NOTE A.

ADDENDUM TO PAGE 12, CHAPTER L

The truth of Proposition IV is, perhaps, not
sufficiently established in the demonstration
heretofore given. As it is a fundamental pro-
position in the graphical treatment of arches, |
and as itis desirable that no doubt exist as to
its validity, we now offer a second proof of it,
which, it is thought, avoids the difficulties of
the former demonstration.

Prop. IV. If in any arch that equilibrium
polygon (due to the weights) be constructed
which has the same horizontal thrust as the
arch actually exerts; and if its closing line be
drawn from considerations of the conditions
imposed by the supports, etc.; and if, further-
more, the curve of the arch itself be regarded
as another equilibrium polygon due to some
system of loading not given, and its closing
line be also found from the same considera- |
tions respecting supports, ete.; then when
these two polygons are so placed that their |
closing lines coincide, and their areas partially
cover each other, the ordinates inlﬂ‘(‘:-pti-d be
tween these two pnl}'unns are |)I‘o[mr!iﬁn:t| to
the real bending moments acting in the arch.

The bending moments at every point of an
arch are due to the applied forces and to the
shape of the arch itself.

The applied forces are these: the vertical
forces,: which comprise the loading and the
vertical reactions of the piers; the horizontal
thrust; and the bending moments at the piers,
caused by the constraint at these points of sup-

port. The loading may cause all the other ap-
plied forces or it may not: in any case the
bending moments are unaffected by the de-
pendence or want of dependence of the thrust,
ete., upon the loading.

Now, so far as the loading and the moments
due to the constraint at the piers are concerned,
IIH'_\‘ canse the same ]]l‘]]l“!l'_f moments at any
point of the arch as they would when applied
to a straight girder of the same span, for
neither are the forces nor their arms different
in the two cases.

But the horizontal thrust, which is the
same at every point of the arch, causes a
bending moment proportional to its arm,
which is the distance of its line of ap-
plication from the curve of the arch. This
line of application is known to be the closing
line; hence the ordinates which represcnt the
bending moments due to the horizontal thrust,
are included between the curve of the arch and
a closing line drawn in such a manner as to
fulfill the conditions imposed by the joints or

{ kind of support at the piers, hence the curved
| neutral axis of the arch is the equilibrium or

moment polygon due to the horizontal thrust.

But the same conditions fix both the closing
line of the equilibrium polygon which repre-
sents the bending moments due to the loading
and to the constraint at the piers, and the clos-
ing line of the equilibrium polygon due to the
horizontal thrust. Hence the resultant bend-
ing moment is found by taking the difference
of the ordinates at each point, or by laying
them off from one and the same closing line

| exactly as described in the statement of our

proposition.

NOTE B.

ADDENDUM TO PAGE 10, CHAPTER L

Attention should be directed to the two
genses in which M is used in our fundamental
formulae. 5

In equation (3) the primary signification of
M is this : it is the numerical amount of the
hending moment at the point O; and if this
magnitude be laid off as an ordinate, ym is the
fraction or multiple of it found by equation (3).

Now M assumes, in the equations (3), (4), (5)
and (3), (4), (5"), a slightly different and sec-
ondary signification; viz., the intensity of the |
bending moment at 0. The intensity of the
bending moment is the amount distributed
along a unit.in length of a girder, and may be
exactly obtained as follows :

% (M) = f M.

In this secondary sense M is geometrically
represented by an area one unit wide, and hav-
ing for its height the average value \\'in(-_h
ordinate M, as first found, has along the unit
considered.

w1
M — ./ Mda,
x

Thus the M used in the equations of curva- |

ture, bending and deflection is one dimension
higher than that used in the equation express-
ing the moment of the applied forces; but the
double sense need cause no confusion, and is
well suited to express in the shortest manner
the quantities dealt with in our investigation.
Furthermore, in case of an inclined girder

zontal girder of the same cross section, and of
the same horizontal span, and deflected by the
same weights applied in the same verticals;
the vertical component of the deflection of
the inclined girder, at any point 0O, is equal to
the corresponding vertical deflection of the
horizontal girder, multiplied by the secant of
the inclination.

For the bending moment of both the inclined
eirder and the horizontal girder is the same in
the same vertical, but the distance along the
inclined girder exceeds that along the hori-
zontal girder in the ratio of the secant of the
inclination to unity; hence the respective mo-
ment areas have this same ratio; therefore the
deflections at right angles to the respective
girders of their corresponding points are in
the ratio of the square of the secant to unity:
and the vertical components of the deflections
are therefore in the ratio of the secant of the
inclination to unity.

In applying this proposition to the graphical
construction for the arch, it will be necessary
to increase the ordinate of the moment poly
gon at each point by multiplying by the secant
of the inclination of the arch at that point.
This is easily effected when the ordinates are
vertical by drawing normals at each point of
the arch:; then the distance along the normal
whose vertical component is the bending mo-
ment is the value of M to be used in determin

such as is treated in Prop. V, if the bending

moment M, which causes the =Ic$1vm'u)1| there |
appear as an |

treated, be represented, it must D !
area between two normals to the girder which
are at the distance of one unit apart.

In order to apply Prop. V to inclined and
curved girders, such as constitute the arch,
with entire exactness, one more proposition 18
needed.

Prop. If weights be sustained by an in-
clined girder, and the amount of the deflection
of this girder, which is caused by the weights,
be compared with the deflection of an hori-

ing the deflection.

In the arches which we have treated the
| rise is so small a fraction of the span that the
secant of the inclination at any point does not
| greatly exceed unity; or, to state it otherwise,
the length of the arch differs by a compara-
| tively small quantity from the actual span. Tt
|18 a “close approximation under such circum
%,]:-ml'e-:i to use the moments themselves in de-
| termining the deflections; and we have so used
| them in our constructions. A more accurate
result can be obtained by multiplying each
ordinate by the secant of the inclination of
| the arch at that point to the horizon.
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SrrEss includes all action and reaction
of bodies and parts of bodies by attrac-
tion of gravitation, cohesion, electric
repulsion, contact, ete., viewed espe-
cially as distributed among the particles
composing the body or bodies. Since
qction and reaction are necessarily equal,
stress is included under the head of
Statics, and it may be defined to be the
equilibrinm of distgibuted forces.

Internal stress may be defined as the
action and reaction of molecular forces.
Its treatment by analytic methods is

necessarily encumbered by a mass of|

formul@ which is perplexing to any ex-
cept an expert mathematician. It
necessarily so encumbered, because the
treatment consists in a comparison of
the stresses acting upon planes in vari-
ous directions, and such a comparison
involves transformation of quadratic
functions of two or three variables, so
that the final expressions contain such
a tedious array of direction cosines that
even the mathematician dislikes to em-
ploy them.

Now, since the whole difficulty really
lies in the unsuitability of Cartesian co-
ordinates for expressing relations which
are dependent upon the parallelogram of
forces, and does not lie in the relations
themselves, which are quite simple, and,
which no doubt, can be made to appear
0 in quaternion or other suitable nota-
tion; it has been thought by the writer
that a presentation of the subject from a
graphical stand point would put the

is

entire investigation within the reach of

any one who might wish to understandg
it, and would also be of assistance to

those who might wish to read the analyt-

ic investigation.

The treatment consists of two princi-
pal parts: in the first part the inherent
properties of stress are set forth and
proved by a general line of reasorfing
which entirely avoids analysis, and
which, it is hoped, will make them well
understood; the second part deals with
the problems which arise in treating
stress. These problems are solved
graphieally, and if analytic expressions
are given for these solutions, such ex-
pressions will result from elementary
considerations appearing in the graphi-
cal solutions. The constructions by
which the solutions are obtained are
many of them taken from the works of
the late Professor Rankine, who em-
ployed them principally as illustrations,
and as auxiliary to his analytic investi-
gations.

It i1s thus 1;:‘(:1")5‘9!] to render the
treatment of stress exclusively graphical,
and by so doing to add a branch to the
science of Graphical Statics, which has
not heretofore been recognized as sus-
ceptible of graphical treatment. It
seems unnecessary to add a word as to
the im}mrt;nu-e, not to say necessity, to
the engineer of a knowledge of * the
theory of combined internal stress, since
all correct designing presupposes such
knowledge.
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STRESS ON A Prane—“If a body be
conceived to be divided into two parts
by an ideal plane traversing it in any
direction, the force exerted between
those two parts at the plane of division
is an internal stress.”— Ranlkine.

A StaTE OF INTERNAL STRESS is such
a state that an internal stress is or may
be exerted upon every plane passing
through a point at which such a state
€XI18L8.

It is assumed as a physical axiom that
the stress upon an ideal plane of divi-
sion which traverses any given point of
a body, cannot change suddenly, either
as to direction or magnitude, while that
plane is gradually turned in any way

about the given point. It is also as-|

sumed as axiomatic that the stress at
any point upon a moving plane of divi-
sion which undergoes no sudden changes

of motion, cannot change suddenly

area: this is called the infensity of the
stress.

Stress, like force, can be resolved into
components. An oblique stress can be
resolved into a component perpendicular
to its plane of action called the normal
component, and a component along the
plane called the tangential component or
shear.

When the obliquity is zero, the entire
stress is normal stress, and may be either
a compression or a tension, i.e;.,‘ a thrusg
ora pull.  When the obliquity is 4 90°,
the stress consists entirely of a tangen-
tial stress or shear. If a compression he
considered as a positive normal stress, it
is possible to consider a normal tension
as a stress whose obliquity is +180°
and the obliquities of two shears having
opposite signs, also differ by 180°,

Figils

either as to direction or amount. A |

sudden variation can only take place at |
a surface where there is a change of |
material. |

|
GENERAL PROPERTIES OF PLANE .\"I‘I.'ICSH..

CoxsueaTE StrEsses.—If in Fig, 1
We shall call that stress a plane stress | any state of stress whatever exists at o,
which is parallel to a plane; e.g., let the | and @z be the :lirc'iou of the stress on a
plane of the paper be this plane and let

| ! plane of action whose trace is »y, then is
the stress acting upon every ideal plane -6

IN GRAPHIC!
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: |
be parallel to yy, as otherwise a COIIPlB“
must result from these equal but not |
directly opposed stresses, which is in-
consistent with equilibrinm,

This proves the fact of conjugate
stresses when the state of stress 1s unj
form: in case it varies, the prism can be
taken so small that the stress is sensibly
pniform in the space occupied by it, and
the proposition is true for varying stress
in case the prism be indefinitely dimin-
ished, as may always be done.

/Y

TavceNTIAL Steesses.—If in Fig, 2
the stress at 0 on the plane @z is in the
direction @z, i.e. the stress at o on ax
consists of a shear.only; then there
plane
through o, as yy, on which the stress

necessarily exists some other
consists of a shear only, and the shear
upon each of the planes @z and yy is of

the same intensity, Wt of opposite sign.

For let a plane which initially coin-

is a shear alone, separates those planes
through o on which the obliquity of the
Stl‘usskiﬁ greater than 90° from those on
which it is less than 90°, i.e., those hav-
ing a plus normal component from those
having a minus normal component.

Since in revolving through +180° the
plane must coincide, before it reaches its
final position, with a plane which has
made a slight minus rotation, 1t 1s evi-
dent that the sign of the normal com-
ponent changes at least once during a
revolution of 180°. DBut a quantity can
change sign only at zero or infinity, an'd
since an infinite normal component is
inadmissible, the normal component
must vanish at least once during the
proposed revolution. Hence the oblig-
nity is changed by 360 or some multj-
ple of 360° while the plane revolves 180°.
In fact the normal component vanishes
but once, and the obliguity changes by
once 360° only, during the revolution.
It is not in every state of stress that
there is a plane on which there is no
stress except shear, but, as just shown,
when there is one such plane @ there is
necessarily another yy, and all planes
through o and cutting the angles In
which are &, and &, have normal com-
ponents of opposite sign from planes
through o and cutting the angles in
which are b, and b,.

gemls e .| yy the directi f the stress ¢ 3
which is at right angles to the plane of 7Y direction of the stress at o on the

the paper be parallel to the plane of the
paper, then is such a stress a plane
stress.

The obliquity of a stress is the angle
included between the direction of the
stress-and a line perpendicular to the
ideal plane it acts upon. This last
plane we shall for brevity call the plaane
of action of the stress, and any line
perpendicular to it, its normal. In plane
stress, the planes of action are shown by
their traces on the plane of the ]n:l]wf-._
and then their normals, as well as their
directions, the magnitudes of the stresses,
and their obliquities are correctly rep-
resented by lines in the plane of the
paper:

The definition of stress which has
been given is equivalent to the state-
ment that stress is foree distributed over
an area in such wise as to be in equili-
brium.

In order to measure stress it is neces-
sary to express its amount per unit of

plane whose trace is wex. Stresses so
related are said to be conjugate stresses.

For consider the effect of the stress
upon a small prism of the body of which
a,a,a.a is a right section. If the stress
18 uniform that acting upon a,a, is equal
and opposed to that acting upon g,a,,
and therefore the stress upon these
faces of the prism are a pair of forces in
equilibrinm.  Again, the stresses upon
the four faces form a system of forces
which are in e(lnilihrilim, because the
prism is unmoved by the forces acting
upon it. But when a system of forces
in equilibrium is removed from a sys-
tem in equilibrium, the remaining forces
are in equilibrinm. Therefore the re-
moval of the pair of stresses in equili-
brium acting upon @@, and aa, from
the system of stresses acting upon the
four faces, which are also in equilibrinam,
leaves the stresses upon «,a, and @, in
equilibrium. But if the stress is uni-
form, the stresses on a,a, and @,a, must

cides with ax revolve continuously
through 180° about o, until it again co-
incides with @z, the obliquity of the
stress upon this revolving plane lvx:t.-é
changed gradually during the revolution
through an angle of 360°, as we shall
show.

Since the obliquity is the same in its
final as in its initial position, the total
change of obliquity during the revolu-
tion is 0° or some multiple of 360°. It
sannot be 0°, for suppose the shear to be
due to a couple of forces parallel to ax,
having a positive moment; then if the
plane be slightly revolved from its
initial position in a plus direction, the
stress upon it has a small normal com-
ponent which would be of opposite sign,
if the pair of forces which cause it were
reversed or changed in sign; or, what is
equivalent to that, the sign of the small
normal component would be reversed if
the plane be slightly revolved from its
initial position in a minus direction.

the shear on =z is the

Hence the plane «, on which the stress

To show that the intensity of
same as
that on yy, consider a prism one unit
long and having the indefinitely small
right section 46,65, Let the area of
its upper or lower face be a, =b0b, that
of its right or left face be «,=0,0,, then

Cll 3]

as, and «s, are the total stresses on
these respective fages if & and s, are the
intensities of the respective shears per
square unit. Let the angle woy=4, then

as, . @, 8in, 2
is the moment of the stresses on the
upper and lower faces of the prism, and
ffu.\‘? a lll 8in, 2
is the moment of the stresses on the

right and left faces; but since the prism
is unmoved these moments are equal.

} =8

1 2

These stresses are at once seen to be
of opposite sign.
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| direction is that of the stress on mn or
ol i

Fig. 4

W

rr = = 1 1
ANGENTIAL CoMpoNENTS.—In Fie. 3
if zz and yy are any two planes at right
o
angles to each other, then the intensity |

It should be noticed that t ress
at o of the tangential component of the |0 on two planes as @ “t'lldu’;;li:zt:f;:1?;
stress upon the plane @ is necessarily assumed at random, for mcil‘ussumption
the same as that upon the plane 7 hu.: i would in f__{_t‘l](‘]':ll _hc inconsistent with
i oppbite nign | o L kortes wliel o hive) F
: gn. | every state of stress to possess. For in-
For the normal components acting |stance we are not at liberty to assum
upon the tlD]_u'rsitt.- faces of a right lil'i\'ﬁ? the obliquities and intensities U}. t}lz
are T]@l"L‘NS:k.l'lly in l-(Iili“}l]‘ill'{]l,h.‘lllli ].\' a stresses on @ :1!1(! f{’/ such t.-}lat; “-'}N.’H
l'lt‘lnul‘lﬁl!‘:l.Ll(}Il precisely like that ,‘I-lb-'t we compute these .f|.l1ﬂ.111it-it's for ‘“1.'
employed in connection with Fig. 2 it is | plane @'z’ and another [il&ll‘l' iy’ ; ";;
seen thal_l'or equilibrium it is necessary | Fight angles to «'x’ in the Tll{lll‘l’(‘.l'/'l‘rft
:uuls.uﬁicmnl that the intensity of the tan indicated, it shall then u;:]wa;' that JLI}?
gential component on 22 be numerically | tangential components are of ur‘wt 11'3
qqn:xl to that on wy, but of t)])[ln.\il‘v intensity or of the same Hil_l,'lrl. o
sign. ‘

these components are

. ] D Or, again,
: we are not at liberty to so assume these

STATE oF STRESS.—In a state of plane Sresses as 10 violate the ;u‘ilwiplu of con-
stress, the state at any point, as o, is s he ’ '

2 o ) ? i ] 1 I Q "t racas
completely defined, so that the intensity "-..rlt.':Er-”; \""i\_v = Stresses assumed are
and obliquity of the stress on any plane | of J ﬁ']i € or consist of a pair of sheiss
x £, any pili of equal intensity : iffere

S e e et : SRVEL AR ty mfl_ different sign on
A g ermined, when | any pair of planes, or in case any stresses
the intensity :_md obliquity of the stress |#re assumed on a‘pair of planes at right
on any two given planes traversing that angles such that their tangential compo-
Bt aie Ericwi. nents are of equal intensity but different

. 5 sign, we know that we have m:

: o ‘ | sig : » have made a con-
w} :)Llsup]}:it_mu _:ln I‘I{E. II that the intensi- | sistent assumption and the state of stress
Tics obliquity of the stress on the|is ssil e : ;
y: 3 88 » | 18 possible and completely defined
Ak ) o el 2 med.
given planes zz and yy are known, to| The state ol Btredibiiin
Rl bt o st ane - et S .l. ( stress is not completely
mn || @'z’ then the indefinitely small H} o “i\]“.” T e Mo S
kel L ‘ Songh plane i1s known, because there may |
Lwti) one unit in le ngth whose right |any amount of i yle tensi otk e
.” y ;'n‘h mno, is held m‘p.lmlzhmum by },,{.,-,.'t,,,, alono m.”} s I"”{“ M
e forces acting upon its three faces.|state of stress with D D o o

oy stress without changing either
the 1ntensity or obliquity of the stress on .
that plane, 5

draw

The forces acting upon the faces om and
on are known in direction from the
obliquities of the stresses, and, if p, and
ji_,, are the respective intensities of the
nown stresses » for
nm_},:m].;“,,.,:_;r, :.}.r::.l.l[ih-p.] -iul("l"ll\l are stress there is one pair of conjugate
sultant of lhl'.‘:l'yfll]-l:'}x\' -m\:ll i\}. . .w o | stresses at right angles to each Ut]li‘!‘l-"”
3 8 ¢ 1€ reaction F ¥ g
\\'}llt‘i‘l holds it in equilibrium, together therearo two planes at right angles on
constitute the stress :u'titlg on I.iin- face which  the Siresses are :mrmalu Dniy'

ORI TR O R
Prixcipar Stresses,.—In any state of

mn: this resultant divided by 1 Stress

’ E ¢ v mn 18 the | Dtresses so I‘i‘!'ilL‘d are sal 0L
S ot A ‘ ‘ sald 3 Princt-
lllt,(i'm:lljr of lil(' stress on mnn ;md i(,\ },.,;[ slresses : s hL P ;
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It has been previously shown that if
g plane be taken in any direction, and
the direction of the stress acting on it be
found, then these are the directions of a

air of conjugate stresses of which either
may be taken as the plane of action and
the other as the direction of the stress
acting upon it.

Consider first the case in which the
state of stress is defined by a pair of
conjugate stresses of the same sign; i.e.,
the normal components of this pair of
conjugate stresses are both compressions
or both tensions.

It is seen that they are of opposite
obliquities, and if a plane which initially
coincides with one of these conjugate

planes of action be continnously revolved |

antil it finally coincides with the other,
the obliquity must pass through all in-
termediate values, one of which is 0°, and
when the obliquity is 0™ the tangential
component of the stress vanishes. But
as has been previously shown there 18
another plane at right angles to this
which has the same tangential compo-
nent; hence the stress is normal on this
$lane also.

Consider next the case in which the
pair of conjugate stresses which define
the state of stress are@@f opposite sign,
i.e,, the normal cnmp(t?ént on one plane
is a compression and that on the other
a tension.

In this case there is a plane in some
intermediate position on which the stress
is tangential only, for the normal com
ponent cannot change sign except at
zero. It has been previously shown that
in case there is one plane on which the
stress is a shear only, there is another
plane also on which the stress is a shear
only, and that this second shear is of
equal intensity with the first but of
opposite sign. " Let us consider then that
the state of stress, in the case we are
now treating, is defined by these oppo-
site shears instead of the conjugate
stresses at first considered.

Now let a plane which initially coin-
cides with one of the planes of equal
shear revolve continuously until it finally
coincides with the other. The obliquity
gradually changes from +90° t0 —00;
_dlll"lng the revolution, hence at some
intermediate point the obliquity is 0°:
and since the tangentinl component has
the same intensity on a plane at right
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angles to this, that is another plane on
which the obliquity of the stress is also
0°.

We have now completely established
the proposition respecting the existence
of principal stresses which may be
restated thus:

Any possible state of stress can be
completely defined by a pair of normal
stresses on two planes at right angles to
each other.

As to the direction of these principal
planes and stresses, it is easily seen from
considerations of symmetry that in case
the state of stress can be defined by
equal and opposite shears on a pair of
planes, that the principal planes bisect
the angles between the planes of equal
shear, for there is no reason why they
should incline more to one than to the
other. We have before shown that the
planes of equal shear are planes of
separation between those whose stresses
have normal components of opposite
sign: hence it appears that the principal
stresses are of opposite sign in any state
of stress which can be defined by a pair
of equal and opposite shears on two
planes.

It will be hereafter shown how the
direction and magnitude of the principal
stresses are related to any pair of con-
jugate stresses.

For convenience of notation in discuss-
ing plane stress let us denote COmpression
by the sign +, and fension by the sign

Let us also call that state of stress
which is defined by equal principal
stresses of the same sign a fluid stress.
A material fluid ean actually sustain
only a + fluid stress, but it is convenient
to include both compression and tension
under one head as fluid stress, the proper-
ties of which we shall soon discuss.

[et us call a state of stress which is
defined by unequal principal stresses of
the same sign an oblique stress. This
mav be taken to include fluid stress as
the particular case in which the ine-
quality is infinitesimal. In this state of
stress there is no plane on which the
stress is a shear only, and the normal
component of the stress on ‘any plane
whatever has the same sign as that of the
principal stresses.

Fuarthermore let us caM that state
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of stress which is defined by a pair
of ~h(‘.mn€r stresses of equal !!itl;'ll\lr\
and :hfftluut sign on two planes at
right angles to each other a right
shearing stress. We shall have occasion
immediately to discuss the properties of
this kind,of stress, but we may advan-
t-l"'t“ll‘*l\ notice one of its plnpel{]v\ in
l]n}s connection. It has been seen pre
viously from considerations of symmetry
that the principal stresses and [lld]lt?
which may be used to define this state

of stress, biseet the angles between the |
Hence in right
shearing stress the principal stresses |

planes of equal shear.

make angles of 45° with the planes of
equal shear. We can advance one step
further by considering the symmetrical
position of the pllnea of equs al shear with
respect to the lnr‘mc ipal stresses and
show that the principal stresses in a state
of right shearing stress are equal but of
opposite sign,

We wish to call particular attention
to fluid stress and to right shearing stress,
a8 with them our ‘-ll]\‘-('flllllll discussions
are to be chiefly concerned :
special cases in

they are the |
which the p:lm-apl]
stresses are ol ulrml intensities, in one |
case of the same sign, in the utlwl' case
of different sign.

Let us call a state of stress which
is defined by a pair of equal shearing |
stresses of opposite sign on planes
not at right angles an obligue shear-
ing stress. The immllnl stresses, which
in this case are of unequal immmil‘.\';
and bisect the angles between the|
planes of equal shear, are of opposite
sign. A right %hcumtr stress may be
taken as the p‘utuul‘n case of nllhl]m'
‘-.hmnnf_{ in which the obliquity is in-
finitesimal,

We may denote a state of stress as +
or — .:ucm!mv' to the sign of its larger
principal stress.

Fig. 5 |"

Froip Steess.—In Fig. 5 let a2 and

be yy two planes at right angles, on
which the stress at o is normal, of equal
intensity and of the same sign; then the
stress on any plane, as @'z’, traversing o
is normal, of the same intensity and
same sign as that on 22 or yy.

For consider a prism a unit long and
of inﬁuitm-simfil cross section having the
face mn || «'«', then the forces f; and Jv.
acting on the i aces am and on ure such
that

s om: on.

Now nm=A/om? ~[—.m and the result-
ant force which the prism exerts against
nm i”i

= Vi f_t +fv s s omis i

11'11 Jz—+om is the intensity of the
stress on @z and f--mn is the intensity
of the stress on ¢'a’, and these are equal,
Also by similarity of triangles the result-
ant jis perpendicular to mn.

Fig. 6 |V

Ricar SneariNG StrEss.—In Fig,
let @z and yy be two planes at right
angles to each other, on which the stress

is normal, of equal intensity, but of

|opposite sign; then the stress on any
plane, as a'a’

, traversing o is of the same
intensity as that on @z and yy, but its
obliquity is such that @z and yy respect-
ively, bisect the angles between the
direction 7 of the resultant stress, and
the normal ¥’y to its plane of action.

]ni if the intensity of the stress on
Iu- (-umpmmi in the same manner as

in I 1g. 5, the intensity is found to be the
same as lh‘lt on zz or yy; for the stresses
to be combined are at right angles and
are both of the same mwmtmlu The
only difference between this case and
that in I ig. 5 is this, that one of the
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component stresses, that one normal to
yy say, has its sign the opposite of that
n ]‘10‘ 5. In ll«r 5 thc stress on =z’
was in the dnee[lun y'y’, making a cer-
tain angle yoy' with yy. In Fig. 6 the
resultant stress on 2’2’ must then make
an equal HL’U"].tl\ e angle with »y, so that
yor=yoy'. Hence the statement which
has been made respecting right shearing
stress is geen to be thus established.

COMBINATION AND SEPARATION.—Any
states of stress which coexist at the same
point and have their principal stresses in
the same directions 2z and %y combine
to form a single state of stress whose
principal stresses are the sums of the re-
spective principal stresses lying in the
same directions @z and uy: and con-
versely any state of stress can be separ-
ated into several coexistent stresses by
separating each of its two prineipal
stresses into the same number of
parts in any manner, and then grouping
these parts as pairs of principal stresses
in any manner whatever.

The truth of this statement is nec-
essarily involved in]‘m fact that stresses
are forces distributed over areas, and that |

as a state of stress is only the ”Illlll\]ll"|

together of two nece 'H\ml\ related
stresses, they must then Ilvu-~-.x:'i|\ fol-
low lho laws of the cnmpmillnn and
resolution of forces.

For the sake of brevity, we shall use
the following nomenclature of which the
meaning will appear without further ex-
planation.

The terms applied to

The terms applied to
forces and stresses are:

states of stress are:
Compound, Combine,
f'rmij'fmi.'irm, Combination,
Component, Component state,
Resolve, Separate,
f.'r'mlure'rm,

Resultant.

.'\'g-{ul}'rff_a'nu,
Reswltant state.

Other states of stress can be combined
besides those whose principal stresses
coincide in direction, but the law of
combination is less simple than that of
the composition of forces; such combi-
nations will be treated subsequently.
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CoumroNENT STREsSES.—Any possible
stress defined by principal
stresses whose intensities are p, and

state of

py on the planes 2z and wy respect-
ively is equivalent to a combination
of the fluid stress whose intensity is
+3(pz + py ) on each of the planes zz
and yy respectively, and the right shear-
ing stress whose intensity is +4(pz — py )
on zz and —3(pz — py ) on yy.

For as has been shown, the resultant
stress due to combining the fluid stress
with the right shearing stress is found
by L‘l’l'lllll(!t]l]lllﬂ'r their principal stresses.
Now the stress on zz is

Y pz+p ) +3(re —py )=ps
and that on yy is

Y pe +py)—¥pz—py )=py
and hence these systems of principal
stresses are mutually wlui\”lltnb

In case p, = 0, the stress is complete-
ly defined by the single principal stress
p=, which is a simple normal compression
or tension on zz. Such a stress has been
called a simple stress.

A fluid stress and a- right shearing
stress which have equal intensities com-
| bine to form a simple stress.

[t is seen that the definition of
state of stress by its principal stresses,
is a definition of it as a combination of
two simple stresses which are perpendicu-
|lar to each other.
| There are many other ways in which

any state of stress can be separated into
component stresses, lhnugll the separa-
tion into a fluid stress and a right shear-
ing stress has thus far proved more use-
{ful than any other, hence most of our
graphieal treatment will depend upon it.

It may be noticed as an instance of a
| different separation, that it was shown
[that the tangential components of the
| stresses on any pair of planes xx and yy
| at right angles to each other are of equal
|intensity but opposite sign. These
|tangential components, then, together
| form a right shearing stress “h(N- prin-
cipal planes and stresses 2’2z’ and y'y’

bisect the angles between zz and yy,
while the normal components together
‘1(‘“1(' a state nt stress ‘V]IO\L‘ lll“l(..]ll‘ll

stresses are, in general, of unequal in-
| tensity.




Hence any state of stress can be sepa-

rated into component stresses one of
which is a right shearing stress on any
two planes at right angles and a stress|
having those planes for its principal |
planes.

The fact of the existence of conjugate |
stresses points to still another kind of |
separation 1nto component stresses. \

b

In Fig. 7 let the principal stresses at o
be @ on yy and & on @z ; and on some
convenient scale of intensities let ca=a
and ob=5d. Let uv show the direction
of the plane through o on whieh we are
to find the stress, and make on perpendie-
ular uw. Make oa’'=oa and ob'=o0b.
Bisect @'d’ at n, then on=434(a+5) and
na'=%(a—>5). Make zol=xon and com-
plete the paralellogram #nomr; then is
the diagonal or=r the resultant stress
on the given plane in direction and in-
tensity.

The point 7 can also be obtained more
simply by drawing &'r || «x and «'r || yy.

We now proceed to show the correct-
ness of the constructions given and to
discuss several interesting geometrical
properties of the figure which give to it
a somewhat complicated appearance,
which complexity is, however, quite un- |
necessary in, actual construction, as will |
be seen hereafter. It has been shown!

THE THEORY OF INTERNAL STRESS

PROBLEMS IN PLANE STRESS.

ProsrLEm 1.—When a state of stress is
defined by principal stresses which are
of unequal intensity and like sign, 7., in

|a state of oblique stress, to find the in-

tensity and obliquity of the stress at o
on any assumed plane in the direction
uUv.

that a state of stress defined bv its two
principal stresses « and & can be separ-
ated into a fluid stress having a normal

|intensity §(z+5) on every plane, and a

right shearing stress whose principal
stresses are +3&(a¢—5) and —4(a—b) re-
spectively.

Since the fluid stress causes a normal
stress on any given plane, its intensity is
rightly represented by on=4(a+b),
which is the amount of force distributed
over one unit of the given plane. Since,
further, it was shown that a right shear-
Ing stress causes on any plane a stress
with an obliquity such that the principal
stress bisects the angle between its direc-
tion and the normal to the plane, and
causes a stress of the same intensity on
every plane, we see that om=4(a—0)
represents, in direction and amount, the
force distributed over one unit of the
given plane which is due to the right
shearing stress.
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To find the resultant stress we have| In Fig. 8 the construction is effected
only to compound the forces on and om, | according to both the methods detailed

which give the resultant or=r.

lin Problem 1, and it will be at once ap-

The .obliquity zor is always toward ‘ prehended from the identity of notation.

the greater principal stress, which is here |

assumed to be «.

It is seen that in finding » by this
method it is convenient to describe one
circle about o with a radius of=31(a+05)

after which any parallelogram i can

be readily completed. Let nr and mr|
intersect 2 and yy in Ak and 7 respect- |

ively; then we have the equations of
angles,
noh=rho=4kno, nok=nko=4%hno,
moi=mio=4jmo, ;,,f{ff:,,,‘}‘”:é;mm
hence ln=rkn=on=+4(a+b)
= r;-{-[))

and rk=ri=a, rh=ri=>.

Since a and b are of unlike signs a+5
—on is numerically less than a—b=a'd’.

The results of these two problems are
expressed algebraically thus:

S__ X7 \2 Y AL B T O R L O
and another with a radius (Jﬂ'——'.-i[\rf—b‘)’!) =$(a+0)'+(a—b)" +3(a’—b")cos 2xn

=3 a + 8 + (a®—b%)cos 2an ]
or, =a’ cos’zn + b sin*xn.

Fie. 8.

It is well known that-a fixed point r|
on a line of constant length as ik=a+0, |
or yj=a—b describes an ellipse, and |
such an arrangement is called a trammel. |
If z and y are the coordinates of the|
point 7, it is evident from the figure that |

T= COS XN,
signifies the angle hetween xz and the
normal on.

TR : :
e ‘iT,:l is the equation of the stress

ellipse which is the locus of »; and a7 is |

then the eccentric angle of . - Also, since
noh=nho, nb'r=nrb'; hence &’'r || 2z and
a'r || yy determine 7.

In this method of finding it is con-
venient to describe circles about o with
radii @ and &, and from @’ and &" where
the normal of the given plane intersects
them find .

We shall continue to use the notation
employed in this problem, so far as ap-
plicable, so that future constructions

may be readily compared with this. It

will be convenient to speak of the angle
TOn as Tn, nOr as nr, ete.

ProsLEM 2.—When a state of stress is
defined by principal stresses of unequal

tion v,

y=~>bsinan, in which an |

If # be resolved into its nmormal and
tangential components ot=n and ré=¢

then, n=3[a+b+ (c—b)cos 2xn],

or, n=a cos'zn+b sin’zn,
and,
| t=4(a—b)sin 2en=(a—b)sin @xr cos xn,

It is evident from the value of the-
normal component n, that the sum of the
| normal components on any two planes at
right angles to each other is the same
and its amount is @+b&: this is also a
| general property of stress in addition to
| those previously enumerated.
| ¢ a—b

| Also tan nr=—=- = _
7 a cot @n+b 1anaxn

The obliquity nr can also be found

{ from the proportion

gin nr : 4(a—0>) : i sin 2xn : 1.

Tn the case of ‘fluid stress the equations

. 3 | reduce to the more simple forms:
intensity and unlike sign, ¢.c. In a state |

of oblique shearing stress, to find the in-|
tensity and obliquity of the stress at 0 |
on any assumed plane having the direc-|

a=b=r=mn, =0
For right shearing stress they are:
a=—b=4r, n==2a cos rn,

t==tasin ™, m=—=2 2n.




