48 FIRST PRINCIPLES OF KINETICS.

87. The C.G.S. System.—A committee of the British Association,
specially appointed to recommend a system of units for' general
adoption in scientific calculation, have recommended that the
centimetre be adopted as the unit of length, the gramme as the unit
of mass, and the second as the unit of time. We shall first give the
rough and afterwards the more exact definitions of these quantities.

The centimetre is approximately. 1%9 of the distance of either

pole of the earth from the equator; that is to say 1 followed by 9
zeros expresses this distance in centimetres.

The gramme is approximately the mass of a cubic centimetre
of cold water. Hence the same number which expresses the speci-
fic gravity of a substance referred to water, expresses also the mass
of a cubic centimetre of the substance, in grammes.

: 1
The second is 575+ Of & mean solar day.

More accurately, the centimetre is defined as one hundredth part
of the length, at the temperature 0° Centigrade, of a certain stand-
ard bar, preserved in Paris, carefully executed copies of which
are preserved in several other places; and the gramme is defined as
one thousandth part of the mass of a certain standard which is
preserved at Paris, and of which also there are numerous copies
preserved elsewhere.

For brevity of reference, the committee have recommended that
the system of units based on the Centimetre, Gramme, and Second,
be called the C.G.S. system.

The unit of area in this system is the square centimetre,

The unit of volume is the cubic centimetre.

The unit of velocity is a velocity of a centimetre per second.

The unit of momentum is the momentum of a gramme moving
with a velocity of a centimetre per second.

The unit force is that force which generates this momentum in
one second. It is therefore that force which, acting on a gramme
for one second, generates a velocity of a centimetre per second.
This force is called the dyme, an abbreviated derivative from the
Greek 8ivapeg (force).

The unit of work is the work done by a force of a dyne working
through a distance of a centimetre. It might be called the dyne-
centimetre, but a shorter name has been provided and it is called
the erg, from the Greek #yor (work).

CHAPTER VIL

LAWS OF FALLING BODIES.

88. Effect of the Resistance of the Air.—In air, bodies fall with
unequal velocities; a sovereign or a ball of lead falls rapidly, a piece
of down or thin paper slowly. It was formerly thought that this
difference was inherent in the nature of the materials; bub it is
easy to show that this is not the case, for if we compress a mass
of down or a piece of paper by rolling it into & ball, and compare it
with a piece of gold-leaf, we shall find that the latter body falls
more slowly than the former. The inequality of the velocities
which we observe is due to the resistance of the air, which increases
with the extent of surface exposed by the body.

It was Galileo who first discovered the cause of the unequal
rapidity of fall of different bodies. To put the matter to the test,
he prepared small balls of different substances, and let them fall at
the same time from the top of the tower of Pisa; they struck the
ground almost at the same instant. On changing their forms, so as
to give them very different extents of surface, he observed that they
foll with very unequal velocities. He was thus led to the conclusion
that gravity acts on all substances with the same intensity, and that
in a vacuum all bodies would fall with the same velocity.

This last proposition could not be put to the test of experiment
in the time of Galileo, the air-pump not having yet been invented.
The experiment was performed by Newton, and is now well known
as the “guinea and feather” experiment. For this purpose a tube
from a yard and a half to two yards long is used, which can be
exhausted of air, and which contains bodies of various densities, such
as a coin, pieces of paper, and feathers. When the tube is full of
air and is inverted, these different bodies are seen to fall with very
unequal velocities; but if the experiment is repeated after the tube
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50 LAWS OF FALLING BODIES.

has been exhausted of air, no difference can be perceived between
the times of their descent.

89. Mass and Gravitation Proportional.—This experiment proves
that bodies which have equal weights are equal in mass. For equal
masses are defined to be those which, when acted on by equal forces,
recelve equal accelerations; and the forces, in this experiment, are
the weights of the falling bodies.

Newton tested this point still more severely by experiments with
pendulums (Principia, book III. prop. vi). He procured two
round wooden boxes of the same size and weight, and suspended
them by threads eleven feet long. One of them he filled with wood
and he placed very accurately in the centre of oscillation of thﬁ:
other the same weight of gold. The boxes hung side by side, and
'\3\’11611 set swinging in equal oscillations, went and returned tt')screthc:{j
for a very long time. Here the forces concerned in producinfjr and
checking the motion, namely, the force of gravity and the resi;tance
of the air, were the same for the two pendulums, and as the move-
ments produced were the same, it follows that the masses were
equal. Newton remarks that a difference of mass amounting to a
thousr“mdth part of the whole could not have escaped detectionb. He
experimented in the same way with silver, lead, glass, sand, salt
water, and wheat, and with the same result. He bt-herefore ,infer.;
that universally bodies of equal mass gravitate equally towards ti“le
ea,r.th ab the same place. He further extends the same law to gravi-
t-atw_n generally, and establishes the conclusion that the mutual
gravitating force between any two hodies depends only on their
masses and distances, and is independent of their materials.

T'he time of revolution of the moon round the earth, considered in
comunction with her distance from the earth, shows t-hﬁt the relation
between mass and gravitation is the same for the material of which
the moon is composed as for terrestrial matter ; and the same eon-
Blllf.slonll-h' proved for the planets by the relation which exists between
their distances from the sun and thejr times of revolutiorl in their
orbits.

90. Uniform Acceleration.—The fall of a heavy

illustration of the second law oty fudiha

of motion, which asserts that the
a measure of the
It follows from this law that if the

change of momentum in a body in a given time is
force which acts on the body.

same form.a contmue.ﬂ‘s to act upon a body the changes of momentum
m successive equal intervals of time will he equal

When a heavy
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body originally at rest is allowed to fall, it is acted on during the
time of its descent by its own weight and by no other foree, if we
neglect the resistance of the air. As its own weight is a constant
force, the body receives equal changes of momentum, and therefore
of velocity, in equal intervals of time. Let g denote its velocity
in centimetres per second, at the end of the first second. Then at
the end of the next second its velocity will be g+ g, that is 2g; at
the end of the next it will be 29+g, that is 3¢, and so on, the gain
of velocity in each second being equal to the velocity generated in
the first second. At the end of ¢ seconds the velocity will therefore
be fg. Such motion as this is said to be wniformly accelerated, and
the constant quantity g is the measure of the acceleration. Accelera-
tion is defined as the gain of velocity per unit of time.

91. Weight of a Gramme in Dynes. Value of g.—Let m denote
the mass of the falling body in grammes. Then the change of
momentum in each second is mg, which is therefore the measure of
the force acting on the body. The weight of a body of m grammes
is therefore mg dynes, and the weight of 1 gramme is g dynes. The
value of g varies from 9781 at the equator to 9831 at the poles;
and 981 may be adopted as its average value in temperate latitudes.
Tts value at any part of the earth’s surface is approximately given
by the formula

g = 9806056 — 25028 cos 2\ — 000,003k,
in which A denotes the latitude, and % the height (in centimetres)
above sea-level

In § 79 we distinguished between the intensity and the amount
of a force. The amount of the force of gravity upon a mass of m
grammes is mg dynes. The intensity of this force is g dynes per
gramme. The intensity of a force, in dynes per gramme of the body
acted on, is always equal to the change of velocity which the force
produces per second, this change being expressed in centimetres per
second. In other words the intensity of a force is equal to the
acceleration which it produces. The best designation for g is the
entensity of gravity. :

92. Distance fallen in a Given Time.—The distance described in a
given time by a body moving with uniform veloeity is caleulated
by multiplying the velocity by the time; just as the area of a rect-
angle is calculated by multiplying its length by its breadth. Hence
i we draw a line such that its ordinates AA’, BB, &c., represent the

1 Tor the method of determination see § 120.
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velocities with which a body is moving at the times represented by
0A, OB (time being reckoned from the beginning of the motion), it
,» can be shown that the whole distance

described is represented by the area

OB'B bounded by the curve, the last

T ordinate, and the base line. In fact this
M ' area can be divided into narrow strips
A (one of which is shown at AA’, Fig. 37)
cach of which may practically be re-
garded as a rectangle, whose height represents the velocity with
which the hody is moving during the very small interval of time
represented by its base, and whose area therefore represents the
distance described in this time.

This would be true for the distance described by a body moving
from rest with any law of velocity. In the case of falling bodies
the law is that the velocity is simply proportional to the time; hence
the ordinates AA’, BB, &c., must be directly as the abscisse OA,
OB; this proves that the line OA’ B' must be straight; and the figure
OB’ B is therefore a triangle. Its area will be half the product of
OB and BB. But OB represents the time ¢ occupied by the motion,
and BB’ the velocity g¢ at the end of this time. The area of the
triangle therefore represents half the product of ¢ and gt, that is,
represents fgf% which is accordingly the distance described in the
time #. Denoting this distance by s, and the velocity at the end of
time ¢ by v, we have thus the two formule

Fig. 37.

v = g,
8 = 397,
from which we easily deduce
gs = Lo (3)

93. Work spent in Producing Motion.—We may remark, in pass-
ing, that the third of these formulz enables us to caleulate the work
required to produce a given motion in a given mass. When a body
whose mass is 1 gramme falls through a distance s, the force which
acts upon it is its own weight, which is ¢ dynes, and the work done
upon it is gs ergs. Formula (3) shows that this is the same as 2
ergs. For a mass of m grammes falling through a distance s, the
work is $ma® ergs.  The work required to produce o veloeity v (cen-
tiln e T gee . y P £ ,« - " Yer

et_us per second) in o body of mass m (grammes) originally at
rest 2 $mv® (ergs).

94. Body thrown Upwards.—When a heavy body is projected ver-
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tically upwards, the formule (1) (2) (3) of § 92 will still apply to
its motion, with the following interpretations:—

v denotes the velocity of projection.

t denotes the whole time occupied in the ascent.

s denotes the height to which the body will ascend.
When the body has reached the highest point, it will fall back, and
its velocity at any point through which it passes twice will be the
same in going up as in coming down.

95. Resistance of the Air—The foregoing results are rigorously
applicable to motion in vacuo, and are sensibly correct for motio'n
in air as long as the resistance of the air is insignificant in compari-
son with the force of gravity. The force of gravity upon a body is
the same at all velocities; but the resistance of the air increases with
the velocity, and increases more and more rapidly as the velocity
becomes grueater; so that while at very slow velocities an incre:aso. of
1 per cent. in velocity would give an increase of 1 per cént. in the
resistance, at a higher velocity it would give an increase of 2 per
cent., and at the velocity of a cannon-ball an increase of 3 per cent.’
The formule are therefore sensibly in error for high velocities.
They are also in error for bodies which, like feathers or gold-leaf,
have a large surface in proportion to their weight. :

96. Projectiles.—If, instead of being simply let fall, a body is p}'o—
jected in any direction, its motion will be compounded of the motion
of a falling body and a uniform motion in
the direction of projection. Thus if OP
(Fig. 38) is the direction of projection, and
0Q the vertical through the point of pro-
jection, the body would move along OP
keeping its original velocity unchanged, if
it were not disturbed by gravity. To find Fig. 38.
where the body will be at any time 7, we must . .
lay off a length OP equal to Vi, V denoting the velocity of projec-
tion. and must then draw from P the vertical line PR downwards
equ%;.l to 4gt2, which is the distance that the body would ]13:\'\9 f&ll(:‘ll
in the time if simply dropped. The point R thus rlet-cmnned, will
be the actual position of the body. The velocity of the bo‘d)Ir '?Lb
any time will in like manner be found by compounding the initial

i

1 This is only another way of saying that the resistance varies approximately as E-he
velocity when very small, and approximately as the cube of the velocity for velocities like
that of a cannon-ball.
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veloeity with the velocity which a falling body would have acquired
in the time.

The path of the body will be a curve, as represented in the
figure, OP being a tangent to it at O, and its concavity being down-
wards. The equations above given, namely

OP=V¢, PR=1gt,

show that PR varies as the square of OP, and hence that the path
(or tragectory as it is technically called) is a parabola, whose axis is
vertical.

97. Time of Flight, and Range.—If the body is projected from a
point at the surface of the ground (supposed level) we can calculate
the time of flight and the range in the following way.

Let a be the angle which the direction of projection makes with the
horizontal. Then the velocity of projection can be resolved into
two components, V cos a and V sin a, the former being horizontal,
and the latter vertically upward. The horizontal component of the
velocity of the body is unaffected by gravity and remains constant.
The vertical velocity after time ¢ will be compounded of V sin a up-
wards and gt downwards. It will therefore be an upward velocity
Vsin a—gt, or a downward velocity gt —V sin a. At the highest
point of its path, the body will be moving horizontally and the ver-
tical component of its velocity will be zero; that is, we shall have

o v =i
V sin o — gt = 0; whence ¢= m
]

This is the time of attaining the highest point; and the time of
flight will be double of this, that is, will be ZV52%,
g

As t}1e horizontal component of the velocity has the constant
valuf? V. cos @, the horizontal displacement in any time ¢ 18 V cos a
multiplied by . The range is therefore

2V*:sin g cos @ s V* sin ¢ ‘{a.
g g

The range (ff)r a given velocity of projection) will therefore be
greatest when sin 2a is greatest, that is when 2« — 90° and a—45°.

We shall now describe two forms of apparatus for illustrating the
laws of falling bodies.

I =

9.8. Morin’s Appa.ratus.-)u[orms apparatus consists of a wooden

cylinder covered with paper, which can be set in uniform rotation

about its axis by the fall of a heavy weiocht., The cord which sup-
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ports the weight is wound upon a drum, furnished with a toothed
wheel which works on one side with an endless serew on the axis
of the cylinder, and on the other drives an axis carrying fans which
serve to regulate the motion.

In front of the turning cylinder is a cylindro-conical weight of
cast-iron carrying a pen-
cil whose point presses
against the paper, and
having ears which slide
on vertical threads, serv-
ing to guide it in its fall.
By pressing a lever, the
weight can be made to
fall at a chosen moment.
The proper time for this
is when the motion of
the cylinder has become
sensibly uniform. It fol-
lows from this arrange-
ment that during its
vertical motion the pencil
will meet in succession
the different generating
lines! of the revolving
cylinder, and will conse-
quently describe on its
surface a certain curve,
from the study of which
we shall be able to gather
the law of the fall of the
body which has traced
it. With this view, we
describe (by turning the Fig. 39.—Morin's Apparatus.
cylinder while the peneil
is stationary) a circle passing through the commencement of the
curve. and also draw a vertical line through this point. We cut
the I;aper along this latter line and develop it (that is, flatten

1 A cylindric surface could be swept out or “generated” by a straight line moving
round the axis and remaining always parallel to it. The successive positions of this
generating line are called the *generating lines of the cylinder.”




