16 FIRST PRINCIPLES OF DYNAMICS.

perpendicular BC on this ine; AC will represent the required
component. CB represents the other component, which, along with
g AQ, is equivalent to the given force. If

the total number of rectangular components,

of which AC represents one, is to be three,

A = ¢ then the other two will lie in a plane per-
Fig. 9.—Component along a given pendicular to AC, and thCy can be found by
s again resolving CB. The magnitude of AC

will be the same whether the number of components be two or three,

AC
AB

and the component along AC will be F —— or in trigonometrical

language,

F cos . BAC,

We have thus the following rule:—The component of a given force
along @ given line is found by multiplying the force by the cosime
of the amgle between dts own direction and that of the required
component.

CHARPTER 1T

CENTRE OF GRAVITY.

83. Gravity is the force to which we owe the names “up” and
“down.” The direction in which gravity acts at any place is called
the downward direction, and a line drawn accurately in this direc-
tion is called wertical; it is the direction assumed by a plumb-line.
A plane perpendicular to this direction is called lkorizontal, and is
parallel to the surface of a liquid at rest. The verticals at different
places are not parallel, but are inclined at an angle which is
approximately proportional to the distance between the places.
It amounts to 180° when the places are antipodal, and to about 1’
when their distance is one geographical mile, or to about 1” for
every hundred feet. Hence, when we are dealing with the action
of gravity on a body a few feet or a few hundred feet in length,
we may practically regard the action as consisting of parallel
forees.

34. Centre of Gravity.—Let A and B be any two particles of a
rigid body, let w; be the weight of the particle A, and w, the weight
of B. These weights are parallel forces, and their resultant divides
the line AB in the inverse ratio of the forces. As the body is
turned about into different positicns, the forces w, and w, remain
unchanged in magnitude, and hence the resultant cuts AB always
in the same point. This point is called the centre of the parallel
forces w, and w,, or the centre of gravity of the two particles A and
B. The magnitude of the resultant will be w,+w, and we may
substitute it for the two forces themselves; in other words, we may
suppose the two particles A and B to be collected at their centre
of gravity. We can now combine this resultant with the weight
of a third particle of the body, and shall thus obtain a resultant
Wy +w, +ws, passing through a definite point in the line which joins

2
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the third particle to the centre of gravity of the first two. . ”:[‘he ﬁrst
three particles may now be supposed to be collected at tli_us point,
and the same reasoning may be extended until all the partlcﬂles halve
been collected at one point. This point will be the centre of gravity
of the whole body. From the manner in which it has bccn‘ ob-
lained, it possesses the property that the resultant of‘ qli f}tw Jorces
of gravity on the body passes through it, in every ?Jos-z.t-zo.n wn which
the body cam be placed. The resultant force of gravlt-y upon a
rigid body is therefore a single force passing through its centre
t gravity.

: 355. Cef:tres of Gravity of Volumes, Areas, and Lines.—If the body
is homogeneous (that is composed of uniform substance throughout),
the position of the centre of gravity depends only on the figure, and
in this sense it is usual to speak of the centre of gravity of a figu.re.
In like manner it is customary to speak of the centres of gravity
of areas and lines, an area being identified in thought with a thin
uniform plate, and a line with a thin uniform wire, '

It is not necessary that a body should be rigid in order that it
may have a centre of gravity. We may speak of the centre of
gravity of a mass of fluid, or of the centre of gravity of a system
of bodies not connected in any way. The same point which would
be the centre of gravity if all the parts were rigidly connected, is
still called by this name whether they are connected or not.

36. Methods of Finding Centres of Gravity.—Whenever a homo-
geneous body contains a point which bisects all lines in the body
that can be drawn through it, this point must be the centre of
gravity. The centres of a sphere, a circle, a cube, a square, an
ellipse, an ellipsoid, a parallelogram, and a parallelepiped, are ex-
amples:

Again, when a body consists of a finite number of parts whose
weights and centres of gravity are known, we may regard each part
as collected at its own centre of gravity.

When the parts are at all numerous, the final result will mosb
readily be obtained by the use of the formula

T ‘(11;‘)), (3)
where P denotes the weight of any part, z the distance of its centre
of gravity from any plane, and z the distance of the centre of

gravity of the whole from that plane. We have already in § 23
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proved this formula for the case in which the centres of gravity lie

m one straight line and # denotes distance from a point in this line;
and it is not difficult, by the help of the properties of similar
triangles, to make the proof general.

87. Centre of Gravity of a Triangle.—To find the centre of gravity
of a triangle ABC (Fig. 10), we may begin by supposing it divided
into narrow strips by lines (such as be) parallel to BC. It can be
shown, by similar triangles, that each of these strips is bisected by
the line AD drawn from A to D the
middle point of BC. But each strip may
be collected at its own centre of gravity,
that is at its own middle point; hence the
whole triangle may be collected on the line
AD; its centre of gravity must therefore
be situated upon this line. Similar reason-
ing shows that it must lie upon the line B,

BE drawn from B to the middle pointof AC. Tt is therefore the
intersection of these two lines. If we Join DE we can show that
the triangles AGB, DGE, are similar, and that

G abn o
GD  DE

DG is therefore one third of DA. The centre of gravity of a
triangle therefore lies upon the line Joining any corner to the middle
point of the opposite side, and is at one-third of the length of this
line from the end where it meets that side.

It is worthy of remark that if three equal particles are placed at
the corners of any triangle, they have the same centre of gravity as
the triangle. For the two particles at B and C may be collected at
the middle point D, and this double particle at D, together with the
single particle at A, will have their centre of gravity at G, since G
divides DA in the ratio of 1 to 2.

38. Centre of Gravity of a Pyramid.—If a pyramid or a cone be
divided into thin slices by planes parallel to its base, and a straight
line be drawn from the vertex to the centre of gravity of the base,
this line will pass through the centres of gravity of all the slices,
since all the slices are similar to the base, and are similarly cut by
this line.

In a tetrahedron or triangular pyramid, if D (Fig. 11) be the
centre of gravity of one face, and A be the corner opposite to this
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face, the centre of gravity of the pyramid must lie upon the line

: AD. In like manner, if E be the

centre of gravity of one face, the centre

of gravity of the pyramid must lie

upon the line joining E with the oppo-

site corner B. It must therefore be

the intersection G of these two lines.

That they do intersect is otherwise

obvious, for the lines AE, BD meet in

C, the middle point of one edge of the

edfi \e % pyramid, E being found by taking CE

Bl -z one third of CA, and D by taking CD

Fig. 11.—Centre of Gravity of Tetrakedron. nyya third of CB.

If D, E be joined, we can show that the joining line is parallel to

BA, and that the triangles AGB, DGE are similar. Hence

AG _AB_BC_,

GD ~ DE  DC

That is, the line AD joining any corner to the centre of gravity of
the opposite face, is cut in the ratio of 3 to 1 by the centre of gravity

G of the triangle. D@ is therefore one-fourth of DA, and the dis-
tance of the centre of gravity from any face is one-fourth of the
distance of the opposite corner. . :
A pyramid standing on a polygonal base can be cut up nz_Lto tri-
angular pyramids standing on the triangular bases into which ’?he
A polygon can be divided, and having

the same vertex as the whole pyramid.

The centres of gravity of these trian-

gular pyramids are all at the same

perpendicular distance from the base,

namely at one-fourth of the distance

of the vertex, which is therefore the

distance of the centre of gravity of

the whole from the base. The centre

of gravity of any pyramid is there-

fore found by joining the vertex to

Fig. 12.—Centre of Gravity of Fyramid.  the centre of gravity of the base, and

cutting off one-fourth of the joining line from the end where it meets
~ the base. The same rule applies to a cone, since a cone may be
regarded as a polygonal pyramid with a very large number of sides.
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39. If four equal particles are placed at the corners of a triangular
pyramid, they will have the same centre of gravity as the pyramid.
For three of them may, as we have seen (§ 37) be collected at the
centre of gravity of one face; and the centre of gravity of the four
particles will divide the line which joins this point to the fourth, in
the ratio of 1 to 3.

40. Condition of Standing or Falling.—When a heavy body stands
on a base of finite area,
and remains in equili-
brium under the action
of its own weight and the
reaction of this base, the
vertical through its centre
of gravity must fall with-
in the base. If the body
is supported on three or
more points, as in Fig. 13,
we are to understand by
the base the convex?! poly-
gon whose corners are the
points of support; for if a body so supported turns over, it must
turn about the line joining two of these points.

41. Body supported at one Point.—When a heavy body supported
at one point remains at rest, the reaction of the point of support
equilibrates the force of gravity. But two forces cannot be in
equilibrium unless they have the same line of action; hence the ver-
tical through the centre of gravity of the body must pass through
the point of support. If in-tead of being supported at a point,
the heavy body is supported by an axis about which it is free to
turn, the vertical through the centre of gravity must pass through
this axis.

42. Stability and Instability.—When the point of support, or axis
of support, is vertically below the centre of gravity, it is easily seen
that, if the body were displaced a little to either side, the forces act-
ing upon it would turn it still further away from the position
of equilibrium. On the other hand, when the point or axis of sup-
port is vertically above the centre of gravity, the forces which would

Fig. 13.—Equilibrinm of a Body supported on a Horizontal
Plune at three or more Points.

! The word convexr is inserted to indicate that there must be no re-entrant angles.
Any points of support which lie within the polygon formed by joining the rest, must be
left out of account.
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act upon it if it were slightly displaced would tend to restore it.
In the latter case the equilibrium is said to be stable, in the former
wnstable.

When the centre of gravity coincides with the point of support,

or lies upon the axis of support, the body

will still be in equilibrium when turned
about this point or axis into any other
position. In this case the equilibrium is
neither stable nor unstable but is called
neutral.

43. Experimental determination of Cen-
tre of Gravity.—In general, if we suspend

a body by any point, in such a manner

that it is free to turn about this point, it

will come to rest in a position of stable

" equilibrium. The centre of gravity will

then be vertically beneath the point of

Fig. 14.—Experimental Determination Support. If we now suspend the body

el ah e from another point, the centre of gravity

will come vertically beneath this. The intersection of these two
verticals will therefore be the centre of gravity (Fig. 14).

44. To find the centre of gravity of a flat plate or board (Fig. 15),
we may suspend 1t from a point near its circumfer-
ence, in such a manner that it sets itself in a ver-
tical plane. Let a plumb-line be at the same time
suspended from the same point, and made to leave
its trace upon the board by chalking and “snap-
ping” it. Let the board now be suspended from
another point, and the operation be repeated. The
two chalk lines will intersect each other at that
point of the face which is opposite to the centre
of gravity; the centre of gravity itself being of

Hg. \-lii'}:gj;jﬁdﬁ course in the substance of the board.

: 45. Work done against Gravity.— When a heavy
body is raised, work is said to be done against gravity, and the
amount of this work is reckoned by mul

tiplying together the weight
of the body and the height through which it is raised. Horizontal
movement does not count,

: and when a body is raised obliquely, only
the vertical component of the motion is to be reckoned.

Suppose, now, that we have a number of particles whose weights
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are Wy, Wy, Wy &c., and let their heights above a given horizontal
plane be respectively &y, ks, hy &c. We know by equation (3),
§ 23, that if & denote the height of their centre of gravity we
have
(w0 + w5+ &e.) E:wl by + s By + &e. (4)
Let the particles now be raised into new positions in which their
heights above the same plane of reference are respectively H,, H.,,
H; &e. The height H of their centre of gravity will now be such
that
(wy+ws + &e.) H=w, H, +u, H,+&e. (5)
From these two equations, we find, by subtraction
(st + &e.) (H-R) =wy (H, - hy) +0s (Hy - Ay) + &e. (6)

Now H,—%, is the height through which the particle of weight o,
has been raised; hence the work done against gravity in raising it is
w, (H,—%k)) and the second member of equation (6) therefore
expresses the whole amount of work done against gravity. But the
first member expresses the work which would be done in raising all
the particles through a uniform height H—7%, which is the height
of the new position of the centre of gravity above the old. The
work done against gravity in raising any system of bodies will
therefore be correctly computed by supposing all the system to be
collected ab its centre of gravity. For example, the work done in
raising bricks and mortar from the ground to build a chimney, is
equal to the total weight of the chimney multiplied by the height
of its centre of gravity above the ground. :

46. The Centre of Gravity tends to Descend.—When the forces
which tend to move a system are simply the weights of its parts, we
can determine whether it is in equilibrium by observing the path in
which its centre of gravity would travel if movement took Place.
It we suppose this path to represent a hard frictionless surface, and
the centre of gravity to represent a heavy particle placed upon it,
the conditions of equilibrium will be the same as in the actual case.
The centre of gravity tends to run down hill, just as a heavy particle
does. There will be stable equilibrium if the centre of gravity is at
the bottom of a valley in its path, and unstable equilibrium if it is
at the top of a hill. When a rigid body turns about a horizontal
axis, the path of its centre of gravity is a circle in a vertical plane.
The highest and lowest points of this circle are the positions of the
centre of gravity in unstable and stable equilibrium respectively;
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except when the axis traverses the centre of gravity itself, in whx:ch
case the centre of gravity can neither rise nor fall, and the equili-
brium is neutral.

A uniform sphere or cylinder lying on a horizontal plane is in
neutral equilibrium, because its centre of gravity will neither be
raised nor lowered by rolling. An egg balanced on its end as in
Fig. 16, is in unstable equilibrium, because its centre of gravity is at
the top of a hill which it will descend when the egg rolls to one side.
The position of equilibrium shown in Fig. 17 is stable as regards
rolling to left or right, because the path of its centre of gravity in

[T

Fig. 16.—Unstable Equilibrium. Fig. 17.—Stable Equilibrium,

such rolling would be a curve whose lowest point is that now oceu-
pied by the centre of gravity. As regards rolling in the direction at
right angles to this, if the egg is a true solid of resolution, the equili-
brium is neutral.

47. Work done by Gravity—When a heavy body is lifted, the
lifting foree does work against gravity. When it descends gravity
does work upon it; and if it descends to the same position from
which it was lifted, the work done by gravity in the descent is
equal to the work done against gravity in the lifting; each being
equal to the weight of the body multiplied by the vertical displace-
ment of its centre of gravity. The tenden cy of the centre of gravity
to descend is a manifestation of the tendency of gravity to do work;
and this tendency is not peculiar to gravity.

48. Work done by any Force.—A force is said to do work when its .

point of application moves in the direction of the force, or in any
direction making an acute angle with this, so as to give a component
displacement in the direction of the force; and the amount of work
done is the product of the force by this component. If F denote
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the force, a the displacement, and 6 the angle between the two, the
work done by F is
F a cos 6.

which is what we obtain either by the above rule or by multiplying
the whole displacement by the effective component of F, that is the
component of F in the direction of the displacement. If the angle
0 is obtuse, cos § is negative and the force F does negative work. If
9 is a right angle F does no work. In this case F neither assists
nor resists the displacement. When 6 is acute, F assists the dis-
placement, and would produce it if the body were constrained by
guides which left it free to take this displacement and the directly
opposite one, while preventing all others.

If 6 is obtuse, F resists the displacement, and would produce the
opposite displacement if the body were constrained in the manner
Jjust supposed.

49. Principle of Work.—If any number of forces act upon a body
which is only free to move in a particular direction and its opposite,
we can tell in which of these two directions it will move by calcu-
lating the work which each force would do. Each force would do
positive work when the displacement is in one direction, and nega-
tive work when it is in the opposite direction, the absolute amounts
of work being the same in both cases if the displacements are equal.
The body will upon the whole be urged in that direction which gives
an excess of positive work over negative. If no such excess exists,
but the amounts of positive and negative work are exactly equal,
the body is in equilibrium, This principle (which has been called
the principle of virtual velocities, but is better called the principle
of work) is often of great use in enabling us to calculate the ratio
which two forces applied in given ways to the same body must have
in order to equilibrate each other. It applies not only to the
“mechanical powers” and all combinations of solid machinery, but
also to hydrostatic arrangements; for example to the hydraulie
press. The condition of equilibrium between two forces applied to
any frictionless machine and tending to drive it opposite ways, is
that in a small movement of the machine they would do equal and
opposite amounts of work. Thus in the serew-press (Fig. 30) the
force applied to one of the handles, multiplied by the distance
through which this handle moves, will be equal to the pressure
which this force produces at the foot of the screw, multiplied by the
distance that the screw travels.
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This is on the supposition of no friction. A frict-im}less ?nfl.chir.le
gives out the same amount of work which is spent in driving it.
The effect of friction is to make the work given out less than the
work put in. Much fruitless ingenuity has. been expended upon
contrivances for circumventing this law of nature and producing a
machine which shall give out more work than is put into it. Such
contrivances are called  perpetual motions.”

50. General Criterion of Stability.—If the forces which act upon

a body and produce equilibrium remain unchanged in nlla'gnitude
and direction when the body moves away from its position, and
if the velocities of their points of application also remain unchanged
in direction and in their ratio to each other, it is obvious that the
equality of positive and negative work which subsists at the
beginning of the motion will continue to subsist throughout the
entire motion. The body will therefore remain in equilibrium
when displaced. Its equilibrium is in this case said to be neutral.

It the forces which are in equilibrium in a given position of the
body, gradually change in direction or magnitude as the body moves
away from this position, the equality of positive and negative
work will not in general continue to subsist, and the inequality will
increase with the displacement. If the body be displaced with a
constant velocity and in a uniform manner, the rate of doing work,
which is zero at first, will not continue to be zero, but will have a
value, whether positive or negative, increasing in simple proportion
to the displacement. Hence it can be shown that the whole work
done in a small movement is proportional to the square of the dis-
placement, for when we double the displacement we, at the same
time, double the mean working force.

If this work is positive, the forces assist the displacement and tend
to increase it; the equilibrium must therefore have been unstable.

On the other hand, if the work is negative in all possible displace-
ments from the position of equilibrium, the forces oppose the
displacements and the equilibrium is stable.

9l IMustration of Stability.—A good example of stable equili-
brium of this kind is furnished by Gravesande’s apparatus (Fig. 3)
simplified by removing the parallelogram and employing a string
to support the three weights, one of them P” being fastened to it at
a point A near its middle, and the others P, P’ to its ends. The
point A will take the same position as in the figure, and will return
to 1t again when displaced. If we take hold of the point A and
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move it in any direction whether in the plane of the string or out
of it, we feel that at first there is hardly any resistance and the
smallest force we can apply produces a sensible disturbance; but
that as the displacement increases the resistance becomes greater.
If we release the point A when displaced, it will exeeute oscillations,
which will become gradually smaller, owing to friction, and it will
finally come to rest in its original position of equilibrium.

The centre of gravity of the three weights is in its lowest
position when the system is in equilibrium, and when a small dis-
placement is produced the centre of gravity rises by an amount
proportional to its square, so that a double displacement produces
a quadruple rise of the centre of gravity.

In this illustration the three forces remain unchanged, and the
directions of two of them change gradually as the point A is moved.
Whenever the circumstances of stable equilibrium are such that the
forces make no abrupt, changes either in direction or magnitude for
small displacements, the resistance will, as in this case, be propor-
tional to the displacement (when small), and the work to the square
of the displacement, and the system will oscillate if displaced and
then left to itself.

92. Stability where Forces vary abruptly with Position,—There
are other cases of stable equilibrium which may be illustrated by
the example of a book lying on a table. If we displace it by lifting
one edge, the force which we must exert does not increase with the
displacement, but is sensibly constant when the displacement is
small, and as a consequence the work will be simply proportional
to the displacement. The reason is, that one of the forces concerned
in producing equilibrium, namely, the upward pressure of the table,
changes per saltwm at the moment when the displacement begins.
In applying the principle of work to such a case as this, we must
employ, instead of the actual work done by the force which changes
abruptly, the work which it would do if its magnitude and direction
remained unchanged, or only changed gradually.

93. Illustrations from Toys—The stability of the “balancer”
(Fig. 18) depends on the fact that, owing to the weight of the two
leaden balls, which are rigidly attached to the figure by stiff wires,
the centre of gravity of the whole is below the point of support.
If the figure be disturbed it oscillates, and finally comes to rest in a
position in which the centre of gravity is vertically under the toe
on which the fizure stands.
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The “tumbler” (Fig. 19) consists of a light figure attached to a
hemisphere of lead, the centre of gravity of the whole being
between the centre of gravity of
the hemisphere and the centre of
the sphere to which it belongs.
When placed upon a level table,
the lowest position of the centre
of gravity is that in which the
figure is upright, and it accord-
ingly returns to this position when
displaced.

54. Limits of Stability.—In the
foregoing discussion we have em-
ployed the term “stability” in
its strict mathematical sense. But
there are cases in which, though
small displacements would merely
produce small oscillations, larger
displacements would cause the
body, when left to itself, to fall
entirely away from the given
position of equilibrium. This may
be expressed by saying that the
equilibrium is stable for displacements lying within certain limits,
but unstable for displacements beyond these limits. The equilibrium

Fiz. 18.—Balancer.

Fig. 19.—Tumblers,

of a system is practically unstable when the displacements which
it 1s likely to receive from accidental disturbances lie beyond its
limits of stability.

CHAPTER 1IV.

THE MECHANICAL POWERS.

55. We now proceed to a few practical applications of the fore-
geing principles; and we shall begin with the so-called “ mechanical
powers,” namely, the lever, the wheel amd axle, the pulley, the
anclined plane, the wedge, and the screw.

96. Lever.—Problems relating to the lever are usually most con-
veniently solved by taking moments round the fulcrum. The
general condition of equilibrium is, that the moments of the power
and the weight about the fulerum must be in opposite directions,
and must be equal. When the power and weight act in parallel
directions, the conditions of equilibrium are precisely those of three
paraliel forces (§ 19), the third force being the reaction of the
fulerum.

It is usual to distinguish three “orders” of lever. In levers of
the first order (Fig. 20) the fulerum is between the power and the
z) iy
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Three Orders of Lever.

weight. In those of the second order (Fig. 21) the weight is
between the power and the fulerum. In those of the third order
(Fig. 22) the power is between the weight and the fulerum.

In levers of the second order (supposing the forces parallel), the
weight is equal to the sum of the power and the pressure on the
fulerum; and in levers of the third order, the power is equal to
the sum of the weight and the pressure on the fulcrum; since
the middle one of three parallel forces in equilibrium must always
be equal to the sum of the other two.




