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M i, the effective bending moments, can |

be obtained by simple multiplication,
since #1is known at every point of the
girder. Moreover, the vertical through
the center of gravity of this positive
effective moment area can be as readily
found as that through the actual positive
moment area. Call this vertical “the
positive center vertical.” Again, the
negative moment areas proj portional to
M and M i can be found from the tri-
angular areas proportional to M, and 1/,
by simple multiplication, and if we pro-

ceed to find the verticals through their |

centers of gravity we shall obtain the
same verticals whatever be the magni-
tude of the negative triangular areas,
since their vertical ordinates are all
changed in the same ratio by assuming
the negative areas nhﬂ"uunl\ Let us
call these verticals the ‘““left” and
“right ” verticals of the span. In case
i=1, as in Fig. 11, the left and right
verticals divide the span at the one-third
points. This matter will be treated
more fully in connection with ]"ig 183.

Again, let us call the line 7 ¢’ “ the|

third closing line.” It is seen that,
whatever may be the various positions
of the tangent ¢, the ordinate dn, be-
tween the third closing line and ¢ ¢, pro-
longed, is invariable; for the triangle
t.4,t, is invariable, being dependent on
the ]=n‘~lti\L load and pole distance alone.
By similarity of tri: u“fl 8 1t then follows
that the ordinate, such as Zo’, on any as-
sumed vertical continues invariable; and
when there is mo negative load at 7,
then ¢ ¢, becomes str: }""}IT o’ coineides
with & and 7z with p. Similar relations
hold at the right of ¢. The r]H‘mlit\'
dp, 18 of the nature of a correction to be
subtracted from the negative moment
when the girder is fixed horizontally at
the piers in order to find the negative
moment when the tangent assumes a new
]ll'}\it"ll]n for np, :vj.irf”rlr'__ rI‘i'l.i._' H(“Eﬂli\'(‘
moments can consequently be found from
the third closing line and the tangents
at the piers; while the remaining lines
gt and ¢ t’ will test the correctness of
the work. Before applying these pro-
perties of the deflection polygon and its
third closing line to a continuous girder,
it is necessary to prove a geometrical
theorem from Fi ig. 12.

Let the variable triangle zyz be such
that the side @z always passes through

the fixed point g, the side ay always
passes through the fixed point p, and the
vertices xyz are always in the verticals
through those points; then by the prop-
erties of homologous triangles the side
yz also has a fixed point /in the straight
line gp. Furthermore, if there is a point
" in the vertical through z, and in all
positions of z it is at the same constant
distance from z, then onthe line y2’ there
is a fixed point g’ wlure the \'(*l't-i(‘:l]
through f intersects %z'; for, if 2’ main-
tains its distance zz in\':\.n.ﬂrh, then
must any other point as ¢’ remain con-
stantly at the same vertical distance
from f, as appears from similarity of tri-
angles. But as f is fixed ¢’ is also.
When, for instance, the triangle ayz as-
sumes the position @ y .z 1I|0r1 &' moves
to z/

Let us now apply the foregoing to the
discussion of a continuous girder over
three piers p"' pp’ as shown in Fig. 183,
in which the lengths of the spans "have
the ratio to each other of 2 to 3. Divide
the total length of the girder into such a
number of equal parts or panels, say 15,
that one division shall fall at the inter-
mediate pier, and let the number of lines
in any P anel of the I\pv aa represent its
relative moment of inertia. Assume the
moment of inertia where there are three
lines, as at a, «a,, ete., as the standard or
I, then i=1 at q, i=4 at a,, i=3% at @/,
tE( ; g

Let the polygons ¢ and ¢’ be those due
to the weights in the left and right spans
19~1mmlwh Then the ordinates of
the type be are proportional to U in the
left -p’m The figure bee "c,%c,"c.cce.
b 1s the pmmw uﬁuctlw mnmenr area
in the left span, and its ordinates are
proportional to M i. Tts center of gravi-

Ity has been found, by an equilibrium
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polygon not drawn, to lie in the positive | polygon be drawn due to the effective
center vertical gg¢,. A similar positive | moments as loads, two of -its sides must
effective moment area on the right hasintersect on vo, because it contains the
its center of gravity in the positive cen-|center of gravity of contiguous loads.
ter vertical ¢'¢q,". Now let 7r, represent 2(M):—it isin
Now assume any negative area, as|fact one lfrhlh of the sum of the ordi-
that included between the lines & and d, | nates b.e, 4 £be", ete., and hence is the
and draw the lines Ab, and b ,ill\llllllj"!}]t’l“llt of a UI.II)“‘}E‘ having a base=400,,
the negative area in each span into right |and an area equal to the effective mo-
and left triangnlar areas. Let the quan-|ment area in the left span. Also 7’7" is
tities of the type /b be proportional to |the height of a triangle having the same
M, hdto M,, h'd' to M/, ete., then the|base, and area equal to the effective
ordinates of #0,6.75,"0,"0,b6,0,"0 /i are pro-| moment area in the right cp‘m.
portional to M ¢, and the center of gravi-| As previously exp lmluI is the
ty of this area has been found to lie in|amount of the right Ilt.__f.ltl\t_ uﬁuLtl\e
the 1-1‘_«m negative vertical ¢7, Similar- | moment area in the left span, measured
ly, the left negative \'ul‘tir:ll u’mi‘tiningﬁu the same manner, while sr is that on
th(' center of gravity of the left negative |the left when the girder is fixed horizon-
effective moments, is £ In the right|t: :11\ at the piers. \\u obtain s’ and
span ,'r,’ lmd t 'r_' are the left and right | s's" in theright span, in a similar manner.
verticals. As before stated, these verti-| Now assume the arbitrary divisor m=1,
cals \\nu]] not be changed in position|and take the pole distance »n =ZET +
h\ changing the position in any manner|#n* . Then as seen previously, if mn =sr,,
whatever of the line d by which the | ou is the constant mll-:u-p{ on the nega-
negative moments were assumed, for|tive center vertical, between the third
such change of position would change el osing line in the left span, and a side
all the ordinates in the same ratio. of the type gt. Also ou' is a similar
Let us find also the vertical containing | constant intercept on this vertical due
the center of gravity of the effective|to the right span. Make 7z =rn, and
moment area, COrrespon ding to the .u ‘Lu \l nm,=sr, then b, is a similar i invariable
moment area b.Aib’'. It is found by a mtuupt_ as is ¢'2.", which is obtained
polygon not drawn to he wvo. (';‘111 v0|in a similar manner.
“the negative center vertical.” It is| Now the negative center vertical ov
unchanged by moving the line <. If a'was obtained from the triangle 5,43, i.e.
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on the supposition that the actual mo-
ment over the pier is the same whether
it be determined from the left or right
of the pier. It is evident that while the
girder is fixed horizontally at the inter-
mediate pier, the moment at that pier is
generally different on the two sides, at

points infinitesimally near to it, but that |

when the constraint is removed an equali-

Since ow and ou’ are derived from
the positive effective moments, it appears
position that the two third closing lines
intercept a distance wx’ on oy and the
intersect on ow», the moments over the
pier will have become equalized.
of the tangent at » which will cause this
to be true, ]J_\' finding the proper }'l'“-;.‘lit‘ll

Move the invariable i!|1t~l'('i'l|!- to a
more convenient position, by making

Now by making
the arbitrary divisor m=1, as we did,
the ordinates of the deflection polygon
same size in the drawing as in the girder,
hence the difference of level of p*, p and
changing 7 this can be increased or
diminished at will.
fixed points g and g’, through which the
third closing line in the left span must
right.

If the girderis free at p” then as shown
closing line must pass through g, if gp"=
ib,. Draw gz as a tentative position of
triangle @'z as in Fig. 12.

Then is @y’ the tentativé position of
ing line in the right span must pass
through ¥’, and make an intercept on
then 2y’ is its corresponding tentative
position. But wherever gz may be
—uu' and intersecting £'r7' in such a
manner that the tangent passes through
fk?lil!tl as n]i"\'l'_'['ih{‘li iTl ]I‘_‘_ 12, -J‘:"t_-]'g_
fore the third closing line in the right

zation takes place,
that when the tangent at p isin such a
two lines of the type ¢¢ when prolonged
We propose to determine the position
of the third closing lines in the two spans.
0z=o0u, and 0.z =ou', ‘-
became simply D), i.e., they are of the
p' must be made of the actual size. By
Now we propose to determine two
pass, and similarly ¢"”" and g’ on the
in connection with Fig. 11, the third
the third elosing line, and complete the
the tangent at p, and since the third clos-
the negative center vertical equal to ww’,
drawn, every line making an intercept
p must pass through the fixed point g/,
span passes through g'. Similarly, if

there were more spans still at the right
of these, we should use ¢’ for the deter-
mination of another fixed point, as we
have used ¢ to determine it.

Now find ¢'"” and g" precisely as ¢ and
g’ have been found, and draw the third
closing lines ¢ ¢, and ¢/¢,’. If ¢  passes
throngh p the construction is accurate.
Make wu"=wv’’, then is n,m, the nega-
tive effective moment at the left, and
n,'m, that at the right of the pier.

‘Let &w be the effective moment area
corresponding to the triangle hbb,, and
measured in the same manner as the
positive area was, by taking one eighth
of its ordinates, and let bw,=nm ; then
as the effective moment bw is to the
actual moment 4% corresponding to it, so
is the effective moment lbw, or nm, to
the actual moment 5% corresponding to
it. The same moment &k is also found
from »n /m/’, by an analogous construc-
tion at the right of 4, which tests the ac-
curacy of the work.

Several other tests remain which we
will briefly mention.

Prolong p'’t, to ¢, and p't/ to ¢', then
¢t, and ¢'¢’ must intersect on the nega-
tive center vertical at o, so that o,v"=
ou”. Also »v’ must be equal to
Again ¢ v’ passes through 7, and 7%
through #7. Also yo, intersects go, on
the fixed vertical f5'* at ¢, and 3o, inter-
sects ¢'o, on the fixed vertical f¢ at ¢'.
That these must ‘be so is evident from a
consideration of what oceurs during
supposed revolution of the tangent ¢¢
to the position @y, :

Now having determined the moment
bk over the pier, kb, and kb’ are the
true closing lines of the moment poly-
gons ¢ and ¢. . Call these closing
lines /%, then the ordinates of the
type Ae will represent the bending mo-
ments at different points of the girder.
The points of the contra flexure are at
the points where the closing lines inter-
sect the polygons ¢ and ¢/. The dire
tions of the closing lines will permit at
once the determination of the resistances
at the piers and the shearing stresses at
any point.

The particular difference between the
construction in case of constant and of
variable moment of inertia, is seen to be
in the positions of the center vertic
positive and negative, and the rieht an
left verticals. ¥
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The small change in their position due
to the variation in the moment of inertia,
is the justification of the remarks previ-
ously made respecting the close approxi-
mation of the two cases.

It is seen that the process here devel-
oped can be applied with equal facility
to a girder with any number of spans.
Also if the moment of inertia varies con-
tinuously instead of suddenly, as assnmed
in Fig. 13, the panels can be taken short
enough to approximate with any re-
quired degree of aceuracy to this case.

CHAPTER XI.

THE THEOREM OF THREE MOMENTS.

The preceding construction has been
in reality founded on the theorem of
three moments, but when the equation
expressing that theorem is written in
the usual manner, the relationship is
difficult to see. Indeed the equation as
given by Weyrauch* for the girder hav-
ing a variable moment of inertia, is of so
complicated a nature that it may be
thought hopeless to attempt to associate
mechanical ideas with the terms of the
equation, in any clearly defined relation-
ship. We propose to derive and express
the equation in a novel manner, which
will at once be easy to understand, and
not difficult of interpretation in connec-
tion with the preceding construction.

Let us assume the general equation of
deflections in the form.

D=2 (Me+EI), or D.EI=Z=(Mix)

(7)
in which I is the variable moment of
inertia, Z, some particular value of I as-
simed as the standard of comparison,
i=1 <1, and @ is measured horizontally
from the point as origin, where the de-
flection 2 is taken to the point of appli-
cation of the actual bending moment /.
The quantity M3 is called the effective
bending moment, and.the deflection D
is the length of the perpendicular from
the origin to the line tangent to the de-
tlection curve at point to which the sum-
mation is extended.

Now consider two contiguous spans
of a continuous girder of several spans,
and let acd denote the piers, ¢ being the
intermediate pier. Let the span ac=I
and bde=1I'. Take the origin at a and
1eine Theorie i| I‘Lruhh,., der
d Einfachen ger. Jakob L
o,

extend the summation to ¢, calling the
deflection at @, ;. When the origin is
at 5 and the summation extends to ¢, let
the deflection be D, Let also ¥4, and
Ye be the heights of @, 5 and ¢ respective-
ly above some datam level. Then, as
may be readily seen,

= fa’u o ?/c = l‘fw: ]

Yo — Ye — Ut

if 7. is the tangent of the acute angle at
¢ on the side-towards & between the tan-
gent line of the deflection curve at e
and the horizontal, and ¢,” is the tangent
of the corresponding acute angle on the
side of ¢ towards &.

Now if we consider equation (7) to
refer to the span /, the moment <}/ may
be taken to be made up of three parts,
viz:—M, caused by the weights on the
girder, M dependent on the moment
M. at e, and M, dependent on the mo-
ment M, at @. The moments in the
span /" may be resolved in a similar man-
ner. We may then write the equations
of deflections in the two spans when the
summation extends over each entire span
as follows:

BI(Ya—yo—1Ute) =Z¢ (M, i) — =% (M ix)
—Z (M) . . . ..

ET(yy —y.—Ut)=ZUM ")
- .\,j-‘l__]/l’.'".r.") — .2:,'(,1/;'{',:") (9)

in which @ is measured from ¢, and 2’
from b towards ¢. Now if the girder is
originally straight, 7. = — ¢/, hence
we can combine these two equations so
as to eliminate #, and ¢/, and the result-
ing equation will express a relationship
between the heights of the piers, the
bending moments (positive and negative),
their points @f application and the mo-
ments of inertia; of which quantities the
negative bending moments are alone un-
known. The equation we should thus
obtain would be the general equation
of which the ordinary expression of the
theorem of three moments is a patticular
case. Before we write this general
equation it is desirable to introduce cer-
tain modifications of form which do not
diminish its generality. Suppose that

& 2% (MP)==7 (M i)
then is @, the distance from a to the cen-

ter of gravity of the negative effective

=
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moment area next to ¢. As was shown
in econnection with Fig. 13, the position
of this center of gravity is independent
of the magnitude of M, or M, and may

=] .
be found from the equation, .

|
a |
f i’ da

e

= o= )

i % / .a'.r(?.t ‘

for M, is proportional to . Similarly
it may be shown that

1]
S i(l—z)ede
P f et e

il il TG

J il—a)dz _

¢

is the distance of the center of gravity |
of the mnegative effective moment area |
next to a.

Again, suppose that

1,25 (M) =27 (M)

then is ¢, an average value of ¢ for the
negative effective moment area next to
¢, which is likewise independent of the
magnitude of M, as appears from reason-
ing like that just adduced respecting z,.
Hence ¢, may be found from the equation

)ﬂ-
/ dwda
. ¢
=" (12)
f wdx
e
Similarly it may be shown that

S il—a)de

c

?..‘: 7'_;,_}"'-”__‘ . . (13)
/ (I—2z)de

in which Z, is the average value of ¢ for
the negative effective moment area next
to a. . :
The integrals in equations (10), (11),
(12). (13), and in others like them refer-
ring to the span #/, which contain i must
be integrated differently, in case 7 is dis-
continuous, as it usually is in a truss,
from the case where i varies continuous-
ly. When 7 is discontinuous the integral
extending from ¢ to a must be separated
into the sum of several integrals, each of
which must extend over that portion of
the span / in which ¢ varies continuously.
Furthermore we have :

Se(M)=3M1. . . (1)

since each member of this equation rep- |

resents the negative actual moment area
next to ¢ in the span /. Tk
Similarly, we have the equations

25 (M)=3M,! , 23(.31:’):%3[0'53
S (MTY=3000.

If there is no constraint at the pier
then must M, = M, .

Now making the substitutions in equa-
tions (8) and (9), which have been indi-
cated in the developments just com-
pleted, and then eliminating 7, and ¢,

g Y Ya—Ye  Yo—Ye ) %P <a y
i 7} T —_— ) —_—— e |4 ] )
B\ S5+ [ — 2 (M)

rer
Bl S8 ()= Mo, + M +5/1))

1
M) . . (15)
in which 7, is the distance from a of the
| center of gravity of the positive effect-
|ive moment area due to the weights in
the span /, and 7, is a similar distance
from & in the span #, while ¢, and ¢," are
|average values of 7 for these areas de-
rived from the equations in each span,
1, =2(Mi)+=2(M,).

It may frequently be best to leave the
expressions containing the positive mo-
ments in their original form as expressed
in equations (8) and (9).

Equation (15) expresses the theorem of
three moments in its most general form.

Let us now derive from equation (15),
the ordinary equation expressing the
theorem of three moments, for a girder
having a constant cross section. In this
case i=1, and we wish to find the value
of the term Z(M ) in each span., Let
M, be caused by several weights P ap-
plied at distances z from «, then the mo-
ment due to a single weight P at its
point of application is

M, = Pzl—z)=1,

which may be taken as the height of the
triangular moment area whose base is ¢
which is caused by P. This triangle
whose area is $M./ is the component of
=(M,) due to 2 and can be applied as a
concentrated bending moment at its cen-
ter of gravity at a distance « from a.

Now @=%(/+2), and taking all the
weights P at once

3% (Ma) =132 [P (F—2)z].

Also in equation (15) we have in this
case
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=8, 2,=%, 3/=§, 7/=§

. pgr) Ya=¥Ye | Ys—Yye 1
A UEI( —l-—-!--—l,— {

1=
— 7 [P —2)]— 5 S P (1 =2
=M.l 2.M, (I+1Y+ MU' . (lli)

Equation (16) then expresses the the-
orem of three moments for a girder hav-
ing a constant moment of inertia 7-and
deflected by weights applied in the span
! at distances z from «, and also by
;\'eights in the span ¥’ at distances 2’ from
Ju

Let us also take the particular case of
equation (15) when the moment of inertia
isinvariable and the piergon a level; then
i=1, and if we let 4 "and A4’ be the
positive moment areas due to the weights
we have

j Ll
6{2’-‘1,,ru+—‘ @
Mol+2M, C+V)+ M0 . . (1)

This form of the equation of three mo-
ments was first given by Greene.*

The advantage to be derived in discus-
sing this theorem in terms of the bending
moments, instead of the applied weights
is evident both in the analytical and the
graphical treatment. The extreme com-
plexity of the ordinary formulae arises
from their being obtained in terms of
the weights.

In order to complete the analytic solu-
tion of the continuous girder in the gen-
eral case of equation (15), it is only
necessary to use the well known equa-
tions,

M=M,+ 8,2,—2(Pz) . (18)

i) caliiail :
'\°:f [Ma— DM+ 25(P2)] . . (19)

T 2
S'=5 [My—M+2% (P)] . (2

(20
S = Se + S, S T e L
( D

S=8,—Z;(P).

)
)
)

. . .

In (18) M is the bending moment at
any point O in the span [, S, is the shear
at ¢ due to the weights in the span [,
and z, is the distance from O towards ¢
of the applied forces P and &, in the seg-
ment Oc. iy

I Method for the Analysis of Bridge Trusses.
.. Published by D. Van Nostrand. New

Equation (19) is derived from (18) by
taking O at a, and (20) is obtained simi-
larly in the span . R, is the reaction
of the pier at ¢. 8 is the shear at O in
the span /. These equations also com-
plete the solution of the cases treated in
(16) and (17).

; CHAPTER XII.
THE FLEXIBLE ARCH RIB AND STIFFENING
TRUSS,

Whenever the moment of inertia of
an arch rib is so small, that it cannot
afford a sufficient resistance to hold in
equilibrium the bending moments due
to the weights, it may be termed a flexi-
ble rib.

It must have a sufficient eross section
to resist the compression directly along
the rib, but needs to be stiffened by a
truss, which will most conveniently be
made straight and horizontal. The rib,
may have a large number of hinge joints
which must be rigidly connected with
the truss, usually by vertical parts. It
is then perfectly flexible.

If, however, the rib be continuous
without joints, or have blockwork joints,
it may nevertheless be treated as if per-
fectly flexible, as this' supposition will
be approximately correet and on the side
| of safety, for the bending moments in--
duced in the truss will be very nearly as
great as if the rib were perfectly flexible,
in case the same weight would cause a
much greater deflection in the rib than
in the truss. It will be sufficient to
describe the construction for the flexible
rib without a figure, as the construction
can afford no difficulties after the con-
structions already given have been mas-
tered.

Lay off ® some assumed scale the
applied weights as a load line, and let
us call this vertical load line ww’.
Divide the span into some convenient
number of equal parts by verticals,
which will divide the curve a of the rib
into segments. From some point b as a
pole draw a pencil of rays parallel to the
segments of @, and across this pencil
draw a vertical line wu’/, at such a dis-
tance from & that the distance ' be-
tween the extreme rays of the pencil is
equal to ww’. Then the segments of
uu’ made by the rays of the pencil are
the loads which the arch rib would sus-
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tain in virtue of its being an equilibrium
polygon, and they would induce no bend-
ing moments if applied to the arch.
The actual loads in general are different-

ly distributed. By Prop. VI the bending |

moments induced In the truss are tho-e

due to the difference between the welghtl

actually resting on the arch at each|

point, and the weight of the same total
amount distributed as shown by the
segments of the line uw'.

Now lay off a load line vv

" made up

the center and distributed in the same
manner as the segments of wu’: for it
is such a distribution of loads or pres-
sures which the rib* can sustain or pro-
duce. A gimilar set of moments can be
induced in the stiffening truss by length-
ening the posts between the rib and
truss.

When this deflection and the value of
EI in the truss are known, these mo-

[ments can be at once constructed by

of weights which are these differences |

of the segments of w’ and ww’, taking
care to observe the signs of these dif-
ferences.
weights 92’ vanishes when the wuighh
which rest on the piers are included, as
appears from inspection of the construc-

from that in Fig. 10 in one particular.
and the loads which 1t will sustain in
virtue of 1its llLlI!“' an u;ulllhn!nn Im]\—
oon will not be uniformly distributed,
hence the differences which are found as
the loading of the stiffening truss do|
not :.;L‘ll&‘l'lll\' constitute a uniformly
distributed load.

The horizontal thrust of the arch is
the distance of wu’ from & measured on
the scale on which the loads are laid off,
and the thrust along the arch at any

The algebraic sum of all the |

methods like those already employed.
A judicious amount of cambering of this
kind is of great use in giving the struc-
ture what may be called “initial stiff-
ness.” The St. Louis Arch is w anting in
initial stiffness to such an extent t];at
the weight of 1;lmrle person is sufficient

| to cause a considerable tremor over an
tion in the lower part of Fig. 10. The|
construction above deseribed will differ |

This would not have been
had the bridge consisted of an

entire span.
possible

arch stiffened by a truss which was an-
The rib will not in general be ]':u’:dm]i('.j )

| were erected in

point is length of the corresponding ray |

of the pencil between b and wu’. These
thrusts depend only on the total weight
sustained, while the bending moments

manner in “IIIL]I it 18 distributed, and
on the shape of the arch.

applied to the stiffening truss, it is to be
treated as a straight trmlulﬂn methods
])ll_'\lu'll':I‘u' o\p}.um-d according to the

piers.
The effect of variations of temperature

and fall by an amount which can be
readily determined with sufficient exact-

chored to the piers in such a state of
bending tension as to exert considerable
pressure upon the arch. This tension of

the truss would be relieved to some ex-

\
[ tent during the passage of a live load

iL. g e passage OI 4 adl.
|

The arch rib with stiffenifig truss, is a
form of which many wooden bridges
Pennsylvania in the
earlier days of American railroad build-
ing, but its theory does not seem to have
been well understood by all who erected
them, as the stiffening truss was itself
usually made strong enough to bear the
applied weights, and the arch was added
for additional security and stiffness,

| while instead of anchoring the truss to
of the \llﬂulimf truss ulqund on the|

[figured by Haupt

_ _ : | tion of pressures was adopted.
Having determined thus the weights|

the piers and ‘causing it to exert a pres-
.\\unl on the arch, a far different distribu-
Quite a
number of bridges of this pattern are
from the designs of

| the buile lch but most of them shm\ by

|the manner of bracing near the piers
way in which it is -1:]npmtml at the|

that the engineers who designed them
did not know how to take advantage of

] ire | the peculiarities of this combination.
is to make the crown of the arch rise|T

ness, (see Rankine’s Applied Mechanics|

Art. 169). This rise or
produces bending moments in the stiffen-
ing truss, which fastened to the tops
of the piers, which are the same as would

fall of the arch |

| This further appears from the fact, that

the trussing is not usually continuous.
A good example, however, of this

combination constructed on correct prin-

ciples is very fully described by Haupt

|on pages 169 ef seq. of his treatise. It

be produced by a positive or negative|

ading, causing the same deflection at

is a wooden bridge over the Susquehanna
River, 53 miles from Harrisburg on the

i e0r} ge Construction, Herman Haupt, A.M.
New York.
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Pennsylvania Railroad, and was designed |
by Haopt. It consists of twenty-three
spans of 160 feet each from center to
center of piers. The arches have each |
a span of 1491 feet and a rise of 20
ft. 10 in., and are stiffened by a Howe
Truss which is continnous over the |
piers and fastened to them. It was
erected in 1849. Those parts which were
protected from the weather have re-
mained intact, while other parts have|
been replaced, as often as they have de-|
cayed, by pieces of the original dimen- |
sions. This br idge, thongh not designed
for the heavy traffic of these days, “still |
stands after twenty-eight years of use, a
proof of the real value of this kind of |
combination in bridge building.

CHAPTER XIIL ‘
THE ARCH OF MASONRY. ‘

Arches of stone and brick have joints |7
which are stiff up to a certain limit
beyond which they are unstable. The
lofuluw and shape of the arch must be so
:ul]ustul to each other that this limit|
shall not be.exceeded.
in the course of the ensuing discussion,

Let us take for discussion the brick

| arch erected by Brunel near Maidenhead

England, to serve as a railway viaduct.
It is in the form of an elliptic ring, as
represented in Fig. 14, having a span of

|128 ft. with a rise of 24} feet. The

thickness of the ring at the crown is 5%
ft., while at the pier the horizontal thick-
ness is 7 ft. 2 inches.

Divide the span into an even number
of equal parts of the type 45, and with a
radins of half the span deseribe the
semicircle gg. Let ba=24% ft. be the
rise of the intrados, and from any con-
venient point on the line 56 as b, draw
lines to @ and g. These lines will emble
us to find the ordinates b« of the ellipse
of the intrados from the ordinates &g of
| the circle, by decreasing the latter in the
ratio of &y to ba. For example, draw a
horizontal through g, eutting &g at i,
then a vertical thmutrh b3 cuttmtr ba at
7., then will a horizontal thrmwh 7, cut
off @b, the ordinate of the elhpm corre-
~pnm11nw to b,g, in the circle, as appears
from known properties of the Llllpee

Similarly let 6g=64 ft. + 7 ft. 2 in,,

This will appear [and with 4¢ as radius descr mf- a semieir-
jcle. Let bd=24}ft. + 5} ft. be the rise

ARCH OF MASONRY
MAIDENHEAD RAILWAY VIADUCT
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of the extrados, and from any convenient
point on bb, as &, draw lines to & and ¢.

These will enable usto find the ordinates
bd of the ellipse of the extrados, from
those of the circle, by decreasing the
latter in the ratio of b¢ to bd. By this
means, as many points as may be desired,
can be found upon the intrados and ex-
trados; and these curves may then be
drawn with a curved ruler. We can use
the arch ring so obtained for our con-
struction, or multiply the ordinates by
any convenient number, in case the arch
is too flat for convenient work. Indeed
we can use the semicircular ring itself if
desirable. 'We shall in this construetion
employ the arch ring ad which has just
been obtained.

We shall suppose that the material of |
the surcharge between the extrados and |

a horizontal line tangent at d causes by

its weight a vertical pressure upon the |

arch. That this assumption is nearly
correct in case this part of themasonry is
madein the usual manner, cannot well be
doubted. Rankine, however, in his Ap-
plied Mechanics assumes that the press-
ures are of an amount and in a direction
due to the conjugate stresses of an homo-
geneous, elastic material, or of a material
which like earth has an angle of slope due

to internal friction. While this is a cor- |

rect assumption, in case of the arch of &

tunnel sustaining edrth, it is incorrect |
for the case in hand, for the masonry of |

the surcharge needs only a vertical resist-

ance to support it, and will of itself pro- |

duce no active thrust, having a horizon-
tal component.

This is further evident from Moseley’s

principle of least resistance, which is|

stated and proved by Rankine in the
following terms:

“If the forces which blance each

other in or npon a given body or struc-|
ture, be distinguished into two systems, |

called respectively, active and passive,
which stand to each other in the rela-
tion of cause and effect, then will the
spassive forces be the least which are
capable of balancing the active forces,

consistently with the physical condition | of the effect of the obliquity of the joints

|in the arch ring, the reader will find the

of the body or structure.

For the passive forces being caused by
the application of the active forces to
the body-or structure, will not increase
after the active forces have been balanced |

by them; and will, therefore, not increase
beyond the least amount capable of bal-
ancing the active forces.”

A surcharge of masonry can be sus-
tained by vertical resistance alone, and
therefore will exert of itself a pressure
in no other direction upon the haunches
of thearch. Neverthelessthis surcharge
will afford a resistance to horizontal
pressure if produced by the arch itself,
So that when we assume the pressures
due to the surchargeto be vertical alone,
we are assuming that the arch does not
avail itself of one element of stability
which may possibly be employed, but
which the engineer will hesitate to rely
upon, by reason of the inferior character
of the masonry usually found in the sur-
charge. The difficulty is usually avoided,
as in that beautiful structure, the London
| Bridge, by forming a reversed arch over
the piers which can exert any needed
[ horizontal pressure upon the haunches,
This in effect increases by so much the
thickness of the arch ring at and near
the piers.

The pressure of earth will be treated
in connection with the construction for
the Retaining Wall. On combining the
pressures there obtained with the weight,
the load which' a tunnel arch sustains,
may be at once found, after which the
| equilibrium polygon may be drawn and
|a construction executed, similar in its
general features to that about to be em-
| ployed in the case before us.

Let us assume that the arch is loaded
[ with a live load extending over the left
| half of the span, and having an intensity
| which when reduced to masonry of the
same specific gravity as that of which
the viaduet is built, would add a depth
df to the surcharge. Nowif the number
of parts into which the span is divided
be considerable, the weights which may
|be supposed to be concentrated at the
points of division vary very approximately
as the quantities of the type af. This
approximation will be found to be suffi-
ciently exact for ordinary cases; but
should it be desired to make the con-
struction exact, and also to take account

method for obtaining the centers of
gravity, and constructing the weights, in
Woodbury’s Treatise on the Stability of
the Arch pp. 405 et seq. in which is
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given Poncelet’s graphical solution of
the arch.

With any convenient pole distance, as
one half the span, lay off the weights.
We have used & as the pole and made
baw, =4 the weight at the crown =
1 (af+ad) =b/w, ww, = a.f, ww, =
a,f., ete. Several of the weights near
the ends of the span are omitted in the

‘igure; viz., wao,, etc. From the force

polygon so obtained, draw the equili-|

brium polygon ¢ as previously explained.

The equilibrinm polygon which ex-
presses the real relations between the
loading and the thrust along the arch, is

evidently one whose ordinates are pro-|

portional to the ordinates of the polygon
C.

It has been shown by Rankine, Wood-
bury and others, that for perfect stability,
—i.¢, in case no joint of the arch begins
to open, and every joint bears over its
entire surface,—that the point of appli-
cation of the resultant pressure must
everywhere fall within the middle third
of the archring. For if at any joint the
pressure reaches the limit zero, at the
intrados or extrados, and uniformly in-
creases to the edge farthest from that,
the resultant pressure is applied at one
third of the depth of the joint from the
farther edge.

The locus of this point of application
of the resultant pressure has been called
the * curve of pressure,” and is evidently
the equifibrium carve due to the weights
and to the actual thrust in the arch. If
then it be possible to use such a pole dis-
tance, and such a position of the pole,
that the equilibrium polygon can be in-
seribed within the inmer third of the
thickness of thie arch ring, the arch is
stable. It may readily occur that this is
impossible, but in order to ensure suffi-
cient stability, no distribution of live

load should be possible, in which this |

condition is not fulfilled.

We can assume any three points at
will, within this inner third, ang cause a
projection of the polygon ¢ to pass
through them, and then determine by in-
spection whether the entire projection
lies within the preseribed limits. In
order to so assume the points that a new

seribed limits near the crown. and near
the haunches. Let us assume e at the
middle of the crown, ¢ at the middle of
| @,'d, and e near the lower limit on ad,.
This last is taken near the lower limit,
because the curvature of the left half of
|the polygon is more considerable than
| the other, and so at some point between
| it and the crown it may possibly rise to
| the upper limit. The same consideration
would have induced us to raise ¢, to the
upper limit, were it not likely that such
| a procedure would cause.the polygon to
| rise above the upper limit on the right
|of /.

[  Draw the closing line k% through ee’,
[and the corresponding closing line Ak
| through c.c,’, and decrease all the ordi-

| nates of the type %e in the ratio of Ad to
ke, by help of the lines én and &/, in a
manner like that previously explained.
| For exdmple /e ,=no0, and lo,=kge,

| By this means we obtain the polygon e

{ which is found to lie within the required

| limits. The arch is then stable: but is
the polygon e the actunal curve of
pressures? Might not a different as-
sumption respecting the three points
through which it is te pass lead to a dif-
ferent polygon, which would also lie
within the limits? It certainly might.
Which of all the possible curves of pres-
sure fulfilling the required condition, is
to be chosen, is determined by Moseley’s
principle of least resistance, which ap-
plied to the case in hand, would oblige
us to choose that curve of all those lying
within the required limits, which has the
least horizontal thrust, .. the smallest
pole distance, It appears necessary to
direct particular attention to this, as a
recent publication on this subject asserts
| that the true pressure line is that which
approaches nearest to the middle of the
arch ring, 'so that the pressure on the
most compressed joint edge is a mini-
| mum; a statement at variance with the
| theorem of least resistance as proved by
| Rankine,

| Now to find the particular curve which

| has the least pole distance, it is evidently
| necessary that the curve should have its
1 ordinates as large as possible. This may
| be accomplished very exactly, thus:

trial may most likely be unnecessary, we | above ¢, where the polygon approaches
take note of the well known fact, that|the upper limit more closely than at any
in arches of this character, the curve of | other point near the crown, assumea new
pressure is likely to fall without the pre- | position of ¢, at the upper limit; and be-




