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it out mto a plane). Tt then presents the appearance shown in
Fig. 40. '
If we take on the horizontal line equal distances at 1,2, 3, 4, 5
, and draw perpendiculars at their extremities to meet the
curve, it is evident that the points thus found are those which were
traced by the pencil when the cylinder had turned through the dis-
tances 1,2,3,4,5. . . . The corresponding verticals represent
the spaces traversed in the times 1, 2, 3,
4, 5. . . . Now we find, as the figure
shows, that these spaces are represented
by the numbers 1, 4, 9, 16, 25 :
thus verifying the principle that the spaces
described are proportional to the squares
of the times employed in their deseription.

We may remark that the proportionality
of the vertical lines to the squares of the
horizontal lines shows that the curve is a
parabola. The parabolic trace is thus the
consequence of the law of fall, and from
the fact of the trace being paraholic
we can infer the proportionality of the
spaces to the squares of the times.

The law of velocities might also be verified separately by Morin’s
apparatus; we shall not describe the method which it would be
necessary to employ, but shall content ourselves with remarking
that the law of velocities is a logical consequence of the law of
spaces.! -
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99. Atwood’s Machine.—Atwood’s machine, which affords great
fa,cil.ities for illustrating the effects of force in producing motion,
consists essentially of a very freely moving pulley over which a fine
cord passes, from the ends of which two equal weights can be sus-
pended. A small additional weight of flat
laid upon one of them, which is thus caus
form acceleration, and means are provided for su(ldonly

and elongated form is
ed to descend with uni-
removing

* Consider, in fact, the space traversed in any time #; this space is given by the formula
s=K*; during the time ¢+6 the space traversed will be K{t-i*ﬂc';:KiQ+‘th9+K!9;
whence it follows that the space traversed during the time 0 after the time ¢ is 2Kt 9+,
K¢" The average velocity during this time @ is obtained by dividing the space by @
and is 2Ki+ K6, which, by making ¢ very small, can be made to :tgre:(; as accumtol&}' a..-;

we please with the value 2K¢.  This limiting value 2K? must therefore be the velocity at
the end of time t.—D. ?
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this additional weight at any point of the descent, so as to allow the
motion tocontinue from
this point onward with
uniform velocity.

The machine is re-
presented in Fig. 41.
The pulley over which
the string passes is the
largest of the wheels
shown at the top of the
apparatus. In order to
give it greater freedom
of movement, the ends
of its axis are made
to rest, not on fixed
supports, but on the
circumferences of four
wheels (two at each
end of the axis) called
friction-wheels, because
their office is to dim-
inish friction. Two
small equal weights are
shown, suspended from
this pulley by a string
passing over it. One of
them P’ is represented
as near the bottom of
the supporting pillar,
and the other P as near
the top. The latter is
resting upon a small
platform, which can be
suddenlydropped when
it is desired that the
motion shall commence.
A little lower down and
vertically beneath the
platform, is seen a ring,
Jarge enough to let the weight pass through it without danger of

Fig. 41.—Atwood's Machine.
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contact. This ring can be shifted up or down, and clamped at any
height by a serew; it is represented on a larger scale in the margin.
At a considerable distance beneath the ring, is seen the stop, which
is also represented in the margin, and can like the ring be clamped
at any height. The office of the ring is to intercept the additional
weight, and the office of the stop is to arrest the descent. The up-
right to which they are both clamped is marked with a scale of equal
parts, to show the distances moved over. A clock with a pendulum
beating seconds, is provided for measuring the time; and there is an
arrangement by which the movable platform can be dropped by the
action of the clock precisely at one of the ticks. To measure the
distance fallen in one or more seconds, the ring is removed, and the
stop is placed by trial at such heights that the descending weight
strikes it precisely at another tick. To measure the velocity
acquired in one or more seconds, the ring must be fixed at such a
height as to intercept the additional weight at one of the ticks, and
the stop must be placed so as to be struck by the descending weight
at another tick.

100. Theory of Atwood’s Machine.—If M denote each of the two
equal masses, in grammes, and m the additional mass, the whole
moving mass (neglecting the mass of the pulley and string) is
2M +m, but the moving force is only the weight of m. The accel-

eration produced, instead of being g, is accordingly only i\%m g-
In order to allow for the inertia of the pulley and string, a con-
stant quantity must be added to the denominator in the above for-
mula, and the value of this constant can be determined by observ-
ing the movements obtained with different values of M and m.
Denoting it by C, we have

N S o
m+2M+C o (4)

as the expression for the acceleration. As m is usually small in
comparison with M, the acceleration is very small in comparison with
that of a freely falling body, and is brought within the limits of
convenient observation. Denoting the acceleration by e, and using

) a,u(-i s, as in § 92, to denote the velocity acquired and space
described in time ¢, we shall have

by 1)
S=ivt ©)

as=42, )
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and cach of these formul® can be directly verified by experiments
with the machine. - i
101. Uniform Motion in a Circle.— \l
A body cannot move in a curved path ;)
unless there be a force urging it Eigat
towards the concave side of the curve. We shall proceed to in-
vestigate the intensity of this force when
the path is circular and the velocity uniform.
We shall denote the velocity by v, the radius
of the circle by 7, and the intensity of the
force by f. Let AB (Figs. 42,43) be a small
portion of the path, and BD a perpendicular
upon AD the tangent at A. Then, since
the are AB is small in comparison with
the whole circumference, it is sensibly equal
to AD, and the body would have been found
at D instead of at B if no force had acted
upon it since leaving A. DB is accordingly the distance due to the
force; and if £ denote the time from A to B, we have
AD = ot a)
DB = 37" (2)
The second of these equations gives
._ 2DB
7
and substituting for ¢ from the first equation, this becomes
=2Lx @)
But if An (Fig. 43) be the diameter at A, and Bm the perpendicular
upon it from B, we have, by Euclid, ADZ=mB*=Am.mn=2r.Am
sensibly,=2r.DB.
Therefore %:E—_, and hence by (3)

F== (4)

Fig 43.

Hence the force necessary for keeping a body in a circular path

without change of velocity, is a force of intensity % directed towards

the centre of the circle. If m denote the mass of the body, the
amount of the force will be ?_’:f This will be in dynes, if m be in
orammes, 7 in centimetres, and ¥ in centimetres per second.

If the time of revolution be denoted by T, and = as usual denote
the ratio of circumference to diameter, the distance moved in time

.
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T is 27r; hence v = 2—1”, and another expression for the intensity of
the force will be .
= (B A o

102. Deflecting Force in General—In general, whenr a body is
moving in any path, and with velocity either constant or varying,
the force acting upon it at any instant can be resolved into two
components, one along the tangent and the other along the normal.
The intensity of the tangential component is measured by the rate
at which the velocity increases or diminishes, and the intensity of
the normal component is given by formula (4) of last article, if we
make 7 denote the radius of curvature.

103. Illustrations of Deflecting Force.—When a stone is swung
round by a string in a vertical circle, the tension of the string in
the lowest position consists of two parts:—

(1) The weight of the stone, which is mg if m be the mass of the
stone.

(2) The force m ”; which is necessary for deflecting the stone from
a horizontal tangent into its actual path in the neighbourhood of the
lowest point.

When the stone is at the highest point of its path, the tension of
the string is the difference of these two forces, that is to say it is

(.1_.2 )
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and the motion is not possible unless the. velocity at the highest
- . - 2 L

point is sufficient to make = greater than g.

The tendency of the stone to persevere in rectilinear motion and
to resist deflection into a curve, causes it to exert a force upon the

e 22 SRS 1 :
string, of amount m ~» and this is called centrifugal force. It is

not a force acting upon the stone, but a force exerted by the stone
upon the string. Its direction is from the centre of curvature,
whereas the deflecting force which acts upon the stone is fowards
the centre of curvature.

104. Centrifugal Force at the Equator—Bodies on the earth’s
surface are carried round in circles by the diurnal rotation of the
earth upon its axis. The velocity of this motion at the equator is
about 46,500 centimetres per second, and the earth’s equatoriai
radius is about 638 x 10° centimetres. Hence the value of © is
found to be about 3:39. The case is analogous to that of the strone
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at the highest point of its path in the preceding article, if instead
of a string which can only exert a pull we suppose a stiff rod which
can exert a push upon the stone. The rod will be called upon to

exert a pull or a push at the highest point according as ?;j is greater

or less than g. The force of the push in the latter case will be

a(o-2)

and this is accordingly the force with which the surface of the earth
at the equator pushes a body lying upon it. The push, of course,
is mutual, and this formula therefore gives the apparent weight or
apparent gravitating force of a body at the equator, mg denoting its
true gravitating force (due to attraction alone). A body falling in
vacuo at the equator has an acceleration 97810 relative to the
surface of the earth in its neighbourhood; but this portion of the
surface has itself an acceleration of 3:39, directed towards the earth’s
centre, and therefore in the same direction as the acceleration of the
body. The absolute acceleration of the body is therefore the sum of
these two, that is 98149, which is accordingly the intensity of true
gravity at the equator. ;

The apparent weight of bodies at the equator would be nil if -
were equal to g. Dividing 8:39 into 98149, the quotient is approxi-
mately 289, which is (17)% Hence this state of things would exist
if the velocity of rotation were about 17 times as fast as at present.

Since the movements and forces which we actually observe depend
upon relative acceleration, it is usual to understand, by the value of
g or the intensity of gravity at a place, the apparent values, unless
the contrary be expressed. Thus the value of g at the equator is
usually stated to be 978:10.

105. Direction of Apparent Gravity.—The total amount of centri-
fucal force at different places on the earth’s surface, varies directly
asbtheir distance from the earth’s axis; for this is the value of 7 in
the formula (5) of § 101, and the value of T in that formula is the
same for the whole earth. The direction of this force, being per-
pendicular to the earth’s axis, is not vertical except at the equator;
and hence, when we compound it with the force of true gravity, we
obtain a resultant force of apparent gravity differing in direction as
well as in magnitude from true gravity. What is always understood
by a vertical, is the direction of apparent gravity; and a plane per-
pendicular to it is what is meant by a horizontal plane.




