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descence being due to the heat generated by their friction against
the earth’s atmosphere; and there is reason to believe that bodies of
this kind compose the immense circumsolar nebula called the zodiacal
light, and also, possibly, the solar corona which becomes visible in
total eclipses. It is probable that these small bodies, being retarded
by the resistance of an ethereal medium, which is too rare to interfere
sensibly with the motion of such large bodies as the planets, arc
gradually sucked into the sun, and thus furnish some contribution
towards the maintenance of solar heat. But the perturbations of the
inferior planets and comets furnish an approximate indication of the
quantity of matter circulating within the orbit of Mercury, and this
quantity is found to be such that the heat which it could produce
would only be equivalent to a few centuries of solar radiation.

Helmholtz has suggested that the smallness of the sun’s density—
only } of that of the earth—may be due to the expanded condition
consequent on the possession of a very high temperature, and that
this high temperature may be kept up by a gradual contraction,
Contraction involves approach towards the sun’s centre, and there-
fore the performance of work by solar gravitation. By assuming
that the work thus done yields an equivalent of heat, he brings out
the result that, if the sun were of uniform density throughout, the
heat developed by a contraction amounting to onlyone ten-thousandth
of the solar diameter, would be as much as is emitted by the sun in
2100 years.

30. Sources of Energy available to Man.—Man cannot produce
energy; he can only apply to his purposes the stores of energy which
he finds ready to his hand. With some unimportant exceptions,
these can all be traced to three sources:—

I. The solar rays.

IL. The energy of the earth’s rotation.
ITI. The energy of the relative motions of the moon, earth, and
* sun, combined with the potential energy of

their mutual gravita-
tion.

The fires which drive our steam-engines owe their energy, as we
have seen, to the solar rays.

The animals which work for us derive
their energy from the food which they eat, and thus, indirectly, from
the solar rays. Our water-mills are driven by the descent of water
which hag fallen as rain from the clouds, to which it was raised in
the form of vapour by means of heat derived from the solar rays.

The wind which propels our sailing-vessels, and turns our wind-
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mills, 18 due to the joint action of heat derived from the sun, and the
earth’s rotation. ‘

The tides, which are sometimes employed for driving mills, are
due to sources II. and ITI. combined.

The work which man obtains, by his own appliances, from the
winds and tides, is altogether insignificant when compared with the
work done by these agents without his intervention, this work being
chiefly spent in friction. It is certain that all the work which they
do, involves the loss of so much energy from the original sources; a
loss which is astronomically insignificant for such a period as a cen-
tury, but may produce, and probably has produced, very sensible
effects in long ages. In the case of tidal friction, great part of the
loss must fall upon the energy of the earth’s rotation; but the case
is very different with winds. Neglecting the comparatively insigni-
ficant effect of aerial tides, due to the gravitation of the moon and
sun, wind-friction cannot in the slightest degree affect the rate of the
carth’s rotation, for it is impossible for any action exerted between
parts of a system to alter the angular momentum!? of the system.
The effect of easterly winds in checking the earth’s rotation must
therefore be exactly balanced by the effect of westerly winds in
accelerating it. In applying this principle, it is to be remembered
that the couple exerted by the wind is jointly proportional to the
force of friction resolved in an easterly or westerly direction, and
to the distance from the earth’s axis,

286. Dissipation of Energy.—KFrom the principles laid down in the
present chapter it appears that, although mechanical work can be
entirely spent in producing its equivalent of heat, heat cannot be
entirely spent in producing mechanical work. Along with the con-
version of heat into mechanical effect, there is always the transference
of another and usually much larger quantity of heat from a body at
a higher to another at a lower temperature. In conduction and
radiation heat passes by a more direct process from a warmer to a
colder body, usually without yielding any work at all. In these
cases, though there is no loss of energy, there is a running to waste
as far as regards convertibility; for a body must be hotter than
neighbouring bodies, in order that its heat may be available for
yielding work,, This process of running down to less available forms
has been variously styled diffusion, degradation, and dissipation of

! The angular momentum is measured by the product of the moment of inertia (see Part
I.) and the angular velocity.
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energy, and it is not by any means confined to heat. We can assert
of energy in general that it often runs down from a higher to a
lower grade (that is to a form less available for yielding work), and
that, if a quantity of energy is ever raised from a lower to a higher
grade, it is only in virtue of the degradation of another quantity, in
such sort that there is never a gain, and is generally a loss, of avail-
able energy. : :

This general tendency in nature was first pointed out by Lord
Kelvin. It obviously leads to the conclusion that the earth is
gradually approaching a condition in which it will no longer be
habitable by man as at present constituted.

237. Kinetic Theory of Gases.—According to the theory of the
constitution of gases which is now generally accepted and is called
by the above name, a simple gas consists of a number of very small
and exactly equal particles, called atoms or molecules, moving about
with various velocities and continually coming into collision with
one another and with the sides of the containing vessel. The total
volume of the particles themselves is very small compared with the
space in which they move, and consequently the time during which
a particle is in collision with other particles is a very small part of
its whole time.

Each particle is highly elastic. Its shape can be changed by the
application of external forces; but it springs back when left to
itself and executes vibrations, which we may compare to those of a
tuning-fork or a bell. These are the cause of the peculiar features
which are detected in the light of an incandescent gas when
analysed by the spectroscope. It can also, like any other free body,
have a rotatory or spinning motion. The kinetic energy of a particle
15 accordingly composed of three parts, one due to its vibration,
another to its rotation, and a third to its translation. This third
part, which is usually greater than the other two, is called the energy
of agitation. The other two are included together under the name
of internal energy, which may be defined as the energy of the
relative motion of different parts of the same molecule.

In addition to these, we may have movement of the gas as a
whole, which is what is meant when in ordinary language we speak
of a gas in motion as distinguished from a gas at rest., In this sense,
the velocity at any point of a gas is another name for the velocity
of the centre of gravity of a small group of molecules surrounding
the point. In what follows we leave such veloeity out of account.
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238. The ratio of the energy of agitation to the internal energy,
though it may vary at a given instant from molecule to molecule,
or may vary for the same particle from instant to instant, has a
definite and permanent value for the aggregate of all the particles
—a value independent of changes of pressure or temperature, but
aot the same for all gases. The symbol 8 is employed to denote
the ratio of the whole kinetic energy of a gas to the energy of
agitation, and the value of B for several of the more permanent
gases is 1-634.

The heat of a gas is another name for its kinetic energy, that is,
for Z1Bmv? or 4Bm2v? v denoting the velocity of a molecule, m
its mass, and 2 indicating summation for all the molecules. To
reduce the expression for this heat to ordinary thermal units we
must divide by Joule’s equivalent. '

The absolute temperature of a given gas is proportional to the
average kinetic energy of its molecules, that is, to the average value
of §Bma? or, omitting constants, to the average value of % We
shall denote the average value of 4* by V2 Its square root V is
called the velocity of mean square.

In a mixture of two simple gases the value of V2 is not the same

+ for them both, but varies inversely as m; in other words, m V2 has

the same value for both constituents. Accordingly,4dn comparing
one gas with another mV? is taken as the proportional measure of
absolute temperature.

289. The equality of the values of mV? for the two components
of a mixture is not an arbitrary assumption, but a deduction
obtained by a very elaborate mathematical investigation from the
supposition of two sets of perfectly elastic balls flying about
promiscuously amongst each other.

This and other similar calculations which form an important part
of the kinetic theory of gases are conducted by what is called the
statistical method. Large numbers give steadiness to statistics, and
the number of molecules in a cubic centimetre of gas is more than
a million of millions of millions. As long as a cubic centimetre of
gas remains at the same pressure and temperature the statistics of
the velocities of its molecules remain perméanent. The velocity of
each particle changes in the most irregular manner, but the number
of its molecules that have velocities lying between given limits
(which may be very close together) never changes by more than an
infinitesimal part of itself.
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Calculation shows that when we attend not merely to the actual
velocities but to their components in a given direction, the statistics
of such component velocities will be independent of the direction
assumed, even when gravity is taken into account.

940. The pressure of a gas against the walls of the containing
vessel is due to the impacts of its particles against the walls. To
compute its amount, let w« denote the component velocity of a
molecule normal to one of the sides supposed plane, » being regarded
as positive when the molecule is approaching the side and negative
when receding. Let w, be a particular positive value of u, and let
the number of molecules in unit volume that have approximately
this velocity be m;. The number of molecules of velocity u, that
impinge on unit area of the side in unit time will be the number
that occupy a volume u,, and will therefore be n, u,.

Their momentum before striking is their mass mn;u, multiplicd
by their velocity u,, and is therefore mmn,u,% - This is reversed by
the collision, so that the change of momentum is 2mn,u% This,
being the change of momentum produced in unit time by the
reaction of unit area of the wall, is equal to the pressure on unit
area due to the impacts of those molecules which we have been
considering. But the number of molecules whose normal velocity
is u, is, by symmetry, the same as the number whose normal velocity
is —u,, hence 2mm,u,? is the sum of such terms as mu? for all the
molecules for which the value of 4 is w2

Thus the total pressure on unit area is the sum of such terms as
mu? for all the particles in unit volume; that is, calling the
pressure p,

p=Zmul=mIul (1)
But, from the symmetry of the constitution of a gas, Zi? has the
same value for all directions of w. Combining this principle with
the principle that the square of a velocity is the sum of the squares
of its three rectangular components, we easily deduce Zu?=13.2

Let N denote the whole number of molecules in unit volume,
and p the density of the gas, which is N, then we have:

< _ 0

Sw=3Z =NV ey
p=mZui=INmV3i=1,V2 (3)
241. This last result enables us to compute the value of V for
any known gas, for it gives

_3p
e (4)
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Thus in C.G.S. measure we have for hydrogen (see pp. 305, 306),
p=10136 x 10°, p=-00008957, whence V=184,300 cm. per sec.
This is about one nautical mile per second.

The value of V for any gas bears a constant ratio to the velocity

of sound in the gas, namely, the ratio &/ ® where & denotes the ratio
g J _ P

of the two specific heats.

Since the energy of agitation in unit volume is 1eV% and p is
1pV?2, these quantities have the same dimensions and are as 3 to 2.

The equation p=3pV2 shows that when V2 (and therefore the
absolute temperature) is given, p varies as p. This is Boyle's law.

Again, it shows that when p is given, p varies as V% that is, as
the absolute temperature; and that, when p is given, p varies
inversely as V?; that is, the volume varies directly as the absolute
temperature. ]

Further, from the equation p=21NmV? we deduce that when two
gases have the same pressure p and the same temperature (measured
by mV2), they have the same number of particles N in unit volume,
and their densities (since p=Nm) are directly as m the mass of a
single particle of each; that is, the densities (at the same pressure
and temperature) are directly as the atomic weights. This is known
as Avvogadro’s law.

242, In questions relating to specific heat it ig convenient to
make the unit of heat equal to the unit of energy, so that the
quantity of heat in a mass 2m will be not only proportional but
equal to 3B2m? or to }3V22m, and to employ a unit of temperature
such that absolute temperature shall be not only proportional but
equal to mV2Z: Then, denoting absolute temperature by 6, and
quantity of heat or encrgy in unit volume by E, we have

vi=2 (5) E=18V:Im=}EVp=18L0=1AN0. (0)
N denoting, as before, the number of molecules in unit volume.

The thermal capacity at constant volume, for unit volume of the
oas, is defined as 42
825, a6
Since N is the same for all gases at the same temperature and
pressure, the thermal capacity per unit volume is the same for all
gases that have the same value of §.

The specific heat at constant volume is the thermal eapacity of

and is } BN, it being assumed that g is constant.

the volume %, and is therefore Jz.GN}) or 2;2. Hence the specific heat
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is inversely as the atomic weight, as asserted by the law of Dulong
and Petit.

Again we have
p=4pVi=3p, =3NG, (7)

1 _px volume of unit mass ; (8)
3m— ] 5

The work done by the gas (initially at unit volume) in expanding
against constant pressure p when 6 is increased by unity is pX

increase of VOIume:p;;=31°7;. If the original volume be i (in

which case the mass will be unity) the work in expanding will
be —3—151. Hence, the ratio of the specific heat at constant pressure to
that at constant volume is

{10)

If we assume «=1408, we find B=1634

R43. The rate at which a gas escapes through a porous partition
will be jointly as the number of molecules in unit volume and the
mean value of the velocity resolved normal to the partition; or in
our notation it will be jointly as N and the mean value of w.
This latter, though not identical with the square root of the mean
value of w2 that is, with the square root of 1VZ can be shown to
be in a fixed ratio to it. Hence the rate of diffusion will be pro-
portional to NV. At given temperature and pressure, N is the
same for all gases, hence the rate of diffusion will be directly as V,
that is inversely as 4/m, or inversely as the square root of the
density Nm.

244, Van der Waalg’ Formula for eorrecting Boyle’s Law.—In the
caleulation by which we have obtained the formula p=1pV? the
molecules were treated as indefinitely small. TIncreased size of the
molecules (for given V, m, and n) would involve more frequent
collision and therefore increased pressure. Calculation shows that
the value of p as corrected for the finite size of the molecules is

VAN DER WAALS FORMULA.

1 pV2 3 Ve (1,_5>
sl—bp s OF 3 | » ’

- b being a small quantity which is constant for a given gas.

Again, the theory of capillarity as applied to liquids teaches that
the mutual attraction of the molecules which compose the surface-
layer of a liquid pulls the surface-layer inwards upon the rest of
the liquid, and that the pressure at the outer bounda.r){ o.f t'he
surface-layer is therefore less than the pressure at and Wlth‘m its
inner boundary. The same reasoning which leads to this result in the
case of liquids is applicable on a diminished scale to gases. Accord-
ingly p and V are smallest at the boundary of a gas, and gra.dua-ll_‘f
increase for a very small distance inwards. The formula p=4{pV*

or the corrected formula p=1% V¥/ ( i:— b), is applicable to the gas as
a whole, but will not be true if we employ the value of V*for the

gas as a whole in combination with the value of p at the boundary.
In practical measurement of p it is the pressure at the boundary that

is measured. This will be less than é—".”/( %—b) by the pressure due
to the skin attraction, which is easily shown to be proportional to
p% and may be denoted by ap% @ being constant for a given gas.

Hence if we make p stand for the pressure at the bounding surface
of the gas, we have

pHag=} V”f‘(%—a), or

(p+ap?) (%-b):;,- Ve (11)

This investigation is due to Van der Waals, who writes the first
member of (11) in the form (p—i—%) (v—b), v denoting the volume of

unit mass of the gas. According to his theory it is this product,
and not' the simple product pv, that is constant at given tempera-
ture.
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energy, and it is not by any means confined to heat. We can assert
of energy in general that it often runs down from a higher to a
lower grade (that is to a form less available for yielding work), and
that, if a quantity of energy is ever raised from a lower to a higher
grade, it is only in virtue of the degradation of another quantity, in
such sort that there is never a gain, and is generally a loss, of avail-
able energy. : :

This general tendency in nature was first pointed out by Lord
Kelvin. It obviously leads to the conclusion that the earth is
gradually approaching a condition in which it will no longer be
habitable by man as at present constituted.

237. Kinetic Theory of Gases.—According to the theory of the
constitution of gases which is now generally accepted and is called
by the above name, a simple gas consists of a number of very small
and exactly equal particles, called atoms or molecules, moving about
with various velocities and continually coming into collision with
one another and with the sides of the containing vessel. The total
volume of the particles themselves is very small compared with the
space in which they move, and consequently the time during which
a particle is in collision with other particles is a very small part of
its whole time.

Each particle is highly elastic. Its shape can be changed by the
application of external forces; but it springs back when left to
itself and executes vibrations, which we may compare to those of a
tuning-fork or a bell. These are the cause of the peculiar features
which are detected in the light of an incandescent gas when
analysed by the spectroscope. It can also, like any other free body,
have a rotatory or spinning motion. The kinetic energy of a particle
15 accordingly composed of three parts, one due to its vibration,
another to its rotation, and a third to its translation. This third
part, which is usually greater than the other two, is called the energy
of agitation. The other two are included together under the name
of internal energy, which may be defined as the energy of the
relative motion of different parts of the same molecule.

In addition to these, we may have movement of the gas as a
whole, which is what is meant when in ordinary language we speak
of a gas in motion as distinguished from a gas at rest., In this sense,
the velocity at any point of a gas is another name for the velocity
of the centre of gravity of a small group of molecules surrounding
the point. In what follows we leave such veloeity out of account.
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238. The ratio of the energy of agitation to the internal energy,
though it may vary at a given instant from molecule to molecule,
or may vary for the same particle from instant to instant, has a
definite and permanent value for the aggregate of all the particles
—a value independent of changes of pressure or temperature, but
aot the same for all gases. The symbol 8 is employed to denote
the ratio of the whole kinetic energy of a gas to the energy of
agitation, and the value of B for several of the more permanent
gases is 1-634.

The heat of a gas is another name for its kinetic energy, that is,
for Z1Bmv? or 4Bm2v? v denoting the velocity of a molecule, m
its mass, and 2 indicating summation for all the molecules. To
reduce the expression for this heat to ordinary thermal units we
must divide by Joule’s equivalent. '

The absolute temperature of a given gas is proportional to the
average kinetic energy of its molecules, that is, to the average value
of §Bma? or, omitting constants, to the average value of % We
shall denote the average value of 4* by V2 Its square root V is
called the velocity of mean square.

In a mixture of two simple gases the value of V2 is not the same

+ for them both, but varies inversely as m; in other words, m V2 has

the same value for both constituents. Accordingly,4dn comparing
one gas with another mV? is taken as the proportional measure of
absolute temperature.

289. The equality of the values of mV? for the two components
of a mixture is not an arbitrary assumption, but a deduction
obtained by a very elaborate mathematical investigation from the
supposition of two sets of perfectly elastic balls flying about
promiscuously amongst each other.

This and other similar calculations which form an important part
of the kinetic theory of gases are conducted by what is called the
statistical method. Large numbers give steadiness to statistics, and
the number of molecules in a cubic centimetre of gas is more than
a million of millions of millions. As long as a cubic centimetre of
gas remains at the same pressure and temperature the statistics of
the velocities of its molecules remain perméanent. The velocity of
each particle changes in the most irregular manner, but the number
of its molecules that have velocities lying between given limits
(which may be very close together) never changes by more than an
infinitesimal part of itself.
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Calculation shows that when we attend not merely to the actual
velocities but to their components in a given direction, the statistics
of such component velocities will be independent of the direction
assumed, even when gravity is taken into account.

940. The pressure of a gas against the walls of the containing
vessel is due to the impacts of its particles against the walls. To
compute its amount, let w« denote the component velocity of a
molecule normal to one of the sides supposed plane, » being regarded
as positive when the molecule is approaching the side and negative
when receding. Let w, be a particular positive value of u, and let
the number of molecules in unit volume that have approximately
this velocity be m;. The number of molecules of velocity u, that
impinge on unit area of the side in unit time will be the number
that occupy a volume u,, and will therefore be n, u,.

Their momentum before striking is their mass mn;u, multiplicd
by their velocity u,, and is therefore mmn,u,% - This is reversed by
the collision, so that the change of momentum is 2mn,u% This,
being the change of momentum produced in unit time by the
reaction of unit area of the wall, is equal to the pressure on unit
area due to the impacts of those molecules which we have been
considering. But the number of molecules whose normal velocity
is u, is, by symmetry, the same as the number whose normal velocity
is —u,, hence 2mm,u,? is the sum of such terms as mu? for all the
molecules for which the value of 4 is w2

Thus the total pressure on unit area is the sum of such terms as
mu? for all the particles in unit volume; that is, calling the
pressure p,

p=Zmul=mIul (1)
But, from the symmetry of the constitution of a gas, Zi? has the
same value for all directions of w. Combining this principle with
the principle that the square of a velocity is the sum of the squares
of its three rectangular components, we easily deduce Zu?=13.2

Let N denote the whole number of molecules in unit volume,
and p the density of the gas, which is N, then we have:

< _ 0

Sw=3Z =NV ey
p=mZui=INmV3i=1,V2 (3)
241. This last result enables us to compute the value of V for
any known gas, for it gives

_3p
e (4)
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Thus in C.G.S. measure we have for hydrogen (see pp. 305, 306),
p=10136 x 10°, p=-00008957, whence V=184,300 cm. per sec.
This is about one nautical mile per second.

The value of V for any gas bears a constant ratio to the velocity

of sound in the gas, namely, the ratio &/ ® where & denotes the ratio
g J _ P

of the two specific heats.

Since the energy of agitation in unit volume is 1eV% and p is
1pV?2, these quantities have the same dimensions and are as 3 to 2.

The equation p=3pV2 shows that when V2 (and therefore the
absolute temperature) is given, p varies as p. This is Boyle's law.

Again, it shows that when p is given, p varies as V% that is, as
the absolute temperature; and that, when p is given, p varies
inversely as V?; that is, the volume varies directly as the absolute
temperature. ]

Further, from the equation p=21NmV? we deduce that when two
gases have the same pressure p and the same temperature (measured
by mV2), they have the same number of particles N in unit volume,
and their densities (since p=Nm) are directly as m the mass of a
single particle of each; that is, the densities (at the same pressure
and temperature) are directly as the atomic weights. This is known
as Avvogadro’s law.

242, In questions relating to specific heat it ig convenient to
make the unit of heat equal to the unit of energy, so that the
quantity of heat in a mass 2m will be not only proportional but
equal to 3B2m? or to }3V22m, and to employ a unit of temperature
such that absolute temperature shall be not only proportional but
equal to mV2Z: Then, denoting absolute temperature by 6, and
quantity of heat or encrgy in unit volume by E, we have

vi=2 (5) E=18V:Im=}EVp=18L0=1AN0. (0)
N denoting, as before, the number of molecules in unit volume.

The thermal capacity at constant volume, for unit volume of the
oas, is defined as 42
825, a6
Since N is the same for all gases at the same temperature and
pressure, the thermal capacity per unit volume is the same for all
gases that have the same value of §.

The specific heat at constant volume is the thermal eapacity of

and is } BN, it being assumed that g is constant.

the volume %, and is therefore Jz.GN}) or 2;2. Hence the specific heat
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is inversely as the atomic weight, as asserted by the law of Dulong
and Petit.

Again we have
p=4pVi=3p, =3NG, (7)

1 _px volume of unit mass ; (8)
3m— ] 5

The work done by the gas (initially at unit volume) in expanding
against constant pressure p when 6 is increased by unity is pX

increase of VOIume:p;;=31°7;. If the original volume be i (in

which case the mass will be unity) the work in expanding will
be —3—151. Hence, the ratio of the specific heat at constant pressure to
that at constant volume is

{10)

If we assume «=1408, we find B=1634

R43. The rate at which a gas escapes through a porous partition
will be jointly as the number of molecules in unit volume and the
mean value of the velocity resolved normal to the partition; or in
our notation it will be jointly as N and the mean value of w.
This latter, though not identical with the square root of the mean
value of w2 that is, with the square root of 1VZ can be shown to
be in a fixed ratio to it. Hence the rate of diffusion will be pro-
portional to NV. At given temperature and pressure, N is the
same for all gases, hence the rate of diffusion will be directly as V,
that is inversely as 4/m, or inversely as the square root of the
density Nm.

244, Van der Waalg’ Formula for eorrecting Boyle’s Law.—In the
caleulation by which we have obtained the formula p=1pV? the
molecules were treated as indefinitely small. TIncreased size of the
molecules (for given V, m, and n) would involve more frequent
collision and therefore increased pressure. Calculation shows that
the value of p as corrected for the finite size of the molecules is
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1 pV2 3 Ve (1,_5>
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- b being a small quantity which is constant for a given gas.

Again, the theory of capillarity as applied to liquids teaches that
the mutual attraction of the molecules which compose the surface-
layer of a liquid pulls the surface-layer inwards upon the rest of
the liquid, and that the pressure at the outer bounda.r){ o.f t'he
surface-layer is therefore less than the pressure at and Wlth‘m its
inner boundary. The same reasoning which leads to this result in the
case of liquids is applicable on a diminished scale to gases. Accord-
ingly p and V are smallest at the boundary of a gas, and gra.dua-ll_‘f
increase for a very small distance inwards. The formula p=4{pV*

or the corrected formula p=1% V¥/ ( i:— b), is applicable to the gas as
a whole, but will not be true if we employ the value of V*for the

gas as a whole in combination with the value of p at the boundary.
In practical measurement of p it is the pressure at the boundary that

is measured. This will be less than é—".”/( %—b) by the pressure due
to the skin attraction, which is easily shown to be proportional to
p% and may be denoted by ap% @ being constant for a given gas.

Hence if we make p stand for the pressure at the bounding surface
of the gas, we have

pHag=} V”f‘(%—a), or

(p+ap?) (%-b):;,- Ve (11)

This investigation is due to Van der Waals, who writes the first
member of (11) in the form (p—i—%) (v—b), v denoting the volume of

unit mass of the gas. According to his theory it is this product,
and not' the simple product pv, that is constant at given tempera-
ture.




