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of the extrados, and from any convenient
point on bb, as &, draw lines to & and ¢.

These will enable usto find the ordinates
bd of the ellipse of the extrados, from
those of the circle, by decreasing the
latter in the ratio of b¢ to bd. By this
means, as many points as may be desired,
can be found upon the intrados and ex-
trados; and these curves may then be
drawn with a curved ruler. We can use
the arch ring so obtained for our con-
struction, or multiply the ordinates by
any convenient number, in case the arch
is too flat for convenient work. Indeed
we can use the semicircular ring itself if
desirable. 'We shall in this construetion
employ the arch ring ad which has just
been obtained.

We shall suppose that the material of |
the surcharge between the extrados and |

a horizontal line tangent at d causes by

its weight a vertical pressure upon the |

arch. That this assumption is nearly
correct in case this part of themasonry is
madein the usual manner, cannot well be
doubted. Rankine, however, in his Ap-
plied Mechanics assumes that the press-
ures are of an amount and in a direction
due to the conjugate stresses of an homo-
geneous, elastic material, or of a material
which like earth has an angle of slope due

to internal friction. While this is a cor- |

rect assumption, in case of the arch of &

tunnel sustaining edrth, it is incorrect |
for the case in hand, for the masonry of |

the surcharge needs only a vertical resist-

ance to support it, and will of itself pro- |

duce no active thrust, having a horizon-
tal component.

This is further evident from Moseley’s

principle of least resistance, which is|

stated and proved by Rankine in the
following terms:

“If the forces which blance each

other in or npon a given body or struc-|
ture, be distinguished into two systems, |

called respectively, active and passive,
which stand to each other in the rela-
tion of cause and effect, then will the
spassive forces be the least which are
capable of balancing the active forces,

consistently with the physical condition | of the effect of the obliquity of the joints

|in the arch ring, the reader will find the

of the body or structure.

For the passive forces being caused by
the application of the active forces to
the body-or structure, will not increase
after the active forces have been balanced |

by them; and will, therefore, not increase
beyond the least amount capable of bal-
ancing the active forces.”

A surcharge of masonry can be sus-
tained by vertical resistance alone, and
therefore will exert of itself a pressure
in no other direction upon the haunches
of thearch. Neverthelessthis surcharge
will afford a resistance to horizontal
pressure if produced by the arch itself,
So that when we assume the pressures
due to the surchargeto be vertical alone,
we are assuming that the arch does not
avail itself of one element of stability
which may possibly be employed, but
which the engineer will hesitate to rely
upon, by reason of the inferior character
of the masonry usually found in the sur-
charge. The difficulty is usually avoided,
as in that beautiful structure, the London
| Bridge, by forming a reversed arch over
the piers which can exert any needed
[ horizontal pressure upon the haunches,
This in effect increases by so much the
thickness of the arch ring at and near
the piers.

The pressure of earth will be treated
in connection with the construction for
the Retaining Wall. On combining the
pressures there obtained with the weight,
the load which' a tunnel arch sustains,
may be at once found, after which the
| equilibrium polygon may be drawn and
|a construction executed, similar in its
general features to that about to be em-
| ployed in the case before us.

Let us assume that the arch is loaded
[ with a live load extending over the left
| half of the span, and having an intensity
| which when reduced to masonry of the
same specific gravity as that of which
the viaduet is built, would add a depth
df to the surcharge. Nowif the number
of parts into which the span is divided
be considerable, the weights which may
|be supposed to be concentrated at the
points of division vary very approximately
as the quantities of the type af. This
approximation will be found to be suffi-
ciently exact for ordinary cases; but
should it be desired to make the con-
struction exact, and also to take account

method for obtaining the centers of
gravity, and constructing the weights, in
Woodbury’s Treatise on the Stability of
the Arch pp. 405 et seq. in which is
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given Poncelet’s graphical solution of
the arch.

With any convenient pole distance, as
one half the span, lay off the weights.
We have used & as the pole and made
baw, =4 the weight at the crown =
1 (af+ad) =b/w, ww, = a.f, ww, =
a,f., ete. Several of the weights near
the ends of the span are omitted in the

‘igure; viz., wao,, etc. From the force

polygon so obtained, draw the equili-|

brium polygon ¢ as previously explained.

The equilibrinm polygon which ex-
presses the real relations between the
loading and the thrust along the arch, is

evidently one whose ordinates are pro-|

portional to the ordinates of the polygon
C.

It has been shown by Rankine, Wood-
bury and others, that for perfect stability,
—i.¢, in case no joint of the arch begins
to open, and every joint bears over its
entire surface,—that the point of appli-
cation of the resultant pressure must
everywhere fall within the middle third
of the archring. For if at any joint the
pressure reaches the limit zero, at the
intrados or extrados, and uniformly in-
creases to the edge farthest from that,
the resultant pressure is applied at one
third of the depth of the joint from the
farther edge.

The locus of this point of application
of the resultant pressure has been called
the * curve of pressure,” and is evidently
the equifibrium carve due to the weights
and to the actual thrust in the arch. If
then it be possible to use such a pole dis-
tance, and such a position of the pole,
that the equilibrium polygon can be in-
seribed within the inmer third of the
thickness of thie arch ring, the arch is
stable. It may readily occur that this is
impossible, but in order to ensure suffi-
cient stability, no distribution of live

load should be possible, in which this |

condition is not fulfilled.

We can assume any three points at
will, within this inner third, ang cause a
projection of the polygon ¢ to pass
through them, and then determine by in-
spection whether the entire projection
lies within the preseribed limits. In
order to so assume the points that a new

seribed limits near the crown. and near
the haunches. Let us assume e at the
middle of the crown, ¢ at the middle of
| @,'d, and e near the lower limit on ad,.
This last is taken near the lower limit,
because the curvature of the left half of
|the polygon is more considerable than
| the other, and so at some point between
| it and the crown it may possibly rise to
| the upper limit. The same consideration
would have induced us to raise ¢, to the
upper limit, were it not likely that such
| a procedure would cause.the polygon to
| rise above the upper limit on the right
|of /.

[  Draw the closing line k% through ee’,
[and the corresponding closing line Ak
| through c.c,’, and decrease all the ordi-

| nates of the type %e in the ratio of Ad to
ke, by help of the lines én and &/, in a
manner like that previously explained.
| For exdmple /e ,=no0, and lo,=kge,

| By this means we obtain the polygon e

{ which is found to lie within the required

| limits. The arch is then stable: but is
the polygon e the actunal curve of
pressures? Might not a different as-
sumption respecting the three points
through which it is te pass lead to a dif-
ferent polygon, which would also lie
within the limits? It certainly might.
Which of all the possible curves of pres-
sure fulfilling the required condition, is
to be chosen, is determined by Moseley’s
principle of least resistance, which ap-
plied to the case in hand, would oblige
us to choose that curve of all those lying
within the required limits, which has the
least horizontal thrust, .. the smallest
pole distance, It appears necessary to
direct particular attention to this, as a
recent publication on this subject asserts
| that the true pressure line is that which
approaches nearest to the middle of the
arch ring, 'so that the pressure on the
most compressed joint edge is a mini-
| mum; a statement at variance with the
| theorem of least resistance as proved by
| Rankine,

| Now to find the particular curve which

| has the least pole distance, it is evidently
| necessary that the curve should have its
1 ordinates as large as possible. This may
| be accomplished very exactly, thus:

trial may most likely be unnecessary, we | above ¢, where the polygon approaches
take note of the well known fact, that|the upper limit more closely than at any
in arches of this character, the curve of | other point near the crown, assumea new
pressure is likely to fall without the pre- | position of ¢, at the upper limit; and be-
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low ¢’ where it approaches the lower |

limit most nearly on the right, assume a
new position of ¢’ at the lower limit.
At the left ¢, may be retained. Now on
passing the polygon through these points
1t will fulfill the second condition, which
1s imposed by the principle of least resist-
ance.

A more direct method for making the
polygon fulfill the required condition
will be given in Fig. 18.

It is seen in the case before us, the
changes are so minute that it is useless
to find this new position of the polygon,
and its horizontal thrust. The thrust ob-
tained from the polygon e in its present
position is sufliciently exact. The hori-
zontal thrust in this case is found from
the lines &n apnd &L Since 2vv. is the
horizontal thrust, 7.e. pole distance of the
polygon ¢, 2vv, is the horizonfal thrust
of the polygon e.

By using this pole distance and a pole
properly placed, we might have drawn
the polygon e with perhaps greater ac-
curacy than by the process employed,
but that being the process employed in
Figs. 2, 3, ete., we have given this as an
example of another process,

The joints in the arch ring should be
ﬁppro,:uumt;'lyi perpendicular to the

irection of the pressure, i.e. ms
the curve of presslurcs.: ai s

With regard to what factor of safety

is proper in structures of this kind, afl |

engineers would agree that the material
at the most exposed edge should never
be subjected to a pressure greater than
one fifth of its nltimate strength. Owing
to the manner in which the pressure is as-
sumed to be distributed in those joints
where the point of application of the re-
sultant is at one third the depth of the
joint from the edge, its intensity at this
edge is double the average intensity of
the pressure over the entire joint. We
are then led to the following conclusion,
that the total horizontal thrust (or pres-
sure on any joint) when divided by the
area of the joint where this pressure is
sustained ought to give a quotient at
least ten times the ultimate strength of
& ke o
the material. The brick viaduect which
we have treated is remarkable in using
perhaps the smallest factor of safety in
any known structure of this class, having

at the most exposed edge a factor of only
31 instead of 5.

It may be desirable in a case like that
under consideration, to discuss the
changes occuring during the movement
of the live load, and that this may be
effected more readily, it is convenient te
draw the equilibrium polygons due to
the live and dead loads separately. The
latter can be drawn once for all, while
the former being due to a uniformly
distributed load can be obtained with
facility for different positions of the load.
The polygon can be at once combined
into a single polygon by adding the ordi-
nates of the two together. Care must
be taken, however, to add together only
such as have the same pole distance. In
case the construction which has been
given should show that the arch is un-
stable, having no projection of the equili-
brinm polygon which can be inseribed
within the middle third of the arch ring,
it is possible either to change the shape
of the arch slightly, or increase its
thickness, or change the distribution of
the loading. The last alternative is
usually the best one, for the shape has
been chosen from reasons of utility and
taste, and the thickness from considera-
tion of the factor of safety. If the cen-
ter line of the arch ring (or any other
line inseribed within the middle third)
be considered to be an equilibrium poly-
gon, and from a pole, lines be drawn
parallel to the segments of this polygon,
a weight line can be found which will
represent the loading needed to make
the arch stable. If this load line be
compared with that previously obtained,
it will be readily seen where a slight
additional load must be placed, or else a
hollow place made in the surcharge,
such as will render the arch stables In
general, it may be remarked, that an
additional load renders the curvature of
the line of pressures sharper under it,
while the removal of any load renders
the curwe straichter under it.

The foregoing construciion is unre-
stricted, and applies to all unsymmetrical
forms of arches or of loading. or both.
As previously mentioned, a similar con-
struction applies to the case of an arch
sustaining the pressure of water or earth;
ln_thru case, however, the load is not ap-
plied vertically and the weight line be-
comes a polygon.
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CHAPTER XIV.
RETAINING WALLS AND ABUTMENTS.

Let aa’d’b in Fig. 15 represent the
cross section of a wall of masonry which

retains a bank of earth having a surface |

aa,. Assume that the portion of the

wall and earth under consideration is |

bounded by two planes parallel to the
plane of the paper, and at a unit’s dis-
tance from each other: then any plane
containing the edge of the wall at &, as
ba,, ba,, ete., ents this solid in a longitu-
dinal section, which is a rectangle having
awidth of one unit, and a length ba,, ba,
ete.

The resultant of the total pressure
distributed over any one of these ree-
tangles of the type ba is applied at one-
third of that distance from &: i.e. the re-
sultant pressure exerted by the earth
against the rectangle at b, 18 applied at
a distance of bk=4 ba, from b.

That the resultant is to be applied at
this point, is due to the fact that the dis-
tributed pressure increases uniformly as

| we proceed from any point @ of the sur-
| face toward b: the center of pressure is
then at the point stated, as is well known.

Again, the direction of the pressures
| against any vertical plane, as that at ba,,
|is parallel to the surface aa,. This fact
is usnally overlooked by those who treat
this subject, and some arbitrary assump-
tion is made as to the direction of the
l)l'(’SEHTL‘.

That the thrust of the earth against
a vertical plane is parallel to the ground
surface is proved analytically in Ran-
kine’s Apphied Mechanics on page 127;
which proof may be set forth in an
elementary manner by considering the
small parallelopiped mn, whose upper
and lower surfaces are parallel to the
ground surface. Since the pressure on
any plane parallel to the surface of the
ground is due to the weight of the earth
above it, the pressure on such a plane is
vertical and uniformly distributed. If
mn were & rigid body, it would be held
in equilibrium by these vertical pressures,
which are, therefore, a system of forces

THRUST OF EARTH
RETAINING WALL
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in equilibrium; but as 72 is not rigid it
must be confined by pressures distributed
over each end surface, which last are dis-
tributed in the samemanner on each end,
because each is at the same depth below
the surface. Now the vertical pressures
and end pressures hold mn in equilibrium!
they therefore form a system in equili-
brium. But the vertical pressures are in-
dependently in equilibrium, therefore the
end pressures alone form a system which
is independently in equilibrium. That this
may occur, and no couple be introduced,
these must directly oppose each other;
i.e. be parallel to the ground line aa,

Draw Ap || @aa, it then represents the
position and direction of the resultant
pressure upon the vertical ba,. Draw
the horizontal Zi, then is the angle ifp
called the obliquity of the pressure, it
being the angle between the direction of
the pressure and the normal to the plane
upon which the pressure acts.

Let ebe= @ be the angle of friction, i.e.
the inclination which the surface of
ground would assume if the wall were
removed. "

The obliquity of the pressure exerted
by the earth against any assumed plane,
such as ba, or ba, must not exceed the
angle of friction; for should a greater
obliquity occur the prism of earth, a,ba,

or a ba,, would slide down the plane, ba, |

or ba,, on which such obliquity is found.

For dry earth @ is usually about 30°;
for moist earth and especially moist clay,
@ may be as small as 15°. The inclina-
tion of the ground surface aa, cannot be
greater than @,

Now let the points a, a, a, etc., be
assumed at any convenient distances
along the surface: for convenience we
have taken them at equal distances, but
this is not essential. With & as a center
and any convenient radius, as be, describe
a semi-circumference cutting the lines
ba,, ba, ete.at ¢, ¢, ete. Make ee =ec;
also ee =cpe, ee.=ce, ete.: then be
has an obliquity ¢ with ba, as has also
be, with ba,, be, with ba,, etc.; for abe,
:H:fu ::r.rgfu_'._l:(){i 4 (1’_ X

Lay oft b4, bb,, bb,, etc., proportional
to the weights of the prisms of earth
aba,, aba, aba,ete.: we have effected
this most easily by making a,a =25,
a,a,=bb,aa,=0b,ete. Thronghd,d b,

3

etc., draw parallels to Ap; these will inter- |
sect be, be, be, etc., at b, ¢, ¢, ete.

!Then is bb.t, the triangle of forces hold-

ing the prism a@a, in equilibrium, just
| as it is about to slide down the plane ba,
\for bb, represents the weight of the
prism, &7, is the known direction of the
thrust against da, and &, is the diree-
tion of the thrust against da, when it is
just on the point of sliding: then is £,
the greatest pressure which the prism
can exert against da, Similarly ¢, is
the greatest pressure which the prism
a,ba, can exert. Now draw the curve
t,t,t, ete, and a vertical tangent inter-
gecting the parallel to the surface through
b at t; then is ¢b the greatest pressure
which the earth can exert against da,.
This greatest pressure is exerted approxi-
mately by the prism or wedge of earth
cut off by the plane ba,, for the pressure
which it exerts against the vertical plane
|through & is almost exactly &2 =0f.
This 1s Coulomb’s “ wedge of maximum
thrust ” correctly obtained: previous de-
terminations of it have been erroneous
| when the ground surface was not level,
| for in that case the direction of the press-
(ure has not been. ordinarily assumed to
| be parallel to the ground surface.

In case the ground surface is level the
wedge of maximum thrust will always
be cut off by a plane bisecting the angle
cbe,, as may be shown analytically, which
fact will simplify the construction of that
case, and enable us to dispense with
drawing the thrust curve #.

The pressure b is to be applied at %,
and may tend either to overturn the wall
or to cause it to slide.

In order to discuss the stability of the
wall under this pressure, let us find the
weight of the wall and of the prism of
earth aba. TLet us assume that the
specific gravity of the masonry compos-
ing the wall i§ twice that of earth.
Make a’h=p8’, then the area adb’a’=
abh=abh.; and if ah,=2ah, then ah,
represents the weight of the wall reduced
| to the same scale as the prisms of earth
| before used. Since aq, is the weight of
aba,, ah, is the weight of the mass on
the right of the vertical da, against
| which the pressure is exerted.
| Make bg=a.h, and draw tg, which
| then represents the direction and amount
| of the resultant to be applied at 0 where
the resultant pressure applied at % inter-
| sects the vertical gw through the center

| of gravity g of the mass aa,b0’a’. The
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center of gravity g is constructed in the
following manner. Lay off a’A=5b', and
bl—aa’; and join Al. Join also the mid-
dle points of @b and a’b': the line so
drawn intersects Al at g, the center of
aravity of aa'd’b. Find also the center
of gravity g,, of aba,, which lies at the
intersection of a line parallel to aa,, and
cutting ba, at a distance of } éa, from a,
and of a line from & bisecting aa,.
Through g, and g, draw parallels, and
lay off g, f, and g, 7, on them proportional
to the weights applied at g, and g,
respectively. We have found it con-
venient to make g, /', =3ah,, and g, f,.=3
aa,. Then 1 f, divides g,g, inversely as
the applied weights; and g, the point of
intersection, is the required center of
gravity.

Let or be parallel to t¢; since it
intersects 68’ .so far within the Dbase,
the wall has sufficient stability against
overturning. The base of the wall is so
much greater than is necessary for the
support of the weight resting upon it,
that engineers have not found it neces-
sary that the resultant pressure should
intersect the base within the middle third
of the joint. The practice of English en-
gineers, as stated by Rankine, is to per-
mit this intersection to approach as near
b’ as 1b4', while French engineers permit

it to approach as near as 14’ only. In|

all cases of buttresses, piers, chimneys,
or other structures which call into play
some fraction of the ultimate strength
of the material, or ultimate resistance of
the foundation as great as one tenth, or
one fifteenth, the point should not ap-
proach 4" nearer than % 50'.

Again, let the angle of friction be-
tween the wall and the earth under it be
@’: then in order that the thrust at &
may not cause the wall to slide, the
angle wor must be less than @',

When, however, the angle @’ isless than
woritbecomes necessary to gain additional
stability by some means, as for example
by continuing the wall below the sur-
face of the ground lying in front of it.
Let @,'a,’ be the surface of the ground
which is to afford a passive resistance to
the thrust of the wall: then in a manner
precisely analogous to that just employed
for finding the greatest active pressure
which earth can exert against a vertical
plane, we now find the least passive
pressure which the earth in front of the

wall will sustain without sliding up some
plane such as #’'a’ or ¥'a, ete. The
difference in the two cases 1s that in the
former case friction hindered the earth
from sliding down, while it now hinders
it from sliding up the plane on which it
rests.

Lay off ¢'¢/=ee,; then taking any
points a/a.’, ete. on the ground surface,
make ¢ ‘¢'=c'¢c,/, ¢/a'=¢/¢/, ete.

Lay off b'b,'=aa’, ete., and drawing
parallels through &/, b/, etc., we obtain
the thrust curve ¢,'t, etec.

The small prism of earth between &'a,’
and the wall adds to the stability of the
wall, and can be made to enter the con-
struction if desired, in the same manner
as did aba,.

The vertical tangent through s’ shows
us that the earth in front of the wall can
withstand a thrust having a horizontal
component 4’s’ measured on a scale such
that 5'b'=a,/a,' is the weight of the
prism of earth a,/b’a,’.

This scale is different from that used
on the left. To reduce them to the
same seale lay off from ¥, the distances
O’d, and b'd proportional to the perpen-
diculars from & on aa, and &' on a/a
respectively. In the case before us, as
the ground surfaces are parallel, we have
made b'd,=ba, and V'd/=b'a,’.

Then from any convenient point on
b6, as v, draw vd, and vd,/: these lines
will reduce from one scale to the other.
We find then that ='d is the thrust on
the scale at the left corresponding to
ad=0's’ on the right: e, the earth
under the surface assumed at the right
can withstand something over one fourth
of the thrust sb at the left.

It will be found that a certain small
portion of the earth near a," has a thrust
curve on the left of &', but asit is not
needed in our solution it is omitted.

If any pressure is required in pounds,
as for example sb, it is founds as follows:
—the length of @k, is to that of sb as the
weight of #%'aa’ in 1bs. is to the pressure
sb in lbs.

Frequently the ground surface is not a
plane, and when this is the case it often
consists of two planes as ad, da, Fig. 16.
In that case, draw some convenient line
as ad,, and lay off ad,, d d,, ete. at will,
which for convenience we have made
equal. Draw da, d,a, ete. parallel to
bd, and join ba,, ba,, ete.: then are the

T ——
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triangles bda, bda,, bda,, bda, ete. pro- ! other form than that above treated, the
portional in area to the line_s, ea, ea,, ete. | vertical plane against which the pressure
Hence the weights of the prisms of earth |is determined should still pass through

baa,, baa,, etc., are proportional to ad,,
ad,, ete.

In case ab slopes backward the part of
the wall at the left of the vertical ba,
rests upon the earth below it sufficiently
to produce the same pressure which
would be produced if bae, were a prism

of earth. The weights of the wedges|
which produce pressures, and which are |

to be laid off below &, are then propor-
tional to d,d, =bb, dd,=bb, ete.. The
direction of the pressures of the prisms

at the right of bd are parallel to ad; but |

upon taking a larger prism the direction
may be assumed to be parallel to aa,,
a@,,, ete., which is very approximately
correct. Now draw b7, || ¢,a, bz, || e,
etc.; and complete the construction for

| the lower back edge of the wall.

In case the wall is found to be likely
to slide upon its foundations when these
are level, a sloping foundation is fre-
quently employed, such that it shall be
nearly perpendicular to the resultant pres-
|sure upon the base of the wall. The con-
struction employed in Fig. 15 applies
equally to this case. :

The investigation of the stability of
any abutment, buttress, or pier, against
|overturning and against sliding, 1s the
same as that of the retaining wall in Fig.
15. As soon as the amount, direction,
and point of application, of the pressure
exerted against such a structure is deter-
mined, it is to be treated precisely as
| was the resultant pressure &p in‘Fig. 15.

pressure precisely as in Fig. 15, using | In.the case of a reservoir wall or dam,
for resultant pressure the direction and |the construction is simplified from the
amount of that due to the wedge of maxi- | fact that, since the surface of water is
mum pressure thus obtained. |level and the angle of friction vanishes,

In finding the stability of the wall, it |the resultant pressure is perpendicular
will be necessary to find the weight and | to the surface upon which the water
center of gravity of the wall itself, minus presses. It is useful to examine this as
a prism of earth baa,, mstefxd of plus this a case of our previous construction. In
prism as in Fig. 15; for it is now sus- Fig, 17, let abb’ be the cross-section of
tained by the earth back of the wall. (the dam; then the wedge of maximum

"When the back of the wall has any | pressure against ba, is cut off by the

. 1s vertical, being due to its own weight
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plane ba, when cbu, =45°, .. ba, bisects
cba, as before stated.

@y a0 T

\\\
Fig7T >y
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This produces a horizontal resultant |
pressure at & equal to the weight of the
wedge. Now the total pressure on ab is
the resultant of this pressure, and the
weight of the wedge @ba,. The forces|
to be compounded are then proportional

to the lines o,a,=bv,'and ag,. By simi-|
larity of triangles it is seen that 7o the
resultant is perpendicular to ab.

It is seen that by making the inclina- |
tion of @b %mall, the direction of 70 can |
be made so nearly vertical that the dam |
will be retained in place by the pressure |
of the water alone, even though the dam |
be a wooden frame, whose weight may be |
disregarded. ‘

We can now construct the actual
pressures to which the arch of a tunnel|
surcharged with water or earth is sub»I
jected. Buppose, for example, we wish
to find the pressure of such a surcharge
on the voussoir a,d,d.a, Fig. 14. Find
the resultant pressure against a vertical
plane extending from ¢, to the upper
surface of the surface and ecall it p,.
Draw a horizontal through ¢, and

let its intersection with the vertical|

just mentioned he called 4. Find
the resultant pressure against the verti-
cal plane extending from d,” to the sur-
face, and call it p/'. Now let p /"=
p.—p.and let it be applied at such apoint
of d.d ' that p, shall be the resultant of p/
and p,". Then will the resultant press-
ure against the voussoir be the resultant

of pp," and the weight of that part of the |

surcharge directly above it.

FOUNDATIONS IN EARTH.

A method similar to that employed in
the determination of the pressure of
earth against a retaining wall, or a tunnel
arch, enables us to investigate the sta- |
bility of the foundations of a wall stand- |
ing i earth. '

Suppose in Fig. 15 that the wall abb’'a/
is a foundation wall, and that the press-

ure which it exerts upon the plane b5’

load which it sustains. Now consider a
vertical plane of one unit in height, say,
as bb,; and determine the resultant press-
ure against it on the supposition that
the pressure iz produced by a depth of
earth at the right of it, sufficient to pre-
duce the same vertical pressure on bb'

| which the wall and its load do actually

produce. In other words we suppose
the wall and load replaced by a bank of
earth having itsupper surface horizontal

{and weighing the same ag the wall and

load. Call the upper surface z, and find
the pressure against the vertical plane zb
due to the earth under the given level
surface; similarly, find the pressure

| against 2b,. Thesurface being level, the

maximum pressure, as previously stated

| will be due to a wedge cut off by a plane

bisecting the angle between &z and a
plane drawn from 4 at the inclinatian @,
of the limiting angle of friction. This
enables us to find the horizontal pres-

| sures against #zb and zb, directly: their

difference is the resultant active pressure
against b0,

Next, it must be determined what pas-
sive pressure the earth at the left of 00,
‘can support. The passive resistance of
| the earth under the surface ¢ against
! the plane ab as well as that against the
| plane @b, can be found exactly as that
| was previously found under the surface
{a’. The difference of these resistances is
the resistance which it is possible for 66,
to support. Indeed &b, could support
thig pressure and afford this resistance
even if the active pressure against ab
were, at the limit of its resistance, which
it is not. The limiting resistance which
is thus obtained, is then so far within
the limits of stability, that ordinarily, no
further factor of safety is needed, and
the stability of the foundation is secured,
|if the active pressure against 40, does not

exceed the passive resistance. This con-
| struction should be made on the basis of
the smallest angle of friction @ which
the earth assumes when wet; that being
smaller than for dry earth, and hence
giving a greater active pressure at the
right, and a less resistance at the left.

CHAPTER XV.
SPHERICAL DOME OF METAL.

The dome which will be treated in the
following construction is hemispherical

and the weight of the building or other |in shape; but the proposed construction
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applies equally to domes of any different | as the hoop tension or compression along
form generated by the revolution of the | any of the conical rings into which the
are of‘some curve about a vertical axis:|dome may be supposed to be divided
such forms are elliptic, parabolic or hy- | by a series of horizontal planes.

perbolic domes, as well as pointed or| Let the height ab of the dome be
gothic domes, etc. Let the quadrant ¢a | divided into any number of parts, which
m Fig. 18, represent the part of the we have in this case, for convénicnce
meridian section of a thin metallic dome | made equal. Let these equal parts of the
between the crown and the springing  typedu be the distances between horizon-
circle. The metallic dome is supposed | tal planes such that the planes through
to be so thin that its thickness need not | the points d,, 4,, etc., cut small circles from
be represented in the Figure : the thick- | the hemisphere which pass through the
ness of a dome of masonry, however, is a | point a,, @, etc., and similarly theT)lanes
matter of prime importance and will be | through u,, %, etc., cut small circles which
treated subsequently. | pass through g, 7., ete. Now suppose the

In a thin metallic dome the only thrust | thickness of this dome to be uniform
along a meridian section is necessarily |and if a be taken to represent the \wiwh;.
in a dn'_ectmn't.angen_h to that section at | of a quadrantal lune of the dome included
eaulllj]pcunt of it. This consideration will | between two meridian plan®s makinge
Jll +Y ] 3 v y s 1 2
enable us to determine this thrust as well | some small angle with each other; then
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from the well-known expression for the |of the equation gives the height of it
area of the zone of a sphere it appearsthat | above & as  (4/5—1) , corresponding to
ad, will represent the weight '_of_ that | about51°49”. Now consider any zone, as,
part of the lune above a,d,. Similarly | for example, that whose meridian section
au, is the weight of the lune @g,;|is g a : the upper edge is subjected to a

falfdgbanhd

ad, the weight of aa,, ete.

applies of course in case the dome is any |

segment of a sphere less than a hemi-
sphere and of uniform thickness. If the
thickness increases from the crown, the
weights of the zones cut by equi-distant
horizontal planes increase directly as the
thickness. In case the dome is not
spherical the weights must be determin-
ed by some process suited to the form of
the dome and its variation in thickness.
Now the weight of the lune aa, is sus-
tained by#*a horizontal thrust which is
the resultant of the horizontal pressures
in the meridian planes by which it is
bounded, and by a thrust, as before re-
marked, in the direction of the tangent
at @. Draw a horizontal line through'd,,
and through @ a parallel to the tangent
at «: these intersect at s, then is ads,
the triangle of forces which held in
equilibrium the lune aa,. Similarly,

: g e ; | thrust whose radial horizontal compo-
This method of obtaining the weight |

nent is proportional to wf, while the
horizontal thrust against its lower edge
is proportional to d,s,, and the difference
s,®, between these radial forces produces
a hoop compression around the zone pro-
portional to sz, It will be seen that
these differences which are of the type
se or ty, change sign at ¢. Hence all
parts of the dome above 51° 49" from the
crown, are subjected to a hoop compres-
sion which vanishes at that distance from
a, while all parts of the dome below
this are subjected to hoop tension. This
may be stated by saying that a thin
dome of masonry would be stable under
hoop compression as far as 51° 49’ from

| the crown, but unstable below that, being

awt, is the triangle of forces holding the |

lune ag, in equilibrium, ete. Draw a

curve st through the points thus determ- |

ined.
which when referred to ba as the axis of
@ and by, as that of » has for its equa-
tion 2

L_r/’ r—2

z r+z

On being traced at the right of a it has
in the other quadrant of the dome a part
like that here drawn forming a loop; it
passes throngh 4 at an inclination of 45°
and the two branches below & finally
become tangent to a horizontal line
drawn tangent to the circle aa of the
dome. The curve has this remarkable
property :—If any line be drawn from a,
cutting the curve here drawn and, also,
the part below &g, the product of these
two radii vectores of the eurve from the
pole « is constant, and the locus of the
intersection of the normals at these two
points is a parabola.

Draw a vertical tangent to this curve:
the point of contact is very near ¢, and g,,
the corresponding point of the dome is
almost 52° from thecrowna. A determi-
nation of this maximum point by means

This curve is a well-known cubic |

liable to crack open along its meridian
sections, A thick dome of masonry,
however, does not have the resultant
thrust at every point of its meridian
section in a direction which is tangential
to its surface,—this will be discussed
later.

It is necessary to determine the actual
hoop tension or compression in any ring
in order to determine the thickness of
the dome such that the metal may not
be subjected to too severe a stress.

The rule for obtaining hoop tension
(we shall use the word tension to in-

| clude both tension and compression) is:

Multiply the intensity of the radial
pressure by the radius of the hoop, the
product is the tension at any meridian
gection of the hoop. The correctness of
this rule appears at once from considera-
tion of fluid pressure in a tube, in which
it is seen that the tensions at the two ex-
tremities of a diameter prevent the total
pressure on that diameter from tearing
the tube asunder.

Now in the case before us ¢, is the
radial force distributed along a certain
lune. The number of degrees of which
the lune consists is at present undeterm-
ined : let it be determined on the suppo-
sition that it shall be such a number of
degrees as to cause that the total radial
force against it shall be equal to the
hoop tension. Call the total radial force
P and the hoop tension 7, then the lune
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is to be such that P=7." Also let & be
the number of degrees in the lune, then
90° -6 is the number of lunes in a quarter
of the dome, and 90 P+ is the radial
force against a quarter of the dome,
which last must be divided by 37 to ob-
tain the hoop tension; because if p is the
intensity of radial pressure, 477p is the
total pressure against a quadrant and »p,
as previously stated, is the hoop tension.
The ratio of these is 47, and by this we
must divide the total radial pressure in
every case to obtain hoop tension

S - A 180

7T
A AR s T i e

s s s
[his is the number of degrees of which |

the lune must consist in order that when
ab represents its weight, £y, shall rep-
resent the hoop tension in the meridian
sectlon a.g..
found isindependent of the radius of the
ring, and hence holds for any other ring

as g,a,, in which s, is the hoop tension, |

ete. To find what fraction this lune is
of the whole dome, divide & by 360°

(5

+
o =————=_——=—nearly
860 360mr 2w 25 ¥

from which the scale of weight is easily
found, thus; let W be the total weight
of the dome and #» its radius, then

2zr ¢ W.:1:n, the weight per unit, or
the hoop tension per unit of the distances
ly or sx.

Distances at or as, on the same scale,
represent the thrust tangential to the
dome in the direction of the meridian

The expression we have |

CHAPTER XVI.
SPHERICAL DOME OF MASONRY.

Let the dome treated be that in Fig.
18 in which the uniform thickness of the
masonry is one-sixteenth of the internal
| diameter or one-eighth of the radius of
[the intrados. Divide @b the radius of
| the center line into any convenient num-
|ber of equal parts, say eight, at u, wu,
{etc.: a much larger number would be
| preferable in actual construction. Ag
the points a,, @,, ete., on the same levels
with w%,, u,, etc. pass conical joints nor-
mal to the dome, so that & is the vertex
of each of the cones.

If we consider a lune between meridian
planes making a small angle with each
other, the center of gravity of the parts
of the lune between the conical joints lie
(at g, g.Metc. on the horizontal midway
between the previous horizontals, These
points are not exactly upon the central
line aa, but if the number of horizontals
is large, the difference is inappreciable.
We assume them upon aa. That they
fall upon the horizontals through ,, d.,
ete., midway between those through
u,, ete., is a consequence of the equality
|in area between spherical zones of the
| same height.

In finding the volume of a sphere it
may be considered that we take the sum
of a series of elementary cones whose
| bases form the surface of the sphere, and
| whose height is the radius. Hence, if
any equal portions of the surface of a
|sphere be taken and sectorial solids be
\formed on them as bases and having
}Lln.-ir vertices at the center, then the
|sectorial solids have equal volumes,
| The lunes of which we treat are equal
{fractions of such equal solids.

{ Draw the verticals of the type &g
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vanishes we shall not assume that the|
bond of the masonry is such that it can|
resist the hoop tension which is develop- |
ed. The upper part of the dome will be |
then carried by the parts of the lunesi
below this point by their united action |
as a series of masonry arches standing|
side by side. |

Now it is seen that the curve of equi- |
librium ¢, drawn with this assumed hori-
zontal thrust falls within the curve of the
lune, which signifies that the dome will |
not exert so great a thrust as that as-|
sumed. By the principle of least resist-
ance, no greater horizontal thrust will |
be called into action than is necessary to
cause the dome to stand, if stability is
possible. If a less thrust than that just
employed be all that is developed-in the |
dome, then the point where_the hoop
compression vanishes is not so™ar as 51° |
49 from the crown, and a longer portion |
of the lune acts as an arch, than has been |
supposed by previous writers on this|
subject.® none of whom, so far as known,
have given a correct process for the solu-
tion of the problem, although the results
arrived at have been somewhat approxi-
mately correct.

To ensure stability, the equilibrium
curve must be inseribed within the inner
third of that part of the meridian section
of the lune which is to act as an arch; as
appears from the same reasons which
were stated in connection with arches of
1]1:1.\1'_1111‘}'.

And, further, the hoop compression
will vanish at that level of the dome
where the vnln‘llihrinm curve, in departing
from the erown, first becomes more
nearly vertical than the tangent of the
meridian section; for above that point
the greatest thrust that the dome can

L

7. 7, ete. by horizontals through ¢, ¢,
e,, etc. Through these points draw the
curve ¢gq, whose ordinates are of the type
gh. Some one of these ordinates is to
be elongated to its corresponding ph,
and in such a munner that no ¢/ shall
then become longer than its correspond-
ing ph. To effect this, draw og, tangent
to the curve ¢¢; then will og, enable us
to effect the required elongation: e.g. let
the horizontal through e, cut og, at j,,
and then the vertieal through 7, cuts fo
at i, then is e, (which is on the same
level with ¢,) the new position of e,
Similarly, we may find the remaining
points of the curve e; but it is better to
determine the new pole distance, and use
this method as a test only.

The curve gg made use of in this con-
struction for finding the ratio lines for
so elongating the ordinates of the curve
¢, that the new ordinates shall be those
of a eurve e tangent to the exterior line
of the inner third, may be applied with
equal facility to the construction for the
arch of masonry. This furnishes us with
a direct method in place of the tentative
one employed in connection with Fig.
14,

To find the new pole distance, draw
J7 1| og, cutting ww at 7, then will ¢ the
intersection of the horizontal through 7,
be the new position of the weight line vu,
having its pole distance from @ diminish-
ed in the required ratio.

The equilibrium curve ¢ will be parallel
to the curve of the dome at the points
where the new weight line vz cuts the
curve st. It should be noticed that the
pole distance which we have now determ-
med is still a little too large because
[the polygon e is circumscribed about

| the true equilibrium curve; and as the

sections, and uniformly distributed over |through the centers of gravity ¢,, ¢., ete
0 aQre Eq9 o . s 1 v Swre S . . 12, z z
an arc of 57°.3— ! e.g. if we divide at, | The weights applied at these points are
measured as a force by 6 Xu g, measured

exert, cannot be so great as at this point | polygon has an angle in the limiting
where the thrust of the arch-luneis equal | curve mm the equilibrium curve is
to that of the dome. | not yet high enough to be tangent to the

as a distance we shall obtain the intensi-
ty of the meridian compression at the
joint cut from the dome by the horizon-
tal plane through a,.

Analogous constructions hold for
domes not spherical and not of uniform
thickness. Approximate results may be
obtained by assuming a spherical dome,
or a series of spherical zones approxi-
mating-in shape to the form which it is
desired to treat.

|equal and may be represented by aux,,
| uu,=ww, ete. Use a as the pole and
| 0,0, as the weight line; and, beginning
|at the point f,, draw the equilibrium
| polygon ¢ due to the weights,

| We have used for pole distance the
| greatest horizontal thrust which it is
| possible for any segment of the dome to
| exert upon the part below it, when the
(hoop compression extends to 51° 49’
| from the crown.

{ Below the point where the compression

Now to determine in what ratio the
ordinates of the curve ¢ must be elongat-
ed to give those of the curve e which
fulfills the required conditions, we draw
the line fo, and cut it at p, p,, ete. by
the horizontals m_ p , m, p,, ete., the quan-
tities mb being the ordinates of exterior
of the inner third. Agaih draw verticals
through p, p,, ete., and cut them at ¢,

* See a paper read before the Royal Inst. of Britis
Architects, *“on the Mathematical Theory of Domes,
Feb. 6th, 1871. By Edmund Beckett Denison, L.L.D.,
Q.C, F.R.AS,

' limiting curve. If the number of divi-
sions had originally been larger (which
the size of our Figure did not permit)
this matter would be rectified.

The polygon e is seen at e, to fall just
withont the required limits, this would
be partly rectified by slightly decreasing
the pole distance as just suggested; the
point, however, would still remain just
without the limit after the pole distance
is decreased, and by so much is the dome

| unstable. A dome of which the thick-
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ness is one fifteenth of the internal dia-
meter, is almost exactly stable.

It is a remarkable fact that a semi-
cylindrical arch of uniform thickness and
without surcharge must be almost exact-
ly three times as thick, viz., the thickness
must be about onefifth the span in order
that it may be possible to inscribe the
equilibrium curve within the inner third.

The only large hemispherical dome, of
which I have the dimensions, which is
thick enough to be perfectly stable with-
out extraneous aid such as hoops or ties,
is the Gol Goomuz at Beejapore, India.
It has an internal diameter of 1374 feet,
and a thickness of 10 feet, it being
slightly thicker than necessary, but it
probably carries a load upon the crown
which requires the additional thickness.

The hemispherical dome of uniform
thickness is a very faulty arrangement
of material. It 1s only necessary to
make the dome so light and thin for 51°
49’ from the crown that it cannot exert
so great a horizontal thrust as do the
thicker lunes below, to take complete ad-
vantage of the real strength of this form
of structure. A dome whose thickness
gradually decreases toward the crown
takes a partial advantage of this, but
nothing short of a quite sudden change
near this point appears to be completely
effective.

The necessary thickness to withstand
the hoop compression and the meridian
thrust can be found as previously shown
in the dome of metal.

Domes are usually crowned with a
lantern or pinnacle, whose weight must
be first laid off below the pole @ after
having been reduced to the same unit
as that of the zones of the dome.

Likewise when there is an eye, at. the
crown or below, the weight of the mate-
rial necessary to fill the eye must be sub-
tracted, so that @ is then to be placed
below its present position. The construc-
tion is then to' be completed in the same
manner as in Fig, 18,

It is at once seen that the effect of an
additional weight, as of a lantern, at the
crown, since it moves the point @ upward
a certain distance, will be to cause the
curve st to have all its points except & to
the left of their present position, and
especially the points in the upper part of
the curve, thus making the point of no
hoop tension much nearer the crown than

in the metallic dome. It will be noticed

| that the addition of very small weight at

the crown will cause the point 7, of no
hoop tension in the dome of masonry to
approach almost to the crown, so that
then the lunes will act entirely as stone
arches with the exception of a very small
segment at the crown.

On the contrary, the removal of a seg-
ment at the ecrown, or the decrease of the
thickness, or any device for making the
upper part of the dome lighter will re-
move the point of no hoop tension further
from the crown, both for the dome of
metal and of masonry. In any dome of
masonry the thickness above the point
of no hoop tension, as determined by the
curve st, need be only such as to with-
stand the two compressions to which it
is subjected, viz; hoop compression and
meridian @ompression: while below that
the lunes acting as arches must be thick
enough to cause a horizontal thrust equal
to the maximum radial thrust of the
dome above the point of no hoop ten-
8101.

Several large domes are constructed of
more than one shell, to give increased
security to the tall lanterns surmounting
them : St. Peter’s, at Rome, is double,
and the Pantheon, at Paris, is triple.
The different shells should all spring
from the same thick zone below the
point of no hoop tension; and the lunes
of this thick zone should be able to
afford a horizontal thrust equal to the
sum of the radial thrusts of all the
shells standing upon it.

Attention to this will stcure the sta-
bility in itself of any dome of masonry
spherical or otherwise; and, though I
here offer no proof of the assertion, | am
led to believe that this is the solution of
the problem of constructing the dome of
a minimum weight of material, on the
supposition that the meridian joints can
afford no resistance to hoop tension.

Now, in fact, it is a common device to
ensure the stability of Jarge domes by
encircling them with iron hoops or
chains, or by embedding ties in the ma-
sonry; and this case appears to be of
sufficient importance to demand our at-
tention.

If the hoop encircles the dome at 51°
49" or any other less distance from the
crown the dome will be a trne dome at
all points above the hoop. Suppose the

hoop to be at 51° 49’, then the curve e
I )

should, below that point, be made to
pass through the points /, and 7}, from
which it is seen that the dome may be
made thinner than at present, and the
horizontal thrust caused will be less.
The tension of the hoop would be that
due to a radial thrust which is the dif-
ference between that given by the curve
st for this point and the horizontal thrust
(pole distance) of the polygon ¢ when it
passes through 7, and 7.. That the curve
¢ passes 1111‘011%{I1 these last mentioned
points is a consequence of the principle
of least resistance.

Again, suppose another hoop encircles
the dome at f,; the curve ¢ must pass
through 7, and 7, and in this part of the
lune will have a corresponding horizon-
tal thrust. The curve ¢ must_also pass
through 7, and f;, but in this {#rt of the
lune will have a horizontal thrust cor-
responding to it, differing from that in
the part between 7. and 7. : indeed the
horizontal thrust in the segment of a
dome above any hoop depends exclusive-
ly upon that segment and and is unaf-
fected by the zone below the hoop, The
tension sustained by the hoop is, how-
ever, due to the radial force, which is
the difference of the horizontal thrusts
of the zones above and below the
hoop.

It is seen that the introduction of a
second hoop will still further diminish
the thickness of lune necessary to sus-
tain the dome, unless indeed the thick-
ness is required to sustain the meridian
compression,

Had a single hoop been introduced at
J, with none above that point, the dome
above 7, should then be investigated, just
as if the springing circle was situated at
that point. The enrve ¢ must then start
from f,, as it before did from 7, and be
made to become tangent to the limit-
ing curve at some point between f, and
the crown.

By the method here employed for
finding the tension of a hoop it is possi-
ble to discuss at once the stresses in-
duced in the important modern domes
constructed with rings and ribs of metal
and having the intermediate panels
closed with glass,

On introducing a large number of
rings at small distances from each other,
it will be seen that the discussion just
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given leads to the method previously
given for the dome of metal.

~ The dome of St. Paul’s, London, is one
which has excited muoch adverse eriticism
by reason of the novel means employed
to overcome the difficulties inherent in so
large a dome at so great a height above
the foundations of the building. The
exterior dome consists of a framework of
oak sustained by conical dome of brick
which forms the core. There is also a
parabolic brick dome under the cone
which forms no essential part of the sys-
tem. Since the conical dome in general
presents some peculiarities worthy of
notice we will give an investigation of
that form of structure as our concluding
comstruction.

CHAPTER XVIIL
CONICAL DOMK OF METAL.

In Fig. 19, let bd be the axis of the
frustum of a metallic cone cut by a ver-
tical plane in the meridian section a.
The cone is supposed to have a uniform
thickness too small to be regarded in
comparison with its other dimensions.
Suppose the frustum to be cut by a series
of equi-distant horizontal planes as at g,,
7. ete., into a series of frustra or rings:
then the weight of each ring is propor-
tional to its convex surface. The convex
surface of any ring =277 X slant height;
when # is half the sum of the radii of the
two bases, 7.e, r is the mean radius.
Consequently, the weights of these
rings, or any given fraction of them in-
cluded between two meridian planes, is
proportional to their mean radii. Let us
draw these mean radii d,a,, d,a, ete., be-
tween the horizontals throngh ¢,,g,, ete.,
and use some convenient fraction, say 1,
of these quantities of the type du as the
weights. The line ii cuts off 1 of each
of these: then lay off du =di as the
weight of the ring ag, lay off wu,=
dji, wu,=dji, ete., as the weights of
the rings g,9., 7.9., ete.

Draw the line dt|| aa, it corresponds
to the curve st of Fig. 18; then the
quantities of the type tu represent the
horizontal radial thrust which the cone
exerts upon the part below it, while the
radial thrust borne by any ring is the
difference between two successive quanti-
ties of the type fu, i.e., the radial thrust
in the ring g.g, is represented by ty,,




