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F R E N C H A N D E N G L I S H MEASURES. 

A DECIMETRE DIVIDED INTO CENTIMETRES AND M I L L I M E T R E S . 

1 2 = 4 5 c 7 I H 
1 1 1 I I I 1 I 1 1 1 1 1 1 1 1 1 1 M l 1 1 1 1 1 i h l l n t i l n l l l l l 1 . 1 1 1 H 1 I I I I 

I ' ' ' I ' 

I N C H E S AND TENTHS, 

R E D U C T I O N O F F R E N C H 

L E N G T H . 

1 millimetre = :03937 inch, or about ,-}z inch. 
1 centimetre="3937 inch. 
1 decimetre=3 937 inch. 
1 metre=39"37 ineh=32Sl ft. = 1'0936 yd. 
1 kilometre=1093"6 yds., or about f mile. 

More accuratcly, 1 metre=39 "370432 in. 
=3-2808693 ft. = 1 "09302311 yd. 

A R E A . 

1 sq. millim. ="00155 sq. in. 
1 sq. centim. = '155 sq. in. 
1 sq. dccim. =15 "5 sq. in. 

1 sq. metre = 1550 sq. in. = 10764 sq. ft. = 
1-196 sq. yd. 

V O L U M E . 

1 cub. millim. = "000061 cub. in. 
1 cub. centim. = "061025 cub. in. 
1 cub. decim. =61"0"254cub. in. 

cub. metre=61025 cub. in. =35"3156 cub. 
' ft. = 1"308 cub. yd. 

TO ENGLISH MEASURES. 

The Litre (used for liquids) is the same as 
the cubic decimetre, and is equal to 17017 
pint, or "22021 gallon. 

M A S S A N D W E I G H T . 

1 milligramme= "01543 grain. 
1 gramme =15"432 grain. 

1 kilogramme=15432grains=2"205 lbs. avoir. 
More accurately, the kilogramme is 

2-20462125 lbs. 

M I S C E L L A N E O U S . 

1 gramme per sq. centim. =2'0481 lbs. per 
sq. ft. 

1 kilogramme per sq. centim. = 14 "223 lbs. per 
sq. in. 

1 kilogrammetre=7'2331 foot-pounds. 
1 force de cheval=75 kilogrammetres per 

second, or 542£ foot-pounds per second nearly, 
whereas 1 horse-power (Euglish)=550 foot-
pounds per second. 

REDUCTION TO C.G.S. ] 

[cm. denotes centimetre(s) 

L E N G T H . 

1 inch =2-54 centimetres, nearly. 
1 foot =30*48 centimetres, nearly. 
1 yard =91 "44 centimetres, nearly. 
1 statute mile—160933 centimetres, nearly. 
More accurately, 1 inch=2"5399772 centi-

metres. 

A R E A . 

1 sq. inch=6"45 sq. cm., nearly. 
l.sq. foot =929 sq. cm., nearly. 
1 sq. yard = 8361 sq. cm., nearly. 
1 sq. mile=2"59 x 1010 sq. cm., nearly. 

V O L U M E . 

1 cub. inch =16"39 cub. cm., nearly. 
1 cub. foot =28316 cub. cm., nearly. 

MEASURES. (See page 48.) 
I; gm. denotes gramme(s).] 

1 cub. yard=764535 cub. cm., nearly. 
1 gallon =4541 cub. cm., nearly. 

M A S S . J 

1 grain = "064S gramme, nearly. 
1 oz. avoir. = 28 "35 gramme, nearly. 
1 lb. avoir. =453 6 gramme, nearly. 
1 ton = 1 "016 x10s gramme, nearly. 

More accuratcly, 1 lb. avoir. =453 "59265 gm. 

V E L O C I T Y . 

1 mile per hour =447.04 cm. per sec. 
1 kilometre per hour=27"7 cm. per sec. 

D E N S I T Y . 

1 lb. per cub. foot ="016019 gm. per cub. 
cm. 

62"4 lbs. per cub. ft. = 1 gm. per cub. cm. 



FORCE (assuming ¿ R = 9 8 1 ) . (See p. 4 8 . ) 

Weight of 1 grain = 63 '57 dynes, nearly. 
loz. avoir. =2'78 x 104dynes,nearly. 
1 lb. avoir. =4'45 x 105dynes,nearly. 
1 ton =9"97 x 10®dynes,nearly. 
1 gramme =981 dynes, nearly. 
1 kilogramme = 9'81 x 105 dynes, 

nearly. 

W O R K (assuming < 7 = 9 8 1 ) . (See p. 48.) 
] foot-pound =l-856xl07 ergs, nearly. 
1 kilogram metre = 9 ' 8 1 X L 0 7 ergs, nearly. 
Work in a second') 
by one theoretical V =7*46 x 109 ergs, nearly, 
"horse." I 

S T R E S S (assuming <7=981), 
1 lb. per sq. f t . =479 dynes per sq. cm., 

nearly. 
1 lb. per sq. inch =6'9 x 1Û4 dynes per sq. 

cm., nearly. 
1 kilog. per sq. cm. =9"81 x 105 dynes per sq. 

cm., nearly. 
700 mm. of mercury at 0°C. = 1 '014 x 106 dynes 

per sq. cm., nearly. 
30 inches of mercury at 0° C. = l"0163xl06 

dynes per sq. cm., nearly. 
1 inch of mercury at 0° C. =3-388 x 104 dynes 

per sq. cm., nearly. 

T A B L E O F D E N S I T I E S , I N G R A M M E S PER C U B I C CENTIMETRE. 

L I Q U I D S . 

Pure water at 4° C., 1 -000 
Sea water, ordinary, 1 -026 
Alcohol, pure, - -791 

„ proof spirit, -916 
Ether, -71 (5 
Mercury at 0° C., 13-596 
Naphtha, >848 

SOLIDS. 

Brass, cast, 7"8to8"4 
>, «'ire, 8"54 

Bronze, 8*4 
Copper, cast, . 8'6 

,, sheet, 8*8 
,, hammered, 8-9 

Gold, 19 to 19-6 
Iron, cast, 6'95to7"3 

„ wrought, 7't) to 7-8 
Lead, D '4 
Platinum, 21 to 22 
Silver, 10-5 
Steel, 7-8 to 7-9 

7'3 to 7 0 

Zinc, 
Ice, 

6-8 to 7-2 
•92 
00 
17 

Basalt, 3 
Brick, 2 to 2 
Brickwork, 1'8 
Chalk, 1-8 to 2-8 
Clay, i-92 
Glass, crown, 2*5 

„ flint, 3-0 
Quartz (rock-crystal), 2"65 
Sand, 1-42 
Fir, spruce, "48 to '7 
Oak, European, -(>9 to "99 
Lignnm-vitaj, "65 to 1 "33 
Sulphur, octahedral, 2'05 

„ prismatic, -1-98 

GASES , at 0° C. and a pressure of a million 
dynes per sq. cm. (see p. 142;. 

Air, dry, -0012759 
Oxygen, -0014107 
.Nitrogen, -0012393 
Hydrogen, -00008837 
Carbonic acid, '0019509 

ELEMENTARY TREATISE 

O N 

NATURAL PHILOSOPHY. 

CHAPTER I. 

I N T R O D U C T O R Y . 

1. Natural Seicnce, in the widest sense of the term, comprises all 
the phenomena of the material world. I n so far as i t merely 
describes and classifies these phenomena, it may he called Natural 
History; in so far as it furnishes accurate quantitative knowledge 
of the relations between causes and effects i t is called Natural 
Philosophy. Many subjects of study pass through the natural 
history stage before they attain the natural philosophy stage; the 
phenomena being observed and compared for many years before the 
quantitative laws which govern them are disclosed. 

2. There are two extensive groups of phenomena which are con-
ventionally excluded from the domain of Natural Philosophy, and 
regarded as constituting separate branches of science in themselves; 
namely:— 

First. Those phenomena which depend on vital forces; such 
phenomena, for example, as the growth of animals and plants. 
These constitute the domain of Biology. 

Secondly. Those which depend on elective attractions between 
the atoms of particular substances, attractions which are known by 
the name of chemical affinities. These phenomena are relegated to 
the special science of Chemistry. 

Again, Astronomy, which treats of the nature and movements of 
the heavenly bodies, is, like Chemistry, so vast a subject, that it 
forms a special science of itself; though certain general laws, which 
its phenomena exemplify, are still included in the study of Natural 
Philosophy. 
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3. Those phenomena which specially belong to the domain of 
Natural Philosophy are called physical; and Natural Philosophy 
itself is called Physics. I t may be divided into the following 
branches. 

I. DYNAMICS, or the general laws of force and of the relations 
which exist between force, mass, and velocity. These laws may be 
applied to solids, liquids, or gases. Thus we have the three 
divisions, Mechanics, Hydrostatics, and Pneumatics. 

II . THERMICS; the science of Heat. 
I I I . The science of ELECTRICITY, with the closely related subject 

of MAGNETISM. 

IV. ACOUSTICS; the science of Sound. 
V. OPTICS; the science of Light. 
The branches here numbered I. II . I II . are treated in Parts I. II . 

I I I . respectively, of the present "Work. The two branches numbered 
TV. V. are treated in Part IV. 

CHAPTER II. 

FIRST PRINCIPLES OF DYNAMICS, STATICS. 

4. Force.—Force may be defined as that which tends to produce 
motion in a body at rest, or to produce change of motion in a body 
which is moving. A particle is said to have uniform or unchanged 
motion when it moves in a straight line with constant velocity; and 
every deviation of material particles from uniform motion is due to 
forces acting upon them. 

5. Translation and Rotation.—When a body moves so that all 
lines in it remain constantly parallel to their original positions (or, 
to use the ordinary technical phrase, move parallel to themselves), 
its movement is called a pure translation. Since the lines joining 
the extremities of equal and parallel straight lines are themselves 
equal and parallel, it can easily be shown that, in such motion, all 
points of the body have.equpl and parallel velocities, so that the 
movement of the whole body is completely represented by the move-
ment of any one of its points. 

On the other hand, if one point of a rigid body be fixed, the only 
movement possible for the body is pure rotation, the axis of the 
rotation at any moment being some straight line passing through 
this point. 

Every movement of a rigid body can be specified by specifying 
the movement of one of its points (any point will do) together with 
the rotation of the body about this point. 

6. Force which acts uniformly on all the particles of a body, as 
gravity does sensibly in the case of bodies of moderate size on the 
earth's surface (equal particles being urged with equal forces and in 
parallel directions), tends to give the body a movement of pure 
translation. 

In elementary statements of the laws of force, it is necessary, for 
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4 FIRST PRINCIPLES OF DYNAMICS. 

the sake of simplicity, to confine attention to forces tending to 
produce pure translation. 

7. Instruments for Measuring Force—We obtain the idea of force 
through our own conscious exercise of muscular force, and we can 

© 

approximately estimate the amount of a force (if not too great or 
too small) by the effort which we have to make to resist it; as when 
we t ry the weight of a body by lifting it. 

Dynamometers are instruments in which force is measured by 
means of its effect in bending or otherwise distorting elastic springs, 
and the spring-balance is a dynamometer applied to the measure-
ment of weights, the spring in this case being either a flat spiral 
(like the mainspring of a watch), or a helix (resembling a cork-
screw). 

A force may also be measured by causing it to act vertically 
downwards upon one of the scale-pans of a balance and counter-
poising it by weights in the other pan. 

8. Gravitation Units of Force.—In whatever way the measurement 
of a force is effected, the result, that is, the magnitude of the force, 
is usually stated in terms of weight; for example, in pounds or in 
kilogrammes. Such units of force (called gravitation units) are to 
a certain extent indefinite, inasmuch as gravity is not exactly the 
same over the whole surface of the earth; but they are sufficiently 
definite for ordinary commercial purposes. 

9. Equilibrium, Statics, Kinetics.—When a body free to move is 
acted on by forces which do not move it, these forces are said to be 
in equilibrium, or to equilibrate each other. They may equally 
well be described as balancing each other. Dynamics is usually 
divided into two branches. The first branch, called Statics, treats 
of the conditions of equilibrium. The second branch, called 
Kinetics, treats of the movements produced by forces not in equili-
brium. 

10. Action and Reaction.—Experiment shows that force is always 
a mutual action between two portions of matter. When a body is 
urged by a force, this force is exerted by some other body, which is 
itself urged in the opposite direction with an equal force. When I 
press the table downwards with my hand, the table presses my hand 
upwards; when a weight hangs by a cord attached to a beam, the 
cord serves to transmit force between the beam and the weight, so 
that, by the instrumentality of the cord, the beam pulls the weight 
upwards and the weight pulls the beam downwards. Electricity 

EQUILIBRIUM OF TWO FORCES. 5 

and magnetism furnish no exception to this universal law. When 
a magnet attracts a piece of iron, the piece of iron attracts the 
magnet with a precisely equal force. 

11. Specification of a Force acting at a Point.—Force may be 
applied over a finite area, as when I press the table with my hand; 
or may be applied through the whole substance of a body, as in the 
case of gravity; but it is usual to begin by discussing the action of 
forces applied to a single particle, in which case each force is 
supposed to act along a mathematical straight line, and the particle 
or material point to which it is applied is called its point of applica-
tion. A force is completely specified when its magnitude, its 'point 
of application, and its line of action are all given. 

12. Rigid Body. Fundamental Problem of Statics.—A force of 
finite magnitude applied to a mathematical point of any actual 
solid body would inevitably fracture the body. To avoid this 
complication and other complications which would arise from the 
bending and yielding of bodies under the action of forces, the fiction 
of a perfectly rigid body is introduced, a body which cannot bend 
or break under the action of any force however intense, but always 
retains its size and shape unchanged. 

The fundamental problem of Statics consists in determining the 
conditions which forces must fulfil in order that they may be in 
equilibrium when applied to a rigid body. 

13. Conditions of Equilibrium for Two Forces.—In order that two 
forces applied to a rigid body should be in equilibrium, i t is 
necessary and sufficient that they fulfil the following conditions:— 

1st. Their lines of action must be one and the same. 
2nd. The forces must act in opposite directions along this common 

line. 
3rd. They must be equal in magnitude. 
I t will be observed that nothing is said here about the points of 

application of the forces. They may in fact be anywhere upon the 
common line of action. The effect of a force upon a rigid body is 
not altered by changing its point of application to any other point 
in its line of action. This is called the principle of the transmissi-
bility of force. 

I t follows from this principle that the condition of equilibrium 
for any number of forces with the same line of action is simply that 
the sum of those which act in one direction shall be equal to the 
sum of those which act in the opposite direction. 



14. Three Forces Meeting in a Point. Triangle of Forces.—If 
three forces, not having one and the same line of action, are in 
equilibrium, their lines of action must lie in one plane, and must 
either meet in a point or be parallel. We shall first discuss the case 
in which they meet in a point. 

From any point A (Fig. 1) draw a line AB parallel to one of the 
two given forces, and so that in travelling from A to B we should 
be travelling in the same direction in which the force acts (not in 

the opposite direction). Also let i t be 
understood that the length of AB repre-
sents the magnitude of the force. 

From the point B draw a line BC 
representing the second force in direc-
tion, and on the same scale of magnitude 
on which AB represents the first. 

Then the line CA will represent both 
in direction and magnitude the third 
force which would equilibrate the first 
two. 

The principle embodied in this construction is called the triangle 
of forces. I t may be briefly stated as follows:—The condition of 
equilibrium for three forces acting at a point is, that they be repre-
sented in magnitude and direction by the three sides of a triangle, 
taken one way round. The meaning of the words " taken one way 
round" will be understood from an inspection of the arrows with 
which the sides of the triangle in Fig. 1 are marked. If the 
directions of all three arrows are reversed the forces represented 
will still be in equilibrium. The arrows must be so directed tha t 
it would be possible to travel completely round the triangle by 
moving along the sides in the directions indicated. 

When a line is used to represent a force, it is always necessary to 
employ an arrow or some other mark of direction, in order to avoid 
ambiguity between the direction intended and its opposite. In naming 
such a line by means of two letters, one at each end of it, the order 
of the letters should indicate the direction intended. The direction 
of AB is from A to B; the direction of BA is from B to A. 

15. Resultant and Components.—Since two forces acting at a point 
can be balanced by a single force, i t is obvious that they are equiv-
alent to a single force, namely, to a force equal and opposite to that 
which would balance them. This force to which they are equivalent 

EQUILIBRIUM OF THREE FORCES. 7 

is called their resultant. Whenever one force acting on a rigid 
body is equivalent to two or more forces, it is called their resultant, 
and they are called its components. When any number of forces 
are in equilibrium, a force equal and opposite to any one of them is 
the resultant of all the rest. 

The "triangle of forces" gives us the resultant of any two forces 
acting at a point. For example, in Fig. 1, AC (with the arrow in 
the figure reversed) represents the resultant of the forces represented 
by AB and BC. 

16. Parallelogram of Forces.—The proposition called the " parallel-
ogram of forces" is not essentially distinct from the "triangle of 
forces," but merely expresses the same fact from a slightly different 
point of view. I t is as follows:—If hoo forces 
acting upon the same rigid body in lines 
which meet in a point, be represented by two 
lines drawn from the point, and a parallelo-
gram be constructed on these lines, the diagonal 
drawn from this point to the opposite corner Fig . 2 . - P a r a l l e l o g r a m of 

of the parallelogram represents the resultant. 

For example, if AB, AC, Fig. 2, represent the two forces, AD will 
represent their resultant. 

To show the identity of this proposition with the triangle of forces, 
we have only to substitute BD for AC (which is equal and parallel 
to it). We have then two forces represented by AB, BD (two sides 
of a triangle) giving as their resultant a force represented by the 
third side AD. We might equally well have employed the triangle 
ACD, by substituting CD for AB. 

17. Gravesande's Apparatus.—An apparatus for verifying the par-
allelogram of forces is represented in Fig. 3. ACDB is a light frame 
in the form of a parallelogram. A weight P" can be hung at A, and 
weights P, F can be attached, by means of cords passing over pulleys, 
to the points B, C. When the weights P, P', F ' are proportional to 
AB, AC and AD respectively, the strings attached at B and C will 
be observed to form prolongations of the sides, and the diagonal AD 
will be vertical. 

18. Resultant of any Number of Forces at a Point.—To find the 
resultant of any number of forces whose lines of action meet in a 
point, it is only necessary to draw a crooked line composed of 
straight lines which represent the several forces. The resultant will 
be represented by a straight line drawn from the beginning to the 



end of this crooked line. For by what precedes, if ABODE be a 
crooked line such tha t the straight lines AB, BC, CD, DE represent 
four forces acting a t a point, we may substitute for AB and BC 

Fig. 3.—Gravesande's Apparatus. 

the straight line AC, since this represents their resultant. We may 
then substitute AD for AC and CD, and finally AE for AD and DE. 

B r One of the most important applications of 
. / \ this construction is to three forces not 

\ tying o n e plane. In this case the 
\ v: v „ — c r o o k e d line will consist of three edges of 

\ / / a parallelepiped, and the line which repre-
V- r ' l l l _V sents the resultant will be the diagonal. 
D H 

This is evident from Fig. 4, in which AB, 
Kg ' 4'~FoÎeÎlepired °f A C ' A I ) r e P r e s e n t three forces acting at 

A. The resultant of AB and AC is Ar, 
and the resultant of Ar and AD is Ar'. The crooked line whose 
parts represent the forces, may be either ABrr' , or ABGr', or ADG?\ 
&c., the total number of alternatives being six, since three things 
can be taken in six different orders. We have here an excellent 
illustration of the fac t that the same final resultant is obtained, 
in whatever order the forces are combined 
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19. Equilibrium of Three Parallel Forces.—If three parallel forces, 
P, Q, R, applied to a rigid body, balance each other, the following 
conditions must be fulfilled:— Q 

1. The three lines of action AP, BQ, a £ 
CR, Fig. 5, must be in one plane. 
, 2. The two outside forces P, R, must 

act in the opposite direction to the 
middle force Q, and their sum must be 
equal to Q. 

3. Each force must be proportional to Fis- 5. 
the distance between the lines of action of the other two; that is, 
we must have 

2 = l | i m 
BC AC AB" ( 1 ) 

The figure shows that AC is the sum of AB and BC; hence it fol-
lows from these equations, that Q is equal to the sum of P and R, 
as above stated. 

20. Resultant of Two Parallel Forces.—Any two parallel forces 
being given, a third parallel force which will balance them can be 
found from the above equations; and a force equal and opposite to 
this will be their resultant. We may distinguish two cases. 

1. Let the two given forces be in the same direction. Then their 
resultant is equal to their sum, and acts in the same direction, along 
a line which cuts the line joining their points of application into 
two parts which are inversely as the forces. 

2. Let the two given forces be in opposite directions. Then their 
resultant will be equal to then- difference, and will act in the direc-
tion of the greater of the two forces, along a line which cuts the 
production of the line joining their points of application on the side 
of the greater force; and the distances of this point of section from 
the two given points of application are inversely as the forces. 

21. Centre of Two Parallel Forces.—In both cases, if the points of 
application are not given, but only the magnitudes of the forces and 
their lines of action, the magnitude and line of action of the resul-
tant are still completely determined; for all straight lines which are 
drawn across three parallel straight lines are cut by them in the 
same ratio; and we shall obtain the same result whatever points of 
application we assume. 

If the points of application are given, the resultant cut,« the line 
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joining them, or this line produced, in a definite point, whose posi-
tion depends only on the magnitudes of the given forces, and not at 
all on the angle which their direction makes with the joining line. 
This result is important in connection with centres of gravity. The 
point so determined is called the centre of the two parallel forces. 
If these two forces are the weights of two particles, the " centre" 
thus found 'is their centre of gravity, and the resultant force is the 
same as if the two particles were collected at this point. 

22. Moments of Resultant and of Components Equal.—The follow-
ing proposition is often useful. Let any straight line be drawn 
across the lines of action of two parallel forces Pj, P2 (Fig- 6). Let 

0 be any point on this line, and xlt x2 

Y fz the distances measured from 0 to the 
•I I points of section, distances measured 

in opposite directions being distin-
Flg-6- guishecl by opposite signs, and forces 

in opposite directions being also distinguished by opposite signs. 
Also let R denote the resultant of P! and P2, and x the distance 
from 0 to its intersection with the line; then we shall have 

Px Xi + P.. Ï ; : P. I . 

For, taking the standard case, as represented in Fig. 6, in which all 
the quantities are positive, we have OAx = xh OA2 = x.2, OB = x, 
and by § 19 or § 20 we have 

P i . AxB^Po . BA2, 
that is, 

Pi ( x - « 1 ) = P 2 (xa-x), 
whence 

(Px + P ^ P x a . + P . x * 
that is, 

R a ;=P l tfi + Ps x.z. (2) 

23. Any Number of Parallel Forces in One Plane—Equation (2) 
affords the readiest means of determining the line of action of the 
resultant of several parallel forces lying in one plane. For let 
P l5 P2, P3, &c., be the forces, R, the resultant of the first two forces 
Pi, P2. and R2 the resultant of the first three forces P1; P2, P3. Let 
a line be drawn across the lines of action, and let the distances of 
the points of section from an arbitrary point 0 on this line be 
expressed according to the following s c h e m e r -
Force P t P2 P3 R ; R2 

Distance x1 x2 x3 a, x9 
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Then, by equation (2) we have 

Ri a'i = P1 Xi + P2 x,. 

Also since R, is the resultant of Rx and P3, we have 

Ra = xi + P3 Xz, 

and substituting for the term Rx x v we have 

Rs Xi + P.. + x,. 

This reasoning can evidently be extended to any number of forces, 
so that we shall have finally 

Raj = sum of such terms as Pa;, 
where R denotes the resultant of all the forces, and is equal to their 
algebraic sum; while a; denotes the value of a for the point where 
the line of action of R cuts the fixed line. I t is usual to employ the 
Greek letter S to denote " the sum of such terms as." We may 
therefore write 

R = 2 (P) 
_ R ^ = 2 (Px) 

whence 
- 2 (P.i) 
* = 2 ( P I (3) 

24. Moment of a Force about a Point.—When the fixed line is at 
right angles to the parallel forces, the product Pa; is called the 
moment of the force P about the point 0 . More generally, the 
moment of a force about a point is the product of the force by the 
length of the perpendicular dropped upon it from the point. The 
above equations show that for parallel forces in one plane, the 
moment of the resultant about any point in the plane is the sum of 
the moments of the forces about the same point. 

If the resultant passes through 0 , the distance x is zero; whence 
it follows from the equations that the algebraical sum of the 
moments vanishes. 

The moment of a force about a point measures the tendency of 
the force to produce rotation about the point. If one point of a 
body be fixed, the body will turn in one direction or the other 
according as the resultant passes on one side or the other of this 
point (the direction of the resultant being supposed given). If the 
resultant passes through the fixed point, the body will be in equi-
librium. 

The moment Pa; of any force about a point, changes sign with P 
and also with x; thereby expressing (what' is obvious in itself) that 
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the direction in which the force tends to turn the body about the 
point will be reversed if the direction of P is reversed while its 
line of action remains unchanged, and will also be reversed if the 
line of action be shifted to the other side of the point while the 
direction of the force remains unchanged. 

25. Experimental Illustration.—Fig. 7 represents a simple appar-
atus (called the arithmetical lever) for illustrating the laws of par-

allel forces. The lever AB is suspended at its middle point by a 
cord, so that when no weights are attached it is horizontal. Equal 
weights P, P are hung at points A and B equidistant from the centre, 
and the suspending cord af ter being passed over a very freely mov-
ing pulley M, has a weight F hung at its other end sufficient to pro-
duce equilibrium. I t will be found that P' is equal to the sum 
of the two weights P together with the weight required to counter-
poise the lever itself. 

In the second figure, the two weights hung from the lever are not 
equal, but one of them is double of the other, P being hung at B, 
and 2 P at C; and it is necessary for equilibrium that the dis-
tance OB be double of the distance 0 0 . The weight P' required 

Fig. 7.—Composition of Parallel Forces. 
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to balance the system will now be 3 P together with the weight 
of the lever. 

26. Couple—There is one case of two parallel forces in opposite 
directions which requires special attention; that in which the two 
forces are equal. 

To obtain some idea of the effect of two such forces, let us first 
suppose them not exactly equal, but let their difference be very small 
compared with either of the forces. In this case, the resultant will 
be equal to this small difference, and its line of action will be at a 
great distance from those of the given forces. For in § 19 if Q is 
very little greater than P, so that Q-P, or R is only a small fraction 
of P, the equation shows that AB is only a small fraction 

of BO, or in other words that BO is very large compared with AB. 
If Q gradually diminishes until i t becomes equal to P, R will 

gradually diminish to zero; but while it diminishes, the product 
R . BO will remain constant, being always equal to P . AB. 

A very small force R at a very great distance would have 
sensibly the same moment round all points between A and B or 
anywhere in their neighbourhood, and the moment of R is always 
equal to the algebraic sum of the moments of P and Q. 

When Q is equal to P, they compose what is called a couple, and 
the algebraic sum of their moments about any point in their plane 
is constant, being always equal to P . AB, which is therefore called 
the moment of the couple. 

A couple consists of two equal cincl parallel forces in opposite 
directions applied to the same body. The distance between their 
lines of action is called the arm of the couple, and the product of 
one of the two equal forces by this arm is called the moment of the 
couple. 

27. Composition of Couples. Axis of Couple.—A couple cannot be 
balanced by a single force; but it can be balanced by any couple of 
equal moment, opposite in sign, if the plane of the second couple be 
either the same as that of the first or parallel to it. 

Any number of couples in the same or parallel planes are equiva-
lent to a single couple whose moment is the algebraic sum of theirs. 

The laws of the composition of couples (like those of forces) can 
be illustrated by geometry. 

Let a couple be represented by a line perpendicular to its plane, 
marked with an arrow according to the convention that if an 
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ordinary screw were made to turn in the direction in which the 
couple tends to turn, i t would advance in the direction in which the 
arrow points. Also let the length of the line represent the moment 
of the couple. Then the same laws of composition and resolution 
which hold for forces acting at a point will also hold for couples. 
A line thus drawn to represent a couple is called the axis of the 
couple. 

Just as any number of forces acting at a point are either in 
equilibrium or equivalent to a single force, so any number of couples 
applied to the same rigid body (no matter to what parts of it) are 
either in equilibrium or equivalent to a single couple. 

28. Resultant of Force and Couple in Same Plane—The resultant 
of a force and a couple in the same plane is a single force. For the 

couple may be replaced by another of equal 
t moment having its equal forces P, Q, each equal 
I | to the given force F, and the latter couple may 

^ then be turned about in its own plane and 
carried into such a position that one of its two 

forces destroys the force F, as represented in Fig. 8. There will 
then only remain the force P, which is equal and parallel to F. 

By reversing this procedure, we can show that a force P which 
does not pass through a given point A is equivalent to an equal and 
parallel force F which does pass through it, together with a couple; 
the moment of the couple being the same as the moment of the force 
P about A. 

29. General Resultant of any Number of Forces applied to a Rigid 
Body.—Forces applied to a rigid body in lines which do not meet 
in one point are not in general equivalent to a single force. By the 
process indicated in the concluding sentence of the preceding 
section, we can replace the forces by forces equal and parallel to 
them, acting at any assumed point, together with a number of 
couples. These couples can then be reduced (by the principles of 
§ 27) to a single couple, and the forces at the point can be replaced 
by a single force; so that we shall obtain, as the complete resultant, 
a single force applied at any point we choose to select, and a 
couple. 

We can in general make the couple smaller by resolving it into 
two components whose planes are respectively perpendicular and 
parallel to the force, and then compounding one of these components 
(the latter) with the force as explained in § 28, thus moving the 
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force parallel to itself without altering its magnitude. This is the 
greatest simplification that is possible. The result is that we have 
a single force and a couple whose plane is perpendicular to the 
force. Any combination of forces that can be applied to a rigid 
body is reducible to a force acting along one definite line and a 
couple in a plane perpendicular to this line. Such a combination 
of a force and couple is called a wench, and the " one definite line 
is called the axis of the wrench. The point of application of the 
force is not definite, but is any point of the axis. 

30. Application to Action and Reaction.—Every action of force 
that one body can exert upon another is reducible to a wrench, and 
the law of reaction is that the second body will, in every case, exert 
upon the first an equal and opposite wrench. The two wrenches 
will have the same axis, equal and opposite forces along this axis, 
and equal and opposite couples in planes perpendicular to it. 

31. Resolution the Inverse of Composition.—The process of finding 
the resultant of two or more forces is called composition. The 
inverse process of finding two or more forces which shall together 
be equivalent to a given force, is called resolution, and the two or 
more forces thus found are called components. 

The problem to resolve a force into two components along two 
given lines which meet i t in one point and are in the same plane 
with it, has a definite solution, which is obtained by drawing a 
triangle whose sides are parallel respectively to the given force and 
the required components. The given force and the required com-
ponents will be proportional to the sides of this triangle, each being-
represented by the side parallel to it. 

The problem to resolve a force into three components along three 
given lines which meet it in one point and are not in one plane, also 
admits of a definite solution. 

32. Rectangular Resolution.—In the majority of cases which 
occur in practice the required components are at right angles to each 
other, and the resolution is then said to be rectangular. When "the 
component of a force along a given l ine" is mentioned, without 
anything in the context to indicate the direction of the other 
component or components, i t is always to be understood that the 
resolution is rectangular. The process of finding the required 
component in this case is illustrated by Fig. 9. Let AB represent 
the given force F, and let AC be the line along which the com-
ponent of F is required. I t is only necessary to drop from B a 



perpendicular BC on this fine; AC will represent the required 
component. CB represents the other component, which, along with 

AC, is equivalent to the given force. If 
the total number of rectangular components, 
of which AC represents one, is to be three, 

c then the other two will lie in a plane per-
Fig. 9.—Component along a given pendicular to AC, and they can be found by 

Lu,e' again resolving CB. The magnitude of AC 
will be the same whether the number of components be two or three, 

AC 

and the component along AC will be F ^ or in trigonometrical 

language, F cos . BAC. 

We have thus the following rule:—The component of a given force 
along a given line is found by multiplying the force by the cosine 
of the angle between its own direction and that of the required 
component. 

CHAPTER I I I . 

CENTRE OF GRAVITY. 

33. Gravity is the force to which we owe the names "up" and 
" down." The direction in which gravity acts at any place is called 
the downward direction, and a line drawn accurately in this direc-
tion is called vertical; i t is the direction assumed by a plumb-line. 
A plane perpendicular to this direction is called horizontal, and is 
parallel to the surface of a liquid at rest. The verticals at different 
places are not parallel, but are inclined at an angle which is 
approximately proportional to the distance between the places. 
I t amounts to 180° when the places are antipodal, and to about 1' 
when their distance is one geographical mile, or to about 1" for 
every hundred feet. Hence, when we are dealing with the action 
of gravity on a body a few feet or a few hundred feet in length, 
we may practically regard the action as consisting of parallel 
forces. 

34. Centre of Gravity.—Let A and B be any two particles of a 
rigid body, let w1 be the weight of the particle A, and w.2 the weight 
of B. These weights are parallel forces, and their resultant divides 
the line AB in the inverse ratio of the forces. As the body is 
turned about into different positions, the forces ivx and w2 remain 
unchanged in magnitude, and hence the resultant cuts AB always 
in the same point. This point is called the centre of the parallel 
forces w1 and w.2, or the centre of gravity of the two particles A and 
B. The magnitude of the resultant will be wl+w2, and we may 
substitute i t for the two forces themselves; in other words, we may 
suppose the two particles A and B to be collected at their centre 
of gravity. We can now combine this resultant with the weight 
of a third particle of the body, and shall thus obtain a resultant 

passing through a definite point in the line which joins 
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CENTRE OF GRAVITY. 

33. Gravity is the force to which we owe the names "up" and 
" down." The direction in which gravity acts at any place is called 
the downward direction, and a line drawn accurately in this direc-
tion is called vertical; i t is the direction assumed by a plumb-line. 
A plane perpendicular to this direction is called horizontal, and is 
parallel to the surface of a liquid at rest. The verticals at different 
places are not parallel, but are inclined at an angle which is 
approximately proportional to the distance between the places. 
I t amounts to 180° when the places are antipodal, and to about 1' 
when their distance is one geographical mile, or to about 1" for 
every hundred feet. Hence, when we are dealing with the action 
of gravity on a body a few feet or a few hundred feet in length, 
we may practically regard the action as consisting of parallel 
forces. 

34. Centre of Gravity.—Let A and B be any two particles of a 
rigid body, let wl be the weight of the particle A, and w.2 the weight 
of B. These weights are parallel forces, and their resultant divides 
the line AB in the inverse ratio of the forces. As the body is 
turned about into different positions, the forces rvx and w2 remain 
unchanged in magnitude, and hence the resultant cuts AB always 
in the same point. This point is called the centre of the parallel 
forces and w.2, or the centre of gravity of the two particles A and 
B. The magnitude of the resultant will be wl+w2, and we may 
substitute i t for the two forces themselves; in other words, we may 
suppose the two particles A and B to be collected at their centre 
of gravity. We can now combine this resultant with the weight 
of a third particle of the body, and shall thus obtain a resultant 
wx-\-w2-\-w3, passing through a definite point in the line which joins 



the third particle to the centre of gravity of the first two. The first 
three particles may now be supposed to be collected at this point, 
and the same reasoning may be extended until all the particles have 
been collected at one point. This point will be the centre of gravity 
of the whole body. From the manner in which it has been ob-
tained, it possesses the property that the resultant of all the forces 
of gravity on the body passes through it, in every position in which 
the body can be placed. The resultant force of gravity upon a 
rigid body is therefore a single force passing through its centre 
of gravity. 

35. Centres of Gravity of Volumes, Areas, and Lines—If the body 
is homogeneous (that is composed of uniform substance throughout), 
the position of the centre of gravity depends only on the figure, and 
in this sense it is usual to speak of the centre of gravity of a figure. 
In like manner it is customary to speak of the centres of gravity 
of areas and lines, an area being identified in thought with a thin 
uniform plate, and a line with a thin uniform wire. 

I t is not necessary that a body should be rigid in order that it 
may have a centre of gravity. We may speak of the centre of 
gravity of a mass of fluid, or of the centre of gravity of a system 
of bodies not connected in any way. The same point which would 
be the centre of gravity if all the parts were rigidly connected, is 
still called by this name whether they are connected or not. 

36. Methods of Finding Centres of Gravity.—Whenever a homo-
geneous body contains a point which bisects all lines in the body 
that can be drawn through it, this point must be the centre of 
gravity. The centres of a sphere, a circle, a cube, a square, an 
ellipse, an ellipsoid, a parallelogram, and a parallelepiped, are ex-
amples. 

Again, when a body consists of a finite number of parts whose 
weights and centres of gravi ty are known, we may regard each part 
as collected at its own centre of gravity. 

When the parts are at all numerous, the final result will most 
readily be obtained by the use of the formula 

where P denotes the weight of any part, a: the distance of its centre 
of gravity from any plane, and x the distance of the centre of 
gravity of the whole from tha t plane. We have already in § 23 
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proved tins formula for the case in which the centres of gravity lie 
m one straight line and * denotes distance from a point in this line-
and it is not difficult, by the help of the properties of similar' 
triangles, to make the proof general. 

37. Centre of Gravity of a Triangle.-To find the centre of gravity 
of a triangle ABC (Fig. 10), we may begin by supposing it divided 
into narrow strips by lines (such as be) parallel to BC I t can be 
shown, by similar triangles, that each of these strips is bisected by 
the line AD drawn from A to D the A 

middle point of BC. But each strip may 
be collected at its own centre of gravity, 
that is at its own middle point; hence the 
whole triangle may be collected on the line 
AD; its centre of gravity must therefore 
be situated upon this line. Similar reason- B 

ing shows that it must lie upon the line Fig. io. 

BE drawn from B to the middle point of AC. I t is therefore the 
intersection of these two lines. If we join DE we can show that 
the triangles AGB, DGE, are similar, and that 

A G _ A B 

G D ~ D E ~ 

DG is therefore one third of DA. The centre of gravity of a 
triangle therefore lies upon the line joining any corner to the middle 
point of the opposite side, and is at one-third of the length of this 
line from the end where it meets that side. 

I t is worthy of remark that if three equal particles are placed at 
the corners of any triangle, they have the same centre of gravity as 
the triangle. For the two particles at B and C may be collected at 
the middle point D, and this double particle at D, together with the 
single particle at A, will have their centre of gravity at G, since G 
divides DA in the ratio of 1 to 2. 

38. Centre of Gravity of a Pyramid.—If a pyramid or a cone be 
divided into thin slices by planes parallel to its base, and a straight 
line be drawn from the vertex to the centre of gravity of the base, 
this line will pass through the centres of gravity of all the slices! 
since all the slices are similar to the base, and are similarly cut bv 
this line. J ~ J 

In a tetrahedron or triangular pyramid, if D (Fig. 11) be the 
centre of gravity of one face, and A be the corner opposite to this 
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face, the centre of gravi ty of the pyramid must lie upon the line 
A AD. In like manner, if E be the 
A centre of gravity of one face, the centre 

/ :V\ of gravity of the pyramid must lie 
/ ; \ \ upon the line joining E with the oppo-

/ j \ \ site corner B. I t must therefore be 
/ ; \ \ the intersection G of these two lines. 

/ i \ \ That they do intersect is otherwise 
/ g J A / \ \ obvious, for the lines AE, BD meet in 

/ Y \ \ C, the middle point of one edge of the 
y i / ^ J c \ pyramid, E being found by taking CE 

B ^ - . '••».-I one third of CA, and D by taking CD 
Fig. 11.—Centre of Gravity of Tetrahedron. Q n e third of CB. 

If D, E be joined, we can show that the joining line is parallel to 
BA, and that the triangles AGB, DGE are similar. Hence 

AG _ A B _ EC 
GD ~ DE ~ DC ~ 

That is, the line AD joining any corner to the centre of gravity of 
the opposite face, is cut in the ratio of 3 to 1 by the centre of gravity 
G of the triangle. D G is therefore one-fourth of DA, and the dis-
tance of the centre of gravity from any face is one-fourth of the 
distance of the opposite corner. 

A pyramid standing on a polygonal base can be cut up into tri-
angular pyramids standing on the triangular bases into which the 

A polygon can be divided, and having 
/ ¡ V \ the same vertex as the whole pyramid. 

/ \ \ The centres of gravity of these trian-
/ \\ \ gular pyramids are all at the same 

/ \\ \ perpendicular distance from the base, 
/ / I j \ namely at one-fourth of the distance 

/ / oi | \ of the vertex, which is therefore the 
/ 1 "¿-'V ... \ distance of the centre of gravity of 

/ ; \l \ the whole from the base. The centre 
/ ' \| of gravity of any pyramid is there-

-—i-"-""""^ fore found by joining the vertex to 
Fig. 12.—Centre of Gravity of Pyramid, c e n t r e Qf g r a v i t y 0 f t h e b a s e , a n d 

cutting off one-fourth of the joining line from the end where it meets 
the base. The same rule applies to a cone, since a cone may be 
regarded as a polygonal pyramid with a very large number of sides. 
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Fig. 13.—Equilibrium of a Body supported on a Horizontal 
Plane at three or more Points. 

39. If four equal particles are placed at the corners of a triangular 
pyramid, they will have the same centre of gravity as the pyramid. 
For three of them may, as we have seen (§ 37) be collected at the 
centre of gravity of one face; and the centre of gravity of the four 
particles will divide the line which joins this point to the fourth, in 
the ratio of 1 to 3. 

40. Condition of Standing or Falling.—When a heavy body stands 
on a base of finite area, 
and remains in equili-
brium under the action 
of its own weight and the 
reaction of this base, the 
vertical through its centre 
of gravity must fall with-
in the base. If the body 
is supported on three or 
more points, as in Fig. 13, 
we are to understand by 
the base the convex1 poly-
gon whose corners are the 
points of support; for if a body so supported turns over, it must 
turn about the line joining two of these points. 

41. Body supported at one Point—When a heavy body supported 
at one point remains at rest, the reaction of the point of support 
equilibrates the force of gravity. But two forces cannot be in 
equilibrium unless they have the same line of action; hence the ver-
tical through the centre of gravity of the body must pass through 
the point of support. If in toad of being supported at a point, 
the heavy body is supported by an axis about which it is free to 
turn, the vertical through the centre of gravity must pass through 
this axis. 

42. Stability and Instability.—When the point of support, or axis 
of support, is vertically below the centre of gravity, it is easily seen 
that, if the body were displaced a little to either side, the forces act-
ing upon it would turn it still fur ther away from the position 
of equilibrium. On the other hand, when the point or axis of sup-
port is vertically above the centre of gravity, the forces which would 

1 The word conrex is inserted to indicate that there must be 110 re-entrant angles. 
Any points of support which lie within the polygon formed by joining the rest, must be 
left out of account. 



act upon it if it were slightly displaced would tend to restore it. 
In the latter case the equilibrium is said to be stable, in the former 
unstable. 

When the centre of gravity coincides with the point of support, 
or lies upon the axis of support, the body 
will still be in equilibrium when turned 
about this point or axis into any other 
position. In this case the equilibrium is 
neither stable nor unstable but is called 
neutral. 

43. Experimental determination of Cen-
tre of Gravity.—In general, if we suspend 
a body by any point, in such a manner 
that i t is free to turn about this point, it 
will come to rest in a position of stable 
equilibrium. The centre of gravity will 
then be vertically beneath the point of 

Fig. W. Experimental Determination S u p p o r t . I f W e n O W S U S p e n d t h e b o d y 
of Centre of Gravity. . . , x , „ 

t rom another point, the centre of gravity 
will come vertically beneath this. The intersection of these two 
verticals will therefore be the centre of gravity (Fig. 14). 

44. To find the centre of gravity of a flat plate or board (Fig. 15), 
we may suspend it from a point near its circumfer-
ence, in such a manner that it sets itself in a ver-
tical plane. Let a plumb-line be at the same time 
suspended from the same point, and made to leave 
its trace upon the board by chalking and "snap-
ping it. Let the board now be suspended from 
another point, and the operation be repeated. The 
two chalk lines will intersect each other at that 
point of the face which is opposite to the centre 
of gravity; the centre of gravity itself being of 
course in the substance of the board. 

45. Work done against Gravity—When a heavy 
body is raised, work is said to be done against gravity, and the 
amount of this work is reckoned by multiplying together the weight 
of the body and the height through which it is raised. Horizontal 
movement does not count, and when a body is raised obliquely, only 
the vertical component of the motion is to be reckoned. 

Suppose, now, that we have a number of particles whose weights 

Fig. 15.—Centre of 
Gravity of Board. 
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are wx, w2, w3 &c., and let their heights above a given horizontal 
plane be respectively h h h2, h, &c. We know by equation (3), 
§ 23, that if h denote the height of their centre of gravity we 
have 

(% +W.. + &C.) h=Wi ki + w-2 h, + &c. (4) 

Let the particles now be raised into new positions in which their 
heights above the same plane of reference are respectively H}, H.„ 
H3 &C. The height H of their centre of gravity will now be such 
that 

(m>I+W2 + &C.) 5=10! H , + w 2 H2 + &C. (5) 

From these two equations, we find, by subtraction 

(wi+w4+ &e.) ( H - h ) = Wi (HJ-AO + W. (H2-A.,) + &C. (G) 

Now Iij—/¿J is the height through which the particle of weight w1 

has been raised; hence the work done against gravity in raising it is 
w i (Hj—/¿0 and the second member of equation (6) therefore 
expresses the whole amount of work done against gravity. But the 
first member expresses the work which would be done in raising all 
the particles through a uniform height H —A, which is the height 
of the new position of the centre of gravity above the old. The 
work done against gravity in raising any system of bodies will 
therefore be correctly computed by supposing all the system to be 
collected at its centre of gravity. For example, the work done in 
raising bricks and mortar from the ground to build a chimney, is 
equal to the total weight of the chimney multiplied by the height 
of its centre of gravity above the ground. 

46. The Centre of Gravity tends to Descend.—When the forces 
which tend to move a system are simply the weights of its parts, we 
can determine whether it is in equilibrium by observing the path in 
which its centre of gravity would travel if movement took place. 
If we suppose this path to represent a hard frictionless surface, and 
the centre of gravity to represent a heavy particle placcd upon it, 
the conditions of equilibrium will be the same as in the actual case. 
The centre of gravity tends to run down hill, just as a heavy particle 
does. There will be stable equilibrium if the centre of gravity is at 
the bottom of a valley in its path, and unstable equilibrium if it is 
at the top of a hill. When a rigid body turns about a horizontal 
axis, the path of its centre of gravity is a circle in a vertical plane. 
The highest and lowest points of this circle are the positions of the 
centre of gravity in unstable and stable equilibrium respectively; 



except when the axis traverses the centre of gravity itself, in which 
case the centre of gravity can neither rise nor fall, and the equili-
brium is neutral. 

A uniform sphere or cylinder lying on a horizontal plane is in 
neutral equilibrium, because its centre of gravity will neither be 
raised nor lowered by rolling. An egg balanced on its end as in 
Fig. 16, is in unstable equilibrium, because its centre of gravity is at 
the top of a hill which it will descend when the egg rolls to one side. 
The position of equilibrium shown in Fig. 17 is stable as regards 
rolling to left or right, because the path of its centre of gravity in 

Fig. 16.—Unstable Equilibrium. Fig. IT.—Stable Equilibrium. 

such rolling would be a curve whose lowest point is that now occu-
pied by the centre of gravity. As regards rolling in the direction at 
right angles to this, if the egg is a true solid of resolution, the equili-
brium is neutral. 

_ 47. Work done by Gravity.—When a heavy body is lifted, the 
lifting force does work against gravity. When it descends gravity 
does work upon it; and if it descends to the same position from 
which it was lifted, the work done by gravity in the descent is 
equal to the work done against gravity in the lifting; each being 
equal to the weight of the body multiplied, by the vertical displace-
ment of its centre of gravity. The tendency of the centre of gravity 
to descend is a manifestation of the tendency of gravity to do work; 
and this tendency is not peculiar to gravity. 

48. Work done by any Force.—A force is said to do work when its 
point of application moves in the direction of the force, or in any 
direction making an acute angle with this, so as to give a component 
displacement in the direction of the force; and the amount of work 
done is the product of the force by this component. If F denote 
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the force, a the displacement, and d the angle between the two, the 
work done by F is 

F a cos 6. 

which is what we obtain either by the above rule or by multiplying 
the whole displacement by the effective component of F, that is the 
component of F in the direction of the displacement. If the angle 
0 is obtuse, cos 0 is negative and the force F does negative work. If 
0 is a right angle F does no work. In this case F neither assists 
nor resists the displacement. When 0 is acute, F assists the dis-
placement, and would produce it if the body were constrained by 
guides which left it free to take this displacement and the directly 
opposite one, while preventing all others. 

If 8 is obtuse, F resists the displacement, and would produce the 
opposite displacement if the body were constrained in the manner 
just supposed. 

49. Principle of Work.—If any number of forces act upon a body 
which is only free to move in a particular direction and its opposite, 
we can tell in which of these two directions it will move by calcu-
lating the work which each force would do. Each force would do 
positive work when the displacement is in one direction, and nega-
tive work when it is in the opposite direction, the absolute amounts 
of work being the same in both cases if the displacements are equal. 
The body will upon the whole be urged in that direction which gives 
an excess of positive work over negative. If no such excess exists, 
but the amounts of positive and negative work are exactly equal, 
the body is in equilibrium. This principle (which has been called 
the principle of virtual velocities, but is better called the principle 
of work) is often of great use in enabling us to calculate the ratio 
which two forces applied in given ways to the same body must have 
in order to equilibrate each other. I t applies not only to the 
"mechanical powers" and all combinations of solid machinery, but 
also to hydrostatic arrangements; for example to the hydraulic 
press. The condition of equilibrium between two forces applied to 
any frictionless machine and tending to drive it opposite ways, is 
that in a small movement of the machine they would do equal and 
opposite amounts of work. Thus in the screw-press (Fig. 30) the 
force applied to one of the handles, multiplied by the distance 
through which this handle moves, will be equal to the pressure 
which this force produces at the foot of the screw, multiplied by the 
distance that the screw travels. 



This is on the supposition of no friction. A frietionless machine 
gives out the same amount of work which is spent in driving it. 
The effect of friction is to make the work given out less than the 
work put in. Much fruitless ingenuity has been expended upon 
contrivances for circumventing this law of nature and producing a 
machine which shall give out more work than is put into it. Such 
contrivances are called " perpetual motions." 

50. General Criterion of Stability.—If the forces which act upon 
a body and produce equilibrium remain unchanged in magnitude 
and direction when the body moves away from its position, and 
if the velocities of their points of application also remain unchanged 
in direction and in their ratio to each other, it is obvious that the 
equality of positive and negative work which subsists at the 
beginning of the motion will continue to subsist throughout the 
entire motion. The body will therefore remain in equilibrium 
when displaced. I ts equilibrium is in this case said to be neutral. 

If the forces which are in equilibrium in a given position of the 
body, gradually change in direction or magnitude as the body moves 
away from this position, the equality of positive and negative 
work will not in general continue to subsist, and the inequality will 
increase with the displacement. If the body be displaced with a 
constant velocity and in a uniform manner, the rate of doing work, 
which is zero at first, will not continue to be zero, but will have a 
value, whether positive or negative, increasing in simple proportion 
to the displacement. Hence it can be shown that the whole work 
done in a small movement is proportional to the square of the dis-
placement, for when we double the displacement we, at the same 
time, double the mean working force. 

If this work is positive, the forces assist the displacement and tend 
to increase i t ; the equilibrium must therefore have been unstable. 

On the other hand, if the work is negative in all possible displace-
ments from the position of equilibrium, the forces oppose the 
displacements and the equilibrium is stable. 

51. Illustration of Stability.—A good example of stable equili-
brium of this kind is furnished by Gravesande's apparatus (Fig. 3) 
simplified by removing the parallelogram and employing a string 
to support the three weights, one of them P" being fastened to it at 
a point A near its middle, and the others P, P' to its ends. The 
point A will take the same position as in the figure, and will return 
to it again when displaced. If we take hold of the point A and 
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move it m any direction whether in the plane of the strino- or out 
of i t we feel that at first there is hardly any resistance and the 
smallest force we can apply produces a sensible disturbance; but 
that as the displacement increases the resistance becomes greater. 
If we release the point A when displaced, it will execute oscillations 
which will become gradually smaller, owing to friction, and it will' 
finally come to rest in its original position of equilibrium. 

The centre of gravity of the three weights is in its lowest 
position when the system is in equilibrium, and when a small dis-
placement is produced the centre of gravity rises by an amount 
proportional to its square, so that a double displacement produces 
a quadruple rise of the centre of gravity. 

In this illustration the three forces remain unchanged, and the 
directions of two of them change gradually as the point A is moved. 
Whenever the circumstances of stable equilibrium are such that the 
forces make no abrupt changes either in direction or magnitude for 
small displacements, the resistance will, as in this case, be propor-
tional to the displacement (when small), and the work to the square 
of the displacement, and the system will oscillate if displaced and 
then left to itself. 

52. Stability where Forces vary abruptly with Position.—There 
are other cases of stable equilibrium which may be illustrated by 
the example of a book lying on a table. If we displace it by lifting-
one edge, the force which we must exert does not increase with the 
displacement, but is sensibly constant when the displacement is 
small, and as a consequence the work will be simply proportional 
to the displacement. The reason is, that one of the forces concerned 
in producing equilibrium, namely, the upward pressure of the table, 
changes per saltum at the moment when the displacement begins' 
In applying the principle of work to such a case as this, we must 
employ, instead of the actual work done by the force which changes 
abruptly, the work which it would do if its magnitude and direction 
remained unchanged, or only changed gradually. 

53. Illustrations from Toys.—The stability of the "balancer" 
(Fig. 18) depends on the fact that, owing to the weight of the two 
leaden balls, which are rigidly attached to the figure by stiff wires, 
the centre of gravity of the whole is below the point of support. 
If the figure be disturbed it oscillates, and finally comes to rest in a 
position in which the centre of gravity is vertically under the toe 
on which the figure stands. 



Fig. 19.—Tumblers. 

of a system is practically unstable when the displacements which 
it is likely to receive from accidental disturbances lie beyond its 
limits of stability. 

The " tumbler" (Fig. 19) consists of a light figure attached to a 
hemisphere of lead, the centre of gravity of the whole being 

between the centre of gravity of 

ithe hemisphere and the centre of 
the sphere to which it belongs. 
When placed upon a level table, 
the lowest position of the centre 
of gravity is that in which the 
figure is upright, and it accord-
ingly returns to this position when 
displaced. 

54. Limits of Stability.—In the 
foregoing discussion we have em-
ployed the term " stabili ty" in 
its strict mathematical sense. But 
there are cases in which, though 
small displacements would merely 
produce small oscillations, larger 
displacements would cause the 

¡¡¡¡¡I body, when left to itself, to fall 
y - entirely away from the given 

position of equilibrium. This may 
Fig. is.-Balancer. be expressed by saying that the 

equilibrium is stable for displacements lying within certain limits, 
but unstable for displacements beyond these limits. The equilibrium 

CHAPTER IV. 

THE MECHANICAL POWERS. l 

55. We now proceed to a few practical applications of the fore-
going principles; and we shall begin with the so-called " mechanical 
powers," namely, the lever, the wheel and axle, the pulley, the 
inclined plane, the wedge, and the screw. 

56. Lever.—Problems relating to the lever are usually most con-
veniently solved by taking moments round the fulcrum. The 
general condition of equilibrium is, that the moments of the power 
and the weight about the fulcrum must be in opposite directions, 
and must be equal. When the power and weight act in parallel 
directions, the conditions of equilibrium are precisely those of three 
parallel forces ( § 19), the third force being the reaction of the 
fulcrum. 

I t is usual to distinguish three " orders " of lever. In levers of 
the first order (Fig. 20) the fulcrum is between the power and the 

Three Orders of Lever. 

weight. In those of the second order (Fig. 21) the weight is 
between the power and the fulcrum. I n those of the third order 
(Fig. 22) the power is between the weight and the fulcrum. 

I n levers of the second order (supposing the forces parallel), the 
weight is equal to the sum of the power and the pressure on the 
fulcrum; and in levers of the third order, the power is equal to 
the sum of the weight and the pressure on the fulcrum; since 
the middle one of three parallel forces in equilibrium must always 
be equal to the sum of the other two. 



Fig. 19.—Tumblers. 

of a system is practically unstable when the displacements which 
it is likely to receive from accidental disturbances lie beyond its 
limits of stability. 

The " tumbler" (Fig. 19) consists of a light figure attached to a 
hemisphere of lead, the centre of gravity of the whole being 

between the centre of gravity of 

ithe hemisphere and the centre of 
the sphere to which it belongs. 
When placed upon a level table, 
the lowest position of the centre 
of gravity is that in which the 
figure is upright, and it accord-
ingly returns to this position when 
displaced. 

54. Limits of Stability.—In the 
foregoing discussion we have em-
ployed the term " stabili ty" in 
its strict mathematical sense. But 
there are cases in which, though 
small displacements would merely 
produce small oscillations, larger 
displacements would cause the 

¡¡¡¡¡I body, when left to itself, to fall 
y - entirely away from the given 

position of equilibrium. This may 
Fig. is.-Balancer. be expressed by saying that the 

equilibrium is stable for displacements lying within certain limits, 
but unstable for displacements beyond these limits. The equilibrium 

CHAPTER IV. 

THE MECHANICAL POWERS. l 

55. We now proceed to a few practical applications of the fore-
going principles; and we shall begin with the so-called " mechanical 
powers," namely, the lever, the wheel and axle, the pulley, the 
inclined plane, the wedge, and the screw. 

56. Lever.—Problems relating to the lever are usually most con-
veniently solved by taking moments round the fulcrum. The 
general condition of equilibrium is, that the moments of the power 
and the weight about the fulcrum must be in opposite directions, 
and must be equal. When the power and weight act in parallel 
directions, the conditions of equilibrium are precisely those of three 
parallel forces ( § 19), the third force being the reaction of the 
fulcrum. 

I t is usual to distinguish three " orders " of lever. In levers of 
the first order (Fig. 20) the fulcrum is between the power and the 

Three Orders of Lever. 

weight. In those of the second order (Fig. 21) the weight is 
between the power and the fulcrum. I n those of the third order 
(Fig. 22) the power is between the weight and the fulcrum. 

I n levers of the second order (supposing the forces parallel), the 
weight is equal to the sum of the power and the pressure on the 
fulcrum; and in levers of the third order, the power is equal to 
the sum of the weight and the pressure on the fulcrum; since 
the middle one of three parallel forces in equilibrium must always 
be equal to the sum of the other two. 
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57. Arms.—The arms of a lever are the two portions of it inter-
mediate, respectively, between the fulcrum and the power, and 
between the fulcrum and the weight. If the lever is bent, or if, 
though straight, it is not at right angles to the lines of action of the 
power and weight, i t is necessary to distinguish between the arms 
of the lever as above defined (which are parts of the lever), and the 
arms of the power and weight regarded as forces which have 
moments round the fulcrum. In this latter sense (which is always 
to be understood unless the contrary is evidently intended), the 
arms are the perpendiculars dropped from the fulcrum upon the 
lines of action of the power and weight. 

58. Weight of Lever.—In the above statements of the conditions 
of equilibrium, we have neglected the weight of the lever itself. 
To take this into account, we have only to suppose the whole 
weight of the lever collected at its centre of gravity, and then take 
its moment round the fulcrum. We shall thus have three moments 
to take account of, and the sum of the two that tend to turn the 
lever one way, must be equal to the one that tends to turn it the 
opposite way. 

59. Mechanical Advantage.—Every machine when in action serves 
to transmit work without altering its amount; but the force which 
the machine gives out (equal and opposite to what is commonly 
called the weight) may be much greater or much less than that by 
which it is driven (commonly called the power). When it is 
greater, the machine is said to confer mechanical advantage, and 
the mechanical advantage is measured by the'ratio of the weight to 
the power for equilibrium. In the lever, when the power has a 
longer arm than the weight, the mechanical advantage is equal to 
the quotient of the longer arm by the shorter. 

60. Wheel and Axle—The wheel and axle (Fig. 23) may be 
regarded as an endless lever. The condition of equili-
brium is at once given by taking moments round the 
common axis of the wheel and axle ( § 24). If we 
neglect the thickness of the ropes, the condition is that 
the power multiplied by the radius of the wheel must 
equal the weight multiplied by the radius of the axle; 
but it is more exact to regard the lines of action of the 

F'g- 23. two forces as coinciding with the axes of the two ropes, 
so that each of the two radii should be increased by half the thick-
ness of its own rope. If we neglect the thickness of the ropes, the 
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mechanical advantage is the quotient of the radius of the wheel by 
the radius of the axle. 

61. Pulley.—A pulley, when fixed in such a way that it can only 
turn about a fixed axis (Fig. 24), confers no mechanical advantage. 
I t may be regarded as an endless lever of the first order with its 
two arms equal. 

The arrangement represented in Fig. 25 gives a mechanical 
advantage of 2; for the lower or movable pulley may be regarded 
as an endless lever of the second order, in which the arm of the 
power is the diameter of the pulley, and the arm of the weight is 

-¿SL. 
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F i g . 24. Fig. 25. Fig. 26. Fig. 27. 

half the diameter. The same result is obtained by employing the 
principle of work; for if the weight rises 1 inch, 2 inches of slack 
are given over, and therefore the power descends 2 inches. 

62. In Fig. 26 there are six pulleys, three at the upper and three 
at the lower block, and one cord passes round them all. All por-
tions of this cord (neglecting friction) are stretched with the same 
force, which is equal to the power; and six of these portions, parallel 
to one another, support the weight. The power is therefore one-
sixth of the weight, or the mechanical advantage is 6. 

63. In the arrangement represented in Fig. 27, there are three 
movable pulleys, each hanging by a separate cord. The cord which 
supports the lowest pulley is stretched with a force equal to half 
the weight, since its two parallel portions jointly support the weight. 
The cord which supports the next pulley is stretched with a force 
half of this, or a quarter of the weight; and the next cord with a 
force half of this, or an eighth of the weight; but this cord is 
directly attached to the power. Thus the power is an eighth of the 



weight, or the mechanical advantage is 8. If the weight and the 
block1 to which it is attached rise 1 inch, the next block rises 2 
inches, the next 4, and the power moves through 8 inches. Thus, the 
work done by the power is equal to the work done upon the weight. 

In all this reasoning we neglect the weights of the blocks them-
selves; but it is not difficult to take them into account when 
necessary. 

64. Inclined Plane.—We now come to the inclined plane. Let 
AB (Fig. 28) be any portion of such a plane, and let AC and BC be 

drawn vertically and horizontally. Then AB 
is called the length, AC the height, and CB 

/ the base of the inclined plane. The force of 
c ~~T~I B gravity upon a heavy body M resting on the 

, p plane, may be represented by a vertical line 
Fig. 2$. MP, and may be resolved by the parallelogram 

of forces (§ 16) into two components, MT, MN, the former parallel 
and the latter perpendicular to the plane. A force equal and oppo-
site to the component MT will suffice to prevent the body from slip-
ping down the plane. Hence, if the power act parallel to the plane, 
and the weight be that of a heavy body resting on the plane, the 
power is to the weight as MT to MP; but the two triangles MTP 
and ACB are similar, since the angles at M and A are equal, and the 
angles at T and C are right angles; hence MT is to MP as AC to 
AB, that is, as the height to the length of the plane. 

65. The investigation is rather easier by the principle of work 
(§ 49). The work done by the power in drawing the heavy 
body up the plane, is equal to the power multiplied by the 
length of the plane. But the work done upon the weight is equal 
to the weight multiplied by the height through which it is raised, 
that is, by the height of the plane. Hence we have 

Power x length of plane = weight X height of plane; or 
power : we igh t : : height of plane : length of plane. 

66. If, instead of acting parallel to the plane, the power acted 
parallel to the base, the work done by the power would be the 
product of the power by the base; and this must be equal to the 
product of the weight by the height; so that in this case the con-
dition of equilibrium would be— 

1 The "pul ley" is the revolving wheel. The pulley, together with the frame in which 
it is inclosed, constitute the " block." 
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Power : weight : : height of plane : base of plane. 
67. Wedge.—In these investigations we have neglected friction. 

The wedge may be regarded as a case of the inclined plane; , but its 
practical action depends to such a large extent upon friction and 
impact1 that we cannot profitably discuss it here. 

68. Screw.—The screw (Fig. 29) is also a case of the inclined 
plane. The length of one convolution of the thread is the length 
of the corresponding inclined plane, the step of the screw, or distance 
between two successive convolutions (measured parallel to the axis 
of the screw), is the height of the plane, and the circumference of 

29. F i g . 30. 

the screw is the base of the plane. This is easily shown by cutting 
out a right-angled triangle in paper, and bending it in cylindrical 
fashion so that its base forms a circle. 

69. Screw Press.—In the screw press (Fig. 30) the screw is turned 
by means of a lever, which gives a great increase of mechanical 
advantage. In one complete revolution, the pressures applied to the 
two handles of the lever to turn it, do work equal to their sum 
multiplied by the circumference of the circle described (approxi-
mately) by either handle (we suppose the two handles to be equi-
distant from the axis of revolution); and the work given out by the 
machine, supposing the resistance at its lower end to be constant, is 
equal to this resistance multiplied by the distance between the 
threads. These two products must be equal, friction being neglected. 

1 An impact (for example a blow of a hammer) may be regarded as a very great (and 
variable) force acting for a very short time. The magnitude of an impact is measured 
by the momentum which it generates in the body struck. 



CHAPTER V. 

THE BALANCE. 

J 0 ' ^ ® 1 Description of the Balance . - In the common balance 
(hig. 31) there is a stiff piece of metal, A B, called the beam, which 

turns about the sharp edge 
0 of a steel wedge form-
ing part of the beam and 
resting upon two hard and 
smooth supports. There are 
two other steel wedges at 
A and B, with their edges 
upwards, and upon these 
edges rest the hooks for 
supporting the scale pans. 
The three edges (called 
knife-edges) are parallel to 

_ °ne another and perpen-
SaBS dicular to the length of the 

FIG. 3I.—BALANCE. beam, and are very nearly 

m n „ in one plane. 
»1. Qualities Eequ.site.-The qualities r e q u ^ i t e i n a ^ are: 

w i t i W f ; t l w t i 8 ' t h a t ; t * * m t h e 

.vime result in successive weio-hino-« nf +l->0 v i m , . ® 
chiefly on the trueness of the k n X e d ^ e s ^ ^ ^ 

2. That i t be just. This requires that the distances A O O B KP 
equal, and also that the beam remain horizon a when t ' 
empty. Any inequality in the distances A 0 0 R 1 5 T ?*! 
by putting equal (and tolerably h e a ~ S t s ^ t T L t " 
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moments if they are unequal, and the greater moment will prepon-
derate. 

3. Delicacy or sensibility (that is, the power of indicating in-
equality between two weights even when their difference is very 
small). 

This requires a minimum of friction, and a very near approach to 
neutral equilibrium (§ 40). I n absolutely neutral equilibrium, the 
smallest conceivable force is sufficient to produce a displacement to 
the full limit of neutrality; and in barely stable equilibrium a small 
force produces a large displacement. The condition of stability is 
that if the weights supported at A and B be supposed collected at 
these edges, the centre of gravity of the system composed of the 
beam and these two weights shall be below the middle edge 0 . The 
equilibrium would be neutral if this centre of gravity exactly coin-
cided with 0 ; and it is necessary as a condition of delicacy that its 
distance below 0 be very small. 

4. Facility for weighing quickly is desirable, but must sometimes 
be sacrificed when extreme accuracy is required. 

The delicate balances used in chemical analysis are provided with 
a long pointer attached to the beam. The end of this pointer moves 
along a graduated arc as the beam vibrates; and if the weights in the 
two pans are equal, the excursions of the pointer on opposite sides 
of the zero point of this arc will also be equal. Much time is con-
sumed in watching these vibrations, as they are very slow; and the 
more nearly the equilibrium approaches to neutrality, the slower they 
are. Hence quick weighing and exact weighing are to a certain ex-
tent incompatible. 

72. Double Weighing.—Even if a balance be not just, yet if it be 
consistent with itself, a correct weighing can be made with i t in the 
following manner:—Put the body to be weighed in one pan, and 
counterbalance it with sand or other suitable material in the other. 
Then remove the body and put in its place such weights as are just 
sufficient to counterpoise the sand. These weights are evidently 
equal to the weight of the body. This process is called double 
weighing, and is often employed (even with the best balances) when 
the greatest possible accuracy is desired. 

73. Investigation of Sensibility.—Let A and B (Fig. 32) be the 
points from which the scale-pans are suspended, 0 the axis about 
which the beam turns, and G the centre of gravity of the beam. If 
when the scale-pans are loaded with equal weights, we put into one 
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of them an excess of weight p, the beam will become inclined, and 
will take a position such as A'B', turning through an angle which 
we will call a, and which is easily calculated. 

In fact let the two forces P and P + p act at A' and B' respec-
tively, where P denotes the less of the two weights, including the 

weight of the pan. Then the two 
forces P destroy each other in conse-
quence of the resistance of the axis 
0 ; there is left only the force p 
applied at B', and the weight TT of 
the beam applied at G', the new 
position of the centre of gravity. 
These two forces are parallel, and are 
in equilibrium about the axis 0 , that 
is, their resultant passes through the 

Fig"32" point 0 . The distances of the points 
of application of the forces from a vertical through 0 are therefore 
inversely proportional to the forces themselves, which gives the 
relation 

t t . G ' R = j p . B ' L . 

But if we call half the length of the beam I, and the distance OG r 
we have 

G ' R = r sin a, B'L = I cos a. 

A' K 

0 
1 r 

Pi J I 

1 
R 1 
G 

i i L . . . 

1 1 X 1 I 
11* 

whence irr sin a = pi cos a, and consequently 

,-vl tan 
7 I T 

(a) 

The formula (a) contains the entire theory of the sensibility of the 
balance when properly constructed. We see, in the first place, that 
tan « increases with the excess of weight p, which was evident be-
forehand. We see also that the sensibility increases as I increases 
and as TT diminishes, or, in other words, as the beam becomes longer 
and lighter. At the same time it is obviously desirable that, under. 
the action of the weights employed, the beam should be stiff ¡nough 
to undergo no sensible change of shape. The problem of the balance 
then consists in constructing a beam of the greatest possible length 
and lightness, which shall be capable of supporting the action* of 
given forces without bending. 

Fortin, whose balances are justly esteemed, employed for his beams 
bars of steel placed edgewise; he thus obtained great rigidity, but 

SENSIBILITY. 37 

certainly not all the lightness possible. At present the makers of 
balances employ in preference beams of copper or steel made in the 
form of a frame, as shown in Fig 33. They generally give them the 
shape of a very elongated lozenge, the sides of which are connected 
by bars variously arranged. The determination of the best shape is, 
in fact, a special problem, and is an application on a small scale of 
that principle of applied mechanics which teaches us that hollow 
pieces have greater resisting power in proportion to their weight 
than solid pieces, and consequently, for equal resisting power, the 
former are lighter than the latter. Aluminium, which with a rigidity 
nearly equal to that of copper, has less than one-fourth of its density, 
seems naturally marked out as adapted to the construction of beams. 
I t has as yet, however, been little used. 

The formula (a) shows us, in the second place, tha t the sensibility 
increases as r diminishes; that is, as the centre of gravity approaches 
the centre of suspension. These two points, however, must not coin-
cide, for in that case for any excess of weight, however small, the 
beam would deviate from the horizontal as far as the mechanism 
would permit, and would afford no indication of approach to equality 
in the weights. With equal weights it would remain in equilibrium 
in any position. In virtue of possessing this last property, such a 
balance is called indifferent. Practically the distance between the 
centre of gravity and the point of suspension must not be less than 
a certain amount depending on the use for which the balance is 
designed. The proper distance is determined by observing what 
difference of weights corresponds to a division of the graduated arc 
alone which the needle moves. If , for example, there are 20 divi-
s i o n s ^ each side of zero, and if 2 milligrammes are necessary for 
the total displacement of the needle, each division will correspond to 
an excess of weight of A or TV of a milligramme. That this may 
be the case we must evidently have a suitable value of r, and the 
maker is enabled to regulate this value with precision by means of 
the screw which is shown in the figure above the beam, and which 
enables him slightly to vary the position of the centre of gravity. 

74. Weighing with Constant Load.—In the above analysis we have 
supposed that the three points of suspension of the beam and of the 
two scale-pans are in one straight line; in which case the value of 
tan a does not include P, that is, the sensibility is independent of the 
weio-ht in the pans. This follows from the fact that the resultant 
of the two forces P passes through 0 , and is thus destroyed, because 



the axis is fixed. This would not be the case if, for example, the 
points of suspension of the pans were above tha t of the beam; in 
this case the point of application of the common load is above the 
point 0 , and, when the beam is inclined, acts in the same direction 
as the excess of weight; whence the sensibility increases with the 
load up to a certain limit, beyond which the equilibrium becomes 
unstable.1 On the other hand, when the points of suspension of the 
pans are below that of the beam, the sensibility increases as the load 
diminishes, and, as the centre of gravity of the beam may in this 
case be above the axis, equilibrium may become unstable when the 
load is less than a certain amount. This variation of the sensibility 
with the load is a serious disadvantage; for, as we have jus t shown 
the displacement of the needle is used as the means of estimating 
weights, and for this purpose we must have the same displacement 
corresponding to the same excess of weight. If we wish to employ 

t Ï l o a f Î C a b ° r c e m e n t s , we should weigh with a con-
of d l h l i ° d ° f d ° i n S so> constitutes a kind 

load subdivided into a number of ^ S ^ £ ™ 

1 This is an illustration of the general Drinoml« v, , 
sophical apparatus, that a maximum o f L S i i f a ^ o f P M ° -
is, a very near approach to instability. Th ^ Z r o l ' • " T 1 
sive slowness in the oscillations which take p C e a w X " b-V eXCeS" 

place about the position of equilibrium. 

Pig. 33—Beam of Balance. 
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to be weighed is placed in this lat ter pan, we must, in order to main-
tain equilibrium, remove a certain number of weights, which evi-
dently represent the weight of the body. 

W e may also remark that, str ictly speaking, the sensibility always 
depends upon the load, which necessarily produces a variation in the 
friction of the axis of suspension. Besides, it follows from the nature 

Pig. 34._Balance for Purposes of Accuracy. 

of bodies tha t there is no system t h a t does not yield somewhat even 
to the most feeble action. For these reasons, there is a decided 
advantage in operating wi th constant load. 

75. Details of Construction—A fundamental condition of the cor-
rectness of the balance is, tha t t he weight of each pan and of the 
load which it contains should always act exactly at the same point, 
and therefore a t the same distance from the axis of suspension. 
This important result is at tained by different methods. The arrange-
ment represented in Fig. 33 is one of the most effectual. At the 



extremities of the beam are two knife-edges, parallel to the axis of 
rotation, and facing upwards. On these knife-edges rests, by a 
hard plane surface of agate or steel, a stirrup, the front of which 
has been taken away in the figure. On the lower part of the stirrup 
rests another knife-edge, at right angles to the former, the two beinpr 
together equivalent to a universal joint supporting the scale-pan and 
its contents. By this arrangement, whatever may be the position 
of the weights, their action is always reduced to a vertical force act-
ing on the upper knife-edge. 

Fig. 34 represents a balance of great delicacy, with the glass 
case that contains it. At the bottom is seen the extremity of a 
lever, which enables us to raise the beam, and thus avoid wearing 
the knife-edge when not in use. A t the top may be remarked an 
arrangement employed by some makers, consisting of a horizontal 
graduated circle, on which a small metallic index can be made to 
travel; its different displacements, whose value can be determined 
once for all, are used for the final adjustment to produce exact 
equilibrium. 

73. Steelyard. The steelyard (Fig. 35) is an instrument for 
weighing bodies by means of a single weight, P, which can be huno-

© 

at any point of a 
graduated arm OB. 

/ I As P is moved fur ther 
I A § from the fulcrum O, ' 
W / its moment round 0 

¥ increases, and there-
\ , j j M 2 fore the weight which 
r~ — — " ' " S s L ^ s s m u s t be hung from 

| the fixed point A to 
/ \ j k counterbalance it in-

J L \ j r creases. Moreover, 
^ l l P ^ equal movements of 

Kg. 35. P along the arm pro-
duce equal additions 

to its moment, and equal additions to the weight at A produce 
equal additions to the opposing moment. Hence the divisions 
on the arm (which indicate the weight in the pan at A) must be 
equidistant. 

CHAPTER YI. 

FIRST PRINCIPLES OF KINETICS. 

77. Principle of Inert ia—A body not acted on by any forces, or 
only acted on by forces which are in equilibrium, will not commence 
to move; and if it be already in motion with a movement of pure 
translation, it will continue its velocity of translation unchanged, so 
that each of its points will move in a straight line with uniform 
velocity. This is Newton's first law of motion, and is stated by him 
in the following terms:— 

" Every body continues in its state of rest or of uniform motion 
in a straight line, except in so far as i t is compelled by impressed 
forces to change that state." 

The tendency to continue in a state of rest is manifest to the most 
superficial observation. The tendency to continue in a state of 
uniform motion can be clearly understood from an attentive study of 
facts. If, for example, we make a pendulum oscillate, the amplitude 
of the oscillations slowly decreases and at last vanishes altogether. 
This is because the pendulum experiences resistance from the air 
which it continually displaces; and because the axis of suspension 
rubs on its supports. These two circumstances combine to produce 
a diminution in the velocity of the apparatus until it is completely 
annihilated. If the friction at the point of suspension is diminished 
by suitable means, and the apparatus is made to oscillate in vacuo, 
the duration of the motion will be immensely increased. 

Analogy evidently indicates that if it were possible to suppress 
entirely these two causes of the destruction of the pendulum's velo-
city, its motion would continue for an indefinite time unchanged. 

This tendency to continue in motion is the cause of the effects 
which are produced when a carriage or railway train is suddenly 
stopped. The passengers are thrown in the direction of the motion, 



extremities of the beam are two knife-edges, parallel to the axis of 
rotation, and facing upwards. On these knife-edges rests, by a 
hard plane surface of agate or steel, a stirrup, the front of which 
has been taken away in the figure. On the lower part of the stirrup 
rests another knife-edge, at right angles to the former, the two beinp-
together equivalent to a universal joint supporting the scale-pan and 
its contents. By this arrangement, whatever may be the position 
of the weights, their action is always reduced to a vertical force act-
ing on the upper knife-edge. 

Fig. 34 represents a balance of great delicacy, with the glass 
case that contains it. At the bottom is seen the extremity of a 
lever, which enables us to raise the beam, and thus avoid wearing 
the knife-edge when not in use. A t the top may be remarked an 
arrangement employed by some makers, consisting of a horizontal 
graduated circle, on which a small metallic index can be made to 
travel; its different displacements, whose value can be determined 
once for all, are used for the final adjustment to produce exact 
equilibrium. 

73. Steelyard. The steelyard (Fig. 35) is an instrument for 
weighing bodies by means of a single weight, P, which can be huno-

© 

at any point of a 
graduated arm OB. 

/ I As P is moved fur ther 
I A § fr°m the fulcrum O, ' 
W / its moment round 0 

¥ increases, and there-
\ , j j M 2 fore the weight which 
r~ — — " ' " S s L ^ s s m u s t be hung from 

| the fixed point A to 
/ \ j k counterbalance it in-

J L \ j r creases. Moreover, 
^ l l P ^ equal movements of 

Kg. 35. P along the arm pro-
duce equal additions 

to its moment, and equal additions to the weight at A produce 
equal additions to the opposing moment. Hence the divisions 
on the arm (which indicate the weight in the pan at A) must be 
equidistant. 

CHAPTER YI. 

FIRST PRINCIPLES OF KINETICS. 

77. Principle of Inertia.—A body not acted on by any forces, or 
only acted on by forces which are in equilibrium, will not commence 
to move; and if it be already in motion with a movement of pure 
translation, it will continue its velocity of translation unchanged, so 
that each of its points will move in a straight line with uniform 
velocity. This is Newton's first law of motion, and is stated by him 
in the following terms:— 

" Every body continues in its state of rest or of uniform motion 
in a straight line, except in so far as i t is compelled by impressed 
forces to change that state." 

The tendency to continue in a state of rest is manifest to the most 
superficial observation. The tendency to continue in a state of 
uniform motion can be clearly understood from an attentive study of 
facts. If, for example, we make a pendulum oscillate, the amplitude 
of the oscillations slowly decreases and at last vanishes altogether. 
This is because the pendulum experiences resistance from the air 
which it continually displaces; and because the axis of suspension 
rubs on its supports. These two circumstances combine to produce 
a diminution in the velocity of the apparatus until it is completely 
annihilated. If the friction at the point of suspension is diminished 
by suitable means, and the apparatus is made to oscillate in vacuo, 
the duration of the motion will be immensely increased. 

Analogy evidently indicates that if it were possible to suppress 
entirely these two causes of the destruction of the pendulum's velo-
city, its motion would continue for an indefinite time unchanged. 

This tendency to continue in motion is the cause of the effects 
which are produced when a carriage or railway train is suddenly 
stopped. The passengers are thrown in the direction of the motion, 
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in virtue of the velocity which they possessed at the moment when 
the stoppage occurred. If it were possible to find a brake sufficiently 
powerful to stop a train suddenly at full speed, the effects of such a 
stoppage would be similar to the effects of a collision. 

Inertia is also the cause of the severe falls which are often received 
in alighting incautiously from a carriage in motion; all the particles 
of the body have a forward motion, and the feet alone being reduced 
to rest, the upper portion of the body continues to move, and is thus 
thrown forward. 

When we fix the head of a hammer on the handle by striking the 
end of the handle on the ground, we utilize the inertia of matter. 
The handle is suddenly stopped by the collision, and the head con-
tinues to move for a short distance in spite of the powerful resist-
ances which oppose it. 

78. Second Law of Motion.—Newton's second law of motion is 
that " Change of motion is proportional to the impressed force and 
is in the direction of that force." 

Change of motion is here spoken of as a quantity, and as a directed 
quantity. In order to understand how to estimate change of motion, 
we must in the first place understand how to compound motions. 

When a boat is sailing on a river, the motion of the boat relative 
to the shore is compounded of its motion relative to the water and 
the motion of the water relative to the shore. If a person is walk-
ing along the deck of the boat in any direction, his motion relative 
to the shore is compounded of three motions, namely the two above 
mentioned and his motion relative to the boat. 

Let X, Y and Z be any three bodies or systems. The motion of 
r e l a t l . v e t 0 c o m p o u n d e d w i t h t h e m o t i o n o f Y r e l i l t i v e to Z, is 

the motion of X relative to Z. This is to be taken as the definition 
of what is meant 
by compounding 
two motions; and it 

Fi , 36. Composition- of Motions. ^ ^ 
t m n „ ,. to the result that 
two rectilinear motions are compounded by the parallelogram law. 
For if a body moves along the deck of a ship from 0 to A (Fie 30) 
and the ship m the meantime advances through the distan e OB, it 

I of T V ' -n T L * ^ P a r a l l ^ a m OBCA, the po nt 
A of the shrp wi 1 be brought to C, and the movement of the body 
in space will be from 0 to C. If the motion along OA is u n i W 
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and the motion of the ship is also uniform, the motion of the 
body through space will be a uniform motion along the diagonal 
OC. Hence, if two component velocities be represented by two lines 
drawn from a point, and a parallelogram be constructed on these 
lines, its diagonal will represent the resultant velocity. 

I t is obvious that if OA in the figure represented the velocity of 
the ship and OB the velocity of the body relative to the ship, we 
should obtain the same resultant velocity OC. This is a general 
law; the interchanging of velocities which are to be compounded 
does not affect their resultant. 

Now suppose the velocity OB to be changed into the velocity OC, 
what are we to regard as the change of velocity? The change of 
velocity is that velocity which compounded with OB would give OC 
It is therefore OA. The same force which, in a given time, acting 
always parallel to itself, changes the velocity of a body from OB to 
OC, would give the body the velocity OA if applied to it for the same 
time commencing from rest. Change of motion, estimated in this 
way, depends only on the acting force and the body acted on by the 
force; it is entirely independent of any previous motion which the 
body may possess. No experiments on forces and motions inside a 
carriage or steamboat which is travelling with perfect smoothness in 
a straight course, will enable us to detect that it is travelling at all. 
We cannot even assert that there is any such thing as absolute rest, 
or that there is any difference between absolute rest and uniform 
straight movement of translation. 

As change of motion is independent of the initial condition of rest 
or motion, so also is the change of motion produced by one force act-
ing on a body independent of the change produced by any other 
force acting on the body, provided that each force remains constant 
in magnitude and direction. The actual motion will be that which o 
is compounded of the initial motion and the motions due to the two 
forces considered separately. If AB represent one of these motions, 
BC another, and CD the third, the actual or resultant motion will be 
AD. 

The change produced in the motion of a body by two forces act-
ing jointly can therefore be found by compounding the changes 
which would be produced by each force separately. This leads at 
once to the " parallelogram of forces," since the changes of motion 
produced in one and the same body are proportional to the forces 
which produce them, and are in the directions of these forces. 
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In case any student should be troubled by doubt as to whether 
the " changes of motion" which are proportional to the forces, are to 
be understood as distances, or as velocities, we may remark tha t the 
law is equally true for both, and its t ruth for one implies its t ru th 
for the other, as will appear hereafter from comparing the formula 
for the distance s = ¡¿ft\ with the formula for the velocity v = f t , 
since both of these expressions are proportional to f . 

79. Explanation of Second Law continued.—It is convenient to 
distinguish between the intensity of a force and the magnitude or 
amount of a force. The intensity of a force is measured by the 
change of velocity which the force produces during the unit of time; 
and can be computed from knowing the motion of the body acted 
on, without knowing anything as to its mass. Two bodies are said 
to be of equal mass when the same change of motion (whether as 
regards velocity or distance) which is produced by applying a given 
force to one of them for a given time, would also be produced by 
applying this force to the other for an equal time. If we join two 
such bodies, we obtain a body of double the mass of either; and if we 
apply the same force as before for the same time to this double mass 
we shall obtain only half the change of velocity or distance t ha t we 
obtained before. Masses can therefore be compared by taking the in-
verse ratio of the changes produced in their velocities by equal forces 

The velocity of a body multiplied by its mass is called the momen-
tum of the body, and is to be regarded as a directed magnitude hav-
ing the same direction as the velocity. The change of velocity when 
multiplied by the mass of the body,gives the change of momentum-
and the second law of motion may be thus stated:— 

. The chan9e °f momentum produced in a given time is propor-
tional to the force which produces it, and is in the direction of this 
force. I t is independent of the mass; the change of velocity in a 
given time being inversely as the mass. 

80. Proper Selection of Unit of Force—If we make a proper selec-
tion of units, the change of momentum produced in unit time will 
be not only proportional but numerically equal to the force which 
produces it; and the change of momentum produced in any t ime will 
be the product of the force by the time. Suppose any units of 
length, time, and mass respectively to have been selected. Then the 
unit velocity will naturally be defined as the velocity with which 
unit length would be passed over in unit time; the unit momentum 
will be the momentum of the unit mass moving with this veloci ty 
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and the unit force will be that force which produces this momentum 
in unit time. We define the unit force, then, as that force which 
acting for unit time upon unit mass produces unit velocity. 

81. Relation between Mass and Weight.—The weight of a body, 
strictly speaking, is the force with which the body tends towards 
the earth. This force depends partly on the body and partly on the 
earth. I t is not exactly the same for one and the same body at all 
parts of the earth's surface, but is decidedly greater in the polar than 
in the equatorial regions. Bodies which, when weighed in a balance 
in vacuo, counterbalance each other, or counterbalance one and the 
same third body, have equal weights at tha t place, and will also be 
found to have equal weights at any other place. Experiments which 
we shall hereafter describe (§ 89) show tha t such bodies have equal 
masses; and this fact having been established, the most convenient 
mode of comparing masses is by weighing them. A pound of iron has 
the same mass as a pound of brass or of any other substance. A 
pound of any kind of matter tends to the earth with different forces 
at different places. The weight of a pound of matter is therefore 
not a definite standard of force. But the pound of matter itself is a 
perfectly definite standard of mass. If we weigh one and the same 
portion of matter in different states; for instance water in the states 
of ice, snow, liquid water, or steam; or compare the weight of a 
chemical compound with the weights of its components; we find an 
exact equality; hence it has been stated that the mass of a body is a 
measure of the quantity of matter which it contains; but though 
this statement expresses a simple fact when applied to the compari-
son of different quantities of one and the same substance, it expresses 
no known fact of nature when applied to the comparison of different 
substances. A pound of iron and a pound of lead tend to the earth 
with equal forces; and if equal forces are applied to them both their 
velocities are equally affected. We may if we please agree to mea-
sure "quant i ty of matter" by these tests; but we must beware of 
assuming that two things which are essentially different in kind can 
be equal in themselves. 

82. Third Law of Motion. Action and Reaction.—Forces always 
occur in pairs, every exertion of force being a mutual action between 
two bodies. Whenever a body is acted on by a force, the body 
from which this force proceeds is acted on by an equal and opposite 
force. The earth attracts the moon, and the moon attracts the 
earth. A magnet attracts iron and is attracted by iron. When two 
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boats are floating freely, a rope attached to one and hauled in by 
a person in the other, makes each boat move towards the other. 
Every exertion of force generates equal and opposite momenta in 
the two bodies affected by it, since these two bodies are acted on by 
equal forces for equal times. 

If the forces exerted by one body upon the other are equivalent 
to a single force, the forces of reaction will also be equivalent to a 
single force, and these two equal and opposite resultants will have 
the same line of action. We have seen in § 29 that the general 
resultant of any set of forces applied to a body is a wrench; that is 
to say it consists of a force with a definite line of action (called the 
axis), accompanied by a couple in a perpendicular plane. The reac-
tion upon the body which exerts these forces will always be an equal 
and opposite wrench; the two wrenches having the same axis, equal 
and opposite orces along this axis, and equal and opposite couples 
in the perpendicular plane. 

83 Motion of Centre of Gravity Unaffected.-A consequence of the 
equality of the mutual forces between two bodies is, that these 
forces produce no movement of the common centre of gravity of the 

hTcentfof ^ A ^ ^ ° f ^ ° f a — ^ B the centre of gravity of a mass m , their common centre of gravity 
C w d l divide AB inversely as the masses. Let the masses be 
originally at rest, and let them be acted on only by their mutua 
attraction or replusion. The distances through which they a r 

after any time, we have ^ n 6 W P ° S l t l 0 n S 

A C = A A ' _ A C ± A A ' A ' C " R 

B B ' ~ E C ± B E ' - B ' C ' F 

The line A'B' is therefore divided at f! in t u B •• -
the line AR woo a- vi , , 1 U i n t h e s a m e ratio m which 

84 v i V nV ; h e n c e ° i s s t i U t h e c e * t re of gravity, 

of g r a v i t y Wil l m „ v e w J L S y ™ « ' » 
one Z C ' ^ C O m i d e i * * — ° ^ a , ; 
let these component velocities be ,, „ P 
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their respective centres of gravity) f rom a fixed plane to which the 
given direction is normal, be x1 x2 xs &c. 

The formula for the distance of their common centre of gravity 
from this plane is 

~ _ m l x 1 + m.,x2 + &c. 
m-i + jnj + &c. 

In the time t, xl is increased by the amount u j , x2 by u2t, and so on; 
hence the numerator of the above expression is increased by 

m, «i t + m.,u2t + &c., 

and the value of x is increased in each uni t of time by 
vij Mi + m2u-2 + &c. 

m.i + m-i + &c. ' 

which is therefore the component velocity of the centre of gravity 
in the given direction. As this expression contains only given 
constant quantities, its value is constant; and as this reasoning 
applies to all directions, the velocity of the centre of gravity must 
itself be constant both in magnitude and direction. 

We may remark that the above formula (2) correctly expresses 
the component velocity of the centre of gravity at the instant con-
sidered, even when uv u2, &c., are not constant. 

85. Centre of Mass.—The point which we have thus far been 
speaking of under the name of " centre of gravity," is more appro-
priately called the "centre of mass," a name which is at once 
suggested by formula (1) § 84. When gravity acts in parallel lines 
upon all the particles of a body, the resultant force of gravity upon 
the body is a single force passing through this point; but this is no 
longer the case when the forces of gravity upon the different parts 

body (or system of bodies) are not parallel. 
. oo. Units of Measurement.—It is a matter of importance, in 

""scientific calculations, to express the various magnitudes with which 
we have to deal in terms of units which have a simple relation to 
cach other. The British weights and measures are completely at 
fault in this respect, for the following reasons:— 

1. They are not a decimal system; and the reduction of a 
measurement (say) from inches and decimals of an inch to feet and 
decimals of a foot, cannot be effected b y inspection. 

2. I t is still more troublesome to reduce gallons to cubic feet or inches. 
3. The weight (properly the mass) of a cubic foot of a substance 

in lbs., cannot be written down by inspection, when the specific 
gravity of the substance (as compared with water) is given. 



87. The G.G.S. System.—A committee of the British Association, 
specially appointed to recommend a system of units for ' general 
adoption in scientific calculation, have recommended tha t the 
centimetre he adopted as the unit of length, the gramme as the uni t 
of mass, and the second as the unit of time. We shall first give the 
rough and afterwards the more exact definitions of these quantities. 

The centimetre is approximately. of the distance of either 
pole of the earth from the equator; that is to say 1 followed by 9 
zeros expresses this distance in centimetres. 

The gramme is approximately the mass of a cubic centimetre 
of cold water. Hence the same number which expresses the speci-
fic gravity of a substance referred to water, expresses also the mass 
of a cubic centimetre of the substance, in grammes. 

The second is i>i x g0 x 6Q of a mean solar day. 

More accurately, the centimetre is defined as one hundredth par t 
of the length, at the temperature 0° Centigrade, of a certain stand-
ard bar, preserved in Paris, carefully executed copies of which 
are preserved in several other places; and the gramme is defined as 
one thousandth part of the mass of a certain standard which is 
preserved at Paris, and of which also there are numerous copies 
preserved elsewhere. 

For brevity of reference, the committee have recommended tha t 
the system of units based on the Centimetre, Gramme, and Second, 
be called the C.G.S. system. 

The unit of area in this system is the square centimetre. 
The uni t of volume is the cubic centimetre. 
The unit of velocity is a velocity of a centimetre per second. 
The unit of momentum is the momentum of a gramme moving 

with a velocity of a centimetre per second. 
The unit force is that force which generates this momentum in 

one second. I t is therefore that force which, acting on a gramme 
for one second, generates a velocity of a centimetre per second. 
This force is called the dyne, an abbreviated derivative from the 
Greek Suva pig (force). 

The unit of work is the work done by a force of a dyne -working 
through a distance of a centimetre. I t might be called the dyne-
centimetre, but a shorter name has been provided and it is called 
the erg, from the Greek '¿pyov (work). 

C H A P T E R V I I . 

LAWS OF FALLING BODIES. 

88. Effect of the Resistance of the Air.—In air, bodies fall with 
unequal velocities; a sovereign or a ball of lead falls rapidly, a piece 
of down or thin paper slowly. I t was formerly thought that this 
difference was inherent in the nature of the materials; but it is 
easy to show that this is not the case, for if we compress a mass 
of down or a piece of paper by rolling it into a ball, and compare i t 
with a piece of gold-leaf, we shall find that the latter body falls 
more slowly than the former. The inequality of the velocities 
which we observe is due to the resistance of the air, which increases 
with the extent of surface exposed by the body. 

I t was Galileo who first discovered the cause of the unequal 
rapidity of fall of different bodies. To put the matter to the test, 
he prepared small balls of different substances, and let them fall at 
the same time from the top of the tower of Pisa; they struck the 
ground almost at the same instant. On changing their forms, so as 
to give them very different extents of surface, he observed that they 
f elf with very unequal velocities. He was thus led to the conclusion 
that gravity acts on all substances with the same intensity, and that 
in a vacuum all bodies would fall with the same velocity. 

This last proposition could not be put to the test of experiment 
in the time of Galileo, the air-pump not having yet been invented. 
The experiment was performed by Newton, and is now well known 
as the "guinea and feather" experiment. For this purpose a tube 
from a yard and a half to two yards long is used, which can be 
exhausted of air, and which contains bodies of various densities, such 
as a coin, pieces of paper, and feathers. When the tube is full of 
air and is inverted, these different bodies are seen to fall with very 
unequal velocities; but if the experiment is repeated after the tube 
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has heen exhausted of air, no difference can be perceived between 
the times of their descent. 

89. Mass and Gravitation Proportional—This experiment proves 
that bodies which have equal weights are equal in mass. For equal 
masses are defined to be those which, when acted on by equal forces, 
receive equal accelerations; and the forces, in this experiment, are 
the weights of the falling bodies. 

Newton tested this point still more severely by experiments with 
pendulums (Principia , book I I I . prop. vi.). He procured two 
round wooden boxes of the same size and weight, and suspended 
them by threads eleven feet long. One of them he filled with wood, 
and he placed very accurately in the centre of oscillation of the 
other the same weight of gold. The boxes hung side by side, and, 
when set swinging in equal oscillations, went and returned together 
for a very long time. Here the forces concerned in producing and 
checking the motion, namely, the force of gravity and the resistance 
of the air, were the same for the two pendulums, and as the move-
ments produced were the same, i t follows that the masses were 
equal. Newton remarks that a difference of mass amounting to a 
thousandth part of the whole could not have escaped detection. He 
experimented in the same way with silver, lead, glass, sand, salt, 
water, and wheat, and with the same result. He therefore infers 
that universally bodies of equal mass gravitate equally towards the 
earth at the same place. He further extends the same law to gravi-
tation generally, and establishes the conclusion that the mutual 
gravitating force between any two bodies depends only on their 
masses and distances, and is independent of their materials. 

The time of revolution of the moon round the earth, considered in 
conjunction with her distance from the earth, shows that the relation 
between mass and gravitation is the same for the material of which 
the moon is composed as for terrestrial matter; and the same con-
clusion is proved for the planets by the relation which exists between 
their distances from the sun and their times of revolution in their 
orbits. 

90. Uniform Acceleration.-The fall of a heavy bodv furnishes an 
illustration of the second law of motion, which asserts that the 
change of momentum in a body in a given time is a measure of the 
force which acts on the body. I t follows from this law that if the 
same force continues to act upon a body the changes of momentum 
m successive equal intervals of time will be equal. When a heavy 
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body originally at rest is allowed to fal l , it is acted on during the 
time of its descent by its own weight and by no other force, if we 
neglect the resistance of the air. As i ts own weight is a constant 
force, the body receives equal changes of momentum, and therefore 
of velocity, in equal intervals of time. Let g denote its velocity 
in centimetres per second, at the end of the first second. Then at 
the end of the next second its velocity will be g + g, that is 2g; at 
the end of the next it will be 2g+g , t h a t is 3g, and so on, the gain 
of velocity in each second being equal to the velocity generated in 
the first second. At the end of t seconds the velocity will therefore 
be tg. Such motion as this is said to be uniformly accelerated, and 
the constant quantity g is the measure of the acceleration. Accelera-
tion is defined as the gain of velocity per unit of time. 

91. Weight of a Gramme in Dynes. Value of g.—Let m denote 
the mass of the falling body in grammes. Then the change of 
momentum in each second is mg, which is therefore the measure of 
the force acting on the body. The weight of a body of m grammes 
is therefore mg dynes, and the weight of 1 gramme is g dynes. The 
value of g varies from 9781 at the equator to 983'1 at the poles; 
and 981 may be adopted as its average value in temperate latitudes. 
I ts value at any part of the earth's surface is approximately given 
by the formula 

g = 980-6056 - 2-5028 cos 2X - -000,003^ 

in which \ denotes the latitude, and h the height (in centimetres) 
above sea-level.1 

In § 79 we distinguished between the intensity and the amount 
of a force. The amount of the force of gravity upon a mass of m 
grammes is mg dynes. The intensity of this force is g dynes per 
gramme. The intensity of a force, in dynes per gramme of the body 
acted on, is always equal to the change of velocity which the force 
produces per second, this change being expressed in centimetres per 
second. In other words the intensity of a force is equal to the 
acceleration which it produces. The best designation for g is the 
intensity of gravity. 

92. Distance fallen in a Given Time.—The distance described in a 
given time by a body moving with uniform velocity is calculated 
by multiplying the velocity by the t ime; jus t as the area of a rect-
angle is calculated by multiplying its length by its breadth. Hence 
if we draw a line such that its ordinates AA', BB', &c., represent the 1 For the method of determination see § 120. 
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velocities with which a body is moving at the times represented by 
OA; OB (time being reckoned from the beginning of the motion), it 

can be shown that the whole distance 
described is represented by the area 
OB'B bounded by the curve, the last 
ordinate, and the base line. In fact this 
area can be divided into narrow str ips 

"A ' B (one of which is shown at AA', Fig. 37) 
Flg-37- each of which may practically be re-

garded as a rectangle, whose height represents the velocity with 
which the body is moving during the very small interval of t ime 
represented by its base, and whose area therefore represents the 
distance described in this time. 

This would be true for the distance described by a body moving 
from rest with any law of velocity. In the case of falling bodies 
the law is that the velocity is simply proportional to the time; hence 
the ordinates AA', BB', &c., must be directly as the absciss» OA, 
OB; this proves that the line OA' B' must be straight; and the figure 
OB' B is therefore a triangle. I ts area will be half the product of 
OB and BB'. But OB represents the time t occupied by the motion, 
and BB' the velocity gt at the end of this time. The area of the 
triangle therefore represents half the product of t and gt, t ha t is, 
represents \gt2, which is accordingly the distance described in the 
time t. Denoting this distance by s, and the velocity at the end of 
time t by v, we have thus the two formulae 

* = <A ( i ) 

s - (2) 
from which we easily deduce 

gs = {v\ (3) 

93. Work spent in Producing Motion.—We may remark, in pass-
ing, that the third of these formula enables us to calculate the work 
required to produce a given motion in a given mass. When a body 
whose mass is 1 gramme falls through a distance s, the force which 
acts upon it is its own weight, which is g dynes, and the work done 
upon it is gs ergs. Formula (3) shows that this is the same as 
ergs. For a mass of m grammes falling through a distance s, the 
work is \mv* ergs. The ivork required to produce a velocity v (cen-
timetres per second) in a body of mass m (grammes) originally at 
rest is ^mv1 (ergs). 

94. Body thrown Upwards.—When a heavy body is projected ver-
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tically upwards, the formulas (1) (2) (3) of § 92 will still apply to 
its motion, with the following interpretations:— 

v denotes the velocity of projection. 
t denotes the whole time occupied in the ascent, 
s denotes the height to which the body will ascend. 

When the body has reached the highest point, it will fall back, and 
its velocity at any point through which it passes twice will be the 
same in going up as in coming down. 

95. Resistance of the Air.—The foregoing results are rigorously 
applicable to motion in vacuo, and are sensibly correct for motion 
in air as long as the resistance of the air is insignificant in compari-
son with the force of gravity. The force of gravity upon a body is 
the same at all velocities; but the resistance of the air increases with 
the velocity, and increases more and more rapidly as the velocity 
becomes greater; so that while at very slow velocities an increase of 
1 per cent, in velocity would give an increase of 1 per cent, in the 
resistance, at a higher velocity i t would give an increase of 2 per 
cent., and at the velocity of a cannon-ball an increase of 3 per cent.1 

The formulae are therefore sensibly in error for high velocities. 
They are also in error for bodies which, like feathers or gold-leaf, 
have a large surface in proportion to their weight. 

96. Projectiles.—If, instead of being simply let fall, a body is pro-
jected in any direction, its motion will be compounded of the motion 
of a falling body and a uniform motion in 
the direction of projection. Thus if OP 
(Fig. 38) is the direction of projection, and 
OQ the vertical through the point of pro-
jection, the body would move along OP 
keeping its original velocity unchanged, if 
it were not disturbed by gravity. To find Q Fig. 38. 
where the body will be at any time t, we must 
lay off a length OP equal to Yt, V denoting the velocity of projec-
tion, and must then draw from P the vertical line PR downwards 
equal to \gt\ which is the distance that the body would have fallen 
in the time if simply dropped. The point R thus determined, will 
be the actual position of the body. The velocity of the body at 
any time will in like manner be found by compounding the initial 

1 This i= onlv another way of saying that the resistance varies approximately as the 
velocity when very small, and approximately as the cube of the velocity for velocities like 
that of a cannon-ball. 
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velocity with the velocity which a falling body would have acquired 
in the time. 

The path of the body will be a curve, as represented in the 
figure, OP being a tangent to it at 0 , and its concavity being down-
wards. The equations above given, namely 

OP = Vi, P R = 4jri2, 

show that PR varies as the square of OP, and hence that the path 
(or trajectory as it is technically called) is a parabola, whose axis is 
vertical. 

97. Time of Flight, and Range—If the body is projected from a 
point at the surface of the ground (supposed level) we can calculate 
the time of flight and the range in the following way. 

Let a be the angle which the direction of projection makes with the 
horizontal. Then the velocity of projection can be resolved into 
two components, Y cos a and V sin a, the former being horizontal, 
and the latter vertically upward. The horizontal component of the 
velocity of the body is unaffected by gravity and remains constant. 
The vertical velocity after time t will be compounded of V sin a up-
wards and gt downwards. I t will therefore be an upward velocity 
V sin a - gt, or a downward velocity gt - V sin a. At the highest 
point of its path, the body will be moving horizontally and the ver-
tical component of its velocity will be zero; that is, we shall have 

V sin a - gt = 0; whence V s i " a . 
y 

This is the time of attaining the highest point; and the time of 

flight will be double of this, that is, will be 2 V s i n t t . 
g 

As the horizontal component of the velocity has the constant 
value V cos a, the horizontal displacement in any time t is V cos a 
multiplied by t. The range is therefore 

2V2 sin a cos a V- sin 2a 
7, or • 9 9 

The range (for a given velocity of projection) will therefore be 
greatest when sin 2« is greatest, that is when 2a = 90° and «=45°. 

We shall now describe two forms of apparatus for illustrating the 
laws of falling bodies. 

98. Morin's Apparatus.—Morin's apparatus consists of a wooden 
cylinder covered with paper, which can be set in uniform rotation 
about its axis by the fall of a heavy weight. The cord which sup-
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ports the weight is wound upon a drum, furnished with a toothed 
wheel which works on one side with an endless screw on the axis 
of the cylinder, and on the other drives an axis carrying fans which 
serve to regulate the motion. 

In front of the turning cylinder is a cylindro-conical weight of 
cast-iron carrying a pen-
cil whose point presses ^ W ^ ' J 
against the paper, and - —- - w * 
having ears which slide 
on vertical threads, serv-
ing to guide it in its fall. 
By pressing a lever, the 
weight can be made to 
fall at a chosen moment. 
The proper time for this 
is when the motion of 
the cylinder has become 
sensibly uniform. I t fol-
lows from this arrange-
ment that during its 
vertical motion the pencil 
will meet in succession 
the different generating 
lines1 of the revolving 

IV fif Vffl HD cylinder, and will conse- f , | P p ' I 
quently describe on its _ ; 1 ' f i M ^ ' - - -
surface a certain curve, z | 
from the study of which ^ : 
we shall be able to gather ; i H g j g g j ^ l i j j f l F 
the law of the fall of the 
body which has traced t. 
it. With this view, we " 
describe (by t u r n i n g t h e Fig. 39.—Morin's Apparatus, 
cylinder while the pencil 
is stationary) a circle passing through the commencement of the 
curve, and also draw a vertical line through this point. We cut 
the paper along this latter line and develop it (that is, flatten 

1 A cylindric surface could be swept out or "generated" by a straight line moving 
round the axis and remaining always parallel to it. The successive positions of this 
generating line are called the "generating lines of the cylinder.' 



it out into a plane). I t then presents the appearance shown in 
Fig. 40. 

If we take on the horizontal line equal distances a t 1, 2, 3, 4, 5 
. . . , and draw perpendiculars at their extremities to meet the 
curve, it is evident that the points thus found are those which were 
traced by the pencil when the cylinder had turned through the dis-
tances 1, 2, 3, 4, 5. . . . The corresponding verticals represent 

the spaces traversed in the times 1, 2, 3, 
4, 5. . . . Now we find, as the figure 
shows, t ha t these spaces are represented 
by the numbers 1, 4, 9, 16, 25 . . . , 
thus verifying the principle t ha t the spaces 
described are proportional to the squares 
of the times employed in their description. 

We may remark that the proportionality 
of the vertical lines to the squares of the 
horizontal lines shows that the curve is a 
parabola. The parabolic trace is thus the 
consequence of the law of fall, and from 
the fact of the trace being parabolic 
we can infer the proportionality of the 
spaces to the squares of the times. 

The law of velocities might also be verified separately by Morin's 
apparatus; we shall not describe the method which i t would be 
necessary to employ, but shall content ourselves with remarking 
that the law of velocities is a logical consequence of the law of 
spaces.1 

99. Atwood's Machine.—Atwood's machine, which affords great 
facilities for illustrating the effects of force in producing motion, 
consists essentially of a very freely moving pulley over which a fine 
cord passes, from the ends of which two equal weights can be sus-
pended. A small additional weight of flat and elongated form is 
laid upon one of them, which is thus caused to descend with uni-
form acceleration, and means are provided for suddenly removing 

'Consider, in fact, the space traversed in any time i ; this space is given by the formula 
— ' d u n " S t h e t l m e t + d the space traversed will be K(t +6f = Kli + "Kte + K0i 

whence it follows that the space traversed during the time 9 after the time t fa 2 K t d + 
i h e a v e r a S e v e l o c i t J d u r i » g this time 6 is obtained by dividing the snace hv B 

and is 2Ki + K0, which, by making * very small, can be made to agree a accuratof L 

Z eSSonLhetSUe 2Ki" ThiS Hmiting ValUe 2K< mUSt therefore be"C;r:yy 2 

Fig. 40.—Parabolic Trace. 

ATWOOD'S MACHINE. 

this additional weight at any point of the descent, so as to allow the 
motion to continue from 
this point onward with 
uniform velocity. 

The machine is re-
presented in Fig. 41. 
The pulley over which 
the string passes is the 
largest of the wheels 
shown at the top of the 
apparatus. In order to 
give it greater freedom 
of movement, the ends 
of its axis are made 
to rest, not on fixed 
supports, but on the 
circumferences of four 
wheels (two at each 
end of the axis) called 
friction-wheels, because 
their office is to dim-
inish friction. Two 
small equal weights are 
shown, suspended from 
this pulley by a string 
passing over it. One of 
them P' is represented 
as near the bottom of 
the supporting pillar, 
and the other P as near 
the top. The latter is 
resting upon a small 
platform, which can be 
suddenly dropped when g ^ K ^ i l M ~ ' -

it is desired that the . ^ ^ 
motion shall commence. — W y ^ ^ ^ E 
A little lower down and yfe . X ^ m m B S B P 1 

vertically beneath the - ^ s s a ^ m — . — • ""' 
i , i> • : „„ , Fife. 41.—Atwood's Machine. platform, is seen a ring, 

large enough to let the weight pass through it without danger of 
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contact. This r ing can be shif ted up or down, and clamped at any 
height by a screw; it is represented on a larger scale in the margin. 
At a considerable distance beneath the ring, is seen the stop, which 
is also represented in the margin, and can like the r ing be clamped 
at any height. The office of the ring is to intercept the additional 
weight, and the office of the stop is to arrest the descent. The up-
right to which they are both clamped is marked with a scale of equal 
parts, to show the distances moved over. A clock wi th a pendulum 
beating seconds, is provided for measuring the time; and there is an 
arrangement by which the movable platform can be dropped by the 
action of the clock precisely a t one of the ticks. To measure the 
distance fallen in one or more seconds, the r ing is removed, and the 
stop is placed by trial a t such heights tha t the descending weight 
strikes it precisely a t another tick. To measure the velocity 
acquired in one or more seconds, the ring must be fixed a t such a 
height as to intercept the additional weight a t one of the ticks, and 
the stop must be placed so as to be struck by the descending weight 
a t another tick. 

100. Theory of Atwood's Machine.—If M denote each of the two 
equal masses, in grammes, and TO the additional mass, the whole 
moving mass (neglecting the mass of the pulley and string) is 
2M + m, but the moving force is only the weight of TO. The accel-
eration produced, instead of being g, is accordingly only ¿ ¿ ¡ ^ g. 

In order to allow for the inertia of the pulley and string, a con-
s tant quanti ty must be added to the denominator in the above for-
mula, and the value of this constant can be determined by observ-
ing the movements obtained wi th different values of M and TO. 
Denoting it by C, we have 

W + 2 . M + C ' 
(A) 

as the expression for the acceleration. As TO is usually small in 
comparison with M, the acceleration is very small in comparison with 
tha t of a freely fal l ing body, and is brought wi th in the limits of 
convenient observation. Denoting the acceleration b y «, and using 
v and s, as in § 92, to denote the velocity acquired and space 
described in t ime t, we shall have 

v=at, 
«=iai2 , (2) 

<w=i<2, (3) 
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and each of these formulas can be directly verified by experiments 
with the machine. 

101. Uniform Motion in a Circle.— 
A body cannot move in a curved path 
unless there be a force urging it Fls '42 ' 
towards the concave side of the curve. We shall proceed to in-
vestigate the intensity of this force when 
the pa th is circular and the velocity uniform. 
W e shall denote the velocity by v, the radius 
of the circle by r , and the intensity of the 
force by / . Let AB (Figs. 42,43) be a small 
portion of the path, and BD a perpendicular 
upon AD the tangent at A. Then, since 
the arc AB is small in comparison wi th 
the whole circumference, it is sensibly equal 
to AD, and the body would have been found 
a t D instead of at B if no force had acted 
upon it since leaving A. D B is accordingly the distance due to the 
force; and if t denote the t ime f rom A to B, we have 

A D = vt ( I ) 

D B = hft-. ( 2 ) 

The second of these equations gives 
2 D B 

and substi tuting for t from the first equation, this becomes 

Fig 43. 

F _ 2DB 
F ~ AD* 

(3) 

But if A n (Fig. 43) be the diameter a t A, and BTO the perpendicular 
upon it f rom B, we have, by Euclid, AD2 = TOB2=ATO.mn-2r. ATO 
sensibly, = 2 r . DB. 
Therefore and hence by (3) 

J r (4) 

Hence the force necessary for keeping a body in a circular path 
wi thout change of velocity, is a force of intensity v- directed towards 
the centre of the circle. If TO denote the mass of the body, the 
amount of the force will be This will be in dynes, if TO be in 
oTammes, r in centimetres, and v in centimetres per second. 
° If the t ime of revolution be denoted by T, and TT as usual denote 
the ratio of circumference to diameter, the distance moved in time 
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T is 2TTr; hence v = ^¡r, and another expression for the intensi ty of 
the force will be 

102. Deflecting Force in General.—In general, when a body is 
moving in any path, and with velocity either constant or varying, 
the force acting upon it at any instant can be resolved into two 
components, one along the tangent and the other along the normal. 
The intensity of the tangential component is measured by the rate 
at which the velocity increases or diminishes, and the intensity of 
the normal component is given by formula (4) of last article, if we 
make r denote the radius of curvature. 

103. Illustrations of Deflecting Force.—When a stone is swung 
round by a string in a vertical circle, the tension of the s t r ing in 
the lowest position consists of two parts:— 

(1) The weight of the stone, which is rag if TO be the mass of the 
stone. 

(2) The force TO V- which is necessary for deflecting the stone f rom 
a horizontal tangent into its actual path in the neighbourhood of the 
lowest point. 

When the stone is at the highest point of its path, the tension of 
the string is the difference of these two forces, that is to say i t is 

and the motion is not possible unless the velocity at the highest 

point is sufficient to make v- greater than g. 

The tendency of the stone to persevere in rectilinear motion and 
to resist deflection into a curve, causes it to exert a force upon the 

string, of amount TO and this is called centrifugal force. I t is 
not a force acting upon the stone, but a force exerted by the stone 
upon the string. Its direction is from the centre of curvature, 
whereas the deflecting force which acts upon the stone is towards 
the centre of curvature. 

104. Centrifugal Force at the Equator.—Bodies on the earth's 
surface are carried round in circles by the diurnal rotation of the 
earth upon its axis. The velocity of this motion at the equator is 
about 46,500 centimetres per second, and the earth's equatorial 
radius is about 6'38 x 108 centimetres. Hence the value of - is 

T 

found to be about 3'39. The case is analogous to tha t of the stone 
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at the highest point of its path in the preceding article, if instead 
of a string which can only exert a pull we suppose a stiff rod which 
can exert a push upon the stone. The rod will be called upon to 

exert a pull or a push at the highest point according as ^ is greater 

or less than g. The force of the push in the latter case will be 

and this is accordingly the force with which the surface of the earth 
at the equator pushes a body lying upon it. The push, of course, 
is mutual, and this formula therefore gives the apparent weight or 
apparent gravitating force of a body at the equator, rag denoting its 
true gravitating force (due to attraction alone). A body falling in 
vacuo at the equator has an acceleration 978-10 relative to the 
surface of the earth in its neighbourhood; but this portion of the 
surface has itself an acceleration of 3-39, directed towards the earth's 
centre, and therefore in the same direction as the acceleration of the 
body. The absolute acceleration of the body is therefore the sum of 
these two, that is 981'49, which is accordingly the intensity of true 
gravity at the equator. 

The apparent weight of bodies at the equator would be nil if v-
were equal to g. Dividing 3'39 into 981-49, the quotient is approxi-
mately 289, which is (17)2. Hence this state of things would exist 
if the velocity of rotation were about 17 times as fast as at present. 

Since the movements and forces which we actually observe depend 
upon relative acceleration, i t is usual to understand, by the value of 
g or the intensity of gravity at a place, the apparent values, unless 
the contrary be expressed. Thus the value of g at the equator is 
usually stated to be 978-10. 

105. Direction of Apparent Gravity.—The total amount of centri-
fugal force at different places on the earth's surface, varies directly 
as their distance from the earth's axis; for this is the value of r in 
the formula (5) of § 101, and the value of T in that formula is the 
same for the whole earth. The direction of this force, being per-
pendicular to the earth's axis, is not vertical except at the equator; 
and hence, when we compound it with the force of true gravity, we 
obtain a resultant force of apparent gravity differing in direction as 
well as in magnitude from true gravity. What is always understood 
by a vertical, is the direction of apparent gravity; and a plane per-
pendicular to it is what is meant by a horizontal plane. 



C H A P T E R VII I . 

THE PENDULUM. 

106. The Pendulum.—When a body is suspended so that it can turn 
about a horizontal axis which does not pass through 
its centre of gravity, its only position of stable equi-
librium is that in which its centre of gravity is in 
the same vertical plane with the axis and below it 
(§ 42). If the body be turned into any other position, 
and left to itself, i t will oscillate from one side to the 
other of the position of equilibrium, until the resistance 
of the air and the friction of the axis gradually bring 
it to rest. A body thus suspended, whatever be its 
form, is called a pendulum. I t frequently consists 
of a rod which can turn about an axis 0 (Fig. 44) at 
its upper end, and which carries at its lower end a 
heavy lens-shaped piece of metal M called the bob; this 
latter can be raised or lowered by means of the screw 
V. The applications of the pendulum are very impor-
tant: i t regulates our clocks, and it has enabled us to 
measure the intensity of gravity in different parts of 
the world; it is important then to know at least the 
fundamental points in its theory. For explaining 
these, we shall begin with the consideration of an 
ideal body called the simple pendulum. 

107. Simple Pendulum.—This is the name given to a 
pendulum consisting of a heavy particle M (Fig. 45) 
attached to one end of an inextensible thread without 
weight, the other end of the thread being fixed at A. 
When the thread is vertical, the weight of the particle 

Fig. 44.-Pendulum, acts in the direction of its length, and there is equilib-
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rium. But suppose it is drawn aside into another position, as AM. 
In this case, the weight MG of the particle can be resolved into two 
forces MO and MH. The former, acting along the prolongation of 
the thread, is destroyed by the resistance of the thread; the other, 
acting along the tangent MH, produces the 
motion of the particle. This effective com-
ponent is evidently so much the greater as 
the angle of displacement from the vertical 
position is greater. The particle will there-
fore move along an arc of a circle described 
from A as centre, and the force which 
urges it forward will continually diminish 
till it arrives at the lowest point M'. 
At M' this force is zero, but, in virtue 
of the velocity acquired, the particle will 
ascend on the opposite side, the effective 
component of gravity being now opposed 
to the direction of its motion; and, inas-
much as the magnitude of this component 
goes through the same series of values in this part of the motion 
as in the former part, but in reversed order, the velocity will, in like 
manner, retrace its former values, and will become zero when the 
particle has risen to a point M" at the same height as M. I t then 
descends again and performs an oscillation from M" to M precisely 
similar to the first, but in the reverse direction. I t will thus 
continue to vibrate between the two points M, M" (friction being 
supposed excluded), for an indefinite number of times, all the vibra-
tions being of equal extent and performed in equal periods. 

The distance through which a simple pendulum travels in moving 
from its lowrest position to its furthest position on either side, is 
called its amplitude. I t is evidently equal to half the complete arc 
of vibration, and is commonly expressed, not in linear measure, but 
in degrees of arc. I ts numerical value is of course equal to that of 
the angle MAM', which i t subtends at the centre of the circle. o ' 

The complete period of the pendulum's motion is the time which 
it occupies in moving from M to M" and back to M, or more generally, 
is the time from its passing through any given position to its next 
passing through the same position in the same direction. 

What is commonly called the time of vibration, or the time of a 
single vibration, is the half of a complete period, being the time of 

A 

Pendulum. 
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passing from one of the two extreme positions to the other. Hence 
what we have above defined as a complete period is often called a 
double vibration. 

When the amplitude changes, the time of vibration changes also, 
being greater as the amplitude is greater; but the connection between 
the two elements is very far from being one of simple proportion. 
The change of time (as measured by a ratio) is much less than the 
change of amplitude, especially when the amplitude is small; and 
when the amplitude is less than about 5°, any fur ther diminution 
of it has little or no sensible effect in diminishing the time. For 
small vibrations, then, the time of vibration is independent of the 
amplitude. This is called the law of isochronism. 

108. Law of Acceleration for Small Vibrations—Denoting the 
length of a simple pendulum by I, and its inclination to the vertical 
at any moment by 0, we see from Fig. 45 that the ratio of the effective 

ATU 

component of gravity to the whole force of gravity is ^ r , that 

is sin 0; and when 0 is small this is sensibly equal to 0 itself as 

measured by Let s denote the length of the arc MM' inter-

vening between the lower end of the pendulum and the lowest point 

of its swing, at any time; then 0 is equal to and the intensity 

of the effective force of gravity when 0 is small is sensibly equal to 
gd, tha t is to Since g and I are the 
same in all positions of the pendulum, this 
effective force varies as s. I ts direction 
is always towards the position of equilib-
rium, so that it accelerates the motion 
during the approach to this position, and 
retards i t during the recess; the acceleration 
or retardation being always in direct pro-
portion to the distance from the position of 
equilibrium. This species of motion is of 
extremely common occurrence. I t is illus-
trated by the vibration of either prong 
of a tuning-fork, and in general by the 
motion of any body vibrating in one plane 

in such a manner as to yield a simple musical tone. 

109. General Law for Period.—Suppose a point P to travel with 
uniform velocity round a circle (Fig. 46), and from its successive 
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positions P p P.2, &c., let perpendiculars P ^ , P2p.2, &c., be drawn to a 
fixed straight line in the plane of the circle. Then while P travels 
once round the circle, its projection p executes a complete vibration. 

The acceleration of P is always directed towards the centre of the 

(2 t t \ 2 

TTT ) r (§ 101)- The component of this acceler-, T 
ation parallel to the line of motion of p, is the fraction ^ of the whole 
acceleration (x denoting the distance of p from the middle point of 
its path), and is therefore x- This is accordingly the accelera-
tion of p, and as i t is simply proportional to x we shall denote it for 
brevity by /ix. To compute the periodic time T of a complete 

vibration, we have the equation ( Y ) ' gives 

T = (1) 

110. Application to the Pendulum.—For the motion of a pendulum 
in a small arc, we have 

acceleration = | s, 

where s denotes the displacement in linear measure. We must 

therefore put p- = j , and we then have 

a ^ y f P) 

which is the expression for the time of a complete (or double) vibra-
tion. I t is more usual to understand by the " time of vibration " of 
a pendulum the half of this, that is the time from one extreme 
position to the other, and to denote this time by T. In this sense 
we have 

T = » 

To find the length of the seconds' pendulum we must put T = 1. 
This ffivcs o 

IT 
9 

If g were 987 we should have Z = 100 centimetres or 1 metre. The 
actual value of g is everywhere a little less than this. The length 
of the seconds' pendulum is therefore everywhere rather less than a 
metre. 

111. Simple Harmonic Motion.—Rectilinear motion consisting of 
vibration about a point with acceleration fix, where x denotes 

5 
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distance from this point, is called Simple Harmonic Motion, or 
Simple Harmonic Vibration. The above investigation shows that 

such vibration is isochronous, its period being ^ whatever the 

amplitude may be. 
To understand the reason of this isochronism we have only to 

remark that, if the amplitude be changed, the velocity at correspond-
ing points (that is, points whose distances from the middle point are 
the same fractions of the amplitudes) will be changed in the same 
ratio. For example, compare two simple vibrations in which the 
values of /i are the same, but let the amplitude of one be double tha t 
of the other. Then if we divide the paths of both into the same 
number of small equal parts, these parts will be twice as great for 
the one as for the other; but if we suppose the two points to start 
simultaneously from their extreme positions, the one will constantly 
be moving twice as fast as the other. The number of parts described 
in any given time will therefore be the same for both. 

In the case of vibrations which are not simple, it is easy to see 
(from comparison with simple vibration) tha t if the acceleration in-
creases in a greater ratio than the distance from the mean position, 
the period of vibration will be shortened by increasing the amplitude; 
but if the acceleration increases in a less ratio than the distance, as 
in the case of the common pendulum vibrating in an arc of moderate 
extent, the period is increased by increasing the amplitude. 

112. Experimental Investigation of the Motion of Pendulums.—The 
preceding investigation applies to the simple pendulum; that is to 
say to a purely imaginary existence; but it can be theoretically 
demonstrated that every rigid body vibrating about a horizontal 
axis under the action of gravity (friction and the resistance of the 
air being neglected), moves in the same manner as a simple pendu-
lum of determinate length called the equivalent simple pendulum. 
Hence the above results can be verified by experiments on actual 
pendulums. 

The discovery of the experimental laws of the motion of pendu-
lums was in fact long anterior to the theoretical investigation. 
I t was the earliest and one of the most important discoveries of 
Galileo, and dates from the year 1582, when he was about twenty 
years of age. I t is related that on one occasion, when in the 
cathedral of Pisa, he was struck with the regularity of the oscilla-
tions of a lamp suspended from the roof, and it appeared to him 
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tha t these oscillations, though diminishing in extent, preserved the 
same duration. He tested the fact by repeated trials, which con-
firmed him in the belief of its perfect exactness. This law of 
isochronism can be easily verified. I t is only necessary to count 
the vibrations which take place in a given time with different 
amplitudes. The numbers will be found to be exactly the same. 
This will be found to hold good even when some of the vibrations 
compared are so small that they can only be observed with a 
telescope. 

By employing balls suspended by threads of different lengths, 
Galileo discovered the influence of length on the time of vibration. 
He ascertained that when the length of the thread increases, the 
time of vibration increases also; not, however, in proportion to the 
length simply, but to its square root. 

113. Cycloidal Pendulum.—It is obvious from § 64 that the effective 
component of gravity upon a particle resting on a smooth inclined 
plane is proportional to the sine of the inclination. The accelera-
tion of a particle so situated is in fact g sin a, if a denote the inclina-
tion of the plane. When a particle is guided along a smooth curve 
its acceleration is expressed by the same formula, a now denoting the 
inclination of the curve at any point to the horizon. This inclina-
tion varies from point to point of the curve, so that the acceleration 
g sin a is no longer a constant quantity. The motion of a common 
pendulum corresponds to the motion of a particle which is guided to 
move in a circular arc; and if x denote distance from the lowest 
point, measured along the arc, and r the radius of the circle (or 
the length of the pendulum), the acceleration at any point is g sin y 

This is sensibly proportional to x so long as a? is a small fraction 
of r ; but in general i t is not proportional to x, and hence the vibra-
tions are not in general isochronous. 

To obtain strictly isochronous vibrations we must substitute for 
the circular arc a curvc which possesses the property of having an 
inclination whose sine is simply proportional to distance measured 
along the curve from the lowest point. The curve which possesses 
this property is the cycloid. I t is the curve which is traced by a 
point in the circumference of a circle which rolls along a straight 
line. The cycloidal pendulum is constructed by suspending an ivory 
ball or some other small heavy body by a thread between two 
cheeks (Fig. 47), on which the thread winds as the ball swings to 



either side. The cheeks must themselves be the two halves of a 
cycloid whose length is double t h a t of the thread, so tha t each 

cheek has the same length as the 
thread. I t can be demonstrated1 

t ha t under these circumstances 
the path of the ball will be a 
cycloid identical with tha t to 
which the cheeks belong. Ne-
glecting friction and the rigidity 
of the thread, the acceleration in 
this case is proportional to dis-
tance measured along the cycloid 

Fig 47.—Oycioidai Pendulum. f rom its lowest point, and hence 
the time of vibration will be 

strictly the same for large as for small amplitudes. I t will, in fact, 
be the same as that of a simple pendulum having the same length 
as the cycloidal pendulum and vibrating in a small arc. 

Attempts have been made to adapt the cycloidal pendulum to 
clocks, but it has been found tha t , owing to the greater amount 
of friction, its rate was less regular than that of the common pendu-
lum. I t may be remarked, that t he spring by which pendulums are 
often suspended has the effect of guiding the pendulum bob in a 
curve which is approximately cycloidal, and thus of diminishing the 
irregularity of rate resulting from differences of amplitude. 

114. Moment of Inertia.—Just as the mass of a body is the 
measure of the force requisite for producing unit acceleration when 
the movement is one of pure translation; so the moment of inertia 
of a rigid body turning about a fixed axis is the measure of the 
couple requisite for producing uni t acceleration of angular velocity. 
We suppose angle to be measured b y so that the angle turned 
by the body is equal to the arc described by any point of it divided 
by the distance of this point from the axis; and the angular velocity 
of the body will be the velocity of any point divided by its distance 
from the axis. The moment of inertia of the body round the axis 
is numerically equal to the couple which would produce uni t change 
of angular velocity in the body in unit time. We shall now show 
how to express the moment of inertia in terms of the masses of the 
particles of the body and their distances from the axis. 

1 Since the evolute of the cycloid is an equal cycloid. 
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Let m denote the mass of any particle, r its distance from the 
axis, and <p the angular acceleration. Then r<p is the acceleration of 
the particle m, and the force which would produce this acceleration 
by acting directly on the particle along the line of its motion is 
mr<p. The moment of this force round the axis would be mr?<p since 
its arm is r. The aggregate of all such moments as this for all the 
particles of the body is evidently equal to the couple which actually 
produces the acceleration of the body. Using the sign 2 to denote 
" the sum of such terms as," and observing tha t <p is the same for the 
whole body, we have 

Applied couple = 2 {mr*<p) = 0 2 (m?-2). (1) 

When <p is unity, the applied couple will be equal to 2 ( T O T 2 ) , which 
is therefore, by the foregoing definition, the moment of inertia of 
the body round the axis. 

115. Moments of Inertia Round Parallel Axes.—The moment of 
'inertia round an axis through the centre of mass is always less than 
that round any parallel axis. 

For if r denote the distance of the particle TO from an axis not 
passing through the centre of mass, and x and y its distances from two 
mutually rectangular planes through this axis, we have r2=x2+y2. 

Now let two planes parallel to these be drawn through the centre 
of mass; let I and r\ be the distances of TO from them, and p its 
distance from their line of intersection, which will clearly be parallel 
to the given axis. Also let a and b be the distances respectively 
between the two pairs of parallel planes, so that a"+b2 will be the 
square of the distance between the two parallel axes, which distance 
we will denote by h. Then we have 

X = i ± a 
y = r)±b 

a? = a' + ± 2a £ y" = b2 + ± 2by. 

2 (»„•*) = S {m (as + 62)} + S {m (£» + rf)} 
± 2a 2 («if) ± 26 2 (»15)) 

= h- 2m + 2 (mp2) ± 2 a f 2m ±. 2b y 2m. 

where 1 and r? are the values of I and n for the centre of mass. But 
these values are both zero, since the centre of mass lies on both the 
planes from which $ and y are measured. We have therefore 

2 (mr2) = h? 2m + 2 {mp\ (2) 

that is to say, the moment of inertia round the given axis exceeds 
the moment of inertia round the parallel axis through the centre of 



mass by the product of the whole mass into the square of the dis-
tance between the axes. 

116. Application to Compound Pendulum.—The application of this 
principle to the compound pendulum leads to some results of great 
interest and importance. 

Let M be the mass of a compound pendulum, that is, a rigid body 
free to oscillate about a fixed horizontal axis. Let h, as in the 
preceding section, denote the distance of the centre of mass from 
this axis; let 6 denote the inclination of h to the vertical, and <p the 
angular acceleration. 

Then, since the forces of gravity on the body are equivalent to a 
single force Mgr, acting vertically downwards at the centre of mass, 
and therefore having an arm h sin 0 with respect to the axis, the 
moment of the applied forces round the axis is Mgh sin 0; and this 
must, by § 114, be equal to <¿>2 (mr2). We have therefore 

2 {mi3) _ g sin d ,0\ 
" MA ~ — 0 1 ' 

If the whole mass were collected at one point at distance I from the 
axis, this equation would become 

MZ® _ _ g sin g. , , , 
m ~1 ~ w 

and the angular motion would be the same as in the actual case if 
I had the value 

I is evidently the length of the equivalent simple 
pendulum. 

117. Convertibility of Centres.—Again, if we introduce 
a length h such that M/c2 is equal to 2 (wp2), that is, to 
the moment of inertia round a parallel axis through the 
centre of mass, we have 

4S- s (mis) = 2 ( V ) + A2 2 m = M P + MA2, 

and equation (5) becomes 
a 

, g f w _ w , , ... I = —A— = T + h, (6) 
or Jc* = (l-h)h.. (7) 

In the annexed figure (Fig. 48) which represents a vertical section 
through the centre of mass, let G be the centre of mass, A the "centre 
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of suspension," that is, the point in which the axis cuts the plane 
of the figure, and 0 the " centre of oscillation," that is, the point at 
which the mass might be collected without altering the movement. 
Then, by definition, we have 

l = AO, k = AG, therefore l - h - GO, 

so that equation (7) signifies 
P i A G . GO. (8) 

Since P is the same for all parallel axes, this equation shows that 
when the body is made to vibrate about a parallel axis through 0 , 
the centre of oscillation will be the point A. That is to say; the 
centres of suspension and oscillation are interchangeable, and the 
product of their distances from the centre of mass is 1c2. 

118. If we take a new centre of suspension A' in the plane of the 
figure, the new centre of oscillation 0 ' will lie in the production of O ' 

A'G, and we must have 

A'G . GO' = P = AG . GO. 

If A'G be equal to AG, GO' will be equal to GO, and A'O' to AO, 
so that the length of the equivalent simple pendulum will be un-
changed. A compound pendulum will therefore vibrate in the 
same time about all parallel axes which are equidistant from the 
centre of mass. 

When the product of two quantities is given, their sum is least 
when they are equal, and becomes continually greater as they 
depart fur ther from equality. Hence the length of the equivalent 
simple pendulum AO or AG + GO is least when 

AG = GO = K, 

and increases continually as the distance of the centre of suspen-
sion f rom G is either increased from h to infinity or diminished from 
Jc to zero. Hence, when a body vibrates about an axis which passes 
very nearly through its centre of gravity, its oscillations are exceed-
ingly slow. 

119. Kater's Pendulum.—The principle of the convertibility of 
centres, established in § 117, was discovered by Huygens, and 
affords the most convenient practical method of constructing a 
pendulum of known length. In Kater's pendulum there are two 
parallel knife-edges about either of which the pendulum can be 
made to vibrate, and one of them can be adjusted to any distance 



from the other. The pendulum is swung first upon one of these 
edges and then upon the other, and, if any difference is detected in 
the times of vibration, it is corrected by moving the adjustable edge. 
When the difference has been completely destroyed, the distance 
between the two edges is the length of the equivalent simple pendu-
lum. I t is necessary, in any arrangement of this kind, tha t the two 
knife-edges should be in a plane passing through the centre of gravity; 
also that they should be on opposite sides of the centre of gravity, 
and at unequal distances from it. 

120. Determination of the Value of g.—Returning to the formula for 
/ L 7T~l 

the simple pendulum T = 7 r . / - , we easily deduce from it g = ?^, 
whence it follows that the value of g can be determined by making 
a pendulum vibrate and measuring T and I. T is determined by 
counting the number of vibrations t ha t take place in a given time; 
I can be calculated, when the pendulum is of regular form, by the 
aid of formulas which are given in treatises on rigid dynamics, but 
its value is more easily obtained by Kater's method, described above, 
founded on the principle of the convertibility of the centres of 
suspension and oscillation. 

I t is from pendulum observations, taken in great numbers at 
different parts of the earth, that the approximate formula for the 
intensity of gravity which we have given at § 91 has been deduced. 
Local peculiarities prevent the possibility of laying down any general 
formula with precision; and the exact value of g for any place can 
only be ascertained by observations on the spot. 

CHAPTER IX. 

CONSERVATION OF ENERGY. 

121. Definition of Kinetic Energy.—We have seen in § 93 that the 
work which must be done upon a mass of TO grammes to give it a 
velocity of v centimetres per second is |TOH2 ergs. Though we have 
proved this only for the case of falling bodies, with gravity as the 
working force, the result is true universally, as is shown in advanced 
treatises on mathematical physics. I t is t rue whether the motion 
be rectilinear or curvilinear, and whether the working force act in 
the line of motion or at an ansde with it. O 

If the velocity of a mass increases from vl to v2, the work done 
upon it in the interval is \ m (v^—v^); in other words, is the 
increase of ^mv2. 

On the other hand, if a force acts in such a manner as to oppose 
the motion of a moving mass, the force will do negative work, the 
amount of which will be equal to the decrease in the value of {wvo1. 

For example, during any portion of the ascent of a projectile, the 
diminution in the value of ^TOV2 is equal to gm multiplied by the 
increase of height; and during any portion of its descent the increase 
in \mvi is equal to gm multiplied by the decrease of height. 

The work which must have been done upon a body to give it its 
actual motion, supposing it to have been initially at rest, is called 
the energy of motion or the kinetic energy of the body. I t can be 
computed by multiplying half the mass by the square of the velocity. 

122. Definition of Static or Potential Energy.—When a body of 
mass TO is at a height s above the ground, which we will suppose 
level, gravity is ready to do the amount of work gms upon it by 
making it fall to the ground. A body in an elevated position may 
therefore be regarded as a reservoir of work. In like manner a 
wound-up clock, whether driven by weights or by a spring, has 
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On the other hand, if a force acts in such a manner as to oppose 
the motion of a moving mass, the force will do negative work, the 
amount of which will be equal to the decrease in the value of {wvo1. 

For example, during any portion of the ascent of a projectile, the 
diminution in the value of fmu 2 is equal to gm multiplied by the 
increase of height; and during any portion of its descent the increase 
in \mvi is equal to gm multiplied by the decrease of height. 

The work which must have been done upon a body to give it its 
actual motion, supposing it to have been initially at rest, is called 
the energy of motion or the kinetic energy of the body. I t can be 
computed by multiplying half the mass by the square of the velocity. 

122. Definition of Static or Potential Energy.—When a body of 
mass TO is at a height s above the ground, which we will suppose 
level, gravity is ready to do the amount of wrork gms upon it by 
making it fall to the ground. A body in an elevated position may 
therefore be regarded as a reservoir of work. In like manner a 
wound-up clock, whether driven by weights or by a spring, has 
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work stored up in it. I n all these cases there is force between parts 
of a system tending to produce relative motion, and there is room 
for such relative motion to take place. There is force ready to act, 
and space for it to act through. Also the force is always the same 
in the same relative position of the parts. Such a system possesses 
energy, which is usually called potential. We prefer to call it 
statical, inasmuch as its amount is computed on statical principles 
alone.1 Statical energy depends jointly on mutual force and relative 
position. Its amount in any given position is the amount of work 
which would be done by the forces of the system in passing from 
this position to the standard position. When we are speaking of 
the energy of a heavy body in an elevated position above level 
ground, we naturally adopt as the standard position that in which 
the body is lying on the ground. When we speak of the energy of 
a wound-up clock, we adopt as the standard position that in which 
the clock has completely run down. Even when the standard 
position is not indicated, we can still speak definitely of the differ-
ence between the energies of two given positions of a system; just 
as we can speak definitely of the difference of level of two given 
points without any agreement as to the datum from which levels 
are to be reckoned. 

123. Conservation of Mechanical Energy.—When a frictionless 
system is so constituted that its forces are always the same in the 
same positions of the system, the amount of work done by these 
forces during the passage from one position A to another position B 
will be independent of the path pursued, and will be equal to minus 
the work done by them in the passage from B to A. The earth and 
any heavy body at its surface constitute such a system; the force of the 
system is the mutual gravitation of these two bodies; and the work 
done by this mutual gravitation, when the body is moved by any 
path from a point A to a point B, is equal to the weight of the body 
multiplied by the height of A above B. When the system passes 
through any series of movements beginning with a given position 
and ending with the same position again, the algebraic total of work 
done by the forces of the system in this series of movements is zero. 
For instance, if a heavy body be carried by a roundabout path back 
to the point from whence it started, no work is done upon it by 
gravity upon the whole. 

Every position of such a system has therefore a definite amount 
1 That is to say, the computation involves no reference to the laws of motion. 
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of statical energy, reckoned with respect to an arbitrary standard 
position. The work done by the forces of the system in passing 
from one position to another is (by definition) equal to the loss of 
static energy; but this loss is made up by an equal gain of kinetic 
energy. Conversely if kinetic energy is lost in passing from one 
position to another, the forces do negative work equal to this loss, 
and an equal amount of static energy is gained. The total energy 
of the system (including both static and kinetic) therefore remains 
unaltered. 

An approximation to such a state of things is exhibited by a 
pendulum. I n the two extreme positions it is at rest, and has there-
fore no kinetic energy; but its statical energy is then a maximum. 
In the lowest position its motion is most rapid; its kinetic energy is 
therefore a maximum, but its statical energy is zero. The difference 
of the statical energies of any two positions, will be the weight of 
the pendulum multiplied by the difference of levels of its centre of 
gravity, and this will also be the difference (in inverse order) between 
the kinetic energies of the pendulum in these two positions. 

As the pendulum is continually setting the air in motion and thus 
doing external work, it gradually loses energy and at last comes to 
rest, unless it be supplied with energy from a clock or some other 
source. If a pendulum could be swung in a perfect vacuum, with 
an entire absence of friction, i t would lose no energy, and would 
vibrate for an indefinite time without decrease of amplitude. 

124. Illustration from Pile-driving.—An excellent illustration of 
transformations of energy is furnished by pile-driving. A large 
mass of iron called a ram is slowly hauled up to a height of several 
yards above the pile, and is then allowed to fall upon it. During 
the ascent, work must be supplied to overcome the force of gravity; 
and this work is represented by the statical energy of the ram in its 
highest position. While falling, it continually loses statical and 
gains kinetic energy; the amount of the latter which it possesses 
immediately before the blow being equal to the work which has 
been done in raising it. The effect of the blow is to drive the pile 
through a small distance against a resistance very much greater than 
the weight of the ram; the work thus done being nearly equal to 
the total energy which the ram possessed at any point of its descent. 
We say nearly equal, because a portion of the energy of the blow is 
spent in producing vibrations. 

125. Hindrances to Availability of Energy.—There is almost 



always some waste in utilizing energy. When water turns a mill-
wheel, it runs away from the wheel with a velocity, the square of 
which multiplied by half the mass of the water represents energy 
which has run to waste. 

Friction again often consumes a large amount of energy; and in 
this case we cannot (as in the preceding one) point to any palpable 
motion of a mass as representing the loss. Heat, however, is pro-
duced, and the energy which has disappeared as regarded f rom a 
gross mechanical point of view, has taken a molecular form. Hea t 
is a form of molecular energy; and we know, from modern re-
searches, what quantity of heat is equivalent to a given amount of 
mechanical work. I n the steam-engine we have the converse 
process; mechanical work is done by means of heat, and heat is 
destroyed in the doing of it, so tha t the amount of heat given out 
by the engine is less than the amount supplied to it. 

The sciences of electricity and magnetism reveal the existence of 
other forms of molecular energy; and it is possible in many ways to 
produce one form of energy at the expense of another; but in 'every 
case there is an exact equivalence between the quantity of one k ind 
which comes into existence and the quantity of another kind which 
simultaneously disappears. Hence the problem of constructing a 
self-driven engine, which we have seen to be impossible in mechanics, 
is equally impossible when molecular forms of energy are called to 
the inventor's aid. 

Energy may be transformed, and may be communicated from one 
system to another; but it cannot be increased or diminished in total 
amount. This great natural law is called the principle of the con-
servation of energy. 

CHAPTER X. 

ELASTICITY. 

126. Elasticity and its Limits.—There is no such tiling in nature 
as an absolutely rigid body. All bodies yield more or less to the 
action of force; and the property in virtue of which they tend to 
recover their original form and dimensions when these are forcibly 
changed, is called elasticity. Most solid bodies possess almost per-
fect elasticity for small deformations; that is to say, when distorted, 
extended, or compressed, within certain small limits, they will, on 
the removal of the constraint to which they have been subjected, 
instantly regain almost completely their original form and dimen-
sions. These limits (which are called the limits of elasticity) are 
different for different substances; and when a body is distoited 
beyond these limits, it takes a set, the form to which it returns 
being intermediate between its original form and tha t into which it 
was distorted. 

When a body is distorted within the limits of its elasticity, the 
force with which it reacts is directly proportional to the amount of 
distortion. For example, the force required to make the prongs of 
a tuning-fork approach each other by a tenth of an inch, is double 
of that required to produce an approach of a twentieth of an inch; 
and if a chain is lengthened a twentieth of an inch by a weight of 
1 cwt., it will be lengthened a tenth of an inch by a weight of 2 
cwt., the chain being supposed to be strong enough to experience no 
permanent set from this greater weight. Also, within the limits of 
elasticity, equal and opposite distortions, if small, are resisted by 
equal reactions. For example, the same force which suffices to 
make the prongs of a tuning-fork approach by a twentieth of an 
inch, will, if applied in the opposite direction, make them separate 
by the same amount. 
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127. Isochronism of Small Vibrations—An important consequence 
of these laws is, that when a body receives a slight distortion 
within the limits of its elasticity, the vibrations which ensue when 
the constraint is removed are isochronous. This follows from § 111, 
inasmuch as the accelerations are proportional to the forces, and are 
therefore proportional aT each instant to the deformation at that 
instant. 

128. Stress, Strain, and Coefficients of Elasticity.—A body which, 
like indian-rubber, can be subjected to large deformations without 
receiving a permanent set, is said to have wide limits of elasticity. 

A body which, like steel, opposes great resistance to deformation, 
is said to have large coefficients of elasticity. 

Any change in the shape or size of a body produced by the appli-
cation of force to the body is called a strain; and an action of force 
tending to produce a strain is called a stress. 

When a wire of cross-section A is stretched with a force F, the 

longitudinal stress is this being the intensity of force per uni t 
area with which the two portions of the wire separated by any 
cross-section are pulling each other. If the length of the wire when 
unstressed is L and when stressed L + 1, the longitudinal strain is 

A stress is always expressed in units of force per unit of area. 
A strain is always expressed as the ratio of two magnitudes of the 
same kind (in the above example, two lengths), and is therefore 
independent of the units employed. 

The quotient of a stress by the strain (of a given kind) which it 
produces, is called a coefficient or modulus of elasticity. In the above 
example, the quotient ^ is called Young's modulus of elasticity. 

As the wire, while it extends lengthwise, contracts laterally, there 
will be another coefficient of elasticity obtained by dividing the 
longitudinal stress by the lateral strain. 

I t is shown, in special treatises, that a solid substance may have 
21 independent coefficients of elasticity; but that when the substance 
is isotropic, tha t is, has the same properties in all directions, the 
number reduces to 2. 

129. Volume-elasticity.—The only coefficient of elasticity possessed 
by liquids and gases is elasticity of volume. When a body of volume 
V is reduced by the application of uniform normal pressure over its 
whole surface to volume V—v, the volume-strain is L and if this 
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effect is produced by a pressure of p units of force per unit of area, 
the elasticity of volume is the quotient of the stress p by the strain 

or is This is also called the resistance to compression; 

and its reciprocal ~ is called the compressibility of the substance. 

In dealing with gases, p must be understood as a pressure super-

added to the original pressure of the gas. 
Since a strain is a mere numerical quantity, independent of units, 

a coefficient of elasticity must be expressed, like a stress, in units of 
force per unit of area. I n the C.G.S. system, stresses and coefficients 
of elasticity are expressed in dynes per square centimetre. The 
following are approximate values (thus expressed) of the two co-
efficients of elasticity above defined:— 

Glass (flint), 
Steel, 
Iron (wrought), 
Iron (east), 
Copper, 
Mercury, 
Water, 
Alcohol, 

Young's 
Modulus. 
60 x 1010 

210 xlO10 

190 x 1010 

130 x 1010 

120 x 1010 

Elasticity of 
Volume. 
40 x 1010 

180 x 1010 

140 x 1010 

96 x 1010 

160 x 1010 

54 x 1010 

2 x 1010 

1-2 x 1010 

130. (Ersted's Piezometer.—The 
compression of liquids has been 
observed by means of (Ersted's 
piezometer, which is represented 
in Fig. 49. The liquid whose 
compression is to be observed is 
contained in a glass vessel b, 
resembling a thermometer with 
a very large bulb and .short tube. 
The tube is open above, and a 
globule of mercury at the top 
of the liquid column serves as an 
index. This apparatus is placed 
in a very strong glass vessel a full 
of water. When pressure is exerted by means of the piston hlh, 
the index of mercury is seen to descend, showing a diminution of 
volume of the liquid, and showing moreover that this diminution of 
volume exceeds that of the containing vessel b. I t might at first 

Fig. 49.—(Ersted's Piezometer, 



sight appear that since1 this vessel is subjected to equal pressure 
within and without, its volume is unchanged; but in fact, its 
volume is altered to the same extent as tha t of a solid vessel of the 
same material; for the interior shells would react with a force 
precisely equivalent to that which is exerted by the contained 
liquid. CHAPTER XI. 

FRICTION. 

131. Friction, Kinetical and Statical.—When two bodies are pressed 
together in such a manner that the direction of their mutual pressure 
is not normal to the surface of contact, the pressure can be resolved 
into two parts, one normal and the other tangential. The tangential 
component is called the force of friction between the two bodies. 
The friction is called kinetical or statical according as the bodies 
are or are not sliding one upon the other. 

As regards kinetical friction, experiment shows that if the normal 
pressure between two given surfaces be changed, the tangential force 
changes almost exactly in the same proportion; in other words, the 
ratio of the force of friction to the normal pressure is nearly constant 
for two given surfaces. This ratio is called the coefficient of kinetical 
friction between the two surfaces, and is nearly independent of the 
velocity. 

132. Statical Friction. Limiting Angle.—It is obvious that the 
statical friction between two given surfaces is zero when their mutual 
pressure is normal, and increases with the obliquity of the pressure 
if the normal component be preserved constant. The obliquity, 
however, cannot increase beyond a certain limit, depending on the 
nature of the bodies, and seldom amounting to so much as 45°. Be-
yond this limit sliding takes place. The limiting obliquity, that is, 
the o-reatest ano-le that the mutual force can make with the normal, o o 
is called the limiting angle of friction for the two surfaces; and 
the ratio of the tangential to the normal component when the 
mutual force acts at the limiting angle, is called the coefficient of 
statical friction for the two surfaces. The coefficient and limiting 
angle remain nearly constant when the normal force is varied. 

The coefficient of statical friction is in almost every case greater 
6 



than the coefficient of kinetical friction; in other words, friction 
offers more resistance to the commencement of sliding than to the 
continuance of it. 

A body which has small coefficients of friction with other bodies 
is called slippery. 

133. Coefficient=tan 0. Inclined Plane.—If 0 be the inclination 
of the mutual force P to the common normal, the tangential com-
ponent will be P sin 0, the normal component P cos 0, and the ratio 
of the former to the latter will be tan 0. Hence the coefficient of 
statical friction is equal to the tangent of the limiting angle of 
friction. 

When a heavy body rests on an inclined plane, the mutual pressure 
is vertical, and the angle 0 is the same as the inclination of the 
plane. Hence if an inclined plane is gradually tilted till a body 
lying on it slides under the action of gravity, the inclination of the 
plane at which sliding begins is the limiting angle of friction 
between the body and the plane, and the tangent of this angle is the 
coefficient of statical friction. 

Again, if the inclination of a plane be such that the motion of a 
body sliding down it under the action of gravi ty is neither accelerated 
nor retarded, the tangent of this inclination will be the coefficient 
of kinetical friction. 

CHAPTER X I I 

HYDROSTATICS. 

134. Hydrodynamics.—We shall now treat of the laws of force as 
applied to fluids. This branch of the general science of dynamics is 
called hydrodynamics (ydwp, water), and is divided into hydrostatics 
and hydrolcinetics. Our discussions will be almost entirely confined 
to hydrostatics. 

FLUIDS.—TRANSMISSION OF PRESSURE. 

The nam & fluid comprehends both liquids and gases. 

135. No Statical Friction in Fluids.—A fluid at rest cannot exert 
any tangential force against a surface in contact with it; its pressure 
at every point of such a surface is entirely normal. A slight tangen-
tial force is exerted by fluids in motion; and this fact is expressed 
by saying that all fluids are more or less viscous. An imaginary 
perfect fluid would be perfectly free from viscosity; its pressure 
against any surface would be entirely normal, whether the fluid 
were in motion or at rest. 

136. Intensity of Pressure.—When pressure is uniform over an 
area, the total amount of the pressure, divided by the area, is called 
the intensity of the pressure. The C.G.S. unit of intensity of 
pressure is a pressure of a dyne on each square centimetre of sur-
face. A rough unit of intensity frequently used is the pressure of 
a pound per square inch. This unit varies with the intensity of 
gravity, and has an average value of about 69,000 C.G.S. units. 
Another rough unit of intensity of pressure frequently employed is 
" an atmosphere "—that is to say, the average intensity of pressure 
of the atmosphere at the surface of the earth. This is about 
1,000,000 C.G.S. units. 
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The single word " pressure " is used sometimes to denote " amount 
of pressure" (which can be expressed in dynes) and sometimes 
" intensity of pressure" (which can be expressed in dynes per square 
centimetre). The context usually serves to show which of these 
two meanings is intended. 

137. Pressure the Same in all Directions.—The intensity of pressure 
at any point of a fluid is the same in all directions; it is the same 
whether the surface which receives the pressure faces upwards, 
downwards, horizontally, or obliquely. 

This equality is a direct consequence of the absence of tangential 
force between two contiguous portions of a fluid. 

For in order that a small triangular prism of the fluid (its ends 
being right sections) may be in equilibrium, the pressures on its 
three faces must balance each other. But when three forces balance 
each other, they are proportional to t he sides of a triangle to which 
they are perpendicular;1 hence the amounts of pressure on the 
three faces are proportional to the faces, in other words the inten-
sities of these three pressures are equal. As we can take two of 
the faces perpendicular to any two given directions, this proves that 
the pressures in all directions at a point are of equal intensity. 

138. Pressure the Same at the Same Level.— 
In a fluid at rest, the pressure is the same 
at all points in the same horizontal plane. 
This appears f rom considering the equilibrium 
of a horizontal cylinder AB (Fig. 50), of small 
sectional area, its ends being right sections. 
The pressures on the sides are normal, and 
therefore give no component in the direction 
of the length; hence the pressures on the 

ends must be equal in amount; but they act on equal areas; there-
fore their intensities are equal. 

A horizontal surface in a liquid a t rest may therefore be called a. 
" surface of equal pressure." 

139. Difference of Pressure at Different Levels.—The increase of 
pressure with depth, in a fluid of uniform density, can be investi-
gated as follows:—Consider the equilibrium of a vertical cylinder 
mm' (Fig. 51), its ends being right sections. The -pressures on its 

1 This is an obvious consequence of the triangle of forces (art. 14) ; for if the sides of 
a triangle are parallel to three forces, we have only to turn the triangle through a right 
angle, and its sides will then be perpendicular to the forces. 
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sides are normal, and therefore horizontal. The only vertical forces 
acting upon it are its own weight and the pressures on its ends, of 
which it is to be observed that the pressure 
on the upper end acts downwards and that 
on the lower end upwards. The pressure on 
the lower end therefore exceeds that on the 
upper end by an amount equal to the weight 
of the cylinder. If a be the sectional area, iv 
the weight of unit volume of the liquid, and 
h the length of the cylinder, the volume of 
the cylinder is ha, and its weight wha, which 
must be equal to (p—p) a if p,p are the intensities of pressure on 
the lower and upper ends respectively. We have therefore 

p-p' = wit, z ViJ''J ' 

that is, the increase of pressure in descending through a depth h 
is wh. 

The principles of this and the preceding section remain appli-
cable whatever be the shape of the containing vessel, even if it be 
such as to render a circuitous route necessary in passing from one 
of two points compared to the other; for this route can always be 
made to consist of a succession of vertical and horizontal lines, and 
the preceding principles when applied to each of these lines separ-
ately, will give as the final result a difference of pressure wh for a 
difference of heights h. 

If d denote the density of the liquid, in grammes per cub. cm., the 
weight of a cubic cm. will be gd dynes. The increase of pressure 
for an increase of depth h cm. is therefore ghd dynes per sq. cm. 
If there be no pressure at the surface of the liquid, this will be the 
actual pressure at the depth h. 

140. Free Surface.—It follows from these principles that the free 
surface of a liquid at rest—that is, the 
surface in contact with the atmosphere 
—must be horizontal; since all points in 
this surface are at the same pressure. If 
the surface were not horizontal, but were A 
higher at n than at n (Fig. 52), the pres-
sures at the two points m, m' vertically Fig. 52. 
beneath them in any horizontal plane 
AB would be unequal, for they would be due to the weights 



of unequal columns nm, n'm', and motion would ensue from TO 
towards TO'. 

The same conclusion can be deduced from considering the equili-
brium of a particle at the surface, as M (Fig. 53). If the tangent 
plane at M were not horizontal there would be a component of 

gravity tending to make the particle 
slide down; and this tendency would 
produce motion, since there is no fric-
tion to oppose it. 

141. Transmissibility of Pressure in 
Fluids.—Since the difference of the 
pressures at two points in a fluid can 
be determined by the foregoing prin-

ciples, independently of any knowledge of the absolute intensity 
of either, i t follows that when increase or diminution of pres-
sure occurs at one point, an equal increase or diminution must 
occur throughout the whole fluid. A. fluid in a closed vessel 
perfectly transmits through its whole substance whatever pressure 
we apply to any part. The changes in amount of pressure will be 
equal for all equal areas. For unequal areas they will be propor-
tional to the areas. 

Thus if the two vertical tubes in Fig. 54 have sectional areas 
which are as 1 to 16, a weight of 1 kilo-

Fig. 53. 

a r i l . 16 K gram acting on the surface of the liquid 
in the smaller tube will be balanced by 
16 kilograms acting on the surface of the 
liquid in the larger. 

This principle of the perfect transmis-
sion of pressure by fluids appears to have 
been first discovered and published by 
Stevinus; but i t was rediscovered by 
Pascal a few years later, and having been 
made generally known by his writings is 
often called " Pascal's principle." In his 
celebrated treatise on the Equilibrium of 

Liquids, he says, «If a vessel ful l of water, closed on all sides, has 
two openings, the one a hundred times as large as the other, and if 
each be supplied with a piston which fits exactly, a man pushing 
he small piston will exert a force which will equilibrate that of a 

hundred men pushing the piston which is a hundred times as W e , 

Kg. 54.—Principle of the Hydraulic 
Press. 
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and will overcome that of ninety-nine. . And whatever may be the 
proportion of these openings, if the forces applied to the pistons are 
to each other as the openings, they will be in equilibrium." 

142. Hydraulic Press.—This mode of multiplying force remained 
for a long time practically unavailable on account of the difficulty 
of making the pistons water-tight. The hydraulic press was first 
successfully made by Bramah, who invented the cupped leather collar 
illustrated in Fig. 166, § 264. Fig. 165 shows the arrangements of 
the press as a whole. Instead of pistons, plungers are employed; 
that is to say, solid cylinders of metal which can be pushed down 
into the liquid, or can be pushed up by the pressure of the liquid 
against their bases. The volume of liquid displaced by the advance 
of a plunger is evidently equal to that displaced by a piston of the 
same sectional area, and the above calculations for pistons apply to 
plungers as well. The plungers work through openings which are 
kept practically water-tight by means of the cup-leather arrange-
ment. The cup-leather, which is shown both in plan and section 
in Fig. 166, consists of a leather ring bent so as to have a semi-
circular section. It is fitted into a hollow in the interior of the 
sides of the opening, so that water leaking up along the circumfer-
ence of the plunger will fill the concavity of the leather, and, by 
pressing on it, will produce ? packing which fits more t ightly as the 
pressure on the plunger increase . 

143. Principle of Work Applicable.—In Fig. 54, when the smaller 
piston advances and forces the other back, the volume of liquid 
driven out of the smaller tube is equal to the sectional area multi-
plied by the distance through which the piston advances. In like 
manner, the volume of liquid driven into the larger tube is equal to 
its sectional area multiplied by the distance that its piston is forced 
back. But these two volumes are equal, since the same volume of 
liquid that leaves one tube enters the other. The distances through 
which the two pistons move are therefore inversely as their sectional 
areas, and hence are inversely as the amounts of pressure applied 
to them. The work done in pushing forward the smaller piston is 
therefore equal to the work done by the liquid in pushing back the 
larger. This was remarked by Pascal, who says— 

" I t is, besides, worthy of admiration that in this new machine 
we find that constant rule which is met with in all the old ones 
such as the lever, wheel and axle, screw, &c., which is that the 
distance is increased in proportion to the force; for it is evident that 
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as one of these openings is a hundred times as large as the other, if 
the man who pushes the small piston drives it forward one inch, he 
will drive the large piston backward only one-hundredth part of 
that length." 

144. Experiment on Upward Pressure.—The upward pressure 
^ ^ exerted by a liquid against a 

horizontal surface facing down-
wards can be exhibited by the 
following experiment. Take a tube 
open at both ends (Fig. 55), and 
keeping the lower end covered 
with a piece of card, plunge it into 
water. The liquid will press the 
card against the bottom of the 
tube with a force which increases 
as i t is plunged deeper. If water 
be now poured into the tube, the 
card will remain in its place as 
long as the level of the liquid is 
lower within the tube than with-
out; but at the moment when 
equality of levels is attained it 
will become detached. 

145. Liquids in Superposition.—When one liquid rests on the top 
of another of different density, the foregoing principles lead to the 
result that the surface of demarcation must be horizontal. For the 
free surface of the upper liquid must, as we have seen, be horizontal. 
If now we take two small equal areas n and n' (Fig. 56) in a 
horizontal layer of the lower liquid, they must be subjected to 

equal pressures. But these pressures are 
measured by the weights of the liquid 
cylinders nrs, ritl; and these latter cannot 
be equal unless the points r and t a t the 
junct ion of the two liquids are at the same 
level. All points in the surface of demarca-
tion are therefore in the same horizontal 
plane. 

The same reasoning can be extended downwards to any number of 
liquids of unequal densities, which rest one upon another, and shows 
that all the surfaces of demarcation between them must be horizontal. 

Fig. 55.—Upward Pressure. 

Fig. 56. 
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An experiment in illustration of this result is represented in Fig. 
57. Mercury, water, and oil are poured into a glass jar. The 
mercury, being the heaviest, goes to 
the bottom; the oil, being the lightest, 
floats at the top; and the surfaces of 
contact of the liquids are seen to be 
horizontal. 

Even when liquids are employed which 
gradually mix with one another, as 
water and alcohol, or fresh water and 
salt water, so that there is no definite 
surface of demarcation, but a gradual 
increase of density with depth, it still 
remains t rue that the density at all 
points in a horizontal plane is the same. 

146. Two Liquids in Bent Tube.— Fig 57 
If We p O U r mercury into a bent tube Fhial of the Four Elements. 

open at both ends (Fig. 58), and then pour water into one of 
the arms, the heights of the two liquids above the surface of junction 
will be very unequal, 
as shown in the figure. 
The general rule for the 
equilibrium of any two 
liquids in these circum-
stances is tha t their 
heights above the surface 
of junction must be in-
versely as their densities, 
since they correspond to 
equal pressures. 

147. E x p e r i m e n t of 
Pasca l ' s Vases.—Since 
the amount of pressure _ 
on a horizontal area A ; > JJ ^ • - : : r -

is whk, where w denotes 
the weight of unit volume Fig- SS. -EquiUbr ium of F ' " ^ in Communicating 

of the liquid, i t follows 
that the pressure on the bottom of a vessel containing liquid is not 
affected by the breadth or narrowness of the upper part of the 



vessel, provided the height of the free surface of the liquid be given. 
Pascal verified this fact by an experiment which is frequently ex-
hibited in courses of physics. The apparatus employed (Fig. 59) is 
a tripod supporting a ring, into which can be screwed three vessels 
of different shapes, one widened upwards, another cylindrical, and 
the third tapering upwards. Beneath the ring is a movable disc 

supported by a string attached' to one of the scales of a balance. 
Weights are placed in the other scale in order to keep the disc 
pressed against the ring. Let the cylindrical vase be mounted on 
the tripod and filled up with water to such a level that the pressure 
IS just sufficient to detach the disc from the ring. An indicator, 
shown in the figure, is used to mark the level at which this takes 
place. Let the experiment be now repeated with the two other 
vases and the disc will be detached when the water has reached the 
same level as before. 

In the ease of the cylindrical vessel, the pressure on the bottom 
is evidently equal to the weight of the liquid. Hence in all three 
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Fig. 60.—Total Pressure. 

cases the pressure on the bottom of the vessel is equal to the weight 
of a cylindrical column of the liquid, having the bottom as its base, 
and having the same height as the liquid in the vessel. 

148. Resultant Pressure on Vessel.—The pressure exerted by the 
bottom of the vessel upon the stand on which it rests, consists of the 
weight of the vessel itself, together with the resultant pressure of 
the contained liquid against it. The actual pressure of the liquid 
against any portion of the vessel is normal 
to this portion, and if we resolve it into two 
components, one vertical and the other hori-
zontal, only the vertical component need be 
attended to, in computing the resultant; 
for the horizontal components will always 
destroy one another. At such points as 
n, n (Fig. 60) the vertical component is 
downwards; at s and s i t is upwards; at 
r and r there is no vertical component; 
and at AB the whole pressure is vertical. 
I t can be demonstrated mathematically that 
the resultant pressure is always equal to the total weight of the 
contained liquid; a conclusion which can also be deduced from the 
consideration that the pressure exerted by the vessel upon the stand 
on which it rests must be equal to its own weight together with 
that of its contents. 

Some cases in which the proof above indicated becomes especially 
obvious, are represented in 
Fig. 61. In the cylindrical 
vessel ABDC, i t is evident 
that the only pressure trans-
mitted to the stand is that 
exerted upon the bottom, 
which is equal to the weight 
of the liquid. In the case 
of the vessel which is wider 
at the top, the stand is subjected to the weight of the liquid column 
ABSK, which presses on the bottom AB, together with the columns 
GHKC, RLDS, pressing on GH and RL; the sum of which weights 
composes the total weight of liquid contained in the vessel. Finally, 
in the third case, the pressure on the bottom AB, which is equal to 
the weight of a liquid column ABSK, must be diminished by the 
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upward pressures 011 H G and RL. These last being represented by-
liquid columns HGCK, RLSD, there is only left to be transmitted to 
the stand a pressure equal to the weight of the water in the vessel. 

149. Back Pressure in Discharging Vessel.—The same analysis 
which shows that the resultant vertical pressure of a liquid against 
the containing vessel is equal to the weight of the liquid, shows also 
that the horizontal components of the pressures destroy one another. 
This conclusion is in accordance with everyday experience. How-
ever susceptible a vessel may be of horizontal displacement, it is 
not found to acquire any tendency to horizontal motion by being 
filled with a liquid. 

When a system of forces are in equilibrium, the removal of one 
of them destroys the equilibrium, and causes the resultant of the 
system to be a force equal and opposite to the force removed. 
Accordingly if we remove an element of one side of the containing 
vessel, leaving a hole through which the liquid can flow out, the 
remaining pressure against this side will be insufficient to preserve 
equilibrium, and there will be an excess of pressure in the opposite 
direction. 

This conclusion can be directly verified by the experiment repre-
sented in Fig. 62. A tall floating 
vessel of water is fitted with a hori-
zontal discharge-pipe on one side near 
its base. The vessel is to be filled 
with water, and the discharge-pipe 
opened while the vessel is at rest. As 
the water flows out, the vessel will be 
observed to acquire a velocity, at first 
very slow, but continually increasing, 
in the opposite direction to that of 
the issuing stream. 

This experiment may also be re-
garded as an illustration of the law 
of action and reaction, which asserts 
that momentum cannot be imparted 

to any body without equal and opposite momentum being imparted 
to some other body. The water in escaping from the vessel 
acquires horizontal momentum in one direction, and the vessel with 
its remaining contents acquires horizontal momentum in the opposite 
direction. 

Fig. 62. — Backward Movement of 
Discharging Vessel. 
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The movements of the vessel in this experiment are slow. More 
marked effects of the same kind can be obtained by means of the 
hydraulic tourn- __ 
iquet (Fig. 63), _ y / \ . 
which when made 
on a larger scale 
is called Barker's 
mill. I t consists of 
a vessel of water 
f r e e t o r o t a t e 
about a vertical 

axis, and having V ? / "5SP 
at its lower end \ / ¿ r ^ ? 
bent arms through -- i ( - - | | | B — ^ 
w h i c h t h e w a t e r ^ ^ ^ M H j S i M B a H p g ^ ^ ^ ^ ^ ^ ^ ^ ^ 

i.s d i s c h a r g e d h o r i - ^ S P ^ f e -

z o n t a l l y , t h e ^te - • 
direction of dis-
(Mwi r g e^ b e i n g ^ • . -

joining the dis- ,1 " * ' " , ' ~ . 
_ Fig. 63.—Hydraulic Tourniquet. 

charging orifice to 
the axis. The unbalanced pressures at the bends of the tube, 
opposite to the openings, cause the apparatus to revolve in the 
opposite direction to the issuing liquid. 

150. Total and Resultant Pressures. Centre of Pressure.—The 
intensity of pressure on an area which is not horizontal is greatest 
on those parts which are deepest, and the average intensity can be 
shown to be equal to the actual intensity at the centre of gravity 
of the area. Hence if A denote the area, h the depth of its centre 
of gravity, and w the weight of unit volume of the liquid, the total 
pressure will be w All. Strictly speaking, this is the pressure due 
to the weight of the liquid, the transmitted atmospheric pressure 
being left out of account. 

In attaching numerical values to w, A, and h, the same unit of 
length must be used throughout. For example, if h be expressed 
in feet, A must be expressed in square feet, and w must stand for 
the weight of a cubic foot of the liquid. 

When we employ the centimetre as the unit of length, the value 
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of w will be sensibly 1 gramme if the liquid be water, so that the 
amount of pressure in grammes will be simply the product of the 
depth of the centre of gravity in centimetres by the area in square 
centimetres. For any other liquid, the pressure will be found by 
multiplying this product by the specific gravity of the liquid. 

These rules for computing total pressure hold for areas of all 
forms, whether plane or curved; but the investigation of the total 
pressure on an area which is not plane is a mere mathematical 
exercise of no practical importance; for as the elementary pressures 
in this case are not parallel, their sum (which is the total pressure) 
is not the same thing as their resultant. 

For a plane area, in whatever position, the elementary pressures, 
being everywhere normal to its plane, are parallel and give a resul-
tant equal to their sum; and it is often a matter of interest to 
determine that point in the area through which the resultant passes. 
This point is called the Centre of Pressure. I t is not coincident 
with the centre of gravity of the area unless the pressure be of 
equal intensity over the whole area. When the area is not hori-
zontal, the pressure is most intense at those parts of it which are 
deepest, and the centre of pressure is accordingly lower down than 
the centre of gravity. For a horizontal area the two centres are 
coincident, and they are also sensibly coincident for any plane area 
whose dimensions are very small in comparison with its depth in 
the liquid, for the pressure over such an area is sensibly uniform 

151. Construction for Centre of Pressure.-If at every point of a 
plane area immersed in a liquid, a normal be drawn, equal to the 
depth of the point, the normals will represent the intensity of 
pressure at the respective points, and the volume of the solid con-
stituted by all the normals will represent the total pressure. That 

normal which passes through the centre 
of gravity of this solid will be the line 
of action of the resultant, and will there-
fore pass through the centre of pressure. 

Thus, if RB (Fig. 64) be a rectangular 

surface (which we may suppose to be 
t h e surface of a flood-gate or of the side 
of a dam), its lower side B being at the 

R at thA w u • b ° t t 0 m ° f t h e w a t e r a n d i t s uPPer side 
formlv to B tI ^ ^ " * B 0 a t * a n d g 0 e s o n ^ n g uni-formly to B. The normals B6, Dei, Bh, Li, equal to the depths of a 

Fig. 64—Centre of Pressure. 
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series of points in the line BR will have their extremities b, d, h, l, 
in one straight line. To find the centre of pressure, we must find 
the centre of gravity of the triangle RB6 and draw a normal through 
it. As the centre of gravity of a triangle is at one-third of its 
height, the centre of pressure will be at one-third of the height of 
BR. I t will lie on the line joining the middle points of the upper 
and lower sides of the rectangle, and will be at one-third of the 
length of this line from its lower end. 

The total pressure will be equal to the weight of a quantity of 
the liquid whose volume is equal to that of the triangular prism 
constituted by the aggregate of the normals, of which prism the 
triangle RB6 is a rio-ht section. I t is not difficult to show that the O O 
volume of this prism is equal to the product of the area of the 
rectangle by the depth of the centre of gravity of the rectangle, in 
accordance with the rule above given. 

152. Whirling Vessel. D'Alembert's Principle.—If an open vessel 
of liquid is rapidly rotated round a vertical axis, the surface of the 
liquid assumes a concave form, as represented in 
Fig. 65, where the dotted line is the axis of rota-
tion. When the rotation has been going on at a 
uniform rate for a sufficient time, the liquid mass 
rotates bodily as if its particles were rigidly 
connected together, and when this state of things 
has been attained the form of the surface is that 
of a paraboloid of revolution, so that the section 
represented in the figure is a parabola. 

We have seen in § 101 that a particle moving 
uniformly in a circle is acted on by a force directed 
towards the centre. In the present case, therefore, 
there must be a force acting upon each particle of 
the liquid urging it towards the axis. This force 
is supplied by the pressure of the liquid, which 
follows the usual law of increase with depth for all 
points in tlie same vertical. If we draw a horizon- Fig 65 _ Rotating VeSSei 
tal plane in the liquid, the pressure at each point of of Liquld' 
it is that due to the height of the point of the surface vertically over 
it. The pressure is therefore least at the point where the plane is cut 
by the axis, and increases as we recede from this centre. Consequently 
each particle of liquid receives unequal pressures on two opposite 
sides, being more strongly pressed towards the axis than from it. 



Another mode of discussing the case, is to treat it as one of 
statical equilibrium under the joint action of gravity and a fictitious 
force called centrifugal force, the latter force being, for each par-
ticle, equal and opposite to that which would produce the actual 
acceleration of the particle. This so-called centrifugal force is 
therefore to be regarded as a force directed radially outwards from 
the axis; and by compounding the centrifugal force of each particle 
with its weight we shall obtain what we are to treat as the resul-
tant force on that particle. The form of the surface will then be 
determined by the condition that at every point of the surface the 
normal must coincide with this resultant force; jus t as in a liquid 
at rest, the normals must coincide with the direction of gravity. 

The plan here adopted of introducing fictitious forces equal and 
opposite to those which if directly applied to each particle of a 
system would produce the actual accelerations, and then applying 
the conditions of statical equilibrium, is one of very frequent appli-
cation, and will a lways lead to correct results. This principle was 
first introduced, or a t least systematically expounded, by D'Alem-
bert, and is known as D'Alembert's Principle. 

CHAPTER X I I I . 

PRINCIPLE OF ARCHIMEDES. 

153. Pressure of Liquids on Bodies Immersed.—When a body is 
immersed in a liquid, the different points of its surface are sub-
jected to pressures which obey the rules laid down in the preceding-
chapter. As these pressures increase with the depth, those which 
tend to raise the body exceed those which tend to sink it, so that 
the resultant effect is a force in the direction opposite to that of 
gravity. 

By resolving the pressure on each element into horizontal and 
vertical components, it can be shown that this resultant upward 
force is exactly equal to the weight of the liquid displaced by the 
body. 

The reasoning is particularly simple in the case of a right cylinder 
(Fig. 66) plunged vertically in a liquid. I t is evident, in the 
first place, that if we consider any point on the 
sides of the cylinder, the normal pressure on 
that point is horizontal and is destroyed by the 
equal and contrary pressure at the point dia-
metrically opposite; hence, the horizontal pres-
sures destroy each other. As regards the 
vertical pressures on the ends, one of them, 
that on the upper end AB, is in a downward 
direction, and equal to the weight of the liquid 
column ABNN; the other, that on the lower end CD, is in an 
upward direction, and equal to the weight of the liquid column 
CNND; this latter pressure exceeds the former by the weight of the 
liquid cylinder ABDC, so that the resultant effect of the pressure 
is to raise the body with a force equal to the weight of the liquid 
displaced. 

Fig. 66.—Principle of 
Archimedes. 
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By a synthetic process of reasoning, we may, without having 
recourse to the analysis of the different pressures, show that this 
conclusion is perfectly general. Suppose we have a liquid mass in 
equilibrium, and that we consider specially the portion M (Fig. 07); 

this portion is likewise in equilibrium. If we 
suppose it to become solid, without any change 
in its weight or volume, equilibrium will still 
subsist. Now this is a heavy mass, and as it 
does not fall, we must conclude that the effect 
of the pressures on its surface is to produce 
a resultant upward pressure exactly equal to 

Fig. s r .—Pr inc ip le of its weight, and acting in a line which passes 
Archimedes. i 1 • p x c 

through its centre of gravity. If we now 
suppose M replaced by a body exactly occupying its place, the 
exterior pressures will remain the same, and their resultant effect 
will therefore be the same. 

The name centre of buoyancy is given to the centre of gravity of 
the liquid displaced,—that is, if the liquid be uniform, to the centre 
of gravity of the space occupied by the immersed body; and the 
above reasoning shows that the resultant pressure acts vertically 
upwards in a line which passes through this point. The results of 
the above explanations may thus be included in the following pro-
position: Every body immersed in a liquid is subjected to a resul-
tant pressure equal to the weight of the liquid displaced, and acting 
vertically upwards through the centre of buoyancy. 

This proposition constitutes the celebrated principle of Archimedes. 
The first part of it is often enunciated in the following form: Every 
body immersed in a liquid loses a portion of its weight equal to the 
weight of the liquid displaced; for when a body is immersed in a 
liquid, the force required to sustain it will evidently be diminished 
by a quantity equal to the upward pressure. 

154. Experimental Demonstration of the Principle of Archimedes — 
The following experimental demonstration of the principle of Archi-
medes is commonly exhibited in courses of physics:— 

From one of the scales of a hydrostatic balance (Fig. 68) is sus-
pended a hollow cylinder of brass, and below this a solid cylinder, 
whose volume is equal to the interior volume of the hollow cylinder; 
these are balanced by weights in the other scale. A vessel of water 
is then placed below the cylinders, in such a position that the lower 
cylinder shall be immersed in it. The equilibrium is immediately 
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Fig. 6S.—Experimental Verification of Principle of Archimedes. 

will be observed to resume its horizontal position when the hollow 
cylinder is full of water, the other cylinder being at the same time 
completely immersed. The upward pressure upon this latter is thus 
equal to the weight of the water added, that is, to the weight of the 
liquid displaced. 

155. Body Immersed in a Liquid.—It follows from the principle of 
Archimedes that when a body is immersed in a liquid, it is subjected 
to two forces: one equal to its weight and applied at its centre of 
gravity, tending to make the body descend; the other equal to the 
weight of the displaced liquid, applied at the centre of buoyancy, and 
tending to make it rise. There are thus three different cases to be 
considered: 

(1.) The weight of the body may exceed the weight of the liquid 
displaced, or, in other words, the mean density of the body may be 

destroyed, and the upward pressure of the water causes the scale 
with the weights to descend. If we now pour water into the hollow 
cylinder, equilibrium will gradually be re-established; and the beam 



greater than that of the liquid; in this case, the body sinks in the 
liquid, as, for instance, a piece of lead dropped into water. 

(2.) The weight of the body may be less than that of the liquid 
displaced; in this case the body will not remain submerged unless 
forcibly held down, but will rise partly out of the liquid, until the 
weight of the liquid displaced is equal to its own weight. This is 
what happens, for instance, if we immerse a piece of cork in water 
and leave it to itself. 

(3.) The weight of the body may be equal to the weight of the 
liquid displaced; in this case, the two opposite forces being equal, 
the body takes a suitable position and remains in equilibrium. 

These three cases are exemplified in the three following experi-
ments (Fig. 69):— 

(1.) An egg is placed in a vessel of water; it sinks to the bottom 

Fig. 09.—Egg Plunged in Fresh and Salt Water. 

of the vessel, its mean density being a little greater than that of the 
liquid. 

(2.) Instead of fresh water , salt water is employed; the egg floats 
at the surface of the liquid, which is a little denser than it. 

(3.) Fresh water is carefully poured on the salt water; a mixture 
of the two liquids takes place where they are in contact; and if the 
egg is put in the upper part, i t will be seen to descend, and, after a few 
oscillations, remain at rest a t such a depth tha t i t displaces its own 
weight of the liquid. I n speaking of the liquid displaced in this 
case, we must imagine each horizontal layer of liquid surrounding 
the egg to be produced through the space which the egg occupies; 
and by the centre of buoyancy we must understand the centre of 

gravity of the portion of liquid which would thus take the place 
of the egg. We may remark that, in this position the egg is in 
stable equilibrium; for, if i t rises, the upward pressure diminish-
ing, its weight tends to make it descend again; if, on the contrary, 
it sinks, the pressure increases and tends to make it reascend. 

158. Cartesian Diver.—The experiment of the Cartesian diver, 
which is described in old treatises on physics, shows each of the 
different cases that can present themselves when a body is immersed. 
The diver (Fig. 70) consists of a hollow ball, at the bottom of which 
is a small opening 
O; a little porcelain ^ e ^ ^ m 
figure is attached to s f ^ i I f 
the ball, and the W j K - ^ ' 
whole floats upon ^ y ^ v w 
water contained in 
a glass vessel, the 
mouth of which is 
closed by a strip of 
caoutchouc or a blad-
der. If we press 
with the hand on 
the bladder, the air 
is compressed, and 
the pressure, trans-
mitted through the 
different horizontal 
layers, condenses the 
air in the ball, and 
causes the entrance 
of a portion of the 
liquid by the open-
ing O; the floating 
body becomes heavier, and in consequence of this increase of weight 
the diver descends. When we cease to press upon the bladder, the 
pressure becomes what it was before, some water flows out and the 
diver ascends. I t must be observed, however, that as the diver 
continues to descend, more and more water enters the ball, in conse-
quence of the increase of pressure, so that if the depth of the water 
exceeded a certain limit, the diver would not be able to rise again 
from the bottom. 

Fig. TO.—Cartesian Diver. 
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If we suppose that at a certain moment the weight of the diver 
becomes exactly equal to the weight of an equal volume of the liquid, 
there will be equilibrium; but, unlike the equilibrium in the experi-
ment (3) of last section, this will evidently be unstable, for a slight 
movement either upwards or downwards will alter the resultant 
force so as to produce further movement in the same direction. As 
a consequence of this instability, if the diver is sent down below a 
certain depth he will not be able to rise again. 

157. Relative Positions of the Centre of Gravity and Centre of 
Buoyancy.—In order that a floating body either wholly or partially 
immersed in a liquid, may be in equilibrium, it is necessary that its 
weight be equal to the weight of the liquid displaced. 

This condition is however not sufficient; we require, in addition, 
that the action of the upward pressure should be exactly opposite 
to that of the weight; that is, that the centre of gravity and the 
centre of buoyancy be in the same vertical line; for if this were not 
the case, the two contrary forces would compose a couple, the effect 
of which would evidently be to cause the body to turn. 

In the case of a body completely immersed, it is further necessary 
for stable equilibrium that the centre of gravity should be below the 
centre of buoyancy; in fact we see, by Fig. 71, that in any other 

Fig. 71. 
Relative Positions of Centre of Gravity and Centre of Pressure. 

position than that of equilibrium, the effect of the two forces 
applied at the two points G and 0 would be to turn the body, so as 
to bring the centre of gravity lower, relatively to the centre of 
buoyancy. But this is not the case when the body is only partially 
immersed, as most frequently happens. In this case it may indeed 
happen that, with stable equilibrium, the centre of gravity is below 
the centre of pressure; but this is not necessary, and in the majority 
of instances is not the case. Let Fig. 72 represent the lower part 
of a floating body—a boat, for instance. The centre of pressure 
is at 0 , the centre of gravity at G, considerably above; if the body 
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is displaced, and takes the position shown in the figure, i t will be 
seen tha t the effect of the two forces acting at 0 and at G is to 
restore the body to its former position. This difference from what 
takes place when the body is completely immersed, depends upon 
the fact that, in the case of the floating body, the figure of the 
liquid displaced changes with the position of the body, and the 
centre of buoyancy moves towards the side on which the body is 
more deeply immersed. I t will depend upon the form of the body 
whether this lateral movement of the centre of buoyancy is sufficient 
to carry i t beyond the vertical through the centre of gravity. The 
two equal forces which act on the body will evidently turn i t to or 
from the original position of equilibrium, according as the new centre 
of buoyancy lies beyond or falls short of this vertical.1 

158. Advantage of Lowering the Centre of Gravity.—Although 
stable equilibrium may subsist with the centre of gravity above the 
centre of buoyancy, yet for a body of given external form the 
stability is always increased by lowering the centre of gravity; as 
we thus lengthen the arm of the couple which tends to right the 
body when displaced. I t is on this 
principle that the use of ballast 
depends. 

159. Phenomena in Apparent 
Contradiction to the Principle of 
Arch imedes .—The principle of 
Archimedes seems at first sight to 
be contradicted by- some well-
known facts. Thus, for instance, if 
small needles are placed carefully 
on the surface of water, they will . . 
remain there in equilibrium (Fig. 73). I t is on a similar principle 

Fig. 73.—Steel Needles Float ing on Water. 

• If a vertical through the new centre of buoyancy be drawn upwards to meet that 
line in the body which in the position of equilibrium was a vertical through the centre 
oGrav i ty , the point of intersection is called the nctacentre. Evidently when the for 
end to restore the body to the position of equilibrium, the m e t a c c n t r e , J — 

of gravity; when they tend to increase the displacement, it is below. In ships the dis 
t a n S between these two points is usually nearly the same for all amounts of heeling, and 
this distance is a measure of the stability of the ship. _ .. _ 

We have defined the metacentre as the intersection of two 1 nes. When these line 
lie in different planes, and do not intersect each other there is no meta«entre 
indeed is the case for most of the displacements to which a floating body of rregular 
shape can be subjected. There are in general only two directions of heeling to which 
metacentres corre pond, and these two directions are at right angles to each other. 



that several insects walk on water (Fig. 74), and that a great 
number of bodies of various natures, provided they be very minute, 

can, if we may so say, be placed 
on the surface of a liquid with-
out penetrating into its interior. 
These curious facts depend on the 
circumstance that the small bodies 

Fig. 74.-insect walking on Water. in question are not wetted by the 
liquid, and hence, in virtue of 

principles which will be explained in connection with capillarity 
(Chap, xvi.), depressions are formed around them on the liquid 
surface, as represented in Fig. 75. The curvature of the liquid 
surface in the neighbourhood of the body is very distinctly shown 
by observing the shadow cast by the floating body, when it is 
illumined by the sun; it is seen to be bordered by luminous bands, 
which are owing to the refraction of the rays of light in the portion 
of the liquid bounded by a curved surface. 

The existence of the depression about the floating body enables 
us to bring the condition of equilibrium in this 

c D special case under the general enunciation of the 
^ g ^ S i j j S principle of Archimedes. Let M (Fig. 75) be 

t l i e body, CD the region of the depression, and 
AB the corresponding portion of any horizontal 

Fig. to. layer; since the pressure at each point of AB 
must be t he same as in other parts of the same 

horizontal layer, the total weight above AB is the same as if M 
did not exist and the cavity were filled with the liquid itself. 

We may thus say in this case also that the weight of the floating 
body is equal to the weight of the liquid displaced, understanding 
by these words the liquid which would occupy the whole of the 
depression due to the presence of the body. 

CHAPTER XIV. 

DENSITY AND ITS DETERMINATION. 

160. Definitions—By the absolute density of a substance is meant 
the mass of unit volume of it. By the relative density is meant the 
ratio of its absolute density to that of some standard substance, or, 
what amounts to the same thing, the ratio of the mass of any volume 
of the substance in question to the mass of an equal volume of the 
standard substance. Since equal masses gravitate equally, the com-
parison of masses can be effected by weighing, and the relative den-
sity of a substance is the ratio of its weight to that of an equal 
volume of the standard substance. Water at a specified tempera-
ture and under atmospheric pressure is usually taken as the standard 
substance, and the density of a substance relative to water is usually 
called the specific gravity of the substance. 

Let V denote the volume of a substance, M its mass, and D its 
absolute density; then by definition, we have M = Y D . 

If s denote the specific gravity of a substance, and d the absolute 
density of water in the standard condition, then D = s d and M = 
Ysd. 

When masses are expressed in lbs. and volumes in cubic feet, the 
value of d is about 62*4, since a cubic foot of cold water weighs 
about 62-4 lbs.1 

In the C.G.S. system, the value of d is sensibly unity, since a 
cubic centimetre of water, at a temperature which is nearly that of 
the maximum density of water, weighs exactly a gramme.2 

The gramme is defined, not by reference to water, but by a 
standard kilogramme of platinum, which is preserved in Paris, and 

1 In round numbers, a cubic foot of water weighs 1000 oz., which is 62*5 lbs. 
a According to the best determination yet published, the mass of a cubic centimetre of 

pure water at 4° is 1-000013, at 3° is 1-000004, and at 2° is "999982. 
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of which several very carefully made copies are preserved in other 
places. In the above statements (as in all very accurate statements 
of weights), the weighings are supposed to be made in vacuo; for 
the masses of two bodies are not accurately proportional to their 
apparent gravitations in air, unless the two bodies happen to have 
the same density. 

161. Ambiguity of the word " Weight."—Properly speaking, " the 
weight of a body " means the force with which the body gravitates 
towards the earth. This force, as we have seen, differs slightly 
according to the place of observation. If TO denote the mass of the 
body, and g the intensity of gravity at the place, the weight of the 
body is rag. When the body is carried from one place to another 
without gain or loss of material, TO will remain constant and g will 
vary; hence the weight rag will vary, and in the same ratio as g. 

But the employment of gravitation units of force instead of 
absolute units, obscures this fact. The unit of measurement varies 
in the same ratio as the thing to be measured, and hence the 
numerical value remains unaltered. A body weighs the same 
number of pounds or grammes at one place as at another, because 
the weights of the pound and gramme are themselves proportional 
to g. Expressed in absolute units, the weight of unit mass is g, and 
the weight of a mass TO is rag. The latter is TO times the former; 
hence when the weight of unit mass is employed as the unit of 
weight, the same number TO which denotes the mass of a body also 
denotes its weight. What are usually called standard weights— 
that is, standard pieces of metal used for weighing—are really 
standards of mass; and when the result of a weighing is stated in 
terms of these standards, (as it usually is,) the " weight," as thus 
stated, is ̂ really the mass of the body weighed. The standard 
" weights " which we use in our balances are really standard masses. 
In discussions relating to density, weights are most conveniently 
expressed in gravitation measure, and hence the words mass and 
weight can be used almost indiscriminately. 

162. Determination of Density from Weight and Volume.-The 
absolute density of a substance can be directly determined by 
weighing a measured volume of it. Thus if v cubic centimetres of 
it weigh TO grammes, its density (in grammes per cubic centimetre) 

is This method can be easily applied to solids of regular 

geometrical forms; since their volumes can be computed from their 

linear measurements. I t can also be applied to liquids, by employ-
ing a vessel of known content. The bottle usually employed for 
this purpose is a bottle of thin glass fitted with a perforated stopper, 
so that it can be filled and stoppered without leaving a space for 
air. The difference between its weights when full and empty is the 
weight of the liquid which fills i t ; and the quotient of this by the 
volume occupied (which can be determined once for all by weighing 
the bottle when filled with water) is the density of the liquid. 

The advantage of employing a perforated stopper is that it enables 
us to ensure constancy of volume. If a wide-mouthed flask were 
employed, without a stopper, it would be difficult to pronounce 
when the flask was exactly full. This source of inaccuracy would 
be diminished by making the mouth narrower: but when it is very 
narrow, the filling and emptying of the flask are difficult, and there 
is danger of forcing in bubbles of air with the liquid. W h e n a per-
forated stopper is employed, the flask is first filled, then the stopper 
is inserted and some of the liquid is thus forced up through the 
perforation, overflowing at the top. When the stopper has been 
pushed homo, all the liquid outside is carefully wiped off, and the 
liquid which remains is as much as just fills the stoppered flask 
including the perforation in the stopper. 

I n accurate work, the temperature must be observed, and due 
allowance made for its effect upon volume. 

163. Specific Gravity Flask for Solids.—The volume and density of 
a solid body of irregular shape, or consisting of a quantity of small 
pieces, can be de-
termined by put-
ting it into such 
a bottle (Fig. 76), 
and w e i g h i n g 
the water which 
it displaces. The 
most convenient 
way of doing 
this is to observe 
(1) the weight of 
the solid; (2) the Fig. 76.-Specific Gravity Flask for Solids. 

weight of the 
bottle full of water; (3) the weight of the bottle when it contains 
the solid, together with as much water as will fill it up. If the 
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DENSITY AND ITS DETERMINATION. 

third of these results be subtracted from the sum of the first two, 
the remainder will be the weight of the water displaced; which, 
when expressed in grammes, is the same as the volume of the body-
expressed in cubic centimetres. The weight of the body, divided by 
this remainder, is the density of the body. 

164. Method by Weighing in Water.—The methods of determining 
density which we are now about to describe depend upon the prin-
ciple of Archimedes. 

One of the commonest ways of determining the density of a solid 
body is to weigh it first in air and then in water (Fig. 77) the 

Fig. 77.—Specific Gravity of Solids. Fig. 78.—Specific Gravity of Liquids. 

counterpoising weights being in air. Since the loss of weight due 
to its immersion in water is equal to the weight of the same volume 
of water, we have only to divide the weight in air by this loss of 
weight. We shall thus obtain the relative density of the body 
as compared with water—in other words, the specific gravity of the 
body. 

WEIGHING IN WATER. 109 

Thus, from the observations 
Weight in air, 125 gm. 
Weight in water, 100 „ 
Loss of weight, 25 „ 

we deduce 
= 5 = density. 

A very fine and strong thread or fibre should be employed for sus-
pending the body, so that the volume of liquid displaced by this 
thread may be as small as possible. 

165. Weighing in Water, with a Sinker—If the body is lighter 
than water, we may employ a sinker—that is, a piece of some heavy 
material attached to it, and heavy enough to make it sink. I t is 
not necessary to know the weight of the sinker in air, but we must 
observe its weight in water. Call this s. Let w be the weight of 
the body in air, and w' the weight of the body and sinker together 
in water. Then w' will be less than s. The body has an apparent 
upward gravitation in water equal to s—w, showing that the 
resultant pressure upon it exceeds its weight by this amount. 
Hence the weight of the liquid displaced is w+s—w, and the specific 

gravity of the body is w + ™ _ 

If any other liquid than water be employed in the methods 
described in this and the preceding section, the result obtained will 
be the relative density as compared with that liquid. The result 
must therefore be multiplied by the density of the liquid, in order 
to obtain the absolute density. 

166. Density of Liquid Inferred from Loss of Weight.—The densities 
of liquids are often determined by observing the loss of weight of a 
solid immersed in them, and dividing by the known volume of the 
solid or by its loss of weight in water. 

Thus, from the observations 
Weight in air, 200 gm 
Weight in liquid, 120 „ 
Weight in water, 110 „ 

we deduce 
Loss in liquid, 80. Loss in water, 90. 

80 8 
Density of liquid, - = 

A glass ball (sometimes weighted with mercury, as in Fig. 78) is 
the solid most frequently employed for such observations. 



167. Measurement of Volumes of Solids by Loss of Weight.—The 
volume of a solid body, especially if of irregular shape, can usually 
be determined with more accuracy by weighing it in a liquid than by 
any other method. If it weigh w grammes in air, and w' grammes 
in water, its volume is w—w cubic centimetres, since it displaces 
w—w' grammes of water. The mean diameter of a wire can be 
very accurately determined by an observation of this kind for 
volume, combined with a direct measurement of length. The 
volume divided by the length will be the mean sectional area, 
which is equal to vr2, where r is the radius. 

168. Hydrometers.—The name hydrometer is given to a class of 
instruments used for determining the densities of liquids by observ-
ing either the depths to which they sink in the liquids or the 

Fig. 79.—Nicholson's Hydrometer. 

weights required to be attached to them to make them sink to a 
given depth. According as they are to be used in the latter or the 
former of these two ways, they are called hydrometers of constant 
or of variable immersion. The name areometer (from àpcuàç rare) 
is used as synonymous with hydrometer, being probably borrowed 
from the French name of these instruments, aréomètre. The hydro-

meters of constant immersion most generally known are those of 
Nicholson and Fahrenheit. 

169. Nicholson's Hydrometer.—This instrument, which is repre-
sented in Fig. 79, consists of a hollow cylinder of metal with conical 
ends, terminated above by a very thin rod bearing a small dish, and 
carrying at its lower end a kind of basket. This latter is of such 
weight tha t when the instrument is immersed in water a weight of 
100 grammes must be placed in the dish above in order to sink the 
apparatus as far as a certain mark on the rod. By the principle of 
Archimedes, the weight of the instrument, together with the 100 
grammes which it carries, is equal to the weight of the water dis-
placed. Now, let the instrument be placed in another liquid, and 
the weights in the dish above be altered until they are just sufficient 
to make the instrument sink to the mark on the rod. If the weights 
in the dish be called w, and the weight of the instrument itself W, 
the weight of liquid displaced is now W + w, whereas the weight 
of the same volume of water was W + 1 0 0 ; hence the specific 

gravity of the liquid is 

This instrument can also be used either for weighing small solid 
bodies or for finding their specific gravities. To find the weight of 
a body (which we shall suppose to weigh less than 100 grammes), it 
must be placed in the dish at the top, together with weights jus t 
sufficient to make the instrument sink in water as far as the mark. 
Obviously these weights are the difference between the weight of 
the body and 100 grammes. 

To find the specific gravity of a solid, we first ascertain its 
weight by the method just described; we then transfer i t from 
the dish above to the basket below, so that i t shall be under 
water during the observation, and observe what additional weights 
must now be placed in the dish. These additional weights 
represent the weight of the water displaced by the solid; and 
the weight of the solid itself divided by this weight is the specific 
gravity required. 

170. Fahrenheit's Hydrometer.—This instrument, which is repre-
sented in Fig. 80, is generally constructed of glass, and differs from 
Nicholson's in having at its lower extremity a ball weighted with 
mercury instead of the basket. I t resembles it in having a dish at 
the top, in which weights are to be placed sufficient to sink the 
instrument to a definite mark on the stem. 
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Hydrometers of constant immersion, though still described in 
text-books, have quite gone out of use for practical work. 

171. Hydrometers of Variable Immersion.—These instruments are 
usually of the forms represented at A, B, C, Fig. 81. The lower end 
is weighted with mercury in order to make the instrument sink to 
a convenient depth and preserve an upright position. The stem is 
cylindrical, and is graduated, the divisions being frequently marked 

upon a piece of paper inclosed within the stem, which must in this 
case be of glass. I t is evident that the instrument will sink the 
deeper the less is the specific gravity of the liquid, since the weight 
of the liquid displaced must be equal to that of the instrument. 
Hence if any uniform system of graduation be adopted, so that all 
the instruments give the same readings in liquids of the same densi-
ties, the density of a liquid can be obtained by a mere immersion 
of the hydrometer—an operation not indeed very precise, but very 
easy of execution. These instruments have thus come into general 
use for commercial purposes and in the excise. 

172. General Theory of Hydrometers of Variable Immersion—Let 
V be the volume of a hydrometer which is immersed when the in-
strument floats freely in a liquid whose density is d, then Yd repre-

Fig. 80.—Fahrenheit's Hydrometer. Fig. 81.—Forms of Hydrometers. 

HYDROMETERS. 1 1 3 

sents the weight of liquid displaced, which by the principle of Archi-
medes is the same as the weight of the hydrometer itself. If V', d' 
be the corresponding values for another liquid, we have therefore 

Yd = Y'd\ or d : d':: V ' : V, 

that is, the density varies inversely as the volume immersed. Let 
du d.2, d?i...be a series of densities, and V1; V2, V3 . . . the corresponding 
volumes immersed, then we have 

d „ <4 d 3 . . . proportional to L , * L . . . 
Vo V3 

and V b Vo, V3... proportional to 1 , * ... «1 d 2 d3 

Hence, if we wish the divisions to indicate equal differences of den-
sity, we must place them so that the corresponding volumes im-
mersed form a harmonical progression. This implies that the dis-
tances between the divisions must diminish as the densities increase. 

The following investigation shows how the density of a liquid 
may be computed from observations made wi th a hydrometer gradu-
ated with equal divisions. I t is necessary first to know the divisions 
to which the instrument sinks in two liquids of known densities. 
Let these divisions be numbered n v n2, reckoning from the top 
downwards, and let the corresponding densities be dlt d2. Now if 
we take for our unit of volume one of the equal parts on the stem, 
and if we take c to denote the volume which is immersed when the 
instrument sinks to the division marked zero, i t is obvious that when 
the instrument sinks to the •nth division (reckoned downwards on 
the stem from zero) the volume immersed is c—n, and if the corre-
sponding density be called d, then (c — n) d is the weight of the 
hydrometer. We have therefore 

(c - «1) di = (c - n-<) d-2, whence c = — «1 — d-2 

This value of c can be computed once for all. 
Then the density D corresponding to any other division N can be 

found from the equation 

( c - N ) D = (c - ttj.) d t which gives D = — c — JN 

173. Beaume's Hydrometers.—In these instruments the divisions 
are equidistant. There are two distinct modes of graduation, accord-
ing as the instrument is to be used for determining densities greater 
or less than that of water. In the former case the instrument is 
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called a salimeter, and is so constructed that when immersed in pure 
water of the temperature 12° Cent, it sinks nearly to the top of the 
stem, and the point thus determined is the zero of the scale. I t is 

then immersed in a solution of 15 parts of salt to 85 of 
water, the density of which is about I ' l l 6 , and the point 
to which it sinks is marked 15. The interval is divided 
into 15 equal parts, and the graduation is continued to 
the bottom of the stem, the length of which varies accord 
ing to circumstances; it generally terminates at the 
degree 66, which corresponds to sulphuric acid, whose 
density is commonly the greatest that it is required 
to determine. Referring to the formulae of last section, 
we have here 

«!=(>, <h=1, n. = 15, ¿., = 1-116; 
whence 

15x1-116 144 
Fig. 82. 

Baiimé's Sali-
meter. 

•116 
= 144, D = 

1 4 4 - N 

J 

I 

When the instrument is intended for liquids lighter than water, i t 
is called an alcoholimeter. In this case the point to which it sinks 

in water is near the bottom of the stem, and is 
marked 10; the zero of the scale is the point to 
which it sinks in a solution of 10 parts of salt to 
90 of water, the density of which is about 1*085, 
the divisions in this case being numbered upward 
from zero. 

In order to adapt the formulae of last section to 
the case of graduations numbered upwards, i t is 
merely necessary to reverse the signs of n„, and 
N; that is we must put 

and as we have now ^ = 1 0 , dx=1, n.2=0, c?2=r085 
the formulas give1 

c - i ^ - n s 128 
"085 118 + N" 

174. Twaddell's Hydrometer.—In this instrument the divisions are 

. f L t W ° f ° r m U t e f ° r D i n t h i s s e c t i o n w 5 t h t h e tables in the Appendix 
to Miller s Chemical Physics, I find that as regards the salimeter they agree to two places 
of decimals and very nearly to three. As regards the alcoholimeter, the table in Miller 
implies that c » about 136, which would make the density corresponding to the zero of 
the scale about 1"074. 

Fig 84. 
Baumj ' s Alcoholi-

mefcers. 

placed not as in Beaume's, at equal distances, but at distances 
corresponding to equal differences of density. In fact the specific 
gravity of a liquid is found by multiplying the reading by 5, cutting 
off three decimal places, and prefixing unity. Thus the degree 1 
indicates specific gravity 1-005, 2 indicates 1-010, &c. 

175. Gay-Lussac's Centesimal Alcoholimeter.—When a hydrometer 
is to be used for a special purpose, i t may be convenient to adopt a 
mode of graduation different in principle from any that Ave have 
described above, and adapted to give a direct indication of 
the proportion in which two ingredients are mixed in the 
fluid to be examined. I t may indicate, for example, the 
quantity of salt in sea-water, or the quantity of alcohol in a 
spirit consisting of alcohol and water. Where there are 
three or more ingredients of different specific gravities 
the method fails. Gay-Lussac's alcoholimeter is graduated 
to indicate, at the temperature of 15° Cent., the percentage 
of pure alcohol in a specimen of spirit. At the top of the 
stem is 100, the point to which the instrument sinks in 
pure alcohol, and at the bottom is 0, to which it sinks in 
water. The position of the intermediate degrees must be 
determined empirically, by placing the instrument in mix-
tures of alcohol and water in known proportions, at the Fig. 85. 
temperature of 15°. The law of density, as depending on Aicohoii-
the proportion of alcohol present, is complicated by the fact 
that, when alcohol is mixed with water, a diminution of volume 
(accompanied by rise of temperature) takes place. 

176. Specific Gravity of Mixtures.—When two or more substances 
are mixed without either shrinkage or expansion (that is, when the 
volume of the mixture is equal to the sum of the volumes of the 
components), the density of the mixture can easily be expressed in 
terms of the quantities and densities of the components. 

First, let the volumes vv v„, v3 . . . of. the components be given, 
together with their densities dv d2, d?t . . . 
Then their masses (or weights) are vxdv v./I2, v?d?i . . . 
The mass of the mixture is the sum of these masses, and its volume 
is the sum of the volumes vx, v2> v3 . . . ; hence its density is 

i-jdj + Vjd< + • . . 
ti+t>2 + . • • 

Secondly, let the weights or masses m v m2, m3 . . . of the com-
ponents be given, together with their densities dv d.2, d3 . . . 



Then their volumes are • • • 

The volume of the mixture is the sum of these volumes, and its mass 
is TO] + m2 + m3 + . . . ; hence its density is 

mi + rru +. . . 
m, m* -T + - T + . . . 

177. Graphical Method of Graduation.—When the points on the 
stem which correspond to some five or six known densities, nearly 
equidifferent, have been determined, the intermediate graduations 
can be inserted with tolerable accuracy by the graphical method of 
interpolation, a method which has many applications in physics 
besides that which we are now considering. Suppose A and B 
(Fig. 86) to represent the extreme points, and I, K, L, R intermediate 

points, all of which correspond 
to known densities. Erect 
ordinates (that is to say, per-
pendiculars) at these points, 
proportional to the respective 
densities, or (which will serve 
our purpose equally well) 
erect ordinates II ' , KK', LL', 
BR', BC proportional to the 
excesses of the densities at 
I, K, L, R, B above the den-
sity at A. Any scale of equal 
parts can be employed for 

laying off the ordinates, but i t is convenient to adopt a scale which 
will make the greatest ordinate BC not much greater nor much 
less than the base-line AB. I n the figure, the density at B is 
supposed to be 1"80, the density at A being 1. The difference 
of density is therefore "80, as indicated by the figures 80 on the 
scale of equal parts. Having erected the ordinates, we must 
draw through their extremities the curve AI'K'L'R'C, making it 
as free from sudden bends as possible, as it is upon the regu-
larity of this curve that the accuracy of the interpolation depends. 
Then to find the point on the stem AB at which any other 
density is to be marked—say 1*60, we must draw through the 
60th division, on the line of equal parts, a horizontal fine to 
meet the curve, and, through the point thus found on the curve, 

i. —Graphical Method of Gradu I 

draw an ordinate. This ordinate will meet the base-line AB in the 
required point, which is accordingly marked 1'6 in the figure. The 
curve also affords the means of solving the converse problem, that 
is, of finding the density corresponding to any given point on the 
stem. At the given point in AB, which represents the stem, we 
must draw an ordinate, and through the point where this meets the 
curve we must draw a horizontal line to meet the scale of equal 
parts. The point thus determined on the scale of equal parts indi-
cates the density required, or rather the excess of this density above 
the density of A. 



C H A P T E R XV. 

VESSELS IN COMMUNICATION—LEVELS, 

178. Liquids tend to Find their own Level—When a liquid is 
contained in vessels communicating with each other, and is in 
equilibrium, i t stands at the same height in the different parts of 
the system, so that the free surfaces all lie in the same horizontal 
plane. This is obvious from the considerations pointed out in 
§§ 138, 139, being merely a particular case of the more general law 
that points of a liquid at rest which are at the same pressure are at 
the same level. 

I n the apparatus represented in Fig. 87, the liquid is seen to stand 

^ _ at the same height in 
the principal vessel 
and in the variously 
shaped tubes com-
municating with it. 
If one of these tubes is 

JJ a | cut off at a height less 
n i t — r t i than that of the liquid 

in the principal vessel, 
i l l E S & p f e : —- ¡""r and is made totermin-

= ate in a narrow mouth, 

the level of that in 
i i g . Si.—Vessels in Communica t ion . 11 . . . 

, , , .. the principal vessel. 
This tendency of liquids to find their own level is utilized for the 

water-supply of towns. Water will find its way from a reservoir 
through pipes of any length, provided that all parts of them are 
below the level of the water in the reservoir. I t is necessary how-

ever to distinguish between the conditions of statical equilibrium 
and the conditions of flow. If no water were allowed to escape 
from the pipes in a town, their extremities might be carried to the 
height of the reservoir and they would still be kept full. But in 
practice there is a continual abstraction of energy, partly in the 
shape of the kinetic energy of the water which issues from taps, 
often with considerable velocity, and partly in the shape of work 
done against friction in the pipes. When there is a continual draw-
ing off from various points of a main, the height to which the water 
will rise in the houses which it supplies is least in those which are 
most distant from the reservoir. 

179. Water-level.—The instrument called the water-level is another 
illustration of the same principle. I t consists of a metal tube bb, 
bent at right angles at its extremities. These carry two glass tubes 

e 

aa, very narrow at the top, and of the same diameter. The tube 
rests on a tripod stand, at the top of which is a joint that enables 
the observer to turn the apparatus and set it in any direction. The 
tube is placed in a position nearly horizontal, and water, generally 
coloured a little, is poured in until i t stands at about three-fourths of 
the height of each of the glass tubes. 

By the principle of equilibrium in vessels communicating with 
each other, the surfaces of the liquid in the two branches are in the 
same horizontal plane, so that if the line of the observer's sight jus t 
grazes the two surfaces i t will be horizontal. 

This is the principle of the operation called levelling, the object of 
which is to determine the difference of vertical height, or difference 
of level, between two given points. Suppose A and B to be the two 
points (Fig. 89). At each of these points is fixed a levelling-staff, 



that is, an upright rod divided into parts of equal length, on which 
slides a small square board whose centre serves as a mark for the 
observer. 

The level being placed at an intermediate station, the observer 
directs the line of sight towards each levelling-staff, and the mark 
is raised or lowered till the line of sight passes through its centre. 
The marks on the two staves are in this way brought to the same 
level. The staff in the rear is then carried in advance of the other ; 

x t h e level is again 
^ ( ¿ i ^ r p l a c e d b e t w e e n 

the two, and an-
other observation 
taken. In this 
way, by noting 

_ _ the division of 
- the staff at which 

the sliding mark 
Fig. 89.—Levelling. ° 

stands in each 
case, the difference of levels of two distant stations can be deduced 
from observations at a number of intermediate points. 

For more accurate work, a telescope with attached spirit-level 
^ (§ 181) is used, and the level-
L . - - — : - ^ ^ ..:-,,-/- \ ^ Ibig staff has divisions upon 

Fig. 90.—spirit-ievei. ' spirit-level is composed of 
a glass tube slightly curved, 

containing a liquid, which is generally alcohol, and which fills the 
whole extent of the tube, except a small space occupied by an air-
bubble. This tube is inclosed in a mounting which is firmly sup-
ported on a stand. 

Suppose the tube to have been so constructed that a vertical 
section of its upper surface is 
a n a r c °f a circle, and suppose 

— - f " v ^ _ the instrument placed upon a 

Fig. 91. horizontal plane (Fig. 91). 
The air-bubble will take up 

a position MN at the highest part of the tube, such that the 
arcs MA and NB are equal. Hence i t follows tha t if the level 

be reversed end for end, the bubble will occupy the same position 
in the tube, the point N coming to M, and vice, versa. This will not 
be the case if AB is inclined to the horizon (Fig. 92), for then the 
bubble will always stand 
nearest to that end of the M \r 

tube which is highest, and 
will therefore change its 
place in the tube when the Fig 92. 
latter is reversed. The test, 
then, of the horizontality of the line on which the spirit-level rests 
is, that after this operation of reversal the bubble should remain 
between the same marks on the tube. The maker marks upon 
the tube two points equidistant from the centre, the distance 
between them being equal to the usual length of the bubble; and 
the instrument ought to be so adjusted tha t when the line on 
which it stands is horizontal, -the ends of the bubble are at these 
marks. 

In order that a plane surface may be horizontal, we must have 
two lines in it horizontal. This result may be attained in the 

Fig. 93.—Testing the Horizontality of a Surface. 

following manner:—The body whose surface is to be levelled is 
made to rest on three levelling-screws which form the three vertices 
of an isosceles triangle; the level is first placed parallel to the base 
of the triangle, and, by means of one of the screws, the bubble is 
brought between the reference-marks. The instrument is then 
placed perpendicularly to its first position, and the bubble is brought 
between the marks by means of the third screw; this second opera-
tion cannot disturb the result of the first, since the plane has only 
been turned about a horizontal line as hinge. 

181. Telescope with Attached Level.—In order to apply the spirit-
level to land-surveying, an apparatus such as tha t represented in 



Fig. 94 is employed. Upon a frame AA, movable about a vertical 
axis B, are placed a spirit-level m i , and a telescope LL, in positions 

parallel to each other. The 
telescope is furnished at its 
focus with two fine wires 
crossing one another, whose 
point of intersection deter-
mines the line of sight with 
great precision. The appar-
atus, which is provided with 
levelling-screws H, rests on a 
tripod stand, and the observer 

Fig. 94.—Spirit-level with Telescope. is able, by turning it about 
its axis, to command the dif-

ferent points of the horizon. By a process of adjustment which 
need not here be described, i t is known that when the bubble 
is between the marks the line of sight is horizontal. By furnishing 
the instrument with a graduated horizontal circle P, we may obtain 
the azimuths of the points observed, and thus map out contour lines. 

Divisions are sometimes placed on each side of the reference-
marks of the bubble, for measuring small deviations from horizon-
tality. I t is, in fact, easy to see, by reference to Fig. 91, that by 
tilting the level through any small angle, the bubble is displaced by 
a quantity proportional to this angle, at least when the curvature 
of the instrument is that of a circle. 

For determining the angular value corresponding to each division 

Fig. 95.-Graduation of Spirit-levol. 

of the tube, it is usual to employ an apparatus opening like a pair 
of compasses by a hinge C (Fig. 95), on one of the legs of which 
rests, by two Y-shaped supports, the tube T of the level. The com-

pass is opened by means of a micrometer screw Y, of very regular 
action; and as the distance of the screw from the hinge is known, O ' 

as well as the distance between the threads of the screw, i t is easy 
to calculate beforehand the value of the divisions on the micrometer 
head. The levelling-screws of the instrument serve to bring the 
bubble between its reference-marks, so that the micrometer screw is 
only used to determine the value of the divisions on the tube. 



CHAPTER X V I 

CAPILLARITY. 

182. Capillarity—General Phenomena.—The laws which we have 
thus far stated respecting the levels of liquid surfaces are subject to 
remarkable exceptions when the vessels in which the liquids are 
contained are very narrow, or, as they are called, capillary (capillus, 
a hair); and also in the case of vessels of any size, when we consider 
the portion of the liquid which is in close proximity to the sides. 

1. Free Surface.—The surface of a liquid is not horizontal in the 
neighbourhood of the sides of the vessel, but presents a very decided 
curvature. When the liquid wets the vessel, as in the case of water 
in a glass vessel (Fig. 9G), the surface is concave; on the contrary 

Fig. 96. Fi5.91. Fig. 98. Fig. 99. 

when the liquid does not wet the vessel, as in the case of mercury in 
a glass vessel (Fig. 97), the surface is, generally speaking, convex. 

2. Capillary Elevation and Depression.—If a very narrow tube 
of glass be plunged in water, or any other liquid tha t will wet it 
(Fig. 98), it will be observed tha t the level of the liquid, instead of 
remaining at the same height inside and outside of the tube, stands 
perceptibly higher in the tube; a capillary ascension takes place, 
which varies in amount according to the nature of the l iquid 'and 

Fig. 100. 

the diameter of the tube. I t will also be seen tha t the liquid 
column thus raised terminates in a concave surface. If a glass tube 
be dipped in mercury, which does not wet it, i t will be seen, by 
bringing the tube to the side of the vessel, that the mercury is 
depressed in its interior, and that it terminates in a convex surface 
(Fig. 99). 

3. Capillary Vessels in Communication ivith Others.—If we take 
two bent tubes (Fig. 100), each having 
one branch of a considerable diameter and 
the other extremely narrow, and pour into 
one of them a liquid which wets it, and 
into the other mercury, the liquid will 
be observed in the former case to stand 
higher in the capillary than in the prin-
cipal branch, and in the latter case to 
stand lower; the free surfaces being at 
the same time concave in the case of the 
liquid which wets the tubes, and convex 
in the case of the mercury. 

183. Circumstances which influence Capillary Elevation and Depres-
sion.—In wetted tubes the elevation depends upon the nature of the 
liquid; thus, at the temperature of 18° Cent., water rises 29"79mm in 
a tube 1 millimetre in diameter, alcohol rises 12T8mm, nitric acid 
22-57mm, essence of lavender 4'28ram, &c. The nature of the tube' is 
almost entirely immaterial, provided the precaution be first taken 
of wetting i t with the liquid to be employed in the experiment, so 
as to leave a film of the liquid adhering to the sides of the tube. 

Capillary depression, on the other hand, depends both on the 
nature of the liquid and on that of the tube. Both ascension and 
depression diminish as the temperature increases; for example, the 
elevation of water, which in a tube of a certain diameter is equal to 
132mm at 0° Cent., is only 100mm at 100°. 

184. Law of Diameters.—Capillary elevations and depressions, 
when all other circumstances are the same, are inversely propor-
tional to the diameters of the tubes. As this law is a consequence 
of the mathematical theories which are generally accepted as ex-
plaining capillary phenomena, its verification has been regarded as 
of great importance. 

The experiments of Gay-Lussac, which confirmed this law, have 
been repeated, with slight modifications, by several observers. The 



method employed consists essentially in measuring the capillary 
elevation of a liquid by means of a cathetometer (Fig. 101). The 
telescope 11 is directed first to the top n of the column in the tube, 
and then to the end of a pointer 6, which touches the surface of the 

b 

Fig. 101.—Verification of Law of Diameters. 

liquid at a point where i t is horizontal. I n observing the depression 
of mercury, since the opacity of the metal prevents us from seeing 
the tube, we must bring the tube close to the side of the vessel e. 

The diameter of the tube can be measured directly by observing 
its section through a microscope, or we may proceed by the method 
employed by Gay-Lussac. He weighed the quantity of mercury 
which filled a known length I of the tube; this weight w is that 
of a cylinder of mercury whose radius x is determined by the 
equation 13-59 nxH=w, where x and I are in centimetres, and w in 
grammes. 

The result of these different experiments is, that in the case of 
wetted tubes the law is exactly fulfilled, provided that they be pre-
viously washed with the greatest care, so as to remove all foreign 
matters, and that the liquid on which the experiment is to be per-
formed be first passed through them. When the liquid does not wet 
the tube, various causes combine to affect the form of the surface in 
which the liquid column terminates; and we cannot infer the depres-
sion from knowing the diameter, unless we also take into considera-
tion some element connected with the form of the terminal surface, 
such as the length of the sagitta, or the angle made with the sides 

of the tube by the extremities of the curved surface, which is called 
the angle of contact. 

185. Fundamental Laws of Capillary Phenomena.—Capillary phe-
nomena, as they take place alike in air and in vacuo, cannot be attri-
buted to the action of the atmosphere. They depend upon molecular 
actions which take place between the particles of the liquid itself, 
and between the liquid and the solid containing it, the actions in 
question being purely superficial—that is to say, being confined to 
an extremely thin layer forming the external boundary of the liquid, 
and to an extremely thin superficial layer of the solid in contact 
with the liquid. For example, it is found in the case of glass tubes, 
that the amount of capillary elevation or depression is not at all 
affected by the thickness of the sides of the tube. The following 
are some of the principles which govern capillary phenomena. 

1. For a given liquid in contact with a given solid, with a definite 
intimateness of contact (this last element being dependent upon the 
cleanness of the surface, upon whether t he surface of the solid has 
been recently washed by the liquid, and perhaps upon some other 
particulars), there is (at any specified temperature) a definite'angle 
of contact, which is independent of t he directions of the surfaces 
with regard to the vertical. 

2. Every liquid behaves as if a th in film, forming its external 
layer, were in a state of tension, and exerting a constant effort to 
contract. This tension, or contractile force, is exhibited over the 
whole of the free surface (that is, the surface which is exposed to air); 
but wherever the liquid is in contact wi th a solid, its existence is 
masked by other molecular actions. I t is uniform in all directions 
in the free surface, and at all points in th is surface, being dependent 
only on the nature and temperature of the liquid. I ts intensity for 
several specified liquids is given in tabular form further on (§ 192) 
upon the authority of Van der Mensbrugghe. Tension of this kind 
must of course be stated in units of force per linear unit, because by 
doubling the width of a band we double the force required to keep 
it stretched. Mensbrugghe considers t ha t such tension really exists 
in the superficial layer; but the majority of authors (and we think 
with more justice) regard it rather as a convenient fiction, which 
accurately represents the effects of the real cause. Two of the most 
eminent writers on the cause of capillary phenomena are Laplace 
and Dr. Thomas Young. The subject presents difficulties which 
have not yet been fully surmounted 



186. Application to Elevation in Tubes—The law of diameters is 
a direct consequence of the two preceding principles; for if a denote 
the external angle of contact (which is acute in the case of mercury 
against glass), T the tension per unit length, and r the radius of 
the tube, then 2*rT will be the whole amount of force exerted at 
the margin of the surface; and as this force is exerted in a direction 
making an angle a with the vertical, its vertical component will be 
2ttvT COS a, which is exerted in pulling the tube upwards and the 
liquid downwards. 

If to be the weight of unit volume of the liquid, then vrw is the 
weight of as much as would occupy unit length of the tube; and if h 
denote the height of a column whose weight is equal to the force 
tending to depress the liquid, we have 

irrViw = 2-7T/'T COS a; 

whence h—2 T c n s a , which, when the other elements are given, varies r.w ' ° 
inversely as r, the radius of the tube. 

Having regard to the fact that the surface is not of the same 
height in the centre as at the edges, it is obvious that It denotes the 
mean height. 

If a be obtuse, h will be negative—that is to say, there will be 
elevation instead of depression. In the case of water against a tube 
which has been well wetted with that liquid, a is 180°—that is to 
say, the tube is tangential to the surface. For this case the formula 
for h gives 

2T elevation = rw 
Again, for two parallel vertical plates at distance u, the vertical force 
of capillarity for a unit of length is 2Tco?a, which must be equal to 
whu, being the weight of a sheet of liquid of height h, thickness u, 
and length unity. We have therefore 

k = 2Tc0Sa 
uw ' 

which agrees with the expression for the depression or elevation in 
a circular tube whose radius is equal to the distance between these 
parallel plates. 

The surface tension always tends to reduce the surface to the 
smallest area which can be inclosed by its actual boundary; and 
therefore always produces a normal force directed from the convex 
to the concave side of the superficial film. Hence, wherever there is 

capillary elevation the free surface must be concave; wherever there 
is depression it must be convex. 

187. I t follows from a well-known proposition in statics (Tod-
hunter's Statics, § 194), that if a cylindrical film be stretched with a 
uniform tension T (so that the force tending to pull the film asunder 
across any short line drawn on the film, is T times the length of the 
line), the resultant normal pressure (which the film exerts, for ex-
ample, against the surface of a solid internal cylinder over which it 
is stretched) is T divided by the radius of the cylinder. 

I t can be proved that a film of any form, stretched with uniform 
tension T, exerts at each point a normal pressure equal to the sum 
of the pressures which would be exerted by two overlapping cylin-
drical films, whose axes are at right angles to one another, and 
whose cross sections are circles of curvature of normal sections at 
the point. That is to say, if P be the normal force per unit area, 
and r, r the radii of curvature in two mutually perpendicular normal 
sections at the point, then 

At any point on a curved surface, the normal sections of greatest and 
least curvature are mutually perpendicular, and are called the prin-
cipal normal sections at the point. If the corresponding radii of 
curvature be R, R', we have 

or the normal force'per unit area is equal to the tension per unit 
length multiplied by the sum of the principal curvatures. 

In the case of capillary depressions and elevations, the superficial 
film at the free surface is to be regarded as pressing the liquid in-
wards, or pulling it outwards, according as this surface is convex or 
concave, with a force P given by the above formula. The value of 
P at any point of the free surface is equal to the pressure due to the 
height of a column of liquid extending from that point to the level 
of the general horizontal surface. I t is therefore greatest at the 
edo-es of the elevated or depressed column in a tube, and least in the 

centre; and the curvature, as measured by J + g f l must vary in the 

same proportion. If the tube is so large that there is no sensible 
elevation or depression in the centre of the column, the centre of the 
free surface must be sensibly plane. 

188. Another consequence of the formula is, that in circumstances 
9 



where there can be no normal pressure towards either side of the 
surface, 

h+i' = °-> <2) 

which implies that either the surface is plane, in which case each of 
the two terms is separately equal to zero, or else 

R = - R'; (3) 

that is, the principal radii of curvature are equal, and lie on opposite 
sides of the surface. The formula (2), (3) apply to a film of soapy 
water attached to a loop of wire. If the loop be in one plane, the 
film will be in the same plane. If the loop be not in one plane, the 
film cannot be in one plane, and will in fact assume that form which 
gives the least area consistent with having the loop for its boundary. 
At every point it will be observed to be, if we may so say, concave 
towards both sides, and convex towards both sides, the concavity 
being precisely equal to the convexity—that is to say, equation (3) 
is satisfied at every point of the film. 

In this case both sides of the film are exposed to atmospheric 
pressure. In the case of a common scap-bubble the outside is ex-
posed to atmospheric pressure, and the inside to a pressure somewhat 
greater, the difference of the pressures being balanced by the ten-
dency of the film to contract. Formula (1) becomes for either the 
outer or inner surface of a spherical bubble 

but this result must be doubled, because there are two free surfaces; 
hence the excess of pressure of the inclosed above the external air is 
4'p 

II denoting the radius of the bubble. 

The value of T for soapy water is about 1 grain per linear inch-
hence, if we divide 4 by the radius of the bubble expressed in inches,' 
we shall obtain the excess of internal over external pressure ingrains 
per square inch. 

The value of T for any liquid may be obtained by observing the 
amount of elevation or depression in a tube of given diameter, and 
employing the formula 

rp _ whr 
~ 2ZoTa' (4) 

which follows immediately from the formula for h in § 186. 189. I t is this uniform surface tension, of which we have been 
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speaking, which causes a drop of a liquid falling through the air 
either to assume the spherical form, or to oscillate about the spheri-
cal form. The phenomena of drops can be imitated on an enlarged 
scale, under circumstances which permit us to observe the actual 
motions, by a method devised by Professor Plateau of Ghent. Olive-
oil is intermediate in density between water and alcohol. Let a 
mixture of alcohol and water be prepared, having precisely the 
density of olive-oil, and let about a cubic inch of the latter be gently 
introduced into it with the aid of a funnel or pipette. I t will as-
sume a spherical form, and if forced out of this form and then left 
free, will slowly oscillate about i t ; for example, if it has been com-
pelled to assume the form of a prolate spheroid, it will pass to the 
oblate form, will then become prolate again, and so on alternately, 
becoming however more nearly spherical every time, because its 
movements are hindered by friction, unt i l at last it comes to rest as 
a sphere. 

190. Capillarity furnishes no exception to the principle that the 
pressure in a liquid is the same at all points at the same depth. 
When the free surface within a tube is convex, and is consequently 
depressed below the plane surface of the external liquid, the pres-
sure becomes suddenly greater on passing downwards through the 
superficial layer, by the amount due to the curvature. Below this 
it increases regularly by the amount due to the depth of liquid 
passed through. The pressure at any point vertically under the con-
vex meniscus1 may be computed, either by taking the depth of the 
point below the general free surface, and adding atmospheric pres-
sure to the pressure due to this depth, according to the ordinary 
principles of hydrostatics, or by taking the depth of the point below 
that point of the meniscus which is vertically over it, adding the 
pressure due to the curvature at this point, and also adding atmo-
spheric pressure. 

When the free surface of the liquid within a tube is concave, the 
pressure suddenly diminishes on passing downwards through the 
superficial layer, by the amount due to the curvature as given by 
formula (1); that is to say, the pressure at a very small depth is less 
than atmospheric pressure by this amount. Below this depth i t 
goes on increasing according to the usual law, and becomes equal to 

1 The convex or concave surface of the liquid in a tube is usually denoted by the name 
meniscus (fnipicrKos, a crescent), which denotes a form approximately resembling that of a 
watch-glass. 



atmospheric pressure at that depth which corresponds with the level 
of the plane external surface. The pressure at any point in the 
liquid within the tube can therefore be obtained either by subtract-
ing from atmospheric pressure the pressure due to the elevation of 
the point above the general surface, or by adding to atmospheric 
pressure the pressure due to the depth below that point of the 
meniscus which is on the same vertical, and subtracting the pressure 
due to the curvature at this point. 

These rules imply, as has been already remarked, that the curva-
ture is different at different points of the meniscus, being greatest 
where the elevation or depression is greatest, namely at the edges 
of the meniscus; and least at the point of least elevation or depres-
sion, which in a cylindrical tube is the middle point. 

The principles just stated apply to all cases of capillary elevation 
and depression. 

They enable us to calculate the force with which two parallel ver-
tical plates, partially immersed in a liquid which wets them, are 
urged towards each other by capillary action. The pressure in the 
portion of liquid elevated between them is less than atmospheric, 
and therefore is insufficient to balance the atmospheric pressure 
which is exerted on the outer faces of the plates. The average pres-
sure in the elevated portion of liquid is equal to the actual pressure 
at the centre of gravity of the elevated area, and is less than atmo-
spheric pressure by the pressure of a column of liquid whose height 
is the elevation of this centre of gravity. 

Even if the liquid be one which does not wet the plates, they will 
still be urged towards each other by capillary action; for the inner 
faces of the plates are exposed to merely atmospheric pressure over 
the area of depression, while the corresponding portions of the ex-
ternal faces are exposed to atmospheric pressure increased by the 
weight of a portion of the liquid. 

These principles explain the apparent attraction exhibited by 
bodies floating on a liquid which either wets them both or wets 
neither of them. When the two bodies are near each other they 
behave somewhat like parallel plates, the elevation or depression of 
the liquid between them being greater than on their remote sides. 

If two floating bodies, one of which is wetted and the other un-
wetted by the liquid, come near together, the elevation and depres-
sion of the liquid will be less on the near than on the remote sides, 
and apparent repulsion will be exhibited. 

In all cases of capillary elevation or depression, the solid is pulled 
downwards or upwards with a force equal to that by which the 
liquid is raised or depressed. In applying the principle of Archi-
medes to a solid partially immersed in a liquid, i t is therefore neces-
sary (as we have seen in § 159), when the solid produces capillary 
depression, to reckon the void space thus created as part of the dis-
placement; and when the solid produces capillary elevation, the fluid 
raised above the general level must be reckoned as negative displace-
ment, tending to increase the apparent weight of the solid. 

191. Thus far all the effects of capillary action which we have 
mentioned are connected with the curvature of the superficial film, 
and depend upon the principle that a convex surface increases and a 
concave surface diminishes the pressure in the interior of the liquid. 
But there is good reason for maintaining that whatever be the form 
of the free surface there is always pressure in the interior clue to 
the molecular action at this surface, and that the pressure due to the 
curvature of the surface is to be added to or subtracted from a 
definite amount of pressure which is independent of the curvature 
and depends only on the nature and condition of the liquid. This 
indeed follows at once from the fact tha t capillary elevation can 
take place in vacuo. As far as the principles of the preceding 
paragraphs are concerned, we should have, at points within the 
elevated column, a pressure less than tha t existing in the vacuum. 
This, however, cannot be; we cannot conceive of negative pressure 
existing in the interior of a liquid, and we are driven to conclude 
that the elevation is owing to the excess of the pressure caused by 
the plane surface in the containing vessel above the pressure caused 
by the concave surface in the capillary tube. 

There are some other facts which seem only explicable on the same 
general principle of interior pressure due to surface action—facts 
which attracted the notice of some of the earliest writers on 
pneumatics, namely, that siphons will work in vacuo, and that a 
column of mercury at least 75 inches in length can be sustained—as 
if by atmospheric pressure—in a barometer tube, the mercury being 
boiled and completely filling the tube. 

192. We have now to notice certain phenomena which depend on 
the difference in the surface tensions of different liquids, or of the 
same liquid in different states. 

Let a thin layer of oil be spread over the upper surface of a thin 
sheet of brass, and let a lamp be placed underneath. The oil will be 



observed to run away from the spot directly over the flame, even 
though this spot be somewhat lower than the rest of the sheet. 
This effect is attributable to the excess of surface tension in the cold 
oil above the hot. 

In like manner, if a drop of alcohol be introduced into a thin 
layer of water spread over a nearly horizontal surface, i t will be 
drawn away in all directions by the surrounding water, leaving a 
nearly dry spot in the space which it occupied. In this experiment 
the water should be coloured in order to distinguish i t from the 
alcohol. 

Again, let a very small fragment of camphor be placed on the sur-
face of hot water. I t will be observed to rush to and fro, with 
frequent rotations on its own axis, sometimes in one direction and 
sometimes in the opposite. These effects, which have been a frequent 
subject of discussion, are now known to be due to the diminution of 
the surface tension of the water by the camphor which it takes up. 
Superficial currents are thus created, radiating from the fragment of 
camphor in all directions; and as the camphor dissolves more quickly 
m some parts than in others, the currents which are formed are not 
equal in all directions, and those which are most powerful prevail 
over the others and give motion to the fragment. 

The values of T, the apparent surface tension, for several liquids, 
are given in the following table, on the authority of Van der Mens-
brugghe, in milligrammes (or thousandth parts of a gramme) per 
millimetre of length. They can be reduced to grains per inch of 
length by multiplying them by "392; for example, the surface ten-
sion of distilled water is 7"3 x -392=2-86 grains per inch. 

Distilled water at 20° Cent., . . . 7-3 
Sulphuric ether, . ] "88 
Absolute alcohol, . . . . . . . 2*5 
Olive-oil, . . . 3#5 
Mercury . . _ . 4 9 - ] 
Bisulphide of carbon 3-57 

Solution of Marseilles soap, 1 part of 
soap to 40 of water, 2'83 

Solution of saponine, 4'67 
Saturated solution of carbonate of 

soda, 4-28 
Water impregnated with camphor, . 4'5 

193. Endosmose.—Capillary phenomena have undoubtedly some 
connection with a very important property discovered by Dutrochet, 
and called by him endosmose. 

The endosmometer invented by him to illustrate this phenomenon 
consists of a reservoir (Fig. 102). closed below by a membrane ba, 
and terminating above in a tube of considerable length. This reser-
voir is filled, suppose, with a solution of gum in water, and is kept 

immersed in water. At the end of some time the level of the liquid 
in the tube will be observed to have risen to n, suppose, and at the 
same time traces of gum will be found in the water in which the 
reservoir is immersed. Hence we conclude that the two liquids 
have penetrated through the membrane, but in different proportions; 
and this is what is called endosmose. 

If instead of a solution of gum we employed water containing 
albumen, sugar, or gelatine in solution, a similar result would ensue. 
The membrane may be replaced by a slab of wood or of porous clay. 
Physiologists have justly attached very great importance to this 
discovery of Dutrochet. I t explains, in fact, the interchange of 
liquids which is continually taking place in the tissues and vessels 
of the animal system, as well as the absorption of water by the 
spongioles of roots, and several similar phenomena. 

As regards the power of passing through porous diaphragms, 
Graham has divided substances into two classes—crystalloids and 
colloids (KOXXI1, glue). The former are sus-
ceptible of crystallization, form solutions free 
from viscosity, are sapid, and possess great 
powers of diffusion through porous septa. 
The latter, including gum, starch, albumen, 
&c., are characterized by a remarkable slug-
gishness and indisposition both to diffusion 
and to crystallization, and when pure are 
nearly tasteless. 

Diffusion also takes place through col-
loidal diaphragms which are not porous, 
the diaphragm in this case acting as a 
solvent, and giving out the dissolved mate-
rial on the other side. In the important 
process of modern chemistry called dialysis, 
saline ingredients are separated f rom or-
ganic substances with which' they are 
blended, by interposing a colloidal dia-
phragm (De La Rue's parchment paper) 
between the mixture and pure water. 
The organic matters, being colloidal, remain 
behind, while the salts pass through, and can be obtained in a 
nearly pure state by evaporating the water. 

Gases are also capable of diffusion through diaphragms, whether 

Fig. 102.—Endosmometer. 



porous or colloidal, the rate of diffusion being in the former case 
inversely as the square root of the density of the gas. Hydrogen 
diffuses so rapidly through unglazed earthenware as to afford oppor-
tunity for very striking experiments; and it shows its power of 
traversing colloids by rapidly escaping through the sides of india-
rubber tubes, or through films of soapy water. 

C H A P T E E XVII . 

THE BAROMETER. 

194. Expansibility of Gases.—Gaseous bodies possess a number of 
properties in common with liquids; like them, they transmit pres-
sures entire and in all directions, according to the principle of 
Pascal; but they differ essentially from liquids in the permanent 
repulsive force exerted between their molecules, in virtue of which 
a mass of gas always tends to expand. 

This property, called the expansibility of gases, is commonly illus-
trated by the following experiment:— 

A bladder, nearly empty of air, and tied at the neck, is placed 
under the receiver of an 
air-pump. At first the ( j ) 
air which it contains 
and the external air / \ \ / Y \ 
oppose each other by _ | \ 

their mutual pressure, ^ ^ - j j f f j p l j ^ f c 

ex l i ;u i s t . the receiver, . j j a s s ^ _ 
and thus diminish the g 
extexmal pressure, the "JIT 
bladder gradually be- y i p 
comes inflated, and thus ' -if f w 
manifests the tendency 
of the gas which it con-
tains to occupy a greater ^ . - E x p a n s i b i l i t y of Gases. 

volume. 
However large a vessel may be, it can always be filled by any 

quantity whatever of a gas, which will always exert pressure against 
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the sides. In consequence of this property, the name of elastic 
fluids is often given to gases. 

195. Air has Weight.—The opinion was long held that the air was 
without weight; or, to speak more precisely, i t never occurred to 
any of the philosophers who preceded Galileo to attribute any 
influence in natural phenomena to the weight of the air. And as 
this influence is really of the first importance, and comes into play 
in many of the commonest phenomena, it very naturally happened 
that the discovery of the weight of air formed the commencement 
of the modern revival of physical science. 

I t appears, however, that Aristotle conceived the idea of the 
possibility of air having weight, and, in order to convince himself 
on this point, he weighed a skin inflated and collapsed. As he 
obtained the same weight in both cases, he relinquished the idea 
which he had for the moment entertained. In fact, the experiment, 
as he performed it, could only give a negative result; for if the 
weight of the skin was increased, on the one hand, by the intro-
duction of a fresh quantity of air, it was diminished, on the other, 
by the corresponding increase in the upward pressure of the air 
displaced. I n order to draw a certain conclusion, the experiment 
should be performed with a vessel which could receive within it 
air of different degrees of density, without changing its own 
volume. 

Galileo is said to have devised the experiment of weighing a 
globe filled alternately-with ordinary air and with compressed air. 
As the weight is greater in the latter case, Galileo should have 
drawn the inference that air is heavy. I t does not appear, however, 
that the importance of this conclusion made much impression on 
him, for he did not give it any of those developments which might 
have been expected to present themselves to a mind like his. 

Otto Guericke, the illustrious inventor of the air-pump, in 1C50 
performed the following experiment, which is decisive:— 

A globe of glass (Fig. 104), furnished with a stop-cock, and of 
a sufficient capacity (about twelve litres), is exhausted of air. I t is 
then suspended from one of the scales of a balance, and a weight 
sufficient to produce equilibrium is placed in the other scale. The 
stop-cock is then opened, the air rushes into the globe, and the beam 
is observed gradually to incline, so that an additional weight is 
required in the other scale, in order to re-establish equilibrium. If 
the capacity of the globe is 12 litres, about 15-5 grammes will be 

needed, which gives l - 3 gramme ; 
a litre (or 1000 cubic centimetres) 
of air.1 

If , in performing this experiment, 
we take particular precautions to 
insure its precision, as we shall 
explain in the book on Heat, it will 
be found that, at the temperature 
of freezing water, and under the 
pressure of one atmosphere, a litre 
of perfectly dry air weighs T293 
gramme.2 Under these circum-
stances, the ratio of the weight of 
a volume of air to that of an equal 

volume of water is = A i r 

is thus 773 times lighter than water. 
By repeating this experiment 

with other gases, we may determine 
their weight as compared with that 
of air, and the absolute weight of a 
litre of each of them. Thus it is 
found that a litre of oxygen weighs 
143 gramme, a litre of carbonic 
hydrogen 0'089 gramme, &c. 

the approximate weight of 

Fig. 104.—Weight of Air. 

acid 1'97 gramme, a litre of 

1 A cubic foot of air in ordinary circumstances weighs about an ounce and a quarter. 
2 In strictness, the weight in grammes of a litre of air under the pressure of 760 

millimetres of mercury is different in different localities, being proportional to the inten-
sity of gravity—not because the force of gravity on the litre of air is different, for 
though this is true, it does not affect the numerical value of the weight when stated in 
grammes, but because the pressure of 760 millimetres of mercury varies as the intensity 
of gravity, so that more air is compressed into the space of a litre as gravity increases. 
(§ 201 , 6.) 

The weight in grammes is another name for the mass. The force of gravity on a litre 
of air under the pressure of 760 millimetres is proportional to the square of the intensity 
of gravity. 

This is an excellent example of the ambiguity of the word weight, which sometimes 
denotes a mass, sometimes a force; and though the distinction is of no practical importance 
so long as we confine our attention to one locality, it cannot be neglected when different 
localities are compared. 

Regnault's determination of the weight of a litre of dry air at 0" Cent, under the 
pressure of 760 millimetres at Paris is 1"293187 gramme. Gravity at Paris is to gravity 
at Greenwich as 3456 to 3457. The corresponding number for Greenwich is therefore 
1-293561. 



196. Atmospheric Pressure.—The atmosphere encircles the earth 
with a layer some 50 or 100 miles in thickness; this heavy fluid 
mass exerts on the surface of all bodies a pressure entirely analogous 
both in nature and origin to that sustained by a body wholly 
immersed in a liquid. I t is subject to the fundamental laws men-
tioned in §§ 137-139. The pressure should therefore diminish as 
we ascend from the surface of the earth, but should have the same 
value for all points in the same horizontal layer, provided that the 
air is in a state of equilibrium. On account of the great compressi-
bility of gas, the lower layers are much more dense than the upper 
ones; but the density, like the pressure, is constant in value for the 

same horizontal layer, throughout any portion of air in a state of 
equilibrium. Whenever there is an inequality either of density or 
pressure at a given level, wind must ensue. 

Fig. 105.—Torricellian Expe r imen t . 

We owe to Torricelli an experiment which plainly shows the 
pressure of the atmosphere, and enables us to estimate its intensity 
with great precision. This experiment, which was performed in 
1643, one year after the death of Galileo, a t a time when the weight 
and pressure of the air were scarcely even suspected, has immor-
talized the name of its author, and has exercised a most important 
influence upon the progress of natural philosophy. 

197. Torricellian Experiment.—A glass tube (Fig. 105) about a 
quarter or a third of an inch in diameter, and about a yard in length, 
is completely filled with mercury; the extremity is then stopped 
with the finger, and the tube is inverted in a vessel containing 
mercury. If the finger is now removed, the mercury will descend 
in the tube, and after a few oscillations will remain stationary at a 
height which varies according to circumstances, but which is gen-
erally about 76 centimetres, or nearly 30 inches.1 

The column of mercury is maintained at this height by the pres-
sure of the atmosphere upon the surface of the mercury 
in the vessel. In fact, the pressure at the level ABCD 
(Fig. 106) must be the same within as without the tube; 
so that the column of mercury BE exerts a pressure equal 
to that of the atmosphere. 

Accordingly, we conclude from this experiment of 
Torricelli that every surface exposed to the atmosphere 
sustains a normal pressure equal, on an average, to the 
weight of a column of mercury whose base is this surface, 
and whose height is 30 inches. 

I t is evident that if Ave performed a similar experi-
ment with water, whose density is to tha t of mercury as 
1 : 13*59, the height of the column sustained would be 
13-59 times as much; that is, 30 x 13-59 inches, or about 
34 feet. This is the maximum height to which water 
can be raised in a pump; as was observed by Galileo. 

In general the heights of columns of different liquids 
equal in weight to a column of air on the same base, are 
inversely proportional to their densities. 

198. Pressure of one Atmosphere.—What is usually adopted in 
accurate physical discussions as the standard " atmosphere " of pres-
sure is the pressure due to a height of 76 centimetres of pure mercury 
at the temperature zero Centigrade, gravity being supposed to have 

1 76 centimetres are 29 '922 inches. 

3 

Fig. 106. 



the same intensity which it has at Paris. The density of mercury at 
this temperature is 13596; hence, when expressed in gravitation 
measure, this pressure is 76 x 13 -596=1033 -3 grammes per square 
centimetre.1 To reduce this to absolute measure, we must multiply 
by the value of g (the intensity of gravity) at Paris, which is 980'94; 
and the result is 1013600, which is the intensity of pressure in 
dynes per square centimetre. In some recent works, the round 
number a million dynes per square centimetre has been adopted as 
the standard atmosphere. 

199. Pascal's Experiments.—It is supposed, though without any 
decisive proof, that Torricelli derived from Galileo the definite 
conception of atmospheric pressure.2 However this may be, when 
the experiment of the Italian philosopher became known in France 
in 1644, no one was capable of giving the correct explanation of it, 
and the famous doctrine that " nature abhors a vacuum," by which 
the rising of water in a pump was accounted for, was generally 
accepted. Pascal was the first to prove incontestably the falsity of 
this old doctrine, and to introduce a more rational belief. For this 
purpose, he proposed or executed a series of ingenious experiments, 
and discussed minutely all the phenomena which were attributed to 
nature's abhorrence of a vacuum, showing that they were necessary 
consequences of the pressure of the atmosphere. 

We may cite in particular the observation, made at his suggestion, 
that the height of the mercurial column decreases in proportion as 
we ascend. This beautiful and decisive experiment, which is repeated 
as often as heights are measured by the barometer, and which leaves 
no doubt as to the nature of the force which sustains the mercurial 
column, was performed for the first time at Clermont, and on the 
top of the mountain Puy-de-Dôme, on the 19th September, 1648. 

200. The Barometer.—By fixing the Torricellian tube in a perman-

1 This is about 14"7 pounds per square inch. 
2 In the fountains of the Grand-duke of Tuscany some pumps were required to raise 

water from a depth of from 40 to 50 feet. When these were worked, it was found that 
they would not draw. Galileo determined the height to which the water rose in their 
tubes, and found it to be about 32 feet; and as he had observed and proved that air has 
weight, he readily conceived that it was the weight of a column of the atmosphere which 
maintained the water at this height in the pumps. No very useful results, however, were 
expected from this discovery, until, at a later date, Torricelli adopted and greatly extended 
it. Desiring to repeat the experiment in a more convenient form, he conceived the idea 
of substituting for water a liquid that is 14 times as heavy, namely, mercury rightly 
imagining that a column of one-fourteenth of the length would balance the force which 
sustamed 32 feet of water (Biot, Biographie Universelle, article " Torricelli ").—D. 

ent position, we obtain a means of measuring the amount of the 
atmospheric pressure at any moment; and this pressure may be ex-
pressed by the height of the column of mercury which it supports. 
Such an instrument is called a barometer. In order that its indica-
tions may be accurate, several "precautions must be observed. In the 
first place, the liquid used in different barometers 
must be identical; for the height of the column 
supported naturally depends upon the density of 
the liquid employed, and if this varies, the obser-
vations made with different instruments will not 
be comparable. 

The mercury employed is chemically pure, 
being generally made so by washing with a dilute 
acid and by subsequent distillation. The baro-
metric tube is filled nearly full, and is then placed 
upon a sloping furnace, and heated till the mer-
cury boils. The object of this process is to expel 

• the air and moisture which may be contained in 
the mercurial column, and which, without this pre-
caution, would gradually ascend into the vacuum 
above, and cause a downward pressure of un-
certain amount, which would prevent the mercury 
from rising to the proper height. 

The next step is to fill up the tube with pure 
mercury, taking care not to introduce any bubble 
of air. The tube is then inverted in a cistern 
likewise containing pure mercury recently boiled, 
and is firmly fixed in a vertical position, as shown 
in Fig. 107. 

We have thus a fixed barometer; and in order 
to ascertain the atmospheric pressure at any 
moment, it is only necessary to measure the 
height of the top of the column of mercury above 
the surface of the mercury in the cistern. One 
method of doing this is to employ an iron rod, 
working in a screw, and fixed vertically above the 
surface of the mercury in the dish. The extremities of this rod are 
pointed, and the lower extremity being brought down to touch the 
surface of the liquid below, the distance of the upper extremity from 
the top of the column of mercury is measured. Adding to this the 

Fig. 107.—Barometer in 
its simplest form. 



length of the rod, which has previously been determined once for 
all, we have the barometric height. This ' measurement may be 
effected with great precision by means of the cathetometer. 

201. Cathetometer—This instrument, which is so frequently em-
ployed in physics to measure the 
vertical distance between two points, 
was invented by Dulong and Petit. 

I t consists essentially (Fig. 108) of 
a vertical scale divided usually into 
half millimetres. This scale forms 
part of a brass cylinder capable of 
turning very easily about a strong 
steel axis. This axis is fixed on a 
pedestal provided with three levelling 
screws, and with two spirit-levels at 
r ight angles to each other. Along 
the scale moves a sliding frame carry-
ing a telescope furnished with cross-
wires, that is, with two very fine 
threads, usually spider lines, in the 
focus of the eye-piece, whose point of 
intersection serves to determine the 
line of vision. By means of a clamp 
and slow-motion screw, the telescope 
can be fixed with great precision at 
any required height. The telescope 
is also provided with a spirit-level 
and adjusting screw. When the 
apparatus is in correct adjustment, 
the line of vision of the telescope is 
horizontal, and the graduated scale is 

« ¿ • ¿ r . vertical. If then we wish to measure 

" " • ^ i i i l g j f l K i i K S ^ ^ the difference of level between two 
Fig. 108.—Cathetometer. points, we have only to sight them 

successively, and measure the distance 
passed over on the scale, which is done by means of a vernier 
attached to the sliding frame. 

202. Fortin's Barometer.—The barometer just described is intended 
to be fixed; when portability is required, the construction devised by 
Fortin (Fig. 109) is usually employed. I t is also frequently em-

ployed for fixed barometers. The cistern, which is formed of a tube 
of boxwood, surmounted by a tube of glass, is closed below by a 
piece of leather, which can be raised or lowered by means of a screw. 
This screw works in the bottom of a brass case, which incloses the 
cistern except at the middle, where it is cut , m , 
away in front and at the back, so as to leave 
the surface of the mercury open to view. The 
barometric tube is encased in a tube of brass 
with two slits at opposite sides (Fig. 110); and 
it is on this tube that the divisions are engraved, 
the zero point from which they are reckoned 
being the lower extremity of an ivory point 
fixed in the covering of the cistern. The tem-
perature of the mercury, which is required for 
one of the corrections mentioned in next section, 
is given by a thermometer with its bulb resting 
against the tube. A cylindrical 
sliding piece (shown in Fig. 110) ^-^L 
furnished with a vernier,1 moves , 
along the tube and enables us to 
determine the height with great 
precision. Its lower edge is the 
zero of the vernier. The way in 
which the barometric tube is 
fixed upon the cistern is worth 
notice. In the centre of the 
upper surface of the copper casing-
there is an opening, from which 
rises a short tube of the same 
metal, lined with a tube of box-
wood. The barometric tube is ^ ^ Fig. m 

nushed inside, and fitted in with Upper portion of Cistern of Fortin 's 
I ' _ Barometer. Barometer. 

a piece of chamois leather, which 
prevents the mercury from issuing, but does not exclude the air, 
which, passing through the pores of the leather, penetrates into the 
cistern, and so transmits its pressure. 

Before taking an observation, the surface of the mercury is ad-
1 The vernier is an instrument very largely employed for measuring the fractions of a 

unit of length on any scale. Suppose we have a scale divided into inches, and another 
scale containing nine inches divided into ten equal parts. If now we make the end of this 

° 10 



justed, by means of the lower screw, to touch the ivory point. The 
observer knows when this condition is fulfilled by seeing the 
extremity of the point touch its image in the mercury. The sliding 
piece which carries the vernier is then raised or lowered, until its 
base is seen to be tangential to the upper surface of the mercurial 
column, as shown in Fig. 110. In making this adjustment, the back 
of the instrument should be turned towards a good light, in order 
that the observer may be certain of the position in which the light 
is just cut off at the summit of the convexity. 

When the instrument is to be carried from place to place, precau-
tions must be taken to prevent the mercury from bumping against 
the top of the tube and breaking it. The screw at the bottom is to 
be turned until the mercury reaches the top of the tube, and the 
instrument is then to be inverted and carried upside down. 

We may here remark that the goodness of the vacuum in a bar-
ometer, can be tested by the sound of the mercury when it strikes 
the top of the tube, which it can be made to do either by sere wing-

latter scale, which is called the vernier, coincide with one of the divisions in the scale of 
inches, as each division of the vernier is of an inch, it is evident that the first division 
on the scale will be TV of an inch beyond the first, division on the vernier, the second on 
the scale beyond the second on the vernier, and so on until the ninth on the scale, which 

0 1 
1 

2 3 i 
• V ' 

5 6 1 ' 7 8 3 
t } i 2 3 i 5 e ! 

o Ì " I I 
2 3 4 . " 

t 1 
e 7 

i 
s 5 10 

;—S 

4 
1 4 2 3 _ ! 1 1 4 s 

1 1 
s 7 8 

' f 1 2 3 i 5 

0 2 3 
1 I 
t S 6 1 8 

- T 1 -
9 » 

Fig. 111.—Vernier. 

will exactly coincide with the tenth on the vernier. Suppose next that in measuring any 
length we find that its extremity lies between the degrees 5 and 6 on the scale; we bring 
the zero of the vernier opposite the extremity of the length to be measured, and observe 
what division on the vernier coincides with one of the divisions on the scale. We see in 
the figure that ,t is the seventh, and thus we conclude that the fraction required is X of 
an inch. 1 1 0 

If the vernier consisted of 19 inches divided into 20 equal parts, it would read to the J , 
of an inch; but there is a limit to the precision thatcan thus be obtained. An exact coin! 
cidence of a division on the vernier with one on the scale seldom or never takes place, and 
we merely take the division which approaches nearest to this coincidence; so that when 
the difference between the degrees on the vernier and those on the scale is very small, 
there may be so much uncertainty in this selection a s to nullify the theoretical precision 
of the instrument. Verniers are also employed to measure angles; when a circle is divided 
into ha degrees, a vernier is used which gives A of a division on the circle, that is, ,V 
ot a half degree, or one minute.—D. 

up or by inclining the instrument to one side. If the vacuum is 
good, a metallic clink will be heard, and unless the contact be made 
very gently, the tube 
will be broken by the 
sharpness of the col-
lision. If any air be 
present, i t acts as a 
cushion. 

In making observa-
tions in the field, a 
barometer is usually 
suspended from a tri-
pod stand (Fig. 112) 
by gimbals1, so that it 
always takes a vertical 
position. 

203. F l o a t A d j u s t -
ment.—In some barom-
eters the ivory point for 
indicating the proper 
level of the mercury in 
the cistern is replaced 
by a float. F (Fig. 113) 
is a small ivory piston, 
having the float at-
tached to its foot, and 
moving freely up and 
down between the two 
ivory guides I. A hori-
zontal line (interrupted 
by the piston) is en-
graved on the two 
guides, and another is 
engraved on the piston, 
at such a height that the three lines form one straight line when the 
surface of the mercury in the cistern stands at the zero point of the 
scale. 

204. Barometric Corrections.—In order that barometric heights 
1 A kind of universal joint, in common use on board ship for the suspension of com-

passes, lamps, &c. I t is seen in Fig. 112, at the top of the tripod stand. 

Fig. 112.—Barometer with Tripod Stand. 



may be comparable as measures of atmospheric pressure, certain cor-
rections must be applied. 

1. Correction for Temperature. As mercury expands with heat, 
it follows that a column of warm mercury exerts less 
pressure than a column of the same height at a lower 
temperature; and it is usual to reduce the actual 
height of the column to the height of a column at the 
temperature of freezing water which would exert the 
same pressure. 

Let h be the observed height at temperature t° 
Centigrade, and h0 the height reduced to freezing-
point. Then, if m be the coefficient of expansion of 
mercury per degree Cent., we have 

h0 (1 + m t) =h, whence ho=h-hmt nearly. 

The value of TO is —^:=-00018018. For temperatures 

Fahrenheit, we have 
he { l + m ( i - 3 2 ) } =/,, h0—h-h m ( i -32) , 

where TO denotes ^ = - 0 0 0 1 0 0 1 . 

But temperature also affects the length of the 
divisions on the scale by which the height of the mercurial column 
is measured. If these divisions be t rue inches at 0° Cent., then at 
t° the length of n divisions will be n (l + l t) inches, I denoting the 
coefficient of linear expansion of the scale, the value of which for 
brass, the usual material, is -00001878. If then the observed height 
h amounts to n divisions of the scale, we have 

ko (1 +mt) = h = n (1 + It); 
whence 

, n (1 + 11) 
° = 1 +mt = n ~ n t ( m ~ l ) , nearly; 

that is to say, if n be the height read off on the scale, i t must be 
diminished by the correction nt (m-l), t denoting the temperature 
of the mercury in degrees Centigrade. The value of m - l is 
•0001614. 

For temperatures Fahrenheit, assuming the scale to be of the 
correct length at 32° Fahr., the formula for the correction (which is 
still subtractive), is n (t-32) (m-l), where m-l has the value 
•00008967.1 

1 The correction for temperature is usually made by the help of tables, which <nve its 
amount for all ordinary temperatures and.heights. These tables, when intended for 

2. Correction for Capillarity.—In the preceding chapter we have 
seen that mercury in a glass tube undergoes a capillary depression: 
whence it follows that the observed barometric height is too small, 
and that we must add to i t the amount of this depression. In all 
tubes of internal diameter less than about f of an inch this correction 
is sensible; and its amount, for which no simple formula can be given, 
has been computed, from theoretical considerations, for various sizes 
of tube, by several eminent mathematicians, and recorded in tables, 
from which that given below is abridged. These values are appli-
cable on the assumption that the meniscus which forms the summit 
of the mercurial column is decidedly convex, as it always is when 
the mercury is rising. When the meniscus is too flat, the mercury 
must be lowered by the foot-screw, and then screwed up again. 

I t is found by experiment, that the amount of capillary depression 
is only half as great when the mercury has been boiled in the tube 
as when this precaution has been neglected. 

For purposes of special accuracy, tables have been computed, 
giving the amount of capillary depression for different degrees of 
convexity, as determined by the sagitta (or height) of the meniscus, 
taken in conjunction with the diameter of the tube. Such tables, 
however, are seldom used in this country.1 

English barometers, are generally constructed on the assumption that the scale is of the 
correct length not at 32° Fahr., but at 62° Fahr., which is (by act of Parliament) the 
temperature a t which the British standard yard (preserved in the office of the Exchequer) 
is correct. On this supposition, the length of n divisions of the scale at temperature i° 
Fahr., is 

) i{ l + I (t - 62)} ; 
and by equating this expression to 

A „ { l + m ( i - 3 2 ) j -
we find 

= -m (t-32) + Z ( i - 6 2 ) | 

= n{ I - (TO - i) t + (32 w - 62Z)} 

= n [ 1 "00008967 t + -00255654 }; 

which, omitting superfluous decimals, may conveniently be put in the fi rm— 

The correction vanishes when 
•09 t - 2-56 = 0; 

that is, when « = ^ = 2 8 - 5 . 
y 

For all temperatures higher than this the correction is subtractive. 
1 The most complete collection of meteorological and physical tables, is that edited by 

Professor Guyot, and published under the auspices of the Smithsonian Institution, Wash-
ington. 



(To be halved for Boiled Tubes.) 

Diameter of 
tube in inches. 

Depression in 
inches. Diameter. Depression. Diameter. Depression. 

•10 •140 •20 •058 •40 •015 
•11 •126 •22 •050 •42 •013 
•12 •114 •24 •044 •44 •011 
•13 •104 •26 •038 •46 •009 

•008 •14 •094 •28 •033 •48 
•009 
•008 

•15 •086 •30 •029 •50 •007 
•16 •079 •32 •026 •55 •005 
•17 •073 •34 •023 •60 •004 
•18 •068 •36 •020 •65 •003 
•19 •063 •38 •017 ' -70 •002 

3. Correction for Capacity.—'When there is no provision for ad-
justing the level of the mercury in the cistern to the zero point of 
the scale, another correction must be applied. I t is called the cor-
rection for capacity. In barometers of this construction, which were 
formerly much more common than they are at present, there is a 
certain point in the scale at which the mercurial column stands when 
the mercury in the cistern is at the correct level. This is called the 
neutral point. If A be the interior area of the tube, and C the area 
of the cistern (exclusive of the space occupied by the tube and its 
contents), when the mercury in the tube rises by the amount cc, the 
mercury in the cistern falls by an amount y = ~x; for the volume of 

the mercury which has passed from the cistern into the tube is 
Gy = Ax. The change of atmospheric pressure is correctly measured 

by «+y= ( l + g ) «; and if we now take x to denote the distance of 

the summit of the mercurial column from the neutral point, the cor-

rected distance will be ( l + £ ) and the correction to be applied to 

the observed reading will be which is additive if the observed 

reading be above the neutral point, subtractive if below. 
I t is worthy of remark that the neutral point depends upon the 

volume of mercury. I t will be altered if any mercury be lost or 
added; and as temperature affects the volume, a special temperature-
correction must be applied to barometers of this class. The investi-
gation will be found in a paper by Professor Swan in the Philo-
sophical Magazine for 1861. 

In some modern instruments the correction for capacity is avoided, 
by making the divisions on the scale less than true inches, in the 

ratio -r——and the effect of capillarity is at the same time compen-
sated by lowering the zero point of the scale. Such instruments, if 
correctly made, simply require to be corrected for temperature. 

4. Index Errors.—Under this name are included errors of gradua-
tion, and errors in the position of the zero of the graduations. An 
error of zero makes all readings too high or too low by the same 
amount. Errors of graduation (which are generally exceedingly 
small) are different for different parts of the scale. 

Barometers intended for accurate observation are now usually' 
examined at Kew Observatory before being sent out; and a table is 
furnished with each, showing its index error at every half inch of 
the scale, errors of capillarity and capacity (if any) being included 
as part of the index error. We may make a remark here once for 
all respecting the signs attached to errors and corrections. The 
sign of an error is always opposite to that of its correction. When 
a reading is too high the index error is one of excess, and is there-
fore positive; whereas the correction needed to make the reading 
true is subtractive, and is therefore negative. 

5. Reduction to Sea-level—In comparing barometric observations 
taken over an extensive district for meteorological purposes, it is 
usual to apply a correction for difference of level. Atmospheric 
pressure, as we have seen, diminishes as we ascend; and it is usual 
to add to the observed height the difference of pressure due to the 
elevation of the place above sea-level. The amount of this correc-
tion is proportional to the observed pressure. The law according to 
which it increases with the height will be discussed in the next 
chapter. 

6. Correction for Unequal Intensity of Gravity— When two 
barometers indicate the same height, at places where the intensity 
of gravity is different (for example, at the pole and the equator), 
the same mass of air is superincumbent over both; but the pressures 
are unequal, being proportional to the intensity of gravity as 
measured by the values of g (§ 91) at the two places. 

If h be the height, in centimetres, of the mercurial column at the 
temperature 0° Cent., the absolute pressure, in dynes per square 
centimetre, will be gh x IS'590; since 13"596 is the density of 
mercury at this temperature. 

205. Other kinds of Mercurial Barometer.—The Siphon Barometer, 
which is represented in Fig. 114, consists of a bent tube, generally 
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of uniform bore, having two unequal legs. The longer leg, which 
must be more than 30 inches long, is closed, while the shorter leg is 
open. A sufficient quantity of mercury having been introduced to 
fill the longer leg, the instrument is set upright (after boiling to 

expel air), and the mercury takes such a position that the 
difference of levels in the two legs represents the pressure 
of the atmosphere. 

Supposing the tube to be of uniform section, the mer-
cury will always fall as much in one leg as it rises in the 
other. Each end of the mercurial column therefore rises 
or falls through only half the height corresponding to 
the change of atmospheric pressure. 

In the best siphon barometers there are two scales, one 
for. each leg, as indicated in the figure, the divisions on 
one being' reckoned upwards, and on the other down-
wards, from an intermediate zero point, so that the sum 
of the- two readings is the difference of levels of the 
mercury in the two branches. 

Inasmuch as capillarity tends to depress both extrem-
ities of the mercurial column, its effect is generally 
neglected in siphon barometers; but practically it causes 
great difficulty in obtaining accurate observations, fox-
according as the mercury is rising or falling its ex-

tremity is more or less convex, and a great deal of tappino- is 
usually required to make both ends of the column assume the s tme 
form, which is the condition necessary for annihilating the effect of 
capillary action. 

Wheel Barometer.-The wheel barometer, which is in more gen-
eral use than its merits deserve, consists of a siphon barometer 
the two branches of which have usually the same diameter. On 
the surface of the mercury of the open branch floats a small piece 
of iron or glass suspended by a thread, the other extremity of which 
is fixed to a pulley, on which the thread is partly rolled. Another 
thread rolled parallel to the first, supports a weight which balances 
the float To the axis of the pulley is fixed a needle which moves on 
a dial. When the level of the mercury varies in either direction, 
the float follows its movement through the same distance; by the 
action of the counterpoise the pulley turns, and with it the needle, 
he extremity of which points to the figures on the dial, marking 

the barometric heights. The mounting of the dial is usually placed 

Fig. 114. 
Siphon 

Barometer. 

SIPHON AND WHEEL BAROMETERS. 1 5 3 

barometer is encumbered in its movements by the friction of the 
additional apparatus. I t is quite unsuitable for measuring the 
exact amount of atmospheric pressure, and is slow in indicating 
changes. 

Marine Barometer.—The ordinary mercurial barometer cannot be 
used at sea on account of the violent oscillations which the mercury 
would experience from the motion of the vessel. In order to meet 
this difficulty, the tube is contracted in its middle portion nearly to 

in front of the tube, so as to conceal its presence. The wheel 
barometer is a very old invention, and was introduced by the 
celebrated Hooke in 1683. The pulley and strings are sometimes 
replaced by a rack and pinion, as represented in the figure 
(Fig. 115). 

Besides the faults incidental to the siphon barometer, the wheel 



capillary dimensions, so that the motion of the mercury in either 
direction is hindered. An instrument thus constructed is called a 
marine barometer. When such an instrument is used on land it 
is always too slow in its indications. 

208. Aneroid Barometer (a, vrtpoç).—This barometer depends upon 
the changes in the form of a thin metallic vessel partially exhausted 

Fig. 116.—Aneroid Barometer. 

of air, as the atmospheric pressure varies. M. Vidie was the first to 
overcome the numerous difficulties which were presented in the con-
struction of these instruments. We subjoin a figure of the model 
which he finally adopted. 

The essential part is a cylindrical box partially exhausted of air, 
the upper surface of which is corrugated in order to make it yield 
more easily to external pressure. . At the centre of the top of the 
box is a small metallic pillar M, connected with a powerful steel 
spring 11. As the pressure varies, the top of the box rises or falls, 
transmitting its movement by two levers I and m, to a metallic axis 
r. This latter carries a third lever t, the extremity of which is 
attached to a chain s which turns a drum, the axis of which bears 
the index needle. A spiral spring keeps the chain constantly 
stretched, and thus makes the needle always take a position corre-

sponding to the shape of the box at the time. The graduation is 
performed empirically by comparison with a mercurial barometer. 
The aneroid barometer is very quick in indicating changes, and is 
much more portable than any form of mercurial barometer, being 
both lighter and less liable to injury. I t is sometimes made small 
enough for the waistcoat pocket. I t has the drawback of being-
affected by temperature to an extent which must be determined for 
each instrument separately, and of being liable to gradual changes 
which can only be checked by occasional comparison with a good 
mercurial barometer. 

In the metallic barometer, which is a modification of the aneroid, 
the exhausted box is crescent-shaped, and the horns of the crescent 
separate or approach according as the external pressure diminishes 
or increases. 

207. Old Forms Revived.—There are two ingenious modifications 
of the form of the barometer, which, after long neglect, have recently 
been revived for special purposes. 

Counterpoised Barometer.—The invention of this instrument is 
attributed to Samuel Morland, who constructed i t about the year 
1(380. I t depends upon the following principle:—If the barometric 
tube is suspended from one of the scales of a balance, there will be 
required to balance it in the other scale a weight equal to the weight 
of the tube and the mercury contained in it, minus the upward 
pressure due to the liquid displaced in the cistern.1 If the atmo-
spheric pressure increases, the mercury will rise in the tube, and 
consequently the weight of the floating body will increase, while 
the sinking of the mercury in the cistern will diminish the upward 
pressure due to the displacement. The beam will thus incline to 

1 A complete investigation based on the assumption of a constant upward pull at the 
top of the suspended tube shows that the sensitiveness of the instrument depends only on 
the internal section of the upper part of the tube and the external section of its lower 
part. Calling the former A and the latter B, it is necessary for stability that B be 
greater than A (which is not the case in the figure in the text) and the movement of the 
tube will be to that of the mercury in a standard barometer as A is to B - A. The 
directions of these movements will be opposite. If B - A is very small compared with A, 
the instrument will be exceedingly sensitive; and as B - A changes sign, by passing 
through zero, the equilibrium becomes unstable. 

A curious result of the investigation is that the level of the mercury in the cistern re-
mains constant. 

In the instrument represented in the figure, stability is probably obtained by,the weight 
of the arm which carries the pencil. 

In King's barograph, B is made greater than A by fixing a hollow iron drum round 
the lower end of the tube. 



the side of the barometric tube, and the reverse movement would 
occur if the pressure diminished. For the balance may be substi-
tuted, as in Fig. 117, a lever carrying a counterpoise; the variations 
of pressure will be indicated by the movements of this lever. 

Such an instrument may very well be used as a barograph or re-
cording barometer; for 
this purpose we have 
only to attach to the 
lever an arm with a 
pencil, which is con-
stantly in contact with 
a sheet of paper moved 
uniformly by clock-work. 
The result will be a 
continuous trace, whose 
form corresponds to the 
variations of pressure. 
I t is very easy to deter-
mine, either by calcula-
tion or by comparison 
with a standard baro-
meter, the pressure cor-
responding to a given 

^ ^ s j p - ^ r - the paper; and thus, if 
the paper is ruled with 

Fig. 117.—Counterpoised Barometer . twenty-four equidistant 
lines, corresponding to 

the twenty-four hours of the day, we can see at a glance what was the 
pressure at any given time. An arrangement of this kind has been 
adopted by the Abbé Secchi for the meteorograph of the observatory 
at Rome. The first successful employment of this kind of barograph 
appears to be due to Mr. Alfred King, a gas engineer of Liverpool, 
who invented and constructed such an instrument in 1853, for the 
use of the Liverpool Observatory, and subsequently designed a larger 
one, which is still in use, furnishing a very perfect record, magnified 
five-and-a-half times. 

Fahrenheit's Barovieier— Fahrenheit's barometer consists of a tube 
bent several times, the lower portions of which contain mercury; the 
upper portions are filled with water, or any other liquid, usually 

coloured. I t is evident that the atmospheric pressure is balanced by 
the sum of the differences of level of the columns of mercury, dimin-
ished by the sum of the corresponding differences for the columns 
of water; whence it follows that, by 
employing a considerable number of 
tubes, we may greatly reduce the height 
of the barometric column. This circum-
stance renders the instrument interesting 
as a scientific curiosity, but at the same 
time diminishes its sensitiveness, and 
renders it unfit for purposes of precision. 
I t is therefore never used for the 
measurement of atmospheric pressure; 
but an instrument upon the same prin-
ciple has recently been employed for the 
measurement of very high pressures, as Fig n 8 . _ F a h r o n h e i t s Barometer, 

will be explained in Chap. xix. 
208. Photographic Registration.—Since the year 1847 various 

meteorological instruments at the Royal Observatory, Greenwich, 
have been made to yield continuous traces of their indications by the 
aid of photography, and the method is now generally employed at 
meteorological observatories in this country. The Greenwich system 
is fully described in the Greenwich Magnetical and Meteorological 
Observations for 1847, pp. lxiii.-xc. (published in 1849). 

The general principle adopted for all the instruments is the same. 
The photographic paper is wrapped round a glass cylinder, and the 
axis of the cylinder is made parallel to the direction of the move-
ment which is to be registered. The cylinder is turned by clock-
work, with uniform velocity. The spot of light (for the magnets 
and barometer), or the boundary of the line of light (for the ther-
mometers), moves, with the movements which are to be registered, 
backwards and forwards in the direction of the axis of the cylinder, 
while the cylinder itself is turned round. Consequently (as in 
Morin's machine, Chap, vii.), when the paper is unwrapped from its 
cylindrical form, there is traced upon it a curve of which the abscissa 
is proportional to the time, while the ordinate is proportional to the 
movement which is the subject of measure. 

The barometer employed in connection with this system is a large 
siphon barometer, the bore of the upper and lower extremities of its 
arms being about 1 1 inch. A glass float in the quicksilver of the 



lower extremity is partially supported by a counterpoise acting on a 
light lever (which turns on delicate pivots), so that the wire support-
ing the float is constantly stretched, leaving a definite part of the 
weight of the float to be supported by the quicksilver. This lever is 
lengthened to carry a vertical plate of opaque mica with a small aper-
ture, whose distance from the fulcrum is eight times the distance of 
the point of attachment of the float-wire, and whose movement, 
therefore (§ 205), is four times the movement of the column of a cis-
tern barometer. Through this hole the light of a lamp, collected by 
a cylindrical lens, shines upon the photographic paper. 

Every part of the cylinder, except that on which the spot of light 
falls, is covered with a case of blackened zinc, having a slit parallel 
to the axis of the cylinder; and by means of a second lamp shining 
through a small fixed aperture, and a second cylindrical lens, a base 
line is traced upon the paper, which serves for reference in subsequent 
measurements. 

The whole apparatus, or any other apparatus which serves to give 
a continuous trace of barometric indications, is called a barograph; 
and the names thermograph, magnetograph, anemograph, fee., are 
similarly applied to other instruments for automatic registration. 
Such registration is now employed at a great number of observa-
tories; and curves thus obtained are regularly published in the 
Quarterly Reports of the Meteorological Office. 

C H A P T E R X V I I I 

VARIATIONS OF THE BAROMETER. 

209. Measurement of Heights by the Barometer.—As the height of 
the barometric column diminishes when we ascend in the atmo-
sphere, it is natural to seek in this phenomenon a means of measuring 
heights. The problem would be extremely simple, if the air had 
everywhere the same density as at the surface of the earth. In 
fact, the density of the air at sea-level being about 10,500 times less 
than that of mercury, i t follows that, on the hypothesis of uniform 
density, the mercurial column would fall an inch for every 10,500 
inches, or 875 feet that we ascend. This result, however, is far from 
being in exact accordance with fact, inasmuch as the density of the 
air diminishes very rapidly as we ascend, on account of its great 
compressibility. 

210. Imaginary Homogeneous Atmosphere.—If the atmosphere 
were of uniform and constant density, its height would be approxi-
mately obtained by multiplying 30 inches by 10,500, which gives 
20,250 feet, or about 5 miles. ^ 

More accurately, if we denote by H the height (in centimetres) of 
the atmosphere at a given time and place, on the assumption that 
the density throughout is the same as the observed density D (in 
grammes per cubic centimetre) at the base, and if we denote by P 
the observed pressure at the base (in dynes per square centimetre), 
Ave must employ the general formula for liquid pressure (§ 139) 

P 
P = <j I-ID, which gives H = ^ (1) 

The height H, computed on this imaginary assumption, is usually 
called the height of the homogeneous atmosphere, corresponding to 
the pressure P, density D, and intensity of gravity g. I t is some-
times called the pressure-height. The pressure-height at any point 
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in a liquid or gas is the height of a column of fluid, having the same 
density as at the point, which would produce, by its weight, the 
actual pressure at the point. This element frequently makes its 
appearance in physical and engineering problems. 

The expression for H contains P in the numerator and D in the 
denominator; and by Boyle's law, which we shall discuss in the ensu-
ing chapter, these two elements vary in the same proportion, when 
the temperature is constant. Hence H is not affected by changes of 
pressure, but has the same value at all points in the air at which the 
temperature and the value of g are the same. 

211. Geometric Law of Decrease.—The change of pressure as we 
ascend or descend for a short distance in the actual atmosphere, is 
sensibly the same as i t would be in this imaginary " homogeneous 

atmosphere;" hence an ascent of 1 centimetre takes off g of the total 

pressure, joist as an ascent of one foot from the bottom of an ocean 
00,000 feet deep takes off 6 0 0 of the pressure. 

Since H is the same at all heights in any portion of the air which 
is at uniform temperature, it follows that in ascending by successive 
steps of 1 centimetre in air at uniform temperature, each step takes 
off the same fraction g of the current pressure. The pressures there-
fore form a geometrical progression whose ratio is 1 — g . In an at-
mosphere of uniform temperature, neglecting the variation of g with 
height, the densities and pressures diminish in geometrical progres-
sion as the heights increase in arithmetical progression. 

212. Computation of Pressure-height.—For perfectly dry air at 0° 
Cent., we have the data (§§ 195, 198), 

D = -0012932 when P = 1013600; 
which give 

p 
D = 783800000 nearly. 

Taking g as 981, we have 
H = rsi|o«jioo = 7 9 9 0 0 0 c e n f c i m e t r e s n e a r ] y_ 

This is very nearly 8 kilometres, or about 5 miles. At the temper-
ature t° Cent., we shall have 

H = 799000 (1 + -00366 t). (2) 

Hence in air at the the temperature 0° Cent., the pressure diminishes 
by 1 per cent, for an ascent of about 7990 centimetres or, say, 80 
metres. At 20° Cent., the number will be 86 instead of 80 

HYPSOMETRICAL FORMULA.' 161 

213. Formula for determining Heights by the Barometer.—To 
obtain an accurate rule for computing the difference of levels of two 
stations from observations of the barometer, we must employ the 
integral calculus. 

Denote height above a fixed level by x, and pressure by p. Then 
we have 

dx _ dp 
K ~ ~ p ' 

and if plt p2 are the pressures at the heights xlt x2, we deduce by in-
tegration 

X2 - S l = H (loge Pi - loge p2). 

Adopting the value of H from (2), and remembering that Napierian 
logarithms are equal to common logarithms multiplied by 2'3026, we 
finally obtain 

x2-x1 = 1840000 (1 + -003661) (log Pi - log p,) 

as the expression for the difference of levels, in centimetres. I t is 
usual to put for t the arithmetical mean of the temperatures at the 
two stations. 

The determination of heights by means of atmospheric pressure, 
whether the pressure be observed directly by the barometer, or in-
directly by the boiling-point thermometer (which will be described 
in Part II.), is called hypsometry (y\poe, height). 

As a rough rule, it may be stated that, in ordinary circumstances, 
the barometer falls an inch in ascending 900 feet. 

214. Diurnal Oscillation of the Barometer.—In these latitudes, the 
mercurial column is in a continual state of irregular oscillation; but 
in the tropics i t rises and falls with great regularity according to the 
hour of the day, attaining two maxima in the twenty-four hours. 

I t generally rises from 4 A.M. to 10 A.M., when it attains its first 
maximum; it then falls till 4 P.M., when it attains its first minimum; 
a second maximum is observed at 10 P.M., and a second minimum at 
4 A.M. The hours of maxima and minima are called the tropical 
hours (rptnw, to turn), and vary a little with the season of the year. 
The difference between the highest maximuift and lowest minimum 
is called the diurnal1 range, and the half of this is called the ampli-

1 The epithets annual and diurnal, when prefixed to the words variation, range, ampli-
tude, denote the period of the variation in question; that is, the time of a complete oscilla-
tion. Diurnal variation does not denote variation from one day to another, but the varia-
tion which goes through its cycle of values in one day of twenty-four hours. Annual 

11 



tude of the diurnal oscillation. The amount of the former does not 
exceed about a tenth of an inch. 

The character of this diurnal oscillation is represented in Fig. 119. 
The vertical lines correspond to the hours of the day; lengths have 
been measured upwards upon them proportional to the barometric 
heights at the respective hours, diminished by a constant quantity; 
and the points thus determined have been connected by a continuous 
curve. I t will be observed that the two lower curves, one of which 
relates to Cumana, a town of Venezuela, situated in about 10° north 

latitude, show strongly marked oscillations 
corresponding to the maxima and minima. In 
our own country, the regular diurnal oscilla-
tion is masked by irregular fluctuations, so 
that a single day's observations give no clue 
to its existence. Nevertheless, on taking 
observations at regular hours for a number of 
consecutive days, and comparing the mean 

0 3 6 9 12 <5 is 2i 24 heights for the different hours, some indications 
Curves of rnumai'Variation. o £ t h e l a w will b e found. A month's observa-

tions will be sufficient for an approximate 
indication of the law; but observations extending over some years 
will be required, to establish with anything like precision the hours 
of maxima and the amplitude of the oscillation. 

The two upper curves represent the diurnal variation of the baro-
meter at Padua (lat. 45° 24') and Abo (lat. 60° 56'), the data having 
been extracted from Kaemtz's Meteorology. We see, by inspection 
of the figure, tha t the oscillation in question becomes less strongly 
marked as the latitude increases. The range at Abo is less than 
half a millimetre. At about the 70th degree of north latitude it 
becomes insensible; and in approaching still nearer to the pole, it 
appears from observations, which however need further confirmation, 
that the oscillation is reversed; that is to say, that the maxima here 
are contemporaneous with the minima in lower latitudes. 

There can be little doubt that the diurnal oscillation of the 
barometer is in some way attributable to the heat received from the 
sun, which produces expansion of the air, both directly, as a mere 
range denotes the range that occurs within a year. This rule is universally observed by 
writers of high scientific authority. 

A table, exhibiting the values of an element for each month in the year, is a table of 
annual (not monthly) variation; or it may be more particularly described as a table of 
variations from month to month. 

consequence of heating, and indirectly, by promoting evaporation; 
hut the precise nature of the connection between this cause and the 
diurnal barometric oscillation has not as yet been satisfactorily 
established. 

215. Irregular Variations of the Barometer.—The height of the 
barometer, at least in the temperate zones, depends on the state of 
the atmosphere; and its variations often serve to predict the changes 
of weather with more or less certainty. In this country the baro-
meter generally falls for rain or S.W. wind, and rises for fine weather 
or N.E. wind. 

Barometers for popular use have generally the words— 

Set fair. Fair. Change. Rain. Much rain. Stormy. 

marked at the respective heights 

30-5 30 -29-5 29 28'5 28 inches. 

These words must not, however, be understood as absolute predic-
tions. A low barometer rising is generally a sign of fine, and a high 
barometer falling of wet weather. Moreover, it is to be borne in 
mind that the barometer stands about a tenth of an inch lower for 
every hundred feet that we ascend above sea-level. 

The connection between a low or falling barometer and wet 
weather is to be found in the fact that moist air is specifically 
lighter than dry, even at the same temperature, and still more when, 
as usually happens, moist air is warmer than dry. 

Change of wind usually begins in the upper regions of the air 
and gradually extends downwards to the ground; hence the baro-
meter, being affected by the weight of the whole superincumbent 
atmosphere, gives early warning. 

216. Weather Charts. Isobaric Lines.—The probable weather can 
be predicted with much greater certainty if the height of the 
barometer at surrounding places is also known. The weather 
forecasts issued daily from the Meteorological Office in London 
are based on reports received twice a day from about sixty stations 
scattered over the west of Europe, from the north of Norway to 
Lisbon, and from the west of Ireland to Berlin. The reading of the 
barometer reduced to sea-level at each place is recorded on a chart, 
and curves called isobaric lines or isobars are drawn through places 
at which the pressure has given values, proceeding usually by steps 



1 G 4 VARIATIONS OF THE BAROMETER. 

of a tenth of an inch. Curves called isothermal lines or isotherms 
are also drawn through places of equal temperature. The strength 
and direction of wind, and the state of weather and of sea are also 
entered. The charts are compared with those of the previous day. 
and from the changes in progress the ensuing weather can be inferred 
with a fair probability of success. 

The isobars furnish the most important aid in these forecasts; 
for from their form and distribution the direction and strength of 
the wind in each district can be inferred, and to a certain extent 
the state of the weather generally. As a rule the wind blows from 
places of higher to places of lower pressure, but not in the most 
direct line. I t deviates more than 45° to the right of the direct line 
in the northern hemisphere, and to the left in the southern. This is 
known as Buys Ballot's law, and is a consequence of the earth's 
rotation.1 

Very frequently a number of isobars iorm closed curves, encircling 
an area of low pressure, to which, in accordance with the above law, 
the wind blows spirally inwards, in the direction of watch-hands in 
the southern hemisphere, and against watch-hands in the northern. 
This state of things is called a cyclone. Cyclones usually approach 
the British Islands from the Atlantic, travelling in a north-easterly 
direction with a velocity of from ten to twenty miles an hour; some-
times disappearing within a day of their formation, and sometimes 
lasting for several clays. They are the commonest type of distri-
bution of pressure in western Europe, and are usually accompanied 
by unsettled weather. 

The opposite state of things,— that is, a centre of maximum 
pressure from which the wind blows out spirally with watch-hands 
in the northern and against watch-hands in the southern hemi-
sphere is called an anticyclone. I t is usually associated with light 
winds and fine weather, and is favourable to frost in winter. Anti-
cyclones usually move and change slowly. 

The names cyclone and anticyclone are frequently applied to the 
distributions of pressure above indicated without taking account of 
the wind. 

The strength of wind generally bears some proportion to the 

1 The influence of the earth's rotation in modifying the direction of winds is discussed 
in a paper " On the General Circulation and Distribution of the Atmosphere," by the 
editor of this work, in the Philosophical Magazine for September, 1871. Some of the 
results are stated in the last chapter of Part I I . of the present work. 
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steepness of the barometric gradient, in other words to the close-
ness of the isobars. Violent storms of wind are usually cyclones, 
and it was to these that the name was first applied. The phenomenon 
reaches its extreme form in the tornadoes of tropical regions. The 
persistence of a cyclone can be explained by the fact that the 
centrifugal force of the spirally moving air tends to increase the 
original central depression. 

The frontispiece of this volume is a chart of pressure and wind 
for the United States of America at 4"35 P.M. Washington time on 
the 15th of January, 1877, when a great storm was raging. The 
figures marked against the isobars are the pressures to tenths of an 
inch. They exhibit a very steep gradient on the north-west side of 
the central depression—a tenth of an inch for about forty-three 
nautical miles. The direction of the wind is shown by arrows, 
and the number of feathers on each arrow multiplied by five gives 
the velocity of the wind in miles per hour. I t will be seen that the 
strongest winds are in or near the region of steepest gradient, and 
that the directions of the winds are for the most part in accordance 
with Buys Ballot's law. 



CHAPTER XIX. 

BOYLE'S (OR MARIOTTE'S) LAW.1 

217. Boyle's Law.—All gases exhibit a continual tendency to ex-
pand, and thus exert pressure against the vessels in which they are 
confined. The intensity of this pressure depends upon the volume 
which they occupy, increasing as this volume diminishes. By a 
number of careful experiments upon this point, Boyle and Mariotte 
independently established the law that this pressure varies inversely 
as the volume, provided that the temperature remain constant. As 
the density also varies inversely as the volume, we may express the 
law in other words by saying that at the same temperature the 
density varies directly as the pressure. 

If V and "V' be the volumes of the same quantity of gas, P and P', 
D and D', the corresponding pressures and densities, Boyle's law will 
be expressed by either of the equations 

P _ V ' P _ D 
P ' V ' P ' ~ D'" 

218. Boyle's Tube.—The correctness of this law may be verified 
by means of the following apparatus, which was employed by both 
the experimenters above named. I t consists (Fig. 120) of a bent 
tube with branches of unequal length; the long branch is open 
and the short branch closed. The tube is fastened to a board 
provided with two scales, one by the side of each branch. The 

1 ^ - l e , in his Defence of the Doctrine touching the Spring and Weight of the Air against 
the Objections of Franascus Linus, appended to New Experiments, Physico-mechanical, &c. 
K ^ r , ' 1 6 6 2 ) ; d e S C r i b e S t h e t W 0 l d n d s 0 f a P P a r a t u s represented in 

igs. 120, 121 as having been employed by him, and gives in tabular form the lengths of 
tube occupied by a body of air at various pressures. These observed lengths he compares 
with the theoretical lengths computed on the assumption that volume varies reciprocally 
as pressure and points out that they agree within the limits of experimental error 

Mariotte s treatise, ¿>e la Nature de I'Air, is stated in the Biographic UniverseUe to have 
been published m 1679. (See Preface to Tait's Thermodynamics, p. iv) 
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graduation of both scales begins from the same horizontal line 
through 0, 0. Mercury is first poured in at the extremity of the 
long branch, and by inclining the apparatus to either side, and 
cautiously adding more of the liquid if required, the mercury 
can be made to stand at the same level in both Q 

branches, and at the zero of both scales. Thus 
we have, in the short branch, a quantity of air 
separated from the external air, and at the same 
pressure. Mercury is then poured into the long 
branch, so as to reduce the volume of this inclosed 
air by one-half; i t will then be found that the 
difference of level of the mercury in the two 
branches is equal to the height of the barometer 
at the time of the experiment; the compressed air 
therefore exerts a pressure equal to that of two 
atmospheres. If more mercury be poured in so as 
to reduce the volume of the air to one-third or one-
fourth of the original volume, i t will be found that 
the difference of level is respectively two or three 
times the height of the barometer; tha t is, that the 
compressed air exerts a pressure equal respectively 
to that of three or four atmospheres. This ex-
periment therefore shows that if the volume of the 
gas becomes two, three, or four times as small, the 
pressure becomes two, three, or four times as great. 
This is the principle expressed in Boyle's law. 

The law may also be verified in the case where 
the gas expands, and where its pressure conse-
quently diminishes. For this purpose a barometric 
tube (Fig. 121), partially filled with mercury, is 
inverted in a tall vessel, containing mercury also, 
and is held in such a position that the level of the 
liquid is the same in the tube and in the vessel. 
The volume occupied by the gas is marked, and the tube is raised; 
the gas expands, its pressure diminishes, and, in virtue of the excess 
of the atmospheric pressure, a column of mercury ab rises in the 
tube, such that its height, added to the pressure of the expanded air, 
is equal to the atmospheric pressure. I t will then be seen that if 
the volume of air becomes double what it was before, the height of 
the column raised is one-half that of the barometer; that is, the 

Fig. 120. 
Boyle's Tube. 
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expanded air exerts a pressure equal to half that of the atmosphere. 
If the volume is trebled, the height of the column is two-thirds that 

of the barometer; that is, the pressure of the 
expanded air is one-third that of the atmosphere, 
a result in accordance with Boyle's law. 

219. Despretz's Experiments.—The simplicity of 
Boyle's law, taken in conjunction with its apparent 
agreement with facts, led to its general acceptance 
as a rigorous t ruth of nature, until in 1825 
Despretz published an account of experiments, 
showing that different gases are unequally com-
pressible. He inverted in a cistern of mercury 
several cylindrical tubes of equal height, and 
filled them with different gases. The whole 
apparatus was then inclosed in a strong glass 
vessel filled with water, and having a screw piston 
as in CErsted's piesometer (§ 130). On pressure 
being applied, the mercury rose to unequal heights 
in the different tubes, carbonic acid for example 
being more reduced in volume than air. These 
experiments proved that even supposing Boyle's 
law to be true for one of the gases employed, 

ruiwfor̂ xpTiiafng Ak.3 ^ could not be rigorously true for more than 
one. 

In 1829 Dulong and Arago undertook a laborious series of experi-
ments with the view of testing the accuracy of the law as applied to 
air; and the results which they obtained, even when the pressure was 
increased to twenty-seven atmospheres, agreed so nearly with i t as 
to confirm them in the conviction that, for air at least, it was rigor-
ously true. When re-examined, in the light of later researches, the 
results obtained by Dulong and Arago seem to point to a different 
conclusion. 

220. Unequal Compressibility of Different Gases . -The unequal 
compressibility of different gases, which was first established by 
Despretz's experiments above described, is now usually exhibited by 
the aid of an apparatus designed by Pouillet (Fig. 122). A is a cast-
iron reservoir, containing mercury surmounted by oil. In this latter 
liquid dips a bronze plunger P, the upper part of which has a thread 
cut upon it, and works in a nut, so tha t the plunger can be screwed 
up or down by means of the lever L. The reservoir A communicates 

by an iron tube with another cast-iron vessel, into which are firmly 
fastened two tubes TT about six feet in length and TVth of an inch 

in internal diameter, very carefully calibrated. Equal 
volumes of two gases, perfectly dry, are introduced into 
these tubes through their upper ends, which are then 
hermetically sealed. The plunger is then made to 
descend, and a gradually increasing pressure is exerted, 
the volumes occupied by the gases are measured, and it 
is ascertained that no two gases follow precisely the 
same law of compression. The difference, however, is 
almost insensible when the gases employed are those 
which are very difficult to liquefy, as air, oxygen, 
hydrogen, nitrogen, nitric oxide, and marsh-gas. But 
when we compare any one of these with one of the 
more liquefiable gases, such as carbonic acid, cyanogen, 
or ammonia, the difference is rapidly and distinctly 
manifested. Thus, under a pressure of twenty-five 
atmospheres, carbonic acid occupies a volume which is 
only f t h s of that occupied by air. 

221. Regnault's Experiments.—Boyle's law, therefore, 
is not to be considered as rigorously exact; but i t is so 

nearly exact that to demon-
strate its inaccuracy for one 
of the more permanent gases, 
and still more to determine 
the law of deviation for each 
gas, very precise methods of 
measurement are necessary. 
In ordinary experiments on 
compression, and even in the 
elaborate investigations of 
Dulong and Arago, a definite 
portion of gas is taken and 
successively diminished in 
volume by the application of 
continually increasing pres-
sure. I n experiments of 
this kind, as the pressure 

increases, the volume under measurement becomes smaller, and the 
precision with which it can be measured, consequently diminishes. 

Fig. 122.—Ponillet's Apparatus for showing Unequal 
Compressibility of Different Gases. 
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Regnault adopted the plan of operating in all cases upon the same 
volume of gas, which being initially at different pressures, 
was always reduced to one-half. The pressure was 
observed before and after this operation, and, if Boyle's 
law were true, its value should be found to be doubled. 
In this way the same precision of measurement is obtained 
at high as at low pressures. 

A general view of Regnault's apparatus is given in 
Fig. 123. There is an iron reservoir containing mercury, 
furnished at the top with a force-pump for water. The 
lower part of this reservoir communicates with a cylinder 
which is also of iron, and in which are two openings to 
admit tubes. Communication between the reservoir and 
the cylinder can be established or interrupted by means 
of a stop-cock R, of very exact workmanship. Into one 

of the openings is fitted the 
lowest of a series of glass tubes 
A, which are placed end to end, 
and firmly joined to each other 
by metal fittings, so as to 
form a vertical column of 
about twenty-five metres in 
height. 

The height of the mercurial 
column in this long mano-
metric tube could be exactly 

Fig. 123.—Regnault's Apparatus for Testing Boyle's Law. 
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determined by means of reference marks placed at distances of 
about '95 of a metre, and by the graduation on the tubes forming 
the upper part of the column. The mean temperature of the 
mercurial column was given by thermometers placed at different 
heights. Into the second opening in the cylinder fits the lower 
extremity of the tube B, which is divided into millimetres, and also 
gauged with great accuracy. This tube has at its upper end a stop-
cock r which can open communication with the reservoir V, into 
which the gas to be Operated on is forced and compressed by means 
of the pump P. 

An outer tube, which is not shown in the figure, envelops the 
tube B, and, being kept full of water, which is continually renewed, 
enables the operator to maintain the tube at a temperature sensibly 
constant, which is indicated by a very delicate thermometer. Before 
fixing the tube in its place, the point corresponding to the middle of 
its volume is carefully ascertained, and after the tube has been per-
manently fixed, the distance of this point from the nearest of the 
reference marks is observed.1 

After these explanatory remarks we may describe the mode of 
conducting the experiments. The gas to be operated on, after being 
first thoroughly dried, was introduced at the upper part of the tube B, 
the stop-cock of the pump being kept open, so as to enable the gas 
to expel the mercury and occupy the entire length of the tube. The 
force-pump was then brought into play, and the gas was reduced to 
about half of its former volume; the pressure in both cases being 
ascertained by observing the height of the mercury in the long tube 
above the nearest mark. I t is important to remark that it is not at 
all necessary to operate always upon exactly the same initial volume, 
and reduce it exactly to one-half, which would be a very tedious 
operation; these two conditions are approximately fulfilled, and the 
graduation of the tube enables the observer always to ascertain the 
actual volumes. 

222. Results.—The general result of the investigations of Regnault 

1 Regnault's apparatus was fixed in a small square tower of about fifteen metres in 
height, forming part of the buildings of the Collège de France, and which had formerly 
been built by Savart for experiments in hydraulics. The tower could therefore contain 
only the lower part of the manometric column ; the upper part rose above the platform at 
the top of the tower, resting against a sort of mast which could be ascended by the ob-
server. The readings inside the tower could be made by means of a cathetometer, but this 
was impossible in the upper portion of the column, and for this reason the tubes forming 
this portion were graduated.—D. 
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is, that Boyle's law does not exactly represent the compressibility 
even of air, hydrogen, or nitrogen, which, with carbonic acid, were 
the gases operated on by him. He found that for all the gases on 
which he operated, except hydrogen, the product VP of the volume 
and pressure, instead of remaining constant, as it would if Boyle's 
law were exact, diminished as the compression was increased. This 
diminution is particularly rapid in the cases of the more liquefiable 
gases, such as carbonic acid, at least when the experiments are con-
ducted at ordinary atmospheric temperatures. The lower the tem-
perature, the greater is the departure from Boyle's law in the case 
of these gases. For hydrogen, he found the departure from Boyle's 
law to be in the opposite direction;—the product VP increased as 
the gas was more compressed. 

223. Manometers or Pressure-gauges.—Manometers or pressure-
gauges are instruments for measuring the elastic force of a gas or 
vapour contained in the interior of a closed space. This elastic force 
is generally expressed in units called atmospheres (§ 198), and is often 
measured by means of a column of mercury. 

When one end of the column of mercury is open to the air, as in 
Regnault's experiments above described, the gauge is called an open 
mercurial gauge. 

The open mercurial pressure-gauge is often used in the arts to 
measure pressures which are not very considerable. Fig. 124 repre-
sents one of its simplest forms. The apparatus consists of a box, 
generally of iron, at the top of which is an opening closed by a screw 
stopper, which is traversed by the tube b, open at both ends, and 
dipping into the mercury in the box. The air or vapour whose 
elastic force is to be measured enters by the tube a, and presses upon 
the mercury. I t is evident that if the level of the liquid in the box 
is the same as in the tube, the pressure in the box must be exactly 
equal to that of the atmosphere. If the mercury in the tube rises 
above that in the box, the pressure of the air in the box must exceed 
that of the atmosphere by a pressure corresponding to the height of 
the column raised. The pressures are generally marked in atmo-
spheres upon a scale beside the tube. 

224. Multiple Branch Manometer . -When the pressures to be mea-
sured are considerable, as in the boiler of a high-pressure steam-
engine, the above instrument, if employed at all, must be of a length 
corresponding to the pressure. If, for instance, the pressure in ques-
tion is eight atmospheres, the length of the tube must be at least 
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8 x 30 inches=20 feet. Such an arrangement is inconvenient even for 
stationary machines, and is entirely inapplicable to movable machines. 

Without departing from the principle of the open mercurial pres-
sure-gauge, namely, the balancing of the pressure to be observed 
against the weight of a liquid increased by one atmosphere, we may 
reduce the length of the instrument by an artifice already employed 
by Fahrenheit in his barometer (§ 207). 

The apparatus for this purpose consists of an iron tube ABCD 

(Fig. 125) bent back upon itself several times. The extremity A 
communicates with the boiler by a stop-cock, and the last branch 
CD is of glass, with a scale by its side. 

The first step is to fill the tube with mercury as far as the level 
MN. At this height are holes by which the mercury escapes when 
it reaches them, and which are afterwards hermetically sealed. The 
upper portions are filled with water through openings which are also 
stopped after the tube has been filled. If the mercury in the first 
tube, which is in communication with the reservoir of gas, falls 
through a distance h, it will alternately rise and fall through the same 
distance in the other tubes. The difference of pressure between 
the two ends of the gauge is represented by the weight of a column 
of mercury of height 10/*. diminished by the weight of a column of 
water of height 8h. Reduced to mercury, the difference of pressure 

is therefore 10& — ^ = 9-4h. 

Fig. 124.—Open 
Mercurial Manometer. Fig. 125.—Multiple Branch Manometer. 



225. Compressed-air Manometer.—This instrument, which may as-
sume different forms, sometimes consists, as in Fig. 126, of a bent 
tube AB closed at one end a, and containing within the space Aa a 
quantity of air, which is cut off from external communication by a 
column of mercury. The apparatus has been so constructed, that 
when the pressure on B is equal to that of the atmosphere, the mer-
cury stands at the same height in both branches; so that, under 
these circumstances, the inclosed air is exactly at atmospheric pres-
sure. But if the pressure increases, the mercury is forced into the 
left branch, so that the air in that branch is compressed, until equi-

librium is established. The pressure exerted by 
the gas at B is then equal to the pressure of the 
compressed air, together with that of a column of 
mercury equal to the difference of level of the liquid 
in the two branches. This pressure is usually 
expressed in atmospheres on the scale ab. 

The graduation of this scale is effected empiri-
cally in practice, by placing the manometer in 

F.g m c ^ communication with a reservoir of compressed air 
air siauonietJr.s°e whose pressure is given by an open mercurial gauge, 

or by a standard manometer of any kind. 
If the tube AB be supposed cylindrical, the graduation can be 

calculated by an application of Boyle's law. 

Let I be the length of the tube occupied by the inclosed air when 
its pressure is equal to that of one atmosphere; at the point to which 
the level of the mercury rises is marked the number 1. I t is required 
to find what point the end of the liquid column should reach when 
a pressure of n atmospheres is exerted at B. Let a be the height of 
this point above 1; then the volume of the air, which was originally I, 

has become I - x> and its pressure is therefore equal to H H being 

the mean height of the barometer. This pressure, together with that 
due to the difference of level 2*, is equivalent to n atmospheres. 
We have thus the equation— 

TT l 
+ 2 * = nH, 

whence 

« = i i L t H i i j ^ l T l g ^ i « - 1 ) m 
4 

We thus find two values of but that given by taking the positive 

sign of the radical is inadmissible; for if we put n = 1 , we ought to 
have x = o , which will not be the case unless the sign of the radical 
is negative. 

By giving n the successive values 2, 3, <fcc., in this 
expression for x, we find the points on the scale corresponding to 
pressures of one atmosphere and a half, two atmospheres, &c. 

As the pressure increases, the distance traversed by the mercury 
for an increment of pressure equal to one atmosphere becomes 
continually less, and the sensibility of the instrument accordingly 
decreases. This inconvenience is partly avoided by the arrange-
ment shown in Fig. 127. The branch containing the air is made 
tapering so that, as the mercury rises, equal changes of volume 
correspond to increasing lengths. 

226. Metallic Manometers.—The fragility of. glass tubes, and the 
fact that they are liable to become opaque by the mercury clinging 

to their sides, are serious drawbacks to their use, especially in 
machines in motion. Accordingly, metallic manometers are often 
employed, their indications depending upon changes of form effected 
by the pressure of gas on its containing vessel. We shall here men-
tion only Bourdon's gauge (Fig. 128). I t consists essentially of a 
copper tube of elliptic section, which is bent through about 540°, as 
represented in the figure. One of the extremities communicates by 
a stop-cock with the reservoir of steam or compressed gas; to the 
other extremity is attached a steel needle which traverses a scale. 
When the pressure Is the same within and without the tube the end 
of the needle stands at the mark 1; but if the pressure within the 

Fig. 127.—Compressed air 
Manometer. Fig. 128.— Bourdon's Pressure gauge. 
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tube increases, the curvature diminishes, the free extremity of the 
tube moves away from the fixed extremity, and the needle traverses 
the scale. 

227. Mixture of Gases.—When gases of different densities are 
inclosed in the same space, experiment shows that, even under the 

most unfavourable circumstances, an 
intimate mixture takes place, so that 
each gas becomes uniformly diffused 
through the entire space. This fact 
has been shown by a decisive ex-
periment due to Berthollet. He took 
two globes (Fig. 129) which could 
be screwed together, and placed them 
in a cellar. The lower globe was 
filled with carbonic acid, the upper 
globe with hydrogen. Communication 
was established between them, and 
after some time it was ascertained 
that the gases had become uniformly 
mixed; the proportions being the 
same in both globes. Gaseous diffu-
sion is a comparatively rapid process. 

The diffusion of liquids, when not assisted by gravity, is, on the 
other hand, exceedingly slow. 

If several gases are inclosed in the same space, each of them 
exerts the same pressure as if the others were absent, in other 
words, the pressure exerted by the mixture is equal to the sum of 
the pressures which each would exert separately. This is known 
as "Dalton's law for gaseous mixtures." The separate pressures 
can easily be calculated by Boyle's law, when the original pressure 
and volume of each gas are known. 

For example, let Y and P, V and P', V" and P" be the volumes 
and pressures of the gases which are made to pass into a vessel of 
volume U. The first gas exerts, when in this vessel, a pressure 

equal to , the second a pressure equal to the third a pressure 
V"P" 

equal to and so on, so that the total pressure M is equal to 
V P V'P' "V"P" 

u + " i f + ~TT' w h e n c e M U = VP + V P ' + V"P". 
This law can easily be verified by passing different volumes of 

Fig. 129.—Mixture of Gases. 
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gas into a graduated glass jar inverted over mercury, after having 
first measured their volumes and pressures. I t may be observed that 
Boyle's law is merely a particular case of this. I t is what this law 
becomes when applied to a mixture of two portions of the same 
gas. 

228. Absorption of Gases by Liquids and Solids.—All gases are to 
a greater or less extent soluble in water. This property is of con-
siderable importance in the economy of nature; thus the life of 
aquatic animals and plants is sustained by the oxygen of the air 
which the water holds in solution. The volume of a given gas that 
can be dissolved in water at a given temperature is generally found 
to be approximately the same at all pressures,1 and the ratio of this 
volume to that of the water which dissolves it is called the co-
efficient of solubility, or of absorption. At the temperature 0° 
Cent., the coefficient of solubility for carbonic acid is 1, for oxygen 
•04, and for ammonia 1150. 

If a mixture of two or more gases be placed in contact with water, 
each gas will be dissolved to the same extent as if it. were the only 
gas present. 

Other liquids as well as water possess the power of absorbing 
gases, according to the same laws, but with coefficients of solubility 
which are different for each liquid. 

Increase of temperature diminishes the coefficient of solubility, 
which is reduced to zero when the liquid boils. 

Some solids, especially charcoal, possess the power of absorbing 
gases. Boxwood charcoal absorbs about nine times its volume of 
oxygen, and about ninety times its volume of ammonia. When 
saturated with one gas, if put into a different gas, it gives up a por-
tion of that which it first absorbed, and takes up in its place a 
quantity of the second. Finely-divided platinum condenses on the 
surface of its particles a large quantity of many gases, amounting 
in the case of oxygen to many times its own volume. If a je t of 
hydrogen gas be allowed to fall, in air, upon a ball of spongy 
platinum, the gas combines rapidly, in the pores of the metal, 
with the oxygen of the air, giving out an amount of heat which 
renders the platinum incandescent and usually sets fire to the je t 
of hydrogen. 

Most solids have in ordinary circumstances a film of air adhering 

1 Hence the mass of gas absorbed is directly as the pressure. 
12 



t o . t h e i r surfaces. Hence iron filings, if carefully sprinkled on water, 
will not be wetted, but will float on the surface, and hence also the 
power which many insects have of running on the surface of water 
without wetting their feet. The film of air in these cases prevents 
wetting, and hence, by the principles of capillarity, produces in-
creased buoyancy. 

C H A P T E R XX. 

AIR-PUMP. 

229. Air-pump.—The air-pump was invented by Otto Guericke 
about 1G50, and has since undergone some improvements in detail 
which have not altered the essential parts of its construction. 

Fi«\ 130 represents the pattern most commonly adopted in France. 
I t contains a glass or metal cylinder called the barrel, in which 
a piston works. This piston has an opening through it which is 

communicates with a passage leading to the centre of a brass surface 
carefully polished, which is called the plate of the air-pump. The 
entrance to the passage is closed by a conical stopper S', at the ex-
tremity of a metal rod which passes through the piston-head and 
works in it tightly, so as to be carried up and down with the motion 
of the piston. A catch at the upper part of the rod confines its 
motion within very narrow limits, and only permits the stopper to 
rise a small distance above the opening. 
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Suppose now that the piston is at the bottom of the cylinder, and 
is raised. The valve S' is opened, and air from the receiver E rushes 
into the cylinder. On lowering the piston, the valve S' closes its 
opening, the air which has entered the cylinder cannot return into 
the receiver, and, on being compressed, raises the valve S in the 
piston, and escapes into the air outside. On raising the piston 
again, a portion of the air remaining in the receiver will pass into 
the cylinder, whence it will escape on pushing down the piston, and 
so on. 

We see, then, that if this motion be continued, a fresh portion of 
the air in the receiver will be removed at each successive stroke. 
But as the quantity of air removed at each stroke is only a fraction 
of the quantity which was in the receiver at the beginning of the 
stroke, we can never produce a perfect vacuum, though we might 
approach as near to i t as we pleased if this were the only obstacle. 

230. Theoretical Rate of Exhaustion—It is easy to calculate the 
quantity of air left in the receiver after a given number of strokes 
of the piston. Let Y be the volume of the barrel, V' that of the 
receiver, and M the mass of air in the receiver at first. On raising 
the piston, the air which occupied the volume Y occupies a volume 
V + V; of the air thus expanded the volume Y is removed, and the 

volume V' left, being of the whole quantity or mass M. The 

quantity remaining after the second stroke is ^ y of that after the 

first, or is ( V ^ V ) 2 M ; and after n strokes Hence the 

density and (by Boyle's law) the pressure are each reduced by n 

strokes to (yr^-y)* of their original values. 

This calculation gives the theoretical rate of exhaustion for a 
perfect pump. Ordinary pumps come nearly up to this standard 
during the earlier part of the process of exhaustion; but as fur ther 
progress is made, the imperfections of the apparatus become more 
sensible, and set a limit to the exhaustion attainable. 

231. Mercurial Gauges.—To enable the operator to observe the 
progress of the exhaustion, the instrument is usually provided with 
a mercurial gauge. Sometimes, as in Fig. 130, this consists of a 
short siphon-barometer, the difference of levels between its two 
columns being the measure of the pressure in the receiver. Another 
plan is to have a straight tube open at both ends, and more than 30 

inches long; its upper end being connected with the receiver, while 
its lower end dips into a cistern of mercury. As exhaustion pro-
ceeds, the mercury rises in this tube, and its height above the 
mercury in the cistern measures the difference between the pressure 
in the receiver and that in the external air. 

232. Admission Stop-cock.—After the receiver has been exhausted 
of air, if i t were required to raise it from the plate, a very consider-
able force would be necessary, amounting to as many times fifteen 
pounds as the base of the receiver contained square inches. This 
difficulty is obviated by having an admission stop-cock R, which is 
shown in section above. I t is perforated by a straight channel, 
which, when the machine is being worked, forms part of the com-
municating passage. At 90° from the extremities of this channel is 
another opening O, forming the mouth of a bent passage, leading to 
the external air. When we wish to admit the air into the receiver, 
we have only to turn the stop-cock so as to bring the opening O to 
the side next the receiver; if, on the contrary, we turn it towards 
the pump-barrel, all communication between the pump and the 
receiver is stopped, the risk of air entering is diminished, and the 
vacuum remains good for a greater length of time. This precaution 
is taken when we wish to leave bodies in a vacuum for a consider-
able time. Another method is to employ a separate plate, which 
can be detached so as to leave the machine available for other pur-
poses. 

233. Double-barrelled Air-pump.—The machine just described has 
only a single pump-barrel; air-pumps of this kind are sometimes 
employed, and are usually worked by a lever like a pump-handle. 
With this arrangement, i t is evident that no air is expelled in the 
down-stroke; and that the piston, after having expelled the air from 
the barrel in the up-stroke, must descend idle in order to prepare 
for the next stroke. 

Double-barrelled pumps are more frequently used. An idea of 
their general arrangement may be formed from Figs. 131, 132, and 
133. Fig. 133 gives the machine in perspective, Fig. 131 is a section 
through the axes of the pump-barrels, and Fig. 132 shows the manner 
in which communication is established between the receiver and the 
two barrels. I t will be observed that the two passages from the 
barrels unite in a single passage to the centre of the plate p. 

Two racks carrying the pistons CO work with the pinion P. This 
pinion is turned by a double-handed lever, which is moved alter-



nately in opposite directions. In this arrangement, when one piston 
ascends the other descends, and consequently in each single stroke 
the air of the receiver passes into one or other pump-barrel. A 
vacuum is thus produced by half the number of strokes which would 
be required with a single-barrelled pump. I t has besides another 
advantage, as compared with the single-barrelled pump above 
described. In that pump the force required to raise the piston 

increases as the exhaus-
tion proceeds, and when 
it is nearly completed 
there is the resistance of 
almost an atmosphere to 
be overcome. In the 

double-barrelled pump, with the same construction of barrel, the 
force opposing the ascent of one piston is precisely equal, at the 
beginning of each stroke, to that which assists the descent of 
the other This equality, however, exists only at the beginning 
of he stroke; for the air below the descending piston is compressed, 
and its tension increases till it becomes equal to that of the atmo-
sphere and raises the piston valve. During the remainder of the 
stroke, the resistance to the ascent of the other piston is entirely 
uncompensated and up to this point the compensation has been 
gradually diminishing. But the more nearly we approach to a 
perfect vacuum, the later in the stroke does this compensation occur. 

Fig. 131. Double-barrelled Air-pump. Fig. 132. 

The pump, accordingly, becomes easier to work as the exhaustion 
proceeds. 

234. Single-barrelled Pumps with Double Action.—We do not, 
however, require two pump-barrels in order to obtain double action, 

as the same effect may be obtained with a single barrel. An arrange-
ment for this purpose was long ago suggested by Delahire for water-
pumps; but the principle has only lately been applied to the con-
struction of air-pumps. 

Fig. 134 represents the single barrel of the double-acting pump of 
Bianchi. I t will be seen that the piston-valve opens into the hollow 
piston-rod; a second valve, also opening upwards, is placed at the 
top of the pump-barrel. Two other openings, one above, the other 
below, serve to establish communication, by means of a bent vertical 
tube, between the pump-barrel and the passage to the plate. These 
openings are closed alternately by two conical stoppers at the two 
extremities of a metal rod passing through the piston, and carried 
with i t in its vertical movement by means of friction. When the 



piston ascends, as in the figure, the upper opening is closed and the 
lower one is open; when the piston begins to descend, the opposite 
effect is immediately produced. Accordingly we see that, whichever 
be the direction in which the piston is moving, the receiver is being 

exhausted of air. In fact, when the pis-
ton ascends, air from the receiver will 
enter by the lower opening, and the air 
above the piston will be gradually com-
pressed, and will finally escape by the 
valve above. In the descending move-
ment, air will enter by the upper opening, 
and the compressed air beneath the piston 
will escape by the piston-valve. The 
movement of the piston is produced by a 
peculiar arrangement shown in Fig. 135, 
which gives a general view of the ap-
paratus. 

The pump-barrel, which is composed 
entirely of cast-iron, oscillates about an 
axis passing through its base. On the 
top are guides in which the end of a 

crank travels. The pump is worked by turning a heavy fly-
wheel of cast-iron, on the axis of which is a pinion which drives 

a toothed wheel on the axis of the 
crank. The end of the crank is attached 
to the extremity of the piston-rod. I t 
is evident that on turning the fly-wheel 
the pump-barrel will oscillate from side 
to side, following the motions of the 
crank, and the piston will alternately 
ascend and descend in the barrel, the 
length of which should be equal to the 
diameter of the circle described by the 
end of the crank. 

235. English forms of Air-pump.— 
Some of the drawbacks to the single-

. barrelled pump are obviated by inserting 
a valve, opening upwards, in the top of the barrel as at U, Fie. i 3 6 ? 

I h e top of the piston is thus relieved from atmospheric pressure, 
and the operation of pumping does not become more laborious as 

Fig. 134. 
Barrel of Biaiiulii's Air pump. 

U 

J 
Fig. 136 



the exhaustion proceeds, but less laborious, the difference being most 
marked when the receiver is small. 

I n the up-stroke, the piston-valve Y keeps shut, and the air above 
the piston is pushed out of the barrel through the valve U. In the 
down-stroke, U is kept closed by the preponderance of atmospheric 
pressure outside, and V opens, allowing the air to pass up through 
it as the piston descends to the bottom of the barrel. When the 
exhaustion is far advanced, U does not open till the piston has 
nearly reached the top. This is a simple and good form of pump. 

Another form very much in use in this country is the double-act-
ing pump of Professor T. Tate, the working parts of which are 

shown in Fig. 137. CD is the barrel; A and B are two 
H solid pistons rigidly connected by a rod, and moved by 

the piston-rod AH, which passes through a stuffing-
box S. YV are valves in the two ends of the barrel, 
both opening outwards, and R is a passage leading 
from the middle of the cylinder to the receiver. The 
distance between the extreme faces of the pistons is 
about f t h s of an inch less than half the length of the 
cylinder. The volume of air expelled at each single 
stroke is thus about half the volume of the cylinder? 

This figure and description are in accordance with 
the original account of the pump given by the inventor 

m the Philosophical Magazine. I t is now usual to replace the two 
pistons by a single piston of great thickness, its two faces being as 
tar apart as the extreme faces of the two pistons in the figure. I t 
is also usual to make the barrel horizontal. 

The valves of these pumps, and of most English pumps are "silk 
valves. I h e y consist of a short and narrow slit in a thin plate of 
brass, with a flap of oiled silk secured at both ends to the plate, in 
such a position that its central portion covers the slit. When the 
pressure of the air is greater on the fur ther side of the plate than 
on the side where the silk is, the flap is slightly lifted and the air 
gets through; but excess of pressure on the near side presses the flap 
down over the slit and makes it air-tight. 

236. Various Experiments with the Ai r -pump. -At the time when 
the air-pump was invented, several experiments were devised to 
show the effects of a vacuum, some of which have become classical, 
and are usually repeated in courses of experimental physics. 

Burst Bladder.-On the plate of an air-pump (Fig. 138) is 

placed a glass cylinder open at the bottom, and having a piece of 
bladder or thin indian-rubber tightly stretched over the top. As 
the exhaustion proceeds, this bends inwards in consequence of the 
atmospheric pressure above it, and finally bursts with a loud report. 

Magdeburg Hemispheres.—We take two hemispheres (Fig. 139), 
which can be exactly fitted on each other; their exact adjustment 
is fur ther assisted by a 
projecting internal rim, 
which is smeared with 
lard. The apparatus is 
exhausted of air through 
the medium of the stop-
cock attached to one of the 
hemispheres; and when 
a vacuum has been pro-
duced, i t will be found 
that a considerable force 
is required to separate 
the two parts, this force 
increasing with the size 
of the hemispheres. 

This resistance to sep-
aration is due to the normal exterior pressure of the air on every 
point of the surface, a pressure which is counterbalanced by only 
a very feeble pressure from the interior. In order to estimate 
the resultant effect of these different pressures, let us suppose 
that one hemisphere is vertically over the other, and that the 
external surface is cut into a series of steps,—that is to say, of 
alternate vertical and horizontal elements. I t is evident that the 
pressure urging either hemisphere towards the other will be simply 
the sum of the pressures upon its horizontal elements; and this sum 
is identical with the pressure which would be exerted upon a cir-
cular area equal to the common base of the hemispheres. For 
example, if this area is 10 square inches, and the external pressure 
exceeds the internal by 14 lbs. to the inch, the hemispheres will be 
pressed together with a force of 140 lbs. 

Fountain in Vacuo.—The apparatus for this experiment consists 
of a bell-shaped vessel of glass (Fig. 140), the base of which is pierced 
by a tube fitted with a stop-cock which enables us to exhaust the 
vessel of air. If, after a vacuum has been produced, we place the 

F i g ISO. 
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lower end of the tube in a vessel of water, and open the stop-cock, 
the liquid, being pressed externally by the atmosphere, mounts up 
the tube and ascends in a j e t into the interior of the vessel. This 
experiment is often made in t he opposite manner. Under the 
receiver of the air-pump is placed a vial par t ly filled with water, 

and having its cork 
pierced by a tube 
open at both ends, 
the lower end being 
beneath the surface 
of the water. As the 
exhaustion proceeds, 
the air in the vial, 
by its excess of pres-
sure, acts upon the 
liquid and makes it 

V— issue in a jet. 
•1 .1 237. Limit to the 

Action of the Air-
j B 5 e pump.—We have said 

J a j B B M l B i above (§ 230) tha t t he 
, ™ r ^ ^ r ^ M B ^ ^ S K M : air-pump does not 

continue the process 

" n r ^ f T - n i t e l y , bu t tha t a t a Fig. 140 . - Fouuta in in Vacuo. J ' 

certain stage its effect 
ceases, and the pressure of t he air in the receiver undergoes no 
fur ther diminution. If the p u m p is very badly made, this pres-
sure is considerable; but even w i t h the most perfect machines it is 
always sensible. A pump such as we have described may be con-
sidered good if it reduces the pressure of the air in the receiver to 
a tenth of an inch of mercury. A fiftieth of an inch is perhaps the 
lowest limit. 

LEAKAGE.—This limit to the action of the machine is due to vari-
ous causes. I n the first place, t he r e is f requent ly leakage a t different 
parts of the apparatus; and a l though a t the beginning of the opera-
tion the quant i ty of air which t h u s enters is small in comparison 
with tha t which is pumped out, still, as the exhaustion proceeds, the 
air enters faster, on account of t h e diminished internal pressure, and 
a t the same time the quant i ty expelled at each stroke becomes less, 
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so tha t a t length a point is reached a t which the inflow and outflow 
are equal. 

I n order to prevent leakage as fa r as possible, the plate of the 
pump and the base of the receiver must be t ru ly plane so as to fit 
accurately; the base of the receiver must be ground (that is rough-
ened) and must be well greased before pressing it down on the plate. 
The piston must also be well lubricated with oil. 

SPACE UNTRAVERSED BY PISTON.—Another reason of imperfec t 
exhaustion is that, a f te r all possible precautions, a space is still left 
between the bottom of the pump-barrel and the lower surface of the 
piston when the latter is a t the end of its downward stroke. I t is 
evident tha t a t this moment the air contained in this untraversed 
space is of the same tension as the atmosphere. On raising the 
piston, this air is indeed rarefied; but i t still preserves a certain 
tension, and it is evident tha t when the air in the receiver has been 
brought to this stage of rarefaction, the machine will cease to pro-
duce any effect. 

If v is the volume of this space, and V the volume of the pump-
barrel, the air, which a t volume v has a pressure H equal to tha t of 

the atmosphere, will have, at volume V, a pressure H y This gives 

the limit to the action of the machine as deduced from the consider-
ation of the untraversed space. 

AIR GIVEN OUT BY OIL.—Finally, perhaps the most important 
cause, and the most difficult to remedy, is the absorption of air by 
the oil used for lubricating the pistons. This oil is poured on the 
top of the piston, bu t the pressure of the external air forces it be-
tween the piston and the barrel, whence it falls in greater or less 
quant i ty to the bottom of the barrel, where it absorbs air, and par-
tially yields it up at the moment when the piston begins to rise, 
thus evidently tending to derange the working of the machine. I t 
has been attempted to get rid of untraversed space by employing a 
kind of piston of mercury. This has also the advantage of fitting 
the barrel more accurately, and thus preventing the entrance of air. 
The use of oil is a t the same time avoided, and we thus escape the 
injurious effects mentioned above. W e proceed to describe two 
machines founded upon this principle. 

238. Kravogl's Air-pump.—This contains a hollow glass cylinder 
AB (Fig. 141) tapering a t the upper end, and surmounted by a kind 
of funnel. The piston is of the same shape as the cylinder, and is 
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funnel-shaped cavity in which the pump-barrel terminates. A 
small interval, filled by the liquid, is left between the barrel and the 
piston; but at the bottom of the barrel the piston passes through 
a leather box carefully made, so as to be perfectly air-tight. 

The air from the receiver enters through the lateral opening e, and 

covered with a layer of mercury, whose depth over the point of the 
piston is about Tyth of an inch when the piston is at the bottom of its 
stroke, but is nearly an inch when the piston rises and fills the 

Fig. 141.—Kiavogl's Air-pump. 
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is driven before the mercury into the funnel above. With the air 
passes a certain quantity of mercury, which is detained by a steel 
valve c at the narrowest part of the funnel. This valve rises auto-
matically when the surface of the mercury is at a distance of about 
half an inch from the funnel, and falls back into its former position 
when the piston is at the end of its upward stroke. In the down-
ward stroke, when the mercury is again half an inch from the funnel, 
the valve opens again and allows a portion of the mercury to pass. 

The effect of this arrangement is easily understood ; there is no 
" untraversed space," the presence of the mercury above and around 
the piston causes a very complete fit, and excludes the external air; 
and hence the machine, when well made, is very effective. 

When this is the case, and when the mercury used in the apparatus 
is perfectly dry, a vacuum of about ^-Q-th of an inch can be obtained. 
The dryness of the mercury is a very important condition, for at 
ordinary temperatures the elastic force of the vapour of water has a 
very sensible value. If we wish to employ thé full powers of the 
machine, we must have, between the vessel to be exhausted of air 
and the pump-barrel, a desiccating apparatus. 

The arrangement of the valve e is peculiar. I t is of a conical 
form, so as, in its lowest position, to permit the passage of air coming 
from the receiver. I ts ascent is produced by the pressure of the 
mercury, which forces it against the conical extremity of the passage, 
and the liquid is thus prevented from escaping. 

The figure represents a double-barrelled machine analogous to the 
ordinary air-pump. Besides the pinion working with the racks of 
the pistons, there is a second smaller pinion, not shown in the figure, 
which governs the movements of the valves c. All the parts of this 
machine, as the stop-cocks, valves, pipes, &c., must be of steel, to 
avoid the action which the mercury would have upon any other 
metal. 

239. G-eissler's Machine.—Ceissler, of Bonn, invented a mercurial 
air-pump, in which the vacuum is produced by communication 
of the receiver with a Torricellian vacuum. Fig. 142 represents 
this machine as constructed by Alvergniat. I t consists of a vertical 
tube, serving as a barometric tube, and communicating at the bottom, 
by means of a caoutchouc tube, with a globe which serves as the 
cistern. 

At the top of the tube is a three-way stop-cock, by which com-
munication can be established either with the receiver to the left, or 



1 9 2 AIR-PUMP. 

with a funnel to the right, which latter has an ordinary stop-cock 
at the bottom. By means of another stop-cock on the left, com-
munication with the receiver can be opened or closed. These stop-

cocks are made entirely 
of glass. The machine 
works in the following-
manner; communication 
being established with 
the funnel, the globe 
which serves as cistern 
is raised, and placed, as 
shown in the figure, at 
a higher level than the 
stop-cock of the funnel. 
By the law of equili-
brium in communicat-
ing vessels, the mercury 
fills the barometric tube, 
the neck of the funnel, 
and part of the funnel 
itself. If the communi-
cation between the fun-
nel and tube be now 
stopped, and the globe 
lowered, a Torricellian 
vacuum is produced in 
the upper part of the 
vertical tube. 

Communication is now 
opened with the re-
ceiver; the air rushes 
into the vacuum,and the 
column of mercury falls 

Fig. 142.- Geissier's Machine. a little. Communication 
is now stopped between 

the tube and receiver, and opened between the tube and the funnel, 
the simple stop-cock of the funnel being, however, left shut. If at 
this moment the globe is replaced in the position shown in the 
figure, the air tends to escape by the funnel, and it is easy to allow 
it to do so. Thus, a par t of the air of the receiver has been removed, 
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and the apparatus is in the same position as at the beginning. The 
operation described is equivalent to a stroke of the piston in the 
ordinary machine, and this process must be repeated till the receiver 
is exhausted. 

As the only mechanical parts of this machine are glass stop-cocks, 
which are now executed with great perfection, i t is capable of giving 
very good results. With dry mercury a vacuum of - ^ t h of an inch 
may very easily be obtained. The working of the machine, how-
ever, is inconvenient, and becomes exceedingly laborious when the 
receiver is large. I t is therefore employed directly only for pro-
ducing a vacuum in very small vessels; when the spaces to be 
exhausted of air are at all large, the operation is begun with the 
ordinary machine, and the mercurial air-pump is only employed to 
render the vacuum thus obtained more perfect. 

240. Sprengel's Air-pump.—This instrument, which may be re-
garded as an improvement upon Geissler's, is represented in its 
simplest form in Fig. 143. cd is a glass tube longer than a baro-
meter tube, down which mercury is allowed to fall from the funnel 
A. Its lower end dips into the glass vessel B, into which it is fixed 
by means of a cork. This vessel has a spout at its side, a few milli-
metres higher than the lower end of the tube. The first portions 
of mercury which run down will consequently close the tube, and 
prevent the possibility of air entering it from below. The upper 
part of cd branches off at a into a lateral tube communicating with 
the receiver R, which it is required to exhaust. A convenient 
height for the whole instrument is 6 feet. The funnel A is 
supported by a ring as shown in the figure, or by a board with a 
hole cut in it. The tube cd consists of two parts, connected by a 
piece of india-rubber tubing, which can be compressed by a clamp 
so as to keep the tube closed when desired. As soon as the mercury 
is allowed to run down, the exhaustion begins, and the whole length 
of the tube, from a; to d, is seen to be filled with cylinders of mercury 
separated by cylinders of air, all moving downwards. Air and 
mercury escape through the spout of the bulb B, which is above the 
basin H, where the mercury is collected. This has to be poured 
back from time to time into the funnel A, to pass through the tube 
again and again until the exhaustion is completed. 

As the exhaustion is progressing, i t will be noticed that the inclosed 
air between the mercury cylinders becomes less and less, until the 
lower part of ccl presents the aspect of a continuous column of mer-

13 



cury about 30 inches high. Towards this stage of the operation a 
considerable noise begins to be heard, similar to that of a shaken 
water-hammer, and common to all liquids shaken in a vacuum. The 
operation may be considered completed when the column of mercury 
does not inclose any air, and when a drop of mercury falls upon the 
top of this column without inclosing the slightest air-bubble. The 

A height of this column now 
corresponds exactly with the 

" j f f i r ' height of the column of mer-
cury in a barometer; or, what 
is the same, it represents a 
barometer whose vacuum is 
the receiver E and connecting 
tube. 

Dr. Sprengel recommends the 
employment of an auxiliary 
air-pump of the ordinary kind, 
to commence the exhaustion, 
when time is an object, as with-
out this from 20 to 30 minutes 
are required to exhaust a 
receiver of the capacity of half 
a litre. As, however, the em-
ployment of the auxiliarypump 

c/.L involves additional connections 

¡If B and increased leakage, it should 
A b e avoided when the best pos-

-jStls, sible exhaustion is desired. The 
« M [ i j j j l M l g ^ fall tube must not exceed about 

a tenth of an inch in diameter, 
Fig. 143.—Sprengei's Air-pump. a r ' d special precautions must 

be employed lo make the india-
rubber connections air-tight. (See Chemical Journal for 1865, p. 9.) 

By this instrument air has been reduced to l a ( , i 0 0 0 t h of 'atmo-
spheric density, and the average exhaustion attainable by its use is 
about one-millionth, which is equivalent to "00003 of an inch of 
mercury. 

241. Double Exhaustion.—In the mercurial machines just described 
there is no "untraversed space," as the liquid completely expels all 
the air from the pump-barrel. These machines are of very recent 

invention. Babinet long before introduced an arrangement for the 
purpose, not of getting rid of this space, but of exhausting it of air. 

For this purpose, when the machine ceases to work with the ordi-
nary arrangement, the communication of the receiver with one of 
the pump-barrels is shut off, and this barrel is employed to exhaust 
the air from the other. This change is effected by means of a stop-
cock at the point of junction of the passages leading from the two 
barrels (Fig. 144). The stop-cock has a T-shaped aperture, the point 
of intersection of the two branches being in constant communication 
with the receiver. • In a dif-
ferent plane from that of the 
T-shaped aperture is another 
aperture ran, which, by means 
of the tube I, establishes 
communication between the 
pump-barrel B and the com-
municating passage of the 
pump-barrel A. From this 
explanation it will be seen that 
if the stop-cock be turned as 
shown in the first figure, the 
two pump-barrels both com-
municate with the receiver, 

M vr ' v. h i m r v. '11 " 

and the operation proceeds in ^ i i l p ^ 
t h e o r d i n a r y m a n n e r . B u t if Fig. 144.—Bai/mefs Doubij-exiiausting stop-c..ck. 

the stop-cock be turned through 
a quarter of a revolution, as shown in the second figure, the pump-
barrel B alone communicates with the receiver, while it is itself 
exhausted of air by the barrel A. 

I t is easy to express by a formula the effect of this double exhaus-
tion. Suppose the pump to have ceased, under the ordinary method 
of working, to produce any farther exhaustion, the air in the receiver 
has therefore reached a tension nearly equal to H y (§ 237). At this 

moment the stop-cock is turned into its second position. When the 
piston B descends, the piston A rises, and the air of the "untraversed 
space" in B is drawn into A and rarefied. During the inverse 
operation, the air in A is prevented from returning to B, and thus 
the rarefied air from B, becoming still further rarefied, will draw a 
fresh quantity of air from the receiver. This air will then be driven 



into A, where it will be compressed by the descending movement of 
the piston, and will find its way into the air outside.1 

This double exhaustion will itself cease to work when air ceases to 
pass from the pump-barrel B into the pump-barrel A. Now when 
the piston in this latter is raised, the elastic force of the air which 
was contained in its " untraversed space " is equal to Hy , for, on the 
last opening of the valve, the air in this space escaped into the atmo-
sphere. On the other hand, when the piston in B is at the end of 
its upward stroke, the tension of the air is the same as in the receiver. 
Let this be denoted by x. When the piston in B descends, the air is 
compressed into the " untraversed space " and the passage leading to 
A. Let the volume of this passage be I. Then the tension will 
increase, and become x '\-r\- When the machine ceases to produce 
any farther effect, this tension cannot be greater than that in the 
pump-barrel A, which is H y ; we have thus, to determine the limit 
to the action of the pump, the equation 

V + l T T V T x — t = whence 

242. Air -pump with Free Piston.—We shall describe one more 
air-pump (Fig. 145), constructed by Deleuil, and founded upon an 
interesting principle. We know tha t gases possess a remarkable 
power of adhesion for solids, so t ha t a body placed in the atmo-
sphere may be considered as covered with a very thin coat of air, 
forming, so to speak, a permanent envelope. On account of this cir-
cumstance, gases find very great difficulty in moving in very narrow 
spaces. This is the principle of the " air-pump with free piston." 

The piston P (Fig. 146), which is composed entirely of metal, is of 
considerable length; and on its outer surface is a series of parallel 
circular grooves very close together. I t does not touch the pump-
barrel at any point; but the distance between the two is very small, 
about -001 of an inch. This free piston is surrounded by a cushion 
of air, which forms its only stuffing, and is sufficient to enable the 
machine to work in the ordinary manner, notwithstanding the per-

1 I t will be observed that during the process of double exhaustion the piston of B be-
haves like a solid piston; its valve never opens, because the pressure below it is always 
less than atmospheric. 



manent communication between the upper and lower surfaces of the 
piston. This machine gives a vacuum about as good as is obtainable 
by ordinary pumps, and it has the important advantages of not 

requiring oil, and of having less 
friction. I t consequently wears 
better, and is less liable to the 
development of heat, which is a 
frequent source of annoyance in 
air-pumps. I t is single-barrelled 
with double action, like Bianchi's. 
The two openings S and S' are 
to admit air from the receiver; 
they are closed and opened alter-
nately by conical stoppers at the 
end of the rod T, which passes 
through the piston, and is carried 
with i t by friction in its move-
ment. They communicate with 
tubes which unite, at It', with a 
tube leading from the receiver. 
A and A' are valves for the expul-
sion of the air, which escapes by 
tubes uniting at R. The alternate 
movement of the piston is produced 
by what is called Delahire's gearing. 
This depends on the principle, tha t 
when a circle rolls without sliding 

F'ston and Barrel of Dei - ^ ^ interior of another circle of 
Air-pump, double the diameter, any point on 

. , 7
 tlie circumference of the rollinq 

circle describes a diameter of the fixed circle. In order to utilize 
this property, the end of the piston-rod is jointed to the extremity 
of a piece of metal which is rigidly attached to the pinion P, the 
joint being exactly opposite the circumference of the pinion. This 
latter zs driven by a fly-wheel with suitable gearing, and works 
with the fixed wheel E, which is toothed on the inside. Thus the 
piston will freely, and without any lateral effort, describe a vertical 
line, the length of the stroke being equal to the diameter of the fixed 
wheel. 

243. Compressing P u m P . - I t can easily be seen from the descrip-

tion of the air-pump, that if the expulsion-valves were connected 
with a tube communicating with a reservoir, the air removed by the 
pump would be forced 
into this reservoir. This 
communication is estab-
lished in the instrument 
just described. If, there-
fore, R' be made to com-
municate with the exter-
nal air, this air will be 
continually drawn in at 
that point and forced out 
into the reservoir con-
nected with R, so that the 
instrument will act as a compress-
ing pump. The compressing-pump 
is thus seen to be the same instru-
ment as the air-pump, the only 
difference being that the receiver 
is connected with the expulsion valves, instead of 
with the exhaustion-valves; it is thus, so to speak, 
the air-pump reversed. This fact can be very well 
seen in the structure of a small pump frequently 
employed in the laboratory, and represented in 
Fig. 147. 

At the bottom of the pump-barrel are two valves, 
communicating with two separate reservoirs, tha t 
on the left being an admission-valve, and that on 
the right an expulsion-valve. 

When the piston is raised, rarefaction is produced in the reservoir 
to the left ; and when it is pushed down, the air in the reservoir 
to the right is compressed. 

In Fig. 148 is represented a compressing-pump often employed. 
At the bottom of the pump-barrel is a valve b opening downward; 
in a lateral tube is an admission-valve a opening inward. The 
position of these valves is shown in the figure. They are conical 
metal stoppers, fitted with a rod passing through a hole in a small 
plate behind, an arrangement which prevents the valve from over-
turning. The rod is surrounded by a small spiral spring, which keeps 
the valve pressed against the opening. If the lower part of the 

Fig. 14S. 
Condensing Pump. 



pump-barrel be screwed upon a reservoir, at each upward stroke of 
the piston the barrel will be filled with air through the valve a, 
and at every downward stroke this air will be forced into the 
reservoir. 

If the lateral tube be made to communicate with a bladder or 
gas-holder filled with any gas, this gas will be forced into the 
reservoir, and compressed. 

244. Calculation of the Effect of the Instrument.—The density of 
the compressed air after a given number of strokes of the piston 
may easily be calculated. If v be the volume of the pump-barrel, 
and V that of the reservoir; at each stroke of the piston there is 
forced into the reservoir a volume of air equal to that of the pump-
barrel; which gives a volume nv at the end of n strokes. The air 
in the reservoir, accordingly, which when at atmospheric pressure 
had density D, and occupied a volume V + nv, will, when the volume 

is reduced to V, have the density D and the pressure will, by 

Boyle's law, be atmospheres. 

If this formula were rigorously applicable in all cases, there 
would be no limits to the pressure attainable, except those depend-
ing on the strength of the reservoir and the motive power available. 

But, in fact, the untraversed space left below the piston, when 
at the end of its downward stroke, sets a limit to the action of the 
instrument, jus t as in the common air-pump. For when the air in 
the barrel is reduced from the volume of the barrel v to that of the 

untraversed space v , its tension becomes H j and this air cannot 

pass into the reservoir unless the tension of the air in the reservoir 
is less than this quantity. This is accordingly the utmost limit of 
compression that can be attained. 

We must, however, carefully distinguish between the effects of 
untraversed space in the air-pump and in the compression-pump. 
In the first of these instruments the object aimed at is to rarefy 
the air to as great a degree as possible, and untraversed space 
must consequently be regarded as a defect of the most serious 
importance. 

The object of the condensing-pump, on the contrary, is to com-
press the air, not indefinitely, but up to a certain point. Thus, for 
instance, one pump is intended to give a compression of five atmo-
spheres, another of ten, &c. In each of these cases the maker 

provides that this limit shall be reached, and the untraversed 
space has no injurious effect beyond increasing the number of 
strokes required to produce the desired amount of condensation. 

245. Various Contrivances for producing Compression.—In order to 
expedite the process of compression, several pumps such as we have 

described are combined, which may be done in various ways. Fig. 
149 represents the system employed by Regnault in his investiga-
tions connected with Boyle's law and the elastic force of vapour. I t 
consists of three pumps, the piston-rods of which are jointed to three 
cranks on a horizontal axle, by means of three connecting-rods. This 
axle, which carries a fly-wheel, is turned by means of one or two 
handles. The different admission-valves are in communication with 
a single reservoir in connection with the external air, and the com-

F i g . 14!).— C o n n e c t e d P u m p s . 



pressed gas is forced into another reservoir which is in communication 
with the experimental apparatus. 

A serious obstacle to the working of these instruments is the heat 
generated by the compression of the air, which expands the different 
parts of the instrument unequally, and often renders the piston so 
tight that i t can scarcely be driven. In some of these instruments 
which are employed in the arts, this inconvenience is lessened by 
keeping the lower valves covered with water, which has the addi-
tional advantage of getting rid of " untraversed space." In this 
way a pressure of forty atmospheres may easily be obtained with 
air. Air may also be compressed directly, without the intervention 
of pumps, when a sufficient height of water can be obtained. I t is 
only necessary to lead the liquid in a tube to the bottom of a 
reservoir containing air. This air will be compressed until its 
pressure exceeds that of the atmosphere by the amount due to the 
height of the summit of the tube. I t is by a contrivance of this 
kind that compressed air has been obtained for driving the borino--
machines employed in the great Alpine tunnels. 

246. Practical Applications of the Air-pump and of Compressed Air. 
—Besides the use made of the air-pump and the compression-pump 
in the laboratory, these instruments are variously employed in the 
arts. 

The air-pump is employed by sugar-refiners to lower the boiling 
point of the syrup. Compression-pumps are used by soda-water 
manufacturers to force the carbonic acid into the reservoirs contain-
ing the water which is to be aerated. The small apparatus described 
above (Fig. 148) is sufficient for this purpose; i t is only necessary 
to fill the side-vessel with carbonic acid, and to pour a certain 
quantity of water into the reservoir below. Compressed air has for 
several years been employed to assist in laying the foundations of 
bridges m rivers where the sandy nature of the soil requires very 
deep excavations. Large tubes called caissons, in connection with 
a condensing pump, are gradually let down into the river; the air by 
its pressure keeps out the water, and the workmen, who are admitted 
into the apparatus by a sort of lock, are thus enabled to walk on 
dry ground. 

In pneumatic despatch tubes, which have recently been established 
m many places, a kind of train is employed, consisting of a piston 
preceded by boxes containing the despatches. By exhausting the 
air at the forward end of the tube, or forcing in compressed air at 

the other end, the train is blown through the tube with great 
velocity. 

The atmospheric railway, which was for a few years in existence, 
was worked upon the same principle: an air-tight piston travelled 
through a fixed tube, and was connected by an ingenious arrange-
ment with a train above. 

Excavating machines driven by compressed air are coming into 
extensive use in mining operations. They have the advantage of 
assisting ventilation, inasmuch as the compressed air, which at each 
stroke of the machine escapes into the air of the mine, cools as it 
expands. 

In the air-gun, the bullet is projected by a portion of compressed 
air which, on pulling the trigger, escapes into the barrel from a 
reservoir in which it has been artificially compressed. 

We may add that the large machines employed in iron-works for 
supplying air to the furnaces, are really compression-pumps. 

y 



CHAPTER XXI . 

UPWARD PRESSURE OF THE AIR. 

247. The Baroscope.—The principle of Archimedes, explained in 
Chap. XIII., applies to all fluids, whether liquid or gaseous. Hence 
the resultant of the whole pressure of the atmosphere on the surface 
of a body is equal to the weight of the air displaced. The force 
required to support a body in air, is less than the force required to 
support it in vacuo, by this amount. This principle is illustrated 
by the baroscope (Fig. 150). 

This is a kind of balance, the beam of which supports two balls of 
very unequal sizes, which balance each other in the air. If the ap-

paratus is placed under the receiver 
of an air-pump, after a few strokes 
of the piston the beam will be seen 
to incline towards the larger ball, 
and the inclination will increase as 
the exhaustion proceeds. The reason 
is that the air, before it was pumped 
out, produced an upward pressure, 
which was greater for the large 
than for the small ball, on account 
of its greater displacement; and this 
disturbing force is now removed, 

r . , . . . . , I f a f t e r exhausting the air, car-

a C K ' W 1 1 C h V r ™ ^ a i r ' W 6 r e a d m i t t e d a t atmospheric 
pressure, the large ball would be subjected to a greater increase of 

r - d d
e
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of a t % f e l l o r \ s r p p o s r b o d y t o be i i g h t e r t h a n a n ^ of air, then this body will rise in the atmosphere. For example, if 

Fig. 150.—Baroscope. 

we fill soap-bubbles with hydrogen (Fig. 151), and shake them off 
from the end of the tube at which they are formed, they will be seen, 
if sufficiently large, to ascend in the air. This curious experiment 
is clue to the philosopher Cavallo, who announced it in 1782.1 

The same principle applies to balloons, which essentially con-
sist of an envelope inclosing a gas lighter than air. In conse-

Fig. 151.—Ascent of Soap-bubbles filled with Hydrogen. 

quence of this difference of density, we can always, by taking a 
sufficiently large volume, make the weight of the gas and containing 
envelope less than that of the air displaced. In this case the balloon 
will ascend. 

The invention of balloons is due to the brothers Joseph and Ste-
phen Montgolfier. The balloons made by them were globe-shaped, 
and constructed of paper, or of paper covered with cloth, the air in-
side being rarefied by the action of heat. I t is curious to remark 

1 The first idea of a balloon must be attributed to Francisco de Lana, who, about 
1670, proposed to exhaust the air in globes of copper of sufficient size and thinness to weigh 
less, under these conditions, than the air displaced. The experiment was not tried, and 
would certainly not have succeeded, for the pressure of the atmosphere would have caused 
the globes to collapse. The theory, however, was thoroughly understood by the author, 
who made an exact calculation of the amount of force tending to make the globes ascend. 
—D. 



that in their first attempts they employed hydrogen gas, and showed 
that balloons filled with this gas could ascend. But as the hydrogen 
readily escaped through the paper, the flight of the balloons was 
short, and thus the use of hydrogen was abandoned, and hot air was 
alone employed. 

The name montgolfieres is still often applied to fire-balloons They 
generally consist of a paper envelope with a wide opening below, 

Fig. 152.—Fire balloon of Pi la t re de Rosier. 

m the centre of wluch is a sponge held in a wire frame. The sponge 
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249.—The lifting power of a balloon is the difference between its 
weight and that of the air displaced. I t is easy to compare the 
three modes of inflation in this respect. 

A cubic metre of air weighs about 1-300 kilogramme. 
A cubic metre of hydrogen -089 „ 
A cubic metre of coal-gas about "750 „ 
A cubic metre of air heated to 200° Cent -750 „ 

We thus see that the lifting power per cubic metre with hydrogen 
is 1-211, and with coal-gas or hot air about '500 kilogramme. 
If, for instance, the total weight to be raised is estimated at 1500 
kilogrammes, the volume of a balloon filled with hydrogen capable 

of raising the weight will be ^ ^ = 1239 cubic metres. If coal-gas 

were employed, the required volume would be 1
T |^ = 2727 cubic 

metres. 
The car in which the aeronauts sit is usually made of wicker-work 

or whalebone. I t is sustained by cords attached to a net-work 
(Fig. 153) covering the entire upper half of the balloon, so as to 
distribute the weight as evenly as possible. The balloon terminates 
below in a kind of neck opening freely into the air. At the top 
there is another opening in the inside, which is closed by a valve 
held to by a spring. Attached to the valve is a cord which passes 
through the interior of the balloon, and hangs above the car within 
reach of the hand of the aeronaut. 

When the aeronaut wishes to descend, he opens the valve for a 
few moments and allows some of the gas to escape. An important 
part of the equipment consists of sand-bags for ballast, which are 
gradually emptied to check too rapid descent. In the figure is 
represented a contrivance called a parachute, by means of which the 
descent is sometimes effected. This is a kind of large umbrella with 
a hole at the top, from the circumference of which hang cords sup-
porting a small car. When the parachute is left to itself, i t opens 
out, and the resistance of the air, acting upon a large surface, 
moderates the rate of descent. The hole at the top is essential to 
safety, as it affords a regular passage for air which would otherwise 
escape from time to time from under the edge of the parachute, thus 
producing oscillations which might prove fatal to the aeronaut. 

Balloons are not fully inflated at the commencement of the 
ascent; but the inclosed gas expands as the pressure diminishes 
outside. The lifting power thus remains nearly constant until 



the balloon has risen so high as to be fully inflated. Suppose, for 
instance, that the atmospheric pressure is reduced by one-half, 
the volume of the balloon will then be doubled; it will thus dis-

_____ place a volume of air twice 
as great as before, but of 

Mu', ' |p |$ only half the density, so that 
the buoyancy will remain 

P W v M 1 i H A w l the same. This conclusion, 
however, is not quite exact, 
because the solid parts of 
the balloon do not expand 
like the gas, and the weight 
of air displaced by them 
accordingly diminishes as the 
balloon rises. If the balloon 
continues to ascend after i t 
is completely inflated, its lift-
ing power diminishes rapidly, 
becoming zero when a stra-

^ turn of air is reached in 
which the weight of the 

g volume displaced is equal to 
* that of the balloon itself. 

j - _ ,-- ^ ^ I t is carried past this stratum 
in the first instance in vir-
tue of the velocity which it 

Fig. 158.—Balloon with Car and Parachute. C ° m e S t 0 r e S t . i n i t a f t e r a 

number of oscillations. 
250. Height Attainable—The pressure of the air in the stratum of 

equilibrium can be calculated as follows: 
Let V be the volume of gas which the balloon can contain when 

fully inflated. 
v the volume, and w the weight, of the solid parts, including 

the aeronauts themselves. 
3 the density of the gas at the standard pressure and tem-

perature, and D the density of air under the same condi-
tions. 

Then if P denote the standard pressure, and p the pressure in the 
stratum of equilibrium, the density of the gas when this stratum 

has been reached will be and the density of the air will be | D . 
Equating the weight of the air displaced to that of the floating body, 
we have 

| (V + *)D = gV5 + w, 

whence p can be determined. 
251. Effect of the Air upon the Weight of Bodies—The upward 

pressure of the air impairs the exactness of weighings obtained even 
with a perfectly true balance, tending, by the principle of the baro-
scope, to make the denser of two equal masses preponderate. The 
stamped weights used in weighing are, strictly speaking, standards of 
mass, and will equilibrate any equal masses in vacuo; but in air the 
equilibrium will be destroyed by the greater upward pressure of the 
air upon the larger and less dense body. When the specific gravities 
of the weights and of the body weighed are known, it is easy from 
the apparent weight to deduce the true weight (that is to say, the 
mass) of the body. 

Let x be the real weight (or mass) of a body which balances a 
standard weight of w grammes when the weighing is made in air. 
Let d be the density of the body, <S that of the standard weight, and 
a the density of the air. Then the weight of air displaced by the 

body is ¿x, and the weight of air displaced by the standard weight 

is lw. Hence we have 
0 ' 

a a x - x = w - w, d o 

1 - a 

x = w — 5
a = w j l + a Q - l ) ¡nearly. 

1 d 

Let us take, for instance, a piece of sulphur whose weight has been 
found to be 100 grammes, the weights being of copper, the density 
of which is 8-8. The density of sulphur is 2. 

We have, by applying the formula, 

. = 100 j 1 + ¿ j ( \ - j = 100-05 grammes. 

We see then that the difference is not altogether insensible. I t 
varies in sign, as the formula shows, according as d or 2 is the 
greater. When the density of the body to be weighed is less than 

14 



that of the weights used, the real weight is greater than the 
apparent weight; if the contrary, the case is reversed. If the body 
to be weighed were of the same density as the weights used, the real 
and apparent weights would be equal. We may remark, that in 
determining the ratio of the weights of two bodies of the same 
density, by means of standard weights which are all of one material, 
we need not concern ourselves with the effect of the upward pressure 
of the air; as the correcting factor, which has the same value fur 
both cases, will disappear in the quotient. 

CHAPTER XXII . 

PUMPS FOR LIQUIDS. 

252. Machines for raising water have been known from very early 
ages, and the invention of the common pump is pretty generally 
ascribed to Ctesibius, teacher of the celebrated Hero of Alexandria; 
but the true theory of its action was not understood till the time of 
Galileo and Torricelli. 

253. Reason of the Rising of Water in Pumps.—Suppose we take a 
tube with a piston at the bottom (Fig. 154),and immerse the lower 
end of i t in water. The raising of the 
piston tends to produce a vacuum below it, 
and the atmospheric pressure, acting upon 
the external surface of the liquid, compels 
it to rise in the tube and follow the upward 
motion of the piston. This upward move-
ment of the water would take place even 
if some air were interposed between the 
piston and the water; for on raising the 
piston, this air would be rarefied, and its 
pressure no longer balancing that of the 
atmosphere, this latter pressure would cause 
the liquid to asccnd in a column whose 
weight, added to the pressure of the air 
below the piston, would be equal to the 
atmospheric pressure. This is the principle 
on which water rises in pumps. These in-
struments have a considerable variety of —.. •• .v-
forms, of which we shall describe the most Fig. 154.-rrincipie of suction-pump, 

important types. 
254. Suction-pump.—The suction-pump (Fig. 155) consists of a 
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cylindrical pump-barrel traversed by a piston, and communicating 
by means of a smaller tube, called the suction-tube, with the water 
in the pump-well. At the junction of the pump-barrel and the tube 
is a valve opening upward, called the suction-valve,, and in the 
piston is an opening closed by another valve, also opening upward. 

Suppose now the suction-tube to be filled with air at the atmo-
spheric pressure, and the water consequently to be at the same level 

inside the tube and in the well. Suppose 
the piston to be at the end of its downward 
stroke, and to be now raised. This motion 
tends to produce a vacuum below the pis-
ton, hence the air contained in the suc-
tion-tube will open the suction-valve, and 
rush into the pump-barrel. The elastic 
force of this air being thus diminished, the 
atmospheric pressure will cause the water 
to rise in the tube to a height such that 
the pressure due to this height, increased 
by the pressure of the air inside, will ex-
actly counterbalance the pressure of the 
atmosphere. If the piston now descends, 
the suction-valve closes, the water remains 
at the level to which it has been raised, 
and the air, being compressed in the barrel, 
opens the piston-valve and escapes. At 
the next stroke of the piston, the water 
will rise still further, and a fresh portion 
of air will escape. 

If, then, the length of the suction-tube 
is less than about SO feet, the water will, after a certain number 
of strokes of the piston, be able to reach the suction-valve and rise 
into the pump-barrel. When this point has been reached the 
action changes. The piston in its downward stroke compresses 
the air, which escapes through it, but the water also passes 
through, so that the piston when at the bottom of the pump-barrel 
will have above it all the water which has previously risen 
into the barrel. If the piston be now raised, supposing the 
total height to which it is raised to be not more than 34 feet above 
the level of the water in the well, as should always be the case, 
the water will follow it in its upward movement, and will fill the 

Fig. 155.—Suction-pump. 

pump-barrel. In the downward stroke this water will pass up 
through the piston-valve, and in the following upward stroke it 
will be discharged at the spout. A fresh quantity of water will by 
this time have risen into the pump-barrel, and the same operations 
will be repeated. 

We thus see that from the time when the water has entered the 
pump-barrel, at each upward stroke of the piston a volume of water 
is ejected equal to the contents of the pump-barrel. 

In order that the water may be able to rise into the pump-barrel, 
the suction-valve must not be more than 34 feet above the level of 
the water in the well, otherwise the water would stop at a certain 
point of the tube, and could not be raised higher by any farther 
motion of the piston. 

Moreover, in order that the working of the pump may be such 
as we have described, that is, that at each upward stroke of the 
piston a quantity of water may be removed equal to the volume of 
the pump-barrel, it is necessary that the piston when at the top of 
its stroke should not be more than 34 feet above the water in the 
well. 

255. Effect of untraversed space.—If the piston does not descend 
to the bottom of the barrel, it is possible that the water may 
fall short of rising to the suction-valve, even though the total 
height reached by the piston be less than 34 feet. When the 
piston is at the end of its downward stroke, the air below it in 
the barrel is at atmospheric pressure; and when the limit of 
working has been reached, this air will expand during the upward 
stroke until it fills the barrel. Its pressure will now be the same as 
that of the air in the top of the suction-tube; and if this pressure 
be equivalent to h feet of water, the height to which water can be 
drawn up will be only 34—h feet. 

Example. The suction-valve of a pump is at a height of 27 feet 
above the surface of the water, and the piston, the entire length of 
whose stroke is 7'8 inches, when at the lowest point is 3 -l inches 
from the fixed valve; find whether the water will be able to rise 
into the pump-barrel. 

When the piston is at the end of its downward stroke, the air 
below it in the barrel is at the atmospheric pressure; when the 
piston is raised this air becomes rarefied, and its pressure, by Boyle's 

law, becomes ^ that of the atmosphere; this pressure can therefore 
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balance a column of water whose height is 34 x 9 feet, or 9'67 

feet. Hence, the maximum height to which the water can attain is 
34 — 9'67 feet = 2433 feet; and consequently, as the suction-tube 
is 27 feet long, the water will not rise into the pump-barrel, even 
supposing the pump to be perfectly free from leakage. 

Practically, the pump-barrel should not be more than about 25 
feet above the surface of the water in the well; but the spout may 
be more than 34 feet above the barrel, as the water after rising 
above the piston is simply pushed up by the latter, an operation 
which is independent of atmospheric pressure. Pumps in which 
the spout is at a great height above the barrel are commonly called 
lift-pumps, but they are not essentially different from the suction-
pump. 

256. Force necessary to raise the Piston—The force which must 
be expended in order to raise the piston, is equal to the weight of a 
column of water, whose base is the section of the piston, and whose 
height is that to which the water is raised. Let S be the section of 
the piston, P the atmospheric pressure upon this area, h the height 
of the column of water which is above the piston in its present 
position, and Ji the height of the column of water below it ; then 
the upper surface of the piston is subjected to a pressure equal to 
P + S h; the lower face is subjected to a pressure in the opposite 
direction equal to P - S h', and the entire downward pressure is 
represented by the difference between these two, that is bv S 
(h + h'). ' 

T h e s a m e conclusion would be arrived at even if the water had 
not yet reached the piston. In this case, let I be the height of the 
column of water raised; then the pressure below the°piston is 
P - S I; the pressure above is simply the atmospheric pressure P, 
and, consequently, the difference of these pressures acts downward' 
and its value is S I. 

257. Efficiency of Pumps . -F rom the results of last section it 
follows that the force required to raise the piston, multiplied by 
the height through which it is raised, is equal to the weio-ht of 
water discharged multiplied by the height of the spout above the 
water m the well. This is an illustration of the principle of work 
(§49). As this result has been obtained from merely statical con-
siderations, and on the hypothesis of no friction, it presents too 
favourable a view of the actual efficiency of the pump 

Fig. 156. Fig. 157. 
Suction-pump. 

the height through which it is raised, may be only "25 or -3 of the 
work done in driving the pump. 

In Figs. 156 and 157 are shown the means usually employed for 
working the piston. In the first figure the upward and downward 

EFFICIENCY OF PUMPS. 2 1 0 

Besides the friction of the solid parts of the mechanism, there is 
work wasted in generating the velocity with which the fluid, as a 
whole, is discharged at the spout, and also in producing eddies and 
other internal motions of the fluid. These eddies are especially pro-
duced at the sudden enlargements and contractions of the passages 
through which the fluid flows. To these drawbacks must be added 
loss from leakage of water, and at the commencement of the opera-
tion from leakage of air, through the valves and at the circum-

ference of the piston. In com-
mon household pumps, which are 
generally roughly made, the effi-
ciency may be as small as -25 or 
•3; that is to say, the product of 
the weight of water raised, and 



movement of the piston is effected by means of a lever. The second 
figure represents an arrangement often employed, in which the 
alternate motion of the piston is effected by means of a rotatory 
motion. For this purpose the piston-rod T is joined by means of 
the connecting-rod B to the crank C of an axle turned by a handle 
attached to the fly-wheel V. 

258. Forcing-pump.—The forcing-pump consists of a pump-barrel 
dipping into water, and having at the bottom a valve opening up-

ward. In communication with 
the pump-barrel is a side-
tube, with a valve at the point 
of junction, opening from the 
barrel into the tube. A solid 
piston moves up and down the 
pump-barrel, and it is evident 
that when this piston is raised, 
water enters the barrel by the 
lower valve, and that when 
the piston descends, this water 
is forced into the side-tube. 
The greater the height of 

. this tube, the greater will be 

the force required to push the piston down, for the resistance to be 
overcome is the pressure due to the column of water raised. 

The forcing-pump most frequently has a short suction-pipe leadino-
from the reservoir, as represented in Fig. 159. In this case the 
water is raised from the reservoir into the barrel by atmospheric 
pressure during the up-stroke, and is forced from the barrel into the 
ascending pipe in the down-stroke. 

. 2 5 9 - H u n g e r . - W h e n the height to which the water is to be forced 
is very considerable, the different parts of the pump must be very 
strongly made and fitted together, in order to resist the enormous 
pressure produced by the column of water, and to prevent leakage. 
In this case the ordinary piston stuffed with tow or leather washers 
cannot be used but is replaced by a solid cylinder of metal called a 
h u n g e r . Fig. 160 represents a section of a pump thus constructed. 
I h e plunger is of smaller section than the barrel, and passes through 
a stuffing-box m which it fits air-tight. The volume of water which 
enters the barrel at each up-stroke, and is expelled in the down-
stroke, is the same as the volume of a length of the plunger equal 

Fig. 158.—Forcing-pump. 

to the length of stroke; and the hydrostatic pressure to be overcome 
is proportional to the section of the plunger, not to that of the 
barrel. As the operation 
proceeds, air is set free 
from the water, and would 
e v e n t u a l l y i m p e d e t h e 
working of the pump were 
it not permitted to escape. 
For this purpose the plunger 
is pierced with a narrow 
passage, which is opened 
from time to time to blow 
out the air. 

The drainage of deep 
mines is usually effected 
by a series of pumps. The 
water is first raised by 
one pump to a reservoir, 
into which dips the suction-
tube of a second pump, 
which sends the water up Fig. 159. Fig. ieo. 

Suction and Force Pump. 
to a second reservoir, and 
so on. The piston-rods of the different pumps are all joined to a 

Fig. 161.—Fire-engine. 

single rod called the spear, which receives its motion from a steam-
engine. 



260. Fire-engine.—The ordinary fire-engine is formed by the union 
of two forcing-pumps which play into a common reservoir, contain-
ing in its upper portion (called the air-chamber) air compressed by 
the working of the engine. A tube dips into the water in this 
reservoir, and to the upper end of this tube is screwed the leather 
hose through which the water is discharged. The piston-rods are 
jointed to a lever, the ends of which are raised and depressed alter-
nately, so that one piston is ascending while the other is descending. 
Water is thus continually being forced into the common reservoir 
except at the instant of reversing stroke, and as the compressed air 

in the air-chamber performs the part of a reser-
voir of work (nearly analogous to the fly-wheel), 
the discharge of water from the nozzle of the 
hose is very steady. 

The engine is sometimes supplied with water 
by means of an attached cistern (as in Fig. 162) 
into which water is poured; but it is more 
usually furnished with a suction-pipe which 
renders it self-feedino-. 

© 

281. Double-acting Pumps.—These pumps, the 
invention of which is due to Delahire, are often 
employed for household purposes. They consist 
of a pump-barrel YV (Fig. 162), with four open-
ings in it, A, A , B, B'. The openings A and B' 
are in communication with the suction-tube C; 
A' and B are in communication with the ejec-
tion-tube C'. The four openings are fitted with 
four valves opening all in the same direction, 
that is, from right to left, whence it follows 
t h a t A a n c l B' act as suction-valves, and A' and 

B as ejection-valves, and, consequently, in whichever direction the 
piston may be moving, the suction and ejection of water are taking 
place at the same time. ° 

262. Centrifugal Pumps . -Cent r i fugal pumps, which have long-
been used as blowers for air, and have recently come into extensive 
use for purposes of drainage and irrigation, consist mainly of a flat 
casing or box of approximately circular outline, in which the fluid 
is made to revolve by a rotating propeller furnished with fans or 
blades. These extend from near the centre outwards to the circum-
ference of the propeller, and are usually curved backwards. The 

fluid between them, in virtue of the centrifugal force generated by 
its rotation, tends to move outwards, and is allowed to pass off 
through a large conduit which leaves the case tangentially. 

F i g . 1 6 3 . — C e n t r i f u g a l P u m p . 

The first part of Fig. 163 is a section of the propeller and casing, 
C being a central opening at which the fluid enters, and D the 
conduit through which it escapes. The second part of the figure 
represents a small pump as mounted for use. The largest class of 

F i g . 1 6 4 . — J e t P u m p . 

centrifugal pumps are usually immersed in the water to be pumped, 
and revolve horizontally. 

263. Jet-pump.—The jet-pump is a contrivance by Professor 



James Thomson for raising water hy means of the descent of other 
water from above, the common outfall being at an intermediate level. 
Its action somewhat resembles that of the blast-pipe of the locomo-
tive. The pipe corresponding to the locomotive chimney must have 
a narrow throat at the place where the je t enters, and must thence 
widen very gradually towards its outlet, which is immersed in the 
outfall water so as to prevent any admission of air during the 
pumping. The water is drawn up from the low level through a 
suction-pipe, terminating in a chamber surrounding the jet-nozzle. 

Fig. 164 represents the pump in position, the jet-nozzle with its 
surroundings being also shown separately on a larger scale. 

The action of the jet-pump is explained by the following consider-
ations. 

Suppose we have a horizontal pipe varying gradually in sectional 
area from one point to another, and completely filled by a liquid 
flowing steadily through it. Since the same quantity of liquid passes 
all cross-sections of the pipe, the velocity will vary inversely as the 
sectional area. Those portions of the liquid which are passing at 
any moment from the larger to the smaller parts of the pipe are 
being accelerated, and are therefore more strongly pushed behind 
than in front; while the opposite is the case with those which are 
passing from smaller to larger. Places of large sectional area are 
therefore places of small velocity and high pressure, and on the other 
hand, places of small area have high velocity and low pressure. 
Pressure, in such discussions as this, is most conveniently expressed 
by pressure-height, that is, by the height of an equivalent column 
of the liquid. Neglecting friction, it can be shown that if vx, v2 be 
the velocities at two points in the pipe, and hlt h.2 the pressure-
heights at these points, 

v.? - V = 2g (hi - lh), 

g denoting the intensity of gravity. The change m pressure-height 

is therefore equal and opposite to the change in This is for a 

horizontal pipe. 
In an ascending or descending pipe, there is a fur ther change of 

pressure-height, equal and opposite to the change of actual height. 
Let H be the pressure-height at the free surfaces, that is, the 

height of a column of water which would balance atmospheric pres-
sure; 

k the difference of level between the jet-nozzle and the free 
surface above it. 

I the difference of level between the jet-nozzle and the free 
surface of the water which is to be raised. 

v the velocity with which the liquid rushes through the jet-
nozzle, 

then the pressure-height at the jet-nozzle may be taken as 

H -t-k — t-i and if this be less than H - 1 the water will be sucked ' 2g' 
up. The condition of working is therefore that 

v> 
I I - l be greater than H + & - —, or 

I!2 

— greater than Jc + l, 
¿9 

where it will be observed that k + l is the difference of levels of the 
highest and lowest free surfaces. 

284. Hydraulic Press—The hydraulic press (Fig. 165) consists of a 
suction and force pump aa worked by means of a lever turning about 

the tube CC into the cistern V. In the top of the cistern is an open-
ing through which moves a heavy metal plunger AA. This carries 
on its upper end a large plate B'B', upon which are placed the objects 
to be pressed. Suppose the plunger A to be in its lowest position 
when the pump begins to work. The cistern first begins to fill with 
water; then the pressure exerted by the plunger of the pump is 
transmitted, according to the principles laid clown in § 141, to the 
bottom of the plunger A; which accordingly rises, and the objects to 



be pressed, being intercepted between the plate and the top of a fixed 
frame, are subjected to the transmitted pressure. The amount of 
this pressure depends both on the ratio of the sections of the pistons, 
and on the length of the lever used to work the force-pump. Sup-
pose, for instance, that the distance of the point TO, where the hand 
is applied, from the point 0 , is equal to twelve times the distance 
10, and suppose the force exerted to be equal to fifty pounds. By 
the principle of the lever this is equivalent to a force of 50 x 12 at 

the point I ; and if the section of the piston 
A be at the same time 100 times that of the 
piston of the pump, the pressure trans-
mitted to A will be 50 x 12 x 100 = 60,000 
pounds. These are the ordinary conditions 
of the press usually employed in workshops. 
By drawing out the pin which serves as an 
axis at O, and introducing it at O', we can 
increase the mechanical advantage of the 
lever. 

Two parts essential to the working of the 
hydraulic press are not represented in the 
figure. These are a safety-valve, which 
opens when the pressure attains the limit 
which is not to be exceeded; and, secondly, 
a tap in the tube C, which is opened when 
we wish to put an end to the action of the 

press. The water then runs off", and the piston A descends again to 
the bottom of the cistern. 

The hydraulic press was clearly described by Pascal, and at a still 
earlier date by Stevinus, but for a long time remained practically 
useless; because as soon as the pressure began to be at all strong, 
the water escaped at the surface of the piston A. Bramah invented 
the cupped leather collar, which prevents the liquid from escaping, 
and thus enables us to utilize all the power of the machine. I t con-
sists of a leather ring AA (Fig. 166), bent so as to have a semicir-
cular section. This is fitted into a hollow in the interior of the sides 
of the cistern, so that water passing between the piston and cylinder 
will fill the concavity of the cupped leather collar, and by pressing 
on it will produce a packing which fits more tightly as the pressure 
on the piston increases. 

The hydraulic press is very extensively employed in the arts. 

Fig . 106. — C u p - l e a t l i e r . 

I t is of great power, and may be constructed to give pressures of 
two or three hundred tons. I t is the instrument generally employed 
in cases where very great force is required, as in testing anchors or 
raising very heavy weights. I t was used for raising the sections of 
the Britannia tubular bridge, and for launching the Great Eastern. 
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EFFLUX OF LIQUIDS.—TORRICELLI'S THEOREM. 

265. If an opening is made in the side of a vessel containing 
water, the liquid escapes with a velocity which is greater as the 
surface of the liquid in the vessel is higher above the orifice, or to 
employ the usual phrase, as the head of liquid is greater. This point 
in the dynamics of liquids was made the subject of experiments by 
Torricelli, and the result arrived at by him was that the velocity of 
efflux is equal to that which would be acquired by a body falling 
freely from the upper surface of the liquid to the centre of the 
orifice. If h be this height, the velocity of efflux is given by the 
formula 

v = V 2 gh-

This is called Torricelli's theorem. I t supposes the orifice to be 
small compared with the horizontal section of the vessel, and to be 
exposed to the same atmospheric pressure as the upper surface of the 
liquid in the vessel. 

I t may be deduced f rom the principle of conservation of energy; 
for the escape of a mass m of liquid involves a loss mgh of energy 
of position, and must involve an equal gain of energy of motion. 
But the gain of energy of motion is \mv~\ hence we have 

^mv1 = mgh, ir = 2gh. 

The form of the issuing je t will depend, to some extent, on the 
form of the orifice. If the orifice be a round hole with sharp edges, 
in a thin plate, the flow through it will not be in parallel lines, but 
the outer portions will converge towards the axis, producing a rapid 
narrowing of the jet. The section of the jet at which this conver-
gence ceases and the flow becomes sensibly parallel, is called the 
contracted vein or vena contractu. The pressure within the jet at 
this part is atmospheric, whereas in the converging part it is greater 

CONTRACTED VEIN. 

than atmospheric; and it is to the contracted vein that Torricelli's 
formula properly applies, v denoting the velocity at the contracted 
vein, and h the depth of its central point below the free surface of 
the liquid in the vessel. 

266. Area of Contracted Vein. Froude's Case.—A force is equal to 
the momentum which it generates in the unit of time. Let A 
denote the area of an orifice through which a liquid issues horizon-
tally, and a the area of the contracted vein. From the equality of 
action and reaction it follows that the resultant force which ejects 
the issuing stream is equal and opposite to the resultant horizontal 
force exerted on the vessel. The latter may be taken as a first 
approximation to be equal to the pressure which would be exerted 
on a plug closing the orifice, that is J * 
to ghk. if the density of the liquid be 
taken as unity. 

The horizontal momentum gener-
ated in the water in one second is 
the product of the velocity v and the 
mass ejected in one second. The 
volume ejected in one second is va. 
This is equal to the mass, since the 
density is unity, and hence the 
momentum is v2a, that is, 2gha. 
Equating this last expression for the 
momentum to the foregoing expres-
sion for the force, we have 

2 gha = ghA 

« = 4 A, 

that is, the area of the contracted 
vein is half the area of the orifice. 

Mr. Froude has pointed out that this reasoning is strictly correct 
when the liquid is discharged through a cylindrical pipe projecting 
inwards into the vessel and terminating with a sharp edge (Fig. 167); 
and he has verified the result by accurate experiments in which the 
je t was discharged vertically downwards. The direction of flow in 
different parts of the je t is approximately indicated by the arrows 
and dotted lines in the figure; and, on a larger, scale by those in 
Fi«-. 168, in which the sections of the orifice and of the contracted © ? 

vein are also indicated by the lines marked D and d. We may 
remark that since liquids press equally in all directions, there can 

1 5 

Fig. 167. 



be no material difference between the velocities of a vertical and 
of a horizontal jet at the same depth below the free surface. 

267. Contracted Vein for Orifice in Thin Plate.—When the liquid 
is simply discharged through a hole 
cut in the side of the vessel and 
bounded by a sharp edge, the direc-
tion of flow in different parts of the 
stream is shown by the arrows and 
dotted lines in Fig. 169. The pres-
sure on the sides, in the neighbour-
hood of the orifice, is less than that 
due to the depth, because the curved 
form of the lines of flow implies (on 
the principles of centrifugal force) 
a smaller pressure on their concave 
The pressure around the orifice is 

therefore less than it would be if the hole were plugged. The 
unbalanced horizontal pressure on the vessel (if we suppose the 
side containing the jet to be vertical) will therefore exceed the 
statical pressure on the plug ghA, since the removal of the plug not 
only removes the pressure on the plug but also a portion of the 

y pressure on neighbouring paris. This unbalanced force, 
| which is greater than ghA, is necessarily equal to the 

tf f momentum generated per second in the liquid, which is 
--- still represented by the expression v\i or 2gha; hence 

2gha is greater than ghA, or a is greater than |A. 
Reasoning similar to this applies to all ordinary forms of 
orifice. The peculiarity of the case investigated by Mr. 
Froude consists in the circumstance that the pressure on 
the parts of the vessel in the neighbourhood of the orifice 

Fig. 169. js normal to the direction of the jet, and any changes in 
its amount which may be produced by unplugging the orifice have 
therefore no influence upon the pressures on the vessel in or opposite 
to the direction of the jet.1 

268. Apparatus for Illustration.—In the preceding investigations, 

1 This section and the preceding one are based on two communications read before 
the Philosophical Society of Glasgow, February 23d and March 31st, 1876; one being 
an extract from a letter from Mr. Froude to Sir William Thomson, and the other a comt 
munication from Professor James Thomson, to whom we are indebted for the accompany-
ing illustrations. 

F i g . 168. 

than on their convex side. 

no account is taken of friction. When experiments are conducted 
on too small a scale, friction may materially diminish the velocity; 
and further, if the velocity be tested by the height or distance to 
which the j e t will spout, the resistance of the air will diminish this 
height or distance, and thus make the velocity appear less than it 
really is. 

Fig. 170 represents an apparatus frequently employed for illustrat-

F i g . 1 7 0 . — A p p a r a t u s f o r v e r i f y i n g T o r r i c e l l i ' s T h e o r e m . 

ing some of the consequences of Torricelli's theorem. An upright 
cylindrical vessel is pierced on one side with a number of orifices in 
the same vertical line, which can be opened or closed at pleasure. 
A tap placed above the vessel supplies it with water, and, with the 
help of an overflow pipe, maintains the surface at a constant level, 
which is as much above the highest orifice as each orifice is above 
that next below it. The liquid which escapes is received in a trough, 
the edge of which is graduated. A travelling piece with an index 



line engraved on it slides along the trough; it carries, as- shown in 
one of the separate figures, a disc pierced with a circular hole, and 
capable of being turned in any direction about a horizontal axis pass-
ing through its centre. In this way the disc can always be placed 
in such a position that its plane shall be at right angles to the liquid 
jet, and that the je t shall pass freely and exactly through its centre. 
The index line then indicates the range of the je t with considerable 
precision. This range is reckoned from the vertical plane containing 
the orifices, and is measured on the horizontal plane passing through 
the centre of the disc. The distance of this latter plane below the 
lowest orifice is equal to that between any two consecutive orifices. 

The jet, consisting as it does of a series of projectiles travelling in 
the same path, has the form of a parabola. 

Let a be the range of the jet, b the height of the orifice above the 
centre of the ring, and v the velocity of discharge, which we assume 
to be horizontal. Then if t be the time occupied by a particle of 
the liquid in passing from the orifice to the ring, we have to express 
that a is the distance due to the horizontal yelocity v in the time t, 
and that b is the vertical distance due to gravity acting for the same 
time. We have therefore 

a = vt 
b = W-

. a 2 26 „ go? whence f = = - , 1? = i? g' 26 

But according to Torricelli's theorem, if h be the height of the sur-
face of the water above the orifice, we have v2 = 2gh; and comparing 
this with the above value of v- we deduce 

H = 2h, a2 = ibh. 

One consequence of this last formula is, that if the values of b and 
h be interchanged, the value of a will remain unaltered. This 
amounts to saying that the highest orifice will give the same range 
as the lowest, the highest but one the same as the lowest but one, 
and so on; a result which can be very accurately verified. 

If we describe a semicircle on the line b+h, the length of an ordi-
nate erected at the point of junction of b and h is and since 
a = \ / i bit =Z*/bh, it follows tha t the range is double of this ordinate. 
This is on the hypothesis of no friction. Practically it is less than 
double. The greatest ordinate of the semicircle is the central one, 
and accordingly the greatest range is given by the central orifice. 

269. Efflux from Air-tight Space.—When the air at the free sur-
face of the liquid in a vessel is at a different pressure from the 
air into which the liquid is discharged, we must express this differ-
ence of pressures by an equivalent column of the ^ _ 
liquid, and the velocity of efflux will be that due | 
to the height of the surface above the orifice ^ J fegf ' 
increased or diminished by this column. Efflux \ 
will cease altogether when the pressure on the \ 
free surface, together with that due to the height j | ^ J j P A 
of the free surface above the orifice, is equal to ^ ^ ^ ^ 
the pressure outside the orifice; or if efflux continue j 
under such circumstances i t can only do so by the J ^ 
admission of bubbles of air. This explains the 
action of vent-pegs. 

Pipette.—This is a glass tube (Fig.'171) open at 
both ends, and terminating below in a small taper-
ing spout. If water be introduced into the tube, 
either by aspiration or by direct immersion in 
water, and if the upper end be closed with the 
finger, the efflux of the liquid will cease almost Fig 1T1._Pipette. 
instantly. On admitting the air above, the 
efflux will begin again, and can again be stopped at pleasure. 

The Magic Funnel— This funnel is double, as is shown in Fig. 
172. Near the handle is a 
small opening by which the ^ t i B l ; 
space between the two fun- lMgR \ 
nels communicates with the N^W, • / 
external air. Another open- 1 B l r ^ 
ing connects this same space \ 7 
with the tube of the inner I j 

tween the two funnels be 
filled with any liquid, this 
liquid will run out or will 
cease to flow according as | 
the upper hole is open or Fig. m.—Magic Funnel. 

closed. The opening and 
closing of the hole can be easily effected with the thumb of the hand 
holding the funnel without the knowledge of the spectator. This 
device has been known from very early times. 
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The instrument may be used in a still more curious manner. For 
this purpose the space inside is secretly filled with highly-coloured 
wine, which is prevented from escaping by closing the opening above. 

Water is then poured into the central funnel, and escapes either 
by itself or mixed with wine, according as the thumb closes or opens 
the orifice for the admission of air. In the second case, the water 
being coloured with the wine, i t will appear that wine alone is 
issuing from the funnel; thus the operator will appear to have the 
power of making either water or wine flow from the vessel at his 
pleasure. 

The Inexhaustible Bottle.—The inexhaustible bottle (Fig. 173) is 
a toy of the same kind. I t is an opaque bottle of sheet-iron or 

Fig. 173.—Inexhaust ible Bottle. 

gutta-percha, containing within it five small vials. These communi-
cate with the exterior by five small holes, which can be closed by the 
five fingers of the hand. Each vial has also a small neck which 
passes up the large neck of the bottle. The five vials are filled with 
five different liquids, any one of which can be poured out at pleasure 
by uncovering the corresponding hole. 

270. Intermittent Fountain.—The intermittent fountain is an 
apparatus analogous to the preceding, except that the interruptions 
m the efflux are produced automatically by the action of the instru-
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ment, without the intervention of the operator. I t consists of a globe 
Y (Fi'o- 174), which can be closed air-tight by means of a stopper, and 
is in communication with efflux tubes a, which discharge into a basin 
B, having a small hole o in its bottom for permitting the water to 
escape into a lower basin C. 
A central tube t, open at both 
ends, extends nearly to the top 
of the globe, and nearly to the 
bottom of the basin B. 

Suppose the globe to be filled 
with water, the basins being 
empty. Then the water will 
flow from the efflux tubes a, 
while air will pass up through 
the central tube. As the water 
issues from the efflux tubes 
much faster than it escapes 
through the opening o, the level 
rises in the basin B till the 
lower end of the tube t is 
covered. The pressure of the 
air in the upper part of the 
globe then rapidly diminishes, 
and the efflux from the tubes 
a is stopped. But as the water 
continues to escape from the _ 
basin B through the opening o, the bottom of the tube t is again 
uncovered, the liquid again issues from the efflux tubes, and the 

same changes are repeated. _ . , 
271 Siphon.—The siphon is an instrument m which a liquid, 

under ' the combined action of its own weight and atmospheric pres-
sure flows first up-hill and then down-hill, but always m such a way 
as t'o bring about a lowering of the centre of gravity of the whole 

(Limits simplest form, it consists of a bent tube one end of which 
is immersed in the liquid to be removed whfie the other end e»th r 
discharges into the air, at a lower level t h a n the surface of the iqmd 
in the vessel, as in Fig. 175, or dips into the liquid of a — g 
vessel, the surface of this liquid being lower than that of the liquid 
in the discharging vessel. 

Fig. 174.—Intermi t tent Founta in . 



We shall discuss the latter case, and shall denote the difference of 
levels, of the two surfaces by h, while the height of a column of the 
liquid equivalent to atmospheric pressure will be denoted by H. 

Let the siphon be full of liquid, and imagine a diaphragm to be 
drawn across it at any point, so as to prevent flow. Let this dia-

Pig. 175.—Siphon. 

phragm be at a height * above the higher of the two free surfaces, 
and at a height y above the lower, so that we have 

y - x = h. 

The pressure on the side of the diaphragm next the higher free sur-
ace will be H - pressure being expressed in terms of the equiva-

lent liquid column,) and the pressure on the other side of the dia-
phragm will be H - y , which is less than the former by y - x that 

r o a ' d e n t h t f t ^ G X P ™ * 
to a depth h of the liquid, urging it from the higher to the lower free 
surface, and if the diaphragm be removed, the liquid will be pro 
pelled in this direction. 1 P 0 

J l ^ f S t W ° l 6 g S ° f t h e s i P h o n a r e us i>ally of unequal 
length, and the flow is from the shorter to the longer; but t h i s bv 
no means essential, for by a sufficiently deep i m m e ^ n of Ihe W 

O 

leg, the direction of flow may be reversed. The direction of flow 
depends not on the lengths of the legs, but on the levels of the two 
free surfaces. 

If the liquid in the discharging vessel falls below the end of the 
siphon, or if the siphon is lifted out of it, air enters, and the siphon 
is immediately emptied of liquid. If the liquid in the receiving 
vessel is removed, so that the discharging end of the siphon is sur-
rounded by air, as in the figure, the flow will continue, unless air 
bubbles up the tube and breaks the liquid column. This interrup-
tion is especially liable to occur in large tubes. I t can be prevented 
by bending the end of the siphon round, so as to discharge the 
liquid in an ascending direction. To adapt the foregoing investi-
gation to the case of a siphon discharging into air, we have only to 
substitute the level of the discharging end for the level of the lower 
free surface, so that y will denote the depth of the discharging end 
below the diaphragm, and h its depth below the surface of the liquid 
which is to be drawn off. 

As the ascent of the liquid in the siphon is due to atmospheric 
pressure on the upper free sur-
face, i t is necessary that the 
highest point of the siphon (if 
intended for water) should not ! 
be more than about 33 feet 
above this surface. 

272. Starting the Siphon.—In 
order to make a siphon begin 
working, we must employ means 
to fill i t with the liquid. This 
can sometimes be done by dip-
ping it in the liquid, and then 
placing it in position while the 
ends are kept closed; or by in-
serting one end in the liquid 
which we wish to remove, and 
sucking at the other. I t is usu-
ally more convenient to apply suction by means of a side tube, 
as in Fig. 176, this tube being sometimes provided with an 
enlargement to prevent the liquid from entering the mouth. One 
end of the siphon is inserted in the liquid which is to be removed, 
while the other end is stopped, and the operator applies suction at 



the side tube till the liquid flows over. I n siphons for commercial 
purposes, the suction is usually produced by a pump. 

273. Siphon for Sulphuric Acid—Fig. 177 represents a siphon used 
for transferring sulphuric acid from one vessel to another. The 
long branch is first filled with sulphuric acid. This is effected by 
means of two funnels (which can be plugged at pleasure) at the 
bend of the tube. One of these admits the liquid, and the other 
suffers the air to escape. The two funnels are then closed, and 

the tap at the lower end 
of the tube is opened so as to 
allow the liquid to escape. 
The air in the short branch 
follows the acid, and becomes 
rarefied; the acid behind it 
rises, and if i t passes the bend, 
the siphon will be started, for 
each portion of the liquid 
which issues from the tube will 
draw an equal portion from 
the short to the long branch. 

. T o i n s u r e t h e working of the sulphuric acid siphon, it is not suffi-
cient to have the vertical height of the long branch greater than that 
of the short branch; it is farther necessary that it should exceed a 
certain limit, which depends upon the dimensions of the siphon in 
each particular case. I n order to calculate this limit, we must 
remark that when the liquid begins to flow, its height diminishes in 
the long and increases in the short branch; if these two heights 
should become equal, there would be equilibrium. We see then 
that m order that the siphon may work, it is necessary that when 
the liquid rises to the bend of the tube, there should be in the Ion a 
branch a column of liquid whose vertical height is at least equal to 
that of the short branch, which we shall denote by h, and the actual 
length of the short branch from the surface of the liquid in which 
it dips to the summit of the bend by h'. Then if a be the inclina-
tion of the long branch to the vertical, and L the length of the Ion* 
branch, which we suppose barely sufficient, the length of the column 
of liquid remaining in the long branch will be h sec a. The air 
which at atmospheric pressure H occupied the length K, now under 
he pressure H - h occupies a length L — k sec a; hence by Boyle's 

law, we have J J 

HA' = (H - h) (L - h sec a), whence L = h sec a + 
H ^ 

H - K 

T 

F i g . I T S . — V a s e of T a n t a l u s . 

In this formula H denotes the height of a column of sulphuric acid 
whose pressure equals that of the atmosphere. 

274. Cup of Tantalus.—The siphon may be employed to produce 
the intermittent flow of a liquid. Suppose, for instance, that we 
have a cup (Fig. 178) in which is 
a bent tube rising to a height n , 
and with the short branch termi-
nating near the bottom of the 
cup, while the long branch passes 
through the bottom. If liquid be 
poured into the cup, the level will 
gradually rise in the short branch 
of the bent tube, till i t reaches 
the summit of the bend, when the 
siphon will begin to discharge the 
liquid. If the liquid then escapes 
by the siphon faster than it is 
poured into the vessel, the level of the liquid in the cup will gradu-
ally fall below the termination of the shorter branch. The siphon 
will then empty itself, and will not recommence its action till the 
liquid has again risen to the level of the bend. 

The siphon may be concealed in the interior of the figure of a 
man whose mouth is jus t above the top of the siphon. If water be 
poured in very slowly, i t will continually rise nearly to his lips and 
then descend again. Hence the name. Instead of a bent tube we 
may employ, as in the first figure, a straight tube covered by a bell-
glass left open below; in this case the space between the tube and 
the bell takes the place of the shorter leg of the siphon. 

I t is to an action of this kind that natural intermittent springs are 
generally attributed. Suppose a reservoir (Fig. 179) to communicate 
with an outlet by a bent tube forming a siphon, and suppose it to 
be fed by a stream of water at a slower rate than the siphon is able 
to discharge it. When the water has reached the bend, the siphon 
will become charged, and the reservoir will be emptied; flow will 
then cease until it becomes charged again. 

275. Mariotte's Bottle—This is an apparatus often employed to ob-
tain a uniform flow of water. Through the cork at the top of the 
bottle (Fig. 180) passes a straight vertical tube open at both ends, and 
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in one side of the bottle near the bottom is a second opening furnished 
with a horizontal efflux tube & at a lower level than the lower 
end of the vertical tube. Suppose that both the bottle and the 
vertical tube are in the first instance full of water, and that the 
efflux tube is then opened. The liquid flows out, and the vertical 
tube is rapidly emptied. Air then enters the bottle through the 
vertical tube, and bubbles up from its lower end a through the 
liquid to the upper part of the bottle. As soon as this process 
begins, the velocity of efflux, which up to this point has been 
rapidly diminishing (as is shown by the diminished range of the 

jet), becomes constant, and continues so till the level of the liquid 
has fallen to a, after which i t again diminishes. During the time 
of constant flow, the velocity of efflux is that due to the height of 
a above b, and the air in the upper part of the bottle is at less than 
atmospheric pressure, the difference being measured by the height 
of the surface of the liquid above a. Strictly speaking, since the 
air enters not in a continuous stream but in bubbles, there must be 
slight oscillations of velocity, keeping time with the bubbles, but 
they are scarcely perceptible. 

Instead of the vertical tube, we may have a second opening in the 

F i g . 1 7 9 . — i n t e r m i t t e n t S p r i n g . 
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side of the bottle, at a higher level than the first; as shown in Fig. 
180. Air will enter through the pipe a, which is fitted in this upper 
opening, and the liquid will issue at the lower pipe b, with a constant 
velocity due to the height of a above b. 

Mariotte's bottle is sometimes used in the laboratory to produce 

F i g . I S O . — M a r i o t t e ' s B o t t l e . 

the uniform flow of a gas by employing the water which escapes to 
expel the gas. We may also draw in gas through the tube of 
Mariotte's bottle; in this case, the flow of the water is uniform, but 
the flow of the gas is continually accelerated, since the space occupied 
by it in the bottle increases uniformly, but the density of the gas in 
this space continually increases. 
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EXAMPLES. 

P A R A L L E L O G R A M O F V E L O C I T I E S , A N D P A R A L L E L O G R A M O F F O R C E S . 

1. A ship sails through t h e water a t the ra te of 10 miles per hour, and a ball 
rolls across the deck in a direction perpendicular to the course, a t the same rate. 
F i n d the velocity of the ball relative t o the water . 

2. The wind blows f rom a point in termediate between N . and E . The nor-
ther ly component of its velocity is 5 miles per hour, and the easterly component 
is 12 miles per hour. F i n d the total velocity. 

3. The wind is blowing due N .E . wi th a velocity of 10 miles an hour . F ind 
the norther ly and easterly components. 

4. Two forces of 6 and 8 uni ts act upon a body in lines which meet in a point 
and are a t r igh t angles. F ind the magni tude of thei r resul tant . 

5. Two equal forces of 100 units act upon a body in lines which meet in a 
point and are a t r igh t angles. F ind the magni tude of thei r resultant . 

6. A force of 100 units acts a t an inclination of 45° to the horizon. Eesolve 
it in to a horizontal and a vertical component. 

7. Two equal forces act in lines which meet in a point, and the angle between 
their directions is 120°. Show tha t the resul tant is equal to either of the forces. 

8. A body is pulled nor th , south, east, and west by four str ings whose direc-
tions meet in a point, and the forces of tension in the str ings are equal to 10, 15, 
20, and 32 lbs. weight respectively. Show tha t the resul tant is equal to 13 lbs. 
weight . 

9. Five equal forces ac t a t a point, in one place. The angles between the first 
and second, between the second and th i rd , between the th i rd and four th , and 
between t h e four th and fifth, are each 60°. F ind the i r resul tant . 

10. If 6 be the angle between the directions of two forces P and Q acting a t a 
point, and E be thei r resul tant , show t h a t 

R2 = P2 + Q2 + 2PQ cos 6. 

11. Show t h a t the resul tant of two equal forces P , acting a t an angle 6, is 
2P cos { I 

P A R A L L E L F O R C E S , A N D C E N T R E O F G R A V I T Y . 

10*. A s t ra ight rod 10 f t . long is supported a t a point 3 f t . f rom one end. 
W h a t weight hung f rom this end will be supported by 12 lbs. hung from the 
other, the weight of the rod being neglected 1 

11*. We igh t s of 15 and 20 lbs. are hung f rom the two ends of a s t raight rod 
70 in. long. F ind t h e point about which the rod will balance, its own weight 
being neglected. 
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12. A weight of 100 lbs. is slung f rom a pole which rests on the shoulders of 
two men, A and B. The distance between the points where the pole presses the i r 
shoulders is 10 ft . , and the point where the weight is slung is 4 f t . f rom the point 
where the pole presses on A's shoulder. F i n d the weight borne by each, the 
weight of the pole being neglected. 

13. A uniform s t ra igh t lever 10 f t . long balances a t a point 3 f t . f rom one end, 
when 12 lbs. are hung f rom this end and an unknown weight f rom the other. 
The lever itself weighs 8 lbs. F ind t h e unknown weight. 

14. A straight lever 6 f t . long weighs 10 lbs., and its centre of gravi ty is 4 f t . 
from one end. W h a t weight a t this end will support 20 lbs. a t the other, when 
the lever is supported a t 1 f t . distance f rom the latter? 

15. Two equal weights of 10 lbs. each a re hung one a t each end of a s t ra ight 
lever 6 f t . long, which weighs 5 lbs.; and the lever, thus weighted, balances about 
a point 3 in. d is tant f rom the centre of its length. F ind its centre of gravi ty. 

16. A uni form lever 10 f t . long balances about a point 1 f t . f rom one end, 
when loaded a t t h a t end wi th 50 lbs. F ind the weight of the lever. 

17. A s t ra ight lever 10 f t . long, when unweighted, balances about a point 4 f t . 
f rom one e n d ; bu t when loaded wi th 20 lbs. a t this end and 4 lbs. a t the other, 
it balances about a point 3 f t . f rom the end. F ind the weight of the lever. 

18. A lever is to be cut f rom a bar weighing 3 lbs. per f t . W h a t mus t be i ts 
length t h a t it may balance about a point 2 f t . f rom one 'end, when weighted a t 
this end wi th 50 lbs.? (The solution of this question involves a quadrat ic equa-
tion.) 

19. A lever is supported a t i ts centre of gravity, which is nearer t o one end 
t h a n to the other. A weigh t P a t t h e shorter arm is balanced by 2 lbs. a t the 
longer ; and the same weight P a t t h e longer arm is balanced by 18 lbs. a t the 
shorter. F ind P . 

20. Weigh t s of 2, 3, 4 and 5 lbs. are h u n g a t points distant respectively 1, 2, 
3 and 4 f t . f rom one end of a lever whose weight may be neglected. F ind the 
point about which the lever thus weighted will balance. (This and the following 
questions are best solved by taking moments round the end of the lever. The 
sum of the moments of the four weights is equal to the moment of thei r resul-
taut . ) 

21. Solve the preceding question, supposing the lever to be 5 f t . long, uniform, 
and weighing 2 lbs. 

22. F ind , in position and magni tude, t h e resul tant of two parallel and oppo-
sitely directed forces of 10 and 12 units, the i r lines of action being 1 yard apart . 

23. A s t ra ight lever wi thout weight is acted on by four parallel forces a t the 
following distances from one e n d : — 

At 1 ft., a force of 2 units, acting upwards. 
At 2 ft., „ 3 „ „ downwards. 
At 3 ft., „ 4 „ „ upwards. 
At 4 ft., „ 5 „ „ downwards. 

Where mus t the fulcrum be placed tha t the lever may be in equilibrium, and 
wha t will be the pressure against the fulcrum? 

24. A s t ra ight lever, t u rn ing freely abou t an axis a t one end, is acted on b y 
four parallel forces, namely— 

A downward force of 3 lbs. at 1 ft. from axis. 
A downward force of 5 „ 3 ft. „ 
An upward force of 4 „ 2 ft. „ 
An upward force of 6 „ 4 ft. „ 

W h a t mus t be the weight of the lever t h a t i t may be in equil ibrium, its centre of 
gravi ty be ing 3 f t . f r o m t h e axis? 

25. I n a pair of nut-crackers, the n u t is placed one inch from the hinge, and 
the h a n d is applied a t a distance of six inches f rom the hinge. H o w much 
pressure m u s t be applied by the hand, if the nu t requires a pressure of 13 lbs. to 
break i t , and w h a t will be t h e amoun t of the pressure on t h e hinges? 

26. I n the steelyard, if the horizontal distance between the fu lc rum and the 
knife-edge which supports the body weighed be 3 in., and the movable weight be 
7 lbs., how far mus t the lat ter be shif ted for a difference of 1 lb. in the body 
weighed ? 

27. T h e head of a hammer weighs 20 lbs. and the handle 2 lbs. The distance 
between their respective centres of gravi ty is 24 inches. F i n d the distance of the 
centre of gravi ty of the hammer f rom t h a t of the head. 

28. One of the four t r iangles into which a square is divided by its diagonals is 
removed. Find the distance of t h e centre of gravi ty of the remainder f rom the 
intersection of the diagonals. 

29. A square is divided into fou r equal squares and one of these is removed. 
F ind the distance of t h e centre of gravi ty of the remaining portion f rom the 
centre of the original square. 

30. F i n d the centre of g rav i ty of a sphere 1 decimetre in radius, having in its 
inter ior a spherical excavation whose centre is a t a distance of 5 centimetres f rom 
the centre of the large sphere and whose radius is 4 centimetres. 

31. We igh t s P , Q, R , S are h u n g f r o m the corners A, B, C, D of a uniform 
square p la te whose weight is W. F i n d the distances f r o m the sides A B , A D of 
the point abou t which the plate will balance. 

32. A n isosceles t r iangle s tands upon one side of a square as base, the al t i tude 
of the tr iangle being equal to a side of the square. Show t h a t the distance of the 
centre of the whole figure f rom the opposite side of the square is £ of a side of the 
square. 

33. A r igh t cone s tands upon one end of a r igh t cylinder as base, the al t i tude 
of the cone be ing equal-to the he igh t of the cylinder. Show t h a t the distance of 
the centre of the whole volume from the opposite end of the cylinder is of the 
height of t h e cylinder. 

W O R K A N D S T A B I L I T Y . 

34. A body consists of th ree pieces, whose masses are as the numbers 1, 3, 9; 
and t h e centres of these masses a re a t heights of 2, 3, and 5 cm. above a certain 
level. F i n d the he igh t of the centre of the whole mass above this level. 

35. The body above-mentioned is moved into a new position, in which the 
heights of the centres of the t h ree masses are 1, 3, and 7 cm. F i n d the new 
height of the centre of the whole mass. 

36. F ind the work done against gravi ty in moving the body f rom the first 
position into the second; employing as the un i t of work the work done in raising 
the smallest of the three pieces t h rough 1 cm. 
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37. F ind the portions of this work done in moving each of the th ree pieces. 
38. The dimensions of a rec tangular block of stone of weight W are A B = a , 

A C = b, A D = c, and the edges A B , A C are initially horizontal. H o w much 
work is done against gravi ty in t i l t ing the stone round the edge A B unti l i t 
balances. 

39. A chain of weight W and leng th I hangs freely by its upper end which is 
at tached to a d r u m upon which t h e chain can be wound, the diameter of the d rum 
being small compared wi th I. Compute the work done against gravi ty in winding 
up two-thirds of the chain. 

40. Two equal and similar cylindrical vessels wi th thei r bases a t the same 
level contain water to t h e respect ive heights h and H centimetres, the area of 
ei ther base being a sq. cm. F ind , i n gramme-centimetres, the work done by 
gravi ty in equalizing t h e levels when t h e two vessels are connected. 

41. Two forces act ing a t the e n d s of a rigid rod wi thout weigh t equil ibrate 
each other. Show tha t the equ i l ib r ium is stable if the forces are pull ing outwards 
and unstable if they are pushing inwards. . 

42. Two equal weights hang ing f r o m the two ends of a string, which passes 
over a fixed pulley wi thout f r ic t ion, balance one another. Show tha t the equili-
br ium is neut ra l if the s t r ing is w i t h o u t weight, and is unstable if the s t r ing is 
heavy. 

43. Show t h a t a uniform hemisphere rest ing on a horizontal plane has two 
positions of stable equilibrium. H a s i t any positions of uns table equil ibrium ? 

I N C L I N E D P L A N E , & C . 

44. On an inclined plane whose he igh t is £ of its length, w h a t power act ing 
parallel to the plane will sustain a we igh t of 112 lbs. res t ing on the plane wi thout 
friction 1 

45. The height, base, and length of an inclined plane are as the numbers 3, 
4, 5. W h a t weight will be sustained on the plane without fr ict ion by a power of 
100 lbs. act ing (a) parallel to the base, (b) parallel to the plane? 

46. F i n d the ratio of t h e power applied to the pressure produced in a screw-
press wi thout friction, the power b e i n g applied a t the distance of 1 f t . f r o m the 
axis of the screw, and the distance be tween the threads being i in. 

47. I n the system of pulleys iu w h i c h one cord passes round all the pulleys, 
its different portions being parallel, w h a t power will sustain a weight of 2240 lbs. 
without friction, if the number of cords a t the lower block be 6? 

48. A balance has unequal a rms, b u t the beam assumes the horizontal position 
when both scale-pans are empty . S h o w tha t if the two apparen t weights of a 
body are observed when i t is placed first in one pan and then in the other, the 
t rue weight will be found by mul t ip ly ing these together and taking the square 
root. 

F O R C E , M A S S , A N D V E L O C I T Y . 

The motion, is summed lo be rectilinear. 

49. A force of 1000 dynes ac t ing o n a certain mass for one second gives i t a 
velocity of 20 cm. per sec. F i n d t h e mass in grammes. 

50. A constant force acting on a m a s s of 12 gm. for one sec. gives i t a velocity 
of 6 cm. per sec. F ind the force in dynes . 

51. A force of 490 dynes acts on a mass of 70 gm. for one sec. F ind the 
velocity generated. 

52. I n the preceding example, if the t ime of action be increased to 5 sec., w h a t 
will be t h e velocity genera ted! 

In the follotcing examples the unit of momentum referred to is the momentum of a gramme moving 
with a velocity of a centimetre per second. 

53. W h a t is the momentum of a mass of 15 gm. moving wi th a velocity of 
translation of 4 cm. per sec.? 

54. W h a t force, acting upon the mass for 1 sec., would produce th i s velocity1? 
55. W h a t force, acting upon the mass for 10 sec., would produce the same 

velocity ? 
56. F ind t h e force which, acting on an unknown mass for 12 sec., would pro-

duce a momentum of 84. 
57. T w o bodies initially a t rest move towards each other in obedience to 

mutua l attraction. Their masses are respectively 1 gm. and 100 gm. If the force 
of at tract ion be TJ-ff of a dyne, find the velocity acquired by each mass in 1 sec. 

58. A gun is suspended by s t r ings so tha t i t can swing freely. Compare the 
velocity of discharge of the bullet wi th the velocity of recoil of the g u n ; the 
masses of the gun and bullet being given, and the mass of the powder being 
neglected. 

59. A bul le t fired vertically upwards, enters and becomes imbedded in a block 
of wood fal l ing vertically overhead; and the block is b rough t to rest by the im-
pact. If the velocities of the bullet and block immediately before collision were 
respectively 1500 and 100 f t . per sec., compare thei r masses. 

F A L L I N G B O D I E S A N D P R O J E C T I L E S . 

Assuming t h a t a falling body acquires a velocity of 980 cm. per sec. by fal l ing 
for 1 sec., find:— 

60. T h e velocity acquired in -fo of a second. 
61. T h e distance passed over in fa sec. 
62. The distance tha t a body must fall to acquire a velocity of 980 cm. per sec. 
63. The t ime of rising to the hi b e s t point, when a body is th rown vertically 

upwards wi th a velocity of 686^ cm. per sec. 
64. The height to which a body will rise, if th rown vertically upwards with a 

velocity of 490 cm. per sec. 
65. The velocity wi th which a body mus t be th rown vertically upwards tha t 

i t may rise t o a height of 200 cm. 
66. T h e velocity tha t a body will have a f te r -fy sec., if t h rown vertically up-

wards wi th a velocity of 300 cm. per sec. 
67. The point tha t the body in last question will have a t ta ined. 
68. T h e velocity t h a t a body will have a f t e r sees., if th rown vertically up-

wards with a velocity of 800 cm. per sec. 
69. The point tha t the body in last question will have reached. 

Assuming t h a t a fal l ing body acquires a velocity of 32 f t . per sec. by falling for 
1 sec., find :— 

70. The velocity acquired in 12 sec. 
71. The distance fallen in 12 sec. 



72. The distance t h a t a body mus t fall to acquire a velocity of 10 f t . per sec. 

73. The t ime of r is ing to t h e highest point, when a body is t h rown vertically 
upwards wi th a velocity of 160 f t . per sec. 

74. The height to which a body will rise, if thrown vertically upwards wi th a 
velocity of 32 f t . per sec. 

75. T h e velocity wi th which a body mus t be th rown vertically upwards t h a t 
it may rise to a height of 25 f t . 

76. The velocity tha t a body will have af ter 3 sec., if th rown vertically up-
wards wi th a velocity of 100 f t . per sec. 

77. The height t h a t the body in last question will have ascended. 
78. The velocity t h a t a body will have a f te r sec., if thrown vertically down-

wards wi th a velocity of 30 f t . per sec. 
79. The distance t h a t the body in last question will have described. 

80. A body is th rown horizcntally f rom the top of a tower 100 m. h igh wi th 
a velocity of 30 metres per sec. W h e n and where will it s tr ike the ground? 

81. Two bodies are successively dropped f rom the same point, wi th an interval 
of i of a second. W h e n will the distance between them be one metre? 

82. Show tha t if x and y a re the horizontal and vertical co-ordinates of a pro-
jectile referred to the point of projection as origin, their values a f te r t ime t are 

x = Vt cos a, y = Vf sin a - £ gt\ 

83. Show tha t the equation to the t ra jectory is 

gx2 y = x tan a - j ™ J 2V2 cos2a 

and tha t if Y and a. can be var ied a t pleasure, the projectile can in general be 
made to traverse any two given points in the same vertical plane wi th the point 
of projection. 

A T W O O D ' S M A C H I N E . 

TWO weights are connected by a cord passing over a pulley as in Atwood's 
machine, friction being neglected, and also the masses of the pulley and cord ; 
find:— 

84. The acceleration when one weight is double of the other. 
85. The acceleration when one weight is to the other as 20 to 21. 
Tak ing g as 980, in te rms of the cm. and sec., find:— 

86. The velocity acquired in 10 sec., when one weight is to the other as 39 
to 41. 

87. The velocity acquired in moving th rough 50 cm., when the weights are as 
19 to 21. 

88. The distance through which the same weights mus t move tha t the velocity 
acquired may be double tha t in last question. 

89. The distance through which two weights which are as 49 to 51 must move 
t h a t they may acquire a velocity of 98 cm. per sec. 

E N E R G Y A N D W O R K . 

90. Express in ergs the kinet ic energy of a mass of 50 gm. moving wi th a 
velocity of 60 cm. per sec. 

91. Express in ergs t h e work done in raising a kilogram through a height of 
1 metre , a t a place where g is 981. 

92. A mass of 123 gm. is a t a height of 2000 cm. above a level floor. F i n d its 
energy of position estimated wi th respect to the floor as the s tandard level (g 
being 981). 

93. A body is th rown vertically upwards a t a place where g is 980. If the 
velocity of projection is 9800 cm. per sec. and the mass of the body is 22 gm., 
find the energy of the body's motion when i t has ascended half way to i ts m a x i m u m 
height. Also find the work done against gravi ty in this pa r t of the ascent. 

94. The height of an inclined plane is 12 cm., and the length 24 cm. F i n d 
t h e work done by gravi ty upon a mass of 1 gm. in sliding down this plane (g 
being 980), and the velocity wi th which the body will reach the bottom if there 
be no fr ict ion. 

95. If the plane in last question be not frictionless, and the velocity on 
reaching the bottom be 20 cm. per sec., find how much energy is consumed in 
fr ict ion. 

96. F ind the work expended in discharging a bullet whose mass is 30 gm. 
wi th a velocity of 40,000 cm. per sec.; and the number of such bullets tha t will 
be discharged wi th this velocity in a minute if the ra te of working is 7460 
million ergs per sec. (one horse-power). 

97. One horse-power being defined as 550 foot-pounds per sec.; show t h a t it 
is near ly equivalent to 8'8 cubic f t . of wa te r l if ted 1 f t . high per sec. (A cubic 
foot of wa te r weighs 62J lbs. nearly. A foot-pound is the work done against 
g rav i ty in l i f t ing a pound through a height of 1 f t . ) 

98. H o w many cubic fee t of water will be raised in one hour f rom a mine 
200 f t . deep, if t h e ra te of pumping be 15 horse-power ? 

C E N T R I F U G A L F O R C E . 

99. W h a t mus t be the rad ius of curvature, t h a t the centr ifugal force of a 
body travel l ing a t 30 miles an hour may be one-tenth of the weight of the b o d y ; 
g being 981, and a mile an hour be ing 44"7 cm. per sec.? 

100. A heavy part icle moves freely along a frictionless t u b e which forms a 
vertical circle of rad ius a . Find the velocity which the particle will have a t the 
lowest point, if i t all bu t conies to rest a t the highest. Also find its velocity a t 
the lowest point if in passing the highest point it exerts no pressure against the 
tube. [Use the principle t h a t w h a t is lost in energy of position is gained in 
energy of motion.] 

101. Show t h a t the total intensity of centr ifugal force due to the earth 's 

rotation, a t a place in la t i tude is «2 E cos o denoting ¡J, and E the 

ear th 's r ad ius ; t h a t the vertical component ( tending to diminish gravity) is o? 
E cos2 A, and t h a t the horizontal component (directed f rom the pole towards the 
equator) is or E cos A sin A. 



P E N D U L U M , A N D M O M E N T O F I N E R T I A . 

101*. The length of the seconds pendulum at Greenwich is 99"413 cm.; find 
the length of a pendulum which makes a single vibration in l i see. 

102. The weight of a fly-wheel is M grammes, and the distance of the inside 
of the rim f rom the axis of revolution is E centims. Supposing this distance to 
be identical wi th k (§ 117), find the moment of inertia. 

If a force of F dynes acts steadily upon the wheel a t an a r m of a centims., 

wha t will be the value of the angular velocity 7jT a f te r the lapse of t seconds f rom 

the commencement of motion? 

103. For a uni form th in rod of length a, swinging about a point of suspension 
a t one end, the moment of iner t ia is the mass of the rod multiplied by \ a 2 . 
F ind the length of the equivalent simple pendu lum; also the moment of iner t ia 
round a parallel axis th rough the centre of the rod. 

104. A t wha t point in its length must the rod in last question be suspended 
to give a minimum t ime of v ibra t ion : and a t wha t point must it be suspeuded to 
give the same t ime of vibrat ion as if suspended a t one end? 

105. Show t h a t if P be the mass of the pulley in Atwood's machine, r i ts 

radius, and P i 2 i ts moment of inertia, t he value of C in § 100 will be P ^ 

plus the mass of the string. [The mass of the friction-wheels is neglected.] 
106. A body moves w i th constant velocity in a vertical circle, going once 

round per second; and its shadow is cast upon level ground b y a vertical sun. 
F ind the value of p (§ 111) for the shadow, using the centimetre and second as 
units . 

107. W h a t is the value of ¡a fo r one of the prongs of a C t iming-fork which 
makes 512 complete vibrat ions per second? 

P R E S S U R E O F L I Q U I D S . 

Find , in gravitat ion measure (grammes per sq. cm.), atmospheric pressure 
being neglected:— 

108. The pressure a t the depth of a kilometre in sea-water of density 1'025. 

109. The pressure a t the depth of 65 cm. in mercury of density 13 59. 
110. The pressure a t the depth of 2 cm. in mercury of density 13"59 sur-

mounted by 3 cm. of water of un i t density, and this again by cm. of oil of 
density "9. 

Find, in centimetres of mercury of density 13'6, atmospheric pressure being 
included, and the barometer being supposed to s tand a t 76 cm.:— 

111. The pressure a t the depth of 10 metres in water of uni t density. 

112. The pressure a t the depth of a mile in sea-water of density 1-026, a mile 
being 160933 cm. 

F ind , in dynes per square centimetre, t ak ing g as 981 : — 

113. The pressure due to 1 cm. of mercury of density 13'596. 

114. The pressure due to a foot of water of un i t density, a foot being 

30-48 cm. 

115. The pressure due to the weight of a layer a metre thick, of a i r of density 

•00129. 
116. A t wha t depth, in b r ine of density 1 1 , is the pressure the same as a t a 

depth of 33 feet in water of unit density? 
117. A t wha t depth, in oil of densi ty "9, is the pressure t h e same as a t the 

depth of 10 inches in mercury of densi ty 13-596? 
118. W i t h w h a t value of g will t h e pressure of 3 cm. of mercury of density 

13-596 be 4 x 10*? 
F ind , in grammes weight , the amoun t of pressure (atmospheric pressure being 

neglected) :— 
119. On a t r iangular area of 9 sq. cm. immersed in naph tha of densi ty "848; 

the centre of gravity of t h e t r iangle being a t the depth of 6 cm. 
120. On a rectangular a rea 12 cm. long, and 9 cm. broad, immersed in mercury 

of density 13*596 ; i t s highest and lowest corners being a t depths of 3 cm. and 7 
cm. respectively. 

121. On a circular area of 10 cm. radius, immersed in alcohol of density "791, 
the centre of the circle being a t t h e depth of 4 cm. 

122. On a tr iangle whose base is 5 cm. and al t i tude 6 cm., the base being a t 
the uniform depth of 9 cm., and the vertex a t the depth of 7 cm., in water of uni t 
density. 

123. On a sphere of radius r centimetres, completely immersed in a liquid of 
density d-, t he centre of the sphere being a t the depth of h centimetres. [The 
amount of pressure in th i s case is not the resul tant pressure.] 

D E N S I T Y , A N D P R I N C I P L E O F A R C H I M E D E S . 

Densities are to be expressed in grammes per cubic centimetre. 

124. A rectangular block of stone measures 86 x 37 x 16 cm., and weighs 
120 kilogrammes. F i n d its density. 

125. A s p e c i f i c - g r a v i t y bott le holds 100 gm. of water, and 180 gm. of sulphuric 

acid. F ind the density of the acid. 
126 A certain volume of mercury of density 13-6 weighs 216 gm., and the 

same volume of another liquid weighs 14-8 gm. F i n d the density of this liquid. 

127. F i n d the mean section of a tube 16 cm. long, which holds 1 gm. of mercury 

of density 13*6. 
128 A bott le filled with water , weighs 212 gm. F i f t y grammes of filings are 

thrown in, and the water which flows over is removed, still leaving the bott le 
jus t filled.' The bot t le then weighs 254 gm. F ind the density of the filings. 

129. F i n d the density of a body which weighs 58 gm. in air, and 46 gm. in 

water of uni t density. 

130. F i n d the density of a body which weighs 63 gm. in air, and 35 gm. in a 

liquid of density -85. 



131. A glass ball loses 33 gm. when weighed in water, and loses 6 gm. more 
when weighed in a saline solution. F i n d the density of the solution. 

132. A body, l ighter t han water, weighs 102 gm. in a i r ; and when i t is im-
mersed in water by the aid of a sinker, the joint weight is 23 gm. The s inker 
alone weighs 50 gm. in water . F ind the densi ty of the body. 

133. A piece of iron, when plunged in a vessel ful l of water, makes 10 grammes 
run over. W h e n placed in a vessel full of mercury i t floats, displacing 78 
grammes of mercury. Requi red the weight, volume, and specific gravi ty of 
the iron. ° J 

134. F ind the volume of a solid which weighs 357 gm. in air, and 253 ran. in 
water of un i t density. ° 

135. F ind the volume of a solid which weighs 458 gm. in air, and 409 son in 
br ine of density 1*2. 

136. H o w much weight will a body whose volume is 47 cubic cm. lose by 
weighing in a liquid whose densi ty is 2-5 ? ' 

137. Find the weights in air, in water, and in mercury, of a cubic cm. of «old 
ot density 19-3. 0 

138. A wire 1293 cm. long loses 508 gm. by weighing in water . F i n d i ts 
mean section, and mean radius. 

w n t e f ' i T T f r e ' I 5 6 C m ' l 0 n g W 6 i g h s 1 5 8 i n a i r> ^ d 140 gm. in 
water . F i n d i ts volume, density, mean section, and mean radius. 

140 W h a t will be the weights, in a i r and in water, of an iron wire 1000 cm 
long and a nnlhmetre in diameter , its density being 7 7 ? 

141. H o w much wate r will be displaced by 1000 c.c. of oak of densi ty -9 
floating m equil ibrium? J ' 

142 A ball, of density 20 and volume 3 c.c., is surmounted by a cylindrical 
s tem, of densi ty 2-5, of l eng th 12 cm., and of cross section • sq. c m / W h a U t t h 

t X ™ m a i r w h e n tlie b o d y floats in e q i * i u m in 

Ä L S a t h a t e X a ^ h a l f ° f ^ m a y i ™ m e i ' s e d , ^ h e n the body 

144. A long cylindrical tube , constructed of flint class of < W i t v a 

ratio of the internal to the external radius is £ 

f r m
 U j h p t g l 3 T Provided wi th a stopper of the same material weighs 120 

grn. when empty. W h e n i t is immersed in water its anwm>«+ i , 1 
but when the stopper is loosened and the wate u t T Z l T f Ä 
gm. F ind the densi ty of the glass and the capacity S'tS E e ^ " 8° 

146. A hydrometer sinks to a certain dentil in a fl,„Vl „f a „ 

148. F i n d the mean density of a combination of 8 par ts by weight of a sub-
stance of densi ty 7, wi th 19 of a substance of density 3. 

149. W h a t volume of fir, of densi ty -5, mus t be joined to 3 c.c. of iron, of 
density 7 - l , t h a t the mean density of the whole may be uni ty? 

150. W h a t mass of fir, of densi ty "5, mus t be joined to 300 gm. of iron, of 
density 7 - l , t h a t the mean densi ty of the whole may be uni ty? 

151. Two par t s by volume of a liquid of density -8, a re mixed wi th 7 of water , 
and the mix tu re shr inks in the ratio of 21 to 20. F ind i ts density. 

152. A piece of iron of density 7 -5 floats in mercury of density 13'5, and is 
completely covered wi th wate r which rests on the top of the mercury. H o w much 
of the iron is immersed in the mercury? 

153. Two liquids are mixed. The total volume is 3 litres, w i th a sp. gr. of 
0"9. T h e sp. gr. of the first l iquid is P3 , of the second 0'7. F ind the i r volumes. 

154. W h a t volume of p la t inum of density 21'5 mus t be at tached to a litre of 
iron of density 7'5 tha t the system may float freely a t all depths in mercury of 
density 13"5? 

155. W h a t mus t be the thickness of a hollow sphere of p la t inum with an ex-
ternal radius of 1 decim., t h a t it may barely float in water? 

156. A sphere of cork of density '24, 3 cm. in radius, is weighted with a 
sphere of gold of density 19-3. W h a t mus t be the radius of the lat ter tha t t h e 
system may barely float in alcohol of density -8? 

157. A n alloy of gold and silver has density D. The density of gold is d. t h a t 
of silver d'. F i n d the proport ions b y weight of the two metals in the alloy, sup-
posing t h a t nei ther expansion nor contraction occurs in i ts formation. 

158. A mix tu re of gold, of densi ty 19"3, wi th silver, of density 10'5, has the 
density 18. Assuming t h a t the volume of the alloy is the sum of the volumes of 
its components, find how many par t s of gold i t contains for one of silver—(a) by 
volume; (6) by weight. 

159. A body weighs gM dynes in air of density A, gm in water, and gx in 
vacuo. F ind x in terms of M, m, and A. 

C A P I L L A R I T Y . 

160. A horizontal disc of glass is held up by means of a film of water between 
if, and a similar disc of the same or a larger size above it . 

If R denote the radius of the lower disc, 
d the distance between the discs, which is very small compared with R, 
T the surface tension of water , 

show tha t the weight of the lower disc together wi th tha t of the water 

between the discs is approximately equal to J ^ • 

[The disc of water will be concave a t the edge, and the radius of curvature of 
the concavity may be t aken as -kZ.] 

161. The surface-tension of wa te r a t 20° C. is 81 dynes per linear centim. 
H o w high will water be elevated by capillary action in a wet ted tube whose dia-
meter is half a mill imetre? 



102. H o w much will mercury be depressed by capillary action in a glass tube 
of half a millimetre diameter, the surface-tension of mercury a t 20° C. being 418 
dynes per cm., its density 13-54, and the cosine of the angle of contact '703? 

163. Show by the method of § 186 t h a t the capillary elevation or depression 
will be the same in a square tube as in a circular tube whose diameter is equal to 
a side of the square. 

164. Two equal discs in a vertical position have a film of water between 
them sustained by capillary action. Show tha t if the water a t the lowest point 
is a t atmospheric pressure, the water a t t h e centre of the discs is at a pressure less 
than atmospheric by rg dynes per sq. cm., r being the common radius of the 
discs in cm.; and that the discs are pressed together with a force of n r'g dynes. 

B A R O M E T E R , A N D B O Y L E ' S L A W . 

165. A bent tube, having one end open and the other closed, contains mercury 
which stands 20 cm. higher in the open than in the closed branch. Compare the 
pressure of the air in the closed branch wi th tha t of the external a i r ; t he baro-
meter a t the time standing at 75 cm. 

166. The cross sections of the open and closed branches of a siphon barometer 
are as 6 to 1. W h a t distance will t he mercury move in the closed branch, when 
a normal barometer alters its reading by 1 inch? 

167. If the section of the closed l imb of a siphon barometer is to tha t of the 
open limb as a to b, show tha t a rise of 1 cm. in the mercury in the closed l imb 

corresponds to a rise of a - ~ cm. of t h e theoretical barometer. 

168. Compute, in dynes per sq. cm., t h e pressure due to the weight of a column 
of mercury 76 cm. high at the equator, where g is 978, and at the pole, where q 
is 983. * 

169. The volumes of a given q u a n t i t y of mercury at 0° C. and 100" C. are as 
1 to 1-0182. Compute the height of a column of mercury at 100", which will 
produce the same pressure as 76 cm. of mercury at 0°. 

170. The volumes of a given mass of mercury, at 0° and 20°, are as 1 to 1-0036. 
F ind the height reduced to 0°, when the actual height (in t rue centimetres), a t a 
temperature of 20°, is 76"2. 

171. I n performing the Torricellian experiment a l i t t le air is lef t above the 
mercury. If this air expands a thousandfold, what difference will it make in the 
height of the column of mercury sustained when a normal barometer reads 
76 cm.? 

172. In performing the Torricellian experiment, an inch in length of the tube 
is occupied with air at atmospheric pressure, before the t u b e is inverted A f t e r 
the inversion, th is air expands ti l l i t occupies 15 inches, while a column of 
mercury 28 inches high is sustained below it. Find the t rue barometric height. 

173. The mercury stands a t the same level in the open and in the closed branch 
of a bent tube of uniform section, when the air confined a t the closed end is a t 
the pressure of 30 inches of mercury, which is the same as the pressure of the 
external air. Express, in atmospheres, t he pressure which, acting on the surface 
of the mercury m the open branch, compresses the confined air to half its original 

volume, and at the same t ime maintains a difference of 5 inches in the levels of 
the two mercurial columns. 

174. A t what pressure (expressed in atmospheres) will common air have the 
same density which hydrogen has at one atmosphere; thei r densities when com-
pared a t the same pressure being as 1276 to 88 "4? 

175. Two volumes of oxygen, of density -00141, are mixed wi th three of 
nitrogen, of density -00124. F ind the density of the mixture—(a) if i t occupies 
five volumes; (6) if i t is reduced to four volumes. 

176. The mass of a cub. cm. of air, a t t he temperature 0° C., and at the pressure 
of a million dynes to the square cm., is "0012759 gramme. Find the mass of a 
cubic cm. of air a t 0° C., uuder the pressure of 76 cm. of mercury—(a) at the pole, 
where g is 983 1; (b) a t the equator, where g is 978*1; (c) at a place where g is 
981. 

177. Show tha t the density of air a t a given temperature, and uuder the 
pressure of a given column of mercury, is greater a t the pole than at the equator 
by about 1 par t in 196; and that the gravitat ing force of a given volume of it 
is greater a t the pole than at the equator by about 1 part in 98. 

178. A cylindrical test-tube, 1 decim. long, is plunged, mouth downwards, 
into mercury. H o w deep must it be plunged that the volume of the inclosed air 
may be diminished by one-half? 

179. The pressure indicated by a siphon barometer whose vacuum is defective 
is 750 mm., and when mercury is poured into the open branch till the barometric 
chamber is reduced to half i ts former volume, the pressure indicated is 740 mm. 
Deduce the t rue pressure. 

180. A n open manometer, formed of a bent tube of iron whose two branches 
are parallel and vertical, and of a glass tube of larger size, contains mercury a t 
the same level in both branches, this level being higher than the junction of the 
iron with the glass tube. W h a t must be the ratio of the sections of the two 
tubes, t ha t the mercury may ascend half a metre in the glass tube when a pres-
sure of 6 atmospheres is exerted in the opposite branch? 

181. A curved tube has two vertical legs, one having a section of 1 sq. cm., the 
other of 10 sq. cm. Wate r is poured in, and stands at t he same height in both 
legs. A piston, weighing 5 kilogrammes, is then allowed to descend, and press 
wi th its own weight upon the surface of the liquid in the larger leg. Find the 
elevation thus produced in the surface of the liquid in the smaller leg. 

P U M P S , & C . 

182. The sectional area of the small plunger in a Bramah press is 1 sq. cm., 
and tha t of the larger 100 sq. cm. The lever handle gives a mechanical advan-
tage of 6. W h a t weight will the large plunger sustain when 1 cwt. is hung from 
the handle? 

183. The diameter of the small plunger is half an inch; tha t of the larger 
1 foot. The arms of the lever handle are 3 in. and 2 f t . F ind the total mechan-
ical advantage. 

184. Find, in grammes weight, the force required to sustain the piston of a 
suction-pump without friction, if the radius of the piston be 15 cm., the depth 



f rom i t to the surface of the water in the well 600 cm., and the height of the 
column of water above it 50 cm. Show t h a t the answer does not depend on the 
size of the pipe which leads down to t h e well. 

185. Two vessels of water are connected by a siphon. A certain point P in 
its interior is 10 cm. and 30 cm. respectively above the levels of the liquid in the 
two vessels. T h e pressure of the a tmosphere is 1000 grammes weight per sq. cm. 
F i n d the pressure which will exist a t P—(a) if the end which dips in the upper 
vessel be plugged; (6) if the end which dips in the lower vessel be plugged. 

186. If the receiver has double the volume of the barrel , find the density of 
the a i r remaining a f te r 10 strokes, neglecting leakage, &c. 

187. A i r is forced into a vessel by a compression pump whose barrel has j ^ t h 
of the volume of the vessel. Compute t h e density of the air in the vessel af ter 
20 strokes. 

188. I n the pump of Fig. 136 show t h a t the excess of the pressure on t h e upper 
above tha t on the lower side of the piston, a t the end of the first up-stroke, is 

y + y , of an atmosphere [in the notation of § 230]; and hence tha t the first 

stroke is more laborious wi th a small t han wi th a large receiver. 

189. I n Tate's pump show t h a t the pressure t o be overcome in the first stroke 
is nearly equal to an atmosphere dur ing t h e greater pa r t of the s t roke ; and tha t , 
when half the a i r has been expelled f rom the receiver, the pressure to be over-
come varies, in different par t s of the stroke, f r o m half an atmosphere to an atmo-
sphere. 
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