By J . J . ATKINSON, author of " A 
Practical Treatise on the Gases met with in Coal Mines." 

X V . S K E W A R C H E S . By Prof. E . W . H Y D E , C . E . Illustrated with 
numerous engravings and three folded plates. 

X V I . A G R A P H I C M E T H O D FOR S O L V I N G C E R T A I N A L G E B R A I C E Q U A -

T I O N S . By Prof. G E O R G E L. V O S E . With Illustrations. 

XVII. W A T E R AND W A T E R S U P P L Y . By Prof. W . II. C O R F I E L D , 

M.A., of the University College, London. 

X V I I I . S E W E R A G E A N D S E W A G E U T I L I Z A T I O N . By Prof. W . H . 

C O R F I E L D , M.A., of the University College, London. 

XIX. S T R E N G T H O F B E A M S U N D E R T R A N S V E R S E L O A D S . By Prof. 
W. A L L A N , author of " Theory of Arches." With Illustrations 

X X . B R I D G E A N D T U N N E L C E N T R E S . B y J O H N B . M G M A S T E R S , 

C.E. With Illustrations. 

XXL S A F E T Y V A L V E S . By R I C H A R D II. B U E L , C.E. With Illustra-
tions. 

XXII. H I G H M A S O N R Y D A M S . By J O H N B. M C M A S T E R S , C.E. 
With Illustrations. 

XXin. TnF. F A T I G U E O F M E T A L S under Repeated Strains, with 
various Tables of Results of Experiments. From the German of 
Prof. L U D W I G S P A N G E N B E R O . With a Preface by S . II. S I I R E V E , 

A.M. With Illustrations. 

XXIV. A P R A C T I C A L T R E A T I S E ON T H E T E E T H OF W H E E L S , with 
the theory of the use of Robinson's Odontograph. By S. W . R O B I N -

SON, Prof. of Mechanical Engineering, Illinois Industrial University. 

X X V . T H E O R Y A N D C A L C U L A T I O N S O F C O N T I N U O U S B R I D G E S . B y 

M A N S F I E L D M E R R I M A N , C . E . With Illustrations. 

X X V L . P R A C T I C A L T R E A T I S E ON T H E P R O P E R T I E S OF CONTINUOUS 

B R I D G E S . B y C H A R L E S B E N D E R , C . E . 



XXVIL O N B O I L E R INCRUSTATION AND CORROSION, By J . F. Rowan. 

XXVIII. O N TRANSMISSION OF P O W E R BY "WIRE R O P E . By Albert W . 

Stabl. 

X X I X . INJECTORS : T H E I R T H E O R Y AND U S E . Translated from the 
French of M. Leon Pouchet. 

X X X . T E R R E S T R I A L MAGNETISM AND T H E MAGNETISM OF I R O N SHIPS . 

By Professor Fairman Rogers. 

X X X L T n E SANITARY CONDITION OF D W E L L I N G HOUSES IN T O W N AND 

COUNTRY. By George E. "Waring, Jr. 

I N P R E S S . 

Heating and Ventilation in its Practical Ap-
plication for the Use of Engineers and 
Architects. 

Embracing a Series of Tables and Formula; for dimensions for Heating 
Flow and Return Pipes, for Steam and Hot Water Boilers, Flues, etc., 
etc. By F. Schumann, C. E. 1 vol. 12mo. Illustrated. 

v 

A Guide to the Determination of Rocks. 
Being an Introduction to Lithology. By Edward Jannettaz, Doctuer des 

Sciences. Translated from the French by Geo. W. Plympton, Profes-
sor of Physical Science, Brooklyn Polytechnic Institute. 12mo. 

Shield's Treatise on Engineering 
Construction. 

12mo. Cloth. 
Embracing Discussions of the Principles involved and Descriptions of the 

Material employed in Tunnelling, Bridging, Canal and Road Build-
ing, etc., etc. 

MILITARY BOOKS 
P U B L I S H E D BY 

D. V A N N O S T E A N D , 
23 Murray Street and 27 W a r r e n Street, 

N E W Y O R E " . 

Any Book in this Catalogue sent free by mail on receipt of price. 

Benton's Ordnance and Gunnery. 
Fourth Edition, Revised and Enlarged. 8\-o. Cloth. S5.00. 

O R D N A N C E AND G U N N E R Y . A Courso of Instruction in Ordnancc 
and Gunnery. Compiled for the use of tlio Cadets of the U. S. Military 
Academy, by Col. J . G . B E N T O N , Major Ordnanco Dep., late Instructor 
of Ordnance and Gunnery, Military Academy, West Point. Illus-
trated. 

Holley's Ordnanco and Armor. 
«TO. Half Roan, SlO.OO. Half Russia, -S12.00. 

A T R E A T I S E ON O R D N A N C E AND A R M O R . With an Appendix, refer-
ring to Gun-Cotton, Hooped Guns, etc., etc. By Alexander L. Holley, 
B. P. With 493 illustrations. 048 pages. 

Scott's Military Dictionary. 
8vo. Half Roan, SG.00. Half Russia, $8.00. Full Morocco, $10.00. 

M I L I T A R Y D I C T I O N A R Y . Comprising Technical Definitions; Informa-
tion 011 Raising and Keeping Troops; Law, Government, Regu-
lation, and Administration relating to Land Forces. By Col. II. L. 
Scott, U.S. A 1vol. Fully illustrated. 

Roemer's Cavalry. 
8vo. Cloth, SG.00. Half Calf, $7.50. 

C A V A L R Y : I T S H I S T O R Y , M A N A G E M E N T , A N D U S E S IN W A R . B y J . 

Roemer, LL.D., late an officer of Cavalry in the Service of the Nether-
lands. Elegantly illustrated with one hundred and twenty-seven fine 
wood engravings. Beautifully printed on tinted paper. 
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Michaelis' Chronograph. 
4 to. Illustrated. Cloth. $3.00. 

T H E L K B O U L E N G E C H R O N O G R A P H . With three lithographed folding 
plates of illustrations. By Brevet Capfc. O. E. Michaelis, First Lieu-
tenant Ordnance Corps, U. S. Army. 

Bcnet's Chronoscope. 
Second Editidn. Illustrated. 4to. Cloth. $3.00. 

E L E C T R O - B A L L I S T I C M A C H I N E S . , and the Schultz Chronoscope. By 
GenL S. V. Benet, Chief of Ordnance, U. S. Army. 

Dufour's Principles of Strategy and Grand 
Tactics. ^ 

12mo. Cloth. $3.00. 
T H E P R I N C I P L E S OF S T R A T E G Y A N D G R A N D T A C T I C S . Translated 

from the French of General G. II. Dufour. By William P. Craigliill, 
I". S. Engr., and late Assistant Professor of Engineering, Military 
Academy, West Point From the last French edition. Illustrated. 

Jomini's Lifo of tho Emperor Napoleon. 
4 vols. 8vo., and Atlas. Cloth. Half Calf. 

M I L I T A R Y AND P O L I T I C A L L I F E OF T H E EMPF.UOU NAPOLEON. B y 

Baron Jomini, General-in-Chief and Aid-de-Camp to the Emperor cf 
Russia. Translated from the French, with Notes, by II. W. Ilalleck, 
LL.D., Major-General U. S. Army. With CO Maps and Plans. 

Jomini's Campaign of Waterloo. 
Third Edition. 12mo. Cloth. Sf.SB. 

T H E P O L I T I C A L AND M I L I T A R Y H I S T O R Y OF T H E C A M P A I G N OF W A -

TERLOO. Translated from tho French of General Baron do Jomini, by 
Genl. S. Y. Benet, Chief of Ordnance. 

Jomini's Grand Military Operations. 
2 vols. 8vo., and Atlas. Cloth, $15.00. Half Calf or Morocco, $21. Half Russia, 

$22.50. 
T R E A T I S E ON G R A N D M I L I T A R Y O P E R A T I O N S . Illustrated by a Critical 

and Military History of tho Wars of Frederick the Great. With a 
Summary of the Most Important Principles of the Art of War. By 
Baron de Jomini. Illustrated by Maps and Plans. Translated from 
the French by Col. S. B. Ilolabird, A. 1). C., U. S. Army. 

Rodenbough's Everglade to Canon. 
Royal 8vo. Illustrated with Chromo-Litbographs. Extra Cloth. $7,50. 

E V E R G L A D E TO CANON, with the Second Dragoons (Second IT. S. Cav-
alry), an authentic account of sen-ice in Florida, Mexico, Virginia and 
the Indian Country, including Personal Recollections of Distinguished 
Officers. By Theo. F. Rodenbough, Colonel and Brevet Brigadier-
General, U. S. Army. 

History of Brevets. 
Crown Svo. Extra Cloth. $3.50. 

T H E H I S T O R Y A N D L E G A L E F F E C T S OF B R E V E T S in tho Armies of 
Great Britain and the United States, from the origin in 1C92 until the 
present time. By Gen. James B. Fry, U. S. Army. 

Barre Duparcq's Military Art and History. 
8vo. Cloth. £5.00. 

E L E M E N T S OF M I L I T A R Y A R T A N D H I S T O R Y . By Edward do la Barre' 
Duparcq, Chef de Bataillon of Engineers in tho Army of France, and 
Professor of the Military Art i:i tho Imperial School cf St. Cyr. 
Translated by Colonel Geo. W. Cullum, U. S. E. 

Discipline and Drill of the Militia. 
Crown 8vo. Flexible cloth. $¿.00. 

T I I E D I S C I P L I N E AND D R I L L OF T N E M I L I T I A . By Major Frank S . 

Arnold, Assistant Quartermaster-General, Rhode Island. 

Wallen's Service Manual. 
12mo. Cloth. $1.50. 

S E R V I C E M A N U A L for the Instruction of newly appointed Commissioned 
Officers, and the Rank and File of the Army, as compiled from Army 
Regulations, The Articles of War, and the Customs of Service. By 

. Henry D. Walleu, Bvt. Brigadier-General U. S. Army. 

Boynton's History of West Point. 
Sccond Edition, 8vo. Fancy Cloth. $3.50. 

H I S T O R Y OF W E S T P O I N T , and its Military Importance during the 
American Revolution; and the Origin and Progress of tho United 
States Military Academy. By Bvt. Maj. Edward C. Boynton, A. M., 
Adjutant of the Military Academy. With 30 Map3 and Engraving 



Wood's West Point Scrap-Book. 
8vo. Extra Cloth. 85.00 

T H E W E S T P O I N T S C R A P - B O O K . Being a Collection of Legends, Stories, 
Songs, &c. By Lieut. O. E. Wood, U. S. A. With GO wood-cut 
Illustrations. Beautifully printed on tinted paper. 

West Point Life, 
Oblong 8vo. Cloth. $2.50. 

W E S T P O I N T L I F E . A Poem read before the Dialectic Society of the ' 
United States Military Academy. Illustrated with twenty-two full-
page Pen and Ink Sketches. By A Cadet. To which is added the 
song, "Benny Havens, Oh!" 

Gillmore's Fort Sumter. 
8vo. Cloth. $10,00. Half Russia, $12.00. 

. G I L L M O R E ' S F O R T S U M T E R . Official Report of Operations agaiust the 
Defences of Charleston Harbor, 1S63. Comprising the descent upon 
Morris Island, the Demolition of Fort Sumter, and the siege and 
reduction of Forts Wagner and Gregg. By Maj.-Gen. Q. A. Gill-
more, U. S. Engineers. With 70 lithographic plates, views, maps, etc. 

Gillmore's Supplementary Report on Fort 
Sumter. 

8vo. Cloth. $5.00. 
S U P P L E M E N T A R Y R E P O R T to the Engineer and Artillery Operations 

against the Defences of Charleston Harbor iu 1S63. By Maj.-Gen. Q. 
A. Gillmore, U. S. Engineers. With Seven Lithographed Maps and 
Views. 

Gillmore's Fort Pulaski. 
8vo, Cloth. $2.50 

S I E G E A N D R E D U C T I O N OK F O R T P U L A S K I , G E O R G I A . By Maj.-Gen. 
Q. A. Gillmore, U. S. Engineers. Illustrated by Maps and Views. 

Barnard and Bar ry ' s Report. 
8vo. Cloth. $4.00. 

R E P O R T OF T H E E N G I N E E R AND A R T I L L E R Y O P E R A T I O N S O F T H E 

A R M Y O F T H E P O T O M A C , from its Organization to the Close of the 
Peninsular Campaign. By Maj.-Gen. J . G. Barnard, U. S. Engineers, 
and Maj.-Gen. W. F. Barry, Chief of Artillery. Illustrated by 18 
Maps, Plans, &c. 

Guide to West Point. 
18mo. Flexible Cloth. $1,00. 

G U I D E TO W E S T P O I N T A N D T H E U. S. M I L I T A R Y A C A D E M Y . With 
Maps and Engravings. 

Barnard's C. S. A., and the Battle of Bull 
Run. 

8vo. Cloth. $2.00, 
T H E "C. S. A . , " AND T H E B A T T L E O F B U L L R U N . By Maj.-Gen. J. G. 

Barnard, U. S. Engineers. With live Maps. 

Barnard 's Peninsular Campaign. 
8vo, Cloth. $1.00. 12mo. Paper 30c. 

T H E P E N I N S U L A R C A M P A I G N A N D ITS A N T E C E D E N T S , as developed by 
the Report of Maj.-Gen. Geo. B. McClellan, and other published 
Documents. By Maj.-Gen. J . G. Barnard, U. S. Engineers. 

Barnard 's Notes on Sea-Coast Defence. 
8vo. Cloth. $2.00. 

N O T E S ON S E A - C O A S T D E F E N C E : Consisting of Sea-Coast Fortifica-
tion ; the Fifteen-Inch Gun ; and Casemate Embrasufe. By Major-
Gen. J . G. Barnard, U. S. Engineers. With an engraved Plate of 
the 15-inch Gun. 

Henry 's Military Record of Civilian 
Appointments, U. S. A. 

2 Vols. 8vo. Cloth. $10.00. 
M I L I T A R Y R E C O R D O F C I V I L I A N A P P O I N T M E N T S I N TIIF. U N I T E D 

S T A T E S A R M Y . By Guy V. Henry, Brevet^Colonel U . S . A . 

Harr ison 's Pickett's Men. 
12nio. Cloth. $2.00. 

P I C K E T T ' S M E N . A Fragment of War History. By CoL Walter Har-
rison. With portrait of Gen. Pickett. 

Todleben's Defence of Sebastopol. 
12mo. Cloth. $2.00. 

T O D L E B E N ' S ( G E N E R A L ) H I S T O R Y O F T H E D E F E N C E O F S E B A S T O P O L . 

By William Howard Russell, LL.D., of the London Times. 



Hotchkiss and Allan's Battle of Chaneellors-
ville. 

8vo. Clotlu $5.00. 
T H E B A T T L E - F I E L D S OF V I R G I N I A . Chancellorsville, embracing the 

Operations of the Army of Northern Virginia. From the First Battle 
of Fredericksburg to the Death of Lt-Gen. T. J . Jackson. By Jed. 
Ilotchkiss and William Allan. Illustrated with five Maps and Por-
trait of Stonewall Jackson. 

Andrews' Campaign of Mobile. 
8vo. Cloth. 83.50. 

T H E C A M P A I G N OF M O B I L E , including the Co-operation of General 
Wilson's Cavalry in Alabama. By Brevet Maj.-Gen. C. C. Andrews. 
With five Maps and Views. 

Stevens' Three Years in the Sixth Corps. 
New and Revised Edition. 8vo. Cloth. $3.00 

T H R E E Y E A R S IN TIIF, S I X T H C O R P S . A concise narrative of events in 
the Army of the Potomac from 18G1 to the Close of the Rebellion. 
April, 1805. By Geo. T. Stevens, Surgeon of the 77th Regt. New 
York Volunteers. Illustrated with 17 engravings and six steel portraits. 

Lecomte's War in the United States. 
12rao. Cloth. 81.00. 

T I I F . W A R IN T H E U N I T E D S T A T E S . A Report to the Swiss Military 
Department. By Ferdinand Lecomte, Lieut.-Col. Swiss Confedera-
tion. Translated from the French by a Staff Officer. 

Roberts' Hand-Book of Artillery. 
lfimo. Morocco Clasp. $2.00. 

I I A N D - B O O K OF A R T I L L E R Y . For the service of the United States 
Army and Militia. Tenth edition, revised and greatly enlarged. By 
Joseph Roberts, Lt.-Col. 4th Artillery and Brevet. Maj.-General U. S. 
Army. 

Instructions for Field Artillery. 
12mo. Cloth. $3.00. 

I N S T R U C T I O N S FOR F I E L D A R T I I L E R Y . Prepared by a Board of Artil-
lery Officers. To which is added the " Evolutions of Batteries," 
translated from the French, by Brig.-Gen. R. Anderson, U. S. A. 122 
plates. 

Heavy Artillery Tactics. 
12mo. Cloth. §2.50. 

H E A V Y A R T I L L E R Y TACTICS.—1SG3. Instructions for Heavy Artillery; 
prepared by a Board of Officers, for the use of the Army of the United 
States. With service of a gun mounted on an iron carriage and 39 
plates. 

Andersons' Evolutions of Field Artillery. 
24 mo. Cloth. 81.00. 

E V O L U T I O N S O F F I E L D B A T T E R I E S OF A R T I L L E R Y . Translated from 
the French, and arranged for the Army and Militia of the United 
States. By Gen. Robert Anderson, U. S. A. Published by order of 
the War Department. 33 plates. 

Duanc's Manual for Engineering Troops. 
12mo. Half Morocco. $2.50. 

M A N U A L F O R E N G I N E E R T R O O P S : Consisting of—Part I. Ponton Drill; 
II. Practical Operations of a Siege; III. School of the Sap; IV. Mili-
tary Mining; V. Construction of Batteries. By General J. C.Duane, 
Corps of Engineers, lT. S. Army. With 1G plates and numerous wood-
cut illustrations. 

Cull urn's Military Bridges. 
8vo. Cloth. S3.50. 

S Y S T E M S O F M I L I T A R Y B R I D G E S , in use by the United States Army; 
those adopted by the Great European Poweis; and such as are em-
ployed in British India. With Directions for the Preservation, 
Destruction, and Re-establishment of Bridges. By Col. George W. 
Cullum, U. S. E. With 7 folding plates. 

Mendell's Military Surveying. 
12mo. Cloth. $2.00. 

A T R E A T I S E ON M I L I T A R Y S U R V E Y I N G . Theoretical and Practical, 
including a description of Surveying Instruments. By G. II. Mendell, 
Major of Engineers. With 70 wood-cut illustrations. 

Abbot's Siege Artillery Against Richmond. 
8vo. Cloth. $3.50. 

S I E G E A R T I L L E R Y IN T H E C A M P A I G N A G A I N S T R I C H M O N D . By Henry 
L. Abbot, Major of U. S. Engineers. Illustrated. 
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Haupt's Military Bridges. 
8YO. Goth. $6.50. 

M I L I T A R Y B R I D G E S ; For the Passage of Infantry, Artillery and Bag-
gage Trains; with suggestions of many new expedients and construc-
tions for crossing streams and chasms. Including also designs for 
Trestle and Truss-Bridges for Military Railroads, adapted specially to 

'the wants of the Service of the United States. By Herman Haupfc, 
Brig.-Gen. U. S. A., author of " General Theory of Bridge Construc-
tions," &c. Illustrated by CD lithographic engravings. 

Lendy's Maxims and Instructions on the 
Art of War. 

18rao. Cloth. 75c. 
M A X I M S AND I N S T R U C T I O N S ON T H E A R T OF W A R . A Practical 

Military Guide for the use of Soldiers of All Arms and of all Coun-
tries. Translate«! from the French by Captain Lendy, Director of the 
Practical Military College, late of the Freuch Staff, etc., etc. 

Benet's Military Law and Courts-Martial." 
Sixth Edition, Revised awl Enlarged. 8vo. Law Sheep. $4^0. 

B E N E T ' S M I L I T A R Y L A W . A Treatise on Military Law and the Prac-
tice of Courts-Martial. By Gen. S. V. Bendt, Chief of Ordnance U. S. A., 
late Assistant Professor of Ethics, Law, &c., Military Academy, West 
Point. 

Lippitt's Special Operations of War. 
Illustrated. 18mo. Cloth. 81.00. 

Lippitt's Field Service in War. 
12mo. Cloth. $1.00. 

Lippitt's Tactical Use of the Three Arms. 
12rao. Cloth. $1.00. 

Lippitt on Intrenchments. 
41 Engravings. 12mo. Cloth. $1.25. 

Kclton's New Bayonet Exercise. 
fifth Edition. Revised. 12mo. Cloth. $2.00. 

X E W B A Y O N E T E X E R C I S E . A New Manual of the Bayonet, for the 
Army and Militia of the United States. By General J . C. Helton, 
U. S. A. With 40 beautifully engraved plates. 
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Craighill's Army Officers' Companion. 
18ino. Full Roan. $2.00. 

T U E A R M Y O F F I C E R S * P O C K E T COMPANION. Principally designed for 
Staff Officers in the Field. Partly translated from the French of 
M. de Rouvre, Lieut.-Col. of the French Staff Corps, with additions 
from Standard American, French, and English authorities. By Win. 
P. Craighill, Major U. S. Corps of Engineers, late Assistant Professor 
of Engineering at the U. S. Military Academy, West Point. 

Casey's U. S. Infantry Tactics. 
3 vols. 24mo. Cloth. $2.50. 

U S I N F A N T R Y T A C T I C S . By Brig.-Gen. Silas Casey, U. S. A. 3 vols., 
24mo Vol. I.—School of the Soldier; School of the Company; In-
struction for Skirmishers. Vol. Il .-School of the Battalion Vol. 
I] J.—Evolutions of a Brigade ; Evolutions of a Corps d'Armée. 
Lithographed plates. 
United States Tactics for Colored Troops. 

24mo. Cloth. $1.50. 
U. S. T A C T I C S FOR C O L O R E D T R O O P S . U. S. Infantry Tactics for the 

use of the Colored Troops of the United States Infantry. Prepared 
under the direction of the War Department 

Morris' Field Tactics for Infantry. 
Illustrated. 18mo. Cloth. 75c. 

F I E L D T A C T I C S FOR I N F A N T R Y . By Brig.-Gen. W M . H . Morris, U. S. 
Vols., late Second U. S. Infantry. 

Monroe's Light Infantry and Company Drill. 
32mo."_ Cloth. 75c. 

L I G H T I N F A N T R Y C O M P A N Y AND S K I R M I S H D R I L L . Bayonet Fencing; 
with a Supplement on the Handling and Service of Light Infantry, 

k By J . Monroe, Col. Twenty-Second Regiment, N. G., N. Y. S. M. for-
merly Captain U. S. Infantry. 

Berriman's Sword Play. 
Fourth Edition. 12mo. Cloth. $1-00. 

S W O R D - P L A Y . The Militiaman's Manual and Sword-Play without a 
Master. Rapier and Broad-Sword Exercises, copiously explained and 
illustrated; Small-Arm Light Infantry Drill of the United States 
Army ; Infantry Manual of Percussion Musket; Company Drill of the 
United States Cavalry. By Major M. W. Berriman. 



Morris' Infantry Tactics. 
2 vols. 24mo. $2.00. 2 vols, in 1. Cloth. Si .50. 

I N F A N T R Y T A C T I C S . By Brig.-Gen. Wi l l i am H . Morris, U . S. Vols., 
and late U. S. Second Infan t ry . 

Le Gal's School of the Guides. 
lGmo. Cloth. GOc. 

TIIF. SCHOOL OF THE GUIDES. D e s i g n e d f o r t h e u s e of t h e M i l i t i a of 
the United States. By Col. Eugene Le Gal. 

Duryea's Standing Orders of the Seventh 
Regiment. 

New Edition. 16mo. Cloth. 50c. 
S T A N D I N G O R D E R S O F T H E S E V E N T H R E G I M E N T N A T I O N A L G U A R D S . 

By A. Duryea, Colonel. 

Heth's System of Target Practice. 
18rao. Cloth. 75c. 

S Y S T E M O F T A R G E T P R A C T I C E ; For the use of Troops when armed 
with the Musket, Rifle-Musket, Rifle, or Carbine. Prepared princi-
pally f rom the French, by Captain Henry Heth, Tenth In fan t ry , 
U. S . A. 

Wilcox's Rifles and Rifle Practice. 
New Edition. Illustrated. 8vo. Cloth. $2.00. 

R I F L E S A N D R I F L E P R A C T I C E . An Elementary Treat ise on the Theory 
of Rifle F i r i n g ; with descriptions of the I n f a n t r y Rifles of Europe 
and the United States, their Balls and Cartridges. Bv Captain C. M. 
Wilcox, U. S. A. 

Viele's Hand-Book for Active Service. 
12rao. Cloth. $1.00. ' 

I I A N D - B O O K F O R A C T I V E S E R V I C E , conta ining Practical Instructions in 
Campaign Duties. For the use of Volunteers. By Brig.-Gen. Egbert 
L . Viele, U. S. A. 

Nolan's System for Training Cavalry Horses. 
24 Plates. Cloth. $2.00. 

N O L A N ' S S Y S T E M F O R T R A I N I N G C A V A L R Y H O R S E S . By Kenner Gar-
rard, Bvt. Brig.-Gen. U V S . A . 

Arnold's Cavalry Service. 
Illustrated 18mo. Cloth. 75c. 

NOTES ON HORSES FOR CAVALRY SERVICE, e m b o d y i n g t h e Q u a l i t y , 

Purchase, Care, and Diseases most frequently encountered, with lessons 
for b i t t ing the Horse, and bending the neck. By Bvt. Major A. K . 
Arnold, Capt . F i f t h Cavalry, Assistant Instructor of Cavalry Tactics, 
U. S. Mil. Academy. 

Cooke's Cavalry Practice. 
100 Illustrations. 12mo. Cloth. $1.00. 

C A V A L R Y T A C T I C S ; Regulat ions for the Instruction, Format ion and 
Movements of the Cavalry of the Army and Volunteers of the United 
States. By Phil ip St. George Cooke, Brig.-Gen. U. S. A. 
This is the edition now iu use iu the U. S. Army. 

Patten's Cavalry Drill. 
93 Engravings. 12mo. Paper. 50c. 

C A V A L R Y D R I L L . Containing Instructions on Foot ; Instruct ions on 
Horseback ; Basis of Instruct ion ; School of the Squadron, and Sabre 
Exercise. 

Patten's Infantry Tactics. 
02 Engravings. 12mo. Paper. 50c. 

I N F A N T R Y T A C T I C S . School of the Soldier ; Manual of Arms for the 
Rifle M u s k e t ; Instruct ions fo r Recruits, School of the Company; 
Skirmishers , or Light In fan t ry and Rifle Company Movements ; the 
Bayonet Exercise ; the Small-Sword Exercise ; Manual of the Sword 
or Sabre. 

Patten's Infantry Tactics. 
Revised Edition. 100 Engraviugs. 12mo. Paper. 75c. 

I N F A N T R Y T A C T I C S . Contains Nomenclature of the M u s k e t ; School 
of the Company ; Skirmishers, or L igh t In fan t ry and Rifle Company 

) Movements ; School of the Battal ion ; Bayonet Exercise ; Small Sword 
Exercise ; Manua l of the Sword or Sabre. 

Patten's Army Manual. 
8vo. Cloth. $2.00. 

A R M Y M A N U A L . Containing Instructions for Officers in the Preparat ion 
of Rolls, Returns, and Accounts required of Regimental and Company 
Commanders, and per ta in ing to the Subsistence and Quar termaster ' s 
Depar tment , &c., &c. 
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Patten's Artillery Drill.' 
12mo. Paper. 50c. 

A R T I L L E R Y D R I L L . Containing instruction in the School of the Piece, 
and Battery Manœuvres, compiled agreeably to the Latest Regulations 
of the W a r Department. From Standard Military-Authority. By 
George Patten, late U. S. Army. 

Andrews' Hints to Company Officers. 
ISrao. Cloth. GOe. 

H I N T S TO C O M P A N Y O F F I C E R S ON T H E I R M I L I T A R Y D U T I E S . B y 

General C. C. Andrews, Third R e g t , Minnesota Yob. 

Thomas' Rifled Ordnance. 
Fifth Edition, Revised. Illustrated. 8vo. Cloth. $2.00. 

R I F L E D O R D N A N C E ; A Practical Treatise on the Application of the 
Principle of the Rifle to Guns and Mortars of every calibre. To which 
is added a new theory of the initial action and force of Fired Gun-
powder. By Lynall Thomas, F. R. S. L. 

Brinkerhoff's Volunteer Quartermaster. 
12rao. Cloth. $2.50. 

T H E V O L U N T E E R Q U A R T E R M A S T E R . By Captain R. Brinkerhoff, Post 
Quartermaster at Washington. 

Hunter's Manual for Quartermasters and 
Commissaries. 

12mo. Cloth. $1.25. Flexible Morocco, Si. 50. 
M A N U A L F O R Q U A R T E R M A S T E R S A N D C O M M I S S A I U E S . Containing 

Instructions in tho Preparation of Vouchers, Abstracts, Returns, etc. 
By Captain R. F . Hunter, lato of the U. S. Army. 12mo. Cloth. 
81.25. 

Greener's Gunnery. 
8vo. Cloth. $4.00. Full Calf. $6.03. 

G U N N E R Y I N 1858. A Treatise on Rifles, Cannon, and Sporting Arms. 
By Wm. Greener, R. C. E . 

Head's System of Fortifications. 
Illustrated. 4to. Paper. $1.00. 

A N E W S Y S T E M O F F O R T I F I C A T I O N S . By G»rge E . Head, A . M . , 

Capt Twenty-Ninth Infantry, and B v t Major U. S. A. 




