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shall have Aw.h2 = twice the area of
the moment area. We have used the
sum of the two parallel sides of each
trapezoid instead of half that quantity
for greater accuracy.

Now lay off from 2z, 22, =hz,
zz,=hz, ete, as a weight line and
assume the pole p’.

Of the triangle ke, one-third
rests at A, and two-thirds at 4
make zz'=4z2, it is the part of the
area applied at 2. Of the area Aeeh,,
one half, approximately, rests at /, and
one half at A, Bisect zz2, at z,’, then
2,z rests at h, Bisect each of the
other quantities ; ete. except 2.z, in
which make zz’'=} 22. With the
weights sz’ so obtained, construect the
second equilibrium polygon wy, which
shows that the center of gravity of the
- Mmoment area is in the vertical through
7. There is a balancing of errors in this
approximation which renders the posi-
tion of n quite exact; if, however,
greater precision is desired, determine
the centers of gravity of the trapezoids
forming the moment area, and use new
verticals through them as weight lines,
with the weights 2z instead of the
weights 2'z’,

Draw verticals which divide the span
into three equal parts,—they cut ny, and
ny, at t and?, and draw p't' | i1,
Then is ¢nt¢, an equilibrium polygon
due to the force z,z, applied at n, and to
the forces z,t', and ¢z, applied at ¢, and
¢, Tespectively. As explained when

treating this matter in the New Con-
structions in Graphical Statics, 2’ and
'z, are proportional to the bending mo-
ments at the extremities of the fixed gird-
er. In this case, since we have taken
hp=4%hh,, we find that Ak ’=}z¢, and
kk'=%t'z, are the end moments, and
they fix the position of the pseudo clos-
ing line. Draw pg’ || #'%" then are w,q"
and ¢'w, the reactions of the piers. The
pseudo resultant is at m’.

To obtain the same result by
help of a frame pencil, let Fig. 12
represent the same weights applied
in the same manner as in Fig. 11.
Choose the vertex v, and draw the
equilibrating polygon dd, ete. as in Fig.
8. Make A, 1=rr, h2=rr +7rr, ete.,
since these quantities are proportional
to the bending moments as previously
shown. With v as the common point of
the rays of a pencil, find k2, by the help
of the summation polygon ss just as in
Fig. 11.

Lay off the second weight line 2.2/,
ete., just as in Fig. 11, and with v as
vertex construct the second equilibrating
polygon az. Then as readily appears
vn || 2@, determines n the center of
gravity of the moment area. Make 28
Il 2¢, and 22 || vz; if ¢ and ¢ divide
the span into three equal parts, then the
horizontal through , fixest’ correspond-
ing to ¢’ in Fig. 11.

To find the position of the psendo
resolving line and its segments pro-
portional to the new hEnding mo-
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ments, lay off r, j=4(t'z,—2,') the differ-| ing line. ' Thence follows the proof_thatf
e of the bending moments at the|the bending moments are proportiona

eng and make ;. ||7,», and prolong| to intercepts upon this line in a manner
enr Simtil they meet at 7,/ which is on the precisely like that emplo;'ed in Fig. 9. :
rt;gudo resolving line. Then lay off| Again, draw vi, || w,r and vi, || u/,
rr=3z¢ and r/r'=3t"z upon this| then are 7, and i, the points of mﬁenorz
seudo ;‘9501"'“1‘5 line '¢’, then #'2.", v'r/, | of t};e gu‘dm_‘ wh_cn the_ \)ent‘i.ln;_,’illl?l‘fli‘ﬂ)-
etc., are the bending moments when the | vanishes, being in reality pmmh__l of s % '
wirder is fixed at the ends. For by simi- port on which the girder coulc ?\lml,t"
larity of triangles |rest without constraint and have t e
- i 1t / | pseudo resultant in that case as the true

By ¥ icrri: g9, | resultant.

o b gg=VenT i In Figs. 11 and 12 we have taken
is the moment, and ¢¢’ is the weightlﬂz v, cpnseqltlently tf.le] nte}:v) :)1]13:1[1121;53
which is transferred from one suppo’rt tlo | can directly compnll ed, L : londin(}
the other by the constraint, hence ¢’ is| £'e bemg .,Ofiual to the corresy g
the correct position of the psendo resolv- | segments 77, ;

|/

[ / =z,
Apparently in this example Fig. 12 give rise to a frame pen}cnl nfuﬁl 11{(1{:1(1}:8
o Y - | brati 7 ustrio
sents a construction somewhat more | brating polygon by the i ious
i ’l} COII-i t of Fig. 11, it is cer-| Poncelet* who by their use determined
act the hat of I1g. 8 - 3 ke d :
colrn]p:xc‘t l.]?11]- fr 1 Sis | the centers of gravity of portions of the
B i e 3 rch., Whether he recognized
It remains to remark before proceed-|stone arch. e el e
i rthe siderations of a slight- | other properties besides simy
et e inati f the resultant of parallel
y diff sharacter, that we owe to|termination of the resuitant
q ‘Mf‘?}'(‘m Cnlna® the ishment | forces, I am not informed, as my
the genius of Culmann® the establis 1;11(,}1; : : .»]7 L P O
)i rality : C he | knowledge 3 g )
. it gtl”mnhlt} ik iy rived from so much of his work as
equilibrium polyeon. v e Uhe 0 -
- S funicular polygon, | Woodbury} has incorporated In hi
He adopted the funicular polygon, Ibur) g i
some of whose properties had long been | graphical construc
known, and upon it founded the general ‘nl'c‘h.f e e
processes and methods of systematic| o far :15;1 7110 : o thc' o
work which are now employed by all. advanced by no one Sk
Furthermore it should be stated that|recent writers upon Graphical i g
parallelograms of forces were com- : = (_—m-]-; S
a i ] yay . ial de I’ officier du Genie. No. 12, 3
pounded and applied in such a w n}_ _as io e ;;T:::g?j':li\n:]lhﬂwl).‘;:a“l}i}l'i"‘_ gens. No. 10 0
EERS H)ur}', New York, 1853,

* Graphische Statik. Zurich, 186€.
-
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which would certainly have been the |the amount of alteration already found
case had Poncelet established its claim |to be due to the horizontal components.
to be regarded as a general method. | Call. this pomnt ¢/, then the polygon of
I think the method of the frame pen- |the applied forces must be closed by two

cil may now fairly claim an equal gen- |lines representing the reactions, which

erality and importance with that of the
equilibrium polygon.

ANY FORCES LYING IN ONE PLANE, AND
APPLIED AT GIVEN POINTS,

We have previously referred to this
problem, having treated a particular case
of it in Fig. 2; and subsequently cer-
tain statements were made respecting the
indeterminateness of the process for find-
ing the reactions of supports in case the
applied forces were not vertical.

The case most frequently encountered
in practice is wind-pressure combined
with weight, and we can take this case
as being sufficiently general in its nature;
so that we are supposed to know the
precise points of application of each of
the forces, and its direction. Now it
may be that the reaction of the supports
cannot be exactly determined, but in all
2ases an extreme supposition can be made
which will determine stresses in the
framework which are on the safe side.

For example, if it is known that one
of the reactions must be vertical, or nor-
mal to the bed plate of a set of support-
ing rollers, this will fix the direction of
one reaction and the other may then be
found by a process, like that employed
in Fig. 2, of which the steps are as fol-
lows :

Resolve each of the forces at its point
of application into components parallel
and perpendicular to the known direction
of the reaction, which we will call verti-
eal for convenience, since the process is
the same whatever the direction may be.
3y means of an equilibrium polygon or
frame pencil find the line of action of
the resultant of the horizontal compo-
nents, whose sum is known. Then this
horizontal resultant, can be treated pre-

cisely as was the single horizontal force |
in Fig. 2, which will determine the alter- |
ation of the vertical components of the |

reactions due to the couple caused by the
horizontal components.
Also, find by an equilibrium polygon,

or frame pencil, the vertical reactions due |

to the vertical components. Correct the
point of division ¢ of the weight line as
found from the vertical components by

| must meet on a horizontal through ¢;
| but one of them has a known direction,
hence the otheris completely determined.

This determination causes the entire
| horizontal component to be included in
|a single one of the reactions, and it is
[usually one of the suppositions to be
[ made when it is not known that the reac-
| tion of a support is normal to the plane
iOf the bed joint.
| Another supposition in these circum-
| stances is that the horizontal component
| is entirely included in the other reaction;
and a third supposition is that the hori-
zontal component is so divided between
|the reactions that they have the same
direction. These suppositions will usu-
ally enable us to find the greatest possible
stress on any given piece of the frame by
taking that stress for each piece which 1s
the greatest of the three.

In every supposition care must be
| taken to find the alteration of the verti-
\cal components due to the horizontal
components. This is the point which has
been usnally overlooked heretofore.

KERNEL, MOMENTS OF RESISTANCE AND
INERTIA: EQUILIBRIUM POLYGON METHOD.

The accepted theory respecting the
flexure of elastic girders assumes that
|the stress induced in any cross section
by a bending moment increases uniform-
ly from the neutral axis to the extreme
| fiber.

The cross section considered, is sup-
l posed to be at right angles to the plane
of action or solicitation of the bending
moment, and the line of intersection of
 this plane with that of the cross section
iis called the axis of solicitation of the
| Cross section,

The radius of gyration of the cross
section about any neutral axis is in the
direction of the axis of solicitation.

It is well known that these two axes
intersect at the center of gravity of the
| cross section, and have directions which

| are conjugate to each other in the ellipse
which is the locus of the extremities of

| the radii of gyration,

| We shall assume the known relation
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M=S8I+y

in which M is the magnitude of the
bending moment, or moment of resistance
of the cross section, S is the stress on
the extreme fiber, £ is the moment of in-
ertia about any neutral axis @, and ¥ is
the distance of the extreme fiber in the

direction of the axis of solicitation, 7. e. |

| construct the kernel as the locus of the
| antipole of the tangent at the extreme
| fiber. The method now proposed is the
[ reverse of this, as it constructs several
radii of the kernel first, then the corre-
sponding radii of gyration, and from
them the ellipse, and finally completes
the kernel. In the old process there are
inconvenient restrictions in the choice of

the distance between the neutral axis 2| hole distances which are entirely avoided
and that tangent to the cross section|i, the new process.

which is parallel to @ and most remote
from it, the distance being measured
along the axis of solicitation,

Let M=Sm in which m is called
the “specific moment of resistance™ of
the cross section; it is, in fact, the
bending moment which will induce a
stress of unity on the extreme fiber.

Now I=FA

in which % is the radius of gyration and
A is the area of the cross section.

Let B=y=r, .. m=rd,

is the specific moment of resistance
about z, and when the direction of =
varies, 7 varies in magnitude: r is called
the “radius of resistance” of the cross
gection. The locus of the extremity of
r, taken as a radius vector along the
axis qf solicitation, is called the “ker-
nel.”

The kernel is usually defined to be the

locus of the center of action of a siress|

uniformly increasing from the tangent
to the cross section at the extreme fiber.
It was first pointed out by Jung,® and
subsequently by Sayno, that the radius
vector of the kernel is the radius of
resistance of the cross section measured
on the axis of solicitation. This will
also appear from our construction by a
method somewhat different from that
heretofore employed. :

Jung has also proposed to determine
values of %, by first finding »; and has
given methods for finding ». We shall
obtain » by a new method which renders
the proposal of Jung in the highest
degree useful.

The method heretofore employed by|

Culmann and other investigators has
been to find values of % first, and then

* % Rappresentazioni grafische dei momenti re
di una sezione piana.” G.Jung, Rendiconti dell’ In
Lombardo, Ser. 2,
alla nota precedente.” No. XVL

having drawn the ellipse of inertia to

IX, 1876, No. XV. *Complemento

Let the cross section treated be that

| of the T rail represented in Fig. 13,

which is 4} % 24 inches and # inch thick.
We have selected a rail of uniform

| thickness in order to avoid in this small
| figure the numerous lines needed in the

summation polygon for determining the
| area; but any cross section can be treat-
| ed with ease by using a summation poly-
| gon for finding the area.
To find the center of gravity, let the

weights w w, and w,w,, which are propor-
| tional to the areas between the verticals
| at b b, and b5, be applied at their centers
of gravity @, and a, respectively; then
the equilibrium polygon ¢ e,, having the
pole p,, shows that o is the required cen-
ter of gravity.

|- Let the area 6,0, be divided into two
parts at o, then waw, and w,w, are
weights proportional to the areas b,0 and
[ 0b, respectively; and ¢.c,e, is the equili-
[ brium polygon for these weights applied
| at their centers of gravity a, and a,.
| The intercepts mm have been previ-
ously shown to be proportional to the
products of the applied weights by their
| distances from the center of gruvity o.
|  We have heretofore spoken of these
| products as the moments of the weights
about their common center of gravity o.
| But the weights in this case are areas
1 and the product of an area by a distance
|is a volume. Let us for convenience call
volumes so generated “stress solids.”
The elementary stress solids obtained by
multiplying each elementary area by its
| distance from the neutral axis will cor-
[ rectly represent the stresses on the dif-
ferent parts of the cross section, and they
will be contained between the cross sec-
tion and a plane intersecting the cross
section along the neutral axis and mak-
iug an angle of 45° with the cross sec-
tion.

If b5, is the ground line, b b, and d,d,

| are the traces of the planes between
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which the stress solid lies on a plane at
right angles to the neutral axis.

The distances of the centers of gravity
of the stress solids from o are also the
distances of the points of application of
the resultant stresses, and the magnitude |
of the resultant stresses are arl-.}rro]nor-
tional to the stress solids. The stress
solids may be considered to be some kind
of homogeneous loading whose weight
produces the stress upon the eross section.
The moment of inertia 7 is the mo-
ment of this stress with respect to o.

Now the intercept mm, represents
the weight of the stress solid whose!
profile is ob d,. Its point of applica-
tion is g, if og,=%0b,. Similarly the
weight m_m_ has its point of application
at g, if og,=%0b,. And the weight m m,_
is applied in the vertical throngh ¢ : for
the profile of this stress solid is the Itrn]w-
zoid b.b,d,d, and g, is its center of grav-
ity found geometrically, In case the

e

area is divided into narrow bands paral-
lel to the neutral axis the points of appli-
cation coincide sensibly with the centers
of gravity of the bands.

Now take any pole p, and construct a
second equilibrinm polygon ee due to the
stress solids applied in the verticals
through ¢.9.7..

The last two sides en, and en, are
necessarily parallel and have their inter-
section at infinity, for the total stress is
a couple.

The intercept n,7, is not drawn through
the common center of gravity of the
stress solids, 4. ¢., it is not an intercept
on the line of the resultant stress, but
since parallels are everywhere equidis-
tant this intercept is proportional to the
moment of the stresses about their center
of gravity; in other words nn, when
multiplied successively by the two pole
distances would be 7. "We shall not need
to effect the multiplication.
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Prolong c¢;m, to ¢, on the tangent to
the extreme fiber and draw ¢m, || p e,
then m m, represents the product of the
total weight-area w,w, by 0b, =y the dis-
tance of the extreme fiber, or m m, is
proportional to the volume of a stress
solid whose base is the entire cross sec-
tion and whose altitude is b,d,=00b,.

Suppose this stress to be of the same
sign as that at the right of o, let us com-
bine it with the stress already treated.
Tts point of application is necessarily at
o, and its amount is m,m, if measured
on the same scale as the other stresses.
Draw n.¢, || p,m,, then is £, on the verti-
cal throngh e, the point of application of
the combined stresses. But the com-

bined stresses amount to a stress whose |

profile is included between d.d, and a
horizontal line through d,, i.e. to a stress
uniformly increasing from &, to 4,; hence
k, is a point of the kernel as usually de-
fined.

If ¢ m, be prolonged to ¢, and we draw
eqm, || p,o,, then mm, (not shown) is the
weight of a stress solid of a uniform
depth 5,d, over the entire cross section;
and if we draw n.¢, || pymn,, then will £,
on the vertical through e, be also in like
manner a point of the kernel, i.e. the
point of application of a stress uniformly
increasing from b, to &,.

But now let us examine our consttuc-
tion further in order to gain a more
exact understanding of what the dis-
tances r,=:0k, and r,=ok, signify.

We have shown that m m, represents
the product of the area of the cross sec-
tion by the distance ob, of the extreme
fiber, 7.e. the quantity Ay, ; but n,n, rep-
resents the moment of this weight when
applied at %, i.e the product Ayr.
Also as previously shown nn, repre-
sented 7 on the same scale, hence

I=Ayr, but I=Ak’ .. r,.=k'+Y,
and 7 is the radius of resistance pre-
viously mentioned. :

In order to determine the radius of
gyration k , which is a mean proportional
between #, and y,, describe a circle on
bk as a diameter intersecting mm at A
then ohi=Fk, the semi-axis of the ellipse
of inertia conjugate to mim as a neutral
axis. The accuracy of the construction
is tested by using 6.k, as a diameter and
finding the mean proportional between
ok, and ob, It should give the same

result as that just obtained. In our Fig.
both cireles intersect at /.

It is known from the symmetry of
figure of the cross section that %, is one
of the principal axes.

In similar manner we construct the
radius of resistance, ete., when &0, is
taken as the neutral axis.

Knowing before hand that this line
passes through the centre of gravity,
we have taken the weights of the area
above it in two parts, viz.: that extend-
ing from b5, and that from 3,5, and
we have taken w,'w,” and 2,"w,’ respec-
tively, as the weights of these. Choose
any pole p and draw the equilibrium
polygon ¢’¢’: use its intercepts m'm’,
which represent the weights of stress
solids, as weights and with any pole p,”
construet the second equilibrinm polygon
¢'¢’ on the verticals through the points of
application of the stresses. Also find
m,’m,’ the product of the total area by

|the distance of the extreme fiber and
| make n'e,’ || p,/m,’; then is &, which is

on the same vertical as ¢, a point of the

kernel, and ok,'=r,’ the radius of resist-

’ t - 3

ance. Use k', as a diameter, then 18

oh’=Fk' the radius of gyration, for
=1

With these two principal axes thus

| determined, it is possible at once to con-

struct the ellipse of inertia. In any case
it will be possible to determine the direc-
tion of the axis of solicitation correspond-
ing to any assumed neutral axis by actual
construction, it being simply necessary to

find the line through o upon which lie

the points of application of the positive
and negative stresses considered separate-
ly. These axes being conjugate direc-
tions in the ellipse of inertia, when we
have found the radii of resistance in
those two directions we can at once ob-
tain the corresponding radii of gyration
which are econjugate semi-diameters, and
so draw the ellipse.

After the ellipse is drawn the kernel
can be readily completed by making »
in every direction a third proportional to
the distance of the extreme fiber and
the radius of gyration.

We are assisted in drawing the kernel
by noticing that to each straight side of
the cross section there -corresponds a
single point in the kernel, and tc each
non re-entrant angular point a side of the
kernel, these standing in the mutual re-
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lation of polar : i-pole wi o0
polar and anti-pole with respect k'L at the very obtuse angular points

to the ellipse of inertia, as shown by the
equation E=ry. .

In Fig. 13 the point %, corresponds to
the left hand vertical side, the point %
to the right hand vertical side, and the

sides k&, k%, to the angular points at |

the upper and lower extremities of the
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of the kernel correspond to the upper
and lower horizontal sides of the flange.
The two remaining angular points of the
kernel correspond to tangent lines when
they just tonch the corners of the flange
and web, while the intermediate sides
correspond to the angles at the extremi-

left side respectively, while the points

faa)

ties of these lines.

KERNEL, MOMENTS OF RESISTANCE AND
INERTIA: FRAME PENCIL METHOD.

Let t}w cross section treated be that
shown in Fig. 14, which is nearly that
of a 56 Ib. steel rail, the difference con-
sisting only in a slight rounding at the
angles, - ¥
: Let the cross section be divided by
lines perpendicular to the axis of symme-
try bb at b,, b, ete., then the par{ia-l areas
and the total area may be found by
summation polygon. = ‘

Fake ¢ as the common point of the

a

 rays through &3,, ete., and make 01, 02
ete., proportional to the mean l)t':_‘]in’ates,
of the areas standing on the bases b.

bb., ete. respectively. Draw su \|f_:'!)=,
s,u, || ¢b,, etc., then will the SL‘("I;l()’ntS oié
the line wu represent the ros]n(r_c)'ti\'e par-

tial areas, and wu, will represent the
total area,

..lh\'u](_' the vertical line ww into seg-
ments equal to those of the line n#n, then
1S 0w ] 7 findi
-\]t“" lfho \\u_ght line for finding the
center of gravity, ete., of the cross seec-

tion. Let a, a, a, etc., be the centers
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of gravit}* of the partial areas, and let
» be the vertex of a frame pencil whose
rays pass through these centers of
avity. Draw the equilibrating poly-
gon dd with its sides parallel to the rays
of this frame pencil, then the ray wo
parallel to the closing side yy of the
equilibrating polygon determines the
center of gravity o of the cross section,
according to principles previously ex-
plained. x "

It will be convenient to divide the
cross section into two parts by the verti-
cal line o7, which we shall take as the
neutral axis. The partial areas b0 and
ob, have @, and @, as their centers of
gravity. Make s, || co, then 0, which
corresponds to w,, divides the weight
line into two parts, representing the
areas each side of the neutral axis, and
the polygon dd can be completed by
drawing d,d, || va, and dd, liva”. It
has been previously shown that the
abscissas yd represent the sum of the
products of the weights (i.e. areas) by
their distances from o; and any single
product is the difference of two success-
ive abscissas. Project the lengths yd
upon the horizontal 2z by lines parallel
to vy, then the segments of 2z represent
the products just mentioned. But these
products are the stress solids or resultant
stresses before mentioned. Hence 2z is
to be used as a weight line and is trans-
ferred to a vertical position at the left
of the Fig. The points of application of
the resultant stresses may without sensi-
ble error be taken at the centers of
gravity a,a,, etc., of the partial areas ex-
cept in case of the segments of the web
on each side of o. For these, let og,’
=%ob,, and og,”’=4%0b,, then g,’ and 0.l
are the required points of application.

Now with the weight line 2zz, which
consists partly of negative loads, and
with the same vertex v construct the
second equilibrating polygon ff, then
z, f, represents the moment of inertia of
the cross section, iv being proportional
the moment of the resultant stresses
about 0. It is seen that the sides 1. f,
and f, f, are so short that any small de-
viation in their directions would not
greatly affect the result, and that there
would therefore have been little error if
the resultant stresses in the web had
been applied at @ and a,”.

Again, draw dd, || vb,, then the hori-

zontal line dw, (=d,d’) represents Ay,
the product of the total weight w0,
(7. e. the total area of the cross sec-
tion), by the distance of the extreme
fiber 0b,=y,. Use this as a stress solid
or resultant stress applied at o and hav-
ing a weight 22, =d,d’, and draw oj || £ ,,

4 being at the same vertical distance from

bb as v is; then is &, which on the same
vertical at 7, a point of the kernel. For
k, is such a point that the product of ok,
(=7,) by the weight zz,(=Ay,) sz, f,=1
on the same scale as I was previously
measured.

Similarly draw wd, || vb, and make
z2,=d d,; also draw ik, |12 then is
%, another point of the kernel as appears
from reasons like those just given in
case of X .

Use bk, as a diameter, then o/ is a
semi-axis of the ellipse of inertia. The
same point A should be found by using
kb, as a diameter. Another semi-axis
of the ellipse of inertia with reference
to bl as a neutral axis, and conjugate to
oh can be determined, using the same
partial areas, by finding the centers of
gravity and points of application of the
stresses of the partial areas on one side
of bb, the process being similar to that
employed in Fig. 13, except in the em-
ployment of the frame pencil instead of
the equilibrium polygon.

It is to be noticed: that the closing side

f.5, of the second equilibrating polygon
ff is parallel to a resultant ray which

intersects bb at infinity, the point of ap-
plication of the resultant of the applied
stresses, 4. e. the stresses form a couple.
When the ellipse of inertia has been
found by determining the magnitude and
direction of two conjugate axes, the ker-
nel can be readily completed as has been
shown in connection with Fig. 13,

UNIFORMLY VARYING STRESS IN GENERAL.

The methods employed in Figs. 13
and 14 are applicable also to any uni-
formly varymng stress, for a stress which
uniformly increases from any neutral
axis @ through the center of gravity of
the cross section can be changed into a
stress which uniformly increases from
same parallel axis &’ at a distance y,
from = by simply combining with the
former a stress uniformly distributed
over the eross-section and of such intens-
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ity as to make the resultant intensity | then

zero along 2/,
In the construction given in Figs. 13
and 14 it is only necessary to use the

proposed line " at a distance ¥, from o, |
lin which » and r, are the two radii of

instead of the tangent to the extreme
fiber at a distance y, or y, from o, when
we wish to determine the weight or
volume of the resultant stress solid, its

moment about o, and its center of gravi- |

ty or application.

Since the locus of the center of appli-
cation of the resultant stress is the anti-
pole of «” with respect to the ellipse of
tnertia, it is evident that when the pro-
posed axis &’ lies partly within the cross
section the center of application of the
resultant stress is without the kernel,
and that when &’ is entirely without the
cross section its center of application is
within the kernel.

It is frequently more convenient to |

determine the center of application from
the kernel itself than from the ellipse
of inertia. This can be readily found

from the equation which we are now to |

state
Ary=Ary=1I

in which equation Ay, and Ay, are the

volumes of the sfress solids which if|

uniformly distributed and compounded
with the stress whose neutral axis is @,
will cause the resultant stresses to vanish
at distances y, and Y, respectively;
while r, and 7, are the distances from o
of the respective centers of application
of these stresses,

The truth of the equation is evident
from the fact that the moment about o
of any stress solid uniformly distributed
i8 zero, hence the composition of such a
stress with that previously acting will
leave its moment unchanged. £

From the equation just stated we
have

Yy i Ty

from which », can be found by an ele-
mentary construction, since y,, %, and r.
are known quantities,. When it is de-
sired to express these results in terms of
the intensities of the actual stresses,

let p,=ny, be themean stress;

and let p'=n (y,+y,) be the greatest, |

and let p,/=n (y,—y,) be the least
intensity at the extreme fiber:

=an 1 —n
nYy,=p, —"Y,=p, —p,
or: nY,=nY,—p, =p,—p,’
. ity S T~ SRt
37 P ip—p v, i,

’
or PP P, tir iy,

the kernel.

DISTRIBUTION OF SHEARING STRESS.

It is well known that the equation
dM=Tdz, expresses the relation of the
total shearing stress 7" sustained at any
cross section of a girder ta the variation
dM of the bending moment M at a
parallel cross-section sitnated at the
small distance dz from the first men-
tioned cross section.

We have already treated the normal
components of the stress caused by the
bending moment A: we shall now tréat
the tangential component or shear which
accompanies any variation of the bend-
ing moment.

We shall assume as already proved
the following equation* which expresses
the intensity ¢ of the shearing stress at
any point of the eross section:

dogr=T7T"

in which z is the width of the girder
measured parallel to the neuntral axis at
any distance ¥ from the neutral axis, and
¢ 1s the intensity of the shearing stress
at the same distance, 7 is the moment of
inertia of the cross section about the
neutral axis, 77 is the total shear at this
cross section, and ¥ is the volume of
that part of one of the stress solids used
in finding the moment of inertia which
is situated at a greater distance than Yy
from the neutral axis, .. in Fig. 13 if
we were finding the value of q at &,
with respect to om, as the neutral axis,
then V" would signify the stress solid
whose profile is d,d, '/»161. It, however,
makes no difference whether we define V-
as the stress solid situated at the left or
at the right of b,; for, since the total
stress solid, positive and negative, is
zero, that on either side of any assumed
plane is the same. -

The first step in our process is to find
the intensity of the shear at the neutral
axis, which we denote by 7,5 and if we
also call z, the width here and V, the
volume of either of the two equal stress

* See Rankine's Applied Mechanics. Eighth Edition,

‘ Art. 309, p, 838,
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solids between this axis and the extreme
fiber, we have

Ra=T7V,but I=V,d

when d is the distance between the cen- |

ters of application of the equal stress
solids, i.e.,  is the arm of the couple of

the resultant stresses. (
when A is the total area of the cross
gsection and ¢ is the mean intensity of
the shearing stress. >
tral axis we have the equation

g";};nr'?: 41(;: f £

Also T=Ag|

Hence at the neu- |

| Now the length of the arm d is found
|in Fig. 18 by prolonging the middle side
| (i.e. the side through z,) of the second
|equilibrium polygon until it intersects
[ the first side and the last. These inter-
sections will give the position of the
centers of gravity of the stress solids on
| either side of o. '

In Fig. 14 the same points are found
| by drawing rays from v parallel respect-
|ively to z f, and f,f, until they inter-
sect aa.

| In Fig. 15 the points f, and f, are
| found by either -of these methods and
J.f.=d is the required distance. .

Now in Fig. 15 let the segments wu

of the summation polygon be obtained
just as in Fig. 14, and parallel to uu
draw a line through s representing the
width of the cross section @, on the same
scale as before used in constructing the
summation polygon. Also make sw, ||

¢f, and su||¢f,, ¢ being the common |

point in the rays of the pencil of the
summation polygon for finding the area.

Then wuw, represents the product = |

on same scale that ww, represents A.

Now draw from any point ¢ rays to u,,

| % and ., and also @ parallel to 7z _at a
| distance ¢ and intersecting i at some

point £, such that #,=¢ to such gsc:\lc
[ as may be convenient. The mean intens-
Iit._w,' ¢ is supposed to be a known quanti-
ty, and £, || w«. Then from the proposed
| equation we have the proportion

ad:A::q:q,

lor wu, tuw s i, LU

o
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Hence #¢, represents the intensity of the

shearing stress at the neutral axis on|

the same scale that # represents the
mean intensity.

This first step of our process has de-|

termined the intensity of the stress at
the nentral axis relatively to the mean
stress; the second step will determine
the intensity of the stress at any other
point relatively to the stress at the neu-
tral axis. ‘When this last point is all
that is desired the first step may be
omitted.

The equation Jzxg= 7'V may be written
a#g=cV, in which ¢= 7"+ ¥ is a constant.
At the neutral axis this equation is

gg.=ch,or V. 10 2 tp

In Fig. 15 lay off the segments of the
line zz just as in Fig, 14; then z2 rep-
resents the weight or volume 7V ; also
make x0, x2, @3, ete., proportional to
width of the girder at o, 5, &, etc., and
layoff zr =sr'=tt. e

Draw p0|[| 72, then by similar tri-
angles

Zr, 1 @0 1ap
ST
.*. px represents the constant e,

Now the several segmentszz, zz, 22, |
etc., represent respectively the values of
V, V,, ¥, or the stress solids between
one extreme fiber and b, &, b, ete.; it
is of no consequence which extreme fiber
is taken as the stress solid is the same
in either case.

Now using » as a pole draw rays to
2345 ete., :11_|:1 'm:nk(' 2,7, || P2, 2,7, || p3,
ete., then by similar triangles

122 e, 0r g9, =cV,

: 23 ¢ Or ®.q,=cV,
ete., ete., and s7, sr, ete., represent
the intensity of the shearing stresses at
b, b, ete. These can be constructed
equally well by drawing rays from z
parallel to the rays at p, from which we |
obtain

'

Zr, =21, sri=zv¢ , ete.

Now lay off by,=zr, by,=zr, ete.,|
then the ordinates by of the pol\‘@on Yy
represent the intensity of the shearing
stress on the same scale that ¢ =z 7, rep-
resents the intensity ¢, at the neutral
axis, and on the same scale that ¢, =oy’ |

represents the mean intensity g. The|

land r'=Ar+4 —ar, when a=A4+ A4
| Then is 4 2’ the specific moment of re-

| lines joining ¥, ¥%., etc, should be
slightly curved, but when they are
straight the representation is ~quite
| exact.

RELATIVE STRESSES,

It is proposed here to develop a new
construction which will exhibit the rela-
tive maggitude of the normal compo-
nents of the stresses produced by a
given system of loading in the various
cross-sections of a girder having a varia-
| ble cross section. The value of such a

construction is evident, as it shows'

| graphically the weakest section, and in-
| vestigates the fitness of the assumed dis-
position of the material for sustaining
the given system of loading.

The constructions heretofore given
for the kernel and moments of resistance
at any given cross section admit of the
immediate comparison of the normal
components of the stresses produced in
that single cross section when different
neutral axes are assumed, but by this
proposed construction, a comparison is
effected between these stresses at any
different cross sections of the same gird-
| er or truss.

In the equation previously used

M=8I+y=8SAk+y=8Ar

in. which M is the moment of flexure
which produces the stress § in the ex-
treme fiber of a cross section whose area
is A and whose radius of resistance is 7,
we see, since the specific moment of re-
sistance m=Ar is the product of two
factors, that the same product can result
| from other and very different factors.

For example, let m=A4 " in which 4
is the arga of some cross section which
is assumed as the standard of comparison,

sistance of a cross section of an assumed
area A, which has a different disposition
of material from that whose specific

| moment of resistance is A», but the
| cross sections A and A4, are equivalent
|to each other in this sense, that they
'have the same specific resistance, and

consequently the same bending moment
will produce equal stresses in the
extreme fiber in each.

The two cross sections do nof have
the same moment of inertia, and so the
deflections of the girder would be
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changed by substituting one cross sec-|
tion for the other. We shall then speak |
of them as equivalent_ only ir_l the_fqr{ner‘
sense, and on the basis of t:hlS definition, |
state the result at which we have|
arrived thus: Equivalent cross sections|
ander the action of the same bending |
moment, have the same stresses at the|
extreme fiber (though they are not|
equally stiff); hence in comparing
stresses equivalent cross sections may be |
substituted for each other (but they may |
not be so substituted in comparing de-
flections). . .

It is proposed to utilize this result by |
substituting for any girder or truss hav-
ing a variable cross section ";1 or a varia-
ble specific moment of resistance w}m%
magnitude is expressed by the variable
quantity Ar, a different one having a
¢ross section everywhere of constant

area A, but of such disposition of mate-
rial that its specific moment of resistance
is A4 r'=Ar at corresponding cross sec-
tions.

The proposed substitution is especially
easy in case of a truss, for in it the value
of 7 varies almost exactly as its depth,
as may be seen when we compute the
value of m=Ak'+y=Ar
in this case.

Since the material which resists
bending is situated in the chords alone
and is all approximately at the same

| distance from the neutral axis we have

k=y=r=3%h very nearly when % is the
distance between the chords, .. m=4§A4h
nearly. KEven when the two chords are
of unequal cross section and the neatral
axis not midway between them the same
result holds when the ratio of the two
cross sections i3 constant.,

2 7 . . S e rari / dius
In Fig. 16 let 2z be the axis of a gird- | 4,7'=Ar=ay, zy varies ;as s trhe ra‘h s
er sustaining at the points x,, @, etc.,|of resistance of a girder having at every

the weights cc, ce,, ete.

Lay off the|point a cross section A, so disposed as

ordinates zy at each of the points at|to be equivalent to that of the given

which weights are applied, so that Ty =
Ar on some assumed scale; then since

girder . X
Assume some form of framing con-




necting the points =y as shown in the
Fig., and suppose the weights applied
at the points yy of the lower chord, the
points of support being at y, and ¥,
Then by a method like that employed in
Fig. 3, we obtain the total stresses ea,,
ea, ea, ete, in the segments of the
upper chord which are opposite to y,, ¥,
¥, etec. Now these total stresses are
resisted by a cross section of constant
area A, -consequently they have the
same ratio to one another as the intensi-
ties per square unit; or further, they
represent, as we have _}llst s}mwn, the
relative intensities of the stresses on the
extreme fiber of the given girder.

It is well known from mechanical
considerations, that the stress in the
several segments of the upper chord is
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dependent upon the loading and upon
the position of ¥, ¥., ete., and is not
dependent upon the position of the
joints in the upper chord. Of this fact
we offer the following geometrical proof
derived from the known relations be-
tween the frame and force polygons.
We know, if any joint of the upper
chord, such as e« b, for example, be re-
moved to a new position, such as », that
so long as the weights cc,, ¢,c,, ete., are
unchanged, that the vertex &, of the tri-
angle ea b, in the force polygon must be
found on the force line ¢ f, || v,yv,, We
shall show that while the side ea, is un-
changed, the locus of &, is the force line
f.; hence conversely, so long as ¢, £, 18

le 1

the locus of &, ea, is nnchanged, since
there can be but one such triangle.

In Fig. 17 let the two triangles abe, ink,
have the sides meeting at & and =
mutually parallel. ILet the bases ae and
Ak be invariable but let the vertex & be
removed to any point d such that dd || Ak,
then will the vertex n be removed to a
point m such that mn || ae.

For, prolong ad and eb, and draw
/:f'l.!r[ and de || ab, then is u/:ﬁ-;!my a
hexagon inscribed in the conic section
consisting of the two lines af and e,
]Iwm‘u il}' l':l.\'{'.‘ll‘.\ ,l‘ht'(')?'l‘lll, T.]iL‘ l‘J]llllJ-
site diagonals ea and ¢f intersect on the
same line as the remaining pairs of oppo-
site diagonals, ab || de and ed || bf. DBut
this' line is at infinity, hence ¢f|| ae.
Also ¢/f7 || ¢f, from elementary considera-
tions; and ¢'f" || mn from smilarity of

figures, hence mn || ae. There are two
cases, according as mn is above or below
bk, but we have proved them both.
Now in Fig. 16 let all the joints in the
upper chord be removed to #, then the
segments ea,, a,a,, ete., are unchanged,
hence ea,, ez, ete. are unchanged, and

|the assumed framing reduces to the

frame pencil whose vertex is », The
corresponding force polygon is the
equilibrating polygon dd.

Hence the frame pencil can be used as
the assumed framing just as well as any
other form of framing, and it is unneces-
sary to use any construction except that
of the frame pencil and equilibrating
polygon for finding the relative stresses
ea,, ed,, etc. )
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STRESSES IN A HORIZONTAL CHORD.

If Fig. 16 be regarded as representing
an actual bridge truss, whose chords are
not of uniform cross section; it is seen
that the total stresses on the horizontal
chord are given by the segments ea,, ea,,
ete., which are found from the equili-
brating polygon alone without regard to
the kind of bracing in the truss, which it
is unnecessary to consider; and this
method can be used to take the place of
that given in' connection with Fig. 3 for

finding the maximum stresses on the|

chords.
The equilibrating polygon 7 was con-

structed to determine - the reactions of |

the piers by finding the point e¢. The
outer sides of the polygon ff intersect
at ¢ which determines e as explained in
Fig. 7 in a manner different from that
given in Fig. 3.

This construction sheds new light
upon the significance of the frame }fwncil
{and equilibrating polygon. The frame
| pencil is the limiting case of a truss
| when the joints along one chord are re-
| moved to a single point, so that each.ray
[ may be regarded as compounded of a
| tension member and a compression mem-
ber, having the same direction, e.g., the
tension member of which 7 is com-
pounded has the stress d @, and the
compression member the stress 4,a,, but
if the two be combined, the resultant
tension is d d,.
| In case yy is the equilibrium ecuorve
| due to the applied weights, and v falls
upon the clostg line, the force lines ed
meet at the pole and the lines ed,, ed,,
coincide with aa, so that the polygon dd
is at the pole and infinitely small, and
¢he stress in every segment of the upper
chord is equal to the pole distance de.




