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informs us that each of the ordinates
A 1 Cy H, ¢,, must be increased in the ratio
of 4 gg’ to df, in order that when they
are considered as loads, they may pro-
duce a total deflection equal to 2df.
To effect this, lay off bj=df and bi=
} 79', and draw the horizontals through
i and '.f. At any convenient distance
draw the vertical 4,7, and draw &¢, and
bj,. These last two lines enable us to
effect the required proportions for any
ordinates on the left, and these or two
lines of the same slope on Ilu right to
do the same thing on the right. Z. ¢.
lay off the ordinate l’.”‘\‘.f.}r ¢.', then
the required new ordinate is #7.". Then
lay off %,"¢,'=47.'. In the same man-
ner find 4 e from A b, and % e from /4

In the same manner can the other ordi-
nates f.':r 5 ete., be found ; but this is
not the best way to determige the rest
of llu-m, for we can now find the Irnh'
.'i:l'lli ||-II(' (“N'?:lll:'v of !h(_- ]n-i\'gnn e.

As we have previously seen, the pole
distance i8 decreased in the same ratio
as the ordinates of the moment curve
are i:u réased, therefore prolong 4i to v,
and draw a horizontal line through r;‘
intersecting b, at v, and the middle ver-
tical at », ; then is v, v, the pole dis-
tance decreased in the required ratio.
Hence we move up the weight-line 0, w0,
to the position u, u, \nlll:.:ll_\ through
n,; and for convenience, lay off the
weights w," w," at u,"u, ete. ; :

F Illlfnllllnlél know that the new
closing-line is horizontal. To find the
position of the pole 0 so that this shall
oeccur, draw bv parallel to Ak, and from
v the horizontal »0. As is well known,
v divides the total weight into the two seg-
ments, which are the vertical resistances
of the abutments+and if the pole o is
on the same horizontal with », the
closing line will be horizontal. ;

Now having determined the positions
of the points e, e, ¢, starting I':‘c-m one
of them, say e,, draw e, e, || ou,, e_e, || ou,
ete.; then if the work be accurate, the
polygon will pass throngh the other two
points ¢ and ¢,. The bending moments
of the arch & or the arch « ;u'r-‘__ .. ote.,
is the !PJ'HiIi'I of the [njh-.-]i;i;ﬂ‘.tr
;-_;_-_:;-.. by the ordinates d e, d._e.
ate., l't‘.‘;lill“\i'l‘\, and ]I\'T\\'(‘r.-“- ';1;‘ se
points a similar product gives the mo-
ment with sufficient accuracy. Tt would
be useful for the sake of accuracy to

multiply the ordinates of the arch by
some number greater than 3.

As a final test of the ancumm- of the
work, let us see whether 3 (/g i) 18 ac-
tu: 1]1\ zero, as should be, —‘1{ d., for ex-
ample, _:_,.r.:.Jl and M is proportional
to d.¢. Then s, is ]ur:;ar.:r[i'mz‘.l to
Mey at that point if ¢ s is the are of
a circle, of which e, 7, is the diameter.
Similarly find &."s,, ete. When e, for
{-x;lmlf\g_- falls above f7 the cirele lji:‘.l.‘-l
I'L‘ t.lk'*l'["llii'll on 1]:(‘ sum |'1f‘ /.'}, :ml[ u"’ &
as a diameter, and 4 s,’ is proportional
to a moment of different sign from that
at . We have distinguished the sign
of the moments at the different points
along the arch, by putting different
signs before the letter s. It would have
been slightly more accurate to have used
only one-hulf the ordinates 4 e  and
b.'e/, but as they nearly equal in this
case and of opposite sign, we have in-
trodnced no appreciable error.

Now at any point s lay off ss.=d. s,
and at right LII"li.‘- to it & s.=0h 3., then
at right angles to the h\!mthemm 88,
mn!\l__- s,8'=d's', etc. Then the sum
..!‘ » positive squares is ss ., and simi-

ul\ Ilw sum of the nwfm\v sq l ires 18
8. If these are L’t[l]tl. then = (Mey)
vanishes as it should, and the construe-
tion is correctly made.

It would have been equally correct to
suppose the two vertical girders fixed at
d, and bent by the moments acting, We
could have determined the required ratio
equally well from this construction.
Further, in proving the correctness of
the ¢ onstrue tion by taking the algebraic
sum of the squares, we could have reck-
oned the ordinates, %, from any other
horizontal line as \\d as from 7. [

To find the resultant stress in
the different }mmum of the arch,
we must ]blulnrlt' ©o to o, 5:1\"
(not drawn) so that the pole distance
»o'=3v'0; then if we join o’ and u.,
o', will be the resultant stress in the
segment b, a_; o'w. will be the stress in
a. a_. ete., measured in the same scale as

g w,, ete. This resultant
is not directly along the neutral
axis of the arch. ¥

'l'}{=- vertical shearing stress is construet-
ed in the same manner as for a girder,

1
}

by 1]1-:;‘-\~i11;{ one horizontal 1}111!{1‘-‘!1 w,

. between the verticals 7 and 8, another
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1
through . between 7 and 6, ete. (not
drawn). Then the shear will be the ver-
tical distance between voand these hori-
zontals through w,, w,, ete. It is seen
that the shear will change sign on the
vertical through &4 with our present
loading. 3

The actual position of the vertical
through the center ni gravity of the
load .Illl\' be 1‘*::*1111 )y prolonging the

first and il t ~1ilu of the polygon e. Al

weicht = § P = w_w, ought, ]'H'\\l‘\'l'T'q
first to be 1]]]1ul at b, and another |
— | P= w," w0, at .frr_ The shearing
stress under a distributed load wil
actually chanee sign on the vertical so
found. It will not pass far however
from b .

The resultant stress is the resultant of
the horizontal thrust and the vertical
shearing stress, and it can be resolved
into a tancential thrust along the arch
and a normal shearing stress, This
resolution will be effected in Fig. 3 of
the next chapter.

As to the ]umtlnn of the mn\ln“‘ load
which will produce the maximum bend-
ing moments, we may say that the posi-
tion chosen, in which the moving load
covers one-half the span, gives in general
nearly this case. It is possible, how-
ever, to increase one or two of the

moments slightly by covering a little | !
{the St. Lounis Arch [ was increased

more than half the span with the mov-
ing load.

The loading which produces maximum
moments will be treated more fully in
subsequent chapters.

The maximum resultant stress and
maximum vertical shear oeccur in gen-
eral when the moving load covers the
whole span. The construction in this |
case is much simplified, as the poly-
gon ¢ is then the same on the right of
& as it now is on the left, and the
center of gravity of the area is in the
ceuter vertical ; so that the closing line
A N is horizontal, and ean be drawn
with the same ease as % k.’ was drawn.
We shall not, e \'l n in this case, be under
the netessity of drawing the curves by
and bg’, which would be both alike: for,
as may be readily seen, the sum of the
positive moments M; on the left must
be very approximately equal to the
positive moments Mg on the left, and

the same thing is true for the negative |-

moments at the left. The same two
equalities hold also on the right. From
this we at once obtain the ratio by which
the ordinates of the polygon ¢ must
be altered to obtain those of the poly-
oon e.

This last ap pw\mmtmu also shows us
that for a total uniform load,. the four
points of inflection when the bending
moment 18 ze ro, lie two above and two
i\L'lm\ the closing line. Tt is frequently

sufficiently close ap proximation in the
case when the moving load covers only
part of the span to derive the ratio
needed by supposing that the sum of all
the ordinates, both right and left, above
the closing an in [lu polygon ¢ must
be increased, so that t sh: l“ equs 1l the
aumw[m':niln-r sum in the polygon d.
If the sums taken below the closing
lines give a slightly different result, take
the mean value.

Thus the single construction we have
given in Fig. 2, and one other much
simpler than this, which can be ob-
tained by adding a few lines to
Fig. 2, give a pretty complete deter-
mination of the maximum sgtresses on
the assumptions made at the commence-
ment of the article.

One of these assumptions, viz., that

|of constant cross section (i. e. I=con-

stant), deserves a single remark. In,

one-half at each end for a distance of
one-twelfth of the span. This very
considerable change in the value of Z
slichtly reduced the maximum moments
wmpulul for a constant cross section.
From other elaborate calculations, par-
ticularly those of Heppel,* on the Britan-
nia Tubular Bridge, it appears that the
| variation in the moments caused by the
[chanwes in eross section, which will
[adapt the rib to the stresses it must sus-
| tain, are relatively small, and in ordinary
| cases are less than five per cent. of the
[ total stress. The same considerations
are not applicable near the free ends of
a continuous girder, where Z may theo-
reticallv vanish. In the case before us,
where the prineipal part of the stress
arises not from the bending moments,
but from the compression along the
arch, the effect of the variation of [Iis
very inconsiderable inde vv]

# Philosophical Maga , Vol 40, 1870.
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CHAPTER II1.
ARCH RIB WITH FIXED ENDS AND HINGE
JOINT AT THE CROWN.
Ler the curve a of Fie. 3 represent

arches of this character.

fifth of the span.
assume the [x.mu ular dimensions in feet,

mine the sh: ape of the arch.

The arch is supposed to be fixed in the | the center.

evi

the

RUCTIONS

dent that if we consider the parts of

girder at the right and left of the

center as two separate friu}m': whose
ends are joined at the center, these ends

[ have each the same de ﬂe(.uun, by
the proportions of the arch we shall use | of this connection.
to illustrate the method to be applied 1.,:

y reason

This is u\]m»nwl by means of our
The arch a is | equations by saying that =(Mzx) when
mental in shape, and has a rise of one- | the summation is extended f mm one end
It is unnecessary to | to the center is equal to =(Mz) when the

summation is extended flum the other
as the'above ratio is sufficient to deter- {end to the center, for these are then pro-

por

abutments, in snch a manner that the |
position of a line drawn tangent to the |

curve @ at either abutment is not changed
in direction by any deflection which the
arch may nnrlu"ru At the erown, how-
ever, is a joint, which is perfectly free to
turn, m-l which will, then, not allow the
propagation of any bending moment
from one side to the other. In order
that we may effect the constrnetion more
accurately, let us multiply the ordinates
of the curve a by some convenient nume-
ber, say 2, thoueh a still larger multi

plier would conduce to greater acouracy.

We tht us obtain l;.i'llrr‘\"'-]'] d.

Having divided the span b into twelve
equal parts & &, ete, (a lu cer number of
parts would be better for th --<:'\ mesion
an actual case), we f:.. off ‘n low 1.|
zontal line & on tl
which express on s
welghts whicel
concent v ot _m-:'ii'~!lf 'ii‘.;.ﬁl-
the arch. falist de p.r‘ of the
ing on the left and al’=4al that
l‘i;‘?;i. then & T
centrated at a

.-' .'. +}
w, 1 — the

on

b ‘:lf- a ]"l:l', draw t
¢, whose e: tre

W, W, an( ] U

\U\\ to fun

L llll |1El| ]

}I.‘II ]

ment

span, a1

I, whi

='Ii!i$ |

we notice 1

;.n:_;‘ moment

hence

polygon :
closing line then 'pr:u-«' through

point in question. Furthermore

tional to the respective deflections of
We may then write it thus :

3} (Ma)=3) (Mz)

The equation has this meaning, viz:

tha

t the center of gravity of the right

and left moment areas taken together is

in t
mo

M

[
lI]'.‘l
it
to
cen

85600

moment are:
T

any

.'lTE'I
to

7

mon
]IH\

oles as the loads.

.
|0

shall cause the moment

Oe b

he center vertical : for, takine each
ment M as a weight, @ is its arn, and
its moment about the center.
n order to find in what direction to
w the closing line through 4 so that
areas tocether
have their center of eravity in the
ter vertical through &, let us draw a
nd twplilihl'imn Emimg'-m using the
as a species of loading.
he area on the h_-fs included between
assumed closing line as &b, (or bh)
the polygon be, may be considered
consist of a positive triangular area
(or e i) and a negative parabolic
A u.uI ~n!~il.|i]\ on the richt a
‘b, (or ke, 2"y and a nega-

ny convenient equal distances from
enter as at p and p/, lay off these
to some convenient scale. It is.
aps, most convenient to rednce 111:4
lent areas to equivalent triangles

ing each a base equal to half the

then take the altitudes of the tri-
118 we he wve ;imw

}1.,.: & "ui 2z f, fa
assume, for the il!sL:L:.“ tha

that
[Lw-m“
course ].\‘ [“l"
and p p, =,
:Hll-iN I]i. * 1O F: Mn-«i—
ft and ri ght
P ‘mei p'p. are the
l-'l!'l‘\.
1s the }m].: of these loads, then
en for the first side of the
| I:nm [mn gon. Draw pg
i pg |l o'p,’, and then from q
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and r/' draw parallels to o’p,’ respective-
ly. These last sides intersect at g.. The
vertical through ¢, then eontains the
center of gravity of the moment areas

fa; ply Prop. IV, for the determination of

he bending momemn
That P rop. IV is true for an arch of

this kind is evident; for, the loading

when 5, 5 is assnmed as the closing |causes bending moments |nnp01t1un al to

line.

A few trials will enable us to find th
position of the closing line which causes
the center of gravity to fall on the center
vertical. We are able to conduct these
trials so asto lead at'once to the required
closing line as follows. Since, evidently,
b . +ble!=he +h/c /, it isseen that the
sum of }u- pmm\e loads is constant.
Therefore make p.p.= 'u " and use n.p
and p 'p, as the positive loads, in the
same manner as we used p, p, and p’,j
previously.

This will be equivalent to assuming a
new }HH'Il'l”ll of the closing line. The
only change in the second u[ml yrinm
polygon will be in the position of the
last two sides. These must now be drawn
11:[!':l”w:1 to op, ;u]d -J.‘rr_.‘ ]'1>.~}u*:'1i\'1'1'\'2
and they intersect at ¢,. The vertical
through ¢, contains the center of gravity
for this assumed closing line. Another
trial gives us q,.

U’f-l}]k‘ other.
the ratio in which the ordinates /ic must
be changed to lay them off on the same
scale as /kd it is necessary to use another
equation of condition imposed by the
nature of the joint and supports, viz:

the ordinates /¢, /i.c,, ete., while the arch
itself is fitted to neutralize, in virtne of
its shape,moments which are proportional
to k& f k., ete. The differences of
the mor m1|1~ L[’I'IL“-HHU![ by these ordi-
nates are what &tflli”\ lmnlmc bending
in the arch.

L]

Now the ordinates of the type /e are

not drawn to the same scale as those of the

ype kd, for each was assumed regardless
In order that we may find

22 (M,—M.)y =25 (M,— M)y

or 23 (Mi—M)y=2(Ms—M.)y

The left hand side of the equation is the

Now if the direction of the closing horizontal l“.“\]'lliﬂ‘!'“lk‘ﬂ{ (i.e., the total

line had changed gradually, then the in-
tersection of Hw ]\1.\‘. .‘lll\‘.\ of the second
equilibrium polygon would have
seribed a curve through ¢, ¢, and ¢..
one of these points, as ¢,, is near the ce
ter vertical, then the arc of a t'i!'t'in- 744
q,, will intersect it at ¢, inde finitely ne:
to the point where the true locus n[ the
!m‘l!\h of iuiz-l'w-r:tinl! would intersect the
center vertical.

et us assume that q. is then deter-
mined with sufficient exactness by the
eircular arc ¢.¢,¢,, and draw gg, and ¢'g,
as the last two sides of the second m‘l]i]i'
brinm }J!']\""-ll] Now draw o'p. |l 99,
and o'p Il 4G he np p,=c /, <“|"lf‘ g ¥
R ! are llu\ uqmu‘l pm tive loads
and A bk’ is the position of the closing
line such that the center of gravity of
the moment areas is in the center verti-
cal.

[t is evident that the closing line of the
]m lygon d considered as itself an equilib-
rium polygon is the horizont: al line
throngh o, for that will cause the center
of gravity of the moment areas on the
left and right, between it and the polygon
d, to fall on the center vertical.

The next step in the construction is to

defle :‘l‘i-\lll of the extre 11151}' a of the left
half of the arch, due to the actual bend-
de-|ing moments (Mg —M,) acting upon it:
and the right hand side is the horizontal
displacement of @ the extremity of the
right half of the arch due to the moments
actually bending it. These are equal be-
cause connected by the joint.

The construction of the deflection

curves due to these moments will enable

us to find the desired ratio.

The ordinates kd and he are rather
longer than can be used *‘\\11\tll-iLH ly, to
represent the intensity of the moments
concentrated at d ,d,, ete, and ¢,,¢,, ete.
so we will use the halves of these quan-
tities instead. lhvw ore lay off dm,=
L kb, mm =3 /' ymm=%+kd, etc,
and also dn, = /4 CLinn = i:/r:f‘, ete.

We use on]_' one -qus arter of each end
ordinate because the moment- area sup-
posed to be concentrated at each end has
only one half the width of the moment
areas concentrated at the remaining
l“.'.lllt:-: of division.

Using & as a pole we find the deflection
curve /0 due to the moment M, or M
and the deflection curve gb due to the
moments M, on the left. On the right
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we should find a deflection df'=df not
drawn, and similarly a deflection dg’ not
equal to dg. ;

Now the eqnation we are using requires
that the ordinates /c shall be elongated
so that when used as weights the deflec-
tions shall be identical: i.e, we must
have df'=3gg’. To effect the elongation,
lay off aj=df and ai=1gg’; and at any
convenient distance on the horizontals u
and jj, draw the vertical ¢,7,; then the
lines «¥, and aj, will effect the required
elongation. For example, lay off az,—
he., from which we obtain ”-’r.i/".'f. for
the left end ordinate, and similarly a7 ‘=
kle’, Efi-

The pole distance #, of the original
polygon ¢ must be shortened in the
same ratio in which the ordinates are
elongated. Hence the new pole distance
of the polygon e is #,.

Since Xk is the closing line of the
polygon ¢, and is horizontal, the pole of
¢ is 0, on the horizontal through 4 ; for,
Ao, is the part of the applied weight

stained by the left support. T

Now if the weight line be moved up
to £, so that the applied weights are wu'
at the center, ete., and o is the pole, the
polygon e may be described starting from
d, and it will finally cut off the end ordi-
nates ke, and ke’ before obtained.
Then will the ordinates of the type de
be proportional to the moments actually
bending the arch, and the moments wiil
be equal to the products of e by #, in
which de is measured on the scale of
distance, and #/, on the scale adopted for
the weights w w,, ete.

The accuracy of the construction is
finally tested by taking =(ds)’=0, an
equation deduced from 2" (M;— M. )y=0,
as explained in the previous article upon
the St. Louis Arch. It is unnecessary to
explain the details of this construction
since as appears from Fig. 3 it is in all
respects like that in Fig, 2.

Now let us find the intensity of the
tangential compression along the arch
and of the shearing normal to the arch.
Since the pole distance #, refers to the
difference of ordinates between the poly-
gons d and e, whose ordinates are double
the actual ordinates, if we wish now to
return to the actual arch @ whose ordi-
nates are halves of the ordinates of d,
we must take a pole distance 7#,=2¢#_ and
move the weight line so that it is the

vertical through 7. Then#, is the actual
horizontal thrust of this arch due to the
weights; and o», is the resultant stress
in the segment a,b, of the arch, which
may be resolved into two components
or, and v r, respectively parallel and per-
pendicular to @b,

Then are or, and v, respectively, the
thrust directly along, and the shear di-
rectly across the segment @b, of the
arch. Similarly or, and »r, represent
the thrust along, and the shear across
the segment aa, and so on for other
segments. These quantities are all
measured in the same scale as that of the
applied weights.

The shear changes sign twice, as will
be seen from inspection of the directions
in which the quantities of the type »r
are drawn. The shear is zero wherever
the curves ¢ and e are parallel to each
other. Thus the shear is nearly zero at
b, at a,and at some point between a’
and «/. :

The maxima and minima shearing
stresses are to be found where the ineli-
nation between the tangents to the curves
d and e are greatest,.

The statements made in the previous
article, respecting the position of the
moving load which causes maximum
bending moments, are applicable to this
kind of arch also.

"I‘In.- maximum normal shearing stress
will occur for the parts of the arch near
the center, when the moving load is near
its present position, covering one half of
the arch. But the maximum normal
shearing stress near the ends, may occur
when the arch is entirely covered by the
moving load, or when it may occur when
the moving load is near i{s'prcscnt posi-
tion, it being dependent upon the rise of
the arch, and the ratio between the mov-
ing and permanent load,

The maximum tangential compressions
occur when the moving load covers the
entire arch. The stresses obtained by
the foregoing constructions, go upon the
supposition that the arch has a constant
cross-section, so that its moment of iner-
tia does not vary, and no account is

taken of the stresses caused bv anv
changes of the length of the arch rib
due to variations of temperature or nthu;'
causes. These latter stresses we shall
now investigate for both of the kinds of
arches which have been treated.

CHAPTER TV.
TEMPERATURE STRAINS.

It is convenient to classify all strains
and stresses arising from a variation in
the length of the arch, under the head
of temperature, as such stresses could
evidently have been brought about by
suitable variations of temperature.

The stresses of this kind which are of
sufficient magnitude to be worthy of con-
sideration, besides temperature stresses
are of two kinds, viz. the elastic short-
ening of the arch under the compression
to which it is subjected, and the yielding
of the abutments, under the horizontal
thrust applied to them by the arch.
This latter may be elastic or otherwise.
It was, I believe, neglected in the com-
putation of the St. Louig Arch, and no
doubt with sufficient reason, as the other
stresses of this kind were estimated with
a sufficient margin to cover this also.
Anything which makes the true span of
the arch differ from its actual span
causes strains of this character. By true
span is meant the span which the arch
would have if laid flat on its side on a
plane surface in such a positipn that
there are no bending moments at any
point of it, while the actual span is the
distance between the piers when the
arch is in position. If the arch be built
in position, but joined at the wrong tem-
perature the true and actual spans do
not agree and excessive temperature
strains are caused.

Taking the coeflicient of expansion of
steel as ordinarily given, a change of
+80°F. from the mean temperature
would cause the St. Louis Arch to be
fitted to a span of about 3} inches, greater
or less than at the mean.

The problem we wish to solve then is
very approximately this: What hori-
zontal thrust must be applied to increase
or decrease the span of this arch by 3%
inches, and what other stresses are in-
duced by this thrust. In Fig. 4 the half
span is represented on the same scale as
in Fig. 2. The only forces applied to
the half arch are an unknown horizontal
thrust /7 at 5, and an equal opposite
thrust H at @. The arch is in the same
condition as it would be if Fig. 4 repre-
sented half of a gothic arch of a span =
2ab, of which @ was one abutment, and 5,
was the new crown at which a weight of
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2 I was applied. The gothie arch would
be continuous at the crown, but the
abutment @ would be mounted on rollers,
so that although the direction of a tan-
gentat a could not be chauged, neverthe-
less the abutment could afford no resist-
ance to keep the ends from moving
apart, i.e. there is no thrust in the direc-
tion of ad, any more than there is along
an ordinary straight girder.

In order to facilitate the accurate con-
struction, let us multiply the ordinates
of @ by 3 and use the polygon d instead.
Now the real equilibrium polygon of the
applied forces f, is the straight line &k,.
By real equilibrium polygon is meant,
that one which has for its pole distance,
the actual thrust of the arch. As we
are now considering this arch, I is the
applied force, and the thrust spoken of
is at right angles to /. We hayve just
shown this thrust to be zero. We have
then to construct an equilibrium polygon
for the applied force /Z with a pole dis-
tance of zero. The polygon is infinitely
deep in the direction of /7, and hence is
a line parallel to Z. This fixes its direc-
tion.

Its position is fixed from the considera-
tion that the total bending is zero, (be-
cause the direction of the tangents at
the extremities @ and &, are unchanged),
which is expressed by the equation

l( J’L; J==th

This gives us the same closing line
through %4 which we found in Fig. 2, and
the ordinates of the type Ad, are propor-
tional to the moments caused by the
horizontal thrust Z7.

Now lay off dm,=4kb,, mgn,=kd,
ete., as in Fig. 2.

The problem of finally determining 77,
will be solved in two steps:

1°. We shall find the actual values of
the moments to which the ordinates kd
are proportional;

9°, We shall find A by dividing either
of these moments by its arm.

By considering the equation

D, ET=X(My)

given in Chapter I, in which Dy is
the horizontal displacement, it is seen
that if the actual moments are used for
weights, and £7 for the pole distance, we
shall obtain, as the second equilibrinm
polygon, a deflection curve whose ordi-
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tUCTIONS

nates are the actual deflections due to
the moments. By actual moments, actnal
dLT(lHtlli‘-_ ete, 1s meant, that all of the
quantities in the equation are laid off to
the scale of distance, say one %% of the
actual size.

Now let the equation be written

1 .
nD, .- EI=2(My).

From which it is seen that if the ordi-
nates be multiplied by #, so that on the
paper they are of the same size as in the
arch, we must use one %' of the former
pole distance, all else remaining un-
changed.
Now for the St. Lounis Arch.
39680000 foot }111‘\ I'l. us tal
tons to the inch, as the scale of force :
and since bd=3 inches, the scale of dis-
tance » is found from the proportion
3in.::51.81t. : n =210 nearly,
and £ = lnn 7' =9 in, nearly,

which is the pole distance necessary to use
with the actual deflection § of 8} in.=
1&in., in order that the moments may be
measured to scale. As it is inconvenient
to use so large a distance as 9 in. on our
paper, let us take £ of 9 in. =3} in.

«z for the pole distance, and

t;:l; dy,

for the deflee-

Ll‘.

\u\\ with 2z as a pole and the weights
-fmk, m.m., eto, draw the rir-i’»-l‘llw!] curve
of, having the deflection =df. The mo-
ments M; must be increased in such
T':i.[iﬂ that the deflection wi I be i]l(':‘(‘:lu-il
from df to dy. Therefore draw the
straight lines &/ and by, which will ena-
ble us to effect the increase in the re quired
ratio. For ex: .t m[t' the momen t dm. =bi
is inereased to b4, and din, - increased
to #7.. Now measuring & in int-hv-' and
lnl-‘H] lying by 210 and 11_\ 100, we have
found that _’]“"" f:f:l‘*i'i" foot tons=the
moment at  or a.

And again, 21000 &7, =3747 foot tons
=the moment at 4.,

By measurement 210 dk=17 ft. and
210 bk= i

H=1809 = 17 = 108 tons, -
or H—=3747-34,.8=108 tons —.

These results should be identical. and
tlu rmhlu 1ice between them of Jess than
2 per cent. is due to the error oceasioned

by using the polygon J instead of the
curve of the ellipse, and to ~1mII errors
in measurement. With a larger figure
and the subdivision of the span into a
greater number of parts this error could
be reduced. The \':11!ic of I found for
the St. Louis Arch by eomputation was
104 tons, but that was not on the suppo-
sition of a uniform moment of inertia 7,
and should be less than the value we
have obtained.

Now this horizontal thrust & due to
temperature and to any other thrusts
of like nature as compression, ete, is of
the nature of a correction to the thrust
dne to the applied weights. Thus in
Fig. 2 we found 301 to be the thrus t due
to the applied weights, and on applying
the trlI.H[lHI! we must use the two
thrusts 80v’+ Hand 301’ — H as pole dis-
tances to t‘-lrlim u[l]ll;luuum }11\]\'r-|ni;~
whose ordinates reckoned from the arch
a will, when multiplied by its pole dis-
tance, give the true bendine moments.
The !ll[‘*'-ll‘i;‘.] and normal stresses can
then be us:;amui by resolution, pre-
cisely as in Fig. 3.

If it, however, appears desirable to
compute separately the strains due to
1T, this may be more readily done than
in combination with the stresses already
obtained. We have already seen sufli-
ciently how the bendine moments due
to H are found. In fact the moments

> such as would be produced by apply-
ing H at !!.:- point where the horizontal
through % cuts the polygon d, for this is

point r-f no moment, and may be
considered for the instant as a free end
of each segment, to each of which H is
applied causing the moments due to its
arm and inuJMt\

To find the tm gential stress and shear,
lay off in Fig. 4 av=H and onit as a di-
ameter :]u,wih; semicircle, and draw
ar, || a.a,, ar, || a,a. ete.; then will ar. be
the component of # along ., and vr, be
the component of 7 ¢ le(ll\ across the
same segment. In a similar manner i]w
quantities of which @» on the type ar
the tangential stresses and the quantities
vr are the shearing stresses camsed by
. 3 '

The scale used for this las st construe-
tion is about fifty tons to the inch,

Now H is positive or negative accord-
ing as the temperature is increased
above or diminished below the mean,

IN GRAPHIC

AL STATICS. 25

and these tangential and normal com-
ponents, of LOH]"Q change sign with 4.

It should also be Imt](‘w] in this connee-
tion that thrusts and bending moments,
which are numerically equal but of op-
posite sign, are induced by equal con-
tractions and expansions.

The stresses due to \‘:U'i:lti(m of tem-
perature in the arch of Fig. 3, having a
center joint, are constructed in l ig. 5.

It is evident from reasoning similar to
that employed for the case just discussed,
that the closing line d/% of the ]-ul\m.n
d is the mlmlllmnm ]ml\mm of the thrust
H induced by variation of temperature.
Nul pose we have changed the equation
of deflections to the form,

BT ::(g J;)’

e

mby,. .
i iy,

llll W]]i('h} 11 m f?_‘,:rilrj ;[nll /','[':-.-.u;»"’_'r-",'_',
then the moments M and the ordinates
y will be laid off on the seale of 1 to n.
This is equivalent to doing what was
done in the previous case, where m was
equal to § The remainder of the pro-
cess is that previously employed.

It should be noticed that we have in
Figs. 4 and 5, incidentally discussed two
new forms of arches, viz: in Fig. 4
of an arch having its ends fixed in direc-
tion, but not in position; i.c., its ends
may slide but not turn, and in Fig. 5,
that of an arch sliding freely and 1 turn-
111" freely at the ends. The first of these
archés has the same bending moments as
a straight girder, fixed in direction at the
ends, and the second of them has the same
bending moments as a simple girder sup-
ported at its ends.

/"r';'rrfrr —The measurements of Fig.
given on page 24 do not agree with the
scale on which the drawing is engraved.
The following equations and quantities
agree with the dimensions of Fig. 4. and
are to be substituted instead of those
‘__'1\'Lf|1 on page 24,

Let the scale of forece be 100 tons to
the inch, and since =44 inches, 41 i
:51.8 ft. . . 1 : n=140nearly, and
10072°=20 in. nn-m‘i‘. which i.-' the
distance to use with the actual deflect
of the half span—=1%1i

Now take one f
tance = 5 in. = d=
'la'TIC\'{iHI! = W =
convenient to use;

are the products of the deflections by
the pole distance, will be unchanged by
this proeess.

Now increase the ordinates in such a
ratio that the deflection will be inereased
from df to dy. For example, the mo-
ment dme,=bi is increased to &j, and dm,
=bi, is increased to 4j.. Now by meas-
uring 4 in inches and multiplying by
140 and by 100 we have found 14000 /,;_
1809 foot tons=the moment at @ or d.
And again, 14000 &7, =3747 foot tons =
the moment at &._.

By measurement, 140 dk=
and 140 dk=341.8 ft.
H=1809-+17=106 tons +,
H=3747-+:-34.8=108 tons —.

Near the bottom of the second column
of page 24, instead of ar,,
read av_. av,, v, av, vy,

The seale used in the last construction
in Fig. 4, is about 334 tons to the inch

rn., J_,'_, avr, ory

UNSYMMETRICAL ARCHES.

The construetions which have heen
given have been simplified somewhat
by the symmetry of the right and left
hand halves of the arch, but the meth-
ods which*have been used are equally
11-:-hx able if such symmetry does not
exist, as it does not, if, for example, the
abutments are of different heights.

In particular, for the unsymmetrical
arch, its closing line is not in general
horizontal, and must be found precisely
as that for the equilibrium polygon due
to the applied weights. %

f, 1in Fig. 13_. the hi!l!l‘ _iliiilt 1S not
situated at the center, the arch is un-
symmetrical, and the determination of
the -'n-il:_: line dune to the applied
weights, is not quite so simple as in Fig
3, It will be necessary to draw the 1}‘:1[
lines through the joint by which the
curve of errors ¢ is found.

CHAPTER V.
RIB WITH END JOINTS.
th

L

arch to

)
span of six times the
i Fig. "'. and ‘:J:s‘.;
t into twelve equal parts,
the ordinates of the type &d twice

aving a depth zy
irds of the span at the
'm load having a dept!
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wy'= Yy cover the one-third of the
span at the right. Assume any pole dis-
mnuq as of one-third of the span, and
lay off b0, —zy=one-half of the load
supposed to be concentrated at the cen-
ter; w,w,=2xy=the load concentrated
above b , ete. *111111.111&' at the ]a ft m'lke

, H,I—ih(‘ load rll""\L 171 ,y W0, ’?f‘ !

iy - ay’ = tay = the load 1]10\.(= f;
w,w, _-.r._r/-t}u load above 4/, ete.

‘From this force polygon draw the
equilibrium polygon ¢, just as in Figs. 2
and 3.

Now the closing lineof the equilibrium
polygon for a str: u_t__fht girder with ends
free to turn, must evidently pass so th: it
the end moments vanish. Hence ¢,
is the l'im‘illtr line of the polygon ¢, and
b5, is the closing line of thv ]ml\\fun d,
drawn accor 1]1:1[__»' to the same law. The
remaining condition by which to determ-
ine the bending moments is:

Z(My—M)y=0 .. Z(Mzy)==2(My)

which is the equation expressing the con-
dition that the span is invariable, the
summation being extended from end to
end of the arch.

This summation is effected first as in
Figs. 2 and 3, by laying off as loads
quantities proportional to the applied
moments concentrated at the points of
division of the arch, and thus finding the
:-L‘\‘thi l'l]lli]il)l'illlll ]ILJ_\':__EHII, or tIL-I!L‘c'liun
polygon of two upright girders, bent by
these moments.

Let us take one-fourth of each of the
n]' dinates bd fur these loads, i.e. bm=1% of

3 bd ; mm,=1bd,ete.:
e fln 11 to ~il||11 ir fractions of the mthn ates
of the eurve ¢, Using & as the pole for
this load, we obtain the total deflection
bf, on the left, and the same on the right
(not drawn) due to the bending moments
M.

Similarly g.9,” is the total deflection
right and left due to the moments A,

Now the equation of condition re-
quires that 3 g,9,/=0f,. That this may
oceur, the ordinates of the polygon ¢
must be elongated in the ratio of these
deflections. effect this, make ai=
4 g0, and aj=2>f,, and on the horizon-
tals through ¢ and 7 at a convenient dis-
tance draw the vertical 7 7 ; then the
lines ai, and aj, will effect the required
elongation, as previously explained. To

1]\u /;,u nn., ete,,

|0btam the center ordinate be, for ex-
ample, make «i'=0bk aj :Lf TO
find the new pole o, draw v parallel t
c,c,, and wo hullf,ont.ll, as before ex-
plained.

If az, cuts the load line at ¢, and the
horizontal through ¢, cuts a@j, at t,, then
the \eltlmltnmmrh . is the new position
of the load line .md ‘tt. is the new hori-
' | zontal thrust. r

Now using o as the pole of the load
line 2,2 ete., through #, draw the equi-
hl:rmm polygon starting from e It
must pass through &, and 6,', which tests
the accuracy of the construction.

The construction may now be com-
pleted just as in Fig. 3, by doubling the
pole distance, and finding the tangential
thrust along the arch and the normal
shear directly across the arch in the
segments into which it is divided. The
maximum thrust and tangential stress is
obtained when the line load covers the
entire span.

To compute the effect of changes of
temperature and other causes of like
nature in producing thrust, shear, bend-
ing moment ete., let us }lut the equation
of :l(IllLtlnns in ti:v following form:

mD,. L.’,-r—;:.\-_(—‘!..'z) els )

mnn nw  n

This equation may perhaps put in
more intelligible form the processes used
in 11-r~ 4 and 5, and is the equation
which should be used as the basis for the
discussion of temperature strains in the
arch. In equation (D) » is the number
by which the rise of the arch must be
divided to reduce it to bd, i.e. ., it is the
scale of the vertical ordinates of the
type &d, in Fig. 6, so that if & was on
the same scale as the arch itself, » would
]'e unity. Again,n’is the scale of force,
,_,.,, the number of tons to the inch; and
m is a number introduced for convenience
so that any assumed pole distance p may
be used for the pole distance of the sec-
nn}lfeqmi;hrmm polygon. In Fig. 6, p
.

We find m from the equation,

_ EI ET
P = e
mn n P
from which 7 may be computed, for £7is
a certain known number of foot tons when
the cross-section of the rib is giy en, p is
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a number of inches assumed in the draw-
ing, » and »’ are also assumed. Now
Dy, is the number of inches by which
the span is increased or decreased by the
change of temperature, and mJ/), is at
once laid off on the drawing.

The quantities in equnation (D) are so
related to each other, that the left-hand
member is the product of the pole dis-
tance and ordinate of the second equi-
librium polygon, while the right-hand
member is the bending moment pro-
duced by the loading M--nn', which
loading 1s proportional to M. The curve
S was constructed with this loading, and
onl_v needs to have its loads and ordi-
nates elongated in the ratio of &7, to
4 mD, to determine the wvalues of
M-=nn' at the various points of division
of the arch. One-half of each quantity
is used, because we need to use but one-
half the arch in this computation. Two
lines drawn, as in Figs. 4 and 5, effect
the required elongation.

The foregoing discussion is on the im-
plied assumption that the horizontal
thrust caused by variation of tempera-
ture is applied in the closing line &b, of
the arch, which is so evident from pre-
vious discussions as to require no proof
here.

The quantity determined by the fore-
going process is M--nn'=gq say, a cer-
tain number of inches. Then M=nx’ s

/% ¢ ]
and H= M- z/:n'g-:-i-/-\ in which Zis the
r nw 7

length of the ordinate in inches on the
drawing at the point at which. M is applied.

The determination of the shearing and
tangential stress induced by X is found
by using X as the diameter of a circle,
in which are inscribed triangles, whose
sides are respectively parallel and per-
pendicular to the segments of the 'mh
precisely as was done in Figs. 4 and 5

The whole discussion of the arch with
end joints may be applied to an unsym-
metrical arch with end joints. Inthat case,
it would be necessary to draw a curve f”
at the llj__'h{ as well as f at the left, .Hl<1
the two would be unlike, as g and g are
This, however, would afford no difficulty
either in determining the stresses due to
the loads, or to the variations of tem-
perature.

When the live load extends over two-
thirds of the span, as in the Fig., the
maximum bending moment is ne:ulv in
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the middle of that live load, and is very

approximately the largest which can be
induced by a live load of this intensity,
while the greatest moment of opposite
sign is found near the middle of the un-
loaded third of the span.

If the curve of the arch were a para-
bola instead of the segment of a circle,
these statements would be exact and
not approximate, as may be proved
analytically. This matter will be fur-
ther treated hereafter.

CHAPTER VL
ARCH RIB WITH THREE JOINTS.

Let the joints be at the center and ends
of the arch, as seen in Fig. 7. Let the
loading and shape of the arch be the
same as that used in Fig. 6. Now since
the bending moment must vanish at each
of the joints, the true equilibrium curve
must pass through each of the joints;
i. ¢, every ordinate of the polygon ¢
must be elongated in the ratio of db to
bh. To effect this, make di=>bk, and at
a convenient Ji<t‘1nce on the horizontals
through & and ¢ draw the vertical 7, 5,.
Then the ratio lines i, and b, will
enable us to elongate as required, or to
find the new pole distance ¢i, dimin-
ished in the same ratio, by drawing the
horizontal #i through ,. Thenew ]mleo 18
found in the same manneér as in Fig. 6.

Now with the new pole 0 and the new
load line through ¢, we can draw the
polygon ¢ starting at 4. It must then
pass through &, and b which tests the
aceuracy of the construction.

The maximum thrust, and tangential
stress is attained when the live load
covers the entire span.

Variations in length due to changes
of temperature induce no bending mo-
ments in this arch, but there may be
slight alteration in the thrust, ete., pro-
duced by the slight rising or ffillmrf of
the crown due to the elnntr ition  or
shortening of the arch. -This is so small
a displacement that it is of no import-
ance to compute the stresses due to it.
We have for the same reason, in the
previous and subsequent constructions,
omitted to compute the ‘stresses arising
from the displacement which the arch
undergoes at various points by reason of
its being bent. It would be quite pos-
sible to give a complete investigation of
these stresses by analogous methods.




NEW CONSTRUCTIONS

The construction above given is appli-
cable to any arch with three joints. The
arch need not be symmetrical, and the
three joints can be situated at fm\ points
of the arch as well as at the points
chosen above.
CHAPTER VII.

THE ARCH RIB WITH ONE END JOINT,

Let the arch be represented by Fig. 8,
in which the load, ete., is the same as in
Fi(v 6.

The closing line must pass through the
joint, for at this joint the bending
moment vanishes.

A second condition which must be
fulfilled is, that the total deflection be-
low the tangent at the fixed end of a
straight girder having one end joint
vanishes, for the position of the joint is
fixed. This is expressed by the equation

2(Mz)=0,
in which the summation is extended
from end to end.

This condition will enable us to draw
the closing line of the polygon ¢, and
also that of d. The problem may be
thus stated:—In what direction shall a
closing line such as ¢/t be drawn from
¢, so that the moment of the negative
triancular area e.e'A’ about e, shall be
equal to the moment of the positive
parabolic area ¢ be,’

To solve this problem, first find the
center of gravity of the parabolic area
by taking it in parts. The parabolic
area ¢, b ¢,/ is a segment ul‘ a single
parabola whose area is 280,/ X e G.=%h,
X b, , when /,=the F.cwht of an equiva-
lent triangle having the span for its base
h=4ce.

Lay off 1 T-r__r'_, and draw 70, .-
bl=h. L n':-f p,=h, as proportion-
al to l!w \\tw]]t nl the ]'11 abolic area

Again, ¢/p is }rrlpnrtmn al to the \\twhl
OI‘ the tllHl"’]l The par abolic
area '}.‘l"(F: x; ¢ -r‘i. < J.' /)(’.—_“ }":r‘ lF-Lr.‘: as
before, ... A ,=%¢/c/, which may be
found as A, was before.

Let /,==pp,, then on taking any pole,
as e, of this weight line, we draw gg,
¢,y since the left parabolic area has its
center of gravity in the vertical through
q,, and t the triangular area in that through
g, we draw gg/'lle,p, to the vertical
through ¢,’, which contains the center of
gravity of tl‘e right parabolic area.
The position of g midway between the

verticals containing b and 5, is slightly
to the right of its true po~lt1nn. as it
should be at one-third of the distance
from the vertical thromgh & to that
throngh 5, This does not affect the
nature of the process hOWE’\Cl.

Then ¢,9, |l e,p, and ¢/q, [l ¢, p, give g,
in the vertical tiuough the center of grav-
ity of the total positive area. The nega-
tive area, since 1t is triangular, hasits cen-

ter of gravity in the vertical through ¢’

Now if the total positive bending mo-
ment be considered to be concentrated
at its center of gravity and to act on a
straight girder it will assume the shape
rq,r, of this second equilibrium polygon,
and if a negative moment must be ap-
plied such Lh 1t the deflection vanish, the
remainder of the g_;udcl must be 77, a
prolongation of ¢ Now draw ¢, p,
7., and we }m\'v ;r p,=¢,'/ the ]lL‘i("hb
of thv triangle of neg: 1t1\0 area. Hence
¢ is the closing line, fulfilling the re-
quired conditions,

Again, to draw the closing line &%
according to the same law, we know
that the center of gravity of the poly-
gonal area d is in the center vertical.
To find the height pp’, of an equivalent
triangle having a base equal to the span,
we may obtain an approximate result, as
in I"i*f 2, by taking one twelfth of the
sum of the ordinates of the type bd, but
it is much better to obtain an exact
result by applying Simpson’s rule which
is simplified by the vanishing of the end
ordinates, The rule is found to reduce
in this case to the following:—The
required height is one eighteenth of the
sum of the ordinates with even subse ripts
plus one ninth of the sum of the rest.

Now this positive moment concentrated
in the center vertical and a negative
moment such as to cause no total deflec-
tion in a straight ginht' will 'fl\u as a
second vquilihrimu ];m\troll )
and if e,p,” || 7/, then p'p.'=b "k’ 14 the
heicht of the triangcular 1 E“"’ltl\L area,
and the closing line is &.4".

Now the remaining condition is that
the span is invariable, which is expressed
b‘. the equ: wion

2 (Ma— M) y=0, or Z(My y)=2(M.y).

Let us construct the deflection curve
due to the moments M; in a manner
similar to that Lm;]n\ ed in Fig. 2, We

lay off quantities dm, mm, ete.,
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equal to one-fourth of the corresponding
ordinates of the curve d, and dn,
n.n,, etc., one-fourth of the ordinates
of the curve ¢. We use one-fourth or
any other fraction or multiple of both
which may be convenient. By using &
for a pole we obtain the deflection curves

f and /" for the moments proportional to

M; , and the curves g and g’ for those
proportional to M, .

Now, Prop. IV. requires that the or-
dinates of the polygon ¢ should be in-
creased so that gg’ shall become equal to

J7'. Make di=gg’ and dj=f7" and draw

as before the ratio lines i, and dj, then
the vertical through ¢, is the new position
of the load line.

Find the new length of 64 which is
ke, and with the new pole o, draw the
polygon e starting at ¢. It must pass
‘[hl'-l:lgll [f’. The new pole o is found
thus: draw &w || 42/, then v divides the
weight line into two parts, which are
the vertical resistances of the abutments.
From », draw »,0 || k&', then the closing
line of the polygon e has the direction 24’

A single joint at any point of an un-
symmetrical arch can be treated in a
similar manner.

A thrust produced by temperature
strains will be ‘\[ plied 'llmlu‘ the closing
line 44, and the bending moments in-
duced will be proportional to the ordin-
ates of the polygon ¢ from this closing
line. The variation of span must be
computed not for the horizontal span,
but for the Irl‘l'lj{'i’TiHll-» of it on the ('!v'l-‘..
ing line &A%, The construction of this
component of the total effect will be
like that previously employed. Another
effect will be caused in a line perpen dic-
ular to A4’. The variation of span for
this constraction, is the projection of the

| horizontal variation on a line per-
pendicular to A4, and the bending mo-
ments induced by this force hu at
b,, and perpendicular to the ¢ immu line,
will be proportional to the horizontal
=1i~'t:llu‘t-.\‘ of the points of division from

b,. As these constructions are rea dily
nade, and the shearing and t mm-m:n.
stresses determined from thun‘ it is not

+

thought necessary to give them in detail.

CHAPTER VIII.
ARCH RIB WITH TWO JOINTS.
Let us take the two joints, one at the
center and one at one end as represented

in F;w. 9,

Let the loading, ete., be as
in Fig. 6.

The closing line evidently passes
throngh the two joints, as at them the
bending moment vanishes.

The remaining condition to be fulfilled
is that the deflection of the ri ight half of
the arch in the direction of this line,
shall be the same as that of the left
half.

Let us then suppose that the straight
girder b,/ p’ [wllnemlicul:ir to the closing
line, is fixed at & and bent first by
the moments M ¢ -|\1n(r us the deflection
curve b,/ 77 when 4, is taken as the pole,
and the iouh of the type mum are one-
flllll[t‘l of the corresponding ordinates
of the polygon d; and secondly, by the
moments M, giving us the deflection
curve &./¢g’ when drawn with the same
pole, and the loads of the type nn also

| one-quarter of the corresponding ordi-

nates of the polygon ¢. It should be
noticed that the points at which these
moments are supposed to be concentra-
ted in the girder 4, p’/, are on the paral-
lels to A%’ through the points d,, d,
ete.

Similarly let /7, and £, f, be the deflec-
tion curves of the straight girder &, p
(using d, as the pole distance), under the
applied moments.

We have used now a pole distance
differing from that used in the right half
of the arch. These pole distances must
have the same ratio that the quantity £7
has for the two parts of arch, If Z7is the
same in both parts of the arch the same
pole distance must be used to obtain the
deflection eurves in both sides of the mid-
dle. In the same manner the curves gg,
and g9, are found. Now must the mo-
ments M, causing the total deflection
‘ﬂ"‘f —aq4q ::},,-,' Lt‘ t?l-Tl gate d so that 7]|.L'_\'
.\}111” cause a total deflectic n pf —if,=
aj. The ratio lines @i aj,” will enable
us to find the new position £, of the load
line to effect this.

To find o the new pole, through
v,, which divides the load line into
parts which are the vertical resistances
of the piers, draw v,0 (| b, k. Then draw
the polygon ¢ as in Fi ig. 7, starting from
d. It must pass ‘Llnmwh f We can
find also “]1111}10 ke.' has the l‘t“l'.l'll't.’ﬂ
ratio to /ic.’-by the aid of the ratio lines,
which will funhu test the accuracy of
the work.




