176

par une simple division, ce qui abrége surtout les calculs d'approximation.

En effet, soit N le nombre dont on cherche la racine a+x, a étant la partie déjà calculée par le procédé ordinaire, et x celle qui est inconnue et doit compléter la racine, $\sqrt{N} = a + x$. Bien entendu que pour donner aux chiffres de a leur valeur propre, on a dû ajouter à la droite n zéros, c'est-à-dire autant que x a de chiffres, autant qu'il reste de tranches de N à descendre près des restes successifs. $N = a^2 + 2ax + x^2$ donne $\frac{N-a^2}{2a} = x + \frac{x^2}{2a} = \frac{R}{2a^2}$

R étant le reste $N - a^2$ qu'a donné a, près duquel on a descendu toutes les tranches de deux chiffres non encore employées. Cela posé, x étant composé de n chiffres, x^2 en a au plus 2n, tandis que, par hypothèse, a en a au moins n+1, lesquels sont suivis de n

zéros; on voit que a sera $> x^2$, et par conséquent $\frac{x^2}{2a} < \frac{1}{2}$; on aura

donc $x = \frac{N-a^2}{2a}$, lorsqu'on ne voudra que la partie entière de

N; ce qui arrive toujours, puisque dans les approximations, et même pour les racines des fractions, les nombres doivent être préparés de manière à ce que l'extraction ne porte que sur des parties entières (n° 66, 1°).

On divisera donc $N-a^2$, ou le reste de l'opération qui a servi à trouver a, par le double de a; et pour cela, on regardera la partie connue a de la racine comme des unités simples (en omettant les n zéros qui devraient être mis à sa droite), et l'on supprimera aussi n chiffres à la droite de N.

Ainsi, pour $\sqrt{3.37.67.98.17}$, les trois 1^{res} tranches donnent d'abord 183 pour racine, et 278 pour reste : si donc on divise 27898 par 2 fois 183, ou 366, ou aura 76 pour les deux autres chiffres de la racine, qui est 18376.

De même, $\sqrt{2} = 1,4142$, en ne poussant l'approximation (n° 64) qu'aux $10000^{\circ s}$: pour trouver 4 autres décimales, comme le reste est 3836, on divisera 38360000 par 2×14142 ou 28284: le quotient est 1356; donc, etc. On trouve

$$\sqrt{2}$$
=1,4142135623732, $\sqrt{3}$ =1,7320508076.

135. Soit proposé d'extraire la racine de

$$9a^4 - 12a^3b + 34a^2b^2 - 20ab^3 + 25b^4$$
;

représentons ce polynome par X. Nous dirons, pour abréger, que le terme où la lettre a porte le plus haut exposant, est le plus grand. Soient x le plus grand terme de la racine cherchée, y la somme des autres termes; d'où (n° 97, 1°), $X = (x+y)^2 = x^2 + 2xy + y^2$; x^2 est visiblement le plus grand terme du carré X, ainsi $x^2 = 9a^4$, ou $x = 3a^2$ pour 1^{c_x} terme de la racine, et $X = 9a^4 + 6a^2y + y^2$. Otant $9a^4$ des deux membres, il vient

$$-12a^3b + 34a^2b^2 - 20ab^3 + 25b^4 = 6a^2y + y^2;$$

y est en général un polynome, aussi bien que $6a^2y$; or, y n'ayant que des termes où l'exposant de a est moindre que 2, il est clair que le plus grand terme de $(6a^2+y)\times y$ est le produit de $6a^2$ par le plus grand terme de y; ainsi ce dernier sera le quotient de $-12a^3b$, divisé par $6a^2$, double de la racine trouvée. Il en résulte que -2ab est le 2^c terme de la racine.

Pour achever le calcul, faisons $3a^2 - 2ab$, ou x - 2ab = x', et désignons par y' les autres termes de la racine. On a $X = x'^2 + 2x'y' + y'^2$; ôtons x'^2 de part et d'autre; x'^2 se compose de x^2 , déjà ôté, puis de $-2x \times 2ab + (2ab)^2$, ou -2ab(2x - 2ab). Si donc on écrit le 2° terme -2ab de la racine, à côté de $6a^2$, double du $1^{\circ r}$, et si l'on multiplie par -2ab, en retranchant le produit du reste ci-dessus, on aura

$$30a^2b^2 - 20ab^3 + 25b^4 = 2x'y' + y'^2$$
.

Si y' est un polynome, il est aisé de voir que le plus grand terme $30a^2b^2$ est celui de 2x'y', c'est-à-dire est le produit du plus grand terme de 2x' par celui de y'. Si donc on divise $30a^2b^2$ par $6a^2$, le quotient $5b^2$ sera le 3° terme de la racine.

Faisons $3a^2 - 2ab + 5b^2$ ou $x' + 5b^2 = x''$, et désignons par y'' la somme des autres termes de la racine : on aura $X - x''^2 = 2x''y'' + y''^2$; or, pour retrancher x''^2 de X, comme on a déjà ôté x'^2 il faut, du dernier reste $30a^2b^2 - 20ab^3 + 25b^4$, ôter encore $2x' \cdot 5b^2 + (5b^2)^2$, ou $5b^2(2x' + 5b^2)$. On écrira donc $+ 5b^2$ à côté du double $6a^2 - 4ab$ des deux 1^{ers} termes de la racine, et l'on multipliera par le 3^s terme $5b^2$; enfin, on retranchera le produit du 2^s reste. Comme ce produit et ce reste sont égaux, on a $X - x''^2 = 0$, d'où y'' = 0 et $x'' = \sqrt{X}$. Ainsi la racine demandée est $3a^2 - 2ab + 5b^2$.

Voici le type du calcul :

On voit qu'après avoir ordonné, il faut prendre la racine du 1er terme, et continuer l'opération comme pour l'extraction numérique (n° 62). Les exemples suivants montrent que la même marche de calculs donne la racine lorsqu'il y a des imaginaires ou des exposants négatifs ou fractionnaires.

$$\underbrace{ \begin{array}{c} 9a4 - 12a^3V - 1 - 2a^2(2 - 3V - 2) + 4aV2 - 2 \\ -9a^4 \\ 1er \ \text{reste}, -12a^3V - 1 - 2a^2(2 - 3V - 2) + 4aV2 - 2 \\ +12a^3V - 1 + 4a^2 \\ 2e \ \text{reste}, \\ 5e \ \text{reste}, \\ 5e \ \text{reste}. \\ \end{array} }_{2e \ \text{reste}, \\ 5e \ \text{reste}. \\ } \underbrace{ \begin{array}{c} 5a^2 - 2aV - 1 + V - 2 \\ (6a^2 - 2aV - 1) \times -2aV - 1 \\ 6a^2 - 4aV - 1 + V - 2 \\ \times + V - 2 \\ \end{array} }_{2e \ \text{reste}, \\ 2e \ \text{reste}. \\ }$$

$$\frac{4a^{2}-12ab^{\frac{1}{2}}+9b+12-18a^{-1}b^{\frac{1}{2}}+9a^{-2}}{1^{\text{er reste}},-12ab^{\frac{1}{2}}+9b+12-18a^{-1}b^{\frac{1}{2}}+9a^{-2}} \begin{cases}
2a-5b^{\frac{1}{2}}+5a-1 \\
(4a-5b^{\frac{1}{2}})\times -5b^{\frac{1}{2}}
\end{cases}$$

$$\frac{+12ab^{\frac{1}{2}}-9b}{5^{\text{er reste}}, \quad 12-18a^{-1}b^{\frac{1}{2}}+9a^{-2}} \begin{cases}
4a-6b^{\frac{1}{2}}+5a^{-1} \\
\times +3a^{-1}
\end{cases}$$

$$\begin{array}{c} x^2-a^2 \\ -x^2 \\ 1^{\rm er} \ {\rm reste} \ , -a^2 \\ & +a^2-\frac{1}{4}a^4x^{-2} \\ 2^{\rm e} \ {\rm reste}, \quad -\frac{1}{8}a^6x^{-4}-\frac{1}{64}a^8x^{-6} \\ 3^{\rm e} \ {\rm reste}_1 & -\frac{1}{8}a^6x^{-4} \ {\rm etc.} \end{array}$$

Ce dernier exemple montre comment on doit se conduire lorsque l'extraction ne peut se faire exactement, ce qu'on reconnaît quand on trouve quelque terme de la racine où a porte un exposant moindre que la moitié de son plus faible exposant dans le carré. Du reste, on a ici

$$V(x^2-a^2)=x-\frac{a^2}{2x}-\frac{a^4}{8x^3}-\frac{a^6}{16x^5}-\text{ etc.}$$

136. Le cube de x+y est x^3+3 x^2 y+3 x y^2+y^3 (n° 97, 11), il sera facile d'appliquer les principes précédents à la recherche de la racine cubique d'un polynome. Nous nous bornerons à l'exemple suivant :

$$\begin{array}{c}
8a^{6} - 56a^{4}b^{2} + 54a^{2}b^{4} - 27b^{6} \\
-8a^{6}
\end{array}$$
1er reste, $-36a^{4}b^{2} + 54a^{2}b^{4} - 27b^{6}$
2e reste. 0
$$\begin{array}{c}
12a^{4} - 18a^{2}b^{2} + 9b^{4} \\
\times -3b^{2}
\end{array}$$

Après avoir ordonné, cherché la racine 3° du $1^{\circ r}$ terme $8a^{6}$, qui est $2a^{2}$, et retranché $8a^{6}$, on a un $1^{\circ r}$ reste. On en divise le $1^{\circ r}$ terme $-36a^{4}b^{2}$ par $12a^{4}$, triple du carré de $2a^{2}$; le quotient $-3b^{2}$ est le 2° terme de la racine. Près de $12a^{4}$, on écrira $-18a^{2}b^{2}+9b^{4}$, ou le triple du produit de $-3b^{2}$ par le $1^{\circ r}$ terme $2a^{2}$, et le carré de $-3b^{2}$; on multipliera ce trinome par $-3b^{2}$, et l'on retranchera le produit du $1^{\circ r}$ reste. Le résultat étant zéro, on a de suite $2a^{2}-3b^{2}$ pour racine cubique exacte : s'il y avait un second reste, on opérerait de même sur ce reste.

Nous ne dirons rien ici des racines 4º, 5º...

Equations du second degré.

137. En passant tous les termes dans le 1er membre, réduisant en un seul tous ceux qui contiennent soit x, soit x^2 , et opérant de même sur tous les termes connus, l'équ. du 2° degré prend la forme $Ax^2 + Bx + C = 0$, et faisant

on a
$$\frac{B}{A} = p, \qquad \frac{C}{A} = q,$$
$$x^2 + px + q = 0, \qquad \dots \qquad \dots \qquad (1)$$

équation qui peut représenter toutes celles du second degré à une inconnue, et dans laquelle p et q sont des nombres connus positifs ou négatifs.

Divisons $x^2 + px + q$ par x - a, a étant un nombre quelconque, il viendra le quotient x + a + p, et le reste $a^2 + pa + q$. Ce reste est ou n'est pas nul, selon que a est ou n'est pas racine de l'équ. proposée (on nomme racines les valeurs qui satisfont à cette équ., parce qu'on les obtient par une extraction). Donc, tout nombre a qui est racine d'une équation du second degré, donne un divi-

ÉQUATIONS DU SECOND DEGRÉ.

seur binome (x-a) du premier membre de cette équation, laquelle prend alors la forme

$$(x-a)(x+a+p)=0.$$

Or, on demande toutes les valeurs propres à rendre ce produit nul; ainsi x = -a - p jouit aussi bien de cette propriété que x = a. Donc, 1° toute équation du second degré qui a une racine a, en admet encore une seconde = -(a + p).

2° Cette équation ne peut avoir que deux racines : cette proposition sera démontrée plus tard.

3° Les deux racines étant +a et -(a+p), leur somme est -p, et leur produit est $-(a^2+ap)=q$, à cause de $a^2+pa+q=0$; donc, le coefficient p du second terme en signe contraire est la somme de deux racines, et le terme connu q en est le produit. Par exemple, pour $x^2-8x+15=0$, x=5 est une racine, ainsi qu'on le reconnaît en substituant; on trouve que le premier membre est divisible par x-5; le quotient est x-3; les deux racines sont 3 et 5, dont la somme est 8, et le produit 15.

 4° Il est facile de former une équation du second degré dont les racines k et l soient données ; on en fera la somme k+l, et le produit kl, et l'on aura $x^2-(k+l)$ x+kl=0. On pourra encore former le produit (x-k) (x-l). Par exemple, si b et b sont les racines, on multiplie b par b par b par b point b somme, b par b et changeant le signe de la somme, b est l'équ. cherchée.

5º Résoudre l'équ. (1) revient à chercher deux nombres dont — p soit la somme et — q le produit.

6° Il peut arriver que les racines k et l soient égales; alors les facteurs x-k et x-l étant égaux, x^2+px+q est le carré de l'un de ces facteurs.

138. Pour résoudre l'équ. (1), remarquons que si $x^2 + px + q$ était un carré, en extrayant la racine, on n'aurait plus qu'une éq. du 1er degré; comparons ce trinome à $(x+n)^2$ ou $x^2 + 2xn + n^2$; n est arbitraire; ainsi faisons $n = \frac{1}{2}p$, pour que les deux 1^{ers} termes soient égaux de part et d'autre.

Donc, si n^2 , ou $\frac{1}{4}p^2$, se trouve =q, x^2+px+q est le carré de $x+\frac{1}{2}p$; ce trinome n'est un carré que quand $\frac{1}{4}p^2=q$. En remplaçant p et q par $\frac{B}{A}$ et $\frac{C}{A}$, on trouve que pour que Ax^2+Bx+C

soit un carré, il faut qu'on ait entre les coefficients la relation $B^2 - 4AC = 0$.

Dans le cas où $\frac{1}{4}p^2 = q$, la proposée revient à $(x + \frac{1}{4}p)^2 = 0$, et les deux racines sont égales à $-\frac{1}{4}p$.

Mais si cette condition n'a pas lieu, ajoutons $\frac{1}{4}p^2 - q$ aux deux membres de l'éq. (1), il viendra

$$x^2 + px + \frac{1}{4}p^2 = (x + \frac{1}{2}p)^2 = \frac{1}{4}p^2 - q$$

extrayant la racine,
$$x + \frac{1}{2}p = \pm \sqrt{(\frac{1}{4}p^2 - q)}$$
, d'où $x = -\frac{1}{2}p \pm \sqrt{(\frac{1}{4}p^2 - q)}$ (2)

Nous avons donné (n° 125) la raison du signe ±. Ainsi, la valeur de x est formée de la moitié du coefficient du 2° terme en signe contraire, plus ou moins la racine du carré de cette moitié, ajouté au terme connu passé dans le 2° membre. Dans chaque exemple on aura de suite la racine, sans s'astreindre à refaire les calculs précédents sur le trinome proposé.

Pour $x^2 - 8x + 15 = 0$, on trouve $x = 4 \pm 1$ (16 - 15) = 4 ± 1 , c'est-à-dire x = 5 et = 3. De même, $x^2 + 2x = 35$ donne

$$x = -1 \pm \sqrt{(35+1)} = -1 \pm 6$$
, ou $x = 5$ et $= -7$.

139. Le résultat (2) offre plusieurs cas. Faisons, pour abréger, $\frac{1}{4}p^2 - q = m$, d'où $q = \frac{1}{4}p^2 - m$; ce qui change $x^2 + px + q$ en $x^2 + px + \frac{1}{4}p^2 - m$, ou $(x + \frac{1}{2}p)^2 - m$; c'est la quantité qu'on veut rendre nulle par la substitution de certains nombres pour x.

1º Si m est négatif; comme $\frac{1}{4}p^2$ est toujours positif, ce cas n'arrive que si q est positif dans le premier membre de la proposée (1), et $> \frac{1}{4}p^2$. Mais alors la proposée revient à $(x+\frac{1}{2}p)^2+m=0$; on veut donc rendre nulle la somme de deux quantités positives, problème visiblement absurde: et comme on trouve alors

$$x = -\frac{1}{2}p \pm \sqrt{-m},$$

le symbole / — m, absurde en lui-même, servira à distinguer ce cas. Donc, le problème est absurde lorsque les racines sont imaginaires, c'est-à-dire quand q est positif dans le 1^{er} membre de l'équ. (1) et que q surpasse le carré de la moitié du coefficient p du 2^e terme.

ÉQUATIONS DU SECOND DEGRÉ.

Cependant nous dirons encore, dans ce cas, que la proposée a deux racines, parce qu'en assujettissant ces valeurs $x = -\frac{1}{2}p \pm \sqrt{-m}$, aux mêmes calculs que si elles étaient réelles, c'est-à-dire les substituant pour x dans la proposée, elles y satisfont; nous ne donnons ceci que comme un fait algébrique. C'est ainsi que les valeurs négatives, quoique vides de sens en elles-mêmes, peuvent servir de solution à une équation (n° 107) sans convenir au problème, à moins qu'on n'y fasse quelque modi-

2º Si m est nul, ce qui exige que q soit $= \frac{1}{2}p^2$ et positif dans le 1er membre de la proposée (1), alors $x^2 + px + q$ revient au carré de $x + \frac{1}{2}p$, et les racines sont égales; c'est le passage des racines imaginaires aux réelles.

3° Si m est positif, q doit être négatif dans le 1er membre, à moins que q ne soit positif, et $<\frac{1}{4}p^2$; dans ce cas (n° 97, III),

$$(x + \frac{1}{2}p)^2 - m = (x + \frac{1}{2}p + \sqrt{m}) \times (x + \frac{1}{2}p - \sqrt{m}).$$

Tels sont les facteurs du 1^{er} membre de la proposée (1); les racines sont $-\frac{1}{2}p+\sqrt{m}$ et $-\frac{1}{2}p-\sqrt{m}$, dont la somme est -p, et le produit $\frac{1}{4}p^2-m$ ou q.

4º Si m est un carré, les deux racines sont rationnelles.

5° Si les racines sont réelles et de même signe, il faut que $\frac{1}{4}p$ l'emporte sur le radical, qui a le signe \pm ; ainsi $\frac{1}{4}p > \sqrt{m}$ ou $\frac{1}{4}p^2 > \frac{1}{4}p^2 - q$, ou enfin q > 0. Ainsi, quand q est négatif, les racines ont des signes contraires, et lorsque q est positif (et $<\frac{1}{4}p^2$), leur signe est le même, mais opposé à celui de p.

Voy. nº 108, 2º, pour l'interprétation des racines négatives.

6° Si q=0, sans recourir à la formule (2), on a

$$x^2 + px = x (x + p) = 0$$
, d'où $x = 0$ et $x = -p$.

7° Si p = 0, on a $x^2 + q = 0$, d'où $x = \pm \sqrt{-q}$, valeur réelle ou imaginaire, selon le signe de q.

8° Quand la proposée a la forme $Ax^2 + Bx + C = 0$, le 1° terme ayant un coefficient A, nous avons dit qu'on le dégage, en divisant tout par A; mais on peut aussi rendre ce 1° terme un carré, en multipliant l'équ. par AA: on a

$$4A^2x^2 + 4ABx + 4AC = 0$$
;

on compare, comme ci-dessus, au carré de 2Ax + n, on voit qu'il

faut prendre n=B, et ajouter B^2 pour compléter le carré; donc $(2Ax+B)^2=B^2-4AC$, et $x=\frac{-B\pm\sqrt{(B^2-4AC)}}{2AC}$.

C'est ainsi qu'on trouve, en résolvant par rapport à y, l'équ.

$$Ay^{2} + Bxy + Cx^{3} + Dy + Ex + F = 0,$$

$$y = \frac{-Bx - D \pm \sqrt{[(B^{2} - 4AC)x^{2} + 2(BD - 2AE)x + D^{2} - 4AF]}}{2A}$$

9° On a $Ax^2 + Bx + C = A\left[(x + \frac{1}{2}p)^2 - m\right]$, m étant négatif, nul ou positif, suivant que les racines sont imaginaires, égales ou réelles. Dans les deux 1^{ers} cas, quelque valeur qu'on substitue pour x, le multiplicateur de A étant positif, le produit, ou $Ax^2 + Bx + C$, doit avoir le même signe que A. Mais si m est positif, soient a et b les racines réelles, on a

$$Ax^2 + Bx + C = A(x-a)(x-b),$$

et l'on voit que si l'on donne à x des valeurs plus grandes ou moindres que a et b, le signe du résultat sera le même que celui de A; mais il sera différent si x est compris entre a et b. Le trinome, qui conservait ci-dessus le même signe pour toutes les valeurs de x, change donc maintenant deux fois de signe, lorsqu'on fait passer x d'un état compris entre a et b, à un autre qui soit ou > ou < a et b.

On pourra s'exercer sur les exemples suivants:

1er cas.
$$9x^{2}-12x+8=0...$$
 $x=\frac{2}{3}\pm\frac{2}{5}\sqrt{-1}$,
 $2^{6}...$ $9x^{2}-12x+4=0...$ $x=\frac{2}{5}$,
 $9x^{2}-12x+3=0...$ $x=\frac{2}{3}\pm\frac{1}{3}$, ou $x=1$, et $x=\frac{1}{3}$,
 3^{6} et 4^{6} $2x^{2}+3x+1=0...$ $x=-\frac{3}{4}\pm\frac{1}{4}$, ou $x=-\frac{1}{2}$, et $x=-1$,
 $x^{2}-x-2=0...$ $x=\frac{1}{2}\pm\frac{3}{2}$, ou $x=2$, et $x=-1$,
 $x^{2}-5x=-6...$ $x=3$, et $x=2$,
 $x^{2}-9=0...$ $x=3$, et $x=-3$,
 $x^{2}+9=0...$ $x=3$, et $x=-3$,

140. I. Trouver un nombre x tel, qu'en ôtant 2 de son carré, le reste soit 1. On a $x^2 - 2 = 1$, d'où $x = \pm \sqrt{3}$.

II. Partager a en deux parties telles, que m fois la 1^{ro} , multipliée par n fois la 2^{e} , donne le produit p. On a

$$mx \cdot n (a - x) = p$$
, $d'où x = \frac{1}{2} a \pm \sqrt{\left(\frac{1}{6} a^2 - \frac{p}{mn}\right)}$.

PROPORTIONS.

Si l'on veut partager a en deux parties, dont le produit p soit donné, il faut faire m=n=1. Comme les racines sont imaginaires lorsque $p > \frac{1}{4}a^2$, on voit que le produit ne peut surpasser le carré de la moitié de a, c.-à-d. que le carré de $\frac{1}{4}a$ est le plus grand produit possible qu'on puisse former avec les deux parties de a (n° 97, III).

III. Étant donnés le produit p de deux poids et leur différence, trouver chacun d'eux? On a xy = p, x - y = d; d'où

et
$$x = \frac{1}{2} d \pm \sqrt{(\frac{1}{4} d^2 + p)}$$

 $y = -\frac{1}{2} d \pm \sqrt{(\frac{1}{4} d^2 + p)}$.

IV. Trouver deux nombres tels, que leur somme a, et celle b de leurs cubes soient données. De x + y = a, $x^3 + y^3 = b$, on tire $a^3 - 3a^2x + 3ax^2 = b$, et faisant b = af, on a

V. Quel est le nombre dont n fois la puissance p est égale à m fois la puissance p + 2? $x = \pm \sqrt{(n : m)}$.

VI. Plusieurs personnes sont tenues de payer les frais d'un procès, montant à 800 fr.; mais trois sont insolvables, et les autres, suppléant à leur défaut, sont contraintes de donner chacune 60 fr. outre leur part; on demande le nombre x des payants. On a

$$\frac{800}{x+3} = \frac{800}{x} - 60, \text{ d'où } x^2 + 3x = 40,$$

$$x = -\frac{3}{4} \pm \sqrt{\frac{9}{4} + 40} = -\frac{3}{5} \pm \frac{13}{5};$$

ainsi, il y avait 5 payants, au lieu de 8. Il est aisé d'interpréter la racine négative — 8.

VII. On a deux points lumineux A et B (fig. 1), distants entre eux de AB = a; l'intensité de la lumière répandue par A est m fois celle de B; on demande le lieu D qui reçoit la même clarté de part et d'autre, sachant que la lumière transmise par un point lumineux décroît en raison du carré de la distance.

Soient α et β les intensités des lumières que communiquent les foyers A et B à la distance 1; $\frac{\alpha}{1}$, $\frac{\alpha}{4}$, $\frac{\alpha}{9}$ seront celles que reçoit le point D lorsqu'il s'écarte de A à la distance $1, 2, 3 \dots$;

ainsi, $\frac{\alpha}{x^2}$ est celle qui répond à l'espace AD = x; et comme BD = a - x, la lumière que B transmet à D est $\frac{\beta}{(a - x)^2}$; on a donc $\frac{\alpha}{x^2} = \frac{\beta}{(a - x)^2}$, d'où $\frac{\alpha}{\beta} = \left(\frac{x}{a - x}\right)^2 = m$, en posant $\alpha = m\beta$; extrayant la racine, on trouve enfin

$$x = \frac{a\sqrt{m}}{\sqrt{m \pm 1}}$$
, ou $x = \frac{a}{m-1} (m \mp \sqrt{m})$.

En général, on doit éviter la double irrationnalité des deux termes d'une fraction (n° 65), et surtout celle du dénominateur. Ici, on a multiplié haut et bas par $\sqrt{m+1}$, ce qui a donné (n° 97, III) pour dénominateur m-1, et pour numérateur m + 1. On en dira autant des cas semblables.

VIII. Soit donnée une fraction $\frac{a}{b}$; quel est le nombre x qui, ajouté, soit au numérateur a, soit au dénominateur b, donne deux résultats dont le 1^{er} soit k fois le 2^{e} , ou

$$\frac{a+x}{b} = \frac{ka}{b+x}, \ x^2 + (a+b) \ x = ab \ (k-1);$$
$$x = -\frac{1}{2} (a+b) \pm \frac{1}{2} \sqrt{[(a-b)^2 + 4abk]}.$$

done

CHAPITRE IV.

DES RAPPORTS

Des Proportions.

141. 1° L'équidifférence a.b: c.d, équivaut à a-b=c-d; d'où a+d=c+b. Si l'équidifférence est continue, on $a \div a.b.d$, d'où 2b=a+d (voy. n° 72).

2° Soit la proportion a:b::c:d, ou $\frac{a}{b}=\frac{c}{d}$; on a ad=bc,