Hence any state of stress can be sepa-

rated into component stresses one of
which is a right shearing stress on any
two planes at right angles and a stress|
having those planes for its principal |
planes.

The fact of the existence of conjugate |
stresses points to still another kind of |
separation 1nto component stresses. \

b

In Fig. 7 let the principal stresses at o
be @ on yy and & on @z ; and on some
convenient scale of intensities let ca=a
and ob=5d. Let uv show the direction
of the plane through o on whieh we are
to find the stress, and make on perpendie-
ular uw. Make oa’'=oa and ob'=o0b.
Bisect @'d’ at n, then on=434(a+5) and
na'=%(a—>5). Make zol=xon and com-
plete the paralellogram #nomr; then is
the diagonal or=r the resultant stress
on the given plane in direction and in-
tensity.

The point 7 can also be obtained more
simply by drawing &'r || «x and «'r || yy.

We now proceed to show the correct-
ness of the constructions given and to
discuss several interesting geometrical
properties of the figure which give to it
a somewhat complicated appearance,
which complexity is, however, quite un- |
necessary in, actual construction, as will |
be seen hereafter. It has been shown!

THE THEORY OF INTERNAL STRESS

PROBLEMS IN PLANE STRESS.

ProsrLEm 1.—When a state of stress is
defined by principal stresses which are
of unequal intensity and like sign, 7., in

|a state of oblique stress, to find the in-

tensity and obliquity of the stress at o
on any assumed plane in the direction
uUv.

that a state of stress defined bv its two
principal stresses « and & can be separ-
ated into a fluid stress having a normal

|intensity §(z+5) on every plane, and a

right shearing stress whose principal
stresses are +3&(a¢—5) and —4(a—b) re-
spectively.

Since the fluid stress causes a normal
stress on any given plane, its intensity is
rightly represented by on=4(a+b),
which is the amount of force distributed
over one unit of the given plane. Since,
further, it was shown that a right shear-
Ing stress causes on any plane a stress
with an obliquity such that the principal
stress bisects the angle between its direc-
tion and the normal to the plane, and
causes a stress of the same intensity on
every plane, we see that om=4(a—0)
represents, in direction and amount, the
force distributed over one unit of the
given plane which is due to the right
shearing stress.
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To find the resultant stress we have| In Fig. 8 the construction is effected
only to compound the forces on and om, | according to both the methods detailed

which give the resultant or=r.

lin Problem 1, and it will be at once ap-

The .obliquity zor is always toward ‘ prehended from the identity of notation.

the greater principal stress, which is here |

assumed to be «.

It is seen that in finding » by this
method it is convenient to describe one
circle about o with a radius of=31(a+05)

after which any parallelogram i can

be readily completed. Let nr and mr|
intersect 2 and yy in Ak and 7 respect- |

ively; then we have the equations of
angles,
noh=rho=4kno, nok=nko=4%hno,
moi=mio=4jmo, ;,,f{ff:,,,‘}‘”:é;mm
hence ln=rkn=on=+4(a+b)
= r;-{-[))

and rk=ri=a, rh=ri=>.

Since a and b are of unlike signs a+5
—on is numerically less than a—b=a'd’.

The results of these two problems are
expressed algebraically thus:

S__ X7 \2 Y AL B T O R L O
and another with a radius (Jﬂ'——'.-i[\rf—b‘)’!) =$(a+0)'+(a—b)" +3(a’—b")cos 2xn

=3 a + 8 + (a®—b%)cos 2an ]
or, =a’ cos’zn + b sin*xn.

Fie. 8.

It is well known that-a fixed point r|
on a line of constant length as ik=a+0, |
or yj=a—b describes an ellipse, and |
such an arrangement is called a trammel. |
If z and y are the coordinates of the|
point 7, it is evident from the figure that |

T= COS XN,
signifies the angle hetween xz and the
normal on.

TR : :
e ‘iT,:l is the equation of the stress

ellipse which is the locus of »; and a7 is |

then the eccentric angle of . - Also, since
noh=nho, nb'r=nrb'; hence &’'r || 2z and
a'r || yy determine 7.

In this method of finding it is con-
venient to describe circles about o with
radii @ and &, and from @’ and &" where
the normal of the given plane intersects
them find .

We shall continue to use the notation
employed in this problem, so far as ap-
plicable, so that future constructions

may be readily compared with this. It

will be convenient to speak of the angle
TOn as Tn, nOr as nr, ete.

ProsLEM 2.—When a state of stress is
defined by principal stresses of unequal

tion v,

y=~>bsinan, in which an |

If # be resolved into its nmormal and
tangential components ot=n and ré=¢

then, n=3[a+b+ (c—b)cos 2xn],

or, n=a cos'zn+b sin’zn,
and,
| t=4(a—b)sin 2en=(a—b)sin @xr cos xn,

It is evident from the value of the-
normal component n, that the sum of the
| normal components on any two planes at
right angles to each other is the same
and its amount is @+b&: this is also a
| general property of stress in addition to
| those previously enumerated.
| ¢ a—b

| Also tan nr=—=- = _
7 a cot @n+b 1anaxn

The obliquity nr can also be found

{ from the proportion

gin nr : 4(a—0>) : i sin 2xn : 1.

Tn the case of ‘fluid stress the equations

. 3 | reduce to the more simple forms:
intensity and unlike sign, ¢.c. In a state |

of oblique shearing stress, to find the in-|
tensity and obliquity of the stress at 0 |
on any assumed plane having the direc-|

a=b=r=mn, =0
For right shearing stress they are:
a=—b=4r, n==2a cos rn,

t==tasin ™, m=—=2 2n.
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_And for simple stress they become:
b=0, r=a cos rn, n=a cos'rn,
L] .
{=a 8in rn Cos TR, IN=2n.
ProBrLEM 3.—In any state of stress
defined by its principal stresses, @ and &,
to find the obliquity and plane of action
of the stress having a given intensity r

intermediate between the intensities of |

the principal stresses.

To find the obliquity »» and the direc-
tion uw let Fig. 7 or 8 be constructed as
follows: assume the direction wv and its
normal on, and proceed to determine the
position of the principal axes with re-
spect to it. Lay off oa’=a, 0b'=5, in

the same direction if the intensities are |

of like sign, in opposite directions if un-
like. Bisect a'd’ at », and on a'd’ as a
diameter draw the circle a’rd’. Also,
about 0 as a center and with a radius
or=r draw a circle intersecting that pre-
viously drawn at r; then is nr the re-
quired obliguity; and ax |, d'r, yy ||l a'r

are the directions of the principal stresses |

with respect to the normal on.

ProsreM 4.—In a state of stress de- |
fined by two given obliquities and in- |

tensities, to find the principal stresses,
and the relative position of their planes
of action to each other and to the
principal stresses.

Fia. 9.

In Fig. 9 let nr, nr, be the given
obliquities measured from the same nor-

| mal on, and or,=r,, or,=r, the given in-

tensities. As represented in the figure
| these intensities are of the same sign, but
|should they have different signs, it will
{be necessary ‘to measure one of them
(from o in the opposite direction, for a
[change of sign is equivalent to increas-
|ing the obliquity by 180°, as was pre-
viously shown.

Join 7, and bisect it by a perpendicu-
{lar which intersects the common nor-
(mal at n. About n describe a circle
irlr,__rr’f:'; then oa'=a, 0b'=0, a'r, b'r,
{are the directions of the principal stresses
{ with respect to r, and &'r,, a'r, with re-
Esp(-ct. to 7,, 4.6, ob'r =an, and ob'r,=an,
| o na, =0T, —obr.=rbr =rar

1 case the given obliquities are of op-
| posite sign, as they must be in conjugate
[ stresses, for example, it is of no conse-
(quence, in so far as obtaining principal
stresses @ and & is concerned, whether
these given obliquities are constructed on
the same side of o7, or on opposite sides
of it; for a point on the opposite side of
on, asr,’, and symmetrically situated with
respect to 7, must lie on the same circle
about n. But in case opposite obliquities
are on the same side of on we have
i:l)?,;:f»f,f'r‘] + OFJ‘J";:}:‘}J!?',“.

It is unnecessary to enter into the
[proof of the preceding construction as
[ 1ts correctness is sufficiently evident from
| preceding problems.
| The algebraic relationships may be
| written as follows:

! }a—d)'=3(a+0)'+r’—r (a+b)cos nr,
Ha—0)'=3(a+b) + 1> —r*(a+b)cos nr,

s (a+d) (I'IC.QS 7,7, —1,C08 nura} — p-]‘_r"

Also (a—b)cos 2an, +a+b=2rcos nr,
(a—b)cos 220, + a+ b=2r,cos nr,
which last equations express twice the
respective normal components, and from
them the values of an, and an, can be
computed.
Prosreym 5.—If the state of stress be
defined by giving the intensity and
| obliquity of the stress on one plane, and
its inclination to the prinecipal stresses,
and also the intensity of the stress on a
second plane and its inclination to the
| principal stresses, to find the obliquity of
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the stress on the second plane, and the
magnitude of the principal stresses. |

Let the construction in Fig. 9 1)e5|
effected thus: from the common normal |
on lay off or, to represent the obliquity|
and intensity of the stress on the first
plane; draw od so that nod=wn,—an,
the difference of the given inclinations |
of the normals of the two planes;|
through 7, draw 7, perpendicular to od;
about o as a center describe a cirele with
radius 7, the given intensity on the
second plane, and let it intersect r,r, at
7, or 7./, then is 727, the required obliquity.
This is evident, because

or, at 7, and r, respectively. Then the

 stresses or,=r,, or,=7, have equal tan-

gential components, and as previously
shown these belong to planes at right

| angles to each other provided these tan-

gential components are of opposite sign.
So that when we find the position of the
planes of action, one obliquity, as nr,,
must be taken on the other side of on,
as nr,”. The rest of the construction is
the same as that already given.

ProeLEM 8.—In a state of stress de-
fined by its principal stresses, to find the
intensities, obliguities and planes of

| action of the stresses which have maxi-

xn, =nb'r =ia'nr,, xn,=nb'r,=§a'nr,,

. nod=one=4(onr, + onr,) , i
=180"— (an,—8 71)|

If 2n, and an, are of different sign|
care must be taken to take their alge-|
braic sum. !

The construction is completed as in|
Problem 4.

ProsLEM 6.—In a state of stress de- |
fined by two given obliquities and eithér |
both of the normal components or bothi
of the tangential components of the in-|
tensities, to find the principal stresses|
and the relative position of the iwo!
planes of action. i

If in Fig. 9 the obliquities nr, nr,, and |
the normal components ot =n,, ot,=n,|
are given, draw perpendiculars at ¢, and
¢, intersecting or, and or, at r, and 7, re-|
spectively. |

If the tangential components ¢, =¢ |
and #,r,=t, are given instead of the nor-|
mal components, draw at these distances |
parallels to on which intersect or, or, at|
r,r, respectively. Complete the con-|
struction in the same manner as before.

o

ProprLEM 7.—In a state of stress de-|
fined by its principal stresses a and b, to|
find the positions and obliquities of the|
stresses on two planes at right angles to
each other whose stresses have a given|
tangential component Z.

Fig. 9, slightly changed, will admit of |
the required construction as follows: lay |
off on the same normal on, oa’=a, 0b'=10;|
bisect @'d" at n,; erect a perpendicular
ne=t to a'd’ at n,; draw through ¢ a
parallel r, to on intersecting or, and |

| mum tangential components.

In Fig. 9 make oa'=a, ob'=0>b and
describe a ecircle on @b’ as a diameter;
then the maximum tangential component
is evidently found by drawing a tangent
at r parallel to on, in which case i=a—¥,
and 70, ra’ the directions of the
principal stresses make angles of 45°
with on, which may be otherwise stated
by saying that the planes of maximum
tangential stress bisect the angles be-
tween the principal stresses; or con-
versely the principal stresses bisect the
angles between the pair of planes at
right angles to each other on which the
tangential stress is a maximum.

It is unnecessary to extend further the
list of problems involving the relations
just employed as they will be readily
solved by the reader.

In particular, a given tangential and
normal componént may replace a given
intensity and obliquity on any plane,

We shall now give a few problems
which exhibit specially the distinction
between states of stress defined by
principal stresses of like sign and by
principal stresses of unlike sign, (7.e. the
distinction between oblique stress and
oblique shearing stress).

Prorrem 9.—In a state of stress de-
fined by like principal stresses, to find
the inclination of the planes on which

| the obliquity of the stress is a maximum,

to find this maximum obliquity and the
intensity.

In Fig. 10 let oa'=a, ob’'=5, the
principal stresses; on ¢'d’ as a diameter
describe a circle; to it draw the tangent
or,; then nr, is the required maximum
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obliquity and or, the required intensity.

It is evident from inspection that in the |

given state of stress there can be no
greater obliquity than nr,. The direc-

tions of the principal axes are d'r, a'r,

as has been before shown.

There are two planes of maximum |

obliquity, and or,’ represents the second;
they are situated symmetrically about
the principal axes.
Bisect nr, by the line od, then
¢ oar,=yn..onr,=2yn, but
onr,+nor,=90° or, 2yn+nr,=90°
o dar,4-yn=45", but
odr,=doa’ +oa'd .. odr,==45",

hence the line bisecting the angle of
maximum obliquity bisects also the
angle between the principal axes. This
is the best test for the correctness of the
final position of the planes of maximum |
obliquity with reference to the principal
axes.

Fia. 10.

i
|

. a—b
sin 277, =_——=—008 2xn, r,'=ab.
a-+

r,=a cot zn=> tan xn, .. a=b tan’zn

The normal and tangential compo-
nents are:

e 2rt 3 _r (a—bd)
*Ta+t’ o gatD,.
ProBLEM 11.—When the state of
stress is defined by like principal stresses,
to find the planes of action and intensi-
ties of a pair of conjugate stresses having
a given common obliquity less than the

| mgximum.

Fig. 10 let nr,=nr, be the given
obliquity; describe a circle on a'd’ as a
diameter; then or,=r, or,=r, are the
required intensities, The lines a'r, 0'r,
show the directions of the principal axes
with respect to or, and a'r’, ¥'r', with
respect to or,=or,. The obliquities of

| conjugate stresses are of opposite sign,

and for that reason 7, is employed for
finding the position of the principal
stresses. The algebraic expression of
these results can be obtained at once
from those in Problem 4.

ProerLEM 12,—When the state of stress
is defined by the intensities and common
obliquity of a pair of like conjugate
stresses, to find the principal stresses and
maximum obliquity.

This is the case of Problem 4, so far as
finding the principal stresses is concerned,

|and the maximum obliquity is then found
| by Problem 9. The construction is given

ProsrEM 10.—In a state of stress de-
fined by its maximum obliquity and the |
intensity at that obliquity, to find thu%
principal stresses.

In Fig. 10 measure the obliquity nr, |
from the normal on and at the extremity |
of or,=r, erect a perpendicular ‘inter-
secting the normal at 7. Then complete '
the figure as before. The principal
axes make angles of 45° at o with od
which biseets the obliquity nr.. !

The algebraic statement of Problems
9 and 10 is:

in Fig. 10.

ProsrLEM 13, —Let the maximum ob-
liquity of a state of oblique stress be
given, to find the ratio of the intensities

| of the pair of conjugate stresses having

a given obliquity less than the maxi-
mum,.

In Fig. 10 let nr, be the given maxi-
mum obliquity, and nr the given ob-
liquity of the conjugate stresses. At
any convenient puint on or,, as r, erect
the perpendienlar 7,7, and about n (its
point of intersection with on) as a center
describe a circle with a radius nr, which

IN GRAPHICAL STATICS.

115

cnts nr, at 7 :%nd s _then or=or,=r, |
=, is the required ratio. |

It must be noticed that the scale on
which or, and or, are measured is un-|
known, for the magnitude of the princi- |
pal stresses is unknown altbough their|
ratio is ob'+oa’. In order to express
these results in formule, let r represent |
gither of the conjugate stresses, then as|
previously seen

}a—b)'=% (a+b)" +r*—r(a+b) cos nr

.. 2r=(a+b)cos nrL
[(z+5)*cos nr —4ab]*

Call the two values of r, r, and 7,;
and as previously shown r*=»rr; also

cos. nr,=r,+3(a+b)
r, _cos nr — (cos'nr—cos’ar, )%

. cosnr + (cos’nr—cos'ur,)*
When 7r=0 the ratio becomes

b 1—sin nr,

@  1+sin nr,

PropreM 14.—In a state of stress

defined by unlike principal stresses, to
find the inclination of the planes on
which the stress is a shear only, and to
find its intensity.

In Fig. 11 let oa"=a, ob'=b, the
given principal stresses of unlike sign;
on a’'b’ as a diameter describe a circle;
at o erect the perpendicular or, cutting
the circle at r; tlten is or,=r, the re-
quired intensity, and b'r,, a’r, are the di-
rections of the principal stresses.

It is evident from inspection that there
is no other position of 7, except 7./
which will cause the stress to reduce to
a shear alone. Hence as previously
stated the principal stresses bisect the
angles between the planes of shear.

ProsreM 15.—In a state- of stress de-
fined by the position of its planes of
shear and the common intensity of the
stress on these planes, to find the princi-
pal stresses.

In Fig. 11 let or,—=7,, the common in-
tensity of the shear, and orb'=an,
or,'=yn the given inclinations of a
plane of shear; then oa’=a and 0b'=b,
the principal stresses.

The algebraic statement of Problems|

14 and 13, when n, denotes the normal
to a plane of shear, is:
Fic. 11.

.
a

a+b
a—b

r,=+acotzn,= | btan xn,,a=-btan’zn,

——cos 2xn,, T,)=—ab=t'

ProsrLEM 16.—When the state of
| stress is defined by unlike principal
| stresses, to find the planes of action and
| intensities of a pair of conjugate stresses
| having any given obliquity.
| _InFig. 11 let nr, be the common ob-
| liquity, oa’=a, ob’=b, the given princi-
| pal stresses. On a'd’, as a diameter,
‘ describe a circle cutting or, at 7, ;md Tas
| then or,=r,, or,=r, are the required in-
| tensities. Also, since the obliquities of
| conjugate stresses are of unlike sign, the
| lines r "a’, r,'d’ show the directions of the
| principal stresses with respect to on,
| and 7,a’, r,b" with respect to on,
| Prosrex 17.—When the state of stress,
‘ is defined by the intensities and common
obliquities of unlike conjugate stresses,
to find the principal stresses and planes
{ of shear.

In finding the principal stresses this
problem is constructed as a case of
Problem 4, and then the planes of shear
are found by Problem 14. The con-
struction is given in Fig. 11.

ProsrLEx 18.—Let the position of the
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planes of shear be given in a state of
oblique shearing stress, to find the ratio
of the intensities of a pair of conjugate |
stresses having any given obliquity.

In Fig. 11 at any convemcnt point r,
make orb'=an, ora’=yn, the given
angles which fix the puquon of the
planes of shear. On @b’ as a diameter
describe a circle; make nr, equal to the
common obliquity of the conjugate |
stresses; thenis or,<+or,=r -r,the ratio |
required.

The ratio may be expressed as in
Problem 13, and after reducing by the
relations

ru’:—rhﬂ’ }'ﬂ"%'?_l((f*:"&):'ftﬂn?rhi

we have,

COR ny + {Ll’}“ ny 4+ tan’2an )'5

el 2l
=

cos nr — (cos’nr+-tan*2an )%
When 7n7=0 the ratio becomes
a 1+ cos 2xn,
oy
COMBINATION AND SEPARATION OF STATES
OF STRESS,
ProsLex 19.— When two given states
of right shearing stress act at the same

given inclination to each other, to com-

bine these states of stress and find the |

resultant state.

In Fig. 12 let oz, ox, denote the di-
rections of the t\tn given ]'\I‘int'illnl
stresses, and let @, =on, a,=on, repre-

~_Fig. 12

sent the position and magnitude of these
| principal  stresses. Since the given
|stresses are right - shearing stresses
a,=—b, a=—>b, and the respective
};!1ne~ of shear bisect the angles between
| the principal stresses, Now it has been
| previously shown that the, intensity of
| l]w stress caused by the principal stresses
=—5, is the same on every plane
trav cmncr 0: the same is true of the
principal stresses ,=—b, : hence, when
combined, they torr(-ther lnodu(‘c a stress
of the same intensity on every plane
traversing 0. This resultant state of
stress evidently does not cause a normal
stress on every plane, hence the result-
apg state must be a right shearing stress.
t us find its intensity as follows:
|'The prineipal stresses 2,=—b, cause a
stress on, on the plane ¥, ’/1< and the princi-
pal stresses . ,=—0b, cause a stress om, on
| the same plane in such a direction that
@,0m,==z 0z, as has been before shown.
C um}:lttv the parallelogram n.omyr, ;
then or, represents the intensity and di-
rection of the stress on #,%. DBut the
principal stresses bisect the angles be-
tween the normal and the resultant in-
tL'Iihh}', i}!l‘l‘t’f[l]‘(', ox, which bisects
x,0r,, 18 the direction of a principal stress

|of the resultant state, and or=or,=ais
point, and their principal stresses have a |
[any plane through o,

the intensity of the resnltant stress on

The same n-knlt is obtained by finding
the stress the plane Y. Yy D which case
we have qu':ff“‘ acting normal to the
plane, and om =a, Jdn such a direction
that @ 0m =w,0x,. The sides and angles
of n,omr, and nomgr, are evidently
equal, hence the 1‘(\5[:? ants are the same,
or,=or,=a, and oz bisects x,07,

The d[(l]?] iic solution of the 1):01 lem
is expressed by the equation,

2 2, 2 ¢
a=a’'+ua, +2a,a,0082 2,

from which @ may be found, and, finally»
the position of or is found from the pro-
pnlllim

sin h...]:r-',,:bin 2, L ::-m-r: s .

ProesrLem 20.—When any two states
of stress, defined by their principal

| stresses, act at the same point, and their

principal stresses have a given inclina-
tion to each other, to combine these
states and find the resultant state.

Let a, b, and a,, b, be the given prin-
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cipal stresses, of which a and @, have
the same -wn and are inclined at a
known angle zx, but in so taking @,
and a, thev may nm. both be numer 1(:111\
greatea than &, “and b, respectively.

Separate the pair of plmup.il stresses
a, b, into the fluid stress + $(er,+0,), and
the right shearing stress = 1(rr —!:} as
has been previously done; and in a simi-
Jar manner the 1;1111&1[1.11 stresses «, b,
into +4(e,+5) and +4(a,—b,). Then
the combined fluid stresses pwduce a
fluid stress of +3(e, +/: +a,+5b,) on
every plane through o; and the com-
bined right -he:t11mr stresses cause a
stress whose intensity and position can
be found by Problem 19.

The total stress is obtained by - |

bining the total fluid stress with thé re-
sultant right shearing stress.
Of course, any greater number of

states of stress than two, can be com-|
bined by this problem by combining the |

resultant of two states with a third state
and so on.

The algebraic expression of the com-
bination of any two states of stress 18 as
follows :

("‘-""):(”1’”’,*5"-.*"-:3:
(a—b)* —(rr 41» '+ (a,—0,)"
a(“,- iy } er:—f;':) COos '.3.!',-"'_.‘,
Soa=3(a,+b +a
+(“' _L } + )(n‘ —!a

f}..#td +b +a, +0,— [\r.’ I‘J] +(rf = ha*
_1- J‘;.r —f; }(u’ —fj )LH‘\- a I a)’

[ld -b )

a,—b, cos 2 2,2, 1%),

in which @ and b are the rvsultani prin-
('ii)ﬂi stresses. Also, sin 2zw : #-f.'l-—li___

st Bin 22x,: 4, —0, ¢ sin 2x7,: a—b.

Proerem 21.—In a state of stress
defined by the stresses upon two planes
at right angles to each other, to find the
principal stresses.

Let the tfuvn stresses be resolved into
tangential and normal components; it
has been shown that the tangential com-
ponents upon these planes are of equal
intensity and unlike sign. Let the in-
mmn\ ‘of the t m-wntnl component be
(r,, and that of the normal components

1, and b, respectively. The tangential

Coml)n]unh tm’dh(l constitute a state
of right ~hmtm~r stress of which thc
given p].mc\ are the planes of shea

'and the principal stresses bisect the
| angles between the given planes.

Separate the remaining state of stress
into the fluid stress Jus(r!“+bn) and
the right shearing stress +4(an — bn),
and combine this last zwht, shearing
stress with that due to the n.nrrentl.d
components. The final result is fuulld
just as in Pl'ohhm 20, by combining the
fluid stress 3(an + /r“) with the ruultm'r
right shearing stress.

This pmblvm can also be solved in a
manner similar to that cmplmed in
Problem 6.

The result is expressed by the equa-
tions,

a+b=a, + f/n,

((!4‘{1)?_—_(:’,1 = ‘I-'n )u + 4ay :
for the angle which has been heretofore
denoted by a,, is in this case 45" .". C08
2xx,=0
”:4_:'("“ + bn + L("’n —bn ) + ll"'r‘]L"’
"]’:'-I’ ("u + ba _l("fn == hn)”!“ 4”(1ll“}

sin, 2z, @ 2aq : : sin. 22, ¢ dn — bn

ca—>b
?

but 2ae, =90"—2ze
. tan 2ax, =2a; = (@ — On ¥

ProerLem 22.—In a state of stress
defined by two simple stresses which act
at the same point and have a given
inclination to each other, to combine
them and find the resultant state.

It has been previously mentioned that
any simple stress as @, can be separate d
into the fluid stress "'.’"1 and the right
shearing stress +d4a, as it i8 sim[l_\
case in which & =0. Hence the simple
s @, can be combined as a spe-
cial case of Problem 20, in which &, and
b, vanish. The. results are expressed
algebraically as follows:

stresses «

u—i—b:wi + a;,
[m—(’;)“:uf —l—rfj"+‘.!(t a, cos 2x &
i u/;:-.iurlu”(l—cna 2z

)
.~ ab=a.a;sin’z 2,

Since a gimple compression or tension
produces a simple stress in material, this
problem is one of frequent occurrence,
for it treats the =:11p(:p0~lt1011 of two,
and hence of any number of simple
stresses lying in the same plane.

This pmlmlcm is of such nn])mtlmv
, | that we think’ it useful to call attention
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to another solution of it, suggested by | In Fig. 13 let oa’=a, 0b'=>d be the

the algebraic expressions just found.
In Fig. 13 let
f - I i/ -
o'a'=a, o'd =a, . 0'r'=A/a a.—oi.
Now, if oir=z2,, then or=0"7" sin 2,
coort=oa’ 00" =0'a’.0’'b sin*z.x,
. oa'=a and od’=b.

: ‘.‘“"-’/_xFig. 13

~
S -5

This solution is treated more fully in |

Problem 23.

ProsLeEM 23,—When a state of stress
is defined by its principal stresses, it is
required to separate it into two simple

stresses having a given inclination to |

each other.

It was shown in Problem 22 that

a+b=a,+a, and ab=a,a, sin .,

Let us apply these equations in Fig.
13 to effect the required construction.
BI::]{(} (_)-:.r':r!‘ Uf}':h; t]‘!(_'l] r.frglf:rrl-}nfrn,
At o erect a perpendicular to a'd’ cut-
ting the circle of which a'd’ is the dia-
meter at 7; then or*=ab, the product of
the principal stresses. Also make a’oi |
=z, the given inclination of the sim- |
ple stresses, and let 77| @'d’ intersect oi |
at 7; then or=oi sin 22, .. 0i' = aa,. |

Make oj=o07 and dra_w g7 Il @’d’, then

Pl (¥, TR
or _H{, :1]]11 0 a ,r)'f)’:n’}' =

3

o'a =a, and 0'dV'=aqa,,
. 2

the required simple stresses. This con-
struction applies equally whether the
given principal stresses are of like or
unlike sign, and also equally whether
the two simple stresses are required to
have like or unlike signs.

ProsrEm 24.— Wher a state of stress
is defined by its principal stresses, to
find the inclination of two given simple |
stresses into which it can be separated. |

| intensities of the principal stresses, and
|o'a’"=a, o't/ =a, be the intensities of the
given simple' stresses. It has been
| already shown that a+bd=a, +«a,. Draw
|the two perpendiculars or and o';
|through » draw ri|l@'d’; make oi=g)
=o'r’; then is oir=ioa’ the required
inclination, for it is such that

ab=a,a, sin’v 2,
right shearing stress of given intensity
into two component states of right shear-
ing stress whose intensities are given, and

[to find the, mutual inclination of the
| pgipcipal stresses of the component
| stes,
!

In Fig. 12, about the center o, deseribe
circles with radii on,=a, on,—a,, the
| given component intensities; and also
|about o at a distance or,—a, the given
|intensity. Also describe circles with radii
|7 =on,, rmn,—on, cutting the first
| mentioned circles at %, and n,: then is
| 4n,0m, =, the required mutual inclina-
| tion.of the principal stresses of the com-
| ponent states. This is evident from
considerations previously adduced in con-
nection with this figure. The relative
position of the principal stresses and
principal component stresses is also read-
ily found from the figure.

Prosrem 26.—In a state of right
shearing stress of given intensity to sep-
arate it into two component states of
right shearing stress, when the intensity
of one of these components is given and
also the mutual inclination of the princi-
pal stresses of the component states.

In Fig. 12, about the center o deseribe
a circle 7+ with radius or=a, the inten-
sity of the given right shearing stress,
and at 7, at a distance 0n. —a_ from o
which is the intensity of the given com-
ponent, make 2n, ,'_:'_’.':.".':-ﬂ. Dt\\'i(:e the
given mutual inclination ; then is nr
the distance from #, to the circle #r the
intensity of the required component
stress. The figure can be completed as
was done previously.

It is evident, when the component &,
exceed «, that there is a certain maxi-

{mum value of the double inelination,

which can be obtained by drawing n,r,

i
| * ProsrLEM 25.—To separate a state of
i
i
|
|
|
|

IN GRAPHICAT, STATICS. 119

tangent to the clircle 7y a‘nd the given in-‘] Taveentiar Compowents.—Let
clination is subject to this restriction. | yy, 22 be rectangular axes through o
Other problems concerning the com- | {hon. whitover mas o thisiats it
bination and separation of states ofi ) ] )
siress can be 1'cadily solved by methods | at o, the tangential components along xe
like those already employed, for such 1 and iy are equal, as also are those along
problems can be made to depend on the|yy and 2z, as well as those along 2z and
combination and separation of the fluid | gy,
stresses and 'right shearing stresses into| The truth of this statement flows at
which every state of stress can be sep-| ;06 from the proof given in connection
arated. | with Fig. 3.
| Tt should be noticed that the total
{ shear on any plane zoy, for example, is
We shall call that state of stress at a|the resultant of the two tangential com-
point @ solid stress which causes a stress | ponents which are along zz and yy re-
on every plane traversing the point. In| spectively.
the foregoing discussion of plane stress|
no mention was made of a stress onghe |
plane of the paper, to which the plane|
stress was assumed to be parallel. It is, | 2
evidently, possible to combine a simple|on any plane traversing o can be com-
stress perpendicular to the plane of the|pletely determined, when the stresses on
paper E\Vith Ay {)f ?hlt‘ stalles Of. \tllel“ any three planes traversing o are given
heretofore treated without changmg the . ° . ki '
stress on any plane perpendicular to the 1 in magnitude and direction. P
paper. |  This truth appears by reasoning simi-
Hence in treating plane stress we have | lar to that employed with Fig,. 4, for the
already treated those cases of solid stress|three given planes with the fourth en-
which are produced by a plane stress|close a tetrahedron, and the total dis-
combined with any stress perpendicular | tributed force acting against the fourth
to its plane, acting on planes also per-| plane is in equilibrium with the resultant
pendicular to the plane of the paper. | of the forces acting on the first three.
We now wish to treat solid stress in a |
somewhat more general manner, but as|
most practical cases are included in plane | % :
stress, and the difficulties in the treat- | jugate stresses at right angles to ‘:"mh
ment of solid stress are much greater | other, 7.c. there are three planes at right
than those of plane stress, we shall make| ;noles on which the stresses are normal
a much less extensive investigation of its|

PROPERTIES OF SOLID STRESS.

SraTe oF STRESs.—Any state of solid
stress at ¢ is completely defined, so that
the intensity and direction of the stress

PrINCIPAL STRESSES,—In any state of
-
lid stress there is one set of three con-

properties.

only.
Since the direction of the stress on any

Conyucare Stresses.—Let xz, yy, Tl plane traversing a given point o ecan
be any three lines through o, now, Lflm.];Y change gradually, as the plane

any state of stress whatever exists at o,
and zz be the direction of the stress on
the plane yoz, and yy that on'zoxz, then
is 2z the direction of the stress on @oy -
i.., each of these three stresses lies in
the intersection of the planes of action of
the other two.

Reasoning like that employed in con-
nection with Fig. 1, shows that no other
direction than that stated could cause
internal equilibrium; but a state of stress

is a state of equilibrium, hence follows
the truth of the above statement.

throngh o changes in direction, it is
| evident from the directions of the
| stresses on conjugate planes that there
| must be at least one plane through ¢ on
which the stress is normal to the plane.
| Take that plane as the plane of the
| paper; then, as proved in plane stresses,
| there are two more prmt‘.ip:ﬂ stresses
|lying in the plane of the paper, for the
stress normal to the plane of the paper
| has no component on any plane also
perpendicular to the paper.

Frumm Stress.—Let the stresses on

| three rectangular planes through o be
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normal stresses of equal intensity and

like sign; then the stress on any plane
through o is also normal of the same in-
tensity andesame sign.

This is seen to be true when we com-
bine with the stresses already acting in
Fig. 5, another*stress of the same inten-
_sity normal to the plane of the paper.

Ricar SweEArRING StrEss.—Let the|

stresses on three rectangular planes
through o be normal stresses of equal

intensity, but one of them, say the one,

along xx, of sign unlike that of the other
two; then the stress on any plane through
0, whose normal is @'z, is of the same

intensity and lies in the plane xoz’ in|

such a direction 77 that 22 and the plane
Y% bisect the angles in the plane zoz’ be-
tween rr and its plane of action, and
rox’ respectively.

The stress parallel to %z is a plane
fluid stress, and causes therefore a normal
stress on the plane xox’. Hence the re-
sultant stress is in the direction stated,
as was proved in Fig. 6.

COMPONENT STATES oF STREsSS.—Any
state of solid stress, defined by its prin-
cipal stresses alec along the rectanglar
axes of xyz respectively, is equivalent to
the combination of three fluid stresses,
as follows:

$(a+0b) along @ and y,— 4 («+0) along
$(c+a) along z and @,—4(c+«) along y;
3(b +c) along v and z,—3(b4-¢) along Y3

For these together give rise to the fol-
lowing ¢ombination:

$a+0)+4(c+a)—+(b+c)=a, along =;

$a+b)—4(c+a)+3(b+c)=0b, along y ;|

i(a+d)+3(c+a)+i(b+ec)=e, along .

In case =0 and ¢=0 this is a simple
stress along 2.

CompPONENT StTrRESSES.—Any state of
solid stress defined by its principal
stresses can also be separated into a fluid
stress and three right shearing stresses,
as follows:

1 " 1 i
Ha+b+e) along z, ¥, zy
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$(a—b—e) along @, and

—2(@ -b—¢) along y and z ;-
1(b—ec—a) along y, and

—1(b—e—a) along zand x ;
t(e—a—"0) along z, and

b
—%(c—a—>) along x and y ;

It will be seen that the total stressbs

|along x ¥ z are @ b ¢ respectively. This

system of component stressesis remarka-
ble becanse it is strictly analagous in its
geometric relationships to the trammel
method used in plain stress. We shall
simply state this relationship without
proof, as we shall not use its properties

| in our construction.

I{' t-]lC l]iSlﬂI]C(’S pa,=a, [J/:LZ/)’ ji{":t_.'
hq#:lid off along a straight line from the
pomt p, and then this straight be moved
so that the points «, 4 ¢ move respec-
tively in the planes yz zx, xy ; then p
will describe an ellipsoid, as is well
known, whose principal semiaxes are
along xyz, and are «be respectively.
Now the distances pa, pb,, pe, may be
laid off in the same direction from p or
in different directions; so that, in all,
four different combinations can be made,
either of which will deseribe the same
ellipsoid. But the position of these
four generating lines through any as-

| sumed point &,y 2, of the ellipsoid is such

that their equations are
b ¢

L ’ \
—(F—=x)=4—(y—y)=+
X [/ =

(

Now if the fluid stress }(a+b+¢)=or,
be laid off along the normal to any plane,
i.e. parallel to that generating line which
in the above equation has all its signs
positive, and the other three right shear-
ing stresses »r, »r, rr be laid off
successively parallel to the other generat-
ing lines, as was done in plane stresses,
theline o, will be the resultant stress on
the plane.

PROBLEMS IN SOLID STRESS,

Probrem 27.—In any- state of stress

| defined by the stresses on three rectangu-

lar planes, to find the stress on any given
plane. .

Let the intensities of the normal com-
ponents along  y z be a, b, ¢, respect-
ively, and the intensities of the pairs of
tangential components which lie in the
planes which interseet in « y z and are
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perpendicular to those axes be a; &; ¢; re-|

In Fig. 14 let a plane parallel to the

spectively, e.g., @; is the intensity of the|given plane cut the axes at x,y,z,; then
tangential component on xoy along ¥, or|the total forces on the area xy.z along

its equal on xoz along z.

XY 2.8, =1 0% .an + x,0y,.b¢ + 2,0%.0

-V..?f.’-'l',ﬂ:.’fl”z\ -« Ct + “‘10.'71 - Ut + EJ“'\-!'()“

XY 5 0=V 07, - /Jf An X0y, . cn + f'.'}“.l"."’f

in which a,.¢, are the intensities of the
components ol the stress on the plane
xy 2, along xyz respectively. Now
Y,02,- % 3,2, = CO8 X7
20X, —+X,) 2, —CO8 Yn
_rju‘ﬁ/l- ,1‘1‘?/‘?‘:{105 Zn.
S @, =dy CO8 XN+ by, GOS8 20+ COB YRt
b,=cicos xn+ a; . co8 zn+ by €08 Y1
¢, = by 08 X1+ Cp . COS 2N+ (1 COB Y1t

and 7”=a*+5+¢’ therefore the result-
ant stress » is the diagonal of the right
parallelopiped whose edges are ab.c.
In order to construet ab.e, it 1s only
necessary to lay off @y, by ¢a, @ by ¢ along
the normal, and take the sums of such
projections along xyz as are indicated in
the above values of a.be¢..

Thus, in Fig. 14, let =,z be the
traces of a plane, and it is required to
construct the stress upon a plane parallel
to it through- o.

I'xyz are respectively:

)‘\J

The ground line between the planes of
2oy and zoz is oxz. The planes zoz and
yoz on being revolved about ox m‘ul oy
respectively, as in ordinary deseriptive
geometry, leave oz in two revolved posi-
tions at right angles to each other.

The three projections of the normal
at o to the given plane are, as is well
known, perpendicular to the traces of the
given plane, and they are so represented.
Let oa. be the projection of the normal
on 2oy, and oay that on xoz. To find
the true length of the normal, revolve it
about one projection, say about oa; and
if @, a, = ag ay then is oa, the revolved
position of the normal.

Upon the normal let oan = @z, 0by =
by, 0Cn =/n, the given normal compo-
nents of the stresses upon the rectangu-
lar planes, and also let car=a:, oby = by,
oe; = ¢, the given tangential compo-
nents upon the same planes. :

Let abec, a,'b'c be the respective
projections of the points @y bu cn, @ b: ct
of the normal upon the plane woy by
lines parallel to oz similarly a,, ete., are
projections by parallels to oy, and a.
etc., by parallels to ox.

We have taken the stressesec, and ¢; of
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different sign from the others, and so
have called them negative and the others
positive,

It is readily seen that the first of the
above equations is constructed as fol-
lows:

/ ’

a,=oa,=oa,+b b,’—c.e,

Similarly, the other two equations be-
come:

’.i‘ :1_;!;: e ﬁ'-"‘"..’ - oy afﬂ’ + i}l)‘

— — ! v . L y ’
1’1 e M_‘.E —= f[]l\: —CxCr + {J(!_,

We have thus found the coordinates |

of the extremity » of the stress or upon
the given plane; hence its projections
upon the planes of refererence are re-
spectively org or,, or.,

Prosrem 28.—In any state of stress
defined by its three principal stresses,
to find the stress on any given plane.

This problem is the spécial case of
Problem 27, in which the tangential com-
ponents are each zero. Taking the nor-
mal components given in Fig. 14 as
principal stresses we find 0tt,= iy, COS XM,
0b,= b, cos yn, 0¢,=0Cp €0s 2n, as the co-
ordinates which determine the stress or'
upon the given plane, and the projections
of or’ are or;', or,', or,’, respectively.

From these results it is easy to show
that the sum of the normal components
of the stresses on any three planes is
constant and equal {o the sum of the
principal stresses. This is a general
property of solid stress in addition to
those previously stated.

ProBLEM 29.— Any state of stress be-
ing defined by given simple stresses, to
find the stresses on three planes at right
angles to each other.

In Fig, 14 let a simple stress act along
the normal to the plane x ¥z, and cause

a stress on that plane whose intensity is
dn = 0dy, then is a,cos zn=oa, the in-
tensity of the stress in the same direction
acting on the plane yoz. The normal
component of this latter intensity is

y COS TR= 0a,. COS TN=0a,,

and it is obtained by making oa,'=0a,,
a/a." ||zy, and a,”a |loy. The tan-
gential component on yo0z is od’ in mag-
nitude and direction, and it is obtained
thus: make @.,"d=a."a,’, then in the
right angled triangle da,a’, da, is the
magnitude of the tangential component;
now make od'=da,. This tangential
component can be resolved along the
axes of y and 2z The stress on the
planes zow and zoy can be found in simi-
lar manner, since the tangential compon-
ents which act on two planes at right
angles to each other and in a direction
perpendicular to their intersection are,
as has been shown, equal; the complete
construction will itself afford a test of its
aceuracy.

Other simple stresses may be treated in
the same manner, and the resultant stress
on either of the three planes, due to these
simple stresses, is found by combining
together the components which act on
that plane due to each of the simple
stresses.

It is useless to make the complete
combination. It is sufficient to take the
algebraic sum of the normal components
acting on the plane, and then the alge-
braic sum of the tangential components
along two directions in the plane which
are at right angles, as along % and zin
Y0z

The treatment of conjugate stresses in
general appears to be too complicated to
be practically useful, and we shall not
at present construct the problems arising
in its treatment.
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