NEW CONSTRUCTIONS

The construction above given is appli-
cable to any arch with three joints. The
arch need not be symmetrical, and the
three joints can be situated at fm\ points
of the arch as well as at the points
chosen above.
CHAPTER VII.

THE ARCH RIB WITH ONE END JOINT,

Let the arch be represented by Fig. 8,
in which the load, ete., is the same as in
Fi(v 6.

The closing line must pass through the
joint, for at this joint the bending
moment vanishes.

A second condition which must be
fulfilled is, that the total deflection be-
low the tangent at the fixed end of a
straight girder having one end joint
vanishes, for the position of the joint is
fixed. This is expressed by the equation

2(Mz)=0,
in which the summation is extended
from end to end.

This condition will enable us to draw
the closing line of the polygon ¢, and
also that of d. The problem may be
thus stated:—In what direction shall a
closing line such as ¢/t be drawn from
¢, so that the moment of the negative
triancular area e.e'A’ about e, shall be
equal to the moment of the positive
parabolic area ¢ be,’

To solve this problem, first find the
center of gravity of the parabolic area
by taking it in parts. The parabolic
area ¢, b ¢,/ is a segment ul‘ a single
parabola whose area is 280,/ X e G.=%h,
X b, , when /,=the F.cwht of an equiva-
lent triangle having the span for its base
h=4ce.

Lay off 1 T-r__r'_, and draw 70, .-
bl=h. L n':-f p,=h, as proportion-
al to l!w \\tw]]t nl the ]'11 abolic area

Again, ¢/p is }rrlpnrtmn al to the \\twhl
OI‘ the tllHl"’]l The par abolic
area '}.‘l"(F: x; ¢ -r‘i. < J.' /)(’.—_“ }":r‘ lF-Lr.‘: as
before, ... A ,=%¢/c/, which may be
found as A, was before.

Let /,==pp,, then on taking any pole,
as e, of this weight line, we draw gg,
¢,y since the left parabolic area has its
center of gravity in the vertical through
q,, and t the triangular area in that through
g, we draw gg/'lle,p, to the vertical
through ¢,’, which contains the center of
gravity of tl‘e right parabolic area.
The position of g midway between the

verticals containing b and 5, is slightly
to the right of its true po~lt1nn. as it
should be at one-third of the distance
from the vertical thromgh & to that
throngh 5, This does not affect the
nature of the process hOWE’\Cl.

Then ¢,9, |l e,p, and ¢/q, [l ¢, p, give g,
in the vertical tiuough the center of grav-
ity of the total positive area. The nega-
tive area, since 1t is triangular, hasits cen-

ter of gravity in the vertical through ¢’

Now if the total positive bending mo-
ment be considered to be concentrated
at its center of gravity and to act on a
straight girder it will assume the shape
rq,r, of this second equilibrium polygon,
and if a negative moment must be ap-
plied such Lh 1t the deflection vanish, the
remainder of the g_;udcl must be 77, a
prolongation of ¢ Now draw ¢, p,
7., and we }m\'v ;r p,=¢,'/ the ]lL‘i("hb
of thv triangle of neg: 1t1\0 area. Hence
¢ is the closing line, fulfilling the re-
quired conditions,

Again, to draw the closing line &%
according to the same law, we know
that the center of gravity of the poly-
gonal area d is in the center vertical.
To find the height pp’, of an equivalent
triangle having a base equal to the span,
we may obtain an approximate result, as
in I"i*f 2, by taking one twelfth of the
sum of the ordinates of the type bd, but
it is much better to obtain an exact
result by applying Simpson’s rule which
is simplified by the vanishing of the end
ordinates, The rule is found to reduce
in this case to the following:—The
required height is one eighteenth of the
sum of the ordinates with even subse ripts
plus one ninth of the sum of the rest.

Now this positive moment concentrated
in the center vertical and a negative
moment such as to cause no total deflec-
tion in a straight ginht' will 'fl\u as a
second vquilihrimu ];m\troll )
and if e,p,” || 7/, then p'p.'=b "k’ 14 the
heicht of the triangcular 1 E“"’ltl\L area,
and the closing line is &.4".

Now the remaining condition is that
the span is invariable, which is expressed
b‘. the equ: wion

2 (Ma— M) y=0, or Z(My y)=2(M.y).

Let us construct the deflection curve
due to the moments M; in a manner
similar to that Lm;]n\ ed in Fig. 2, We

lay off quantities dm, mm, ete.,
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equal to one-fourth of the corresponding
ordinates of the curve d, and dn,
n.n,, etc., one-fourth of the ordinates
of the curve ¢. We use one-fourth or
any other fraction or multiple of both
which may be convenient. By using &
for a pole we obtain the deflection curves

f and /" for the moments proportional to

M; , and the curves g and g’ for those
proportional to M, .

Now, Prop. IV. requires that the or-
dinates of the polygon ¢ should be in-
creased so that gg’ shall become equal to

J7'. Make di=gg’ and dj=f7" and draw

as before the ratio lines i, and dj, then
the vertical through ¢, is the new position
of the load line.

Find the new length of 64 which is
ke, and with the new pole o, draw the
polygon e starting at ¢. It must pass
‘[hl'-l:lgll [f’. The new pole o is found
thus: draw &w || 42/, then v divides the
weight line into two parts, which are
the vertical resistances of the abutments.
From », draw »,0 || k&', then the closing
line of the polygon e has the direction 24’

A single joint at any point of an un-
symmetrical arch can be treated in a
similar manner.

A thrust produced by temperature
strains will be ‘\[ plied 'llmlu‘ the closing
line 44, and the bending moments in-
duced will be proportional to the ordin-
ates of the polygon ¢ from this closing
line. The variation of span must be
computed not for the horizontal span,
but for the Irl‘l'lj{'i’TiHll-» of it on the ('!v'l-‘..
ing line &A%, The construction of this
component of the total effect will be
like that previously employed. Another
effect will be caused in a line perpen dic-
ular to A4’. The variation of span for
this constraction, is the projection of the

| horizontal variation on a line per-
pendicular to A4, and the bending mo-
ments induced by this force hu at
b,, and perpendicular to the ¢ immu line,
will be proportional to the horizontal
=1i~'t:llu‘t-.\‘ of the points of division from

b,. As these constructions are rea dily
nade, and the shearing and t mm-m:n.
stresses determined from thun‘ it is not

+

thought necessary to give them in detail.

CHAPTER VIII.
ARCH RIB WITH TWO JOINTS.
Let us take the two joints, one at the
center and one at one end as represented

in F;w. 9,

Let the loading, ete., be as
in Fig. 6.

The closing line evidently passes
throngh the two joints, as at them the
bending moment vanishes.

The remaining condition to be fulfilled
is that the deflection of the ri ight half of
the arch in the direction of this line,
shall be the same as that of the left
half.

Let us then suppose that the straight
girder b,/ p’ [wllnemlicul:ir to the closing
line, is fixed at & and bent first by
the moments M ¢ -|\1n(r us the deflection
curve b,/ 77 when 4, is taken as the pole,
and the iouh of the type mum are one-
flllll[t‘l of the corresponding ordinates
of the polygon d; and secondly, by the
moments M, giving us the deflection
curve &./¢g’ when drawn with the same
pole, and the loads of the type nn also

| one-quarter of the corresponding ordi-

nates of the polygon ¢. It should be
noticed that the points at which these
moments are supposed to be concentra-
ted in the girder 4, p’/, are on the paral-
lels to A%’ through the points d,, d,
ete.

Similarly let /7, and £, f, be the deflec-
tion curves of the straight girder &, p
(using d, as the pole distance), under the
applied moments.

We have used now a pole distance
differing from that used in the right half
of the arch. These pole distances must
have the same ratio that the quantity £7
has for the two parts of arch, If Z7is the
same in both parts of the arch the same
pole distance must be used to obtain the
deflection eurves in both sides of the mid-
dle. In the same manner the curves gg,
and g9, are found. Now must the mo-
ments M, causing the total deflection
‘ﬂ"‘f —aq4q ::},,-,' Lt‘ t?l-Tl gate d so that 7]|.L'_\'
.\}111” cause a total deflectic n pf —if,=
aj. The ratio lines @i aj,” will enable
us to find the new position £, of the load
line to effect this.

To find o the new pole, through
v,, which divides the load line into
parts which are the vertical resistances
of the piers, draw v,0 (| b, k. Then draw
the polygon ¢ as in Fi ig. 7, starting from
d. It must pass ‘Llnmwh f We can
find also “]1111}10 ke.' has the l‘t“l'.l'll't.’ﬂ
ratio to /ic.’-by the aid of the ratio lines,
which will funhu test the accuracy of
the work.
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Any unpnsymmetrical arch with joints
sitnated differently from the case consid-
ered can be treated by a like method.

The temperature strains should be
treated like those in Fig. 8, which are
caused by a thrust along the closing line.
Those at right angles to this line vanish
as the joints allow motion in this direc-
tion. The shearing and tangential stress-
es can be found as in Fig. 3.

Arches with more than three hinge
joints are in unstable equilibrium,
and can. only be used in an inverted
position as suspension bridges. These
will be treated subsequently. If the
joints, however, possess some stiffness
so that they are no longer hinge joints,
but are block-work joints, or analo-
gous to such joints, we may still con-
struct arches which are stable within
certain limits although the number of
joints is indefinitely increased. Such
are stone or brick arches. These will
also be treated subsequently.

The constructions in Figs. 6

o

‘: H: 5"-
can be tested by a process like that em-
ployed in Figs. 2 and 3. In Fig. 2, for
instance, we obtained the alge braiec sum
of the squares of the quantities of the
type ss, and showed that such sum van-
ishes. We can obtain the same result in
all cases.

CHAPTER IX.
THE CINCINNATI AND COVINGTON SUSPEN-
stoN BRIDGE. (Fig. 10.)

Tre main span of this bridge has a
length of 1057 feet from center to cen-
ter of the towers, and the end spans are
each 281 feet from the abutment to the

center of the tower. The deflection of
the cable is 89 feet at a mean tempera-
ture, or about 1—11.87th of the span.
There is a single cable at each side of
the bridge. Each of these cables is made
up of 5200 No.9 wires, each wire having
a cross-section of 1-60th of a ~‘t|u:1r1*
inch and an estimated strength of 1620
Ibs. Each of these cables hasa diameter
of 12} inches, and an estimated strength
of 4’]‘ tons. Each cable rests at the
tower upon a saddle of easy curvature,
the saddle being supported by 32 rollers
\\huh run upon a cast iron bed-plate

X 11 feet, which forms part of the top
of the tower. Since the bed-plate is
horizontal this method of support ensures
the exact perpendicularity of the force

which the cables exert upon the towers,
without its being necessary to make the
inclination of E]IL cable on both sides of
the saddle the same. There is, there-
fore, no tendency by the cables to over-
turn the towers, and they need only be
propor tioned to bear the vertical stresses
coming upon them.

As this br idge differs greatly in some
respects from “other suspension bridges,
it seems mnecessary to describe its
[JBCIE[I&H[IQ‘-« somewhat minutely.

The roadway and sidewalks make a
platform 36 feet wide, extending from
abutment to abutment, 1619 feet. Itis
built of three tinclmewn of plank solid-
ly bolted together, in all 8 inches thick.
This is ﬁwn*ﬂhuwd by a |1|:11b1L line of
rolled 1 'rnlluh 1630 feet long, running
the entire luwrh of the center of the
platform. These I girders are arranged
one line above the other, and across be-
tween them, at distances of 5 feet, run
lateral I girders which are suspended
from the cable. The upper line of
girders 1\ 9 inches dee 'p, (and 30 lbs. per
foot); the lower line 18 12 inches deep
(and 40 lbs. per foot). The lateral
girders are 7 inches deep (and 20 1bs. per
i'()nl), and are firmly embraced between

he double line of longitudinal girders,
Hn- girders of this center line are
each 30 ft. long, and are spliced tnrwthe'
by plates in the hollows of the I, but
the holes through which the bolts pass
are slots whose length is two or three
times the diameter of the bolts. This
makes a “slip joint” such as is often
used in fastening tll(- ends of the rails on

v railroad. The s slip joints permit the
\\--mlen pl wking of the roadway to ex-
pand and contract from variations of
moisture and temperature without inter-
ference from the iron girders which are
bolted to 5

There is also a line of wrought-iron
truss-work about 10 feet deep e\wnri.n'r
from abutment to abutment on each side
of the roadw: ay, consisting of panels of
5 feet each, to uui: lower joint of which
is fastened a lateral girder and a suspen-
der from the cable. This trussing is a
lattice, with vertical posts, and ties ex-
tending across two panels, and its chords
are both made with slip joints every 30
feet

It 1s apparent that this whole arrange-
ment of flooring with the girders and
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trusses attached to it possesses a very
small amount eof stiffness, in fact the
stiffness is prineipally that of the floor-
ing itself. It will permit a very large
deflection, say 25 feet, up or down from
its normal position without injury. Its
office is something quite different from
that of the ordinary stiffening truss of a
suspension bridge. It certainly serves
to distribute concentrated loads over
short distances, but not to the extent re-
quired, if that were the sole means of
preserving the cable in a fixed position
under the action of moving loads. Its
true function is to destroy all vibrations
and undulations, and prevent their pro-
pagation from point to point by the
enormous frictional resistance of these
slip joints. When a wave does work
against elastic forces, the reaction of
those forces retwrns the wave with
nearly its original intensity, but when it
does work against friction it is itself
l"lc:%trﬂ_\'{.ﬂ.

The means relied on in this bridge to
resist the effect of unbalanced loads is a
system of stays extending from the top
of the tower in straight lines to those
parts of the roadway which would be
most deflected by such loads. There are
76 such stays, 19 from the top of each
tower. The longest stays extend so far
as to leave only 350 feet., i.e., a little
over one-third of the span, in the center
over which they do not extend. FEach
stay being a cable 2} inches in diameter
has an estimated strength of 90 tons.
They are attached every 15 feet to the
roadway at the lower joints of the truss-
ing, and are kept straight by being fast-
ened to the -n~pemlcr~ where they cross
them. This system is shown in Fig. 10in
which all the stays for one cable are
drawn, together with every third sus-
pender. The suspenders oceur every 5
feet throughout the bridge but none are
shown in the figure except those attach-
ed at the same points as the stays.

These stays must sustain the larger
part of any unbalanced load, at the same
time producing a thrust in the roadway
against either the abutment or tower.

It is really an indeterminate ques-
tion as to how the load is divided
between the stays and trussing; and
this the more, because of the manner in
which the other extremities of the stays
are attached. Of the nineteen stays

carried to the top of one tower, the eight
next the tower are fastened to the bed
plate under the saddle, and so tend to
pull the tower into the river; the remain-
ing eleven are carried over the top of
the tower, and rest on a small independ-
ent saddle, beside the main saddle, and
are eight of them fastened to the middle
portion of the side spans as shown in Fig.
10, while the other three are anchored to
the abutment.

In view of the indeterminate nature

of the problem, it has seemed best to
suppose that the stays should be propor-
tioned to bear the whole of any excess
of loading of any portion of the bridge,
over the uniformly distributed Iload
(which latter is of course borne by the
cable itself); and further that the truss
really does bear some fraction of the
unbalanced load, and that the bending
moments have therefore the same relative
amounts as if they sustained the entire
unbalanced load. This fraction, how-
ever, is quite unknown owing to the im-
possibility of finding any approximate
value of the moment of inertia / for the
combined wood and iron work of the
roadway.

This method of treatment has for our
present purpose this :ltl\':ll![:lj_;{’, that the
construction made use of is the same as
that which must be used when there are
no stays at all, and the entire bending
moments induced by the live loads are
borne by the stiffness of the truss alone.

Now in order to determine the tension
in any stay, as for instance that in the
longest stay leading to the right hand
tower, lay off v v, L‘lillll to the greatest
unbalanced “twh[ which under any
circumstances is concentrated at its lower
extremity. This weight is sustained by
the longitudinal resistance of the floor-
ing, and the tension of the stay. The
stresses induced in the stay and flooring
by the weight, are found by dr: iwing
from v, and », the lines »,0 and »,0 par-
allel respectively to the stay and the
flooring. Then »,0 is the tension of the
stay, and that of the other stays may be
found in a similar manner.

It is impossible to determine with the
same certainty how the stress ov, paral-
lel to the flooring is sustained. Tt may
be sustained entirely by the compression
it produces in the part of the flooring
between the weight and the tower or the
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abutment; or it may be sustained by the
tension produced in the flooring at the
left of the weight; or the stress o», may
be divided in any manner between these
two parts of the flooring,so that v v’
may represent the tension at the left,
and ov,” the compression at the right of
the weight. It appears most probable
that the induced stress is borne in the
case before us by the compression of the
flooring at the right, for the flooring is
ill suited to bear tension both from the
slip joints of the iron work and the want
of other secure longitudinal fastenings;
but on the contrary it is well designed
to resist compression. The flooring
must then be able at the tower to resist
the sum of the compressions produced by
all the unbalanced weights which can
be at once concentrated at the extremi-
ties of the nineteen stays.

There is one considerable element of
stiffness which has not been taken account
of in this treatment of the stays, which
serves very materiallyto diminish the max-
imum stresses to which they might other-
wise be subjected. This is the intrinsic
stiffness of the cable itself which is formed
of seven equal subsidiary cables formed
into a single cable, by placing six of
them around the seventh central cable,
and enclosing the whole by a substantial
wrapping of wire, so that the entire
cable having a diameter of 124 inches,
affords a resistance to bending of from
one sixth to one half that of a hollow
cylinder of the same diameter and equal
cross section of metal. Which of these
fractions to adopt depends somewhat
on the tightness and stiffness of the
wrapping.

It 1s this intrinsic stiffness of the cable
which is largely depended upon in the cen-
tral part of the bridge, between the two
longest stays, to resist the distortion
caused by unbalanced weights.

As might be foreseen the distortions
are actually much greater in the central
part of the bridge than elsewhere, though
they would have been by far the greater
in those parts of the bridge where the
stays are, had the stays not been used.

The center of a cable is comparatively
stable while it is undergoing quite con-
siderable oscillations, as may be readily
seen by a simple experiment with a rope
or chain.

Let us now determine the relative

amount of the stresses in the stiffening
truss, on the supposition that the actual
stresses are some unknown fraction of
the stresses which would be induced, if
there were no stays, and the truss was
the only means of stiffening the cable.
We, therefore, have to determine only
the total stresses, supposing there are no
stays, and then divide each stress ob-
tained by z (at present unknown) to ob-
tain the results required. Let us draw
the equilibrium polygon ¢ which is due
to a uniform load of depthzy, and which
has a deflection &d six times the central
deflection of the cable. The loading of
the cable is so nearly uniform, that each
of the ordinates of the type bd, may be
considered with sufficient aceuracy to be
six times the corresponding ordinate of
the cable. Any multiple other than six
might have been used with the same
facility. In order to cause the polygon
to have the required deflection with any

| assumed pole distance it is necessary to

assume the scale of weights in a particu-
lar manner, which may be determined
easily in several ways. Let us find it
thus :

Let W=one of the concentrated weights.

Let D=central deflection of cable.

Let S=span of the bridge

Let M=central bending moment due to
the applied weights.

Then, if the pole distance=3S8, M=18
X 6D=28D, for the moment is the pro-
duct of the pole distance by the ordinate
of the equilibrinm polygon. Again, com-
puting the central moment from the ap-
plied forces,
M="WxiS—5 Wxt S=3 WS,

in which the first term of the right hand
member is moment of the resistance of
the piers, and the second term is the mo-
ment of the concentrated weights applied
at their center of gravity.

e WS=28D " " W=%D,
Henee, if one-third of the spanis to
represent the pole distante or true hori-
zontal tension of an equilibrium curve
having six times the deflection of the
cable, each concentrated weight when
the span is divided into twelve equal
parts, is represented by a length equal to
4 of the deflection of the cable. The
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true horizontal tension of the cable will
be six times that of the equilibrium
polygon, or it will be 1’el_:t'csentm], in 1.11(3.
scale used, by a line twice the length of
the span. Now taking & as the pole, at
distances bb,=bb,'=18, lay off 0w =
b =3 W=31D, so that they together
1'-;‘-:‘&@.40;11{ the weight concentrated at b;
and let ww,= W, represent the weight
concentrated at &, etc. Then can the
equilibrium polygon  be constructed by
making dd, || bw,, dd, || bw,, ete. If bd
=60 the polygon must pass through &,
and 4, which tests the accuracy of the
work.

Now to investigate the effect of an
unbalanced load covering one-half the
span, let us take one half the ]u:ul_ on the
richt half of the span and place it upon
its left, so that @z and « represent the
relative intensity of the loading upon
the left and right half of the span re-
speetively, the total load being the same
as before. If it is desirable to consider
that the total load has been increased
by the unbalanced load we have simply
to chanee the scale so that the same
leneth of load line as before, (viz, &,w,
+b.ae,") shall represent the total loading,
This will give a new value to the hori-
zontal tension also.

Now let a new equilibrium polygon ¢ be
drawn, which is due to the new distribu-
tion of the concentrated weights. It is
necessary to have the closing line of this
I:ul_‘s"(_full-r‘ horizontal, and this may be ac-
complished either, by drawing the polygon
in any position and laying off the ordi-
nates of the type bc equal to those in the
polygon so drawn, or better as is done
in this Figure by laying off in each
weight line that part of the total load
which is borne by each pier, which is
I‘-':iliii}' c_‘rlﬂ]l'{lll‘ll. as follows. The
distance of the center of gravity of the
loading divides the span in the ratio of
17 to 27. Hence %% and i% of the total
load are the resistances of the piers, or
ince the total load=11 W, we have & 'u

“and b =% W. Now make u,
he weight concentrated at &, etc.,
b/u,+bu = that at b,. Then draw

the 1_‘-".-‘;_\'Agun

The polygon ¢ has the same central
deflection as the polygon d; for compute
as before,

G M= Wx38—-3WxiS=% W8

in which the first term of the second
member is the moment of the resistance
of the right pier, and the second term is
the moment of the concentrated weights
applied at their center of gravity.

By similar computations we may prove
the following equalities;

f?.".:"7-."-’—J-A"-':"'_‘_'7:."';.' >
de=dec.= ‘—‘T.. r,'h.:---f.'.;I ""’ ’
i 4 . gt | 2 7e 4

dio.=dted

The quantities of the type de are propor-
tional to the bending moments which the
stiffening truss must sustain if it pre-
serves the cable in its original shape,
when acted on by an unbalanced load
of depth bz, on the supposition that the
truss has hinge joints at its ends, and is
by them fastened to the piers. For in
that case the cable is in the condition of
an arch with hinge joints at ite ends.
The condition which then holds is this:

Z(May)= =2 (M)
orT

S(My—M,) y=0.. Z(cd)y=0.

This last is fulfilled as is seen by the
above equations, for to every product
such as +b.d X d.c, corresponds another
—b'd'xd'e’ of the same magnitude
llil[‘l\];pnsi'..l- sign.

The polygon ¢ could have been ob-
tained by a second equilibrium polygon
in & manner precisely like that used be-
fore, but as it appears useful to show
the connection between the methods of
treating the arch rib which is itself stiff,
and the flexible arch or cable, which is
stiffened by a separate truss, we have
departed from our previously employed
method for determining the polygon e,
as it is easy to do when both ¢ and d are
Iz:n':l]x.u}i\'.

Now let us compute the bending mo-
ment

L S=Me— N,
LWx aS=% WS

AN X BaS=4 WS

.”,—_1[.':',"- H /.\,

Compute also the bending moment at
the vertical through &,

M= WxiS—IWxA:S=WS

Mi="2WXFS— WX :S=EWS
o .1[‘7-—,1[,::!7 ”‘;\A
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Similar computations may be made for| By flexible cable or arch is meant or
the remaining points, and this note-|which has hinge joints at the boi %
worthy result will be found true, that where it suplror{; the stiffening tLruI"‘ HES
the bending moments induced in the need not actually have hinze 'oi”; 't
stiffening truss by the assumed loading, | these points : the condition igﬂugﬁ I'}Fb iw
are the same as would have been induced | fulfilled if it is considerably ;llol'guﬂn‘t"y
by a positive loading on the left of a|ble than the truss wi:ic'--h‘it supports i
d.cpth Y2, and a negative loading on the| The truth of Pmp VIhas 11333'*111 tl" C0g
richt of an equal depth %5, For com- nized by previous Writers ‘uh)onLrI ‘lqtt‘-f’?-
pute the moments due to such loading -ject in t-'}l@I‘JflI‘ti('UVI:U' case of Ithe v-ill'l{};(ul'll
at the points , and &.. suspension cable, and it has hee£1l err ; 1.0
1 "l}}ll(,‘ resistance of the pier due to such | ously applied to the determination ofo?htt;
oading =% W bending moments in the arch rib in gen-
v M=% WxsS=& WS eral. It is inaccurate for this purpose in
i two particulars, inasmuch as in the first
B place the arch to which it is applied is
=% WS, ete. not parabolie, though the negative load-
e e A }lr:ﬁrl\lilllle [t]?elt-~ 1\ )n-:isunml to be ul_:ifo:'m,
'the stresses to which the stiffening truss | thrust is -hu}l [‘]" }JI“C?- fhe ]10::1?:0:]‘(31
Bl e, b he i e i'f t‘h zTn]t the same for the different
with the applied weights acting down- \1‘:'1 5 0} q“ : l:lh’ e 'I]”H SSeninen e
ward, and is drawn '11]:“':11%1 h: 4 uni- e oy el i

M=% WxtS—3Wx4S

4 o 120

A ! arising
rom a flexible arch or one with three or
more joints, :

fo]rme distributed negative ](i;1'1i11<f,
whose total amount is n-'qwml to the 1..:3~ A similar pr iti
o i . N : ; .~n‘n11,n proposition has been intro-
Sopled jltll;_l;]\;.“.ul)h;lll ]1},10, }lmlt’] .I%-'hmii_\' n]m'«_wl into a recent publication on ]:;1?5
to be the -Ii(r(:lu-}.s.i(' 81 “d}r ]]U f.m%h“h‘”"[ subject®, but in that work the truss stiff-
of t!iﬁ'm'c;n't.ii..rn;\\:};il-lln-“-)tlw 5 s l”."“l'\ €ns a _“i"]f’]‘-‘ parabolic cable, and the
This (‘OIII'L'Dii:IlIll]i'r}({ ill-l“‘ linlw:li.]'hul. truss 1s not supposed to he fastened to
e e gt .:'.l\l.- veen lit‘l‘l“n'l'll the piers, so that it may rise from either
iy IiIL‘ “1]’lt:lt‘:””‘-‘!l‘-‘lt‘.l_ﬂlIf’Tl of T}I'.' fact pier whenever its resistance ]u-t:(nlll::‘-{
f )u‘: TR B ‘, ';7 edm a ractical constructio 3 case
tllgulztnllll:r:(:"i ’"“I] ].n,,h.l,\." ral regards to show will not : be discussed. ]111i ;luti};]::l{n:LZ
ment with (1;:.0 '.lhllt\.(rl"_"."t' ,(1’! this state- | with Prop. VI let us determine anew
is a ]-:u'ticnl:u-} .L':lﬁ(' Ull“i -nd] ”"“f"t 't |the bending moments due to an unbal-
e ‘|rfmf :fll]l;t‘t‘“(,(‘:“:lr}- anced load on the left of an intensity
ment, but ii:ﬁt-r:.i ul. o will ; e e denoted by bz As before seen this pro-=
s (AN ¢ WHl now state a| duces the same effect as a positive load-
Fhe[t- : Ilf]t.]tl,(,[].llg sl‘lﬂlvmn_r_: trusses, | 1ng of an intensity i;"—;}I—J;f-‘ : U{l][
frmnlzzlc;m]s;:l(-:-\-l};:;}lli,-m :-.llﬂ-lhl._‘li‘l.iL!.\’ evident lt_-t‘r. and a negative 'In:u'Elinfrcr U;J‘;noilrlltlx 1?
: 8 previously adduced.  sity yo=rn=4bz. Now ”\‘f;]ﬂ. ,.’,'.l. i U]l
; vy -yo= sbz, I ggase
Prop. VL. The stresses induced in the with a pole distance of g7,=one thirHOc)?
stiffening truss of a flexible cable or ok t]“.‘. -pa|]| lay off the concentrated weight
by any lo:frling, is the same as that which {:;:;(_mtql;: :prII,]].I"”.}re?i] b, t:tc_" o l}"&j
\\'O.HILI !}c induced in it IH the :ll'lp]i(-;ui”“ in the ]lr{-\'ious c[t}“\tr:‘?r-ltti;”“ ::;-:d li:,.i“i ﬁ?—
to :t_nt a combined positive and negative  ® POSition that g is "T’]""i’i:‘ ‘t}"»' l'llli.']l'lﬁé
loading distributed in the i-unl‘wi”” of the total load, which will cause the
manner, viz : the positive loading s th\ﬁ- d?;].“g line o be horizontal. Then
el loaas SHOh ¢ draw the equilibrium polye i
actual loading and the negative loading | these weichts. Th ].‘._]_,on o ilflt .
1s equal numerically to the positive load- | type ‘{f'?H‘g by Pm]l:e\VCI”;-:'ICI\:IE(‘:' - lﬂle
mg, l?ilt 18 so distributed as to cause no ﬂ’}‘- ]'g‘ﬂ'ling “moments i]}:lllljcein[ili()illza ﬂEg
bending moments in the cable or arch ‘mr""“'g truss by the unbalanced load
i.e., the cable or arch is the equililu-iu]]; when the truss is simp}y fastened to the

polygon for this negative loading. by Jarep Yo ool
by John ¢ & Son, New York.
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piers at the ends, and, as we have seen, the position of A%’; then the ordinates
each of the quantities af is identical with %e will be proportional to the bending
the corresponding quantity ed. moments of the stiffening truss.

If the stiffening truss is fixed horizon-| Theshearingst ress inthe trussis obtained
tally at its ends a closing line /4’ must from the loading which causes the bend-
be drawn in such a position that =(M) ing moment, in the same manner as that
—0, and as it is evident that it must di- in any simple truss. The horizontal ten-
vide the equilibrium polygon symmetri- sion in the cable, is the same whenever
cally it passes through 7 its central| the total load on the span is the same,
point. and is not changed by any alteration in

As stated.in a previous article, the the distribution of the loading, which
maximum bending moments at certain fact is evident from Prop. VI. The
points of the span are caused when the maximum tension of the cable is found
unbalanced load covers somewhat more when the live load extends over the
than half of the span. In the case of a entire span, and is to be obtained from a
parabolic cable or arch the maximum  force polygon which gives for its equili-
maximorum bending moment is caused  brium polygon the curve of the cable
when this load extends over two-thirds  itself, as would be done by using the
of the span, as is proved by Rankine in | weights w,,, ete., and a pole distance of
his Applied Me¢hanies by an analytic | six times bb =twice the span.
process. Let the load extend then over| The temperature strains of a stiffening
all except the right hand third of the truss of a suspension bridge are more
span with an intensity represented by | severe than those of the truss stiffening
bz=gq,q/. Then if f/q¢,=3fq/, the an arch, becanse the total elongation of
trass may by Prop. VI be considered to the cable in the side spans as well in the
sustain a positive load of the intensity main span, is transmitted to the main
f/q, on the left of 4/, and a negative|span and produces a deflection at its
load of the intensity f,'¢g,/ on the right center. This is one reason why stays
of 5/. Using g’ as the pole and the furnish a method of bracing, particularly
same pole distance as before, lay off the applicable to suspension bridges. But
weight ¢.g, concentrated at b,, etc., so supposing that the truss bears part of
that ¢ is opposite the middle of the the bending moment due to the elonga-

weight line. We thus obtain the equili- tion of the cable, it is evident that when
brinm polygon e, in which the ordinates the truss is simply fastened to the piers,
of the type ¢f are proportional to the the bending moments so induced are
bending moments of the truss under the proportional to the ordinates of the type
assumed loading, when its ends are sim- b, for by the elongation of the cable, it
ply fastened to the piers. transfers part of its uniformly distrib-

Now bd was the ordinate of an equili- | uted weight to the truss.

brium polygon having the same horizon- That load which the cable still sus-
tal tension, and under a load of the same  tains, is uniformly distributed, if the
intensity covering the entire span. It cable still remains parabolie, therefore
will be found that bd=>3}f,e, which may  that transferred to the truss is uniformly
be stated thus:—the greatest bending | distributed.

moment induced in the stiffening truss,, When the truss is fixed horizontally
by an unbalanced load of uniform in- | at the piers, the closing line of the curve
tensity is four twenty-sevenths of that d must be changed so that =(M)=0,
produced in a simple truss under a load and the bending moments induced by
of the same intensity covering the entire variations of temperature, will be pro-
span. This result was obtained by Ran-  portional to the ordinates between the
kine analytically. If the truss is fixed curve 4 and this new closing line.
horizontally at its ends, we must draw a It remains only to discuss the stability
closing line %', which fulfills the condi- | of the towers and anchorage abutments.
tions before msed for the straight girder The horizontal force tending to overturn
fixed at the ends, as discussed previously the piers comes from a few stays only,
in connection with the St. Louis Arch. as was previously stated, and is of such

By the construction of a second equili- small amount that it need not be consid-

brium polygon, as there given, we find ered.
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The weight of the abutment in
the case before us is almost exactly
the same as the ultimate ‘-tlt‘ll"t]l
of the cable. ‘\11ppo~e that st—=sv are|
the lines representing these quantities in
their position relativ ol\‘ to the abutment.
Since their resultant sy intersects the
base beyond the face of the abutment,
the abutment wonld tip over before thes
cable could be torn asunder. And since
the augle vsr is greater than the angle
of friction between the abutment and
the ground it stands on, the abutment if
standing on the surface of the ground,
would slide before the cable could be
torn asunder.

The smallest value which the factor of
safety for the cable assumes under a
maximum loading is computed to be six.
Take st'=14st as the greatest tension
ever induced in the cable, then s the
resultant of sv and s’ cuts the base so
far within the face that it is apparent | t
that the abutment has sufficient st: ability
.'\'lH‘t'-f overturning, and the angle v’
is 850 much smaller than the least value
of the angle of friction between the
abutment and the earth under it, that
the abutment would not be near the
point of sliding even if it stood on the
surface of the ground. It should be
noticed tha all the suspenders in the
side span assist in reducing the tension of
the cable as \\v ap pwuh the -ﬂmmu nt,
and conduce by so much to its stal bility.
Also the thrust of the roadw: ay may as-
sist the stability of the abutment, both
with respect to overturning and sliding.

CHAPTER X,
ITHE CONTINUOUS GIRDER WITH VARIABLE
CROSS-SECTION,

In the forecoing ch: ipters the discussion
of arches of various kinds has been shown
to be dependent upon im of the straight
girder; but asno graphical discussion has,
up to the present time, been published
which treats the girder having a variable
eross-section and moment of inertia, our
discussion has been limited to the case of
arches with a constant moment of iner-
tia.

Certain remarks were made, however,
in the first chapter tending to show
the close approximation of the results
in case of a constant moment of inertia
to those obtained when the moment of
inertia is variable. We, in this chapter,

propose a new solution of the continuous
girder in the most general case of varia-
ble moment of inertia, the girder resting
on ]ilEl:: having any different hewhh
consistent with the limits of 9]1\1’1011;\‘ of
[ the girder. This solution will verify the
remar kwnmle, and enable us easily to see
| the mannerin which the variation of the
| moment of inertia affects the distribution
of the bending moments, and by means
of it the arch rib with variable moment
of inertia can be treated directly
Besides the importance of the con-
tinuous -'ndm in case it constitutes the
entire -mlwo by itself, we may remark
that the continuous nmh- is Ii(LIlllU]\
suited to serve as the stiffe ning truss of
any arched bridge of several spans in
| which the arches are flexible. Indeed, it
is the conviction of the writer that the
stiff arch rib :’ulnplflnl in the construetion
of the St. Louis Bridge was a costly mis-
take, and that, if a metal arch was desir-
able, a flexible arch rib with stiffening
truss was far che aper and in every way
preferable.
Let us write the equation of deflections

in the form
e, = 5(25.2)
7!1)2“!" NP:’ 7t

in which n is the number by which any
horizontal dimension of the girder must
be divided to obtain the (‘I‘III.“-IJOIIJH]”’
dimension in the drawing, n' is the
divisor by which force must be divided
to obtain the length by which it is to
be represented in the fhw.m'f. m 18 an
arbitrary divisor which enables us to
use such a pole distance for the second
wlui!Un'iznn !mi\- gon as may be most

convenient, / is the moment of inertia
nt the girder at any particunlar cross sec-
tion assumed as a standard with which
the values of 7 at other cross sections
are compared, and i=7 =1 is ihe ratio
of I, (the standard moment of inertia),
to f' lth':" at any other l]L'\\-\llllﬂn)
ln! he purpose of 111111!”1\1]‘111!1”‘ the
gene vu] roperties of girders, the equation
need not be encumbered with the coe fhicl-
ents mnn’, but for purposes of explaining
the graphical construction they are very
useful, and can be at once introduced in-
to the equation when needed.

In the equation

J,} . ]L] :l: (J[r’;r_')
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the quantity 2 is the deflection of any

point O of the girder below the t: m-rent

at the point « where the summation be-
gins, and M is the actnal bending mo-

ment at any point between O and a.

These moments M at any point consist

in general of three quantities, represented
in \1119 construction by the positive nrdl-'
nate of the equilibrium polygon due to |
the weights, and by the two negative ordi-

nates of thL um]'rhn- into which we have 1
divided the negative moment area. If|
we distinguish ‘these components of M
by Ic'ttlnu' M represent that due to the

\wllrllt‘- “1111\- M, and M, represent the |
co:111mm-nt- due to the left and right |
negative areas respectively, the mlu.mun
of deflections becomes

D . EI,= 53, iz) — 3o( M, i) — So( M, i)

Now let us take O at a pier at one end
of a span and extend the summation
over the entire span.

[f the piers are b and 4" as in Fig. 11,
let us suppose that O coincides with
and « with &"; also suppose for the in-
stant that J is constant, so that i=1 at
all points of the girder. Then we

Dy. BI==50(¥)—73, 2/(H)

— 7, 5y (M)

)

i}l which /’-‘, is the 'l:‘”!'l'{ii)ﬂ of b lw}c'l\\'
the tangent at &', z is the distance of
the center of gravity of the moment
area due to the applied weights from &,
while #, and 2, are the distances of the
centers of eravit y of t'ns_- ne-_';ati\'-._- areas
from 5. In Fig. 11 let ec¢’ be the |

tive area due to the we ights .-m-l repre

senting

' negative ULII)"’IL’

3, (M), while A_.. Uf] and 2
(M) are represented by /Ziee’ and Ak'e!
1'0\\‘1—;eui\1!\'. Let the center of gravity
of ec¢’ be in ¢g,, while the centers of
the two negative areas are in ¢ and #'7’.
Let the hL':lght of a tI‘iﬂIl;ﬂ(} O 8Some as-
sume »d base, and equivalent in area to
ec’y be rr,, then by a process like that
in l 1lr 2 1t is evident that »r, and T,
are the heights of the right and left
having “the assumed
, on the sup p(mliun that the girder

s fixed horizontally over the piers.

Now introducing the constants snn’
into the last wlu:uiun and into the equa-
tion before that, the relation of the quan-
| tities is such that if the moments be ap-
p.ul as weights at their centers of
gravity with the pole distance pt=FET-=-
mn'n', the equilibrium polygon so obtain-
ed will be tangent at the piers to the ex-
ageerated deflection curve obtained when
the distributed moments are used as
weights; and the deflection at the }ti:‘l'
b from the tangent at &’ will be the same
as that of this exaggerated deflection
earve, and vice versa.

!? iS¢

Let pm=rr, /“HK' rr. - and ’l'f—‘fﬂ {
then ¢ and ¢’ constitute the pole, pm and
p'm' the negative loads, and pm + plin
the positive load. Then is btgt’h’ the
equilibrium polygon for these loads.
The deflection of & below 4'¢" vanishes
as it should in ease the girder is fixed
horizontally over the pier.

Now let the direction of the tangents
at the piers be changed so that the

|tangents to the exaggerated deflection
| curve assume the directions &t and 4t

4
| Then the load line and i‘r)r'cc polygon
| assume a new }rmmnn such that ¢ and ¢’
form the ]Nl and dn-= pin and d'n’'=

: comprise ' the positive load while
np and #/p,” are the new negative loads
‘ which will eause the ulmlli-u im polygon
|bt,q,t,b’, which is due to them, to have
its sides Ot and 0t in the directions as-
sumed.

There are several relations of quanti-
ties in this figure to which we wish to
direct attention. It 1s evident, in

] onstant, that from tl
inates are propor-

bendi




38 NEW CONSTRUCTIONS

M i, the effective bending moments, can |

be obtained by simple multiplication,
since #1is known at every point of the
girder. Moreover, the vertical through
the center of gravity of this positive
effective moment area can be as readily
found as that through the actual positive
moment area. Call this vertical “the
positive center vertical.” Again, the
negative moment areas proj portional to
M and M i can be found from the tri-
angular areas proportional to M, and 1/,
by simple multiplication, and if we pro-

ceed to find the verticals through their |

centers of gravity we shall obtain the
same verticals whatever be the magni-
tude of the negative triangular areas,
since their vertical ordinates are all
changed in the same ratio by assuming
the negative areas nhﬂ"uunl\ Let us
call these verticals the ‘““left” and
“right ” verticals of the span. In case
i=1, as in Fig. 11, the left and right
verticals divide the span at the one-third
points. This matter will be treated
more fully in connection with ]"ig 183.

Again, let us call the line 7 ¢’ “ the|

third closing line.” It is seen that,
whatever may be the various positions
of the tangent ¢, the ordinate dn, be-
tween the third closing line and ¢ ¢, pro-
longed, is invariable; for the triangle
t.4,t, is invariable, being dependent on
the ]=n‘~lti\L load and pole distance alone.
By similarity of tri: u“fl 8 1t then follows
that the ordinate, such as Zo’, on any as-
sumed vertical continues invariable; and
when there is mo negative load at 7,
then ¢ ¢, becomes str: }""}IT o’ coineides
with & and 7z with p. Similar relations
hold at the right of ¢. The r]H‘mlit\'
dp, 18 of the nature of a correction to be
subtracted from the negative moment
when the girder is fixed horizontally at
the piers in order to find the negative
moment when the tangent assumes a new
]ll'}\it"ll]n for np, :vj.irf”rlr'__ rI‘i'l.i._' H(“Eﬂli\'(‘
moments can consequently be found from
the third closing line and the tangents
at the piers; while the remaining lines
gt and ¢ t’ will test the correctness of
the work. Before applying these pro-
perties of the deflection polygon and its
third closing line to a continuous girder,
it is necessary to prove a geometrical
theorem from Fi ig. 12.

Let the variable triangle zyz be such
that the side @z always passes through

the fixed point g, the side ay always
passes through the fixed point p, and the
vertices xyz are always in the verticals
through those points; then by the prop-
erties of homologous triangles the side
yz also has a fixed point /in the straight
line gp. Furthermore, if there is a point
" in the vertical through z, and in all
positions of z it is at the same constant
distance from z, then onthe line y2’ there
is a fixed point g’ wlure the \'(*l't-i(‘:l]
through f intersects %z'; for, if 2’ main-
tains its distance zz in\':\.n.ﬂrh, then
must any other point as ¢’ remain con-
stantly at the same vertical distance
from f, as appears from similarity of tri-
angles. But as f is fixed ¢’ is also.
When, for instance, the triangle ayz as-
sumes the position @ y .z 1I|0r1 &' moves
to z/

Let us now apply the foregoing to the
discussion of a continuous girder over
three piers p"' pp’ as shown in Fig. 183,
in which the lengths of the spans "have
the ratio to each other of 2 to 3. Divide
the total length of the girder into such a
number of equal parts or panels, say 15,
that one division shall fall at the inter-
mediate pier, and let the number of lines
in any P anel of the I\pv aa represent its
relative moment of inertia. Assume the
moment of inertia where there are three
lines, as at a, «a,, ete., as the standard or
I, then i=1 at q, i=4 at a,, i=3% at @/,
tE( ; g

Let the polygons ¢ and ¢’ be those due
to the weights in the left and right spans
19~1mmlwh Then the ordinates of
the type be are proportional to U in the
left -p’m The figure bee "c,%c,"c.cce.
b 1s the pmmw uﬁuctlw mnmenr area
in the left span, and its ordinates are
proportional to M i. Tts center of gravi-

Ity has been found, by an equilibrium

IN GRAPHICAL STATICS.

gl

polygon not drawn, to lie in the positive | polygon be drawn due to the effective
center vertical gg¢,. A similar positive | moments as loads, two of -its sides must
effective moment area on the right hasintersect on vo, because it contains the
its center of gravity in the positive cen-|center of gravity of contiguous loads.
ter vertical ¢'¢q,". Now let 7r, represent 2(M):—it isin
Now assume any negative area, as|fact one lfrhlh of the sum of the ordi-
that included between the lines & and d, | nates b.e, 4 £be", ete., and hence is the
and draw the lines Ab, and b ,ill\llllllj"!}]t’l“llt of a UI.II)“‘}E‘ having a base=400,,
the negative area in each span into right |and an area equal to the effective mo-
and left triangnlar areas. Let the quan-|ment area in the left span. Also 7’7" is
tities of the type /b be proportional to |the height of a triangle having the same
M, hdto M,, h'd' to M/, ete., then the|base, and area equal to the effective
ordinates of #0,6.75,"0,"0,b6,0,"0 /i are pro-| moment area in the right cp‘m.
portional to M ¢, and the center of gravi-| As previously exp lmluI is the
ty of this area has been found to lie in|amount of the right Ilt.__f.ltl\t_ uﬁuLtl\e
the 1-1‘_«m negative vertical ¢7, Similar- | moment area in the left span, measured
ly, the left negative \'ul‘tir:ll u’mi‘tiningﬁu the same manner, while sr is that on
th(' center of gravity of the left negative |the left when the girder is fixed horizon-
effective moments, is £ In the right|t: :11\ at the piers. \\u obtain s’ and
span ,'r,’ lmd t 'r_' are the left and right | s's" in theright span, in a similar manner.
verticals. As before stated, these verti-| Now assume the arbitrary divisor m=1,
cals \\nu]] not be changed in position|and take the pole distance »n =ZET +
h\ changing the position in any manner|#n* . Then as seen previously, if mn =sr,,
whatever of the line d by which the | ou is the constant mll-:u-p{ on the nega-
negative moments were assumed, for|tive center vertical, between the third
such change of position would change el osing line in the left span, and a side
all the ordinates in the same ratio. of the type gt. Also ou' is a similar
Let us find also the vertical containing | constant intercept on this vertical due
the center of gravity of the effective|to the right span. Make 7z =rn, and
moment area, COrrespon ding to the .u ‘Lu \l nm,=sr, then b, is a similar i invariable
moment area b.Aib’'. It is found by a mtuupt_ as is ¢'2.", which is obtained
polygon not drawn to he wvo. (';‘111 v0|in a similar manner.
“the negative center vertical.” It is| Now the negative center vertical ov
unchanged by moving the line <. If a'was obtained from the triangle 5,43, i.e.




